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Abstract
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1 Introduction

Deontic logic is concerned with normative concepts like obligation, permission, and
prohibition. On the one hand, we have the family of traditional deontic logics which
includes Standard Deontic Logic (SDL), a modal logic of type KD, and Dyadic
Deontic Logic (DDL) [1, 15, 16]. On the other hand, we have so-called “norm-
based” deontic logics. The deontic operators are evaluated not with reference to a
set of possible worlds but with reference to a set of norms. A particular framework
that falls within this category is called Input/Output (I/O) logic [18]. It has gained
recognition from the AI community, and has a dedicated chapter in the handbook of
deontic logic [15]. The framework is expressive enough to support reasoning about
constitutive, prescriptive and defeasible rules; these notions play an important role
in the legal and ethical domains [13].

Our focus is on two I/O logics called Basic Output and Basic Reusable Output.
We present an embedding of them into classical Higher-Order Logic (HOL), also
known as simple type theory [14, 5], and study their automation. The syntax and
semantics of HOL are well understood [3] and there exist automated proof tools for
it; examples include Isabelle/HOL [21], LEO-II [10] and Leo-III [23]. Our approach
is an indirect one. We take advantage of the known possibility of embedding I/O
logic into modal logic, and we reuse the shallow semantical embedding of modal
systems K and KT in HOL [8]. In related work, Benzmüller et al. [4, 6] developed
analogous shallow semantical embeddings for some well-known dyadic deontic logics.

The embeddings presented in this article are faithful (sound and complete). They
are also encoded in Isabelle/HOL to enable experiments. As an illustration of the
kind of experiments the framework enables, we use a well-known example in moral
philosophy, the example of moral luck [20]. This term refers to situations where an
agent receives moral praise or blame for an action and its consequences even though
he did not have full control over them. In particular, a classical scenario of moral
luck, known as the Drink and Drive example, is used as an illustration.

The article is structured as follows: Section 2 gives a quick review of modal
logic and higher-order logic, and Section 3 introduces I/O logic. The semantical
embeddings of Basic Output and Basic Reusable Output in HOL are then described
in Section 4. This section also shows the faithfulness of the embeddings. In Section 5
we apply the framework to the Drink and Drive example.

2 Preliminaries

In this section, we recap some important notions from modal logic and HOL.
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2.1 Modal logic K

The language ofK is obtained by supplementing the language of Propositional Logic
(PL) with a modal operator 2. It is generated as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|2ϕ

where p denotes an atomic formula. Other logical connectives such as ∧, → and 3,
are defined in the usual way. The axioms of system K consist of those of PL plus
2(ϕ→ ψ)→ (2ϕ→ 2ψ), called axiom K. The rules of K are Modus ponens (from
ϕ and ϕ→ ψ infer ψ) and Necessitation (from ϕ infer 2ϕ).

A Kripke model for K is a triple M = 〈W,R, V 〉, where W is a non-empty set
of possible worlds, R is a binary relation on W , called accessibility relation, and V
is a function assigning a set of worlds to each atomic formula, that is, V (p) ⊆W .

Truth of a formula ϕ in a model M = 〈W,R, V 〉 and a world s ∈ W is written
as M, s |= ϕ. We define V (ϕ) = {s ∈ W |M, s |= ϕ}. The relation |= is defined as
follows:

M, s |= p if and only if s ∈ V (p)
M, s |= ¬ϕ if and only if M, s 6|= ϕ (that is, not M, s |= ϕ)
M, s |= ϕ ∨ ψ if and only if M, s |= ϕ or M, s |= ψ
M, s |= 2ϕ if and only if for every t ∈W such that sRt, M, t |= ϕ

As usual, a modal formula ϕ is true in a Kripke model M = 〈W,R, V 〉, i.e., M |= ϕ,
if and only if for all worlds s ∈ W , we have M, s |= ϕ. A formula ϕ is valid in a
class C of Kripke models, denoted as |=C ϕ, if and only if it is true in every model
in class C.

SystemK is determined by (i.e., is sound and complete with respect to) the class
of all Kripke models. System KT is obtained from system K by adding the schema
T : 2ϕ → ϕ as an axiom. System KT is determined by the class of all Kripke
models in which R is reflexive. We denote the class of all Kripke models and the
class of Kripke models where R is reflexive as CK and CKT , respectively.

Two other axiom schemas that can be added to K are 4 : 2ϕ → 22ϕ and
5 : 3ϕ → 23ϕ. For instance, K45 is an extension of K obtained by adding 4
and 5 as axioms. The schemas 4 and 5 are valid if R is transitive and euclidean,
respectively.

2.2 Classical higher-order logic

HOL is based on simple typed λ-calculus. We assume that the set T of simple types
is freely generated from a set of basic types {o, i} using the function type constructor
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→. Type o denotes the set of Booleans whereas type i refers to a non-empty set of
individuals.

For α, β, o ∈ T , the language of HOL is generated as follows:

s, t ::= pα|Xα|(λXαsβ)α→β|(sα→β tα)β

where pα represents a typed constant symbol (from a possibly infinite set Pα of
such constant symbols) and Xα represents a typed variable symbol (from a possibly
infinite set Vα of such symbols). (λXαsβ)α→β and (sα→β tα)β are called abstraction
and application, respectively. HOL is a logic of terms in the sense that the formulas
of HOL are given as terms of type o. Moreover, we require a sufficient number of
primitive logical connectives in the signature of HOL, i.e., these logical connectives
must be contained in the sets Pα of constant symbols. The primitive logical con-
nectives of choice in this paper are ¬o→o, ∨o→o→o, Π(α→o)→o and =α→α→o. The
symbols Π(α→o)→o and =α→α→o generally assumed for each type α ∈ T . From the
selected set of primitive connectives, other logical connectives can be introduced as
abbreviations. Type information as well as brackets may be omitted if obvious from
the context, and we may also use infix notation to improve readability. For example,
we may write (s∨ t) instead of ((∨o→o→o so) to)o. We often write ∀Xαso as syntactic
sugar for Π(α→o)→o(λXαso).

The notions of free variables, α-conversion, βη-equality and substitution of a
term sα for a variable Xα in a term tβ, denoted as [s/X]t, are defined as usual.

The semantics of HOL are well understood and thoroughly documented [3]. In
the remainder, the semantics of choice is Henkin’s general models [17].

A frame D is a collection {Dα}α∈T of nonempty sets Dα, such that Do = {T, F},
denoting truth and falsehood, respectively. Dα→β represents a collection of functions
mapping Dα into Dβ.

A model for HOL is a tuple M = 〈D, I〉, where D is a frame and I is a family of
typed interpretation functions mapping constant symbols pα to appropriate elements
of Dα, called the denotation of pα. The logical connectives ¬, ∨, Π and = are
always given in their expected standard denotations. A variable assignment g maps
variables Xα to elements in Dα. g[d/W ] denotes the assignment that is identical to
g, except for the variable W , which is now mapped to d. The denotation ‖sα‖M,g of
a HOL term sα on a model M = 〈D, I〉 under assignment g is an element d ∈ Dα

defined in the following way:
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‖pα‖M,g = I(pα)

‖Xα‖M,g = g(Xα)

‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)

‖(λXαsβ)α→β‖M,g = the function f from Dα to Dβ such that
f(d) = ‖sβ‖M,g[d/Xα] for all d ∈ Dα

Since I(¬o→o), I(∨o→o→o), I(Π(α→o)→o) and I(=α→α→o) always denote the stan-
dard truth functions, we have:

1. ‖(¬o→o so)o‖M,g = T iff ‖so‖M,g = F .

2. ‖((∨o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T or ‖to‖M,g = T .

3. ‖(∀Xαso)o‖M,g = ‖(Π(α→o)→o(λXαso))o‖M,g = T iff for all d ∈ Dα we have
‖so‖M,g[d/Xα] = T .

4. ‖((=α→α→o sα) tα)o‖M,g = T iff ‖sα‖M,g = ‖tα‖M,g.

A HOL formula so is true in a Henkin model M under the assignment g if and
only if ‖so‖M,g = T . This is also expressed by the notation M, g |=HOL so. A HOL
formula so is called valid in M , denoted as M |=HOL so, if and only if M, g |=HOL so
for all assignments g. Moreover, a formula so is called valid, denoted as |=HOL so,
if and only if so is valid in all Henkin models M . Finally, we define Σ |=HOL so for
a set of HOL formulas Σ if and only if M |=HOL so for all Henkin models M with
M |=HOL to for all to ∈ Σ.

3 Input/Output Logic
Input/output logic was initially introduced by Makinson and van der Torre [18].
There are various I/O operations. In this paper we focus on two of them, called
“Basic Output” and “Basic Reusable Output”.

3.1 Syntax

G ⊆ L × L is called a normative system, with L representing the set of all the
formulas of propositional logic. A pair (a, x) ∈ G is referred to as a conditional
norm or obligation, where a and x are formulas of propositional logic. The pair
(a, x) is read as “given a, it is obligatory that x”. a is called the body and represents
some situation or condition, whereas x is called the head and represents what is
obligatory or desirable in that situation.
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3.2 Semantics

For a set of formulas A, we define G(A) = {x | (a, x) ∈ G for some a ∈ A} and
Cn(A) = {x | A ` x} with ` denoting the classical consequence relation. A set
of formulas V is maximal consistent if it is consistent, and no proper extension of
V is consistent. A set of formulas V is said to be complete if it is either maximal
consistent or equal to L.

Definition 1 (Basic Output). Given a set of conditional norms G and an input set
A of propositional formulas,

out2(G,A) =
⋂
{Cn(G(V )) | A ⊆ V, V complete}

Definition 2 (Basic Reusable Output). Given a set of conditional norms G and an
input set A of propositional formulas,

out4(G,A) =
⋂
{Cn(G(V )) | A ⊆ V ⊇ G(V ), V complete}

Besides those traditional formulations of the operations, the paper [18] docu-
ments modal formulations for out2 and out4.

Theorem 1. x ∈ out2(G,A) if and only if x ∈ Cn(G(L)) and G2 ∪ A `S 2x for
any modal logic S with K0 ⊆ S ⊆ K45.

Theorem 2. x ∈ out4(G,A) if and only if x ∈ Cn(G(L)) and G2 ∪ A `S 2x for
any modal logic S with K0T ⊆ S ⊆ KT45.

K0 is a subsystem of system K with axiom K, modus ponens and the inference
rule “from ψ, infer 2ψ, for all tautologies in propositional logic”. G2 denotes the set
containing all modal formulas of the form b → 2y, such that (b, y) ∈ G. We have
that G2∪A `S 2x if for a finite subset Y of G2∪A, it holds that (

∧
Y → 2x) ∈ S.

The notation
∧
Y stands for the conjunction of all the elements y1, y2, . . . , yn in Y ,

i.e., y1 ∧ y2 ∧ · · · ∧ yn.

3.3 Proof theory

The proof theory of an I/O logic is specified via a number of derivation rules acting
on pairs (a, x) of formulas. Given a set G of pairs, we write (a, x) ∈ derivi(G) to
say that (a, x) can be derived from G using those rules.

• (SI) Strengthening of the input: from (a, x) and ` b→ a, infer (b, x)

• (WO) Weakening of the output: from (a, x) and ` x→ y, infer (a, y)
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• (AND) Conjunction of the output: from (a, x) and (a, y), infer (a, x ∧ y)

• (OR) Disjunction of the input: from (a, x) and (b, x), infer (a ∨ b, x)

• (CT) Cumulative transitivity: from (a, x) and (a ∧ x, y), infer (a, y)

The Basic Output is syntactically characterized by deriv2(G) that is closed under
rules SI, WO, AND and OR. The Basic Reusable Output is determined by deriv4(G)
that is closed under all of the five rules.

4 Shallow Semantical Embedding

The shallow semantical embedding approach proposed by Benzmüller [2] uses HOL
as a meta-logic in order to represent and model the syntactic and semantical elements
of a specific target logic. This methodology is documented and studied for Kripke
semantics in [8] and for neighborhood semantics in [4]. This section presents shallow
semantical embeddings of the I/O operations out2 and out4 in HOL and provides
proofs for the soundness and completeness of both operations. To realize these
embeddings, we below use the provided modal formulations of the operations; an
alternative approach is studied in [7].

4.1 Semantical embedding of K and KT in HOL

We start by describing the semantical embeddings of K and KT in HOL. This
material is taken from [8, 9].

By introducing a new type i to denote possible worlds, the formulas of K are
identified with certain HOL terms (predicates) of type i → o. The type i → o is
abbreviated as τ in the remainder. This allows us to represent the formulas of K
as functions from possible worlds to truth values in HOL and therefore the truth of
a formula can explicitly be evaluated in a particular world. The HOL signature is
assumed to further contain the constant symbol ri→i→o. Moreover, for each atomic
propositional symbol pj of K, the HOL signature must contain the corresponding
constant symbol pjτ . Without loss of generality, we assume that besides those sym-
bols and the primitive logical connectives of HOL, no other constant symbols are
given in the signature of HOL.

The mapping b·c translates a formula ϕ of K into a term bϕc of HOL of type τ .
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The mapping is defined recursively:

bpjc = pjτ
b¬ϕc = ¬τ→τ bϕc
bϕ ∨ ψc = ∨τ→τ→τ bϕcbψc
b2ϕc = 2τ→τ bϕc

¬τ→τ , ∨τ→τ→τ and 2τ→τ abbreviate the following terms of HOL:

¬τ→τ = λAτλXi¬(AX)
∨τ→τ→τ = λAτλBτλXi(AX ∨BX)
2τ→τ = λAτλXi∀Yi(¬(ri→i→oX Y ) ∨AY )

Analyzing the truth of formula ϕ, represented by the HOL term bϕc, in a partic-
ular world w, represented by the term Wi, corresponds to evaluating the application
(bϕcWi). In line with the previous work [9], we define vldτ→o = λAτ∀Si(AS).
With this definition, validity of a formula ϕ in K corresponds to the validity of the
formula (vld bϕc) in HOL, and vice versa.

To prove the soundness and completeness, that is, faithfulness, of the above
embedding, a mapping from Kripke models into Henkin models is employed.

Lemma 1 (Kripke models ⇒ Henkin models). For every Kripke model M =
〈W,R, V 〉 there exists a corresponding Henkin model HM , such that for all formulas
δ of K, all assignments g and worlds s it holds:

M, s |= δ if and only if ‖bδcSi‖H
M ,g[s/Si] = T

Proof. See [8, 9].

Lemma 2 (Henkin models ⇒ Kripke models). For every Henkin model H =
〈{Dα}α∈T , I〉 there exists a corresponding Kripke model MH , such that for all for-
mulas δ of K, all assignments g and worlds s it holds:

‖bδcSi‖H,g[s/Si] = T if and only if MH , s � δ

Proof. See [8, 9].

The following table summarizes the alignment of Kripke models and Henkin
models. For the class of Kripke models 〈W,R, V 〉 that validates some property,
such as reflexivity, the corresponding class of Henkin models needs to validate a
corresponding formula. In system KT, for example, the class of Kripke models
satisfies the property of reflexivity, which corresponds to axiom T. The counterpart
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of this property is represented as REF in HOL: ∀Xi(ri→i→oXiXi), where constant
symbol ri→i→o denotes the accessibility relation.

Kripke model 〈W,R, V 〉 Henkin model 〈D, I〉
Possible worlds s ∈W Set of individuals si ∈ Di

Accessibility relation R Binary predicates ri→i→o

sRu Iri→i→o(si, ui) = T

Propositional letters pj Unary predicates pji→o

Valuation function s ∈ V (pj) Interpretation function Ipji→o(si) = T

These correspondences between Kripke and Henkin models include the assumptions
that have been formulated at the beginning of this section.

Theorem 3 (Faithfulness of the embedding of systemK in HOL for G and A finite).

|=CK ϕ if and only if |=HOL vld bϕc

Proof. See [8, 9].

Theorem 4 (Faithfulness of the embedding of system KT in HOL for G and A
finite).

|=CKT ϕ if and only if {REF} |=HOL vld bϕc

Proof. See [8, 9].

4.2 Semantical embedding of I/O logic in HOL

In order to embed the operations out2 and out4 in HOL, we just use the correspond-
ing modal formulations. We apply Theorem 3 and Theorem 4, respectively, to prove
the faithfulness of the embeddings.

Theorem 5 (Faithfulness of the embedding of out2 in HOL for G and A finite).

ϕ ∈ out2(G,A)

if and only if

|=HOL vldb
∧

(G2 ∪A)→ 2ϕc and |=HOL vldb
∧
G(L)→ ϕc

Proof. We choose S = K in Theorem 1 and then apply Theorem 3.

ϕ ∈ out2(G,A)
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if and only if
G2 ∪A `K 2ϕ and ϕ ∈ Cn(G(L))

if and only if
|=CK

∧
(G2 ∪A)→ 2ϕ and

∧
G(L) ` ϕ

if and only if
|=CK

∧
(G2 ∪A)→ 2ϕ and |=CK

∧
G(L)→ ϕ

if and only if

|=HOL vld b
∧

(G2 ∪A)→ 2ϕc and |=HOL vldb
∧
G(L)→ ϕc

Theorem 6 (Faithfulness of the embedding of out4 in HOL for G and A finite).

ϕ ∈ out4(G,A)

if and only if

{REF} |=HOL vld b
∧

(G2 ∪A)→ 2ϕc and {REF} |=HOL vld b
∧
G(L)→ ϕc

Proof. We choose S = KT in Theorem 2 and then apply Theorem 4.

ϕ ∈ out4(G,A)

if and only if
G2 ∪A `KT 2ϕ and ϕ ∈ Cn(G(L))

if and only if
|=CKT

∧
(G2 ∪A)→ 2ϕ and

∧
G(L) ` ϕ

if and only if

|=CKT

∧
(G2 ∪A)→ 2ϕ and |=CKT

∧
G(L)→ ϕ

if and only if

{REF} |=HOL vld b
∧

(G2 ∪A)→ 2ϕc and {REF} |=HOL vld b
∧
G(L)→ ϕc
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Figure 1: Semantical embedding of out2 in Isabelle/HOL

4.3 Implementation of I/O logic in Isabelle/HOL

The semantical embeddings of the operations out2 and out4 in HOL as devised in
the previous section have been implemented in the higher-order proof assistant tool
Isabelle/HOL [21], see Fig. 1. We declare the type i to denote possible worlds and
introduce the relevant connectives in lines 6–12.

Let the set of conditional norms G be composed of the elements (a, e) and (b, e),
where a, b and e are propositional symbols, and let the input set A correspond to the
singleton set containing a∨ b. By the rule of disjunction (OR), we should have that
e ∈ out2(G,A). According to the provided translation, e ∈ out2(G,A) if and only if
G2 ∪ A `K 2e and e ∈ Cn(G(L)). Theorem 5 provides us now with higher-order
formulations for both of these statements, i.e., |=HOL vld b

∧
(G2 ∪ A) → 2ec and

|=HOL vldb
∧
G(L) → ec, respectively. Regarding the implementation, the proposi-

tional symbols a, b and e have to be declared as constants of type τ . The frame-
work’s integrated automatic theorem provers (ATPs), called via the Sledgehammer
tool [12], are able to prove both statements. This is shown in Fig. 1, lines 22–23
and 26.



Benzmüller, Farjami, Meder and Parent

Figure 2: Failure of CT for out2

Consider the set of conditional norms G = {(a, b), (a ∧ b, e)} with the input set
A = {a}. The rule of cumulative transitivity (CT) is not satisfied by the opera-
tion out2. This can also be verified with our implementation. The model finder
Nitpick [11] is able to generate a countermodel for the statement G2 ∪ A `K 2e
and therefore we were able to show that e /∈ out2(G,A). In particular, Nitpick
came up with a model M consisting of two possible worlds i1 and i2. We have that
V (a) = {i2}, V (b) = {i1} and V (e) = ∅. And R = {(i1, i1), (i2, i1)}. The formula
((a → 2b) ∧ ((a ∧ b) → 2e) ∧ a) → 2e is not valid in this model. The formulation
of the example and the generation of the countermodel is illustrated in Fig. 2.

The embedding of the operation out4 refers to system KT which means that
the corresponding class of Kripke models satisfies the property of reflexivity. In
our implementation, the accessibility relation for this system is denoted by the con-
stant r_t which we declare as reflexive. Due to this property, the Sledgehammer
tool is able to prove the statement G2 ∪ A `KT 2e and thus we can verify that
e ∈ out4(G,A). Fig. 3 shows the encoding of the operation out4 in Isabelle/HOL
and the verification of the CT example.
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Figure 3: Semantical embedding of out4 in Isabelle/HOL

5 Application: Moral Luck

The literature on moral luck [20] is addressing the question whether luck can ever
make a moral difference or not. Examples involving moral luck are typical scenarios
in which an agent is held accountable for his actions and its consequences even
though it is clear that the agent was neither in full control of his actions nor its
consequences. These examples are thus in conflict with the ethical principle that
agents are not morally responsible for actions that they are unable to control.

The Drink and Drive [19] example highlights a classical scenario of moral luck.
There exist many different variations of this example and a possible variant can be
formulated as follows:

Assume a situation where two persons, Ali and Paul, go out for a drink in
the evening. Both of them go to the same bar, consume the same amount of
alcoholic drinks and end up pretty drunk. At one point during the night, they
both decide to leave the place. So they go to their own individual vehicles and
hit the road in order to drive home. The roads are pretty deserted at that
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time and Ali manages to drive home safely even with the high percentage of
alcohol in his blood. Paul, in contrast, is facing something unexpected. Out
of nowhere, a child appears in front of his car. Since he had a few drinks too
much, his reaction time is impaired by the alcohol and it makes it impossible
for him to stop and swerve to avoid hitting and killing the child.

Both Ali and Paul, made the blameworthy decision of driving while being drunk.
But neither one of them had the intention to hit and kill anyone. Nevertheless, most
people would tend to judge Paul more guilty than Ali simply because in his case a
child got killed. However, both of them violated the same obligation, namely that
one should not drive while being intoxicated and it was only a matter of luck that
nobody got harmed or killed in the case of Ali. Therefore we say that Ali got morally
lucky.

To formulate the Drink and Drive example in Isabelle/HOL, we first import the
Isabelle/HOL file containing the implementation of the operation out2. This can be
done using the Isabelle/HOL command imports (cf. Fig. 4, line 1). Next, we have
to declare three individuals, namely Ali and Paul, representing the two drivers, and
Child, representing the child in the scenario (cf. Fig. 4, line 3). In lines 4–5, we
define the constant symbols for the relevant propositions (state of affairs or action).

One associates with each driver a set of Norms and an Input. For the individual
Paul, the set of Norms G is defined as follows: (cf. Fig. 4, lines 9–11)

• (>,¬Kill Child ∧ ¬HurtChild)
This norm states that it is forbidden to kill or even hurt the child.

• (>, Drive_carefully Paul)
This norm states that Paul is obligated to drive carefully in any situation.

• (¬Drive_carefully Paul, StayPaul)
This norm states that if Paul does not drive carefully, he should stay (at his
current location).

To complete the formalization for the individual Paul, we need to add the fol-
lowing facts to the Input set A: (cf. Fig. 4, lines 13–17)

• Drunk Paul; DrivePaul; JumpChild
Paul is actually drunk; Paul drives home; The child jumps.

• Drunk Paul→ ¬Drive_carefully Paul
If Paul is drunk then he drives not carefully.
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• (¬Drive_carefullyPaul ∧DrivePaul ∧ JumpChild)
→ (KillChild ∨HurtChild)
If Paul drives, but does not do it carefully, and the child jumps in front of his
car then Paul will kill or hurt the child.

Figure 4: Drink and Drive scenario for Paul in Isabelle/HOL

Since Nitpick finds a model satisfying our statements, the formalization of the
Drink and Drive is consistent; cf. Fig. 4, line 20.

Actually, we are able to derive the obligation that Paul should stay (at his
current position) by using the norm A2 and the facts A3 and A6, meaning that
we can derive G2 ∪ A `K 2Stay_Paul and Stay_Paul ∈ Cn(G(L)). The first
statement is proven by Sledgehammer tool; cf. Fig. 4, line 22. In this exam-
ple, we skip checking the following (trivial) statements X ∈ Cn(G(L)) for X ∈
{Stay_Paul,Drive_carefully_Paul,¬KillChild∧¬HurtChild} in Isabelle/HOL.

Furthermore, our implementation is capable of recognizing violations to norms,
formally written as α ∈ out2(G,A) and ¬α ∈ Cn(A). In particular, Paul violated
the norms A0 and A1. For instance, the violation to A1 is proven by Sledgehammer;
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cf. Fig. 4, lines 24–25. Paul did not drive carefully even though there is an obliga-
tion to do so, meaning that we have G2 ∪ A `K 2Drive_carefully_Paul (using
A1), Drive_carefully_Paul ∈ Cn(G(L)) and ¬Drive_carefully_Paul ∈ Cn(A)
(using A3 and A6).

Figure 5: Drink and Drive scenario for Ali in Isabelle/HOL

For the individual Ali, the set of Norms remains the same except that we adapted
the name of the individual accordingly. However, in Ali’s case, the child was not
involved. Therefore, the Input set only consists of our facts: A3, A4, A6 and A7
(cf. Fig. 5, lines 13–16).

The formalization of Ali’s scenario is consistent, again proven by Nitpick (cf.
Figure 5, line 19). In contrast to Paul, Ali did not violated the norm A0 as Nitpick
find a counter model for the corresponding statement (cf. Fig. 5, lines 27–28).

6 Conclusion
We have presented an embedding of two I/O operations in HOL and we have shown
that each embedding is faithful, i.e., sound and complete. The work presented



I/O Logic in HOL

here continues a project started in Benzmüller et al. [4], and aiming at providing
the theoretical foundation for the implementation and automation of deontic logic
within existing theorem provers and proof assistants for HOL. Future research should
investigate whether the provided implementation already supports non-trivial ap-
plications in practical normative reasoning such as legal reasoning or multi-agent
systems, or whether further improvements are required. We could also employ our
implementation to systematically study some meta-logical properties of I/O logic
within Isabelle/HOL. Moreover, we could analogously implement intuitionistic I/O
logic [22].
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