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MULTIVARIATE STABLE APPROXIMATION IN WASSERSTEIN

DISTANCE BY STEIN’S METHOD

PENG CHEN, IVAN NOURDIN, LIHU XU, AND XIAOCHUAN YANG

Abstract. We investigate regularity properties of the solution to Stein’s equation as-
sociated with multivariate integrable α-stable distribution for a general class of spectral
measures and Lipschitz test functions. The obtained estimates induce an upper bound
in Wasserstein distance for the multivariate α-stable approximation.

Key words: multivariate α-stable approximation; Stein’s method; generalized central
limit theorem; rate of convergence; fractional Laplacian.

1. Introduction

This paper is concerned with the multivariate stable approximation by Stein’s method.
A probability measure π on Rd with d ≥ 2 is strictly stable if, for any a > 0, there is b > 0
such that

π̂(z)a = π̂(bz),

where π̂ is the Fourier transform of π. The distribution π is completely determined by the
stability parameter α ∈ (0, 2) and the finite non-zero spectral measure ν on the surface
Sd−1. In this paper, we consider the super-critical regime α > 1. The critical α = 1 and
sub-critical regimes α < 1 require different treatment because of the lack of moments,
and will be dealt with elsewhere. When α > 1, one has the representation [18, Theorem
14.10]:

π̂(z) = exp

[
−
∫

Sd−1

|〈z, θ〉|α(1− i tan
πα

2
sgn〈z, θ〉)ν(dθ)

]
. (1.1)

The integral therein is customarily called the characteristic exponent, denoted by ψ. We
point out that, as a prominent infinitely divisible distribution, π has the Lévy-Khintchine
representation [18, Theorem 8.1, Theorem 14.3 and Theorem 14.10]

π̂(z) = exp

[
−
∫ ∞

0

∫

Sd−1

(1− eir〈θ,z〉 + ir〈θ, z〉) dr

r1+α
ν(dθ)

]
,

where r−1−αdrν(dθ) is the Lévy measure on [0,∞)× Sd−1 = Rd.
The spectral measure ν plays a crucial role in the study of multivariate stable laws. For

instance, if ν is the uniform probability measure on S
d−1, then ψ(λ) = σ|λ|α with σ > 0 so

that π is rotationally invariant (sometimes referred to as isotropic). Hereafter |a| denotes
the Euclidean norm of a for any a ∈ Rd. Another example is when ν is supported on
{±e1, ...,±ed} where {ei, 1 ≤ i ≤ d} is the canonical basis of Rd, then ψ(λ) =

∑d
i=1 σi|λi|α

so that the marginal distributions of π are independent one-dimensional stable laws. Yet
another interesting example is when ν is supported on a fractal subset of Sd−1, so that
µ is extremely anisotropic. The distributional properties of π change dramatically from
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one type of ν to another. In this paper, we are going to consider not only each of the
aforementioned types of ν, but also mixtures of these types.

Stein’s method is a vast range of ideas and tools that allow one to study the proximity
between a probability measure and a target distribution. The scope of the method has
been considerably extended since Stein [17] proposed his elegant approach for normal
approximation. In particular, Barbour [4] devised the generator approach which is appli-
cable to target distributions that can be realized as the stationary distribution of a ”nice”
Markov process. Barbour’s approach is the one adopted in this paper and it takes the fol-
lowing steps. First, one constructs a Markov process (Xt)t≥0 with infinitesimal generator
A that converges in distribution to π as t → ∞ for any initial condition X0 = x ∈ Rd.
Second, one considers Stein’s equation (or Poisson equation in the PDE literature)

Af(x) = h(x)− π(h) (1.2)

with h ∈ L1(π) and π(h) :=
∫
h(x)π(dx). By exploiting properties of the transition

semigroup (Qt)t≥0 determined by A, in particular Q0h = h,Q∞h =
∫
h(x)π(dx) and the

relation d
dt
Qt = AQt, one argues that

fh(x) := −
∫ ∞

0

Qt

(
h(x)− π(h)

)
dt (1.3)

is in the domain of A and solves (1.2). Third, one uses the integral form (1.3) and
properties of (Qt)t≥0 to derive regularity estimates for the solution (1.3). To see why
these steps lead to an upper bound for the distance between an arbitrary distribution and
π, let Z denote a strictly stable random vector with distribution π, for any Rd-valued
random vector F , one has

E[h(F )]− E[h(Z)] = E[Afh(F )].
Ranging h in a class of functions that guarantees convergence in distribution, and using
the regularity estimates of (1.3) obtained in the third step, together with the explicit form
of A, one would obtain an upper bound for a certain distance between F and Z.

Though conceivable, carrying out rigorously each of the aforementioned steps and claims
in the context of stable approximation is certainly a non-trivial task. In dimension one,
Xu [21] considered the case of symmetric α-stable law with α > 1. The approach of [21]
was then generalized in [8] to asymmetric α-stable law with α > 1, and in [2] to a class of
infinitely divisible distributions with finite first moment. Later, Chen et al. [9] considered
non-integrable α-stable approximation (necessarily α ≤ 1). In higher dimension, Arras
and Houdré [3] carried out the aforementioned second step (construction of the solution to
Stein’s equation) for a class of self-decomposable distributions which includes multivariate
stable laws. However, regularity estimates of the solution are studied only for smooth test
function h (at least twice differentiable with bounded partial derivatives) in [3], therefore,
their results cannot be used to derive bounds for multivariate stable approximation in
Wasserstein distance that we address in this paper.

The main contribution of this paper is a thorough study of the regularity estimates for
the solution to Stein’s equation in the context of multivariate stable approximation and
Lipschitz test functions, which in turn allows to obtain Wasserstein bounds. As explained
already, when the spectral measure ν is general, the solution to Stein’s equation is not easy
to handle. Our method covers a rich class of spectral measures including the absolutely
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continuous type, the discrete type, the fractal type, and the mixture of them. Since real life
high dimensional data often present anisotropic feature, the rich class of spectral measures
that we consider would widen the applicability of our results. In terms of application, we
provide the rate of convergence for the classical multivariate stable limit theorem.

The rest of this paper is organized as follows. After introducing the Markov process
converging to π, we construct a solution to Stein’s equation (Proposition 2.1), present
the regularity estimates for the solution (Theorem 2.7) and obtain Stein’s bound for
multivariate stable approximation (Theorem 2.8). Theorem 2.7 is proved in Section 3 and
Theorem 2.8 is proved in Section 4. Examples are given in Section 5.

2. Preliminaries and statement of the main results

2.1. Ornstein-Uhlenbeck type processes. The Markov process we construct in the
first step of Barbour’s program is the so-called Ornstein-Uhlenbeck type process which is
a simple stochastic differential equation (SDE) driven by stable Lévy processes. We refer
the reader to Applebaum [1] for background on stochastic calculus of Lévy processes, and
Sato [18] for general facts about Lévy processes.
Let (Zt)t≥0 be a stable Lévy process, a process with independent and stationary incre-

ments having marginal distribution Z1 ∼ π, given by (1.1). Consider the SDE
{
Xt = X0 − 1

α

∫ t

0
Xsds+ Zt

X0 = x
, (2.1)

Such an equation can be solved explicitly

Xx
t = xe−

t
α +

∫ t

0

e−
t−s
α dZs, (2.2)

see [18, p.105], and provides an interpolation between any Dirac mass and π. This follows
from the fact that (Xx

t )t≥0 is a scaled and time-changed Lévy process, i.e.

Xx
t

d
= xe−

t
α + e−

t
αZet−1

d
= xe−

t
α + Z1−e−t , (2.3)

see [9, Section 2.3]. For the second equality in distribution we have used the self-similarity
of the process (Zt)t≥0, namely Zct = c1/αZt in distribution for any c, t > 0. One sees that
as t → ∞, Xx

t converges in distribution to Z1 ∼ π. For another proof of the latter
fact, one may check the condition of a general result [18, Th. 17.5] for self-decomposable
distributions.
An application of Itô’s formula for semimartingales with jumps to (Xx

t )t≥0 shows that
(see [1, Chapter 6] for details) its generator is

Aα,νf(x) := Lα,νf(x)− 1

α
〈x,∇f(x)〉, (2.4)

where

Lα,νf(x) = dα

∫ ∞

0

∫

Sd−1

(f(x+ rθ)− f(x)− r〈θ,∇f(x)〉)ν(dθ) dr

r1+α
.

Here dα =
( ∫∞

0
1−cos y
yα+1

)−1

= α
Γ(1−α) cos πα

2

and ν is normalized on Sd−1 so that ν(Sd−1) = 1.
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Now one can write out Stein’s equation associated with the multivariate stable distri-
bution π as follows

Aα,νf(x) = h(x)− π(h), (2.5)

where h ∈ L1(π). In view of obtaining bounds in Wasserstein distance, consider h belong-
ing to the space Lip1 of Lipschitz continuous functions with Lipschitz constant at most
one. It is standard that Lip1 ⊂ L1(π). We write for simplicity Lα = Lα,ν and Aα = Aα,ν

in the rest of the paper.

2.2. Solving Stein’s equation. We construct a solution to Stein’s equation by using the
process (Xx

t )t≥0, as described in the introduction. Denote by p(t, x) := pt(x) the density
of the driving process (Zt)t≥0 in (2.1). Write p(x) := p1(x). By (2.3), one sees that

q(t, x, y) = p1−e−t(y − e−t/αx) = s(t)−1/αp(s(t)−1/α(y − e−t/αx)), (2.6)

where y 7→ q(t, x, y) is the density of Xx
t , s(t) = 1− e−t and we used the self-similarity of

(Zt)t≥0 in the second equality.

Proposition 2.1 (Solution to Stein’s equation). Suppose h ∈ Lip1. Set

f(x) := −
∫ ∞

0

E
[
h
(
Xx

t

)
− π(h)

]
dt,

= −
∫ ∞

0

∫
p1−e−t(y − e−

t
αx)(h(y)− π(h))dydt. (2.7)

Then f solves Stein’s equation (2.5), i.e. f is in the domain of Aα and

Aαf(x) = h(x)− π(h). (2.8)

The proof of this Proposition somewhat standard in view of recent advances [21, 8, 9,
2, 3], we give a proof in the Appendix for completeness.

2.3. Zoo of spectral measures. Obtaining density estimates for general multivariate
stable law is a genuinely hard problem and is very sensitive to the form of the spectral
measure, as pointed out by the seminal work of Watanabe [20]. Ideally, π has a spectral
measure that is ”close” to a uniform distribution on the sphere, then one may expect
that the density is comparable to that of the isotropic stable law, which is indeed the
case. When the spectral measure ν becomes less isotropic, the density of π would change
accordingly. We distinguish three classes of spectral measures as follows.

1. Absolutely continuous type. We further assume ν is absolutely continuous with
respect to the spherical measure dθ on the unit sphere with density g(θ) satisfying

0 < k1 6 g(θ) 6 k2, (2.9)

where k1 and k2 are positive constants. It follows that

Lαf(x) = dα

∫

Rd

f(x+ y)− f(x)− y · ∇f(x)
|y|d+α

· g
( y
|y|

)
dy. (2.10)

In particular, when ν is a uniform distribution on Sd−1, one has g(θ) = 1
V (Sd−1)

, where

V (Sd−1) is the surface area of Sd−1 and V (Sd−1) = 2πd/2

Γ(d/2)
.

When ν(dθ) = g(θ)dθ satisfies (2.9), we have the following estimates.
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Lemma 2.2. Let p(1, x) be the density of Z1, we have

|∇p(1, x)| 6 Cα,d
1

(1 + |x|)α+d
, (2.11)

|Lαp(1, x)| 6 Cα,d
1

(1 + |x|)α+d
, (2.12)

and

|∇2p(1, x)| 6 Cα,d
1

(1 + |x|)α+d
, (2.13)

where ∇2 is the Hessian matrix.

2. Purely atomic type. We consider the case that ν is supported on {±e1, ...,±ed}
where (ei)1≤i≤d is any orthonormal basis of Rd. Changing the coordinate system if neces-
sary, we may and will assume that (ei)1≤i≤d is the canonical basis. As such, the marginals
of the stable vector distributed according to π are independent one-dimensional stable
distributions. The following can be easily derived.

Lemma 2.3. Let p(1, x) be the density of Z1, for any x = (x1, x2, · · · , xd), we have

|∇p(1, x)| 6 Cα,d

d∏

i=1

1

(1 + |xi|)1+α
, (2.14)

|Lαp(1, x)| 6 Cα,d

d∏

i=1

1

(1 + |xi|)1+α
, (2.15)

and

|∇2p(1, x)| 6 Cα,d

d∏

i=1

1

(1 + |xi|)1+α
. (2.16)

3. Fractal type . This type of Lévy measure is considered in [20, 5, 6]. We first define

the so-called γ-measure. For convenience, we denote ϑ(drdθ) = dαr
−1−αdrν(dθ).

Definition 2.4. We say that the measure ϑ defined on Rd is a γ-measure at Sd−1 if γ > 0
and

ϑ(B(x, r)) 6 Crγ, |x| = 1, 0 < r < 1/2.

Remark 2.5. The absolutely continuous type mentioned earlier clearly satisfies the con-
dition, and the purely atomic type does not. One prototype non-absolutely continuous
γ-measure is the product of r−1−αdr and the uniform probability mass distribution on a
Cantor-type subset of Sd−1 of Hausdorff dimension γ − 1, see [15] for aspects of fractal
measures.

One always has 1 6 γ ≤ d. We further assume that ϑ is a γ−measure with 1 6 γ 6 d
for the case d = 2 and d− α < γ 6 d for the case d > 3. In addition, we assume that ϑ is
symmetric, i.e., ϑ(A) = ϑ(−A) for any A ∈ Rd.
When ν satisfies the above condition, we can get the following estimates:.
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Lemma 2.6. Let p(1, x) be the transition probability density of Z1, we have

|∇p(1, x)| 6 Cα,d
1

(1 + |x|)α+γ
, (2.17)

|Lαp(1, x)| 6 Cα,d
1

(1 + |x|)α+γ
, (2.18)

and

|∇2p(1, x)| 6 Cα,d
1

(1 + |x|)α+γ
. (2.19)

2.4. Main results.

Theorem 2.7 (Regularity estimates for the solution). Let f be given by (2.7). Let
a, b, c, σi, σ

′
i ≥ 0. Suppose that the spectral measure ν of π is given by

ν(dθ) = ag(θ)dθ + b

d∑

i=1

(σiδei + σ′
iδ−ei) + cνγ(dθ), (2.20)

which are respectively the absolutely continuous, the purely atomic, and the fractal part.
Suppose that g satisfies (2.9), σi + σ′

i = 1 for each i, and that r−1−αdrνγ(dθ) is a non-
absolutely continuous γ-measure, which is symmetric. In addition, we assume that a +
b+ c = 1, then we have the following estimates:

‖∇f‖ 6 α‖∇h‖, (2.21)

‖∇2f‖ 6 Cα,d‖∇h‖, (2.22)

where ‖ · ‖ is the L∞ norm and ∇2 is the Hessian matrix. Further, for all x, y ∈ Rd

∣∣∣Lαf(x)−Lαf(y)
∣∣∣ 6 2dα‖∇2f‖

α(2− α)(α− 1)
|x− y|2−α. (2.23)

We move to obtaining Wasserstein bounds for CLT with stable limit. Recall that the
the Wasserstein distance between a probability measure µ on R

d and π is defined by

dW (µ, π) ≤ sup
h∈Lip1

|µ(h)− π(h)|.

Let n ∈ N and let ζn,1, ζn,2, · · · , ζn,n be a sequence of independent random vectors with
E|ζn,i| <∞ for 1 6 i 6 n. Set

Sn =
(
ζn,1 − Eζn,1

)
+
(
ζn,2 − Eζn,2

)
+ · · ·+

(
ζn,n − Eζn,n

)
;

Sn(i) = Sn − ζn,i, 1 6 i 6 n.

Denote ln = α
dα
n and set ηn,i = l

1/α
n ζn,i,

Theorem 2.8 (Wassertein bounds). Let n ∈ N and ζn,i, ηn,i, i = 1, · · · , n are defined as
above. Let µ be an α−stable distribution with characteristic function exp

(
− ψ(λ)

)
for

α ∈ (1, 2). Then, for any N > 0, we have

dW
(
L(Sn), µ

)
6 Cα,d

{
n− 2

α

n∑

i=1

E|ηn,i|2−α + n− 2

α

n∑

i=1

(
E|ηn,i|

)2
+ E

n∑

i=1

|Rn,i|
}
,
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where

Rn,i = n− 2

α

∫

Sd−1

∫ N

0

r2
∣∣∣Fηn,i

(drdθ)− α

rα+1
drν(dθ)

∣∣∣

+ n− 1

α

∫

Sd−1

∫ ∞

N

r
∣∣∣Fηn,i

(drdθ)− α

rα+1
drν(dθ)

∣∣∣.

3. Proof of Theorem 2.7

First, we give proofs for the lemmas in Section 2.3.

Proof of Lemma 2.2. By the same argument as the proof of [11, (2.25) and (2.28)], we can
obtain (2.11) and (2.12), respectively. In addition, (2.13) can be obtained by the same
argument as the proof of [11, (2.25)]. �

Proof of Lemma 2.3. By independence, if we denote the density of the ith component of
Z1 by pi(1, xi), we have

p(1, x) =

d∏

i=1

pi(1, xi).

Since the pi(1, xi) can be consider as the density of 1-dimensional α−stable process Z1,
we have by [12, (1.10) and (1.12)],

p′i(1, xi)| 6
Cα

(1 + |xi|)1+α
, |p′′i (1, xi)| 6

Cα

(1 + |xi|)1+α
,

the case of subordinator can be obtained by the same argument as the proof of [10, lemma
3.1]. These imply

|∇p(1, x)| =
∣∣∣
(∂p(1, x)

∂x1
,
∂p(1, x)

∂x2
, · · · , ∂p(1, x)

∂xd

)∣∣∣

=
∣∣∣
(
p′1(1, x1)

d∏

i=2

pi(1, xi), · · · ,
d−1∏

i=1

pi(1, xi)p
′
d(1, xd)

)∣∣∣

6 Cα

√
d

d∏

i=1

1

(1 + |xi|)1+α
,

(2.14) is proved and (2.15) can be proved by the same argument.
Next, we will prove (2.15). The proof of (2.15) is the same as the proof of [11, (2.28)]

and we only need to prove (2.13) in [11], i.e.,

δp(1, x; z) := p(1, x+ z) + p(1, x− z)− 2p(1, x)

6 Cα,d(|z|2 ∧ 1)
{ d∏

i=1

1

(1 + |xi + zi|)1+α
+

d∏

i=1

1

(1 + |xi − zi|)1+α
+

d∏

i=1

1

(1 + |xi|)1+α

}
.

(3.1)

In fact, if |z| > 1, then

|δp(1, x; z)| 6 p(1, x+ z) + p(1, x− z) + 2p(1, x).
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If |z| 6 1,

δp(1, x; z) =

∫ 1

0

z · ∇
(
p(1, x+ uz)− p(1, x− uz)

)
du

=

∫ 1

0

∫ 1

0

〈z · zT ,∇2p(1, x+ (1− 2u′)uz)du′du

then by (2.15), we have

|δp(1, x; z)| 6 |z|2
∫ 1

0

∫ 1

0

|∇2p(1, x+ (1− 2u′)uz)|du′du

6 Cα,d|z|2
∫ 1

0

∫ 1

0

d∏

i=1

1

(1 + |xi + (1− 2u′)uzi|)α+1
du′du

6 Cα,d|z|2
d∏

i=1

1

(1 + |xi|)α+1
,

where the third inequality thanks to [11, (2.9)]. The proof is complete. �

Proof of Lemma 2.6. According to [6, Lemma 2.4], we have

|∇p(1, x)| 6 Cα,d

(1 + |x|)α+γ
, |∇2p(1, x)| 6 Cα,d

(1 + |x|)α+γ
,

then, noticing that α+ γ > d, (2.18) can be obtained by the same argument as the proof
of [11, (2.28)]. The proof is complete. �

Remark 3.1. Noticing that

ν(dθ) = ag(θ)dθ + b

d∑

i=1

(σiδei + σ′
iδ−ei) + cνγ(dθ),

according to the construction of the Lévy process, one can write

p(1, x) =

∫

Rd

∫

Rd

p1,a(1, x− y − z)p2,b(y)p3,c(z)dydz,

where p(1, x), p1,a(1, x), p2,b(1, x) and p3,c(1, x) are the transition probability densities of

Z1, corresponding to the ν(dθ), ag(θ)dθ, b
∑d

i=1(σiδei + σ′
iδ−ei) and cνγ(dθ), respectively.

What’s more, since for any α + γ > d, we always have
∫

Rd

1

(1 + |x|)α+γ
dx 6 Cα,d

and
∫

Rd

d∏

i=1

1

(1 + |xi|)α+1
dx 6 Cα,d.

Hence, we have by dominated convergence theorem and Fubini’s theorem that

∇p(1, x) =
∫

Rd

∫

Rd

∇p1,a(1, x− y − z)p2,b(y)p3,c(z)dydz, (3.2)
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Lαp(1, x) =

∫

Rd

∫

Rd

Lαp1,a(1, x− y − z)p2,b(y)p3,c(z)dydz, (3.3)

and

∇2p(1, x) =

∫

Rd

∫

Rd

∇2p1,a(1, x− y − z)p2,b(y)p3,c(z)dydz. (3.4)

When a = 0, we can consider

p(1, x) =

∫

Rd

p2,b(x− z)p3,c(z)dz,

other steps are similar to the above. Therefore, without loss of generality, in the following
proof, we consider the case a > 0.

We are ready to prove our first main result.

Proof of Theorem 2.7. Denote s = (1− e−t) and z = y − e−
t
αx, it is easy to check

∇xp(s, z) = −e−
t
α∇zp(s, z), ∇yp(s, z) = ∇zp(s, z).

We have

∇f(x) = −
∫ ∞

0

∫

Rd

∇xp(s, z)
(
h(y)− µ(h)

)
dydt

=

∫ ∞

0

∫

Rd

e−
t
α∇zp(s, z)

(
h(y)− µ(h)

)
dydt

=

∫ ∞

0

∫

Rd

e−
t
α∇yp(s, z)

(
h(y)− µ(h)

)
dydt

= −
∫ ∞

0

∫

Rd

e−
t
αp(s, z)∇h(y)dydt.

Therefore,

‖∇f‖ 6 ‖∇h‖
∫ ∞

0

e−
t
α

∫

Rd

p(s, z)dydt

= ‖∇h‖
∫ ∞

0

e−
t
α

∫

Rd

p(s, z)dzdt = α‖∇h‖.

We further have

|∇2f(x)| 6
∫ ∞

0

∫

Rd

e−
2t
α |∇zp(s, z)| · |∇h(y)|dydt.

Thanks to the scaling property p(s, z) = s−d/αp(s−1/αz) with p(x) = p(1, x) for x ∈ Rd,
we have

‖∇2f‖ 6 ‖∇h‖
∫ ∞

0

e−
2t
α

∫

Rd

s−
d+1

α |∇p(s− 1

α z)|dydt

= ‖∇h‖
∫ ∞

0

s−1/αe−
2t
α

∫

Rd

|∇p(u)|dudt,

where the equality is by taking u = s−1/αz. Then, we have by (3.2) and (2.11),

‖∇2f‖ 6 ‖∇h‖
∫ ∞

0

s−1/αe−
2t
α

∫

Rd

∫

Rd

∫

Rd

|∇p1,a(u− y − z)|p2,b(y)p3,c(z)dydzdudt
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6 Cα,d‖∇h‖
∫ ∞

0

s−1/αe−
2t
α

∫

Rd

∫

Rd

p2,b(y)p3,c(z)

∫

Rd

1

(1 + |u− y − z|)α+d
dudydzdt

6 Cα,d‖∇h‖
∫ ∞

0

s−1/αe−
2t
α dt = Cα,dB

(α− 1

α
,
2

α

)
‖∇h‖.

The proof is complete.
�

Before proving (2.23), we give another representation of the operator Lα.

Lemma 3.2. Fix α ∈ (1, 2). Let f ∈ C2(Rd) be such that ‖∇2f‖+ ‖∇f‖ <∞. We have,
for all x ∈ Rd,

Lαf(x) =
dα
α

∫

Sd−1

∫ ∞

0

θ · ∇f(x+ uθ)− θ · ∇f(x)
uα

duν(dθ). (3.5)

Proof. Recall the definition of operator Lα, one can write

Lαf(x) = dα

∫

Sd−1

∫ ∞

0

∫ r

0

θ · ∇f(x+ uθ)− θ · ∇f(x)
r1+α

dudrν(dθ)

= dα

∫

Sd−1

∫ ∞

0

∫ ∞

u

θ · ∇f(x+ uθ)− θ · ∇f(x)
r1+α

drduν(dθ)

=
dα
α

∫

Sd−1

∫ ∞

0

θ · ∇f(x+ uθ)− θ · ∇f(x)
uα

duν(dθ),

the desired result follows. �

Now we are in a position to prove (2.23). Using (3.5), we can write
∣∣∣Lαf(x)− Lαf(y)

∣∣∣

=
∣∣∣dα
α

∫

Sd−1

∫ ∞

0

θ · ∇f(x+ uθ)− θ · ∇f(x)− θ · ∇f(y + uθ) + θ · ∇f(y)
uα

duν(dθ)
∣∣∣

6
dα
α

∫

Sd−1

∫ ∞

0

∣∣∣f(x+ uθ)− f(x)− f(y + uθ) + f(y)
∣∣∣

uα
duν(dθ)

6
2dα
α

‖∇2f‖|x− y|
∫

Sd−1

∫ ∞

|x−y|

1

uα
duν(dθ) +

2dα
α

‖∇2f‖
∫

Sd−1

∫ |x−y|

0

1

uα−1
duν(dθ)

=
2dα‖∇2f‖∞

α(2− α)(α− 1)
|x− y|2−α,

ending the proof. �

4. Proof of Theorem 2.8

We start with two auxiliary lemmas.

Lemma 4.1. Let X be a d-dimensional random vector with distribution function FX(x)
and E|X| <∞, then we have

E[X · ∇f(X)−X · ∇f(0)] = α2

dα
Lαf(0) +R,
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where R =
∫
Sd−1

∫∞

0
rθ ·

(
∇f(rθ)−∇f(0)

)[
FX(drdθ)− α

rα+1drν(dθ)
]
.

Proof. We have by (3.5)

Lαf(0) =
dα
α

∫

Sd−1

∫ ∞

0

uθ · ∇f(uθ)− uθ · ∇f(0)
uα+1

duν(dθ),

which implies

E[X · ∇f(X)−X · ∇f(0)]

=
α2

dα
Lαf(0) +

∫

Sd−1

∫ ∞

0

(
rθ · ∇f(rθ)− rθ · ∇f(0)

)[
FX(drdθ)−

α

rα+1
drν(dθ)

]
.

The proof is complete. �

Lemma 4.2. Let ζn,i and ηn,i i = 1, · · · , n are defined as above. Denote the distribution
function of ηn,i by Fηn,i

, then we have

E[Sn · ∇f(Sn)] =
α

n

n∑

i=1

E[Lαf
(
Sn(i)

)
] + E

n∑

i=1

Ri

+
n∑

i=1

l−1/α
n Eηn,i · E

[
∇f

(
Sn(i)

)
−∇f

(
Sn(i) + l−1/α

n ηn,i
)]
,

where

Ri = l−1/α
n

∫

Sd−1

∫ ∞

0

rθ ·
(
∇f

(
Sn(i) + l−1/α

n rθ
)
−∇f

(
Sn(i)

))[
Fηn,i

(drdθ)− α

rα+1
drν(dθ)

]
.

Proof.

E[Sn · ∇f(Sn)] =
n∑

i=1

E
[
ζn,i · ∇f

(
Sn(i) + ζn,i

)]

=

n∑

i=1

E
[(
l−1/α
n ηn,i − l−1/α

n Eηn,i
)
· ∇f

(
Sn(i) + l−1/α

n ηn,i
)]

=

n∑

i=1

E

[
l−1/α
n ηn,i · ∇f

(
Sn(i) + l−1/α

n ηn,i
)
− l−1/α

n ηn,i · ∇f
(
Sn(i)

)]

+
n∑

i=1

l−1/α
n Eηn,i · E

[
∇f

(
Sn(i)

)
−∇f

(
Sn(i) + l−1/α

n ηn,i
)]
,

and we have by independence and Lemma 4.1
n∑

i=1

E

[
l−1/α
n ηn,i · ∇f

(
Sn(i) + l−1/α

n ηn,i
)
− l−1/α

n ηn,i · ∇f
(
Sn(i)

)]

=
n∑

i=1

E
[
ηn,i · ∇ηn,if

(
Sn(i) + l−1/α

n ηn,i
)
− ηn,i · ∇zf

(
Sn(i) + l−1/α

n z
)
1{z=0}

]

=

n∑

i=1

{α2

dα
E
[
l−1
n Lαf

(
Sn(i)

)]
+ ERi

}
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=
α

n

n∑

i=1

E[Lαf
(
Sn(i)

)
] + E

n∑

i=1

Ri,

which get the desired results. �

Proof of Theorem 2.8. By Stein’s equation (2.5) and Lemma 4.2, we have
∣∣∣E
[
h(Sn)

]
− µ(h)

∣∣∣

=
∣∣∣E[Lαf(Sn)−

1

α
Sn · ∇f(Sn)]

∣∣∣

6
1

n

n∑

i=1

E

∣∣∣Lαf(Sn)−Lαf
(
Sn(i)

)∣∣∣+ 1

α
E

n∑

i=1

|Ri|

+ l−1/α
n

n∑

i=1

∣∣Eηn,i
∣∣ · E

∣∣∇f
(
Sn(i)

)
−∇f

(
Sn(i) + l−1/α

n ηn,i
)∣∣

6
Cα,d

n
‖∇h‖

n∑

i=1

E|ζn,i|2−α +
1

α
E

n∑

i=1

|Ri|+ Cα,d‖∇h‖l−2/α
n

n∑

i=1

(
E|ηn,i|

)2

6
Cα,d

n
l
2−α
α

n

n∑

i=1

E|ηn,i|2−α +
1

α
E

n∑

i=1

|Ri|+ Cα,dl
−2/α
n

n∑

i=1

(
E|ηn,i|

)2

where the last inequality follows from Theorem 2.7. Furthermore, for any N > 0, by
Theorem 2.7, one has

|Ri| 6 Cα,d

[
n− 2

α

∫

Sd−1

∫ N

0

r2
∣∣∣Fηn,i

(drdθ)− α

rα+1
drν(dθ)

∣∣∣

+ n− 1

α

∫

Sd−1

∫ ∞

N

r
∣∣∣Fηn,i

(drdθ)− α

rα+1
drν(dθ)

∣∣∣
]
,

finishing the proof. �

Remark 4.3. By the scaling property of stable distribution, if X has a stable distribution
µ with characteristic function exp

(
− σψ(λ)

)
, then σ−1/αX has a distribution µ̃ with

characteristic function exp
(
− ψ(λ)

)
. Recall the definition of the Wasserstein distance,

we have

dW
(
L(σ−1/αSn), µ̃

)
= σ−1/αdW

(
L(Sn), µ

)
.

5. Examples

5.1. Example 1: Approximation of Multidimensional Stable Laws[14]. In [14],
Davydov and Nagaev consider a random variable ξ have the Pareto distribution with the
density

p(u) =

{
αu−1−α if u > 1,

0 if u < 1.
(5.1)

It is convenient to adhere the following definition.
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Definition 5.1. We call a distribution ν−Paretian if it corresponds to a random vector
τ admitting the representation ξε, where ξ and ε are independent, ξ has the density (5.1)
while ε is a random unit vector satisfying

P (ε ∈ E) = ν(E), E ∈ BSd−1 , (5.2)

In [14], the authors assumed that ν is symmetric and

mν = mine∈Sd−1Σα(e, ν) > 0,

where Σα(e, ν) =
∫
Sd−1 |〈e, θ〉|αν(dθ). That means the v−Paretian distribution is strictly

d−dimensional. Consider a sequence of i.i.d. random vectors such that

τi =
d τ, i = 1, 2, · · · .

Set

Tn = n−1/α
n∑

i=1

τi.

Let a random vector T have the stable distribution determined by the characteristic
function

f(λ) = Eei〈λ,ζ〉 = exp(− α

dα
|λ|αΣα(eλ, ν)), λ ∈ R

d, d > 1.

Set

Sα(A) = P (T ∈ A), Pn(A) = P (Tn ∈ A). (5.3)

Let d(P,Q) denote the uniform distance between two measures P and Q; that is

d(P,Q) = sup
A∈B

Rd

|P (A)−Q(A)|.

Based on above, we recall the approximation of multidimensional stable law:

Theorem 5.2. [14, Theorem 3.2] Let Sα, Pn be defined as in (5.3). If the underlying
distribution is ν−Paretian then as n→ ∞

d(Pn, Sα) = O(n−β),

where β = min(α,2−α)
d+α

.

By the above Theorem, we immediately get

Lemma 5.3. As n → ∞, Tn ⇒ Sα, where Sα is a symmetric stable distribution with
characteristic function exp(− α

dα
|λ|αΣα(eλ, ν)). In particular, it follows from the scaling

property of stable distribution that as n→ ∞,
( α
dα

)− 1

αTn ⇒ µ̂, (5.4)

where µ̂ is a symmetric stable distribution with characteristic function exp(−|λ|αΣα(eλ, ν)).

By Lemma 5.3, denote

ζn,i =
( α
dα

)− 1

α
τi

n
1

α

for i = 1, · · · , n, Sn weakly converges to a stable distribution µ with characteristic function
exp(−|λ|αΣα(eλ, ν)).
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However, according to Theorem 2.8, we can consider the more general ν defined by
(2.20) and get a convergence rate n− 2−α

α . That is, set

ζn,i =
( α
dα

)− 1

α
τi

n
1

α

, Sn =
(
ζn,1 − Eζn,1

)
+
(
ζn,2 − Eζn,2

)
+ · · ·+

(
ζn,n − Eζn,n

)
.

Then,

dW
(
L(Sn), µ

)
6 Cα,dn

− 2−α
α .

Proof. By definition 5.1, we obtain

Fτi(drdθ) =

{
α

rα+1drν(dθ), r > 1,

0, r < 1.

Let ζn,i = l
−1/α
n τi and ηn,i = l

1/α
n ζn,i = τi, it follows that

Fηn,i
(drdθ) =

{
α

rα+1drν(dθ), r > 1,

0, r < 1.

According to Theorem 2.8, since

n− 2

α

n∑

i=1

E|ηn,i|2−α 6 Cα,dn
α−2

α ,

n− 2

α

n∑

i=1

(
E|ηn,i|

)2
6 Cα,dn

α−2

α

and choose N > 1

|Rn,i| = n− 2

α

∫

Sd−1

∫ 1

0

α

rα−1
drν(dθ) =

α

2− α
n− 2

α ,

we have

dW
(
L(Sn), µ

)
6 Cα,dn

α−2

α .

The proof is complete. �

Let us compare our result with the known results in literatures. When α ∈ (1, 2),

the authors of [14] obtained a rate n− 2−α
d+α for d dimensional stable law in total variation

distance and conjectured that the rate can be improved to n− 2−α
α in L1 or total variation

distance. Our results gives a positive answer to their conjecture for the L1 distance case.

5.2. Example 2: Convergence rate of Pareto densities with modified tails. As-
sume that ξ1, · · · , ξn, · · · be i.i.d. random vectors with a distribution function Fξi(rθ)
satisfying

Fξi(drdθ) =

{
A

rα+1drν(dθ) +
B(rθ)
rβ+1 drdθ, r > 1;

0, r < 1,
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with β ∈ (α,∞), |B(rθ)| 6 B for some constant B > 0. We denote Ln = A
dα
n and

let ζn,i = L
−1/α
n ξi, then we know ηn,i = (A

α
)−1/αξi and the distribution function of ηn,i

satisfying

Fηn,i
(drdθ) =





α
rα+1drν(dθ) +

B
(
(A
α
)
1
α rθ

)

(A
α
)
β
α rβ+1

drdθ, r > (A
α
)−1/α;

0, r < (A
α
)−1/α.

According to Theorem 2.8, it is straightforward to check that

n− 2

α

n∑

i=1

E|ηn,i|2−α 6 Cα,d,An
α−2

α ,

and

n− 2

α

n∑

i=1

(
E|ηn,i|

)2
6 Cα,d,An

α−2

α .

It remains to compute the remainder in the bound of Theorem 2.8. We choose N = n
1

α >
(A
α
)−1/α, then

|Rn,i| 6 n− 2

α

∫

Sd−1

∫ (A
α
)−1/α

0

α

rα−1
drν(dθ) + n− 2

α

∫

Sd−1

∫ n
1
α

(A
α
)−1/α

∣∣B
(
(A
α
)

1

α rθ
)∣∣

(A
α
)
β
α rβ−1

drdθ

+ n− 1

α

∫

Sd−1

∫ ∞

n
1
α

∣∣B
(
(A
α
)

1

α rθ
)∣∣

(A
α
)
β
α rβ

drdθ

:= I + II + III,

and it is easy to compute that

I 6 Cα,d,An
− 2

α ,

III 6 n− 1

α

∫

Sd−1

∫ ∞

n
1
α

B

(A
α
)
β
α rβ

drdθ 6 Cα,d,A,Bn
− β

α ,

and

II 6 n− 2

α

∫

Sd−1

∫ n
1
α

(A
α
)−1/α

B

(A
α
)
β
α rβ−1

drdθ,

when β 6= 2, we have

II 6 Cα,d,A,Bn
− 2

α

[
n

2−β
α − (

A

α
)−

2−β
α

]
;

when β = 2, we have

II 6 Cα,d,A,Bn
− 2

α

[
log n

1

α +
1

α
log(

A

α
)
]
.

Therefore, we have
(1). When β 6= 2,

dW
(
L(Sn), µ

)
6 Cα,d,A,B

(
n

α−2

α + n
α−β
α

)
.
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(2). When β = 2,

dW
(
L(Sn), µ

)
6 Cα,d,A,Bn

α−2

α logn.

Now, we can consider a more general case:

Fξi(drdθ) =
A

rα+1
drν(dθ) +

ǫ(rθ)

rα+1
drdθ,

where limr→∞ |ǫ(rθ)| = 0.

We denote Ln = A
dα
n and let ζn,i = L

− 1

α
n ξi, then we know ηn,i = (A

α
)−1/αξi and the

distribution of ηn,i satisfies

Fξi(rθ) =
α

rα+1
drν(dθ) +

αǫ
(
(A
α
)

1

α rθ
)

Arα+1
drdθ.

According to Theorem 2.8, it is straightforward to check that

n− 2

α

n∑

i=1

E|ηn,i|2−α 6 Cα,d,An
α−2

α ,

and

n− 2

α

n∑

i=1

(
E|ηn,i|

)2
6 Cα,d,An

α−2

α .

It remains to compute the remainder in the bound of Theorem 2.8. We choose N = n
1

α ,
then

|Rn,i| 6 n− 2

α

∫

Sd−1

∫ n
1
α

0

α
∣∣ǫ
(
(A
α
)

1

α rθ
)∣∣

Arα−1
drdθ + n− 1

α

∫

Sd−1

∫ ∞

n
1
α

α
∣∣ǫ
(
(A
α
)

1

α rθ
)∣∣

Arα
drdθ

6 n− 2

α

∫

Sd−1

∫ n
1
α

0

α
∣∣ǫ
(
(A
α
)

1

α rθ
)∣∣

Arα−1
drdθ + n− 1

α sup
r>(An

α
)
1
α

|ǫ(rθ)|
∫

Sd−1

∫ ∞

n
1
α

α

Arα
drdθ

6 Cα,d,A

[
n− 2

α

∫

Sd−1

∫ n
1
α

0

|ǫ
(
(A
α
)

1

α rθ
)
|

rα−1
drdθ + n−1 sup

r>(An
α

)
1
α

|ǫ(rθ)|
]
.

Therefore, we have

dW
(
L(Sn), µ

)
6 Cα,d,A,B

[
n

α−2

α + sup
r>(An

α
)
1
α

|ǫ(rθ)|+ n
α−2

α

∫

Sd−1

∫ n
1
α

0

|ǫ
(
(A
α
)

1

α rθ
)
|

rα−1
drdθ

]
.

5.3. Example 3 in [19]. Let us assume that ξ1, · · · , ξn, · · · be s sequence of i.i.d. random
vectors with a density

p(x) =





K0

[
α(log |x|)β−β(log |x|)β−1

]

|x|α+d g( x
|x|
), |x| > e;

0, |x| < e.
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By [13, Theorem 3.7.2], An = inf{x > 0 : P(|ξ1| > x) 6 1
n
} can be determined by

K0(logAn)β

Aα
n

= 1
n
, which gives

n

Aα
n

=
1

K0(logAn)β
,

and it is easy to see Cα,βn
1

α 6 An 6 Cα,βn
1

α (logn)
β
α .

Now, we consider

ζn,i =
1

Ãn

ξi with Ãn = (
α

dα
)1/αAn.

Then we know ηn,i =
n1/αξi
An

and the density of ηn,i is

pηn,i
(x) =

{
α(log | An

n1/α
x|)β−β(log | An

n1/α
x|)β−1

(logAn)β |x|α+d g( x
|x|
), |x| > n1/α

An
e;

0, |x| < n1/α

An
e.

By Theorem 2.8, it is straightforward to check that

n− 2

α

n∑

i=1

E|ηn,i|2−α 6 Cα,d,K0,βA
α−2
n ,

and

n− 2

α

n∑

i=1

(
E|ηn,i|

)2
6 Cα,d,K0,βnA

−2
n 6 Cα,d,K0,βn

α−2

α .

It remains to compute the remainder in the bound of Theorem 2.8. When ν(dθ) = g(θ)dθ,
let x = rθ, we have

α

rα+1
drν(dθ) =

α

rα+1
g(θ)drdθ =

α

|x|α+d
g(
x

|x|)dx,

Hence,

|Rn,i| = n− 2

α

∫

|x|6N

|x|2
∣∣∣pηn,i

(x)− α

|x|α+d
g(
x

|x|)
∣∣∣dx+ n− 1

α

∫

|x|>N

|x|
∣∣∣pηn,i

(x)− α

|x|α+d
g(
x

|x|)
∣∣∣dx

= n
d
α

∫

|y|6n−

1
α N

|y|2
∣∣∣pηn,i

(n
1

αy)− α

n
α+d
α |y|α+d

g(
y

|y|)
∣∣∣dy

+ n
d
α

∫

|y|>n−

1
αN

|y|
∣∣∣pηn,i

(n
1

αy)− α

n
α+d
α |y|

g(
y

|y|)
∣∣∣dy

:= J1 + J2.

Furthermore, we choose N = (n logAn)
1

α , then

J1 6
α

n

∫

|y|6A−1
n e

1

|y|α+d−2
g(
y

|y|)dy +
β

n

∫

A−1
n e6|y|6(logAn)

1
α

(log |Any|)β−1

(logAn)β|y|α+d−2
g(
y

|y|)dy

+
α

n

∫

A−1
n e6|y|6(logAn)

1
α

∣∣∣ (log |Any|)β
(logAn)β|y|α+d−2

− 1

|y|α+d

∣∣∣g( y|y|)dy

:= J11 + J12 + J13.
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Throughout some computations, we have

J11 6 Cα,dn
−1Aα−2

n

and

J12 =
β

n

∫

A−1
n e6|y|6(logAn)

1
α

(logAn + log |y|)β−1

(logAn)β|y|α+d−2
g(
y

|y|)dy

=
β

n

∫

A−1
n e6|y|6(logAn)

1
α

(logAn + log |y|)β−1 − (logAn)
β−1 + (logAn)

β−1

(logAn)β|y|α+d−2
g(
y

|y|)dy.

By the fact A−1
n 6 |y| 6 An and |1− (1 + x)β−1| 6 Cβ|x| for any |x| < 1, we have

J12 6
Cβ

n

1

logAn

∫

A−1
n e6|y|6(logAn)

1
α

log |y|
logAn

+ 1

|y|α+d−2
g(
y

|y|)dy 6
Cα,d,β

n
(log n)−1+ 1

α .

By the same argument as the proof of J12, we can obtain

J13 6
Cα,d,β

n
(log n)−1+ 1

α .

For J2, we have

J2 6
β

n

∫

|y|>(logAn)
1
α

(log |Any|)β−1

(logAn)β|y|α+d−2
g(
y

|y|)dy

+
α

n

∫

|y|>(logAn)
1
α

∣∣∣ (log |Any|)β
(logAn)β|y|α+d−2

− 1

|y|α+d

∣∣∣g( y|y|)dy := J21 + J22.

According to An > Cα,βn
1

α , we have

J21 =
β

n
(logAn)

1−α
α

∫

|x|>1

(log |An(logAn)
1

αx|)β−1

(logAn)β |x|α+d−1
g(
x

|x|)dx

6
Cα,d,β

n
(logAn)

1−α
α 6

Cα,d,β

n
(log n)−1+ 1

α .

By the same argument as above, we also can obtain

J22 6
Cα,d,β

n
(log n)−1+ 1

α .

Combining all of above inequalities, we have

dW
(
L(Sn), µ

)
6 Cα,d,K0,β(log n)

−1+ 1

α .

Remark 5.4. For the above example, we can also consider the mixture ν defined by (2.20),
and get the same conclusion.

Appendix A. Proof of Proposition 2.1

We first give the following lemma:

Lemma A.1. Let (Qt)t>0 be a Markovian semigroup with transition density q(t, x, y) =

p1−e−t(y − e−
t
αx). Then for any h ∈ Lip(1), we have

∂tQth(x) = AQth(x). (1.1)
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Proof. Here, we give the proof for the case a = 1, that is, the absolutely continuous type,
and other cases can be obtained by the same argument according to Remark 3.1.
Recall that q(t, x, y) = p1−e−t(y − e−

t
αx) and s(t) = 1− e−t. Then

∣∣∣∣
∂

∂t
q(t, x, y)

∣∣∣∣ =
∣∣∣∣e

−t ∂

∂s(t)
p1−e−t(y − e−

t
αx) + α−1e−

t
αx

∂

∂y
p1−e−t(y − e−

t
αx)

∣∣∣∣

≤ Cα,d

((1− e−t)1/α + |y − e−
t
αx|)α+d

+
|x|
α
e−

t
α

Cα,d(1− e−t)(α−1)/α

((1− e−t)1/α + |y − e−
t
αx|)α+d

≤ Cα,d(1 + |x|(et − 1)−1/α)

((1− e−t)1/α + |y − e−
t
αx|)α+d

,

where the second inequality above follows from ∂
∂t
p
t
1
α
(x) = Lα,βp

t
1
α
(x) and (2.12). Thus,

for t > 0, s > 0 small enough such that (1− e−s/α)|x| ≤ 1
2
(et − 1)1/α,

|q(t+ s, x, y)− q(t, x, y)| ≤ s
Cα,d2

α+d(1 + |x|(et − 1)−1/α)

((1− e−t)1/α + |y − e−
t
αx|)α+d

.

In addition, according to (2.4) and (2.1), we have

∂tq(t, x, y) = Aq(t, x, y). (1.2)

Hence, using dominated convergence theorem, (1.2) and Fubini’s theorem, we have

∂tQth(x) = ∂t

∫

Rd

q(t, x, y)h(y)dy =

∫

Rd

∂tq(t, x, y)h(y)dy

=

∫

Rd

Aq(t, x, y)h(y)dy = A
∫

Rd

q(t, x, y)h(y)dy = AQth(x),

the desired conclusion follows. �

Proof of Proposition 2.1. Here, we also give the proof for the case a = 1, that is,
the absolutely continuous type, and other cases can be obtained by the same argument
according to Remark 3.1.
First of all, we show that f is well defined. Noticing that µ has a density p1(x) and

h ∈ Lip(1), we have
∣∣∣
∫

Rd

p1−e−t(y − e−
t
αx)

(
h(y)− µ(h)

)
dy

∣∣∣

=
∣∣∣
∫

Rd

p1(y)
[
h
(
(1− e−t)

1

αy + e−
t
αx

)
− h(y)

]
dy

∣∣∣

6Cα‖∇h‖∞e−
t
α

(
|x|+

∫

Rd

|y|p1(y)dy
)
6 Cα,d‖∇h‖∞e−

t
α (|x|+ 1).

Hence,
∣∣∣
∫ ∞

0

∫

R

p
(1−e−t)

1
α ,β

(y − e−
t
αx)

(
h(y)− µ(h)

)
dydt

∣∣∣ 6 Cα,β‖h′‖∞(1 + |x|),

that is, f is well defined. Then, we continue the proof. Observing

Qth(x) =

∫

Rd

p1−e−t(y − e−
t
αx)h(y)dy =

∫

Rd

p1(y)h
(
(1− e−t)

1

αy + e−
t
αx

)
dy, (1.3)



MULTIVARIATE STABLE APPROXIMATION BY STEIN’S METHOD 20

and ∣∣∣h
(
(1− e−t)

1

αy + e−
t
α (x+ z)

)
− h

(
(1− e−t)

1

α y + e−
t
αx

)∣∣∣ 6 e−
t
α |z|.

By (1.3), we immediately have
∣∣∣Qth(x+ z)−Qth(x)

∣∣∣ 6
∫

Rd

p1(y)e
− t

α |z|dy = e−
t
α |z|. (1.4)

Recall Af(x) = Lαf(x)− 1
α
x ·∇f(x). By (1.4), using the dominated convergence theorem,

we get that

∇f(x) = −
∫ ∞

0

∇Qth(x) dt.

Furthermore, we have by (2.11)

∣∣∇xp1−e−t(y − e−
t
αx)

∣∣ =
∣∣e− t

α∇yp1−e−t,β(y − e−
t
αx)

∣∣ 6 Cα,d(e
t − 1)−1/α

((1− e−t)1/α + |y − e−
t
αx|)α+d

,

then for x ∈ R, z ∈ R such that |z| 6 1
2
(et − 1)

1

α ,

∣∣p1−e−t

(
y − e−

t
α (x+ z)

)
− p1−e−t(y − e−

t
αx)

∣∣ 6 |z| Cα,d2
d+α(et − 1)−1/α

((1− e−t)1/α + |y − e−
t
αx|)α+d

.

Hence, by dominated convergence theorem and integration by parts, we have

∂xQt

(
h(x)− µ(h)

)
=

∫

Rd

∇xp1−e−t(y − e−
t
αx)

(
h(y)− µ(h)

)
dy

= −e− t
α

∫

Rd

∇yp1−e−t(y − e−
t
αx)

(
h(y)− µ(h)

)
dy

= e−
t
α

∫

Rd

p1−e−t(y − e−
t
αx)∇h(y)dy,

and similarly,

∇2Qt

(
h(x)− µ(h)

)
= −e− 2t

α

∫

Rd

∇yp(1−e−t)
1
α ,β

(y − e−
t
αx) · ∇h(y)T )dy,

these imply

∣∣Lαf(x)
∣∣ 6dα

∫

Sd−1

∫ ∞

0

∫ ∞

0

∣∣Qth(x+ rθ)−Qth(x)− rθ · ∇Qth(x)
∣∣

rα+1
dtdrν(dθ)

6dα

∫

Sd−1

∫ 1

0

∫ ∞

0

∫ 1

0

∫ 1

0

sr2
∣∣∇2Qth(x+ surθ)

∣∣
rα+1

dudsdtdrν(dθ)

+ dα

∫

Sd−1

∫ ∞

1

∫ ∞

0

∫ 1

0

r
∣∣∇Qth(x+ srθ)−∇Qth(x)

∣∣
rα+1

dsdtdrν(dθ) 6 Cα,d.

Thus, by Fubini’s theorem, we have

Lαf(x) = −
∫ ∞

0

LαQth(x)dt.

Hence, according to Lemma A.1, we can obtain

Af = −
∫ ∞

0

AQthdt = −
∫ ∞

0

∂tQthdt = Q0h−Q∞h,
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here Q∞ = µ, the unique invariant distribution of the semigroup (Qt)t≥0 associated with
A by [18, Cor. 17.9]. The proof is complete.
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