
Auto-encoding Robot State
against Sensor Spoofing Attacks

Sean Rivera, Sofiane Lagraa, Antonio Ken Iannillo, Radu State
SnT, University of Luxembourg, Luxembourg

{sean.rivera, sofiane.lagraa, antonioken.iannillo, radu.state}@uni.lu

Abstract—In robotic systems, the physical world is highly cou-
pled with cyberspace. New threats affect cyber-physical systems
as they rely on several sensors to perform critical operations.
The most sensitive targets are their location systems, where
spoofing attacks can force robots to behave incorrectly. In this
paper, we propose a novel anomaly detection approach for
sensor spoofing attacks, based on an auto-encoder architecture.
After initial training, the detection algorithm works directly on
the compressed data by computing the reconstruction errors.
We focus on spoofing attacks on Light Detection and Ranging
(LiDAR) systems. We tested our anomaly detection approach
against several types of spoofing attacks comparing four different
compression rates for the auto-encoder. Our approach has a 99%
True Positive rate and a 10% False Negative rate for the 83%
compression rate. However, a compression rate of 41% could
handle almost all of the same attacks while using half the data.

Index Terms—anomaly detection, benchmark, robotic systems

I. INTRODUCTION

Robots are cyber-physical systems, designed to perform
specific tasks and ease human work. Current applications
include, but are not limited to, military, industrial, agricultural,
and domestic robots. With robots, the physical world is highly
coupled with the cyberspace. Firstly, sensors perceive the
physical environment; then, the control software chooses for
actions, potentially in collaboration with other agents of the
cyberspace (e.g., other robots or the cloud); finally, actuators
perform those actions on the physical environment. Regardless
of their capabilities and size, robots take their actions based
on what they sense.

Thus, robots are targeted by sensor spoofing attacks that
can force an incorrect behavior in the robotic system and
undermine the success and safety of critical operations [1].
Spoofing is the action of disguising a communication from
an unknown source as being from a known one [2]. In this
paper, we focus on Light Detection and Ranging (LiDAR)
systems. These systems are largely employed to achieve high
positioning resolution, in substitution or support of other
approaches that locate the robot in indoor environments [3].
Any alteration of these sensor data can silently force the robot
to initiate dangerous maneuvers for itself and the environment
in which it operates in. Regardless of the purpose of the robot,
sensor quality and robustness are highly requested to perform
eventual mission- and safety-critical operations.

To detect anomalies in the LiDAR data, we propose a novel
anomaly detection approach for sensor spoofing attacks.
Our solution is based on an auto-encoder architecture, an

artificial neural network which aims to learn efficient data
representation in an unsupervised fashion [4]. Initially we train
the model and we analyze the reconstruction error signals
and create thresholds that will be used in the detection. In
operational mode, the robot uses the encoder to compress
the sensor input data. Then, the decoder is used to compute
the reconstruction error and compare it with the thresholds
for anomaly detection. This compressed data can also be
efficiently sent to other robots or the fog/cloud for com-
plex fingerprinting and overall monitoring. Unlike other auto-
encoder solutions, we feed the neural network not only with
the current data but also with past samples to detect changes
more efficiently. Then, the auto-encoder architecture splits and
processes different time windows to more efficiently detect
changes. This approach adds a temporal correlation to the
normal spatial correlation of our solution.

We implemented the anomaly detector and evaluated it
against several types of spoofing attacks comparing four differ-
ent compression rates for the auto-encoder. We first gathered
the LiDAR sensor input data from two different simulations.
Then, we duplicated them into several datasets and injected in
each dataset a different spoofing attack at a random time. Our
approach is effective with a 99% True Positive rate and a 10%
False Negative rate for 83% space-saving, decreasing to a 50%
False Negative rate while maintaining the 99% True Positive
rate with the 11% space-saving. Detection is more effective
with the 83% space-saving, however, the 41% space-saving
could handle almost all of the same attacks while using half
the data.

The contributions of this paper can be summarized as
follows:

• a novel anomaly detection approach for sensor spoof-
ing attacks, based on an auto-encoder solution that
extract both temporal and spatial data correlations and
enabler of efficient solutions with robot compressed state;

• a publicly available collection of benchmark datasets
with the LiDAR sensor data injected with a state-of-the-
art spoofing attack model.

Section II presents the related works; Section III formalizes
the spoofing attack model used in this paper; the proposed
approach is in Section IV; Section V presents the experimental
results of our implementation; Section VI concludes the paper
with limitation and future works.



II. RELATED WORK

Robots with LiDAR systems have been proposed for re-
mote surveillance of hazardous areas leveraging Simultane-
ous Localization and Mapping (SLAM) [5]. Robots with
LiDAR systems are also used in smart environments as activity
monitoring and health assessment [6].

However, robotic platforms suffer from security threats in
the communication link and the applications, that are unique
to them [7]. There are a number of relevant security flaws that
can be used to take over, and command the robot. An attacker
could stop the components that control the robot such as the
camera, sensors, or legs to immobilize the robot [8]. Rivera et
al. [9] proposed ROSploit, a modular offensive tool covering
both reconnaissance and exploitation of ROS systems and
sensors. Davidson et al. demonstrates sensor spoofing attacks
[10] on robotic platforms. Petit et al. [11], presented remote
attacks on camera and LiDAR of autonomous automated
vehicles using commodity hardware, and another spoofing
attack has been performed by Shin et al. [12], who proposed
a spoofing attack causing the illusions to appear closer than
the location of a spoofing device.

Software and hardware solutions have been proposed to
countermeasure attacks on camera and LiDAR of automated
vehicles [13]. Attack models consist of blinding, jamming,
replay, relay, and spoofing attacks. Davidson et al. [10],
proposed a spoofing attack against LiDAR and introduced
a method for defending against such an attack on optical
flow sensors, using the RANSAC [14] algorithm to synthesize
sensor outputs. Choi et al. [15] proposed an attack detection
framework that identifies external, physical attacks (including
sensor attack, actuation signal attack, and parameter attack)
against robotic vehicles on the fly by deriving and monitoring
Control Invariants (CI). Kapoor et al. [16] detect spoofing
attacks against an automotive radar system by effectively
verifying physical signals in the analog domain. Rivera et
al. [17] and Guo et al. [18] proposed robot intrusion detection
systems that can partially detect sensor attacks.

In this paragraph, we present the research on anomaly detec-
tors with autoencoders. Sakurada et al. [19] was the first that
proposed the use of the reconstruction error of an autoencoder
for anomaly. Similarly, Chong et al. [20] proposed using a
deep learning approach to extract features from video frames.
The autoencoders they presented are built with Convolutional
Long Short-term Memory (ConvLSTM) model which is a
variant of the LSTM [21] architecture. They experiment their
approach on avenue, subway and pedestrians video datasets.
Medel et al. [22] proposed a similar autoencoder solution by
using ConvLSTM model on surveillance videos. The results
were comparable to state of the art techniques. The authors
evaluate their approach on the same dataset as [20].

Our work differs from the existing works mainly in how we
process the input. We introduce both a temporal and spatial
component for our correlation to detect a wide range of attacks
in an efficient way. Furthermore, our anomaly detection ap-
proach can identify anomalies on sensors data incoming from

robots such as LiDAR, that is different from image streams and
other use cases in the literature. To the best of our knowledge,
it is the first autoencoder solution specifically designed for
analyzing the robot state. Furthermore, the proposed approach
is also suitable for efficient communication of the robot state
that can be used to create a global fingerprinting of the
environment and enables more complex monitoring techniques
with low latency.

III. SPOOFING ATTACKS MODEL

In this section, we propose an attack model that targets
a single sensor system of the robot. We chose to focus on
the LiDAR sensor system as it is a common sensor type for
robotics whose security we feel is underexplored. We extracted
the model from the current state-of-the-art (section II) and the
authors’ experiences with robotic systems.

Independent Assumptions. We assume the robot will al-
ways start in an uncompromised state. The environment of the
robot is not prone to sudden changes, such as objects appearing
close to the robot without crossing the intermediate space.

We assume that the attacker can alter the sensor input state
of the LiDAR system either through the associated software,
directly interfering with the hardware, or broadcasting their
LiDAR signals toward the receiver. We further assume that
while the attacker can arbitrarily control the value of the
LiDAR that the robot does not start under the attacker’s control
and that the robot has access to an unaltered LiDAR input.

Using these assumptions, we identified 10 potential spoofing
attacks from both the state-of-the-art and the expertise of the
authors.

Percentage Spoofing Attack. A percentage spoofing attack
is one where all input data is shifted by a set percentage,
multiplicatively changing all of the values with larger values
more affected than smaller values.Building off of previous
work [23], we choose to use a 10% change to all values, as
it is the smallest percentage difference that can both ensure a
robot collision and trap a robot with the default route planning
software.

Value Spoofing Attack. Instead of spoofing by a percentage
of the current returned value, the value spoofing attack shifted
up or down the points by a set value of 5 centimeters (˜25%
of the robots total size), introducing a predictable bias into the
system that all objects are either nearer or further away.

Rotation Spoofing Attack. A rotation spoofing attack
does not seek to change any of the values measured by
the LiDAR sensor, instead of changing the indices where
they are stored. Since these indices are the angles for the
measurements, the effect is a rotation of the environment
around the robot, such that the direction it thinks it is facing
is no longer the direction it is truly facing.

Zero Replacement Spoofing Attack. A zero replacement
spoofing attack simply replaces all inputs to a value of 0.

NaN Replacement Spoofing Attack. The NaN replacement
spoofing attack replaces all values with a value of NaN (not
a number). Unlike a Zero Replacement attack, this can occur



CIRCULAR BUFFER (100, N)

SENSOR DATA (1, N)

ENCODED DATA (100, M)

DECODED DATA (100, N)

LSTM (100, M)

LSTM (10, M)

LSTM (20, M)

AVG (10, M)

AVG (20, M)

OUTPUT (100, M)

1
0
%

20
%

100%

1~
10

11~20

11
~2

01~10 21~100

EN
CO

DE
R

LSTM (100, N)

DECODER

Fig. 1: Architecture of the encoder and decoder.

naturally if the robot is somewhere where the nearest obstacle
is beyond the range of its sensor.

Repeated Data Spoofing Attack. The repeated data attack
takes the last input to the robot and continuously replays it as
the only new input with the addition of Gaussian noise similar
to the generic sensor noise.

Window Repeated Data Spoofing Attack. In window
repeated data spoofing attack, the data is repeated as a sliding
window instead of having just 1 value repeated continuously.

Sector Value Spoofing Attack. Sector value spoofing attack
aims to closely follow practical external attacks, where the
attacker is not directly modifying the sensor data but instead
is broadcasting their fake LiDAR signal from a direction.

Real World Spoofing Attack. The real world spoofing
attack assumes that a LiDAR spoofer is a discrete object
located near the robot that can only attack the parts of the
LiDAR input that directly pass near it.

Frog Boiling Spoofing Attack. Named after the commonly
known attack [24], the frog boiling spoofing attack attempts to
avoid detection by only subtly changing the input at any point,
below the detection filter. Over time, these small changes add
up to a very large change in the input, but it is hard for the
defender to see the change at any point.

IV. PROPOSED APPROACH

A. Architecture

The architecture of the detector is shown in Fig. 1. The
detector is implemented as an LSTM autoencoder and it is
split into two parts: an encoder and a decoder. The encoder
is designed to create a compressed representation of the input
data, while the decoder is designed to recreate the original
input.

The input of the autoencoder is a circular buffer with shape
100xN floating-point values, where N is the dimension of the
sensor input.This introduces a temporal correlation to the input
allowing a memory of previous states At each timestep, the
buffer is fed with another LiDAR measurement as a vector
of N points, and the oldest value is removed from the vector.
The input layer distributes the data over 3 LSTM cells to better
detect spoofing attacks. The first cell works on only the past
10 samples and is the primary line of detection for the easiest
attacks, which detection can be performed earlier. The second
cell is trained on the past 20 samples and serves as the primary
check for potential attacks. Since each attack effectively alters
the input to the first layer twice as much as the second, this
provides a clear measure of potential attacks. The last cell
looks at all of the past 100 samples and is mostly used to
detect slow or subtle attacks, such as Frog Boiling attacks.

The outputs of the LSTMs are merged in a stepwise manner,
where the overlapping parts of each output are merged and the
unique parts are appended. The output length of the LSTM
cells can be tuned to alter the compression ratio and it is
defined as M, where M<N.

The decoder component has its own LSTM cell, and it
is trained to reverse the result from the encoder value and
recreate the initial input. The output length of this last LSTM
cell is N, the same dimensionality of the autoencoder input.

A necessary metric for our solution is the reconstruction
error. The reconstruction error is a measure of how successful
the autoencoder is at recreating the input once it has been
encoded and decoded again. It is defined as:

reconstruction error = Σ(x− y)2

where x is the autoencoder input and y is its output.
We measure the reconstruction error of the autoencoder to

calculate the amount of noise in the system. Whenever the
amount of noise vastly changes in the system it is a strong
indicator that there is now spoofing in the system. We structure
our system to strongly prefer false negatives to false positives.
Unlike Sakurada et al. [19] we split the data into three separate
LSTMs to provide a weighting of the input allowing for better
pinpointing of the beginning of the attack.

B. Learning Phase

In the initial phase, we train the models over a attack-free
dataset, to determine what is normal LiDAR data. We provide
the model with examples of a wide variety of situations and
allow it to learn the best way to represent the data in an
unsupervised fashion. To train the neural network, the training
data was read in and reshaped into a rolling set of 100
sample buffers offset by five samples each time, i.e., the first
buffer was sampled 1-100 while the second was sample 6-
105. Once the model has been fully trained, the dataset is
fed into it through the normal circular buffer one sample
at a time. We record the decoded output and calculate the
reconstruction error for each time step of the training data.
Then, we determine the mean µ and standard deviation σ of



the reconstruction error, which we store alongside the model
for the compression phase.

C. Detection Phase

For the anomaly detection phase, the detector uses the en-
coded data and decodes them to reconstruct the original input.
Then, it computes the reconstruction error and compares it to
our previously computed mean µ. If the current reconstruction
error differs from the mean µ more than ±3σ [25], the alert of
a potential attack is raised returning the sample wherein it is
was detected. We believe our 3σ threshold is used to strongly
discourage false positives in our calculations. False positives
are a common source of issues within security systems and it
is vital to limit this issue. [26]

V. EXPERIMENTAL RESULTS

A. Setup

Our setup consists of a Linux Virtual Machine (Ubuntu
16.04) with 4 CPUs and 8 GiB of memory. The VM is
emulated by qemu in a Linux Server equipped with Intel Xeon
CPU E5-4650 v4 @2.20 GHz. We installed GAZEBO version
7.0.0 [27] for the simulation of robots and environments, ROS
Kinetic Kame in the emulated robots, and our solutions have
been implemented using the Python 3, Tensor Flow version
1.13.1 [28], and Keras version 2.2.4 [29] frameworks. The
simulated robot is a Kobuki, equipped with an RPlidAR A2M8
as the LiDAR sensor. This sensor has a frequency of 6 Hz,
i.e., it reads 6 samples every second. A sample is a vector
of 720 floating points that are the measurements from 720
directions around the robots, distributed in 8 sectors. Each
point takes a value between 0 and 15 meters, that is the
distance from the robot to the closest object in that direction. If
the object is further than 15 meters, the value is set to NaN.The
experiment is run using data collected from two different
simulations built using the rrt_exploration packages for
multi robots [30]. In both simulations, five robots are tasked
to explore the environment to build a shared common map
without any truth reference. Thus, they rely on shared data to
reconstruct the map. They differ in the simulated environments
that the robots have to explore: the first is a one-story house,
while the second is a larger maze.

B. Dataset Collection

The dataset is collected from the Gazebo simulations and
stored in ROSbag files [31]. The data collection began when
the robots started moving and concluded when all of the
robots were confident that they had fully explored the area and
correctly merged the map. The dataset contains many unique
geometries for the LiDAR to record as well as multiple moving
objects crossing in and out of vision.

Before we train the model, the dataset was normalized up
to avoid any issue that could confuse or incorrectly train the
model. NaN values, i.e., nothing identified by the LiDAR, must
be treated specially. All the points are normalized to a range
between 0 and 1, but NaN values are substituted by the value

2 to indicate that the laser did not return and differentiate from
actual points.

To inject the attacks in the datasets, we selected a random
sample that was within 100 samples of its midpoint. The
random value was chosen to ensure that there was no potential
source of predictability for the testing. Once the starting
sample was chosen, the attack was applied to the remainder
of the data set. We created a total of 20 datasets for testing,
two per attack type.

The datasets are publicly available at https://bit.ly/2Mndt4T.
We strongly believe that sharing this benchmarks can help the
research of robot anomaly detection by comparing different
solutions on generic data.

C. Model Tuning

We instantiated four different detectors by tuning our ar-
chitectural model. N and M are the two tunable values of the
architecture, where N is the dimension of the inputs and M is
the compressed data size (cfr. §IV-A). All four detectors work
with data read from the same sensor, that provides a vector of
points every timestep. Thus, we set N to 720. Every detector
is characterized by a different value of M: 80, 150, 300, and
600. This provides different compression ratios that can be
also computed as state space saving, i.e., reduction in size
relative to the uncompressed size. It is defined as

space saving = 1− compressed data

uncompressed data
= 1− M

N

and it is expressed as a percentage. For example, the first
detector is tuned with an output dimensionality of 80 for the
encoder. It means that compressing 720 points to 80 saves the
89% of space for storing the robot state.

We trained the model on the dataset of the first simulation
not compromised by any attack. We used the automatic split
function in Keras to split the data 80% for training and
20% for testing, to train the autoencoder to pick up normal
LiDAR behavior. Once the model has been trained fully, the
data is run through a second time to calculate the mean and
standard deviation of the reconstruction error for the model
and the detection thresholds.

D. Experimental Results

We ran 80 experiments, one experiment for each dataset,
simulation, and model. Results are shown in TABLE I. Latency
is defined as the number of samples provided to the detector
necessary for detection from the sample in which the attack
started. Columns 2 to 6 report the latency for the experiments
with the data from the first simulation, while columns 7 to 10
are for the second simulation. The second and third rows label
the columns according to the compressed data size and state
space-saving of the used detector.

Our solution works well in most of the situation (59 exper-
iments out of 80), even with a high space-saving, detecting
the attacks within an average of 20 samples of latency (3.33
seconds). In particular, our approach is effective with a 99%
True Positive rate and a 10% False Negative rate for 17%



TABLE I: Detection Latency in Number of Samples (ND: not detected)

Dataset First Simulation Second Simulation

Compressed Data Size (from 720) 80 150 300 600 80 150 300 600
State Space Saving 89% 79% 58% 17% 89% 79% 58% 17%

Percentage Spoofing Attack ND 50 25 25 ND 75 25 25
Value Spoofing Attack 50 25 15 20 50 25 15 20
Rotation Attack 10 10 5 5 20 10 10 5
Zero Replacement Attack 10 10 10 10 10 10 10 10
NaN Replacement Attack 0 0 0 0 5 5 0 0
Repeated Data Attack ND ND ND ND ND ND ND ND
Repeated Data Window Attack ND ND 45 35 ND 45 35 25
Sector Spoofing Attack 10 10 5 5 50 20 20 10
Real World Spoofing Attack ND 20 20 20 ND 50 20 20
Frog Boiling Attack ND ND ND 85 ND ND ND 90

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Reconstruction error using the data from the first simulation (a,b,c,d) and second simulation (e,f,g,h), and with a space
saving of 89% (a,e), 79% (b,f), 58% (c,g), and 17% (d,h). The horizontal axis is labelled with values that specify the sample
number in the time series, while the vertical axis is labeled with construction error values. The red vertical line show the point
where the attack starts, while the green horizontal line indicates the threshold for detection. Each pair of space saving has their
own threshold for detection.

space-saving, decreasing to a 50% False Negative rate while
maintaining the 99% True Positive rate for the 89% space-
saving. Our True Positive rate is determined statistically, and
is defined as a reconstruction error above our threshold when
there is an attack. Our False Negative rate is defined as as
a reconstruction error below our threshold when there is an
attack. Detection is more effective with 17% space-saving,
however, 58% space-saving could handle almost all of the
same attacks while using half the data. Even if the detector
was trained on the first simulation environment, it can detect
the same attacks also on the new (and more complex) envi-
ronment of the second simulation. The delay is a maximum
of 40 samples (6.66 seconds) between the performances in
the two environments at the highest compression rate and 10
samples (1.66 seconds) for the lowest. Figure 2 shows the
computed reconstruction error over the course of the dataset
for the value spoofing attack experiments. The figures clearly

show the effect of the attack on the reconstruction error with
the large spike of noise. The secondary spikes come from the
three-layered approach as all parts of the detector react to the
attack. Once the attack has filled the buffers, it is no longer
’novel’ data and thus the error drops to normal. This means
that once an alert has been raised the robot can no longer
trust its LiDAR sensor until it has been returned to a safe
state. The loss of information in the data compression prevents
the detector to unveil a spoofing attack such as percentage,
repeated data, real-world, and frog boiling spoofing attacks. In
particular, the frog boiling spoofing attack is very challenging
to detect, as the difference between any given two attacked
samples is less than the difference from the noise between
them. The proposed detection mechanism is not able to detect
the repeated data attack because using only LiDAR data
they are identical to the robot just stopping during normal
operation. This scenario is often repeated within our data set,



e.g., the beginning of the operation, the end of the operation,
and every time the map is being updated with new goals, and
thus our detector assumes it is normal. This can be solved
by adding meta-sensor information (e.g., message time or last
update) to the detector, training the detector to detect specific
implementations of the attack, or by adding a new input from
another source. If a different part of the robot thinks it is
moving and the LiDAR is not changing, something has gone
wrong. Overall, this system can detect the majority of attacks
on the system, and allow for operator intervention.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an anomaly detection method for
detecting sensor spoofing attacks against robots. Our solution
is based on an autoencoder neural network that leverages both
the spatial and temporal features of the sensor data in order
to reconstruct the robots sensor data and detect anomalies.
Furthermore, we crafted datasets of compromised sensor data
that emulate attacks on the LiDAR system and we made them
publicly available as a benchmark. Our experimental results
highlight the ability of our method to detect attacks. To the best
of our knowledge, this is the first work who face the challenge
of sensor data anomaly detection through autoencoders, by
enabling also efficient robot state representation.

This work has also some limitations: usage of simulated data
and limited experimentation. While we are pretty confident of
the high quality of data provided by Gazebo, we understand
that experimentation on-the-field will be more valuable. Fur-
thermore, this work intended to be an exploratory research
and we believe that the results are positive but we intend to
perform a more complete design of experiments.

In the future, we plan to extend this work by using autoen-
coder as a hash function for sensor data. We want to build on
this research by creating a fingering mechanism for robots such
that distributed groups of robots can identify between them
using their results, plus what the other robots have published.
Ultimately we plan to build a framework for detecting security
issues across heterogeneous groups of robots.

ACKNOWLEDGEMENTS

Research supported by EC H2020 Project CONCORDIA
GA 830927.

REFERENCES

[1] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Control-
ling uavs with sensor input spoofing attacks,” 2016.

[2] N. Hubballi and N. Tripathi, “An event based technique for
detecting spoofed ip packets,” Journal of Information Security and
Applications, vol. 35, pp. 32 – 43, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214212617301692

[3] “Amigo,” https://robots.ros.org/amigo/, accessed: 2019-05-19.
[4] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion.”

[5] K. Y. V. Krishna, A. Wadnerkar, G. M. Patel, G. Baluni, A. K. Pandey,
and R. M. Suresh Babu, “Indigenous Mobile Robot for Surveillance and
Mapping,” in Machines, Mechanism and Robotics, 8 2018, pp. 389–400.

[6] G. Wilson, C. Pereyda, N. Raghunath, G. de la Cruz, S. Goel, S. Nesaei,
B. Minor, M. Schmitter-Edgecombe, M. E. Taylor, and D. J. Cook,
“Robot-enabled support of daily activities in smart home environments,”
Cognitive Systems Research, vol. 54, pp. 258–272, 5 2019.

[7] K. M. Ahmad Yousef, A. AlMajali, S. A. Ghalyon, W. Dweik, and B. J.
Mohd, “Analyzing cyber-physical threats on robotic platforms,” Sensors
(Switzerland), vol. 18, no. 5, 5 2018.

[8] F. Martn, E. Soriano, and J. M. Caas, “Quantitative analysis of security
in distributed robotic frameworks,” Robotics and Autonomous Systems,
vol. 100, pp. 95 – 107, 2018.

[9] S. Rivera, S. Lagraa, and R. State, “Rosploit: Cybersecurity tool for
ROS,” in 3rd IEEE International Conference on Robotic Computing,
IRC 2019, Naples, Italy, February 25-27, 2019, 2019, pp. 415–416.

[10] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and V. Singh, “Con-
trolling UAVs with Sensor Input Spoofing Attacks,” in 10th USENIX
Workshop on Offensive Technologies (WOOT 16), 2016.

[11] J. Petit, B. Stottelaar, and M. Feiri, “Remote attacks on automated
vehicles sensors : Experiments on camera and lidar,” 2015.

[12] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications,”
in Cryptographic Hardware and Embedded Systems – CHES 2017,
W. Fischer and N. Homma, Eds., 2017, pp. 445–467.

[13] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and LiDAR,”
OnBoard Security Inc., Tech. Rep., 2015.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, pp. 381–395, 1981.

[15] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting Attacks Against Robotic Vehicles.” New York,
New York, USA: Association for Computing Machinery (ACM), 10
2018, pp. 801–816.

[16] P. Kapoor, A. Vora, and K. Kang, “Detecting and mitigating spoofing
attack against an automotive radar,” in 2018 IEEE 88th Vehicular
Technology Conference (VTC-Fall), 2018, pp. 1–6.

[17] S. Rivera, S. Lagraa, C. Nita-Rotaru, S. Becker et al., “Ros-defender:
Sdn-based security policy enforcement for robotic applications,” in IEEE
Workshop on the Internet of Safe Things, Co-located with IEEE Security
and Privacy 2019, 2019.

[18] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu,
“Exploiting Physical Dynamics to Detect Actuator and Sensor
Attacks in Mobile Robots,” arXiv, 8 2017. [Online]. Available:
http://arxiv.org/abs/1708.01834

[19] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction.” [Online]. Available: http:
//doi.acm.org/10.1145/2689746.2689747

[20] Y. S. Chong and Y. H. Tay, “Abnormal event detection in videos using
spatiotemporal autoencoder,” in Advances in Neural Networks - ISNN
2017 - 14th International Symposium, ISNN 2017, Sapporo, Hakodate,
and Muroran, Hokkaido, Japan, June 21-26, 2017, Proceedings, Part II,
2017, pp. 189–196.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., pp. 1735–1780.

[22] J. R. Medel and A. E. Savakis, “Anomaly detection in video using
predictive convolutional long short-term memory networks,” CoRR, vol.
abs/1612.00390, 2016.

[23] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” DEF CON,
vol. 24, 2016.

[24] E. Chan-Tin, D. Feldman, N. Hopper, and Y. Kim, “The frog-boiling
attack: Limitations of anomaly detection for secure network coordinate
systems.” Springer.

[25] Y. S. Chong and Y. H. Tay, “Abnormal event detection in videos using
spatiotemporal autoencoder,” in International Symposium on Neural
Networks. Springer, 2017, pp. 189–196.

[26] A. T. Analytics, “New research from advanced threat analytics finds
mssp incident responders overwhelmed by false-positive security alerts,”
Jun 2018. [Online]. Available: {https://prn.to/2uTiaK6}

[27] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator.”

[28] TensorFlow, “Tensorflow,” https://www.tensorflow.org/.
[29] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[30] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration

based on multiple rapidly-exploring randomized trees,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 1396–1402.

[31] “Rosbag,” http://wiki.ros.org/rosbag, accessed: 2018-03-27.


