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Abstract. Given a central isogeny π : G → H of connected reductive Qp-groups, and a local

Galois representation ρ valued in H(Qp) that is trianguline in the sense of Daruvar, we study
whether a lift of ρ along π is still trianguline. We give a positive answer under weak conditions
on the Hodge–Tate–Sen weights of ρ, and the assumption that the trianguline parameter of
ρ can be lifted along π. This is an analogue of the results proved by Wintenberger, Conrad,
Patrikis, and Hoang Duc for p-adic Hodge-theoretic properties of ρ. We describe a Tannakian
framework for all such lifting problems, and we reinterpret the existence of a lift with prescribed
local properties in terms of the simple connectedness of a certain pro-semisimple group. While
applying this formalism to the case of trianguline representations, we extend a result of Berger
and Di Matteo on triangulable tensor products of B-pairs.

Introduction

Fix a prime p and a number field F . According to the Langlands conjectures, algebraic auto-
morphic representations of the adelic points of a connected reductive F -group G should provide
us with a large class of representations of the absolute Galois group Gal(F/F ), valued in the p-
adic points of the Langlands dual of G. The Fontaine–Mazur conjecture and its generalizations
predict, roughly, that such representations are those that are almost everywhere unramified and
potentially semistable at the p-adic places. In the case of the group GL2/Q this is a theorem of
Kisin and Emerton, building on the work of many people.

The following notation is in place throughout the introduction. Let G and G′ be two con-
nected reductive groups over F and let H ′ = (LG′)◦ and H = (LG)◦ be the neutral con-
nected components of their Langlands duals, that we see as groups over Qp. Given a morphism

S : H ′ → H, one can compose a representation ρ̃ : Gal(F/F ) → H ′(Qp) with S to obtain a

representation ρ : Gal(F/F )→ H(Qp). When ρ̃ is of automorphic origin, the Langlands functo-
riality conjectures predict the existence of a transfer of automorphic representations of G′(AF )
to automorphic representations of G(AF ). The characterization of Galois representations via
p-adic Hodge theory is compatible with such a transfer: if ρ̃ is potentially semistable at the
p-adic places, then the same is true for ρ = S ◦ ρ̃. One can ask whether the converse is true;
admitting that the characterization suggested by the Fontaine–Mazur conjecture holds, this
would amount to asking whether ρ̃ is of automorphic origin whenever ρ is. In this direction one
has the following result of Wintenberger and Conrad. Let K and E be two finite extensions of
Qp and let S : H ′ → H be an isogeny of connected reductive Qp-groups. Let IK be the inertia

subgroup of Gal(K/K) and ρ : IK → H(Qp) a semistable representation, meaning that it is
semistable, in the usual sense, after composition with a faithful (hence with any) representation
of H. By a lift of ρ to H ′ we mean a representation ρ̃ : IK → H ′(E) that satisfies S ◦ ρ̃ ∼= ρ.

Theorem A ([Win95, Théorème 1.1.3],[Conr11, Theorem 6.2]).
Assume that the Hodge–Tate cocharacter Gm,Cp → HCp attached to ρ can be lifted along S to a

cocharacter Gm,Cp → H ′
Cp
. Then ρ admits a crystalline lift IK → H ′(Qp).

Given the Tannakian nature of the definition of crystalline representation, it is not surprising
that the proof of Theorem A involves Tannakian arguments. However, one cannot deduce the
statement in a purely abstract way, and concrete manipulation of filtered φ-modules is essential
to the proof.
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In the same spirit of Theorem A, we have the more recent results of Hoang Duc [Hoa15] and
Conrad [Conr11], where IK is replaced by either a local or a global Galois group and the possible
ramification of a lift is studied in more detail. In [Noo06], Noot studies the analogue lifting
problem for a compatible system of Galois representations attached to an abelian variety. The
work of Di Matteo [DiM13a] can also be interpreted in the above setting: he shows that if instead
of an isogeny H ′ → H one considers a (non one-dimensional) representation S : GLm → GLn,
described by a Schur functor, then any lift along S of a Hodge–Tate (de Rham, semi-stable,
crystalline) representation into GLn(Qp) is Hodge–Tate (de Rham, semi-stable, crystalline) up
to a twist.

It is known that, for many choices of a connected reductive groups G over a number field
F , algebraic automorphic representations of finite slope of G(AF ) live in p-adic families: these
are rigid analytic (or adic) spaces equipped with global functions that specialize on a Zariski-
dense set to the Hecke eigensystems of automorphic representations of G(AF ). By specializing
such functions at an arbitrary point of a p-adic family one almost never obtains the Hecke
eigensystem of an automorphic representation of G(AF ). However, one can often interpret such
a specialization as the Hecke eigensystem of a p-adic automorphic form for G, and attach to
it an H(Qp)-valued Galois representation that will not be potentially semi-stable at the p-adic
places. The correct notion describing the local behavior at p of representations arising this way
seems to be that of triangulinity, introduced by Colmez and inspired by earlier work of Kisin:
if K is a p-adic field, a continuous representation

Gal(K/K)→ GLn(Qp)

is trianguline if the corresponding (φ,Γ)-module, or equivalently B-pair, can be obtained by
successive extensions of (φ,Γ)-modules, or B-pairs, of rank 1. The ordered list of 1-dimensional
subquotients appearing in a triangulation is called its parameter, and we say that the trian-
gulation of a B-pair is strict if it is the only one with a given parameter. The definition of
triangulinity for a representation Gal(K/K) → H(Qp), with H not equal to GLn, is more
subtle and has been the object of V. Daruvar’s recent Ph.D. thesis [Da21].

Roughly speaking, one conjectures that representations Gal(F/F )→ H(Qp) that are almost
everywhere unramified and trianguline at the p-adic places are attached to a p-adic automorphic
form for G. Such a conjecture has been made precise only for those G for which all of the
ingredients are in place, that include GL2/Q and the definite unitary groups studied in [BHS17],
and proved only for GL2/Q (Emerton’s “overconvergent Fontaine–Mazur conjecture” [Eme14]).

Our goal for this paper is to show that the trianguline condition is compatible with the p-adic
Langlands transfer, in other words, to give an analogue of Theorem A in the context of p-adic
variation. Our main result has the following form; we point the reader to the main text for the
precise statement. Let E be a p-adic field, and let S : H ′ → H be a morphism of connected
reductive E-groups with finite central kernel. Let

ρ : Gal(F/F )→ H(E)

be a continuous Galois representation. The quasi-regularity condition appearing in the state-
ment below is a condition on the Hodge–Tate–Sen weights of a tuple of characters, that is for
instance implied by their weights being all distinct for every embedding of the coefficient field
into Qp.

Theorem B (Corollary 5.13). Let E be a p-adic field and ρ : Gal(F/F )→ H(E) a continuous
representation that is unramified outside of a finite set of places Σ and strictly trianguline at
the p-adic places of F . Assume that:

(i) for every v ∈ Σ, the restriction of ρ at a decomposition group at v admits a lift to H ′(E);
(ii) the “H-parameters” of the triangulations of ρ at the p-adic places can be lifted to “H ′-

parameters” that satisfy a certain quasi-regularity condition.

Then ρ admits a lift ρ̃ : Gal(F/F )→ H ′(E) that is unramified almost everywhere and trianguline
at the p-adic places of F .
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The intended application of Theorem B is to the study of congruences between p-adic families
of different kinds in purely Galoisian terms: if EG′ and EG are eigenvarieties associated with G′

and G, respectively, and SE : EG′ → EG is the rigid analytic map associated with the Langlands
transfer along S, then one can hope to prove, by identifying EG′ and EG with spaces of deforma-
tions of trianguline Galois representations and applying Theorem B, that a point of EG belongs
to the image of SE if and only if its associated representation Gal(F/F ) → H(E) comes from
a representation Gal(F/F )→ H ′(E) via S. This plan has been carried out in [Cont16b] in the
special case of the symmetric cube transfer from GL2 to GSp4.

Under the assumptions of Theorem B, the existence of an arbitrary lift follows from a result
of Conrad [Conr11], so all of our work is aimed at checking that such a lift is trianguline at the
p-adic places. Condition (ii) of Theorem B can be seen as an analogue of the assumption in
Theorem A that the Hodge–Tate cocharacter can be lifted.

We explain in more detail the structure of the paper and the results that lead to the proof
of Theorem B.

In Sections 1 and 2, we give an abstract Tannakian description of the problem of lifting
Galois representations with prescribed local properties along an isogeny. Consider a field E of
characteristic 0, an E-linear, neutral Tannakian category C and a full tensor subcategory D of
C. The category C should be thought of as the ambient category, for instance that of Qp-linear

representations of Gal(F/F ), while the objects of its subcategory D are those that satisfy a
condition we are interested in, for instance the representations that possess some desirable local
properties. We then build a new category D, sitting between C and D, generated under direct
sum by all of the objects V ∈ C such that

V ⊗W ∈ D
for some W ∈ C. In the abstract setting, we can study the discrepancy between D and D by
means of Tannakian duality. If

(1) GC −−−↠ GD −−−↠ GD

is the sequence of Tannakian fundamental groups dual to D ⊂ D ⊂ C, then we show that GD
is a kind of universal covering of GD “inside of GC”. Under reasonable assumptions on D (see
condition (pot) and the discussion following it) we can assume that the groups of connected
components are constant along (1), so we focus on the neutral components.

Theorem C.

(i) (Proposition 2.4) The objects of D are precisely the V ∈ C for which there exists a Schur
functor S : C → C such that S(V ) is an object of D of dimension strictly larger than 1.

(ii) (Proposition 2.11) The group G◦
D is the inverse limit of all pro-algebraic groups H fitting

into a diagram

G◦
C −−−↠ H

g
−−−↠ G◦

D
where g is a central isogeny.

The fact that representations GLm → GLn are described by Schur functors allows us to
reinterpret results of the type of Theorems A and B as stating that, for certain choices of C and
D, the inclusion D ⊂ D is an equality.

Unfortunately, Theorem C by itself is not sufficient to deduce that D = D in some concrete
interesting example. However, it plays an important role in the proof of the following local
result. Here K and E are again two p-adic fields, and we write B⊗E

|K -pair to emphasize what

base and coefficient field we are working with; B⊗E
|K -pairs of slope 0 correspond to E-linear

representations of Gal(K/K).

Theorem D (Theorems 3.11 and 4.13). Let W be a B⊗E
|K -pair and S a Schur functor. If S(W )

is triangulable and W satisfies a certain quasi-regularity condition, then W is potentially trian-
gulable. If moreover S(W ) admits a strict triangulation whose parameter “lifts to a candidate
parameter for W”, then W admits a strict triangulation of this candidate parameter.
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By replacing B⊗E
|K -pairs with modifications of slope 0, we can reduce Theorem D to the case

of B⊗E
|K -pairs attached to actual Galois representations; these form a Tannakian category that

is neutral, contrary to that of all B⊗E
|K -pairs. We are then in a position to apply Theorem C(i),

that allows us to reduce the statement of Theorem D to a single of Schur functor of length n,
for each n. The choice S = Symn presents some symmetries that we can exploit. Section 3 is
devoted to the actual manipulation of B-pairs leading to the proof of Theorem D.

In [DiM13a] Di Matteo proved a statement similar to Theorem D with “triangulable” re-
placed by Hodge–Tate, de Rham, potentially semi-stable, or crystalline. Within the Tannakian
framework introduced above, we can reformulate his result, in the special case of B⊗E

|K -pairs of

slope 0, as follows: if C is the category of continuous, finite-dimensional E-linear representa-
tions of Gal(K/K) and D is the full subcategory tensor generated by those that are potentially
semi-stable up to a twist, then D = D. Our Theorem D corresponds instead to the choice of D
as the category tensor generated by the quasi-regular, potentially trianguline representations.

Furthermore, Berger and Di Matteo [BD21] proved that, if V and W are two B⊗E
|K -pairs such

that V ⊗W admits a triangulation whose 1-dimensional subquotients are restrictions to GK of
B⊗E

|Qp
-pairs, then both V and W are potentially triangulable. We could combine this result with

Theorem C to show Theorem D under some additional assumptions on the triangulation. Our
technique allows us to work with the weaker condition of quasi-regularity.

The proof of Theorem B consists in constructing, for an arbitrary n, a crystalline period of
W from a crystalline period of SymnW : a triangulable B⊗E

|K -pair always admits such a period

up to a twist, and on the other hand such a period determines a rank 1 sub-B⊗E
|K -pair, allowing

us to work by induction on the rank of W .
Finally, Sections 4 and 5 deal with going from Theorem D to Theorem B. The main obstacle

here are the subtleties in the definition of the “trianguline” condition for a representation

ρ : Gal(K/K)→ H(Qp),

K a p-adic field, when H is not a general linear group. This problem has been studied in depth
in the Ph.D. thesis of V. Daruvar [Da21], who gives a Tannakian definition of triangulable H-
(φ,Γ)-module that turns out to be practical for studying, for instance, deformation spaces of
such objects. We restate his definition in terms of B-pairs and specialize it to the case when the
coefficients are a field, rather than an affinoid algebra, but we allow for a quasi-split group H
rather than just a split group as he does (Definition 5.1). Alternatively, one could give a “naive”
definition of triangulinity, in Wintenberger’s style, saying that ρ is trianguline if and only if S ◦ ρ
is trianguline for a faithful (hence for any) representation S of H. Daruvar’s definition allows
us to speak naturally of parameters, while the naive definition allows us to apply Theorem D.
We bridge the gap by proving that the two definitions are equivalent:

Theorem E (Proposition 5.9). An H-B⊗E
|K -pair is triangulable if and only if there exists a

faithful representation S : H → GLn of H such that the B⊗E
|K -pair of rank n attached to S(W )

is triangulable.

Notation and terminology. All categories we work with are assumed to be essentially small.
We denote by Ob (C) the class of objects of a category C; however, when this does not cause
any ambiguity, we may write X ∈ C rather than X ∈ Ob (C) for an object X of C. For all the
tensor categories under consideration the tensor product will be denoted with ⊗. We denote
by VectE the category of vector spaces over a field E. If V ∈ VectE , we write GL(V ) for the
group scheme over E of automorphisms of V . Given an affine group scheme G and a field
F , we write RepF (G) for the category of algebraic F -representations of G, equipped with the
usual structure of neutral Tannakian category where the fiber functor is the forgetful one. By
a Tannakian subcategory D of C we mean a strictly full (i.e., D is full and if X ∼= Y in C and
Y ∈ D, then X ∈ D) subcategory of C closed under the formation of subquotients, direct sums,
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tensor products, and duals. If S is a set of objects of C, by tensor category generated by S we
mean the smallest Tannakian subcategory of C containing all the objects in S (in particular, it
will contain all the duals of the objects in S).

If C is a neutral Tannakian category, we write GC for its Tannakian fundamental group. If V
is an object of a C, we still write V for its image under a specified fiber functor when this does
not create confusion.

Throughout the text p will denote a fixed prime number. Given a field K, we write K for an
algebraic closure of K (fixed once we use it for the first time) and GK for the absolute Galois
group Gal(K/K), equipped with the profinite topology. We fix once for all an extension of the
p-adic valuation of Qp to Qp, and denote by Cp a completion of Qp for this valuation. By a
“p-adic field” we will always mean a finite extension of Qp.

For every positive integer m, we write µm for the group scheme over Z of m-th roots of unit.
We do not bother to add specifications for when we are looking at a base change of it to an
obvious base (typically a fixed base field). When K is a p-adic field we write KGal for the Galois
closure of K/Qp in Qp, K0 for the largest unramified extension of Qp contained in K, and we

set Kn = K(µpn(K)), K∞ =
⋃

n≥1Kn, ΓK = Gal(K∞/K) and HK = Gal(K/K∞). We write

χcyc
K for the cyclotomic character, both ΓK → Z×

p and GK → Z×
p , since this will not cause any

ambiguity. We pick the Hodge–Tate weight of the cyclotomic character χcyc
Qp

to be −1.
With the hope to make it clearer to the reader when the group representations under consid-

eration are linear or semilinear, we will write the coefficients on the right and as a lower index
for linear representations (such as in RepE(GK)) and on the left for semilinear representations
(such as in BdRRep(GK)).

By “image” of a morphism of (group) schemes over a field of characteristic 0 we always mean
the scheme-theoretic image (in the case of group schemes, we equip it with the structure of
group scheme induced by that of the target).

By a line in a free module over an arbitrary ring we mean a free submodule of rank 1. By a
saturated line we mean a line that is not properly contained in any other line.
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1. Tensor products landing in a subcategory

Let E be a field of characteristic 0. Let C be a neutral Tannakian category over E. For a
(necessarily neutral) Tannakian subcategory D of C, we define another category D as the full
subcategory of C whose objects are the V ∈ Ob (C) having the following property: there exists
a positive integer m and a collection of objects Vi, i = 1, . . . ,m, such that

(i) V is isomorphic to
⊕

i Vi in C, and
(ii) for every i ∈ {1, . . . ,m} there exists Wi ∈ Ob (C) satisfying Vi ⊗Wi ∈ Ob (D).

We call basic objects of D the objects V of D for which there exists W ∈ Ob (C) such that
V ⊗W ∈ Ob (D). Such a W will automatically be an object of D. All irreducible objects of D
are basic, but a non-trivial extension of basic objects can still be basic.

The category D is a Tannakian subcategory of C. Indeed:
– It is clearly stable under direct sums.
– It is stable under subquotients: Consider an exact sequence 0 → V → V ′ → V ′′ in C, such

that V ′ ∈ Ob (D). Then there exists W ′ ∈ Ob (D) such that V ′⊗W ′ ∈ Ob (D). The sequence
0 → V ⊗W → V ′ ⊗W ′ → V ′′ ⊗W ′′ → 0 is exact in D (because all objects are E-vector
spaces), and the central object belongs to Ob (D). Since D is Tannakian, it is stable under
subquotients, so V ⊗W , V ′′ ⊗W ′′ are objects of Ob (D), and V, V ′′ are objects of D.

– It is stable under tensor products: If V, V ′ ∈ Ob (D), then there exist W,W ′ ∈ Ob (D) such
that V ⊗W , V ′ ⊗W ′ ∈ Ob (D), so (V ⊗ V ′)⊗ (W ⊗W ′) ∈ Ob (D).

– It is stable under duals: If V ∈ Ob (D), then there exists W ∈ Ob (D) such that V ⊗W ∈
Ob (D), so V ∨ ⊗W∨ ∼= (W ⊗ V )∨ is the dual of an object of D, hence also an object of D.

Remark 1.1. If X and Y are two objects of D and Z is an extension of X by Y in C, then Z
is not necessarily an object of D.

We prove that applying the above construction a second time produces no new category. Let

D be the category obtained by applying the construction to the inclusion D ⊂ C.

Lemma 1.2. The categories D and D coincide.

Proof. If W is a basic object of D, then there exists W ′ ∈ Ob (D) such that W ⊗W ′ ∈ Ob (D).
We decompose W =

⊕m
i=1Wi and W ′ =

⊕n
j=1W

′
j as sums of basic objects of D. Let Vi, 1 ≤

i ≤ n, and V ′
j , 1 ≤ j ≤ m, be objects of D satisfying Wi ⊗ Vi ∈ Ob (D) and W ′

i ⊗ V ′
i ∈ Ob (D)

for every i, j. Then, for each i and j, Wi⊗ (Vi⊗W ′
j ⊗V ′

j ) is an object of D, hence all of the Wi

are objects of D, and so is their direct sum W . □

Let GC , GD, GD be the Tannakian fundamental groups of C, D, D, respectively. They are

pro-algebraic groups over E. By [DM18, Proposition 2.21(a)], the inclusions D ↪→ D ↪→ C give
faithfully flat morphisms of affine group schemes over E:

(1.1) GC ↠ GD → GD.

Remark 1.3. The category D contains all 1-dimensional objects of C, since duals exist in D and
the evaluation map X ⊗X∨ → 1D is an isomorphism when X is 1-dimensional. By Tannakian
duality, we obtain that the algebraic characters of GC all factor through the morphism GC → GD
of (1.1).

Recall that kernels exist in the category of pro-algebraic groups over E. Let I = ker (GD ↠ GD).

For an object V of D, we denote by ρV : GD → GL(V ) the representation associated with V by
Tannakian duality, and by IV and GV the scheme-theoretic images of I and GD, respectively,
in GL(V ).

Lemma 1.4. If V is basic in D, then IV is contained in the center of GL(V ).

Proof. By definition of D, there exists an E-vector space W and a representation ρW : GD →
GL(W ) such that ρV⊗W factors through GD ↠ GD, that is, ρV ⊗ρW (I) is a direct sum of copies
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of the trivial representation. Now ρV⊗W = ρV ⊗ ρW , and by Lemma 6.1 the only way a tensor
product of two E-representations of I can be a direct sum of copies of the trivial representation
is if the two of them factor through inverse characters of I. This means precisely that IV and
IW are contained in the center of GL(V ). □

Corollary 1.5. If V is a basic object of D, then V ⊗ V ∨ is an object of D.

Proof. Since I is central in GL(V ) by Lemma 1.6, it acts trivially on V ⊗ V ∨. □

Lemma 1.6. The pro-algebraic subgroup I of G is contained in the center of G.

Proof. Write GD as an inverse limit lim←−i∈NGi of algebraic group schemes, that is, group schemes

whose Hopf algebras are finite-dimensional as E-vector spaces. Fix i ∈ N. By [Del82, Corollary
2.5] the group scheme Gi has a faithful, finite-dimensional E-representation ρi : Gi → GL(Vi).
The the projection GD → Gi composed with the representation ρi gives a representation of GD
on Vi, that is the Tannakian dual of an object of D that we still denote by Vi. Let Ii be the
image of I under GD → Gi. For every i, write Vi as a direct sum

⊕
j Vij of basic objects and let

ρij the Tannakian dual of Vij . Since the Vij are objects of D, the representation ρi decomposes
as the direct sum

⊕
j ρij ; in particular, ρi(Gi) ⊂

∏
j GL(Vij).

By Lemma 1.4, ρi(Ii) acts via scalar endomorphisms on Vij for every j, so it is central in∏
j GL(Vij) and in particular in ρi(Gi). Since ρi is faithful, this means that Ii is central in Gi.

By taking a limit over i ∈ N and using the fact that I = lim←−i∈N Ii because I is a closed subgroup

scheme of GD, we conclude that I is central in GD. □

For every positive integer m and every object V of C, we embed µm into GL(V ) in the usual
way, by letting it act on V via scalar automorphisms. For the rest of this section and throughout
the next one we make the following assumption:

(1-dim) D contains all 1-dimensional objects of C.

Lemma 1.7. Let V be a basic object of D and let n = dimE V . Then IV is contained in µn.

Proof. Assumption (1-dim) implies that every algebraic character of GD factors through GD →
GD, that is, is trivial on I. Lemma 1.4, IV is central in GL(V ), so it is contained in the
group Gm embedded in GL(V ) as the subgroup of scalar endomorphisms. The restriction of the
determinant of GL(V ) to GV gives an algebraic character of GV ; by our previous observation,
such a character has to be trivial on IV . This implies that IV is contained in the subgroup µn

of Gm. □

Remark 1.8.

(i) The group I can be non-trivial, that is, the categories D and D can be different: as we
will show in Section 3, it is the case when C is the category RepE(GK) for some p-adic
fields K and E, and D is the full subcategory of trianguline representations. We will see
that in this example D is the category of potentially trianguline representations, and there
exist for every K and E potentially trianguline representations that are not trianguline
(pick any semistabelian, non-semistable representation of GK).

(ii) It can happen that for some object V of D the group of E-points of IV is trivial: by
Lemma 1.7, it is always the case if E does not contain any non-trivial n-th roots of unity.
Nevertheless, IV can be a non-trivial subgroup scheme of GL(V ), hence such a V is not
necessarily an object of D.

Corollary 1.9. The group I is profinite.

Proof. In the last paragraph of the proof of Lemma 1.6 we showed that I = lim←−i∈N Ii where Ii

is isomorphic to IVi for some object Vi of D (since we chose the representation ρi in the proof
of Lemma 1.6 to be faithful). Writing Vi as a direct sum of basic objects and applying Lemma
1.7 we obtain that IVi is finite, hence I is profinite. □
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For later use, we prove a simple lemma. Let S be a tensor generating set of D.

Lemma 1.10. If IV is trivial for every V ∈ S , then I is trivial.

Proof. Since S is a tensor generating set of D, the assumption implies that the image of I in
GL(V ) is trivial for every object V of D, which implies that D = D. □

2. Pullback via Schur functors

Let E, C,D,D be as in the previous section. Throughout the rest of the paper, underlined,
Roman lower-case letters will always denote non-empty, non-increasing tuples of finite length
whose entries are positive integers. Given a tuple u, we denote by length(u) the number of
entries of u and by ℓ(u) the sum of the entries of u. Following [Del02, Section 1.4], we recall
the definition of the Schur functor Su in C. For a finite dimensional E-vector space V and an
object X of C, we define objects V ⊗X and Hom(V,X) of C by asking that

HomC(V ⊗X,Y ) = Hom(V,HomC(X,Y ))

HomC(Y,Hom(V,X)) = HomC(V ⊗ Y,X)

for every object Y of C.
Let V be an object of C. The symmetric group Sℓ(u) on ℓ(u) elements acts on the object V ⊗ℓ(u)

of C by permuting its factors. We index isomorphism classes of non-trivial simple representations
of Sℓ(u) by tuples of sum ℓ(u): with each such tuple one associates a Young tableau with ℓ(u)
entries, and we attach a representation to a tableau as in [FH91, Lecture 4]. For every u let
Ru be a representative of the isomorphism class indexed by u. By functoriality of Hom in the

two arguments, the group Sℓ(u) acts on Hom(Ru, V
⊗ℓ(u)) via its actions on Ru and V ℓ(u): to

s ∈ Sℓ(u) we attach the automorphism of Hom(−, V ⊗ℓ(u)) induced by s : V ⊗ℓ(u) → V ⊗ℓ(u) and

s−1 : Ru → Ru via the covariance of Hom(Ru,−) and the contravariance of Hom(−, V ⊗ℓ(u)).
For an object X of C carrying an action of a finite group S, the operator

eS =
1

|S|
∑
s∈S

s ∈ End(X)

is idempotent. The image of eS exists by the axioms of E-linear tensor categories, and is denoted
by XS .

Definition 2.1. We let Su(V ) = Hom(Ru, V
⊗ℓ(u))Sℓ(u) (with the notation introduced just

above). This defines a (non-tensor) functor from C to itself, that we call the Schur functor
attached to u.

The Schur functor Su can be defined more explicitly by attaching to u a suitable idempotent
element in End(X⊗ℓ(u)) and taking its image, similarly to what one does in the classical theory
of Schur functors in the category of vector spaces over a field.

Remark 2.2. The definition of Schur functors only requires the ambient category to be an E-
linear tensor category (we refer to [Del02, Section 1.2] for the relevant axioms). In particular

we can, and will, apply it to the category of B⊗E
|K -pairs. In this case, we recover the definition

from [DiM13a, Section 1.4].

Remark 2.3.

(i) If V is a vector space over E and u a tuple, then by functoriality of Su : VectE → VectE
the E-linear action of GL(V ) on V induces an E-linear action of GL(V ) on Su(V ). This
action defines a morphism of E-group schemes

(2.1) GL(V )→ GL(Su(V ))

that we also denote by Su. We distinguish three cases:
(a) If length(u) > dimE(V ), then Su(V ) = 0. This can be proved as for classical Schur

functors (for which a reference is [FH91, Theorem 6.3(1)]).
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(b) If length(u) ≤ dimE(V ), then Su is the unique irreducible representation of GL(V )
of highest weight u, since E is of characteristic 0. If length(u) = dimE(V ), then we
can write u = (v, 0, . . . , 0) + (k, . . . , k) for some k ≥ 1 (the last entry of u) and a

tuple v of length ≤ dimE(V )− 1. Then Su = Sv ⊗ detk.
(c) If length(u) < dimE(V ) then the kernel of Su is the group scheme µℓ(u), embedded in

the center of GL(V ) in the usual way (see for instance [Hun86, Theorem 1]; in loc.
cit. only the case E = C is treated, but the proof works over any field of characteristic
0).

(ii) If F : C → C′ is an E-linear tensor functor, then Su(F (V )) = F (Su(V )) for every object
V of C and every tuple u. In particular, if C is neutral Tannakian, the fiber functor
commutes with the Schur functor Su.

(iii) If V is an object of C and ρV : GC → GL(V ) is the representation attached to V by
Tannakian duality, then for every tuple u the representation dual to Su(V ) is Su ◦ ρV ,
where Su is the morphism GL(V )→ GL(Su(V )) of part (i) of the remark.

Proposition 2.4. Let V ∈ Ob (C) and n = dimE V , and assume n ≥ 2.

(i) The object V is a basic object of D if and only if there exists a tuple u with length(u) < n
such that Su(V ) ∈ Ob (D).

(ii) If a tuple u as in part (i) exists, then Sv(V ) ∈ Ob (D) for every tuple such that gcd(ℓ(u), n) |
ℓ(v).

Proof. We first prove the “if” of part (i). Let u be a tuple such that length(u) < n and
Su(V ) ∈ Ob (D). Let v be any tuple such that ℓ(v) = ℓ(u). The representation Sv(V ) of
GL(V ) factors through a faithful representation S

v
0(V ) of the reductive group GL(V )/µℓ(v) =

GL(V )/µℓ(u). Since S
u
0(V ) is faithful, [Del82, Proposition 3.1] implies that S

v
0(V ) appears as a

subrepresentation of S
u
0(V )⊗m ⊗ (S

u
0(V )∨)⊗n for some positive integers m,n. The same is true

if we see these objects as representations of GL(V ) via GL(V ) → GL(V )/µℓ(u), that is, if we

replace S
v
0(V ) and S

u
0(V ) with Sv(V ) and Su(V ), respectively. Since Su(V ) is an object of D

and D is stable under tensor products, duals and subquotients, Sv(V ) is also an object of D.
We proved that Su(V ) ∈ Ob (D) for any v with ℓ(v) = ℓ(u). By the Littlewood–Richardson

rule (see [FH91, Appendix 8] for the classical version), the representation Symℓ(u)−1(V )⊗ V of
GL(V ) is a direct sum of representations of the form Sv(V ) with ℓ(v) = ℓ(u), so it is an object
of D. By definition of D, we conclude that V is an object of D.

We now prove the “only if” part of (i) together with (ii). Let V be a basic object of D.
Recall that I denotes the kernel of GD → GD and that an object V of D belongs to D if and
only if the schematic image IV of I in GL(V ) is trivial. Let u be any tuple. With the notation
introduced in Remark (iii), the representation ρSu(V ) attached to Su(V ) is Su ◦ ρV , and by the
same remark the kernel of the representation GL(V ) → GL(Su(V )) is µℓ(u). In particular the
schematic image Su(IV ) is trivial if and only if IV is contained in µℓ(u). By Lemma 1.7, this will
hold for every u such that n | ℓ(u). Clearly, we can choose one such u satisfying length(u) < n;
this gives the “only if” direction of (i).

Note that in (ii) we can keep assuming that V is basic, thanks to the “if” part of (i). Let u
be a tuple such that Su(V ) ∈ Ob (D); then IV ⊂ µℓ(u), as we just recalled. By Lemma 1.7 IV is
also contained in µn, hence it is contained in µ(ℓ(u),n). In particular, Sv(IV ) is trivial for every
v such that (ℓ(u), n) | ℓ(v), hence Sv(V ) is an object of D for such v. □

Since D is tensor generated by the class of its basic objects, Proposition 2.4(i) immediately
gives the following.

Corollary 2.5. The category D is tensor generated by the class of objects V of D for which
there exists a tuple u with length(u) < dimE(V ) such that Su(V ) ∈ Ob (D).

Remark 2.6. The proof of the “if” part of Proposition 2.4(i) does not make use of Tannakian
duality; therefore this statement holds even if the category C is just an E-linear tensor category,
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and so does the following weaker version of (ii): if a tuple u as in part (i) exists, then one has
Sv(V ) ∈ Ob (D) for every tuple v such that ℓ(u) = ℓ(v).

Remark 2.7. The condition length(u) < n appearing in Proposition 2.4 is motivated by the
classification in Remark 2.3(i). When length(u) > n the object Su(V ) is zero, so it cannot
possibly give information on V . When length(u) = n:

– If all the entries of u are given by the same integer, Su(V ) is a power of det(V ), which belongs
to Ob (D) for all V by Remark 1.3.

– Otherwise, u can be written as (v, 0, . . . , 0)+(k, . . . , k) for a tuple v with length(v) < n and an
integer k > 0, so that Su(V ) = Sv(V )⊗ det(V )k. Since D contains all 1-dimensional objects
of C by Remark 1.3, we have Su(V ) ∈ Ob (D) if and only if Sv(V ) ∈ Ob (D). Therefore the
restriction length(u) < n is irrelevant in this case.

Note that our assumption on u is very similar to that on the partition in [DiM13a, Sections 2.4,
3.3], the difference being that we also remove the case where length(u) = n but not all entries
are equal; by our second comment above this allows us to simplify the assumption without the
results losing strength.

2.1. Simple connectedness of fundamental groups. As in Section 1, let D be a Tannakian
subcategory of a Tannakian category C, D the intermediate category constructed from it, and
I be the kernel of the dual morphisms GD → GD. We relate the triviality of the kernel I to the
simple connectedness of the “semisimplified” Tannakian fundamental group of D.

If V is an object of D and ρ : GD → GL(V ) its dual representation, we denote by GD,V and

IV the schematic images under ρ of GD and I, respectively, and GD,V for the quotient GD,V /IV .
Given an algebraic group G, we denote by G◦ its neutral connected component.

For some of our results we will need to assume that D satisfies the following condition:

(pot) The morphism GC ↠ GD induces an isomorphism on groups of connected components.

The following result provides some context for condition (pot). Let RepE(G) be the category
of finite-dimensional E-linear representations of a profinite group G. For every open subgroup
H of G, let PH be a property of the restrictions V |H of the objects in RepE(G), such that

– the full subcategory of RepE(G) whose objects are the V such that V |H hasPH is a sub-tensor
category;

– if H ′ ⊂ H are two open subgroups of G and V an object of RepE(G) such that V |H has PH ,
then V |H′ has PH′ .

Let RepPE(G) be the full subcategory of RepE(G) whose objects are the V for which there exists
an open subgroup H of G such that V |H has PH .

Lemma 2.8. The category D = RepPE(G) satisfies condition (pot) with C = RepE(G).

As an example, one can take G to be the absolute Galois group of a p-adic field, and PH

be any of {semistable, crystalline, trianguline} over H. Then RepPE(G) is the usual category of
potentially {semistable, crystalline, trianguline} representations. More generally, one can take
PH to be admissibility with respect to an (E,H)-regular ring in the sense of Fontaine.

Proof. Let GC be the Tannakian fundamental group of RepE(G). Let ρ : G → GL(V ) be any
object of RepE(G). The image GC,V of GC in GL(V ), under the representation dual to V , is
the Zariski-closure of the image of G under ρ. Let J be the kernel of GC ↠ GD, JV its image
under ρ, and JV,0 the intersection of JV with the neutral connected component of GC,V . Then
JV /JV,0 is a subgroup of the group of connected components of GC,V /JV,0. In order to show
that condition (pot) holds, it will be enough to show that JV = JV,0 and then pass to the limit.

Pick a faithful, finite-dimensional E-linear representation W of the quotient GC,V /JV,0, and
consider it as a representation of GC,V . The image of J in GL(W ) is the quotient JV /JV,0 and
can be identified with a subgroup of the group of connected components of the image GC,W of
GC,V /JV,0 in GL(W ) since W is faithful. Since we quotiented by JV,0, the map G◦

C → G◦
C,W of

neutral connected components factors through G◦
C → G◦

D. The morphism of groups GC → GC,W
10



is dual to the inclusion of neutral Tannakian categories ⟨W ⟩ ⊂ C, hence faithfully flat by [DM18,
Proposition 2.21(a)]. In particular the restriction G◦

C → G◦
C,W is faithfully flat, and the same is

true for the morphism G◦
C → G◦

C,W that it factors through.

Since GC,W is the Zariski closure of the image of G in GL(W ), there exists an open subgroup
H of G such that the image of H in GL(W ) is contained in the neutral connected component
G◦

C,W , which admits a faithfully flat morphism from G◦
D by the previous paragraph. We conclude

that the restriction of W to H belongs to RepPH
E (H), and from the definition of P we obtain

that W belongs to D = RepPE(G), so that JV /JV,0 = 0. □

In the following we will work with the category of pro-algebraic groups over E, i.e., affine
group schemes over E. All diagrams will live in this category.

Remark 2.9. Pushouts exist in the category of affine group schemes over E. In the category
of affine schemes, the pushout of a diagram

(2.2)

Spec(A) Spec(B)

Spec(C)

is defined as P := Spec(B ×A C) (note that the underlying affine scheme P is not the pushout
of diagram (2.2) in the category of E-schemes, but this is irrelevant to us). If A,B,C are
equipped with compatible Hopf algebra structures, we can define a unique Hopf algebra structure
on B×AC compatible with those of A,B,C, making P into the pushout in the category of affine
E-group schemes.

Given an algebraic group G, write G◦ for the connected component of unity, Gred for the
quotient of G◦ by its unipotent radical, and Gss for the derived subgroup of Gred. Clearly G◦

is connected, Gred is connected reductive, and Gss is connected and semi-simple.
We say that a pro-algebraic group over E is connected (respectively semisimple, simply

connected) if it is a projective limit of connected (respectively semisimple, simply connected)
algebraic groups over E. If I is a small category and G = limi∈I Gi in the category of pro-
algebraic E-groups, with the Gi algebraic, then we define a connected pro-algebraic group
G◦ = limi∈I G

◦
i (the neutral connected component of G), a connected pro-reductive group

Gred = limi∈I G
red
i , and a pro-semisimple group Gss = limi∈I G

ss
i . We say that Gss is simply

connected if it can be written as a projective limit of simply connected algebraic groups.
We say that a morphism G → H of pro-algebraic groups over E is a central isogeny if it

is surjective and its kernel is finite and central in G. If G is a connected and pro-semisimple
pro-algebraic group, it can be written as a limit limi∈I Gi of connected semisimple algebraic
groups over E. For every i ∈ I, let Gscn

i be the universal cover of Gi. The transition maps
between the Gi induce transition maps between the Gscn

i . We let Gscn be the limit limi∈I G
scn
i

and we call it the universal cover of G. It comes equipped with a morphism to G and has
the property that every central isogeny from a connected pro-semisimple group to Gscn is an
isomorphism. The isomorphism class of Gscn as a group over G is independent of the choice of
I and of the groups Gi.

Remark 2.10. A morphism f : G→ H of pro-algebraic groups over E induces a morphism

f ss : Gss → Hss,

as follows. First restrict f to the neutral connected component G◦, whose image must be con-
tained in H◦ giving a morphism

f◦ : G◦ → H◦.

If UG and UH are the pro-unipotent radicals of G◦ and H◦, respectively, then the composition
of f◦ with H◦ ↠ H◦/UH factors through the quotient G◦/UG and a morphism

f red : Gred → Hred
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of reductive groups. Finally, the restriction of f red to the derived subgroup Gss of Gred lands
inside of the derived subgroup Hss of Hred, giving a morphisms

f ss : Gss → Hss.

If f is a central isogeny, then a series of simple checks shows that f ss is also a central isogeny.

We prove that the group GD is a kind of “universal cover of GD inside of C”. For any
surjection G1 ↠ G2 of pro-algebraic groups over E, consider the category H(G1, G2) of triples
(H, f, g) fitting into a diagram

(2.3) G1

f
−−−↠ H

g
−−−↠ G2,

of pro-algebraic groups over E, with morphisms from (H, f, g) to another object (H ′, f ′, g′) in
H(G1, G2) being the morphisms of pro-algebraic groups H → H ′ that make the diagram

G1 H G2

G1 H ′ G2

=

f g

=

f ′ g′

commute. Consider the full subcategory Hci(G1, G2) of H(G1, G2) consisting of the triples
(H, f, g) such that the kernel of g is a finite central subgroup of H◦ (in other words, the restric-
tion g : H◦ → G◦

D is a central isogeny). Write ι(G1, G2) for the inclusion functor Hci(G1, G2) ↪→
H(G1, G2).

Let πD
C : GC → GD, π

D
D : GD → GD and πD

C = πD
D

◦ πD
C be the usual surjections.

Proposition 2.11. Assume that condition (pot) is satisfied. Then the triple (GD, π
D
C , π

D
D) is

the limit of the diagram ι(GC , GD) : Hci(GC , GD) ↪→ H(GC , GD). In particular πD
D induces an

isomorphism on the groups of connected components and on the pro-unipotent radicals.

In order to prove Proposition 2.11 we rely on the following lemma. We use, as usual, the
notations of Remark 2.10.

Lemma 2.12. The following statements are equivalent:

(i) (GD, π
D
C , π

D
D) is the limit of ι(GC , GD) : Hci(GC , GD) ↪→ H(GC , GD);

(ii) (G◦
D, π

D,◦
C , πD,◦

D ) is the limit of ι(G◦
C , G

◦
D) : Hci(G◦

C , G
◦
D) ↪→ H(G◦

C , G
◦
D);

(iii) (Gred
D , πD,red

C , πD,red

D ) is the limit of ι(Gred
C , Gred

D ) : Hci(Gred
C , Gred

D ) ↪→ H(Gred
C , Gred

D ).

Moreover, if any of (i), (ii), (iii) holds, then

(iv) (Gss
D, π

D,ss
C , πD,ss

D ) is the limit of ι(Gss
C , G

ss
D) : Hci(Gss

C , G
ss
D) ↪→ H(Gss

C , G
ss
D).

Proof. In order to prove the equivalence of (i), (ii), (iii) we rely on the following simple remark:

(∗) if A, B are two categories, A0 ⊂ A, B0 ⊂ B two small subcategories, and F : A → B, G : B →
A two quasi-inverse functors that induce an equivalence of categories A0

∼= B0, then an object
L of A is the limit of A0 ↪→ A if and only if F (L) is the limit of B0 ↪→ B.
We prove that (i) and (ii) are equivalent by applying (∗) to A = H(GC , GD), B = H(G◦

C , G
◦
D)

and A0, B0 the subcategories of “central isogenies”. We construct the two quasi-inverse functors
F ◦
∅ an F∅

◦ that we need. If (H, f, g) is an object of H(GC , GD), then, with the notations of
Remark 2.10, the diagram

(2.4)

GC H GD

G◦
C H◦ G◦

D

f g

f◦ g◦
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commutes, and moreover all squares are cartesian because GC ↠ GD induces an isomorphism
on connected components by condition (pot). Hence (H, f, g) 7→ (H◦, f◦, g◦) defines a functor

F ◦
∅ : H(GC , GD)→ H(G◦

C , G
◦
D).

If the kernel of g is a finite central subgroup of G◦
C , then the same is true for the kernel of g◦,

so that F ◦
∅ can be restricted to a functor Hci(GC , GD)→ Hci(G◦

C , G
◦
D).

Vice versa, if we start with a triple (H0, f0, g0) in H(G◦
C , G

◦
D), we can construct a triple

(H, f, g) in H(GC , GD) satisfying H◦ = H0, f
◦ = f0, g

◦ = g0 by taking pushouts of the second
row of (2.4) along G◦

D ↪→ GD. This provides us with a functor

F∅
◦ : H(G◦

C , G
◦
D)→ H(GC , GD)

that is quasi-inverse to F ◦
∅. The injection H0 ↪→ H restricts to an isomorphism between the

kernels of g and g◦, hence F∅
◦ restricts to a functor Hci(GC , GD)→ Hci(G◦

C , G
◦
D), as desired.

We prove the equivalence between (ii) and (iii) by applying (∗) again, after constructing
a pair of quasi-inverse functors F red

◦ , F ◦
red. Let (H, f, g) be an object of Hci(G◦

C , G
◦
D). By

quotienting out unipotent radicals, we obtain an object (Hred, f red, gred) as in the second row
of the commutative diagram

G◦
C H G◦

D

Gred
C Hred Gred

D

f g

f red gred

If g is a central isogeny then the quotient map H◦ ↠ Hred induces an isomorphism between
ker(g◦) and ker(gred), so that g◦ is also a central isogeny. Then (H, f, g) 7→ (Hred, f red, gred)
defines the required functor

F red
◦ : H(G◦

C , G
◦
D)→ H(Gred

C , Gred
D ).

Vice versa, starting from a triple (H0, f0, g0) in H(Gred
C , Gred

D ), we construct a triple (H, f, g)

in H(G◦
C , G

◦
D) that satisfies Hred = H0, f

red = f0 and gred = g0: Define H as the pullback of

Gred
C ↠ Gred

D ↞ H0 and g as the map it comes equipped with. Since the kernel of G◦
D ↠ Gred

D
is pro-unipotent, the same is true of the kernel of H ↠ H0. In particular Hred = H0 and
gred = g0. The group G◦

C admits compatible maps to H and G◦
D, hence a map f to the pullback

H. Commutativity of all the diagrams involved gives f red = f0. The projection H ↠ H0

induces an isomorphism between ker(g) and ker(g0), so that if g0 is a central isogeny then g is
also one. Therefore we obtain a functor

F ◦
red : H(Gred

C , Gred
D )→ H(G◦

C , G
◦
D)

that is quasi-inverse to F red
◦ and has the desired properties.

We conclude the proof by showing that (iii) implies (iv). We construct two functors

F ss
red : H(Gred

C , Gred
D )→ H(Gss

C , G
ss
D)

and

F red
ss : H(Gss

C , G
ss
D)→ H(Gred

C , Gred
D )

such that

(1) F red
ss ◦ F ss

red is naturally isomorphic to the identity functor on H(Gss
C , G

ss
D),

(2) F ss
red(G

red
D ) = Gss

D,

(3) the essential image of the restriction of F ss
red to Hci(Gred

C , Gred
D ) is contained in Hci(Gss

C , G
ss
D),

(4) every object in the essential image of the restriction of F red
ss to Hci(Gss

C , G
ss
D) is a limit of a

diagram in Hci(Gred
C , Gred

D ).
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This will be enough to prove the desired statement: if Lss and Lred are the limits of Hci(Gss
C , G

ss
D)

and Hci(Gred
C , Gred

D ), respectively, then conditions (1) and (3) imply the existence of a morphism

from F ss
red(Lred)→ Lss. Condition (4), on the other hand, gives us a morphism F red

ss (Lss)→ Lred,

that is mapped by F ss
red to a morphism F ss

red(F
red
ss (Lss))→ F ss

red(Lred), whose source is isomorphic
to Lss by (1). The universal property of the limit forces the two morphisms we constructed
between Lss and F ss

red(Lred) to be isomorphisms, and combining this with (2) gives (iv).

In order to construct the functor F ss
red, simply start with any (H, f, g) ∈ H(Gred

C , Gred
D ) and

apply the construction of Remark 2.10 to the first row of

Gred
C H Gred

D

Gss
C Hss Gss

D

f g

f ss gss

in order to obtain the second row, hence an object (Hss, f ss, gss) of H(Gss
C , G

ss
D). If g is a central

isogeny, then so is gss, since the kernel of gss injects into that of g via Hss ↪→ H.
Vice versa, pick an object (H0, f0, g0) of H(Gss

C , G
ss
D). We write Z(G) for the center of a

pro-reductive group G. Since Gred
C and Gred

D are pro-reductive, there are exact sequences

(2.5)
0→ Z(Gred

C ) ∩Gss
C → Z(Gred

C )×Gss
C

πC−→ Gred
C → 0,

0→ Z(Gred
D ) ∩Gss

D → Z(Gred
D )×Gss

D
πD−−→ Gred

D → 0,

where the injection is the diagonal one. The morphism πD,red
C : Gred

C ↠ Gred
D restricts to a

morphism πZ : Z(Gred
C )→ Z(Gred

D ). Consider the morphisms

f1 : Z(Gred
C )×Gss

C → Z(Gred
D )×H0

(z, h) 7→ (πZ(z), f0(h))

and

g̃1 : Z(Gred
D )×H0 → Z(Gred

D )×Gss
D

(z, h) 7→ (z, g0(h))

Let H1 be the image of f1, and write f̃1 for the map Z(Gred
C ) × Gss

C → H1 induced by f1, and
g̃1 for the restriction of g1 to H1. We fit these maps into a diagram

Z(Gred
C )×Gss

C H1 Z(Gred
D )×Gss

D

Gred
C H Gred

D

Gss
C H0 Gss

D

f̃1

πC

g̃1

πH πD

f g

f0 g0

where

– the maps πC , πD come from (2.5),
– H and the maps f and πH are defined as the pushout of the top left square in the category

of affine group schemes over E (it exists by Remark 2.9),
– the map g comes from the universal property of the pushout, after checking that the maps

πD,red
C ◦ πC and (πD ◦ g) ◦ f coincide,

– the map H0 → H is obtained as the composite of H0 ↪→ Z(Gred
D ) ×H0, h 7→ (1, h) with the

projection πH ,

– f is surjective because f̃1 is, and g is surjective because the composite πD,red
C = g ◦ f is

surjective.
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We define F red
ss as the functor (Gss

C , G
ss
D) → H(Gred

C , Gred
D ) that maps (H0, f0, g0) to the triple

(H, f, g) from the above diagram.
By construction of g1, the kernel of g1 is {1} × ker(g0), and that of πD ◦ g1 : Z(Gred

D )×H0 →
Gred

D is an extension of ker(πD) = Z(Gred
D ) ∩ Gss

D by ker(g1). If g0 is an isogeny then ker(g1) is
finite. Since ker(πD) is profinite, ker(πD ◦ g1) is also profinite. The kernel of g̃1 is a subgroup
of ker(g1), and ker(g) is a quotient of ker(g̃1). Therefore ker(g) is also profinite, and we can
write g as a limit of isogenies onto Gred

D . Since GC is connected, so is its quotient H and so is

any quotient of H admitting an isogeny onto Gred
D . Since the base field E is of characteristic

0, every isogeny out of a connected pro-reductive E-group is central, hence g : H ↠ Gss
D is a

limit of objects in Hci(Gred
C , Gred

D ). Therefore F red
ss has property (4). Conditions (1-3) are easily

checked. □

Proof of Proposition 2.11. It is enough to prove statement (iii) in Lemma 2.12. Consider a triple
(H, f, g) in Hci(Gred

C , Gred
D ). Observe that H is necessarily reductive, being a quotient of Gred

C .
Let ρV : H → GL(V ) be any irreducible representation of H, and let HV and ker(g)V be the
schematic images of H and ker(g), respectively, in GL(V ). Since ker(g)V is a central subgroup
of H and V is irreducible, by Schur’s lemma ker(g)V must be contained in the center of GL(V ).
Given that ker(g)V is finite, it must be contained in µn, acting on V via scalar endomorphisms,
for a sufficiently large n. Now pick any tuple u with ℓ(u) = n and length(u) < n. By Remark (i),
the kernel of Su : GL(V )→ GL(Su(V )) is µn, hence S

u ◦ ρV factors through HV / ker(g)V . Since
the morphism H → HV / ker(g)V factors through H ↠ H/ ker(g) ∼= Gred

D , the representation V ,

seen as an object of C via f : Gred
C ↠ H, satisfies Su(V ) ∈ D. Thanks to Proposition 2.4(i), we

conclude that V is an object of D, or in other words, that the representation

ρV ◦ f : Gred
C → GL(V )

factors through Gred
C ↠ Gred

D . Since this holds for every irreducible representation V of H and
every representation of the reductive group H is semisimple, we conclude that f itself factors
as the composition of Gred

C ↠ Gred
D and a map f0 : G

red
D → Hred, providing us with a morphism

Gred
C Gred

D Gred
D

Gred
C Hred Gred

D

πD,red
C

=

πD,red

D

f0 =

f red gred

from (Gred
D , πD,red

C , πD,red

D ) to (H, f, g).

Since H was chosen arbitrarily, we obtain a morphism from (Gred
D , πD,red

C , πD,red

D ) to the limit

of ι : Hci(Gred
C , Gred

D ) ↪→ H(Gred
C , Gred

D ). In order to prove that it is an isomorphism, it is sufficient

to write (Gred
D , πD,red

C , πD,red

D ) as a limit of some subdiagram of ι(Gred
C , Gred

D ). For this, consider a

finite-dimensional E-linear representation V of Gred
D , and let Gred

D,V
and IV be the images of Gred

D
and I, respectively, in GL(V ). Here I denotes, as usual, the kernel of πD,red

D : Gred
D → Gred

D . Since

IV is finite and central by Lemma 1.6 and Corollary 1.9, the surjection πV : Gred
D,V
→ Gred

D,V
/IV

is a central isogeny. Pulling back πV along Gred
D → Gred

D,V
/IV , we obtain a diagram

Gred
C Gred

D HV Gred
D

Gred
C,V Gred

D,V
Gred

D,V
/IV

πD,red
C f π̃V

=

πD,red
C πV
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where HV = Gred
D ×Gred

D,V
/IV

Gred
D,V

and the first line gives an object (HV , fV ◦ πD,red
C , π̃V ) of

Hci(Gred
C , Gred

D ). From Gred
D = limV ∈RepE(Gred

D
)G

red
D,V

, we deduce that (Gred
D , πD,red

C , πD,red

D ) is the

limit of the full subcategory ofHci(Gred
C , Gred

D ) consisting of the triples of the form (HV , fV ◦ πD,red
C , π̃V )

for some V ∈ RepE(G
red
D ). □

Corollary 2.13. Assume that Gss
C is simply connected and that condition (pot) holds. Then

Gss
D is the universal cover of Gss

D. In particular:

(i) for every object V of D, Gss
D,V

is the universal cover of Gss
D,V ;

(ii) if D = D, then Gss
D is simply connected;

(iii) if GC = Gss
C , then D = D if and only if GD is simply connected.

Proof. This follows immediately from Proposition 2.11 and the equivalence between (i) and (iv)
in Lemma 2.12. Indeed, if Gss

C is simply connected, for every central isogeny g : H → Gss
D, withH

connected, there exists a surjection f : Gss
C → H such that g ◦ f = πD

C : Gss
C ↠ Gss

D. In particular
every such g defines an object (H, f, g) of Hci(GC , GD), so that the limit of Hci(GC , GD) →
H(GC , GD) is also the limit of all g, that is, Gss

D ↠ Gss
D is the universal cover of Gss

D. □

Remark 2.14. The reverse implication to (ii) does not hold in general: If V is an object of D
and V ss its semisimplification, then the map GD → GL(V ) induces a map Gss

D → GL(V ss) that

factors through Gss
D if Gss

D is simply connected. However, GD → GL(V ) itself needs not factor
through GD, so that V is not necessarily an object of D.

3. Application to categories of B-pairs

We recall some definitions from the theory of B-pairs, as one can find for instance in [Ber08].
Let K be a p-adic field, and let B be a topological ring equipped with a continuous action
of GK . We call semilinear B-representation of GK , or in short B-representation of GK , a
free B-module M of finite rank equipped with a semilinear action of GK , that is, such that
g(bm) = g(b)g(m) for every b ∈ B, m ∈M and g ∈ GK . We denote by BRep(GK) the category
whose objects are the semilinear B-representations of GK and whose morphisms are the GK-
equivariant morphisms of B-modules. We call rank of an object of BRep(GK) its rank as a
B-module. We say that a B-representation M of GK is trivial if M admits a B-basis consisting
of GK-invariant elements. We call eigenvector in a semilinear B-representation M a vector that
belongs to a GK-stable B-line in M (recall that by a line in a free B-module we mean a free rank
1 submodule). An eigenvector does not necessarily generate a GK-stable line as a B-module;
some of its eigenvalues may belong to the total fraction ring of B.

When B has a structure of E-algebra with respect to which the action of GK is E-linear, and
η is an E-valued character of GK , we write B(η) for the rank 1 B-representation B ⊗E E(η),
where GK acts diagonally.

Let B be an (E,GK)-regular ring in the sense of [FO, Definition 2.8]; it is in particular a
topological E-algebra equipped with a continuous action of GK . Let V be an E-linear repre-
sentation of GK . We define a B-semilinear representation of GK by letting GK act diagonally
on B⊗E V . We say that V is B-admissible if the B-semilinear representation B⊗E V is trivial.

We use the standard notation for Fontaine’s rings of periods BHT,BdR,B
+
dR,Bcris,Bst, as

defined in [Fon94a]. Each of these objects is a (Qp, GK)-regular ring. We denote by φ the
Frobenius endomorphism of both Bcris and Bst, and follow the standard notation again in
setting Be = Bφ=1

cris . We write t for Fontaine’s choice of a generator of the maximal ideal of the

complete discrete valuation ring B+
dR.

Let E be a p-adic field. We set B?,E = B? ⊗Qp E for ? ∈ {HT, dR, st, cris, e}, and also

B+
dR,E = B+

dR ⊗Qp E. Each of these rings is a topological E-algebra, that we equip with the

continuous action of GK obtained by extending E-linearly the action of GK on the original
Qp-algebra.
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Definition 3.1. A B⊗E
|K -pair is a pair (We,W

+
dR) where:

– We is an object of Be,ERep(GK);

– W+
dR is a GK-stable B+

dR,E-lattice of BdR,E ⊗Be,E
We.

We write WdR for the BdR-representation BdR,E ⊗Be,E
We. We define the rank of (We,W

+
dR)

as the common rank of We and W+
dR.

Given two B⊗E
|K -pairs (We,W

+
dR) and (W ′

e,W
+,′
dR ), a morphism of B⊗E

|K -pairs (We,W
+
dR) →

(W ′
e,W

+,′
dR ) is a pair (fe, f

+
dR) where:

– fe : We →W ′
e is a morphism in Be,ERep(GK),

– f+
dR is a morphism in B+

dRRep(GK),
– the two morphisms WdR →W ′

dR in BdRRep(GK) obtained by extending BdR-linearly fe and

f+
dR coincide.

Given two B⊗E
|K -pairs W = (We,W

+
dR) and X = (Xe, X

+
dR), we say that X is a modification

of W if Xe
∼= We [Ber08, Définition 2.1.8]. If Xe ⊂We and X+

dR ⊂W+
dR, then we say that X is

a sub-B⊗E
|K -pair of W . We say that such an X is a saturated sub-B⊗E

|K -pair of W if the lattice

X+
dR is saturated in W+

dR, that is, if X
+
dR = XdR ∩W+

dR. The quotient of W by a sub-B⊗E
|K -pair

X admits a natural structure of B⊗E
|K -pair if and only if X is saturated in W . Given a sub-

B⊗E
|K -pair X of W , we can always find a unique saturated modification of it in W by replacing

X+
dR with XdR ∩W+

dR; we will call this modification the saturation of X in W .

Berger proved that the category of B⊗E
|K -pairs is equivalent to that of (φ,ΓK)-modules over

the Robba ring over E. This allows one to transport the theory of slopes from φ-modules to
B⊗E

|K -pairs, and in particular to speak of pure (or isoclinic) B⊗E
|K -pairs and of Dieudonné–Manin

filtrations for B⊗E
|K -pairs. We refer to [Ked04] for the relevant definitions.

Given a B⊗E
|K pair W and finite extensions L/K and F/E, we can define a B|⊗F

L -pair as (F⊗E

W )|GL
, with the obvious notations. Given a property P of a linear or semilinear representation

of GK , or of a B⊗E
|K -pair, we say that one such object W has P potentially if there is a finite

extension L/K such that W |GL
has P.

We denote by RepE(GK) the category of continuous, E-linear, finite-dimensional represen-

tation V of GK . For an object V of RepE(GK) we denote by W (V ) the B⊗E
|K -pair (Be,E ⊗E

V,B+
dR,E ⊗E V ). The rank of W (V ) is equal to the E-rank of V . Given two objects V , V ′

of RepE(GK) and a morphism f : V → V ′, we define a morphism W (f) : W (V ) → W (V ′) by
Be,E-linearly extending f to the first element of W (V ) and B+

dR,E linearly to the second. The

functor W (·) defined this way is fully faithful and identifies RepE(GK) with the full tensor

subcategory of the category of B⊗E
|K -pairs whose objects are the pure B⊗E

|K -pairs of slope 0).

This is [Ber08, Théorème 3.2.3] when E = Qp and an immediate consequence of it for general
E.

Definition 3.2. A Be,E-representation We is crystalline, semistable, or de Rham if B?,E⊗Be,E

We is trivial for ? = cris, st, or dR, respectively. A B+
dR-representation is Hodge–Tate if

BHT ⊗Cp (W
+
dR/tW

+
dR) is trivial.

A B⊗E
|K -pair (We,W

+
dR) is crystalline, semistable, or de Rham if We is crystalline, semistable,

or de Rham, respectively. It is Hodge–Tate if W+
dR is Hodge–Tate.

An E-linear representation V of GK is crystalline, semistable, Hodge–Tate or de Rham if
B?,E ⊗E V is trivial for ? = cris, st,HT or dR, respectively.

An E-linear representation of GK is crystalline, semistable, Hodge–Tate or de Rham if and
only if the associated B⊗E

|K -pair has the same property. By the p-adic monodromy theorem
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[Ber08, Théorème 2.3.5] for B⊗E
|K -pairs, a B⊗E

|K -pair is de Rham if and only if it is potentially

semistable.
To a continuous character η : K× → E×, Nakamura attaches a B⊗E

|K -pair

R(η) = (Be,E(η),BdR,E(η)),

and proves that every B⊗E
|K -pair of rank 1 is isomorphic to R(η) for some η [Nak09, Theorem

1.45]. Via Berger’s equivalence between the categories of B⊗E
|K -pairs and (φ,ΓK)-modules over

the Robba ring over E, Nakamura’s classification is a natural generalization to arbitrary coef-
ficients of that given by Colmez in the case K = Qp [Col08, Proposition 3.1]. Note that the

B⊗E
|K -pair R(η) is of slope 0 if and only if the character η can be extended to a Galois character

GK
∼= K̂× → E×, where the first isomorphism is given by the reciprocity map of local class

field theory. In such a case, R(η) is simply (Be,E ⊗E E(η),BdR,E ⊗E E(η)). In particular, this
notation is compatible with the notation B(η) introduced in the beginning of the section.

Remark 3.3. An explicit check shows that a rank 1 B⊗E
|K -pair W is Hodge–Tate if and only if

it is de Rham, if and only if its associated character η : K× → E× is locally algebraic (in the
sense of [Conr11, Definition B.1]). It is semistable if and only if it is crystalline, if and only if
the associated η is algebraic. In particular, one obtains that W is de Rham if and only if it is
potentially crystalline, without relying on the p-adic monodromy theorem.

We introduce the standard terminology for B⊗E
|K -pairs that can be obtained via successive

extensions of B⊗E
|K -pairs of rank 1.

Definition 3.4. A B⊗E
|K -pair W is split triangulable if there exists a filtration

0 = W0 ⊂W1 ⊂ . . . ⊂Wn = W

where, for every i ∈ {0, . . . , n}, Wi is a saturated sub-B⊗E
|K -pair of W of rank i. If Wi/Wi−1

∼=
R(δi) for i ∈ {1, . . . , n} and characters δi : K

× → E×, then we say that W is split triangulable
with ordered parameter δ = (δ1, δ2, . . . , δn) : K

× → (E×)n.

A B⊗E
|K -pair W is triangulable if there is a finite extension F of E such that the B|⊗F

K pair

F ⊗E W is split triangulable.
An object V of RepE(GK) is (split) trianguline if W (V ) is (split) triangulable.

We will use the adjective “potentially” in front of the above properties with its usual meaning.
Note that some references call “triangulable” what we call “split triangulable”.

The condition about the Wi being saturated in W is not very serious: one can replace each
Wi with its saturation in W and obtain this way a filtration where each step is saturated.

3.1. Main result on potentially trianguline B-pairs. Let K and E be two p-adic fields.
Let B be an (E,GK)-regular ring in the sense of [FO, Definition 2.8] (for instance, B = B?,E

with ? ∈ {HT, dR, st, cris}).
Lemma 3.5. The following full subcategories of RepE(GK) are neutral Tannakian:

(i) the category RepBE(GK) of E-linear representations of GK that are (potentially) B-admissible
up to twist by a character of GK ;

(ii) the categories (RepstriE (GK),RepptriE (GK),ReppstriE (GK)) ReptriE (GK) of (split, potentially,
potentially split) trianguline E-linear representations of GK .

Note that the categories in (ii) are all stable under twisting by E-linear characters of GK .

Proof. Since RepE(GK) is a neutral Tannakian category, it is enough to check that the categories
in (i) and (ii) are stable under direct sums, taking subquotients, tensor products and duals,
where all these operations are intended in RepE(GK). Proving this for RepBE(GK) a minor
variation on [FO, Theorem 2.13(2)]. As for the categories of trianguline representations, one
can check easily their stability under all the operations listed above. □
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IfW is a trianguline representation and ⟨W ⟩ is the subcategory of RepE(GK) tensor generated
by W , we can define in a canonical way a triangulation of an object in ⟨W ⟩ starting from a
triangulation of W . For this we refer to Remark 4.7 and the discussion preceding it.

Remark 3.6.

– Lemma 3.5(ii) is a special case of (i): if D ⊂ C is an inclusion of neutral Tannakian categories
with D full in C and associated morphism of fundamental groups π : GC → GD, then following
[Fon94b, Section 2.2] we can consider the affine algebra BD,alg of GD, that carries an action
of GD by left translation, hence of GC via π. Then the objects of D are the BD,alg-admissible
ones in C. We still write (1) and (2) separately because such a period ring has not been
studied in the literature as far as the author knows.

– In (ii) one can fix the extension of K, respectively E, over which the B⊗E
|K -pairs become tri-

angulable, respectively split, and still get a neutral Tannakian category by the same argument
as the given one.

– One could think of defining a category of couples consisting of a trianguline E-linear repre-
sentation of GK and a triangulation of the associated B⊗E

|K -pair, and make it into a tensor

category by means of the argument in the proof of Lemma 3.5(2); however one runs into the
same problems that make the category of filtered vector spaces non-abelian.

Remark 3.7. The Tannakian categories of Lemma 3.5 are categories of Galois representations
rather than B-pairs. The reason why we prefer them to the corresponding categories of B-pairs
is that the Tannakian category of B⊗E

|K -pairs is not neutral in general (see for instance [FF18,

Section 10.1.2]), so it does not fit in the framework of the previous section.

For later use, we introduce some more neutral Tannakian categories. As usual, if P is a
property of B⊗E

|K -pairs, we say that an E-linear representation of GK has property P if the

associated B⊗E
|K -pair has it.

Definition 3.8.

(i) Let σ be an embedding of E into Qp. We say that a B⊗E
|K -pair is σ-regular if its σ-Hodge–

Tate–Sen weights are all distinct.

(ii) Let Reptri,σ−reg
E (GK) (respectively Repptri,σ−reg

E (GK)) be the smallest full Tannakian sub-

category of ReptriE (GK) (respectively RepptriE (GK)) containing all the (respectively, poten-
tially) trianguline, σ-regular representations.

(iii) We say that a split triangulable B⊗E
|K -pair, of parameters δ1, . . . , δn, is quasi-regular

if there exists a triangulation of V and an embedding σ : E → Qp for which the fol-
lowing holds: if the σ-Hodge–Tate–Sen weights of δi and δj coincide for some i, j ∈
{1, . . . ,dimV }, then the τ -Hodge–Tate–Sen weights of δi and δj coincide for every em-

bedding τ : E ↪→ Qp. We say that a potentially trianguline B⊗E
|K -pair is quasi-regular if it

becomes split triangulable and quasi-regular after replacing K and E by finite extensions.

(iv) Let Reptri,qregE (GK) (respectively Repptri,qregE (GK)) be the smallest full Tannakian subcate-

gory of ReptriE (GK) (respectively RepptriE (GK)) containing all the (respectively, potentially)
trianguline quasi-regular representations.

(v) As in [BD21, Introduction], we say that a B⊗E
|K -pair is split ∆(Qp)-triangulable if it

admits a triangulation whose rank 1 subquotients are all restrictions of B⊗E
|Qp

-pairs to GK .

Remark 3.9.

(i) All of the categories of Galois representations (not B-pairs) introduced in Definition 3.8
are automatically neutral.

(ii) For every σ, Reptri,σ−reg
E (GK) (respectively, Repptri,σ−reg

E (GK)) is a Tannakian subcat-

egory of Reptri,qregE (GK) (respectively, Repptri,qregE (GK)): any σ for which all of the σ-
Hodge–Tate–Sen weights of a (respectively, potentially) trianguline E-representation V of
GK are distinct makes the quasi-regularity condition empty.
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(iii) If W is a triangulable, quasi-regular B⊗E
|K -pair and K ′, E′ are finite extensions of K and

E, respectively, then W |GK′ ⊗E E′ is again quasi-regular.

(iv) Not all objects of Repptri,σ−reg
E (GK) (respectively, Repptri,qregE (GK)) are σ-regular (respec-

tively, quasi-regular). For instance, a direct sum of two copies of the same σ-regular
representation is not σ-regular. The direct sum of two quasi-regular representations is
still quasi-regular, so one needs to come up with a more complicated example; see Ex-
ample 3.10. However, the σ-regular representations (respectively, the quasi-regular repre-

sentations) form by definition a tensor generating set of Repptri,σ−reg
E (GK) (respectively,

Repptri,qregE (GK)).

(v) Every potentially ∆(Qp)-triangulable B⊗E
|K -pair is quasi-regular: since all the rank 1 sub-

quotients appearing in the triangulation are restrictions of B⊗E
|Qp

-pairs, their Hodge–Tate–

Sen weights are uniquely determined by their σ-Hodge–Tate–Sen weight for a single em-
bedding σ : E ↪→ Qp; in particular, when two of them share the same σ-Hodge–Tate–Sen
weight for one σ, they share it for every σ. Moreover, one shows easily that if W is a po-
tentially ∆(Qp)-triangulable B⊗E

|K -pair then Su(W ) is also potentially ∆(Qp)-triangulable,

hence quasi-regular, for every tuple u.
(vi) Every potentially trianguline E-representation of GK of dimension at most 3 belongs to

Repptri,qregE (GK). The author does not have an explicit example of an E-representation of

GK that does not belong to Repptri,qregE (GK).

Example 3.10. We thank the referee for the following example of a potentially trianguline,

non quasi-regular representation in Repptri,qregE . Let k, ℓ be two integers such that k ̸= ±ℓ and

k + ℓ ̸= 0. Let K be a quadratic extension of Qp with embeddings τ, τ : K → Qp. Choose
characters δi : GK → E×, i = 1, . . . , 4, whose ordered tuples of τ - and τ -Hodge–Tate–Sen
weights are (k,−k, ℓ,−ℓ) and (k, ℓ,−k,−ℓ), respectively (enlarge E if necessary). The direct
sum

ρ := δ1 ⊕ δ2 ⊕ δ3 ⊕ δ4

is trianguline and quasi-regular, while the representation

Sym2ρ ∼= δ1δ2 ⊕ δ1δ3 ⊕ δ1δ4 ⊕ δ2δ3 ⊕ δ2δ4 ⊕ δ3δ4

is trianguline and not quasi-regular, as an explicit check shows. Since Sym2ρ is a subrepresen-

tation of ρ⊗E ρ, it belongs to Repptri,qregE .

We apply the abstract Tannakian results of Section 2 to some of the categories we introduced
above, in order to prove the following theorem.

Theorem 3.11. Let W be a B⊗E
|K -pair and let n = rkW .

(i) Assume that either

(1) there exists a B⊗E
|K -pair W ′ such that W ⊗E W ′ is triangulable, or

(2) there exists a tuple u with length(u) < n such that Su(W ) is triangulable.
Then SymnW is triangulable. If moreover SymnW is quasi-regular, then W is potentially
triangulable.

Moreover, if W is pure (in the sense of the theory of slopes) then:

(ii) Conditions (1) and (2) of part (i) are equivalent.
(iii) If condition (2) of part (i) holds for some tuple u, then it holds for all tuples v satisfying

gcd(ℓ(u), n) | ℓ(v).

Remark 3.12.

(i) One can obviously weaken “triangulable” in assumptions (1) and (2) of part (i) to “po-
tentially triangulable”.
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(ii) One might hope for a better-looking statement by requiring that Su is quasi-regular for
an arbitrary u as in condition (2) of part (i). However, the proof that W is potentially
triangulable is by reduction to the case of Symn, and it is false in general that if Su is
triangulable and quasi-regular for some u with length(u) < n, then Sv is quasi-regular

whenever it is triangulable (or even just for Sv = Symn). Take for instance the B⊗E
|Qp

-pair

W attached to the representation ρ of Example 3.10: even though W itself is trianguline
and quasi-regular (and the same is true for odd symmetric powers of W ), Sym2W is
trianguline but not quasi-regular.

(iii) By Remark 2.6, (2) implies (1) in Theorem 3.11(i). To also deduce the reverse implication
from Proposition 2.4(i) we would need to work in a neutral Tannakian category, which we
are not by Remark 3.7.

(iv) Because of Remark 3.7, in proving Theorem 3.11 we will first reduce the statements to

the case when W is pure of slope 0: the category of such B⊗E
|K -pairs is neutral Tannakian,

being equivalent to that of continuous E-representations of GK . This is also the reason
why we can only prove statements (ii) and (iii) when W is pure, since then we can, up
to extending E, find a slope 0 modification of W . Note however that (2) =⇒ (1) and
part (iii) with the divisibility condition replaced by ℓ(u) = ℓ(v) hold for arbitrary W (not
necessarily pure) by virtue of Remark 2.6.

The first part of our result contains as a special case a theorem of Berger and Di Matteo [BD21,
Theorem 5.4], where it is shown that W is potentially triangulable by replacing assumption (1)

with the stronger condition that there exists a B⊗E
|K -pair W ′ such that W ⊗E W ′ is ∆(Qp)-

triangulable (see Remark (v) above).
After their Theorem 5.4, Berger and Di Matteo also provide a counterexample showing that

the “triangulable” in the conclusion of part (i) of Theorem 3.11 cannot be removed.
Thanks to the results of Section 2.1, we can deduce the following result by specializing

Theorem 3.11 to the case of B⊗E
|K -pairs of slope 0. Let C be the neutral Tannakian category

RepE(GK), and D the subcategory Repptri,qregE (GK). Let D be the intermediate category con-
structed from the inclusion D ⊂ C, as in Section 1.

Corollary 3.13. The categories D and D coincide.

Unfortunately we cannot apply Corollary 2.13 to obtain that Gss
D is simply connected, since

Gss
C is not. For instance, if the residue field of E has q elements, take a multiple n of q − 1 and

a tamely ramified, not unramified continuous character χ : GK → E×. Consider the injection
f : E× → GLn(E) that maps e ∈ E to the diagonal element (e, 1, . . . , 1), and let Pχ be the
representation GK → PGLn obtained by composing f ◦ χ with the projection GLn → PGLn.
If Gss

C were simply connected, then the representation Pχ would admit a lift along the central
isogeny SLn → PGLn, which is not the case.

Observe that the fact that χ as above cannot be lifted along Gm → Gm, t 7→ tn, also shows
that G◦

C admits non-trivial central isogenies from connected pro-algebraic groups that are trivial
on Gss

C .

3.2. Crystalline B-pairs. Assume from now on that E = EGal ⊂ K, so that E0 ⊂ K0. Note
that this is the opposite inclusion as one usually asks for in p-adic Hodge theory, and we will
assume later that E = EGal = K. The inclusion E ⊂ K will guarantee that all of the morphisms
of period rings over E that we look at are GK-equivariant, instead of some of them being only
GE-equivariant (such as the maps (3.4)). One could probably avoid making the assumption
and adapt the action of GK in order to make everything GK-equivariant; however, since in this
section we only want to deal with properties of B⊗E

|K -pairs being potentially true, we are not

worried about having to replace K with a finite extension.
Let B be an E-algebra carrying a GK-action. Set BE = B⊗Qp E and extend E-linearly the

action of GK from B to BE . For every σ ∈ Gal(E/Qp), we denote by Bσ the ring B equipped
with the E-algebra structure obtained by pre-composing the inclusion E ⊂ B with σ. Such a
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structure map is GK-equivariant because E ⊂ K. Write πσ for the map K ⊗Qp E → K sending

ke to kσ(e), where we see σ(e) as an element of K via the inclusion EGal ⊂ K. There is an E-
linear isomorphism Bσ = BE ⊗K⊗QpE,πσ K, and we denote again by πσ the resulting morphism

BE → Bσ. We put them together to obtain an E-linear, GK-equivariant isomorphism

(3.1)
⊕

σ : E→K

πσ : BE
∼−→

⊕
σ : E→K

Bσ.

Given a semilinear BE-representation WBE
of GK , tensoring (3.1) with WBE

we obtain an
isomorphism

(3.2)
⊕

σ∈Gal(E/Qp)

πσ : WBE

∼−→
⊕

σ∈Gal(E/Qp)

WBE
⊗BE ,πσ B,

where each factor on the right is a semilinear B-representation of GK . We write W σ
B =

WBE
⊗BE ,πσ B; it is a Bσ-representation of GK . When applying decomposition (3.1) we will

write πσ for the maps there without specifying the relevant B or WBE
; it will always be evi-

dent what we are referring to. The notation πσ will be used for quite a few morphisms in the
following, all related to decomposition (3.2). We believe this will avoid adding burdens to the
notation without creating any confusion.

Definition 3.14. We say that a B⊗E
|K -pair (We,W

+
dR) is σ-Cp-admissible, respectively σ-Hodge–

Tate, if Cσ
p ⊗Cp⊗QpE,πσ (W+

dR/tWdR), respectively Bσ
HT ⊗BHT,E ,πσ (W+

dR/tW
+
dR), is trivial.

We say that a Be,E-representation We of GK is σ-de Rham if Bσ
dR⊗BdR,E ,πσ (BdR,E⊗Be,E

We)
is trivial.

We say that a B⊗E
|K -pair (We,W

+
dR) is σ-de Rham if We is.

We say that a continuous E-linear representation of GK has one of the above properties if
the associated B⊗E

|K -pair does.

It is equivalent to the last part of the definition to say that an E-linear representation V
of GK is σ-Cp-admissible, σ-Hodge–Tate or σ-de Rham if and only if it is Cσ

p , B
σ
HT, or Bσ

dR-
admissible, respectively. When K = E these notions coincide with those introduced in [Din17];
in the general case they are still completely analogous to those in loc. cit. apart from the fact
that our σ is an automorphism of E, whereas in loc. cit. it is an embedding K ↪→ Cp (in some
sense, we are decomposing our semilinear objects in different directions).

Let f be the inertial degree of E0 over Qp. Define an endomorphism φE of E ⊗E0 Bst as

1⊗φf , and denote again with φE its restriction to E⊗E0 Bcris. We extend E-linearly the action
of GK on Bst and Bcris to E ⊗E0 Bst and E ⊗E0 Bcris (recall that E0 ⊂ K0). The actions of
GK and φE commute on both rings, and they can be extended to their fields of fractions in the
obvious way.

We choose once and for all an extension log of the p-adic logarithm from a map 1+mCp → Cp

to a map C×
p → Cp, setting in particular log(p) = 0. This choice determines an embedding

Bst ↪→ BdR, that is fixed throughout the text. We denote by EBcris the subring of BdR

generated by E and Bcris, and by EBst the subring of BdR generated by E and Bst. Similarly
to [BD21, Section 2], we attach to every σ ∈ Gal(E/Qp) two GK-equivariant isomorphisms

σ ⊗ φn(σ) : E ⊗E0 Bcris,E → EBcris

and

σ ⊗ φn(σ) : E ⊗E0 Bst,E → EBst,

where n(σ) is the element of {0, . . . , f−1} such that σ = φn(σ) on E0. We use again the notation
πσ for these isomorphisms; it will not create any ambiguity. For every σ ∈ Gal(E/Qp) we denote
by tσ the element of EBcris constructed in [Ber16, Section 5] (see also [BD21, Proposition 2.4]).
One has tσ = πσ(π−1

τ (tτ )) for every σ, τ ∈ Gal(E/Qp), and the usual t ∈ Bcris is the product
of the tσ when σ varies in Gal(E/Qp). We define Frobenius operators on EBcris and EBst by
transporting φE via the above isomorphisms, and we still denote them by φE .
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Observe that (EBcris) ⊗Qp E ∼= E ⊗E0 (Bcris ⊗Qp E), where the tensor product over E0 is
taken with respect to the E0-vector space structure of Bcris.

We recall the following observation of Berger and Di Matteo.

Lemma 3.15 ([BD21, Proposition 2.2]). The composite map Be,E ↪→ Bcris,E ↠ E ⊗E0 Bcris

gives an identification

(3.3) Be,E = (E ⊗E0 Bcris)
φE=1.

We will always consider Be,E as a subring of EBcris and of EBst via (3.3). In particular, for
every σ ∈ Gal(E/Qp) there are maps

(3.4) Be,E ↪→ E ⊗E0 Bcris
σ⊗φn(σ)

−−−−−→ EBcris ↪→ EBst ↪→ BdR.

Given B ∈ {EBcris, EBst,BdR}, we write Bσ for the ring B equipped with the Be,E-module
structure arising from the maps in (3.4). The resulting E-algebra structure map, given by the
composite E → Be,E → B, is the same as that introduced before Equation (3.1), so that there
are no conflicts in the notation.

Definition 3.16. We say that a Be,E-representation We of GK is σ-crystalline, respectively
σ-semistable, if EBσ

cris ⊗Be,E
We, respectively EBσ

st⊗Be,E
, is trivial.

We say that a B⊗E
|K -pair (We,W

+
dR) is σ-crystalline or σ-semistable if We has the respective

property.
We say that a continuous E-linear representation of GK has one of the above properties if

the associated B⊗E
|K -pair does.

We remark that Ding defines in [Din14] a notion of Bσ-pair for every embedding σ : K ↪→ Cp,
and attaches to a B-pair W = (We,W

+
dR) a Bσ-pair Wσ = (We,σ,W

+
dR,σ) for each σ. When

K = E, a B⊗E
|K -pair W is σ-crystalline in our sense if and only if Ding’s We,σ becomes trivial

after extending its scalars to EBσ
cris.

We extend the monodromy operator N on Bst to an E-linear nilpotent operator NE on EBst.
Since EBσ

cris = (EBσ
st)

NE=0, a Be,E-representation We of GK is σ-crystalline if and only if it is

σ-semistable and the operator induced on (Bσ
st ⊗Be,E

We)
GK by NE is identically zero.

The filtration (FiliBdR)i∈Z on BdR defined by FiliBdR = tiB+
dR for i ∈ Z induces filtrations

(FiliEBcris)i∈Z and (FiliEBst)i∈Z on EBcris and EBst, respectively. The graded ring associated
with EBcris, EBst and BdR is the same, BHT.

3.3. Reminders on Fontaine’s classification of BdR-representations. We recall Fontaine’s
classification of BdR-representations from [Fon04] (recall that BdR = BdR,Qp , so that we are

working with E = Qp here). We set Kn = K(µpn(K)), K∞ =
⋃

n≥1Kn, ΓK,n = Gal(K∞/Kn),

and ΓK = ΓK,0 = Gal(K∞/K).

Let C(K) (respectively C(K/Z)) be the set ofGK-orbits in the additive groupK (respectively
K/Z). For A ∈ C(K), let KA be the extension of K generated by the elements of A. Let dA
be the degree of KA/K. Let a be any element of A and let rA be the smallest integer such that

vp(a log(χ
cyc
K (γ)) >

1

p− 1

for all γ ∈ ΓK,rA . Thanks to the previous inequality we can define a 1-dimensional KA-linear

representation ρA : ΓK,rA → K×
A by setting

(3.5) ρA(γ) = exp(a logχcyc
K (γ))

for every γ ∈ ΓK,rA . Now the induction

N [A] = IndΓK
ΓK,rA

ρA.

is a KA-linear representation of ΓK of dimension prA . We see it as a K-linear representation of
dimension dAp

rA . Observe that the isomorphism class of thisK-representation is independent of
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the choice of a ∈ A, since all elements of A are conjugate under Gal(KA/K), and this group acts
K-linearly on the K-vector space underlying N [A]. We define a semilinear K∞-representation
of Γ by

N∞[A] = K∞ ⊗K N [A],

where Γ acts via its natural action on K∞ and diagonally on N∞[A]. It is not always the case
that N∞[A] is a simple object in the category of semilinear K∞-representations of Γ, but all of
its simple factors are isomorphic. We choose one and denote it by K∞[A]. As proved in [Fon04,
Proposition 2.13], the dimension of K∞[A] is dAp

sA for some integer sA with 0 ≤ sA ≤ rA.
There exists no GK-equivariant section of the projection BdR → Cp, but one can define a

GK-equivariant homomorphism s : K ↪→ BdR such that θ ◦ s = idK , as in [Fon04, Section 3.1]

(what is noted P there always contains K). In particular we have a GK-equivariant section
K∞ → BdR. We define a semilinear BdR-representation of GK by setting

BdR[A] = BdR ⊗K∞ K∞[A],

where the tensor product is taken via the aforementioned section, GK acts via the projection
GK → ΓK on K∞[A] and diagonally on BdR[A]. By [Fon04, Proposition 3.18], BdR[A] is
a simple BdR-representation, and its isomorphism class only depends on the image of A in
C(K/Z). For this reason we will also speak unambiguously of BdR[A] when A is an orbit in
C(K/Z) rather than C(K).

The construction above already gives all the simple objects in the category of semilinear
BdR-representations of GK . There exist however non-semisimple objects, that Fontaine also
describes. Let d ∈ Z>0. Following [Fon04, Section 2.6], denote by Zp{0; d} the Zp-vector
space of polynomials of degree strictly less than d in one variable X, equipped with the unique
Zp-linear action of GK satisfying

g(X) = X + logχcyc
K (g)

for all g ∈ GK . Note that this is the same as the action one would get by identifying X with
log t, where t is the usual generator of Fil1BdR. It is clear that Zp{0; d} is given by successive

extensions of d trivial 1-dimensional Zp-linear representations of GK . Given A ∈ C(K/Z) and
d ∈ Z>0, we define a semilinear BdR-representation of GK by

BdR[A; d] = BdR[A]⊗Zp Zp{0; d},

on which GK acts diagonally. This representation has dimension ddAp
sA , and its simple sub-

quotients are all isomorphic to BdR[A].
By [Fon04, Théorème 3.19], every semilinear BdR-representation of GK can be written in a

unique way, up to permutation of the factors, as a direct sum of representations of the form
BdR[A; d] for some A ∈ C(K/Z) and d ∈ Z>0.

3.4. Reducing Theorem 3.11 to the case of slope 0. We reduce Theorem 3.11(i) to the
case where W is pure.

Proposition 3.17. Assume that (i) and (ii) of Theorem 3.11 are true whenever W is pure.
Then Theorem 3.11(i) holds.

Note that the B⊗E
|K -pair W ′ appearing in condition (i)(1) is not assumed to be pure of slope

0.

Proof. Assume that W is pure. We will use the following lemma.

Lemma 3.18. Let 0 → W1 → W → W2 → 0 be an exact sequence of B⊗E
|K -pairs. Suppose

that the statement of Theorem 3.11(i) is true for W1 and W2. Then the statement of Theorem
3.11(i) is true for W .
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Proof. By Remark (iii), (2) =⇒ (1) in Theorem 3.11(i), hence it is enough to prove the statement

under condition (1): there exists a B⊗E
|K -pair W ′ such that W ⊗E W ′ is triangulable. The

sequence
0→W1 ⊗E W ′ →W ⊗E W ′ →W2 ⊗E W ′ → 0

is exact (since the underlying sequence E-vector spaces is exact). Since the category of split

triangulable B⊗E
|K -pairs is stable under subquotients, W1⊗EW ′ and W2⊗EW ′ are triangulable.

Then Theorem 3.11(i) implies that W1 and W2 are potentially triangulable. It follows that W
is also potentially triangulable. □

Let W be an arbitrary B⊗E
|K -pair. By [BC10, Théorème 2.1] (which is a translation to the

language of B-pairs of [Ked04, Theorem 6.10]) W admits a Dieudonné–Manin filtration, that

is, an increasing filtration in sub-B⊗E
|K -pairs whose graded pieces are pure of increasing slopes.

Then, by Lemma 3.18, if Theorem 3.11 is true when W is pure, it is also true for an arbitrary
W . □

Next we reduce all statements of Theorem 3.11 to the case when W is pure of slope 0. Recall
that a modification of a B⊗E

|K -pair W , in the sense of [Ber08, Définition 2.1.8], is a B⊗E
|K -pair

W0 satisfying W0,e = We, that is, modifying W amounts to replacing W+
dR with a different

B+
dR-lattice in WdR. We call a modification simple if it amounts to replacing W+

dR with a lattice

of the form tmW+
dR for some m ∈ Z.

Proposition 3.19. Assume that the statements of Theorem 3.11 hold for every E and every
W that is pure of slope 0. Then they hold for every pure W .

Proof. We rely on the following lemma.

Lemma 3.20. Let W be a B⊗E
|K -pair and W0 be a modification of W . Then W is (split)

triangulable if and only if W0 is. If W is triangulable and W0 is a simple modification of W ,
then W is quasi-regular if and only if W0 is.

Proof. By [BD21, Corollary 3.2] a B⊗E
|K -pair is (split) triangulable if and only if the associated

Be,E-representation is (split) triangulable. The conclusion about triangulability follows from
the fact that We = W0,e.

For the statement about quasi-regularity, it is enough to observe that if W0 is a simple
modification of W then the Hodge–Tate–Sen weights of W0 are obtained by shifting all of the
Hodge–Tate–Sen weights of W by the same integer. □

For a positive integer h, let Kh is the unique unramified extension of K of degree h. For a
B⊗E

|K -pair W = (We,W
+
dR), pure of slope s, we recall the following facts:

(i) The B|⊗E
Kh

-pair W |GKh
is of slope sh. Indeed, the slope of W coincides with that of its

associated vector bundle EW on the Fargues–Fontaine curveXK [FF18, Préface, Remarque
4.1(ii)], and the slope of W |GKh

is the slope of the pullback of EW along the degree h map

XKh
→ XK . Recalling that the slope is the quotient of the degree by the rank, the desired

statement follows from [FF18, Proposition 5.6.16].
(ii) For every m ∈ Z, the simple modification (We, t

mW+
dR) is pure of slope s+m. We obtain

this via Berger’s dictionary [Ber08, Théorème 2.2.7, Remarque 2.2.8] from the following
statement: for a (φK ,ΓK)-module D, pure of slope s, the (φ,ΓK)-module tmD is pure of
slope s+m [Ber08, Proposition 3.1.2(2)].

Let W be a B⊗E
|K -pair, pure of slope s = d/h with d and h coprime integers, h > 0, and let

Kh is the unique unramified extension of K of degree h.

Lemma 3.21. There exists a simple modification W0 of W |GKh
of slope 0.

Proof. By the two facts we recalled just above, the B|⊗E
Kh

-pair W |GKh
has slope d, and its simple

modification (We|GKh
, t−dWdR|+GKh

) has slope 0. □
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Since W is potentially triangulable if and only if W |GKh
is triangulable, it is enough to deduce

the statements of Theorem 3.11 after (implicitly) replacing W with W |GKh
. Thanks to Lemma

3.21, we can then pick a simple modification W0 of W of slope 0.
Assume now that Theorem 3.11 is known for B⊗E

|K -pairs of slope 0; in particular, it holds for

W0. We deduce the statements of Theorem 3.11 for W . Observe that:

(a) For every B⊗E
|K -pair W ′, W0 ⊗E W ′ is a modification of W ⊗E W ′, hence by Lemma 3.20 it

is triangulable if and only if W ⊗E W ′ is.
(b) For every tuple u, the B⊗E

|K -pair Su(W0) is a modification of Su(W ), hence by Lemma 3.20

it is triangulable if and only if Su(W0) is.

(c) For every tuple u, the B⊗E
|K -pair Su(W0) is a simple modification of Su(W ), hence by Lemma

3.20 it is triangulable and quasi-regular if and only if Su(W0) is triangulable and quasi-regular.

By remarks (a) and (b), if (1) or (2) in Theorem 3.11(i) holds for W , then it holds for W0,
so that Theorem 3.11(i) applied to W0 gives that SymnW0 is triangulable. Therefore SymnW0

is triangulable by (b), and if moreover SymnW is quasi-regular, then SymnW0 is also quasi-
regular by (c). Then Theorem 3.11(i) applied to W0 gives that W0 is potentially triangulable,
which in turn implies that W is potentially triangulable by (b). Moreover, Theorem 3.11(ii)
gives that conditions (1) and (2) are equivalent for W0, hence they are also equivalent for W .
In alternative, Theorem 3.11(ii) for W follows immediately from Theorem 3.11(ii) for W0 and
remark (b) above. □

3.5. Extending the base and coefficient fields. Before continuing with the proof of Theo-
rem 3.11, we give here a procedure for replacing our base and coefficient fields K and E with a
common finite extension. We will refer to it a couple of times in the following. We keep working
under the assumption EGal ⊂ K. Let L be a Galois extension of Qp containing K, and let σ be

an element of Gal(E/Qp). Let W be a B⊗E
|K -pair. We:

(1) replace both E and K with L and the B⊗E
|K -pairs W , with their extension of scalars to L

and the restriction of the Galois action to GL, and
(2) replace the automorphism σ of E with an arbitrarily chosen extension of it to an automor-

phism σ̃0 of L.

There are isomorphisms of BdR-representations of GL

W σ
dR

x 7→x⊗1−−−−−→
⊕

σ̃ : L→L
σ̃|E=σ

(L⊗E W )σ̃dR
πσ̃0−−→ (L⊗E W )σ̃0

dR,

and of EBcris-representations of GL

W σ
cris

x 7→x⊗1−−−−−→
⊕

σ̃ : L→L
σ̃|E=σ

(L⊗E W )σ̃cris
πσ̃0−−→ (L⊗E W )σ̃cris,

that induce morphisms between the leftmost and rightmost objects in each of the two lines. In
any given application, we replace all the elements that have been chosen in W σ

dR and W σ
cris with

their images in (L ⊗E W )σ̃dR and (L ⊗E W )σ̃cris via the isomorphisms above. Remark that, if

fL/E is the inertia degree of L/E, then φL = (1⊗ φE)
fL/E .

3.6. Proof of Theorem 3.11 for B-pairs of slope 0. We now prove Theorem 3.11 assuming
that W is pure of slope 0. We will apply the results of Sections 1-2 by choosing:

– as C the category of B⊗E
|K -pairs pure of slope 0 (this category is neutral Tannakian since it

is equivalent to the category of continuous E-representations of GK by [Ber08, Proposition
2.2.9]),

– as D the category Repptri,qregE (GK) introduced in Definition 3.8.
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Remark 3.22. Recall for a moment the notation of Lemma 1.7. One could hope that, since
IV is finite by Lemma 1.7, it is possible to find an open subgroup of GK so that the image in
GLV of the Tannakian fundamental group of ReptriE (GK) intersects IV trivially. Unfortunately
this is in general impossible if IV is non-trivial: For instance, for a two-dimensional trianguline
E-representation V of GK and for every finite extension K ′ of K, the image of GReptriE (GK′ ) in

GL(V ) is the Zariski closure of the image of GK′ in GL(V ). If V does not admit an abelian
subgroup of index 1 or 2, then for every K ′ the above Zariski closure contains SL(V ). We know
from Lemma 1.7 that IV is contained in SL(V ), hence, if it is not trivial, there is no way to
make it trivial by replacing K with a finite extension. In other words, one cannot prove by
an abstract Tannakian argument that replacing our current D with the category of potentially
trianguline E-representations of GK makes the kernel I of GD → GD trivial.

By Lemma 1.10, it is enough to prove Theorem 3.11 for all the B⊗E
|K -pairs in a tensor gen-

erating set of D. By Corollary 2.5, such a set is provided by the B⊗E
|K -pairs W of slope 0 for

which there exists a tuple u such that length(u) < rk(W ) and Su(W ) ∈ Repptri,qregE (W ).

We observe that if a B⊗E
|K -pair W ′ as in condition (1) of Theorem 3.11(i) exists, then there

exists, up to extending E, a B⊗E
|K -pair pure of slope 0 satisfying the same property: The first

non-zero step Fil1W ′ in the Dieudonné–Manin filtration of W ′ is a pure sub-B⊗E
|K -pair of W ′,

and W ⊗ Fil1W ′ is a sub-B⊗E
|K -pair of W ⊗E W ′. Since W ⊗E W ′ is triangulable, the same is

true for W ⊗E Fil1W ′. Hence, up to replacing W ′ with Fil1W ′, we can assume that W ′ is pure.
Then, up to implicitly extending E, we can modify W ′ to a B⊗E

|K -pair W ′
0 which is pure of slope

0. Since W ⊗E W ′
0 is a modification of the triangulable B⊗E

|K -pair W ⊗E W ′, it is triangulable.

Given that we can harmlessly strengthen condition (1) of part (i) by requiring W ′ to be pure
of slope 0, parts (ii) and (iii) of the theorem are an immediate consequence of Proposition 2.4
applied to our choice of C and D.

We prove part (i). Assume that one of the equivalent conditions in part (i) holds. Thanks to
part (iii), SymnW is triangulable. We assume from now on that it is quasi-regular. We prove
that W is potentially triangulable by induction on the rank of W . If the rank is 1 there is
nothing to prove. If the rank is larger than 1, we prove that there exist finite extensions E1 of E
and K1 of K such that (W ⊗E E1)|GK1

contains a saturated sub-B⊗E1

|K1
-pair W ′ of rank 1. This

is enough: let (W ⊗E E1)|GK1
/W ′ be the cokernel of the inclusion of W ′ in W ⊗E E1; it is again

a B⊗E1

|K1
-pair because W1 is saturated in (W ⊗E E1)|GK1

. Moreover Symn((W ⊗E E1)|GK1
/W ′)

can be easily seen to be a quotient of the split trianguline B⊗E1

|K1
-pair Symn(W ⊗E E1)|GK1

,

hence it is also split trianguline and we can use the inductive hypothesis in rank rkW − 1.
We proceed to prove the sufficient claim from the previous paragraph. We implicitly replace

both K and E with finite extensions such that E = EGal = K and that SymnW becomes
split triangulable over E, and then extend scalars in W to the new E. We still denote K
and E with distinct letters in order to emphasize the different roles played by the base and
coefficient field, and to make it clear at which point we are using the fact that they coincide.
For X ∈ {We,W

+
dR,WdR} we will identify SymnX with the submodule of X⊗n (over the relevant

base ring) consisting of symmetric tensors. It is of course a direct factor of X⊗n. Given an
element f ∈ X, we will write f⊗n to denote the tensor product of n copies of f , seen as an
element of SymnX ⊂ X⊗n.

Lemma 3.23. The B⊗E
|K -pair SymnW is a direct factor of (W ⊗E W∨)⊗q ⊗E detr W for some

q ∈ Z≥0 and r ∈ Z.

Proof. Since all the B⊗E
|K -pairs involved in the statement are pure of slope 0, it is enough to

prove the analogous result after replacing W with an n-dimensional E-representation V of GK .

For such a V , the representation Ṽ := V ⊗E V ∨⊗E detV of GL(V ) has kernel µn, embedded as
usual in the center of GL(V ): indeed, in some choice of bases, a matrix A ∈ GL(V ) ∼= GLn(E)
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acts on Ṽ as Ã := A⊗ (det (A) · tA−1), and by Lemma 6.1 the tensor product of two invertible
matrices can be the identity only when both of them are scalars. For a scalar matrix A = a ·Idn,
Ã = an is trivial if and only if a ∈ µn.

In particular, Ṽ is a faithful representation of GL(V )/µn. By [Del82, Theorem 3.1(a)] Ṽ is
a tensor generator of the Tannakian category of E-representations of GL(V )/µn, meaning that
every irreducible E-representation of GL(V )/µn appears as a direct factor of

(V ⊗E V ∨ ⊗E detV )⊗a ⊗E ((V ⊗E V ∨ ⊗E detV )∨)⊗b

for some non-negative integers a and b. Then q = a+ b and r = a− b meet the requirements of
the theorem. □

Remark 3.24. With the notations of the above proof, it is immediate that the relations defining
SymnV as a direct factor of (V ⊗E V ∨)q ⊗E detr V carry over when one replaces V with either
We or W

+
dR, so that Lemma 3.23 holds even when W is not of slope 0. More generally, the proof

can be rephrased in terms of Schur functors in any E-linear tensor category.

Take q and r as in Lemma 3.23. SinceW satisfies condition (1) of Theorem 3.11(i), it is a basic

object of D and by Corollary 1.5 the B⊗E
|K -pair W ⊗E W∨ is triangulable. Fix a triangulation

of W ⊗E W∨. The triangulation of W ⊗E W∨ induces triangulations of (W ⊗E W∨)q, of the
twist (W ⊗E W∨)q ⊗E detr W and of its direct factor SymnW . We write in short N for the

rank
(
2n−1
n−1

)
of SymnW . Let

(3.6) 0 = Fil0SymnW ⊂ Fil1SymnW ⊂ . . . ⊂ FilNSymnW

be the above triangulation of SymnW , and letW ′
i be the rank 1 quotient Fil

iSymnW/Fili−1SymnW
for 1 ≤ i ≤ N .

By [BD21, Theorem 3.4] the triangulation of (W ⊗E W∨)e induced by the triangulation of
W ⊗E W∨ splits as a direct sum of Be,E-representations of rank 1. Since the triangulation
of SymnW is constructed from that of W ⊗E W∨ via Lemma 3.23, the triangulation of the
Be,E-representation (SymnW )e induced by (3.6) also splits as a direct sum

(SymnW )e ∼=
N⊕
i=1

W ′
i,e,

for some Be,E-representations W ′
1,e, . . . ,W

′
N,e of rank 1. Tensoring with BdR,E over Be,E we

obtain a decomposition

(3.7) (SymnW )dR ∼=
N⊕
i=1

W ′
i,dR.

Since we are assuming that EGal ⊂ K, we can apply the decomposition (3.2) to the BdR-
representations WdR, Sym

nWdR and W ′
i,dR, 1 ≤ i ≤ N , to write

WdR
∼=

⊕
σ : E↪→K

W σ
dR,

(SymnW )dR ∼=
⊕

σ : E↪→K

(SymnW )σdR,

W ′
i,dR
∼=

⊕
σ : E↪→K

W ′,σ
i,dR.

The decompositions above are obviously compatible in the sense that

(3.8) Symn(W σ
dR)
∼= (SymnW )σdR

∼=
N⊕
i=1

W ′,σ
i,dR

as BdR-representations; we used the direct sum decomposition (3.7) for the second isomorphism.
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Recall that we assumed SymnW to be quasi-regular, as in Definition 3.8. Let σ be an embed-
ding of E into K that, seen as en embedding E ↪→ Qp, verifies the quasi-regularity condition
for SymnW . We can write the isomorphism class of W σ

dR following Fontaine’s classification:

(3.9) W σ
dR
∼=

⊕
A∈C(K/Z)

d∈Z≥0

BdR[A; d]hA,d,σ

for some non-negative integers hA,d,σ, almost all zero. Let A be the set of A appearing in the

decomposition (3.9). As before, given A ∈ C(K/Z), we write KA for the finite extension of K
generated by all the representatives of the elements of A in K, and K ′

A for the composite of

KA with K(µprA (K)). Since A is finite, the composite of the fields K ′
A for A ∈ A is a finite

extension of K. By implicitly replacing K with this extension, we can assume that every A ∈ A
is a singleton {a} such that r{a} = 1, hence that BdR[A] is 1-dimensional for all A ∈ A.

By the compatibilities (3.8), the symmetric n-th power of the right-hand side of (3.9) must
decompose as a direct sum of 1-dimensional BdR-representations. However, if a ∈ K/Z and
d > 1 then Symn(BdR[{a}; d]) is never semisimple: it is enough to observe that

Symn(Zp{0; d}) = Symn(Symd−1(Zp{0; 2}))

always contains a direct factor isomorphic to

Symn(d−1)(Zp{0; 2}) ∼= Zp{0;n(d− 1) + 1},

so that Symn(BdR[{a}; d]) contains a direct factor isomorphic to BdR[{na};n(d−1)+1], which
is not semisimple by Fontaine’s classification [Fon04, Théorème 3.19] since n(d− 1) + 1 > 1.

We conclude that d = 1 whenever hA,d,σ > 0, so that W σ
dR is isomorphic to a direct sum

of 1-dimensional BdR-representations. For each such 1-dimensional factor we pick a generator,
and build this way a basis {fdR,j}j=1,...,m of W σ

dR.
To simplify the notation in the following arguments we will write fdR = fdR,1. Let IdR be

the set of i ∈ {1, . . . , N} such that W ′,σ
i,dR has the same Hodge–Tate–Sen weight as the BdR-

representation BdRf
⊗n
dR . Since our chosen σ verifies the quasi-regularity condition of Definition

3.8 for SymnW , the tuple of Hodge–Tate–Sen weights of W ′
i is independent of i ∈ IdR. Choose

an arbitrary i0 ∈ IdR. By Lemma 3.21 there exists, up to implicitly replacing E and K by
a common finite extension, a slope 0, simple modification W ′′

i0
of W ′

i0
; by definition, W ′′

i0
is

obtained by replacing W ′,+
i0,dR

with tmW ′,+
i0,dR

, so that the Hodge–Tate–Sen–weights of W ′′
i0

are

obtained by shifting of −m the corresponding weights of W ′
i0
. Write W ′′

i0
= R(δ0) for a character

δ0 : GK → E×, and set δ = (χcyc
K )mδ0.

Up to replacing K and E implicitly by a common finite extension when p | n, we define an

n-th root δ1/n : GK → E× of δ by

δ1/n(g) = exp
( 1
n
log δ(g)

)
.

Since W and SymnW are potentially triangulable if and only if W⊗ER(δ−1/n) and Symn(W⊗E

R(δ−1/n)) ∼= SymnW ⊗E R(δ−1) are, we can implicitly replace W with W ⊗E R(δ−1/n), W ′
i

with W ′
i ⊗E R(δ−1) for 1 ≤ i ≤ N and fdR,i with fdR,i ⊗ 1 for 1 ≤ i ≤ n.

Thanks to our choice of δ, the above twisting makes all of the Hodge–Tate weights of (the
twisted) W ′

i0
vanish. Since all W ′

i , i ∈ IdR, share the same σ-Hodge–Tate–Sen weight (before
and after twisting), by the σ-regularity condition they also share the same τ -Hodge–Tate–Sen
weight for every embedding τ : E ↪→ K. In particular, after twisting, all of their Hodge–Tate–
Sen weights vanish. Therefore all of the 1-dimensional pairs W ′

i , i ∈ IdR, are de Rham, hence
potentially crystalline by Remark 3.3. By replacing once moreK and E, implicitly, by a common
finite extension, we can assume that

(⋆) W ′
i is crystalline for every i ∈ IdR.
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This means that there exists di ∈ EBσ
cris and Fe,i ∈ W ′

i,e such that the element di ⊗ Fe,i of

EBσ
cris ⊗Be,E

W ′
i,e is GK-invariant.

Given that the previously chosen element fdR generates a GK-stable BdR-line in W σ
dR,

f⊗n
dR generates a GK-stable BdR-line in SymnW σ

dR. This 1-dimensional BdR-representation is

trivial since it is contained in the trivial BdR-representation
⊕

i∈IdR W ′,σ
i,dR. Now BdRf

⊗n
dR
∼=

(BdRfdR)
⊗n as a BdR-representation. By Fontaine’s classification BdRfdR ∼= BdR[a] for some

a ∈ K/Z, so that the trivial BdR-representation BdRf
⊗n
dR is isomorphic to BdR[na]. This forces

a ∈ 1
nZ+ Z.

We perform a further twist: let ε : GK → E× be a continuous character of σ-Hodge–Tate–Sen
weight congruent to −a modulo Z and such that εn is crystalline (we can always find such a
character up to enlarging K and E: for an integer m congruent to na modulo n, simply take
an n-th root of (χcyc

K )−m). We implicitly replace W with W ⊗E R(ε) and modify all the other
data in the obvious way, so that after this operation (⋆) still holds and the BdR-representation
BdRfdR is trivial. This means that there exists c ∈ B×

dR such that cfdR is GK-invariant. We
replace implicitly fdR with cfdR, which obviously generates the same BdR-representation, and
assume from now on that:

(⋆⋆) fdR is fixed under the action of GK .

In particular f⊗n
dR is also fixed by the action of GK . We prove the following.

Lemma 3.25. There exists a ∈ Bσ
dR and fσ

cris ∈ Frac(EBσ
cris)⊗Be,E

We such that fdR = a⊗fσ
cris.

Proof. Let W ′,σ
dR,0 =

⊕
i∈IdR W ′,σ

i,dR, that is the largest trivial sub-BdR-representation of W ′,σ
dR.

The elements di⊗Fe,i, seen inside of W ′,σ
dR,0 via the extension of scalars through EBσ

cris ↪→ Bσ
dR,

form a basis of GK-invariant elements of W ′,σ
dR,0. In particular, since (Bσ

dR)
GK = K, they are a

K-basis of theK-vector space ofGK-invariant elements inW ′,σ
dR,0. In particular theGK-invariant

element f⊗n
dR can be written as

f⊗n
dR =

∑
i∈IdR

kidi ⊗ Fe,i

for some ki ∈ K.
Observe that kidi is an element of EBσ

cris, since K = E. This means that f⊗n
dR = 1⊗Fcris for

some Fcris ∈ EBσ
cris ⊗Be,E

(SymnW )e. We embed EBσ
cris ⊗Be,E

We into Frac(EBσ
cris)⊗Be,E

We

in the obvious way, and consider Fcris as an element of Frac(EBσ
cris) ⊗Be,E

We. Then Lemma
6.3 applied to R = Frac(EBσ

cris), S = Bσ
dR, V = We and f = fdR implies that

fdR = a⊗ fσ
cris

for an fσ
cris ∈ Frac(EBσ

cris)⊗Be,E
We and an a ∈ Bσ

dR (satisfying an ∈ Frac(EBσ
cris)). □

Let W σ
cris,0 be the smallest φE-stable Frac(EBσ

cris)-vector subspace of Frac(EBσ
cris)⊗Be,E

We

containing fσ
cris, and let h be its dimension.

Lemma 3.26. The set {1⊗φi
Ef

σ
cris}i=0,...,h−1 is a basis of GK-eigenvectors for the Frac(EBσ

cris)-
representation W σ

cris,0.

Proof. The Bσ
dR-vector space Bσ

dR ⊗Frac(EBσ
cris)

W σ
cris,0 is generated by a finite set of elements of

W σ
cris,0 of the form φi

E(f
σ
cris) with i ∈ N, and since the action of GK on Bσ

dR ⊗Frac(EBσ
cris)

W σ
cris,0

fixes fdR = a⊗ fσ
cris, stabilizes W

σ
cris,0 and commutes with φE , one has

(3.10) g.(φi
E(f

σ
cris)) = φi

E(g.(f
σ
cris)) = φi

E

(
a

g.a
fσ
cris

)
,

where (a/g.a)fσ
cris is still an element of W σ

cris,0. Again since GK stabilizes W σ
cris,0, (g.a)/a must

belong to Frac(EBσ
cris): indeed, B

σ
dR and Frac(EBσ

cris) are both fields and 1⊗fσ
cris, 1⊗(a/g.a)fσ

cris
generate the same line in Bσ

dR ⊗Frac(EBσ
cris)

W σ
cris,0, so fσ

cris, (a/g.a)f
σ
cris must generate the same
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line in W σ
cris,0. In particular we can apply φE to a/g.a, and by rewriting the rightmost member

of (3.10) we obtain

(3.11) g.(φi
E(f

σ
cris)) = φi

E(g.(f
σ
cris)) = φi

E

(
a

g.a

)
φi
E(f

σ
cris),

so that φi
E(f

σ
cris) generates a GK-stable line in W σ

cris,0. □

Lemma 3.27. The element a of Lemma 3.25 belongs to Frac(EBσ
cris).

Proof. By Lemma 3.26, the Frac(EBσ
cris)-representationW σ

cris,0 admits a basis ofGK-eigenvectors

of the form {φi
Ef

σ
cris}i=0,...,h−1, where h is the rank of the representation. The same argument

as in Lemma 3.26 gives that φh
Ef

σ
cris is also a GK-eigenvector. Write φh

Ef
σ
cris as a Frac(EBσ

cris)-

linear combination
∑h−1

i=0 αi(φ
i
Ef

σ
cris). The only way for φh

Ef
σ
cris to be a GK-eigenvector is if the

Frac(EBσ
cris)

×-valued characters giving the action of GK on φh
Ef

σ
cris and on each of the eigen-

vectors αi(φ
i
Ef

σ
cris) with αi ̸= 0 all coincide. By comparing them for φh

Ef
σ
cris and α0(f

σ
cris) via

(3.11) for i = h and i = 0 (necessarily α0 ̸= 0 because φE is an automorphism), we obtain for
every g ∈ GK

φh
E

(
a

g.a

)
=

g.α0

α0
.

Since α0 ∈ Frac(EBσ
cris), we can write

a

g.a
=

g.(φ−h
E α0)

φ−h
E α0

,

from which we get that a·φ−h
E α0 isGK-invariant. Therefore a·φ−h

E α0 is an element of (Bσ
dR)

GK =
E, and from α0 ∈ Frac(EBσ

cris) we get a ∈ Frac(EBσ
cris). □

Thanks to the lemma, we can replace the basis {φi
Ef

σ
cris}

h−1
i=0 of W σ

cris,0 with the basis of GK-

fixed elements f̃i = aφi
E(f

σ
cris), i = 0, . . . , h− 1 (this gives in particular that W σ

cris,0 is a trivial,

hence de Rham, representation). Since the action of φE commutes with that of GK , it must
send a GK-invariant basis to another GK-invariant basis, hence it must be described in the

basis {f̃i}h−1
i=0 by a matrix Φ in GLh(Frac(EBσ

cris)
GK ) = GLh(K). Because of our choice of basis

such a matrix will only have as non-zero entries a sub-diagonal of 1’s and the non-zero entries
of the last column, but we do not need this description. Such a matrix will admit a non-zero
eigenvector over a finite extension K ′ of K.

Pick a finite Galois extension L of Qp containing K ′, and let fL/E be the inertia degree of

L/E. Let φL be the operator on L ⊗E W σ
cris,0 defined by 1 ⊗ φ

fL/E

E , and extend L-linearly the
action of the subgroup GL of GK from W σ

cris,0 to L ⊗E W σ
cris,0. Since the matrix Φ admits an

eigenvector defined over L, there exists a φL-eigenvector

f0 ∈ L⊗E W σ
cris,0

given by an L-linear combination of the elements 1 ⊗ f̃i, i = 0, . . . , h − 1. Since the action of

GL is L-linear and the elements 1⊗ f̃i are GK-invariant, the element f0 is GL-invariant.
We extend both our base and coefficient fields K and E to L via the procedure of Section 3.5,

in order for f0 to be defined over Frac(EBσ
cris). We make all the replacements implicitly and

we keep writing K, E and σ for the relevant objects. We can now assume that W σ
cris,0 contains

an eigenvector f0 for φE that is also GK-invariant.
All the arguments we made starting with fdR can be repeated starting with the element f0

instead. In particular, we can write f⊗n
0 as

(3.12) f⊗n
0 =

∑
i∈IdR

d0,i ⊗ Fe,i
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for some d0,i ∈ Frac(EBσ
cris). By applying φE to both sides of (3.12), we get

(3.13) φE(f0)
⊗n =

∑
i∈IdR

φE(d0,i)⊗ φE(Fe,i).

Let β ∈ Frac(EBσ
cris) be the φE-eigenvalue of f0. The operator φE acts trivially on Fe,i for

every i since Fe,i ∈ SymnWe,E . This way we deduce from (3.13) that

(3.14) βnf⊗n
0 =

∑
i∈IdR

φE(d0,i)⊗ Fe,i.

Since {1⊗ Fe,i}i∈IdR is a Bσ
dR-basis of W

′,σ
dR,0, comparing (3.13) and (3.14) we get

φE(d0,i) = βnd0,i

for every i. In particular, φE(d0,id
−1
0,1) = d0,id

−1
0,1 ∈ Frac(EBσ

cris) for every i. By Lemma 3.15,

d0,id
−1
0,1 ∈ FracBe,E for all i. Set bi = d0,id

−1
0,1 for each i, and let b0 be the product of the

denominators of all the bi written as quotients of elements of Be,E . Then by multiplying (3.12)

with d−1
0,1b0 we get

(3.15) d−1
0,1b0f

⊗n
0 =

∑
i∈IdR

bib0 ⊗ Fe,i,

with bib0 ∈ Be,E for every i. Define an element F of SymnWe by

F =
∑
i∈IdR

bib0Fe,i.

By (3.15), there exists c ∈ Frac(EBσ
cris) such that f⊗n

0 = c ⊗ πσ(F ). By Lemma 6.3 applied
to R = Be,E (which is a principal ideal domain [BD21, Proposition 1.1]), S = Frac(EBσ

cris),
and V = We, f0 has to be of the form c0 ⊗ πσ(F0) for some c0 ∈ Frac(EBσ

cris) and F0 ∈ We.
Since f⊗n

0 generates a GK-stable line in Frac(EBσ
cris)⊗Be,E

SymnWe, by applying Lemma 6.5 to
R = Frac(EBσ

cris) and V = Frac(EBσ
cris)⊗Be,E

We we deduce that f0 generates a GK-stable line
in Frac(EBσ

cris) ⊗Be,E
We, and the same is obviously true for its Frac(EBσ

cris)-scalar multiple
πσ(F0).

We apply Lemma 6.4 to R = Be,E , M = We, L = Frac(EBσ
cris) and conclude that We

contains a GK-stable saturated line Ve. By setting V +
dR = (BdR,E ⊗Be,E

Ve)∩W+
dR, we obtain a

saturated sub-B⊗E
|K -pair (Ve, V

+
dR) of rank 1 of W .

4. Lifting strict triangulations

In this section we prove that, under some extra assumptions, the potential triangulability
result of Theorem 3.11 can be improved to a triangulability one. One of these assumptions is
technical: if Su and W are as in condition (1) of Theorem 3.11(i), then we require that Su(W )
be strictly triangulable in the sense of Definition 4.3 below. We do not know if this condition can
be removed. The second assumption, on the other hand, is a necessary and sufficient condition
for W to be triangulable: the ordered parameter of a triangulation of Su(W ) must “lift” to a
candidate ordered parameter for W .

We give a notion of strict split triangulinity for B-pairs that is slightly different from that in
[KPX14, Definition 6.3.1]. Let K and E be two p-adic fields, and let n be a positive integer.

Definition 4.1. A (K,E)-parameter (of length n) is a set of n of continuous characters
K× → E×, while an ordered (K,E)-parameter (of length n) an ordered n-tuple of continu-
ous characters K× → E×.

We say that a (K,E)-parameter {δ1, . . . , δn} is quasi-regular if the (triangulable) B⊗E
|K -pair⊕n

i=1R(δi) is quasi-regular. We say that an ordered (K,E)-parameter is quasi-regular if its
underlying unordered (K,E)-parameter is quasi-regular.
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It is immediate from the definitions that a triangulable B⊗E
|K -pair W is quasi-regular if and

only if its (ordered or unordered) parameter is quasi-regular.
We will denote ordered (K,E)-parameters by underlined, lower-case Greek letters. Now let

W be a B⊗E
|K -pair of rank n and δ = {δ1, . . . , δn} an ordered (K,E)-parameter of length n.

Remark 4.2. Let T be any split maximal torus of GLn. The datum of a (K,E)-parameter of
length n is the same as that of a continuous homomorphism K× ↪→ T (E), while the datum of
a (K,E)-parameter is equivalent to that of a Borel subgroup B of GLn/E, containing T , and

of a continuous homomorphism K× ↪→ B(E) that factors through T (E): indeed, the orderings
of the n characters making up a homomorphism K× → T (E) are in bijection with the possible
choices of sets of positive roots of GLn.

Definition 4.3. We say that W is split triangulable of parameter δ if there exists a triangu-
lation of W of ordered parameter δ.

We say that a triangulation W of W is strict if there are no other triangulations of W with
the same ordered parameter as W. We say that W is strictly split triangulable of parameter δ
if there exists a strict triangulation of W of ordered parameter δ.

We call an E-linear representation V of GK (strictly) split trianguline of parameter δ if the

associated B⊗E
|K -pair W (V ) is (strictly) split triangulable of parameter δ.

In this section we will not deal with non-split triangulable B-pairs. Though one could extend
the above definitions to the non-split case, we believe that the study of non-split parameters
fits more naturally in the framework of G-B-pairs that we present in the next section.

Remark 4.4. If W is strictly triangulable of parameter δ in the sense of [KPX14, Definition
6.3.1], then it is strictly split triangulable of ordered parameter δ according to our definition.
We do not know if the converse is true: inside of a triangulable B-pair W of some parameter
one may have distinct extensions by isomorphic rank 1 B-pairs (as prescribed by the parameter)
of some step of the triangulation, so that W is not strictly triangulable, but only be able to
complete one of these extensions to a triangulation.

Remark 4.5. If W = (Wi)1≤i≤n is a strict triangulation of a B⊗E
|K -pair W , then every quotient

Wi/Wj, j ≤ i, inherits from W a triangulation that is necessarily strict: if it weren’t, we
would be able to build in an obvious way a triangulation of W distinct from W but of the same
parameter as W.

Remark 4.6. If V is refined trianguline in the sense of [KPX14, Definition 6.4.1], then V
admits a strict triangulation by [KPX14, Lemma 6.4.2]. However, their condition is too restric-
tive for our purposes: refined trianguline representations are potentially semi-stable, hence they
exclude many interesting trianguline representations (such as those attached to non-classical
points of eigenvarieties).

4.1. Operations on parameters. Let V be an n-dimensional E-vector space, T (V ) a maximal
split torus in GL(V ) and B(V ) a Borel subgroup of GL(V ) containing T (V ). By flag in an
E-vector space we will always mean a complete flag. Let Fil•V be the flag on V whose stabilizer
is B(V ). Each E-representation W of GL(V ) is equipped with a B(V )-stable flag, and such a
flag is unique if W is irreducible. One can construct this flag in the natural way: If W1,W2

are two objects of RepE(GL(V )) equipped with flags Fil•W1 and Fil•W2, we define a flag on
W1 ⊗E W2 in the natural way, by setting

Filn(W1 ⊗E W2) =
⊕

i+j=n

FiliW1 ⊗E FiljW2

for every n ∈ Z. Since V is a tensor generator of RepE(GL(V )), every object of this category
can be written as a direct sum of subquotients of Va,b = V ⊗a ⊗E (V ∨)⊗b for some non-negative
integers a, b. If Va,b is equipped with a complete B(V )-stable flag, every irreducible subquotient
of Va,b inherits a unique B(V )-stable flag.
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For an arbitrary tuple u, let B(Su(V )) be the stabilizer of the unique B(V )-stable flag on
the irreducible representation Su(V ) of GL(V ). Since such a flag is B(V )-stable, the morphism
Su : GL(V )→ GL(Su(V )), restricted to B(V ), gives a morphism

B(V )→ B(Su(V ))

that we still denote by Su. By restricting this map to the maximal tori T (V ) and T (Su(V ))
contained in the two sides, we obtain a morphism

(4.1) T (V )→ T (Su(V ))

that we still denote by Su.

Remark 4.7. In the above construction, we can replace E with an arbitrary ring and V with
a free E-module, letting RepE(GL(V )) be the category of E-linear representations of GL(V )
on finite free E-modules. If B(V ) is the stabilizer of a flag in V , then we can construct a
unique B(V )-stable flag in GL(Su(V )), and the associated morphisms B(V ) → B(Su(V )) and
T (V )→ T (Su(V )).

The following result is probably standard, but we could not find a reference for it.

Lemma 4.8. For every tuple u with length(u) < dimE V , the preimages of B(Su(V )) and
T (Su(V )) under Su : GL(V )→ GL(Su(V )) are B(V ) and T (V ), respectively.

Proof. Let WV (respectively WSu(V )) be the quotient of the normalizer of T (V ) (respectively
Su(T (V ))) in GL(V ) (respectively GL(Su(V ))) by its centralizer. We embed WV in GL(V ) by
choosing an arbitrary basis of V and an isomorphism of WV with the group of permutation
matrices in such a basis. The image of a permutation matrix in GL(V ) under Su is still a
permutation matrix in some basis of Su(V ). We choose such a basis and identify WSu(V ) with
the group of permutation matrices in GL(Su) with respect to the chosen basis. With these
identifications, the morphism Su maps WV injectively to WSu(V ): indeed, since length(u) <
dimE(V ), the kernel of Su(V ) is µℓ(u) by Remark (i), and the only permutation matrix in µℓ(u)

is the identity.
Our choices of embedding for the Weyl groups are irrelevant in what follows, since the Bruhat

decompositions of GL(V ) and GL(Su(V )) are independent of them. For every w ∈ WV , the
Bruhat cell B(V )wB(V ) of WV is mapped to the Bruhat cell B(Su(V ))Su(w)B(Su(V )) of
GLSu(V ). Since Bruhat cells are disjoint, the preimage of the Bruhat cell B(Su(V )) of GLSu(V )

is B(V ). □

Now let δ be an ordered (K,E)-parameter of length n and let Tn be a maximal split torus in
GLn/E . By Remark 4.2, the datum of δ corresponds to that of a continuous character K× →
Tn(E) and of a choice of a Borel subgroup Bn of GLn containing Tn. Let m = dimE(S

u(En)),
and pick any basis e1, . . . , em of Su(En) in order to attach to Su a morphism GLn → GLm. Let
Bn,0 and Bm,0 be the Borel subgroups of triangular matrices in GLn and GLm, respectively,
and Tn,0, Tm,0 the respective tori of diagonal matrices. We define a torus Tm and a Borel
subgroup Bm of GLm as follows: if g is an element of GLn(E) such that g−1Bng = Bn,0, we set
Bm = Su(g)Bm,0(S

u(g))−1 and Tm = Su(g)Tm,0(S
u(g))−1. By construction, Su(Bn) ⊂ Bm and

Su(Tn) ⊂ Tm.

Definition 4.9. We denote by Su(δ) the ordered (K,E)-parameter defined, via Remark 4.2, by
the homomorphism Su ◦ δ : K× → Tm(E) and the choice of the Borel subgroup Bm of GLm.

Remark 4.10. If δ = (δ1, . . . , δn), then every character in µ = (µ1, . . . , µm) := Su(δ) is a
monomial of degree ℓ(u) in the δi.

Let L be a finite extension of K and denote by NmL/K : L× → K× the norm map.

Definition 4.11. For every (K,E)-parameter δ = (δ1, . . . , δn), we define an (L,E)-parameter
δL = (δ1,L, . . . , δn,L) by setting

δi,L = δi ◦NmL/K

for every i ∈ {1, . . . , n}.
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Fix local reciprocity maps rK : K× → Gab
K , rL : L

× → Gab
L making the diagram

L× Gab
L

K× Gab
K

rL

NmL/K ιL/K

rK

commute. When δ can be extended to a homomorphism δGal : GK → T (E) (where we identify
K× to a subgroup of GK via rK), the restriction of δGal|GL

: GL → T (E) to L× (via rL) coincides
with δL.

Remark 4.12. For a character δ : K× → E×, we defined δL in such a way that the restriction of
the B⊗E

|K -pair W (δ) to GL is W (δL). If W is a B⊗E
|K -pair equipped with a triangulation of ordered

parameter δ, then the same triangulation is a triangulation of W |GL
of ordered parameter δL.

4.2. Lifting. Under a strict split triangulinity assumption, we can improve Theorem 3.11 by
combining it with the following.

Theorem 4.13. Let L be a finite extension of K and δ an ordered (K,E)-parameter of length

n. Let W be a B⊗E
|K -pair of rank n, and let u be a tuple satisfying length(u) < n. .

(i) If W is triangulable of parameter δ, then Su(W ) is triangulable of ordered parameter
Su(δ). If in addition Su(W ) is strictly split triangulable of ordered parameter Su(δ), then
W is strictly split triangulable of ordered parameter δ.

(ii) If:
– length(u) < n,
– Su(W ) is triangulable,
– L is a finite extension of K such that W |GL

is triangulable of ordered parameter δL,
and

– Su(W |GL
) is strictly triangulable of ordered parameter Su(δL),

then there exists a unique triangulation of W with the following property: the ordered
parameter ν of W satisfies Su(νL) = Su(δL). In particular, such a triangulation is strict.

We clarify the meaning of point (ii). If we only assume that Su(W ) is triangulable for some
u with length(u) < n, then W is potentially triangulable by Theorem 3.11(i). Take L to be
an extension of K such that W |GL

is triangulable, and implicitly extend scalars to a finite
extension of E to assume that W |GL

is split triangulable. Let δ be the ordered parameter of a
triangulation of W |GL

. Then part (i) implies that Su(W |GL
) admits a triangulation of ordered

parameter Su(δL). The content of statement (ii) is that, if this triangulation is strict, then W ,
and not just its restriction to GL, is strictly split triangulable.

Note that the final equality Su(νL) = Su(δL) is equivalent to νLδ
−1
L taking values in the

subgroup of ℓ(u)-roots of unity of GLn(E).

Example 4.14. The converse to the second statement in (i) is false. We thank the referee for

the following example of a B⊗E
|K -pair W with a non-strict triangulation of ordered parameter δ

for which the B⊗E
|K -pair Su(W ) admits a strict triangulation of ordered parameter Su(δ). We

take K = Qp and denote by unr(λ) the unramified character GQp → E× mapping any lift of the

arithmetic Frobenius to λ ∈ E×. We write χ for the cyclotomic character of GQp. Pick any

λ, µ ∈ E× with λ ̸= µ and set

δ1 = 1, δ2 = χ · unr(λ), δ3 = χ2 · unr(µ), δ4 = χ3 · unr(λµ).
The B⊗E

|Qp
-pair W :=

⊕4
i=1R(δi) admits a strict triangulation of parameter (δσ(i))

4
i=1 for any

permutation σ of {1, . . . , 4}. However, none of them induces a strict triangulation of Sym2W .
Any triangulation of Sym2W induced by a triangulation of W is actually a direct sum in which
two rank 1 B⊗E

|Qp
-pairs W14

∼= R(δ1δ4) and W23
∼= R(δ2δ3) appear. Since δ1δ4 = δ2δ3, one can

always swap the roles of W14 and W23 to obtain a new triangulation with the same parameter
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(or, replace both of them with linearly independent E-linear combinations of W14 and W23 in
order to obtain an infinity of triangulations with the same parameter).

Proof of Theorem 4.13. If W admits a triangulation of ordered parameter δ, then by Remark
4.7 Su(W ) admits a triangulation of ordered parameter Su(δ).

As for the second statement of (i), if W admits two distinct triangulations of ordered pa-
rameter δ then the two resulting triangulations of Su(W ) of ordered parameter Su(δ) will be
distinct, hence Su(W ) will not be strictly triangulable of this ordered parameter.

We now prove part (ii). Let u be as in the statement. As in Remark 4.7, we write GL(We) for
the group of Be,E-linear automorphisms of We, and we use the analogous notation for GL(W+

dR).

We let GL(We) and GL(W+
dR) act on GL(SuWe) and GL(Su(W+

dR)), respectively, via Su.
Let W be a triangulation of W |GL

; it consists of compatible triangulations (that is, complete
flags)We andW+

dR of We|GL
and W+

dR|GL
, respectively. By Remark 4.7, if B(We) is the group of

Be,E-linear automorphisms of We leavingWe stable, we can choose a unique complete Be,E-flag
W ′

e in Su(We) that is stable under the action of B(We). As before, we write B(Su(We)) for the
stabilizer of such a flag.

Since the action of GK on Su(We) factors through its action on We, and GL leaves W stable,
the flag W ′

e is a triangulation of Su(We|GL
), and by part (i) of this theorem we know that

the ordered parameter of this triangulation is Su(η
L
). By assumption Su(We) admits a (GK-

)triangulation W ′′ of ordered parameter Su(δ), that is also a triangulation of Su(We|GL
) of

ordered parameter Su(δL) by Remark 4.12. Since Su(We|GL
) is strictly triangulable of ordered

parameter Su(δL) by hypothesis, we must haveW ′ =W ′′. This means thatW ′ is a triangulation
of Su(We), in other words that the action of GK on Su(We) factors through the stabilizer
B(Su(We)) of W ′. Lemma 4.8 implies that the action of GK on We factors through B(We),
that is, We is a triangulation of We. By a completely analogous argument we obtain that W+

dR

is a triangulation of W+
dR, hence that W is a triangulation of W .

If ν is the ordered parameter of W, then by part (i) the ordered parameter of W ′ is Su(ν).
Since the ordered parameter of W ′|GL

is Su(δL), we deduce that

(4.2) Su(νL) = Su(δL).

The uniqueness statement follows from the fact that a different triangulation of W of param-
eter ν satisfying (4.2) would give rise to a new triangulation of Su(W |GL

) of parameter δL,
contradicting the strictness of our original triangulation of Su(W |GL

). □

Berger and Di Matteo [BD21, After Remark 5.6] give an example of a 2-dimensional, non-
trianguline Qp(

√
−1)-linear representation V of GQp such that V ⊗Qp(

√
−1) V , hence Sym2V , is

trianguline. One can check that the triangulation of Sym2V obtained in their example is strict,
but its ordered parameter is not of the form Sym2δ for a 2-dimensional parameter δ. Therefore
V does not satisfy the assumptions of Theorem 4.13.

5. Lifting G-trianguline representations along isogenies

We give a global application of our triangulability result, by proving an analogue of a classical
result of Wintenberger about lifting geometric representations [Win95, Théorème 1.1.3; Win97,
Théorème 2.2.2]. We replace the p-adic Hodge-theoretic conditions in his results (Hodge–Tate,
de Rham, semistable, crystalline) with triangulinity. Our lifting condition for the parameter of
a triangulation turns out to be the exact analogue of his lifting condition for the Hodge–Tate
cocharacter.

Let F be a number field, E a p-adic field, and let H be a quasisplit reductive group scheme
over E. Pick a place v of F . To our knowledge, there is no accepted definition of what it means
for a continuous local Galois representation

ρv : GFv → H(E)
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to be trianguline. We propose below a definition of strict triangulinity for such a ρv, modeled
on the definitions in [Win95] of ρv having various p-adic Hodge theoretic properties.

5.1. G-trianguline representations and their parameters. We rewrite Daruvar’s defini-
tion of G-triangulable (φ,Γ)-modules [Da21] in the context of B-pairs, though we only allow for
our coefficients to be a field instead of an affinoid algebra as in loc. cit.; this will be enough for
our purpose. We also propose a simple extension of the definition to the case of quasisplit G.
We warn the reader that we call split G-triangulable B-pairs what Daruvar calls G-triangulable
B-pairs.

Let K and E be two p-adic fields. Following [Da21, Definition 2.2], we say that a functor
C → D between two E-linear tensor categories is a fiber functor if it is an E-linear, exact,
faithful tensor functor.

Let G be a quasisplit reductive group over E. Let (B, T ) be a “Borel pair” consisting of a
maximal torus T of G and a Borel subgroup B of G containing T (with both T and B defined
over E). We denote by resGB the fiber functor RepE(G) → RepE(B) obtained by restricting
representations of G to B. The following definition is obtained by allowing G to be quasisplit
in [Da21, Definition 4.9].

We denote by B⊗E
|K the category of B⊗E

|K -pairs, introduced in Section 3.

Definition 5.1. A G-B⊗E
|K -pair is a fiber functor

RepE(G)→ B⊗E
|K .

We say that a G-B⊗E
|K -pair W : RepE(G)→ B⊗E

|K is:

– split triangulable if there exists a fiber functor WB : RepE(B) → G-B⊗E
|K such that W =

WB ◦ resGB, in which case we call any such WB a triangulation of W ;

– triangulable if there exists a finite extension F of E such that G×E F -B⊗F
|K -pair W ⊗E F is

triangulable.

We say that two triangulations WB and W ′
B are equivalent if they can be obtained from one

another by composition with an equivalence of categories RepE(B) → RepE(B). When we say
that a triangulation with certain properties is unique, we always mean unique up to equivalence.

To any B⊗E
|K -pair W of rank n, we attach the GLn/E-B

⊗E
|K -pair defined as the unique fiber

functor RepE(GLn/E)→ B⊗E
|K that maps the standard representation to W .

Remark 5.2. As is the case for [Da21, Definition 4.9], Definition 5.1 is independent of the
chosen Borel subgroup B of G: since all Borel subgroups of G are G(E)-conjugate to one another,
their categories of E-representations are all equivalent.

As usual, we will say that a G-B⊗E
|K -pair W has potentially property P if there exists a finite

extension K ′ of K such that the G-B|⊗K′

E -pair W |GK′ has property P.

Remark 5.3. It follows from [Da21, Example 3.11] that Definition 5.1 is compatible with the

definition of split triangulable B⊗E
|K -pair: a B⊗E

|K -pair W of rank n is split triangulable if and

only if its associated GLn-B
⊗E
|K -pair W̃ is split triangulable.

More precisely, for every i ∈ {1, . . . , n} let Vi be an i-dimensional representation of B whose
image is a Borel subgroup of GL(Vi); it is unique up to isomorphism. Then to every triangulation

0 = W0 ⊂W1 ⊂ . . . ⊂Wn = W

of W , one can attach the unique triangulation (B,WB) of W̃ that maps Vi to Wi. One checks

easily that this defines a bijection between split triangulations of W and W̃ .
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To a continuous representation ρ : GK → G(E) we can attach a G-B⊗E
|K -pair W (ρ): it is

the fiber functor RepE(G) → B⊗E
|K that maps a representation S : G → GLn(E) to the B⊗E

|K -

pair associated with the n-dimensional representation S ◦ ρ : GK → GLn(E). We say that ρ is
(potentially, split, potentially split) trianguline if W (ρ) is (potentially, split, potentially split)
triangulable. For G = GLn, this notion agrees with the usual one of trianguline representation
by Remark 5.3.

5.2. Parameters of G-B-pairs. We extend Daruvar’s definition of parameter of a triangula-
tion of a G-B⊗E

|K -pair to the case of quasisplit G. The next definition is inspired by Daruvar’s

notion of parameter of a G-B⊗E
|K -pair. Let G be a quasisplit reductive E-group, let B be a Borel

subgroup of G and T a maximal torus of G contained in B.

Definition 5.4. A T -parameter is a fiber functor RepE(T )→ B⊗E
|K . A B-parameter is a fiber

functor RepE(B)→ B⊗E
|K that factors through the restriction functor RepE(B)→ RepE(T ).

The distinction between T - and B-parameters is reminiscent of Remark 4.2, with B-parameter
being the analogue of ordered (K,E)-parameters. This resemblance will be made into a precise
relation after Definition 5.5.

We denote B-parameters by non-underlined lowercase Greek letters in order to distinguish
them from (K,E)-parameters, that we write as underlined lowercase Greek letters.

Let W be a G-B⊗E
|K -pair and WB : RepE(B)→ B⊗E

|K be a triangulation of W .

Definition 5.5 (cf. [Da21, Definition 4.9]). The T -parameter of the triangulation WB is the

fiber functor RepE(T )→ B⊗E
|K defined by pre-composing WB with the fiber functor RepE(T )→

RepE(B) defined as pre-composition with the projection B ↠ T .

The B-parameter of WB is the fiber functor δWB
: RepE(B)→ B⊗E

|K obtained by pre-composing

the T -parameter of WB with the restriction functor RepE(B)→ RepE(T ).
We say that WB is a strict triangulation if it is the only triangulation of W with B-parameter

δWB
.

5.2.1. From (ordered) (K,E)-parameters to (B-) T -parameters. Let n be a positive integer and
T a split n-dimensional torus over E. The datum of a (K,E)-parameter of length n is equivalent
to that of a continuous homomorphism K× → T (E). By specializing [Da21, Example 3.13] to

the case when X is a point, we obtain a bijection between the fiber functors RepE(T ) → B⊗E
|K

and the continuous homomorphisms T∨(K)→ E×. Observe that

Homcont(T
∨(K), E×) = Homcont(X

∗(T∨)⊗Z K×, E×) = Homcont(K
×, X∗(T∨)∗ ⊗Z E×) =

= Homcont(K
×,HomZ(X

∗(T ), E×)) = Homcont(K
×, T (E)),

so that elements of Homcont(T
∨(K), E) are in bijection with (K,E)-parameters. By composing

the two bijections we obtain a bijection between (K,E)-parameters and T -parameters. This
allows us to give the following.

Now let δ be an ordered (K,E)-parameter. By Remark 4.2, δ is determined by its corre-
sponding unordered (K,E)-parameter together with a choice of a Borel subgroup B of GLn

containing T . To δ we attach an ordered B-parameter δ : K× → RepE(B) → B⊗E
|K as follows:

we start with the T -parameter RepE(T
∨)→ B⊗E

|K associated in the previous paragraph with the

unordered (K,E)-parameter underlying δ, and we pre-compose it with the restriction functor
associated with the embedding T (E) ⊂ B(E). We obtain this way a bijection between ordered
(K,E)-parameters and B-parameters.

When speaking of the (B-) or T -parameter associated with a given (ordered) (K,E)-parameter,
and vice versa, we refer to that given by the bijections we just defined.

Remark 5.6. Let W be a B⊗E
|K -pair of rank n, and let W̃ be the associated GLn-B

⊗E
|K -pair.

The bijection of Remark 5.3 maps triangulations of W of ordered parameter δ : K× → B(E)
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to triangulations of W̃ of the associated B-parameter δ. In particular W is (strictly) split

triangulable of ordered parameter δ if and only if W̃ is (strictly) split triangulable of B-parameter
δ.

Now let G and H be two quasisplit reductive E-groups, BG a Borel subgroup of G and TG

a maximal torus inside of BG, S : G→ H a morphism, TH a torus of H containing S(TG) and
BH a Borel subgroup of H containing S(BG). We keep writing S for the functors RepE(BH)→
RepE(BG) and RepE(TH)→ RepE(TG) defined by pre-composition with S.

Definition 5.7. Given a fiber functor F out of either RepE(G), RepE(BG) or RepE(TG), we
write S(F ) for the functor out of RepE(H), RepE(BH) or RepE(TH), respectively, obtained by
pre-composing F with S. In particular

– for every G-B⊗E
|K -pair W : RepE(G)→ B⊗E

|K , we obtain an H-B⊗E
|K -pair S(W ),

– for every TG-parameter δ : RepE(TG)→ B⊗E
|K , we obtain a TH-parameter S(δ),

– for every BG-parameter δ : RepE(BG)→ B⊗E
|K , we obtain a BH-parameter S(δ).

Remark 5.8. Let W be a G-B⊗E
|K -pair and δ a (T -) B-parameter. If WB is a triangulation of

W of (T -) B-parameter δ then S(WB) is a triangulation of S(W ) of (T -) B-parameter S(δ).

As was the case for B⊗E
|K -pairs (see Remark 4.14), we do not know if S(WB) is a strict

triangulation of B-parameter S(δ) whenever WB is a strict triangulation of B-parameter δ.

5.2.2. From triangulable B-pairs to triangulable G-B-pairs. The next proposition, combined
with Remark 5.6, relates the triangulability of a G-B⊗E

|K -pair to the triangulability of a B⊗E
|K -

pair in the classical sense. In particular, it shows that Daruvar’s definition of triangulable
G-B⊗E

|K -pair can be reformulated along the lines of Wintenberger’s definitions of the p-adic

Hodge-theoretic properties of G(E)-valued representations [Win95, Définition 1.1.1].

Proposition 5.9.

(i) The G-B⊗E
|K -pair W is triangulable if and only if there exists a faithful E-representation

S : G→ GL(V ) such that the GL(V )-B⊗E
|K -pair S(W ) is triangulable.

Moreover, for any Borel subgroups B of G and B(V ) of GL(V ) satisfying S(B) ⊂ B(V ),

and any triangulation WB(V ) : RepE(B(V ))→ B⊗E
|K of S(W ), there exists a triangulation

WB : RepE(B)→ B⊗E
|K of W such that S(WB) ∼= WB(V ).

(ii) Let S : G→ GL(V ) be a faithful E-representation of G, and B,B(V ) Borel subgroups of
G and GL(V ), respectively, satisfying S(B) ⊂ B(V ). If S(W ) is strictly triangulable of

some B(V )-parameter ν, then there exists a unique triangulation WB : RepE(B)→ B⊗E
|K

of W of some B-parameter µ such that S(µ) = ν. In particular, such a WB is strict.

In proving Proposition 5.9, we will rely on the following lemma from category theory. As in
[Bra20, §2.1], let cat⊗/E be the 2-category of essentially small E-linear tensor categories with
E-linear tensor functors as morphisms. By [Bra20, Corollary 4.17], cat⊗/E has bicategorical
pushouts. We compute such a pushout in the simple case of a diagram of neutral Tannakian
categories.

Lemma 5.10. The pushout of the diagram

(5.1)

RepE(H) RepE(H1)

RepE(H2)

α1

α2

in cat⊗/E is isomorphic to RepE(H1 ×H H2).

Proof. Let P be the pushout of (5.1). We first prove that P is a neutral Tannakian category: it
is a tensor category by definition, so we only need to exhibit a fiber functor for it. Let F1 and F2
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be the forgetful fiber functors of RepE(H1) and RepE(H2), respectively; after composition with
α1 and α2, respectively, they agree with the forgetful fiber functor on RepE(H), hence they
factor through the functors RepE(H1) → P and RepE(H2) → P attached to P. The functor
P → VectE appearing in these factorizations is exact because F1 is, and being a tensor functor
it is also faithful. Therefore it is a fiber functor on P.

Write H0 for the fundamental group of P. The functors in the pushout diagram are induced,
via Tannakian duality, by the morphisms in a commutative diagram of E-group schemes

H H1

H2 H0

Since the diagram is commutative, the resulting morphism H0 → H must factor through the
morphism H1 ×H H2 → H attached to the fiber product. By Tannakian duality, such a factor-
ization provides us with a functor β : RepE(H1 ×H H2)→ RepE(H0).

Now consider the commutative diagram of tensor categories

RepE(H) RepE(H1)

RepE(H2) RepE(H1 ×H H2)

α1

α2 ι1

ι2

where ιi, i = 1, 2, is induced by the morphism H1×HH2 → Hi attached to the fiber product. By
the universal property of P the functors ιi, i = 1, 2, factor through the functors RepE(Hi)→ P
attached to the pushout. Such a factorization provides us with a functor γ : P → RepE(H1 ×H

H2).
The functor β ◦ γ : P → P is naturally isomorphic to the identity because of the universal

property of P, hence induces via Tannakian duality an isomorphism (β ◦ γ)∗ = γ∗ ◦ β∗ : H0 →
H0. On the other hand, (γ ◦ β)∗ : H1 ×H H2 → H1 ×H H2 is an isomorphism because of the
universal property of the fiber product. We conclude that β∗ and γ∗ are isomorphisms, hence
that the categories P and RepE(H1 ×H H2) are equivalent. □

Proof of Proposition 5.9. We prove part (i). Let B be a Borel subgroup of G, and let S : G→
GL(V ) be a faithful representation of G as in the statement. The “only if” is given by Remark
5.8. Let B(V ) be a Borel subgroup of GL(V ) and let WB(V ) be a triangulation of S(W ), so
that we have a diagram of E-linear tensor categories

(5.2)

RepE(GL(V )) RepE(B(V )) B⊗E
|K

RepE(G) RepE(B)

S(W )

WB(V )

W

where all of the arrows in the square on the left are restriction functors.
The schematic intersection of B(V ) and S(G) can be identified with the fiber product BS :=

B(V ) ↪→ GL(V )
S←− G. By Lemma 5.10, the pushout in cat⊗/E of the top left corner of diagram

(5.2), RepE(B(V )) ← RepE(GL(V )) → RepE(G), is equivalent to RepE(BS). We show that
BS
∼= S(B), so that the given pushout is actually isomorphic to RepE(S(B)).
Since S is faithful, it induces isomorphisms G ∼= S(G) and B ∼= S(B), so S(B) is a Borel

subgroup of S(G). Clearly BS is Zariski-closed and contains S(B); therefore, it is a parabolic
subgroup of S(G). Moreover, BS is solvable: taking fiber products with G of the subgroups in
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a resolution of B(V ) gives a resolution of BS . A solvable parabolic subgroup of S(G) is a Borel
subgroup, so we obtain BS = S(B), as desired.

Since S is faithful, composition with S induces an equivalence of categories RepE(S(B)) ∼=
RepE(B). In particular, the square on the left of (5.2) is a pushout. Since the functors WB(V )

and WG agree after composition with res
B(V )
GL(V ) and resGGL(V ), respectively, they must both factor

through a (tensor) functor WB : RepE(B)→ B⊗E
|K , which gives a triangulation of W satisfying

S(WB) ∼= WB(V ).
We prove part (ii). Let S : G → GL(V ) and ν be as in the statement, and let WB(V ) be

a triangulation of S(W ) of B(V )-parameter ν. By part (i), there exists a triangulation WB

of W such that S(WB) ∼= WB(V ). If µ is the B-parameter of WB, then S(µ) = ν. As in the
proof of part (i), WB factors through a functor WB,0 : RepE(B) → P, where P is the pushout
of RepE(B(V )) ← RepE(GL(V )) → RepE(G) in cat⊗/E . Write again H0 for the fundamental
group of P, so that WB,0 is induced by a morphism of E-group schemes W ∗

B,0 : H0 → B. Now

assume that a second triangulation W̃B, of some B-parameter µ′ satisfying S(µ′) = S(µ). Let

W̃ ∗
B,0 : H0 → B be the morphism of E-group schemes attached to this second triangulation. By

the strictness assumption, S(W ) admits a unique triangulation of B(V )-parameter S(µ), hence

the triangulations S(WB) and S(W̃B) must be equivalent. This means that the morphisms

S ◦W ∗
B,0 and S ◦ W̃ ∗

B,0 coincide. Since S is faithful, this is only possible if W ∗
B,0
∼= W̃ ∗

B,0, which

means that the triangulations WB and W̃B are equivalent, as desired. □

5.3. Global lifting. Let H,H ′ be two quasisplit connected reductive E-group schemes, and
let π : H ′ → H be a central isogeny over E, that is, a surjective morphism whose kernel is
finite and contained in the center of H ′. Given a continuous representation ρ : GF → H(E)
with some prescribed local properties, one can investigate whether there exists a representation
ρ′ : GF → H ′(E), with the same local properties, that “lifts” ρ, in the sense that π ◦ ρ′ ∼= ρ.
When the required local properties are:

(i) unramifiedness outside of a finite set of places containing the places above p;
(ii) a p-adic Hodge theoretic property at p, taken from the set {Hodge Tate, de Rham,

semistable, crystalline};
the lifting problem has been studied by Wintenberger [Win95; Win97], Hoang Duc [Hoa15], and
Conrad [Conr11]. Furthermore, Hoang Duc and Conrad concern themselves with the problem
of minimizing the set of ramification primes of the lift.

In this section we study the analogue of the problem described above when (ii) is replaced
by the property that ρ is strictly trianguline at p. For the existence and ramification locus of
a lift we rely on the results of Conrad; our work comes in when trying to prove that the lift is
trianguline at the right places.

We introduce some terminology to be used in the statement of the next results. Given a
Borel subgroup B of a quasisplit reductive E-group H, a maximal torus T of H contained in
B, and two T -parameters δ1, δ2 : RepE(T ) → B⊗E

|K , we define their product δ1δ2 as follows: as

in [Da21, Example 3.13], one observes that the fiber functors RepE(T )→ B⊗E
|K are in bijection

with the cocharacters K× → T∨(E), where T∨ is the dual torus of T . Then δ1δ2 is the

fiber functor RepE(T )→ B⊗E
|K whose associated cocharacter is the product of those associated

with δ1 and δ2. If instead δ1 and δ2 are two B-parameters RepE(B) → B⊗E
|K , we define their

product as the product of the corresponding T -parameters composed with the restriction functor
RepE(B)→ RepE(T ).

Let H and H ′ be two quasisplit connected reductive groups over E, and let π : H ′ → H be
a central isogeny. Recall that B 7→ π(B) defines a bijection between Borel subgroups of H ′

and Borel subgroups of H. We denote by Z the kernel of π and by q the exponent of Z. As
usual, we denote by µq the E-group of q-th roots of unity. Let ρ : GFv → H(E) be a continuous
representation, and write Σ1 for the set of places of F that are either archimedean or ramified
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for ρ, and Σ2 for an arbitrary subset of the set of p-adic places of L. Note that we allow p-adic
places in Σ1, so that Σ1 ∩ Σ2 is non-empty in general. By combining [Conr11, Theorem 5.5]
with Theorems 3.11 and 4.13 we obtain the following.

Theorem 5.11. Assume that:

(i) (F,∅, q) is not in the special case (for the Grunwald–Wang theorem) described in [Conr11,
Definition A.1];

(ii) Σ1 is finite;
(iii) for every v ∈ Σ1, the representation ρ|GFv

admits a lift ρ′v : GFv → H ′(E);
(iv) for every v ∈ Σ2, there exist:

(1) a Borel subgroup Bv of H, with preimage B′
v := π−1(Bv);

(2) a Bv-parameter δv : RepE(Bv) → B⊗E
|K such that the representation ρ|GFv

is strictly

trianguline of Bv-parameter δv,
(3) a B′

v-parameter δ′v : RepE(B
′
v)→ B⊗E

|K such that π(δ′v) = δv, and

(4) a faithful representation S′ : H ′ → GLn such thata Symn(S′(δ′v)) is quasi-regular.

Then there exists a representation ρ′ : GK → H ′(E) that satisfies π ◦ ρ′ ∼= ρ and is unramified
outside of a finite set of places, and any such lift is trianguline at the places in Σ2. The B′

v-
parameter (δ′′v )v∈Σ2 of a triangulation of ρ′ at a place v ∈ Σ2 can be chosen in such a way that,

for every v ∈ Σ2, (δ
′′
v )

−1δ′v : RepE(B
′
v)→ B⊗E

|K factors through RepE(µq).

Remark 5.12. Condition (iv)(4), though unpleasant, is at least generically satisfied in a p-
adic family of trianguline representations GF → H ′(E) in which all Hodge–Tate–Sen weights
are allowed to vary.

Proof. The existence of a lift ρ′ and the statements about its ramification follow from [Conr11,
Theorem 5.5]. We prove the result on triangulinity. Since this statement is insensitive to replac-
ing E with a finite extension of it, we can assume in condition (iv)(3) that the representations
ρ|Gv are split strictly trianguline for every v ∈ Σ2.

Let v ∈ Σ2 and let ρv and ρ′v be the restrictions of ρ and ρ′, respectively, to a decomposition
group at v. Let S′ : H ′ → GLn be a faithful E-representation of H ′ satisfying condition (iv)(4)
of the theorem. Let N = dimE Symq(En). Denote by Bn the unique Borel subgroup of GLn

containing S′(B′
v). We show that S′ ◦ ρ′v is strictly trianguline of Bn-parameter S′ ◦ δ′v. Since

the kernel Z of π is central of exponent q, Z is mapped under S′ into the group µq of q-roots
of unity embedded diagonally in GLn, and then to the trivial group by Symq. In particular
Symq ◦ S′ factors as S ◦ π for a representation S : H → GLN . Composition with ρ′v gives

(5.3) Symq ◦ S′ ◦ ρ′v
∼= S ◦ π ◦ ρ′v

∼= S ◦ ρv.

Let BN be a Borel subgroup of GLN containing S(Bv). By assumption ρv is strictly trianguline
of Bv-parameter δv, hence S ◦ ρv is trianguline of BN -parameter S(δv) by Remark 5.8. From
the equivalence (5.3) together with Theorem 4.13(i) we deduce that Symq ◦ S′ ◦ ρ′v is triangu-
line of BN -parameter S(δv). Now δv = π ◦ δ′v for the B′

v-parameter δ′v provided by condition
(iv-4) of the statement, so the BN -parameter of Symq ◦ S′ ◦ ρ′v is S(π ◦ δ′v), that coincides with
Symq ◦ S′ ◦ δ′v by definition of S. From Theorems 3.11(i) (that we can apply thanks to as-
sumptions (iv)(1-4)) and 4.13(ii) (that we can apply thanks to assumptions (iv)(1-3) and the
conclusion of Theorem 3.11(i)), we deduce that the representation S′ ◦ ρ′v is trianguline of a

Bn-parameter δS
′

v such that

Symq((δS
′

v )−1 · S′(δ′v))

is trivial. Since µq is the kernel of Symq, we deduce that

(δS
′

v )−1 · S′(δ′v)

factors through RepE(µq).
Since S′ is faithful, Proposition 5.9(i) implies that the triangulation of S′ ◦ ρ′v of Bn-parameter

δS
′

v is induced by a triangulation of ρ′v, of some B′
v-parameter δ′′v that necessarily satisfies
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S′(δ′′v ) = δS
′

v . By combining this equality with the last sentence of the previous paragraph, we
obtain that the Bn-parameter

(S′(δ′′v ))
−1 · S′(δ′v) = S′((δ′′v )

−1δ′v)

factors through RepE(µq). Since S′ is faithful, we conclude that (δ′′v )
−1δ′v also factors through

RepE(µq). □

Observe that in the above proof Symq can be replaced with Su for any tuple u with ℓ(u) = q
(not to be confused with the Symn appearing in (iv)(4), that comes from the assumptions of
Theorem 3.11(i)).

As pointed out in Remark 5.8, we cannot conclude that ρ′ is strictly trianguline at the places
in Σ2.

We give a corollary of Theorem 5.11, where we relax the condition of H ′ → H being a central
isogeny, to simply having finite central kernel, by which we mean that the kernel is finite and
contained in the center of H ′; we are simply not requiring the map to be surjective anymore.

As before, let H and H ′ be two quasisplit connected reductive groups over E, and this time
let S : H ′ → H be a morphism with finite central kernel. One could take for instance as S any
representation GLn → GLm that is not a power of the determinant. We denote by Z the kernel
of S and by q the exponent of Z. Let ρ : GFv → H(E) be a continuous representation whose
image is contained in S(H ′). Let Σ1 be the set of places of F that are either archimedean or
ramified for ρ, and Σ2 be a subset of the set of p-adic places of L.

Corollary 5.13. Assume that:

(i) (F,∅, q) is not in the special case (for the Grunwald–Wang theorem) described in [Conr11,
Definition A.1];

(ii) Σ1 is finite;
(iii) for every v ∈ Σ1, the representation ρ|GFv

admits a lift ρ′v : GFv → H ′(E);
(iv) for every v ∈ Σ2, there exist:

(1) a Borel subgroup Bv of H and a maximal torus Tv contained in Bv,
(2) a Borel subgroup B′

v of H ′ such that S(B′
v) ⊂ Bv;

(3) a Bv-parameter δv : RepE(Bv) → B⊗E
|K such that the representation ρ|GFv

is strictly

trianguline of Bv-parameter δv,
(4) a B′

v-parameter δ′v : RepE(B
′
v)→ B⊗E

|K such that S(δ′v) = δv,

(5) a faithful representation S′ : H ′ → GLn such thata Symn(S′(δ′v)) is quasi-regular.

Then there exists a representation ρ′ : GK → H ′(E) that satisfies S ◦ ρ′ ∼= ρ and is unramified
outside of a finite set of places, and any such lift is trianguline at the places in Σ2. The B′

v-
parameter (δ′′v )v∈Σ2 of a triangulation of ρ′ at a place v ∈ Σ2 can be chosen in such a way that,

for every v ∈ Σ2, (δ
′′
v )

−1δ′v : RepE(B
′
v)→ B⊗E

|K factors through RepE(µq).

Proof. Factor S as the composition of a central isogeny π : H ′ → S(H ′) and the closed em-
bedding ι : S(H ′) ↪→ H. By assumption, the image of ρ is contained in S(H ′), hence ρ factors
through a representation ρ̃ : GK → S(H ′). If ρ̃ satisfies the assumptions (i)–(iv) of Theorem
5.11, then we obtain the thesis. The only non-trivial condition to be checked is that ρ̃ is strictly
trianguline at the places in Σ2, of parameters that are lifted to H ′ by the δ′v.

For every v ∈ Σ2, the Bv-parameter δv admits a lift

δ′v : RepE(B
′
v)→ B⊗E

|K

to a B′
v-parameter, hence a lift π(δ′v) to a π(B′

v)-parameter.
Since the embedding ι : S(H ′) ↪→ H is a faithful representation of S(H ′), and ι ◦ ρ̃v = ρv is

trianguline for every v ∈ Σ2, with Bv-parameter ι ◦ S(δ′v) = δv, Proposition 5.9(i) implies that
ρ̃v is trianguline for every v ∈ Σ2 with π(B′

v)-parameter π(δ′v).
Finally, the parameters π(δ′v) admit the lifts δ′v toH

′, hence all the conditions are fulfilled. □
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6. Appendix: algebraic lemmas

We prove a few simple lemmas that did not fit the main body of the paper without breaking
the flow of the presentation.

Lemma 6.1. Let E be a field of characteristic 0 and A,B two square matrices with coefficients
in E, of sizes m and n respectively. The mn ×mn matrix A ⊗ B is the identity if and only if
there exists a ∈ E× such that A = aIdm and B = a−1Idn.

Proof. Since the properties of being the identity matrix or a scalar matrix are insensitive to a
change of coefficient field, we can assume that E is algebraically closed. If A and B are matrices
in Jordan form, a direct calculation gives the result. If not, there exist matrices M ∈ GLm(E),
N ∈ GLn(E) such that MAM−1 and NBN−1 are the Jordan forms of A and B, respectively.
Now

(MAM−1)⊗ (NBN−1) = (M ⊗N)(A⊗B)(M ⊗N)−1 = 1mn,

so we are reduced to the statement for matrices in Jordan form. □

For the rest of the section, we denote by R an integral domain equipped with an action of a
group G, and by V an R-semilinear representation of G, that is, a finite free R-module equipped
with a semilinear action of G. We identify SymnV with an R-submodule of V ⊗n; in particular,
for f ∈ V , we write f⊗n for the tensor product of n copies of f , seen as an element of V ⊗n and
of its submodule SymnV . The conclusions of the following lemmas are independent of whether
we consider f⊗n as an element of SymnV or V ⊗n, though in the proofs it is more practical to
see it inside of V ⊗n (essentially because this space admits a basis with a simpler shape).

Lemma 6.2. Let f, g be two elements of V . If there exists a ∈ Frac(R) such that f⊗n = ag⊗n,
then there exists an n-th root b of a in Frac(R) such that f = bg.

Proof. Let {v1, . . . , vd} be an R-basis of V , and write f =
∑

i∈{1,...,d} fivi, g =
∑

i∈{1,...,d} givi
for some fi, gi ∈ R. Up to replacing V by the R-span of a subset of {v1, . . . , vd}, we can assume
that for every i at least one between fi and gi is non-zero. For i = {i1, . . . , in} ∈ {1, . . . , d}n,
we write fi =

∏
j=1,...,n fij , and similarly for gi. By plugging these expansions into the equality

f⊗n = ag⊗n, we find that fi = agi for every i ∈ {1, . . . , d}n. In particular fn
i = agni for every i,

so that all of the fi and gi have to be non-zero. By comparing the equalities fi = agi for two
choices of i that differ only at one entry, we find that fi/fj = gi/gj for every i, j ∈ {1, . . . , d}.
This implies that f = bg with b = f1/g1 ∈ Frac(R). A trivial computation gives that bn = a. □

We assume from now on that R is a principal ideal domain.

Lemma 6.3. Let S an integral domain containing R, and let f be an element of V ⊗R S. If
the tensor f⊗n in (V ⊗R S)⊗n is of the form w ⊗ t for some w ∈ V ⊗n and t ∈ S, then f is of
the form v ⊗ s for some v ∈ V and s ∈ S.

Proof. Let v1, . . . , vd be an R-basis of V . Write f as a sum
∑

i∈{1,...,d} vi ⊗ si for some si ∈ S.

Up to replacing V with the linear span of the vectors vi such that si ̸= 0, we can assume that
si ̸= 0 for every i. We obtain f⊗n =

∑
i∈{1,...,d}n vi ⊗ si, we denote by vi the tensor product

of the vi with the indices determined by the n-tuple i and by si the analogous product taken
inside of S.

By assumption f⊗n = w ⊗ t for some w ∈ V ⊗n and t ∈ S. Writing w =
∑

i∈∈{1,...,d}n rivi for

some ti ∈ S and comparing this with the expression we had for f⊗n, we obtain that si = rit
for every i ∈ {1, . . . , d}n. Note that si ̸= 0 for every i because si ̸= 0 for every i. Comparing
the last equality for two n-tuples that only differ at a single entry, we obtain si/s1 ∈ FracR for
every i ∈ {1, . . . , d}. Write si = ris1 for all i and some ri ∈ FracR. Let I be the fractional ideal
consisting of the r ∈ R such that r

∑
i rivi ∈ V , where we are considering

∑
i rivi as an element

of Frac(R)⊗R V . Since R is a principal ideal domain, I is of the form yR for some y ∈ Frac(R).
Write f = (

∑
i yrivi) ⊗ y−1s1. Since f ∈ V ⊗R S, we must have y−1s ∈ S, hence f is of the

desired form. □
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Recall that an R-line L in a finite free R-module is a rank 1 submodule, that we call L
saturated if it is not contained in any other line, and that an eigenvector in a semilinear R-
representation M of G is an element of a G-stable R-line in M .

Let F be a field on which G acts and h : R → F a G-equivariant injection of rings. We set
VF = F ⊗R V and equip it with the diagonal action of G.

Lemma 6.4. If there exists f ∈ V such that 1 ⊗ f is an eigenvector in VF , then f is an
eigenvector in V .

Proof. Because of our assumption, for every g ∈ G there exists γg ∈ F such that g.(1 ⊗ f =
γg(1⊗f). Since V is a G-stable R-submodule of VF , we must have γg ∈ Frac(R) for every g ∈ G,
where we consider Frac(R) as a subfield of F via h. Hence 1 ⊗ f ∈ Frac(R) ⊗R V generates a
G-stable Frac(R)-line, and it is enough to prove the statement when R = Frac(R).

Let I be the largest fractional ideal of F = Frac(R) satisfying I(1⊗f) ⊂ V , where we consider
V as an R-submodule of VF via v 7→ 1⊗ v. Since R is a principal ideal domain, I is of the form
bR for some b ∈ F . We claim that bf generates a GK-stable saturated R-line in V . Indeed, it is
saturated by construction, and for every g ∈ G, g.(bf) = g.b ·g.f = g.b ·γgf = (g.b ·γg ·b−1)(bf),
where the coefficient of bf must belong to R by our choice of b. □

We equip V ⊗n with the action of G induced by that on V . The R-submodule SymnV ⊂ V ⊗n

is stable under this action. Recall that R is assumed to be a principal ideal domain.

Lemma 6.5. If f is an element of V , then f is a G-eigenvector in V if and only if f⊗n is a
G-eigenvector in V ⊗n (or SymnV ).

Proof. The “only if” is obvious. We prove the other implication. Let g ∈ G and write g.f⊗n =
af⊗n for some a ∈ Frac(R). Since g.f⊗n = (g.f)⊗n, Lemma 6.2 gives that g.f = bf for some
b ∈ Frac(R). Therefore f generates a G-stable Frac(R)-line in V ⊗R Frac(R), and by Lemma
6.4, it belongs to a G-stable R-line in V . □
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