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Abstract

In this paper, a new computational approach, which is based on a multi-physics coupling of the
chemo-thermo-mechanical process, is developed for modeling failure mechanism in cement-based
materials at early-age hydration. A new constitutive law describing mechanical behavior of young
concrete is thus derived, taking into account the effects of several factors including thermal expansion,
shrinkage, damage, and both basic and transient thermal creeps. A strongly coupled model describing
the interaction between fracture and multi-physics problems of cement hydration is obtained. The
present phase field model in terms of smeared crack approach is highly suitable for simulating crack,
especially when considering the unilateral contact conditions at crack surfaces. The capability of
the proposed model in modeling complex crack initiation and propagation under arbitrary boundary
conditions is highlighted. Fracture phenomena at both macroscopic and mesoscopic scales are considered
and analyzed. The effects of creep and microstructural heterogeneity in different length scale are
investigated, showing the great potential of the developed approach.

Keywords: Multi-Physics, Phase field model, Creep, Complex crack networks, Early-age concrete,

Thermal variations, Shrinkage

1. Introduction

Early-age mechanical and thermal properties of cement-based materials in the hydration process
present a significant risk for cracking, having a major impact on the lifespan of structures. Since the
change of mechanical property is fast and largely dependent on the chemical and physical processes,
thus modeling of early-age fracture in such cement-based materials by means of numerical approaches
is not a trivial task. It often requires solving a so-called multi-physics problem of hydration process

including many aspects such as chemical, thermal, mechanical, environmental, creep and shrinkage
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effects [1L 2]. The preceding studies on this area have shown that fracture of the young cement-based
material strongly depends on creep effects, in particular, basic and transient thermal creeps. According
to the most cited mechanisms in literature, these two creep phenomena are due to the water micro-
diffusion [3], 4] and viscous shear of C-S-H [5], 6]. As a consequence, the prediction of early-age crack
initiation and propagation using numerical simulation, from microscopic to macroscopic scales, is an
extremely complicated problem, remaining a challenging and largely open issue.

Many numerical models developed for evaluating the risk of cracking in young concrete have
been introduced in the literature. For instance, de Borst and Van den Boogaard [7] proposed a
computational approach for fracture assessment at the structural level. The coupled thermo-chemo-
mechanical framework for estimating the material performance and the risk of cracking due to cement
hydration has been established by Cervera et al. [8,[9]. Yuan and Wan [10] developed a theoretical
procedure based on the characteristics of concrete for simulating the whole hydration process after
concrete setting. Thermal cracking induced by the hardening process of massive concrete elements
studied by a numerical model based on the degree of hydration is reported by De Schutter [I1].
Bazant et al. [12] introduced an interesting approach within the framework of crack band model,
where the influences of creeps, aging and temperature are all included. In the same context, a
finite element based model is presented in [I3] to predict early-age cracking, where all the effects of
thermal transfer, hydration, subsequent release of heat, autogenous/thermal shrinkage and creep are
taken into account. The fracture of young massive concrete structures is studied in [14] by using a
hydration based microplane model, and in [I5] by a model employing the Mazars’s damage criterion
[16, 17]. In [18], the microcracking induced by differential drying shrinkage is investigated, wherein
the cracking is simultaneously evaluated by both isotropic elastic damage model [16] and orthotropic
elasticplastic-damage model [19]. A significant contribution considering the role of early-age basic
creep is presented in [6] with an approach that combines both experimental and numerical techniques.
The microstructural effects are only considered in a few studies such as the effects of aggregate
size and volume fraction [20], and the impacts of structural topology, reinforcement, and concrete
composition [21], or the influences of microstructural heterogeneity in our previous study employing a
new computational chemo-thermo-mechanical coupling phase-field model, but without considering the
creep effect [22]. Curious readers may also refer to other contributions, e.g., see Refs. [23-28]. However,
one major limitation in those studies lies in the fact that the cracking phenomenon is often investigated
by simplified models, for which the interaction among fracture and other aspects such as hydration,

thermal transfer, and creep is usually not taken into consideration. An effective computational



approach that is able to accurately predict the behavior of young concrete from microscopic scale to
macroscopic scale by fully coupling multi-physics process and damage is still missing.

The main objective of this contribution is to develop an effective computational approach based
on phase field model, which is substantially extended from our works in [22], for accurately evaluating
the early-age cracking behavior of the cement-based material. The key novel aspect is devoted to an
efficient scheme that accounts for the effects of both basic and transient thermal creeps. It should be
noticed here that the developed computational model now takes into account all expected relevant
phenomena that occur at early-age in autogeneous conditions, for instance, heat transfer, hydration,
autogenous/thermal shrinkage, damage, and creeps. More specifically, the basic and transient thermal
creeps are modeled following the works [I3], 29], and incorporated into the proposed formulation in
[22]. A new constitutive law considering the mechanical behavior of young concrete is derived, where
the mechanical problem can be directly solved from the stress equilibrium equation at an investigated
time (instead of incremental stress as proposed in the literature works [13], (15, [19]).

The present scheme allows us to describe the interactions of damage with multi-physics processes
of hydration more accurately. The analysis of the crack development is later performed with a
versatile phase field model in the framework of smeared crack models, which is introduced by Marigo
and Francfort [30]. This method makes use of a regularized description of discontinuities through
an additional phase field variable and strongly alleviates meshing problems by describing brittle
cracking. Phenomena of nucleation, interaction and arbitrary crack morphologies can thus be handled
in an efficient way. The detail of this approach can be found in, e.g., Refs. [31H35]. It is worth
mentioning that the developed model is able to handle complex fracture at different scales thanks
to the gradient-type damage conception of the phase field model [36]. Extremely complex fracture
phenomena at micro/mesoscopic scales can thus be modeled by the present approach, by accounting
for the microstructural details of cement-based materials. However, it should be noticed that the
drying shrinkage is not considered here. This means that the early-age behavior in thin structures,
where the effects of thermal strain and autogenous shrinkage are not significantly dominant compared
to the drying shrinkage, is not investigated in the present work. In addition, the concrete mixture
with a high water/cement ratio is also not considered in this analysis due to the fact that it is strongly
affected by the drying process.

The paper is structured as follows. In Section [2], a brief description of the mathematical model for
the proposed approach is given, and a short review about the chemo-thermal model to evaluate the

heat of hydration and the material hardening effect is presented. In the same section, the new phase



field method for modeling complex crack propagation due to thermal, shrinkage and creep strains are
also derived. In Section 3] the applicability, accuracy, and performance of the developed approach are
demonstrated through several numerical examples involving early-age crack onset and propagation at

different scales. Some major conclusions are finally given.

2. Description of mathematical model

Let © ¢ RP be an open domain describing a hydration system at time ¢, containing a crack, with
D being the space dimension and 95 its boundary, as depicted in Fig.[I} Following our previous study
[22], the state of system is defined by four state variables, i.e., temperature T'(x), displacement u(x),
hydration degree a(x), and phase field d(x). Herein, the phase field d(x) is employed to describe the
damage/fracture level, with d(x) = 0 for intact material and d(x) = 1 for fully damaged material. The
fracture surface can be then approximated by a smeared surface, defined as

1
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Ty(d) = /Q v(d,Vd) dQ, with ~(d,Vd) =

In Eq. (1)), v(d, Vd) is the crack density function per unit volume [31} 33} 34]; ¢ is a regularization
parameter which controls the size of the diffused zone. As discussed in the literature, see e.g.,
[35, B7, B8], the parameter ¢ also affects the critical stress of crack initiation. The choice of ¢ in a
specific application is clarified in

The proposed model will incorporate four main processes of cement hydration at early ages:
thermal transfer, hydration, fracture, and mechanical problem. The influence of moisture diffusion is
not considered here, as it often plays an important role in the thicker bodies. However, in the thinner
systems, the characteristic time of this process is much slower compared to the one of heat transfer.

Hence, we neglect the effect of moisture diffusion [12] in such system.

2.1. Energetic response function

Free energy of the investigated system, which is assumed to be a function of the primary variables
{e°, a,T,d,Vd}, can be split into three main parts including the elastic stored energy, the fracture
surface energy, and the thermo-chemical energy. In terms of regularized framework, it can be expressed

as follows:
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Figure 1: Schematic representation of the investigated system: a solid body containing a crack, in

which the hydration reaction takes place during the hardening process.

where ¢ is the elastic strain tensor; ¢ is the density of the elastic energy; 1% is the density of fracture
energy; and 7 ®(T, ) describes the thermo-chemical contributions to the stored energy per unit
volume.

The explicit formulation for each part of the energy density is detailed as follows. The density of

elastic energy ¢ is
Ve == [ee: C(d): ee}, (3)

with C(d) being the elastic stiffness tensor accounted for damage. The density of fracture energy %

describes an amount of energy released upon the creation of a new fracture surface is defined as

¢d = QC(Q)'Y(da Vd)> (4)

in which, g.(«) represents the fracture resistance of material at the hydration degree a.. This issue
will be further clarified in subsection 2.3.21

The density of thermo-chemical energy (T, a) is chosen, according to Cervera et al. [§], as

pTe = —;TCO(T—TO)Q—FQ}T(T—TO)—Fh(a), (5)



where pc is the volumetric heat capacity; Ty is the initial temperature; Qoo describes the released
heat due to hydration reaction, with @ being the total potential heat; and h(«) is the chemical
contribution [I}, §].

The free energy can be rewritten as £ = fQ 1 d€), in which v is identified as the total free density

energy
¥ =¢ + ot T (6)

2.2. Thermodynamics

Without external micro forces, the Clausius-Duhem inequality can be written as follows:

where o is the stress tensor; S, g are the entropy density and the heat flux, respectively.
Using the definition of free energy density ¢ in Eq. @, the local dissipation Eq. can be

rewritten as

oLl . oy : : . vT
D‘<"‘aee):se‘<aT+S>T+Add+“““a‘q'T20’ ®)
— _% _ _ o9 ot —— .
where Ay = =57 = —35 + V. (3794 ) is the variational derivative of i with respect to the phase

field d; The chemical affinity A, = —% is here identified the thermodynamic force associated in the

(chemical) dissipation to the reaction rate c.
The thermodynamic restriction Eq. can be split into three parts, i.e., the local actions D1, the

chemical reaction Dy, and the heat conduction D3, which are detailed as

Dy = <0'— (w):ée— (W+S>T+Add,

Oe€ oT
Dy = Aad, (9)
vT
Dg = —q- T

It has been shown that the positive of D will be obviously ensured if Dy, Dy and Dj are all positive.
Furthermore, we assume that the elastic strain rate £€°, and temperature rate T can have arbitrarily
prescribed values and they are independent of the rate of the order parameter. Hence, we can now
apply the Coleman’s exploitation to Eq. @1, yielding two constitutive relations for the stress o, and

the entropy S as

0 = 0eetp, and S = —0r. (10)



2.3. Specification of dissipation and constitutive model
We here further specify the coupled problems, for instance, (i) chemo-thermal problem, (ii)
mechanical problem, and (iii) phase field problem. The constitutive model and the strong-form

equations in a thermodynamically consistent framework are thus derived.

2.8.1. Chemo-thermal problem
The thermodynamic force associated with the chemical dissipation A, which has been introduced
in Eq. @, can be rewritten as

[0t ' Q

Oh(a)
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Ay = T —Ty)| — (11)
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We assume that stress and fracture variations do not alter the thermodynamic imbalance between
the chemical constituents of the hydration reaction. Hence, this eliminates the first term % and the

second term %—f of A,. Moreover the third term C;—OO(T — Tp) is considered to be negligible in regard
0
of the usual range of temperature in the applications of concrete materials [§]. The chemical affinity

can now be reformulated as

_ Oh(w)
Ao = — B (12)

Basically, the evolution of hydration degree is governed by the thermodynamic imbalance between
unhydrated /hydrated cement [I], and this process is usually assumed to be thermoactivated. Therefore,

an Arrhenius law can be employed to describe such problem

—E,
a:/iae(RT>, (13)

where F, is the activation energy; R = 8.314 x 1072 [kJ K~! mol~!] is the ideal gas constant; and
Aq = %, with 7, being the viscosity coefficient.

Note that, with this choice of the evolution equation for the hydration degree Eq. , the positive
dissipation Ds is obviously ensured as
2 (_Ea

Dy = Ayir = 2o ¢ RT)zo. (14)
N

In numerical model, Aa plays the role as an affinity, which characterizes the hydration kinetics.
This function is often obtained through experimental data of an adiabatic calorimetric test. In this
study, the formulation proposed in [39] is adopted as

Aa — Qioo (Oé), (15)



where the parameter A7 stands for the ratio of the maximum heat production rate to the latent
hydration heat within a normalized definition of the hydration function; and f(«) is the chemical
affinity function, representing the evolution of the normalized heat production rate in terms of the
hydration degree.

In this analysis, f(«) is approximated by the power form [39]:

o= (2’ (£22) g

in which the three constants a, b, and c are identified based on the experimental data.

The thermal equation can be constructed (in its entropy rate form) based on the first and second
principles of thermodynamics. In the absence of the external volume heat source, the thermal equation

can be expressed as
ToS = -V -q +D. (17)

The dissipation D is often eliminated. Using the constitutive relations for entropy S in , and
assuming that the latent heat due to deformation released is negligible, it yields TpS = ch — Qoo
along with . One can obtain

ol — Quoct = —V - q. (18)

In Eq. , Qoo is the heat produced by the hydration reaction, and is defined as

(%)
Qoo = Apf(a)e\ RT /. (19)
By adopting the Fourier’s law ¢ = —kVT, the thermal problem can then be formulated as
pcT =V (kVT) + Quod, (20)
in which k is the local thermal conductivity matrix influenced by fracture process, and is given by [22]
k = g(d)ko, (21)

where kg is the thermal conductivity of the intact material, g(d) = (1 —d)? + € (with € < 1) is the
degradation function, satisfying ¢(0) ~ 1, g(1) = 0 and ¢'(1) = 0, see Refs. [31], 34]).

Clearly, with the use of the Fourier’s law, the positive restriction for Dg

VI VI'kVT



is satisfied.
According to Egs. and , the strong-form equations of the chemo-thermal problem are

defined as a set of coupled equations to be solved on the domain € R? with its boundary 02

pcT =V (kVT) + Qoo in Q,

Qoo = Arf(a) exp(—E./RT) in Q, (23
T=T on 0Qp,

nT(—kVT) =q+h(Ts—T,) ondQy.

\
The associated thermal boundary conditions are assumed to be a mixed boundary condition,

described as follows:
T=T on 0fp, (24)

and
n'(-kVT)=gq+h(T,-T,) on 0Qy, (25)

where T and § are respectively the prescribed temperature and heat flux at the Dirichlet Qp and
Neumann Qp boundaries.

The convection condition is represented by the second term h (Ts — T,) in Eq. , with Ty and
T, representing the body surface and air temperature, respectively. As reported in Ref. [22], the
convection coefficient h is found to be dependent upon a given wind speed at the solid surface and

upon a given air temperature.

2.8.2. Age effects
The hardening process induced the development of mechanical property can be modeled by the
age effects [11], 40]. The increase of the Young’s modulus E, Poisson’s ratio v, and fracture resistance

gc is expressed as functions of the hydration degree, which is explicitly described as follows:
E(a) = Exa®?,
v(a) =0.18 sin% +0.5 e~ 10, (26)
9e(@) = geooll®9e,

where F is the final Young’s modulus, g.. is the final fracture energy, and the functions a®®, a®s

are however chosen as reported in Refs. [11], [40]

qor = (2T %F and @ = ( X%\ (27)
1-— (%3] 1-— Qg
+ +




in which <. >_ denotes the positive operator; ar and ay4, are two material constants, which define

moment when the material begins to have the strength.

2.83.83. Mechanical problem

o
Elastic strain €
1 1
Noe kbc
1 : bc
2 2
Mbe k2. Basic creep strain €
3 3
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I Shrinkage
Thermal
Cracking
i Transient thermal
g

Figure 2: Description of the proposed model for complex mechanical response during hydration process.

The mechanical problem can be schematically sketched in Fig. [2, where the effects of chemo-thermal
process and creep at early-age are all included in the present model. It implies that the following
expression of the elastic strain reaches:

1
gl = 3 ( (vu)T + (Vu)) — gth _ gan _ gtte _ cbe, (28)

where e'! is the thermal expansion strain, e is the autogenous shrinkage strain, e'*¢ is the transient
thermal creep strain, and €P° is the basic creep strain.

Based on Ref. [22], the thermal strain and the autogenous shrinkage strain are defined as

e =BT —Tp)1 and ™ = _K<a—omu> 1, (29)

1 — gy

where [ is the thermal expansion coeflicient, k is a material constant, and «g, represents a mechanical
percolation threshold of the autogenous shrinkage. According to Ref. [4I], the expression of the

transient thermal creep is obtained as
sttc __ r
g = )\ttc|T‘o-7 (30)
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in which A is a material parameter characterizing the stress induced thermal strain due to the
transient temperature history. An appropriate choice of such material parameter has previously been
addressed in Refs. [, 41], for instance, At = 1.38 x 10712 Pa='K~1.

The basic creep is modeled by rheological elements (spring and dashpots) using Kelvin-Voigt chain
with three units combined in serial, see Fig.[2l The evolution of basic creep strain of the Kelvin-Voigt

unit 4 is described through the following relationship [13] [15]

i i i l%:ic(a,T) - o
be\ be\ &

The spring stiffness k};c and dash-pot viscosity nic are affected by the temperature and by the

hydration degree as

kpo(a, T) = ki 5 047300 <E§C (%7 1 ))

_ DA T 2
081 — 1.608a° ’ (32)

and

i) = o L 7). (33)

In Egs. and , FEq. is the creep activation energy, which can be identified from experimental
data, and T, é’c = 293 K is taken for this analysis. The characteristic time TZC in Eq. is kept to be

independent from the temperature

i nic(a)
" = k() (34

Once the elastic strain €° has been well defined. We now provide the explicit form of the density
of strain energy. In order to maintain the compressive resistance during crack closure, the unilateral
contact model is used. The formulation, which is proposed by Miehe et al. [34] with the assumption
that damage induced by traction only, is noticed being suitable for brittle material such as concrete.

Herein, the density of elastic energy for the isotropic materials can be written as

¥° = g(d) YT (€°) + 97 (€9 (35)
The positive and negative parts of the strain energy 1)°*(&°) in Eq. are defined by
e e A e 2 e+ 2
vy = 5 [(re)s ]+ ptr [ (e55)7], (36)

where ¢t and £ are, respectively, the extensive and compressive modes of the elastic strain tensor

€® = et + €°, and its derivatives with respect to the elastic strain defines two projection tensor
PE(e%) = Oee [e°F(e9)] . (37)

11



Basically, P*(¢®) can be determined as described in [42], and curious readers may refer to, e.g.,
Ref. [43], for detail of numerical implementation.
The Euler-Lagrange equations of the variational principle for mechanical problem can be expressed

as
u(x) = Arg{ inSf (E(e®d,o,T) — Wext)} , (38)
ueS,

where S, = {ufu(x) =t on 9Qp, ue H(Q)} and W = [, f - u dQ+ faQNF' u dI' with f being
the body force, while F representing the prescribed traction over the boundary 92y. The strong form

of the mechanical problem can then be expressed as follows:

V.o+f=0 in®,
u=1u on 09 p, (39)

on=F on 09y,

in which, u is the prescribed displacement on the boundary 0Qp.

2.8.4. Phase field problem
Here we will present a crack phase field evolution law that ensures the irreversibility of the process.
From Egs. @, , , and , a reduced form of the Clausius-Duhem inequality can be expressed

as
Aqd > 0. (40)

At this stage, we introduce a threshold function F'(A4,;) such that
F(Aq) <0. (41)

The principle of maximum dissipation requires the dissipation Agd to be maximum under the

constraint defined in Eq. . To archive this aim, the method of Lagrange multipliers is employed:
L=—Agd+ \F(Ay). (42)

The corresponding Kuhn-Tucker equations are

oL

— =0, A>0, F<0, AF=0. 43
0Ay - ( )
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Without loss of generality, the threshold function F(Ag) is assumed in the form F(A;) = Ajg.
Using the first and the second inequalities in the Kuhn-Tucker equations , one reaches

OF(Aa) _ )\ 5, (44)

d=\ -
0A, o

In case of crack growth, d > 0, regarding Eq. , it provides A > 0. From the last equality in
Eq. , we obtain F' =0, or Ay = 0. Hence, the following law for the crack propagation is obtained

oo _ o

F=Ai==5="34

where §7y(d, Vd) defines the variational derivative of the crack density function [34]
d
0y(d,Vd) = 7 IAd. (46)
From Eqgs. , and , the evolution law for the phase field d is obtained as
21 — ) — ge6(d, Vd) = 0. (47)

The criteria of irreversible evolution of cracks can be verified as follows. As 2(1 — d)y¢t > 0,

Eq. ensures 6(d, Vd) > 0, and due to Eq. , we can check the variation of crack length
I = / 6v(d, Vd)d dQ > 0. (48)
Q

As a consequence, the proposed model is to be consistent with the thermodynamic axiom of
positive dissipation, satisfying the irreversibility constraint of crack evolution.
The local crack driving force H(x,t) is also introduced to ensure the positive of Eq. . It

describes a dependence on history [34], and to make loading-unloading possible

H(x,t) = maz {

T€[0,t]

“+(x,7)p.

Basically, H(x,t) contains the maximum reference energy, or a measure for the maximum tensile
strain obtained in the deformation history, which provides a very transparent representation of the
balance equation that governs the diffusive crack topology. For detailed information, curious readers
should refer to, e.g., Refs. [34] 43].

From Egs. , , and , the final expression of the evolution law for the phase field reaches

2(1—dyH — (d—(*Ad) =0 in Q, (50)
belong with a homogeneous Neumann condition Vd(x) - n = 0 on 9S2.

13



2.4. Numerical formulation

The coupled problems described in Eqs. , , and are solved by utilizing a standard FE
method integrated with a staggered procedure, i.e., we alternatively solve the chemo-thermal problem,

phase field problem, and the mechanical problem. The detailed numerical implementation for each

problem is provided in

3. Numerical examples and discussions

In this section, we first discuss the influence of some aspect parameters on the simulation results.
In particular, the following three issues, which affect the numerical simulation results of fracture
behavior, are examined: (i) the loading increments size, (ii) the mesh size, and (iii) the capacity of
the unilateral contact condition. Then, we will conduct numerical simulations in both mesoscopic
and macroscopic scales to show the performance of the present approach. Herein we consider one
example at the structural scale, and the other one is devoted to the investigation of the influence
of microstructural heterogeneity on fracture behavior of the structure. In all examples, the plane
strain condition is adapted along with assumption that no thermal flux perpendicular to the plane is
considered, which is to be consistent with the thick concrete structure.

One should be noticed that this work is dedicated to the development of new numerical schemes,
comparison between the numerical prediction and experiment is thus not provided. However, the
validation of the proposed model is confirmed though the demonstration of the computed results and

the experimental investigation reported in our recent study [44].

3.1. Model analysis

A quarter of a circular solid containing a square hole made of concrete as schematically sketched
in Fig. [3|is considered. The material parameters given in Ref. [I5], and now listed in Table [1| are used.
The critical hydration degree, in which cement material begins having its strength is taken as follows:
ag = 0.15 for the Young’s modulus and the same agy, = 0.15 for fracture resistance. The autogenous
shrinkage strain is activated once the hydration degree gets greater than a4, = 0.115, as described in
Eq. . The Poisson’s ratio is assumed to be independent of the hydration process and v = 0.2 is
taken. Three Kelvin-Voigt units are used to model basic creep, where the spring stiffness and dash-pot

viscosity are chosen, and detailed in Table (1] [I3], [15].
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Figure 3: Geometry and boundary conditions of benchmark example, a quarter of a circular solid

containing a square hole made of concrete subjected to the mixed boundary conditions.

Table 1: Material properties (Ref. [15])

Pmt Value  Unit Pmt Value Unit

pc 2400  kJ/(Km3) ag, 0115 -

k 2.8 W/ (mK) ag 0.15 -

Qoo 117840 kJ/m3 ag. 015 -

her 4 W/(m?2K) E, 174  kJ/mol

B 4 pm/(m.K) v 0.2 -

K 80 pm/m T, 20 °C

Es 35 GPa Ap 0215 GW/kg

Je 32.5 N/m E, 44.929 kJ/mol

Kpeoo 1000  GPa Theoo 01 Days

kpeoo 650 GPa Thoo 1 Days
g’c’oo 100 GPa TEC,OO 10 Days

In phase field model, as discussed in the internal length ¢ is computed through the

relationship with the material parameters (E, g.) and the tensile strength o, as

27Eg.
= .
25602

(51)

With the tensile strength of concrete as o, = 3.45 MPa, the internal length ¢ finally reaches an

15



approximate value of 10 mm. This value is sufficiently small as compared to the structure size.
Different types of thermal and mechanical boundary conditions are assigned to the considered
structure as detailed in Fig.[3]and Table[2] The investigated system is in convection with air environment
on the arc AE, which is modeled by the convection/radiation coefficient h. = 4 W/(m2.K) and
T, = 20°C. For the mechanical boundary conditions: the y— displacements are fixed at two edges AB
and CD, while the x— displacements are here free; and the z— displacements are fixed at two edges
BC and DE, while the y— displacements are set to be free. Both x— and y— displacements are kept

freely on the arc AE. The plane strain condition is assumed to all numerical analyses.

3.1.1. Influence of time increments

The effects of the time increments on the chemo-thermo-mechanical and fracture behavior are
numerically analyzed. The investigated structure is discretized with meshes using triangular elements.
In particular, a fine mesh of 71727 triangular elements with h, = 2.5 mm is used, that satisfies the
condition ¢ > 2h, for having several elements inside the diffused region. Several time increments taken
from At = 300 s to At = 1500 s have been considered. The evolution of the temperature and hydration
degree is then plotted in Figs. [4] and [5[for the investigated point IVP (x = 0.2 m, y = 0.1 m). The
obtained results indicate that the influences of the time increment on the thermal and hydration

processes are insignificant and they can be negligible.

Table 2: Description of boundary conditions

Edge Thermic Ux Uy
AB, CD Zero flux Free  Block
BC, DE Zero flux Block Free
AE Convection h.-,T, Free  Free

To investigate the effects of the time increment on the numerical solution of the creep and
mechanical response, the overall creep strains and overall stress at the edge DE (average value) are
calculated. The obtained results for the zz— component are then represented in Fig. [6] and [7] showing
a good convergence. The variations of creep strain and stress are below 3 % when the increment goes
from 500 s to 300 s. This confirms the stability of the easy-to-implement staggered algorithm as soon
as sufficiently small loading steps are used. Too large steps tend to delay the initiation/propagation of

damage and thus harden the overall response of the structure, see Fig.
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Figure 4: Temperature evolution at an investigated position in the solid domain for different time

increments. The influences of the time increments on the thermal problem are very small.

3
o 0.8f
(&)
-
&
206/
g
.- 04, 4
§ — At = 1500s
o — — At = 1000s
E’O'z - At =500s ||
——- At = 300s
0 1 T
0 50 100

Time (hours)

Figure 5: Hydration evolution at an investigated position in the solid domain for different time

increments. The influences of the time increment on the hydration process are negligible.

3.1.2. Influence of mesh size

The mesh size effect on the solutions is now considered. In particular, we investigate the convergence
of the chemo-thermo-mechanical response with respect to mesh refinement. Here, an incremental time
step as At = 300 s is selected. Then, several simulations using refined meshes are performed where
the characteristic size of the elements varies between h, = 1 mm and h, = 5 mm.

The computed results are represented in Fig. [9] for the evolution of temperature and in Fig. [I0] for
the mechanical response. Based on the obtained numerical results, and similarly to the time increment
effects, the mesh refinement does not significantly alter the thermal problem. The convergence of
mechanical response is obtained. The mesh independent solution can be archived when the mesh size

is taken to be sufficient small compared to the length scale ¢, as discussed in [34] 3§].
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mesh size. The influences of the mesh refinement on the thermal problem are very small.
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Figure 10: Convergence of the stress response with respect to the mesh refinement: the overall stress

is evaluated at the edge DE (average value).

3.1.8. Unilateral contact capacities

In the last part of the model analysis, we investigate the capability of the unilateral contact
formulation in handling auto-contact in a cyclic loading problem (loading/unloading situation). For
this purpose, the same domain as described in Fig. 3| is reconsidered. The traction conditions are
prescribed on the edges AB and DE of the structure at the age 50 hours after casting, see Fig. (a)
for a detailed description of the boundary conditions.

The evolution of the prescribed displacements is depicted in Fig. (b), in which loading and
unloading procedures are applied. The overall loading curve is provided in Fig. Herein the average
of stress in the x— direction is plotted with respect to the prescribed displacement. It is noted

that within the time period t = [2 — 4s], the structure is unloaded until compression mode. Clearly,
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Figure 11: Description of the studied problem to verifying the unilateral contact capacities.

Stress [MPa]

-0.01 0 0.01 0.02 0.03 0.04
Displacement [mm]|

Figure 12: Stress - displacement curve obtained from the loading and unloading problem.

the auto-contact at the crack lips is demonstrated. The asymmetric behavior in traction and in

compression of concrete materials is also captured in Fig.
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3.2. Farly-age cracking in a homogeneous T-shape solid structure at the macroscopic scale
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Figure 13: Geometry and boundary conditions of the investigated system, a T-Shape structure is

subjected to different convection conditions.

A T-shape solid structure made of concrete as shown in Fig. [13]is considered. The same material
parameters given in Table [1] of the previous example are used. The structure is subjected to different
types of thermal and mechanical boundaries conditions as depicted in Fig. [13| and detailed in Table
The investigated system is in convection with air environment at four edges: AB, CD, EF and GH. This
interaction is modeled by the convection/radiation coefficient h%. = 6 W/(m2.K) and air temperature
T, = 15°C. The lower convection/radiation coefficient h%. = 3 x 107* W/(m2.K) is used for three
edges AH, BC, FG to describe the convection of the system with other regions, e.g., when the sample
is in contact with wrapped materials with T, = 20°C. The Dirichlet boundary conditions are also
applied to block the displacement in the x—direction at three edges BC, DE, FG. Such a setup will

provide a critical working condition of the structure, in which damage could take place.

Table 3: Description of boundary conditions

Edge Thermic Ux Uy

AB, CD, EF, GH Convection h%.,T, Free  Free
BC, FG Convection h%., T, Block Free
DE Zero flux Block Free
AH Convection h%,, T, Free  Free

The structure is discretized using triangular elements. As usual, a set of fine meshes of 388428

triangular elements (e.g., h™™ = 1.5 mm) is applied to the critical zones to which cracks could initiate,
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whereas a coarse mesh (e.g., h7'® = 10 mm) is for the rest of the body.

Basically, this designed mesh should meet the condition ¢ > 2h, for having several elements inside
the diffused region. The incremental time step is taken as At = 300 s for the total of 2500 time steps.
The initial conditions Ty = 20°C and ag = 0.01 are chosen for the whole system. The plane strain
condition is assumed for this analysis.

The evolution of the hydration degree at two investigated positions located at (x1 = 225,y; = 210)
mm and (z2 = 100, y2 = 400) mm is computed and their results are then shown in Fig. It has been
shown that the hydration evolves quickly at the beginning period of the hardening process, generating
the heat that is more than the heat loss due to convection to the environment, and resulted in the
increase of temperature as exhibited in Fig.[I4 The temperature reaches its maximum value at time
t =~ 22.5 hours and then decreases corresponding to the decelerated period of hydration process. The
development of material strength (i.e., the Young’s modulus and fracture resistance) is also illustrated

in Fig. and a similar phenomenon is observed. The concrete material quickly gains 70% of its

strength after 48 hours.

35

— — Investigated position 1
— Investigated position 2

w
o
T

Temperature T [C]
N
o

0 50 100 150
Time (hours)

Figure 14: Temperature evolution at different positions in the solid domain: the structure reaches the

maximum temperature at time ¢ = 22.5 hours and then decreases in time.

Next, the local distribution of temperature, hydration degree, and damage level (phase field
variable) of the considered structure at several time steps is estimated and their results are then
shown in Fig. Due to shrinkage, two cracks symmetrically initiate at two corners at time ¢ ~ 62.50
hours. With the cooling of the system and the increase of autogenous shrinkage, we clearly observe
the growth of these two cracks. The structure is completely collapsed at time ¢ = 142.5 hours. To

demonstrate the crucial role of creeping at early-age, we then provide in Fig. [I7] a comparison of
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Figure 15: Evolution of the hydration and material strength (i.e., the Young’s modulus and fracture

resistance) at different positions in the investigated solid domain.

fracture response between two cases, i.e., with and without consideration of creep. We capture that the
model without consideration of creep predicts crack initiation earlier. The structure is also collapsed
sooner, at t = 100 hours in comparison with ¢ = 142.5 hours for the case of including creep effects. It
implies that the presence of creep reduces tensile stress and hence delays the occurrence/propagation
of cracks. In other words, the relaxation of stress due to creep improves the cracking and post-cracking
resistance of the concrete structure.

The evolution of elastic strain in x— direction for both cases with and without consideration of
the creep effects, (computed at edge DFE) is plotted in Fig. In the model with consideration of the
creep effects, we also plot the basic creep strain and transient thermal creep strain. The same delayed
phenomenon as in the stress evolution is observed. These results have confirmed the important role of
creep effects when studying the early-age behavior of cement-based materials. It strongly alters the

cracking response of the structure.

3.3.  Early-age cracking in a heterogeneous concrete structure at the mesoscopic scale

We now consider the microstructural effects on the early-age behavior of the concrete materials. A
sub-structure with dimension L x H = 2 x 2 cm? is investigated, in which the microstructural details
are explicitly taken into account, see Fig. An image-based model obtained from microtomography
of a concrete consisting of coarse sand embedded into a cement matrix is used. The considered 2D

microstructure is a cross-section of CT-images obtained by the XRCT laboratory scanner available at
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Figure 16: The evolution of the phase field, temperature, and hydration degree of the structure during
the hydration process calculated by the present approach. The shrinkage strain resulted in crack

nucleation and growth at the two vertices.

Navier laboratory [45]. The grey level image was filtered and thresholded to separate two phases of
the microstructure. The computed result is represented in Fig. where the white and black phases
correspond to the matrix (cement paste), inclusions (sand grains), respectively.

In this example, our main goal is to capture the risk of early-age cracking in cement-based material
when it is subjected to a thermal treatment. This is a crucial procedure in manufacture of the special
fiber reinforced concrete using shape memory alloys (requiring a heat treatment). The material and
model parameters for two phases: sand grains and cement matrix at the mesoscopic scale are listed

in Table [4] [4648]. Moreover, a strong assumption is made for the proposed model at this scale: the
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Figure 18: The evolution of basic creep strain b, transient thermal creep strain £!'¢, and elastic

strain e€1354¢ for two cases, with and without consideration of the creep effects.

hydration process will only take place in the cement matriz, and so only this phase is affected by creep
effects. This assumption was made by considering that the creep is due to the viscous behavior of
C-S-H restrained by the elastic phases in the cement paste, see e.g., [49] 50] for more detail.

The mixed boundary conditions are used to mimic the thermal condition of the heat treatment
acting on the sub-structure. More specifically, the convection condition and Dirichlet boundary

condition T' = T are alternatively applied on the upper-end EF (y = 10 cm), while the left-end AF is
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Figure 19: Geometry and boundary conditions of a solid structure, where the microstructural

heterogeneities are explicitly taken into account.

Table 4: Material properties

Parameter Cement matrix Sand  Unit

pe 2415 2337  kJ/(K.m?)
k 1.55 3.2 W/(mK)
Qo 908443 - kJ/m3

8 12 5 ym/(mK)
K 200 1071 pm/m
Es 18 50 GPa

Je 18 120 N/m

Oc 2 8 MPa

Qau 0.115 - -

oF 0.15 - -

Qg, 0.15 - -

v 0.22 0.3 -

Ty 20 20 °C

Ar 0.215 - GW /kg
E, 38.3 - kJ /mol
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only affected by the convection condition. The displacements in both x, y— directions of these two
edges AF and EF are kept to be free. The four edges AB, BC, CD, DE with orange color are subjected
to zero flux condition, with the displacement’s constraint that is defined as follows: on the edges AB
and CD, displacements in y— direction are fixed while displacements in z— direction are free; on the
edges BC and DE, displacements in z— direction are fixed while displacements in y— direction are

free. The details of mixed boundary conditions are described in Table

Table 5: Description of boundary conditions

Thermal boundary conditions Mechanical boundary conditions
t = [0 — 69.31] hours t > 69.31 hours r—displacements y—displacements
AB  Zero flux Zero flux Free Block
BC Zero flux Zero flux Block Free
CD Zero flux Zero flux Free Block
DE Zero flux Zero flux Block Free
EF Convection 7, = 20°C  Dirichlet T = 105° Free Free
AF Convection T, = 20°C Convection T, = 20°C  Free Free

From the 500 x 500 pixels, a mesh of ~ 375000 triangular elements (e.g., a mesh size with
he = 0.04 mm), is generated. The material property of matrix and inclusion are transferred into the
triangular domains associated with elements. A detailed description was previously reported by the
present authors, and curious readers should refer to, see e.g., [43] for more information. The simulation
begins with a time step, e.g., At = 200 s, and at the moment of switching to the Dirichlet boundary
conditions of the heat transfer problem (¢ > 69.31 hours), it is reduced to At = 3 s.

The results of crack propagation, temperature evolution, and development of hydration are then
shown in Fig. It should be noticed here that a post-processing procedure is adopted to highlight
the effects of sand on the fracture problem. The geometry of sand grains is represented and marked
in blue color, which is then overlaid with the phase field. Furthermore, the global strain and stress
are computed by taking the average value at the edge AB (lower-end y = 0), and plotted in Figs.
for the xz— component. In general, we observe two periods of the mechanical fracture behavior

corresponding to the two different thermal boundary conditions, as follows:

(i) Time period t = [0 — 69.31] hours: Classical hydration process, where the shrinkage crack is

observed.
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Figure 20: Evolution of damage level, temperature, and hydration for several time steps. The phase
field is plotted in the left figure for each time step. The obtained results have demonstrated a strong

effect of microstructural heterogeneity on the crack propagation tendency.

(ii) Time period t > 69.31 hours: Thermal shock period, in which a sudden change of strain and

stress is captured along with the presence of complex crack networks.

More specifically, at the first period, the cracking due to the shrinkage/hydration is observed at
the structure’s corner at time t ~ 40 hours after casting. Then it propagates until reaching the sand
grain as depicted in Fig. 20[a) for the time ¢ = 69.31 hours. The presence of damage provides a
non-linear development of strain and stress at this period, see Figs. [21| and The strain evolution
has demonstrated again the important role of the basic creep strain on the global behavior of the
structure. Effects of the transient thermal creep can be negligible, which is due to the small variation
of temperature during the hydration period (less than 7°C). At the second period, the thermal
treatment introduces a sudden change in the thermo-mechanical fracture behavior of the structure.

The temperature quickly rises and induces the initiation/propagation of several new crack networks.
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A strong effect of heterogeneity on the fracture phenomena is captured. The cracks mostly propagate

in the interfacial region of cement/sand. More interestingly, we observe the initiation of interfacial

crack, that then links to the main crack as shown in Fig. 20|(b),(c).
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Figure 21: Evolution of transient thermal creep train, basic creep strain, and elastic strain during the

hardening process of the investigated system.
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Figure 22: Comparison of numerical results of stress development between the homogeneous structure

and the heterogeneous structure. A significant difference due to the effects of heterogeneities is

captured.

The evolution of the temperature at two investigated positions (denoted Point 1 and Point 2

in Fig. is plotted in Fig. where we also provide two other zoom-in plots of the time and

temperature scales of interest. The obtained results are quasi identical for both positions at the first

time period ¢ = [0 —69.31] hours. However, at the second time period ¢ > 69.31 hours, the temperature
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in the region close to the upper-end is much higher than in other regions. Note that, cracks are
assumed to be insulating in this work, i.e, that does not allow thermal transfer crossing cracked region.
Hence, we observe a strong variation of thermal distribution between the lower and upper parts of the
investigated structure. This phenomenon is recognized as the major reason for the cracking problem
captured in Fig. 20, where cracks are mostly distributed in the upper zone, and mainly propagate

following the horizontal direction (this tendency is also affected by the distribution of sand grains).
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Figure 23: Evolution of temperature at two investigated points during the hydration process.

The observation of this numerical experiment has demonstrated a high risk of early-age cracking
for cement-based materials, particularly when they are subjected to thermal treatment. The very
complex chemo-thermo-mechanical/fracture behavior at the mesoscopic scale is obtained as the strong
effects of heterogeneity on the fracture phenomena are captured. The influence of basic creep strain is
also significant. All of that confirms the important role of creep and microstructural details, which
are highly required to model the early-age behavior of the cement-based materials accurately. The
obtained results also demonstrate the performance of the proposed model, which is applicable to the
large-scale study of the hydration induced crack propagation from the micrometer scale to the meter
scale. It is particularly suitable for investigation of strongly heterogeneous material at the microscopic
level and its effect on macroscopic behavior. The new model is promising to develop a concurrent

multi-scale model with a complete description of the multi-physics processes at the microscopic scale.

3.4. Summary of the computational time

In all cases, a workstation with 18 cores, 112 Go Ram and 2.4 GHz processor was used (see

https://hpc.uni.lu/systems/iris/). The present code has been implemented in Matlab.
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Table 6: Computational time for the different examples.

Problem No. Elements No. Increments CPU-time/increment Total CPU-time
Model analysis 71727 1800 5.30 [s] 2.65 [hours]
T-Shape solid structure 388428 2250 48.31 [s] 30.19 [hours]
Heterogeneous concrete 375000 1750 56.72[s] 27.57 [hours|

4. Conclusion

In this paper, we have developed a new multi-physics computational framework based on the phase
field model for studying the early-age cracking behavior of cement-based materials. The influences
of hydration, material strength’s development, thermal transfer, shrinkage, and both basic/transient
thermal creeps on fracture behavior are fully considered. A new constitutive law has been developed to
include the creep effects, where the mechanical problem is solved directly from the stress equilibrium
equation at an investigated time (instead of incremental stress). The new scheme is suitable to make
use of unilateral contact formulation at crack surfaces. It provides a strong coupling with fracture
mechanics in the variational approach of the phase field model. Compared with the models proposed in
the literature, the new model describes better the interactions of damage with multi-physics processes
of hydration. The accuracy of the method has been proved through a benchmark analysis of the mesh
size, time increment effects, and the capacity of the unilateral contact condition. Specially, thanks to
the advantage of the phase field model with the advanced local crack driving force, our developed
model is able to capture all fracture stages such as crack nucleation, initiation and propagation in the
complex heterogeneous material under arbitrary loading conditions.

The present model is extremely robust. With the use of the staggered update scheme, the solution
of the multi-physics problem can be obtained by solving: (i) one non-linear problem for updating
the temperature and hydration degree; (ii) two linear problems for updating the phase field, and the
displacement field. Moreover, this scheme increases the computational efficiency of the method, which
is promising to investigate a complex problem in 3D.

We have successfully applied the proposed model to study the thermal-mechanical behavior of the
structure at the macroscopic scale, in which the heat of hydration, the evolution of material strength,
and the crack propagation are all simulated in an efficient way. We also performed the analysis of
fracture phenomena at the mesoscopic scale, where the microstructural heterogeneities are explicitly
taken into account. The effects of creep at different length scales are also analyzed and discussed.

The obtained results indicate that the creep and details of microstructure play an important role in
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evaluating the mechanical behavior of concrete after casting.
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Appendix A. Choice of the regularization parameter £

The choice of ¢ has previously been discussed in Refs. [37, B8]. In the aforementioned works, the
regularized length in the phase field model is considered as an internal parameter (related to the
material properties) that affects the critical stress at which crack nucleation occurs. Therefore, the
internal length has to be identified from material parameters. A relationship between ¢ and material

parameters has been established by considering uniaxial traction of a bar, as follows:

3 [3 [Eg.

where o, is the critical value of stress in traction.

Some recent phase field models have been presented to eliminate the sensibility of the length scale

on the mechanical response [51l, [52]. However, these models seem to be computationally expensive.

Appendix B. Numerical implementations

Appendixz B.1. Chemo-thermal problem

A standard Newton—Raphson method is employed to solve the nonlinear problem defined by
Eq. . It yields the following linear system, which is solved at each iteration

ORT ~
gre L = R
(B.1)
OR. -
Do a=-R,.

The time integration is modeled by using the Euler method, i.e., &p+1 = (zp+1 — @) /At. The

tangential matrix at time step n + 1 reads

OR 1 OF,
—Kp+ —Hp+ Qo — —2 B.2
anL‘i’l ’ t g 0 ngl ( )
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and

OR,, 1 OF
- Qu - B,
E)ozfHl AtQ 8a§+1 (B.3)
in which
_ 4 —Ea/RT\ Iy
0T, /QNT (ATf ()72 © r di

and

aFa _ / Ng (ATaf(a) eEa/RT)Na dQ.
Q

dag o
For the definition of each component matrix, the reader is referred to [22] for more practical

information.

Appendixz B.2. Mechanical problem

Assuming that the spring stiffness and dash-pot viscosity are constants within each time step, the

incremental basic creep strain is computed as follows

Aey = e —en = Al + ALY o, + AL - o, (B.4)

n

where A’{C, Agc, Agc are three second-order tensors (for more detail, curious readers should refer to,
e.g., see [I3]). These three tensors depend on material parameters, incremental time step and stress in
the dashpot o9, which will be updated at the end of each time step.

For the Kelvin-Voigt unit 4, the stress in the dashpot reads

; 7 =i i i
U:Zisl _ A0n+1£ (1 _ el—At/Tbc> t orlidsglmAYT, (B.5)

The incremental transient thermal creep strain can be written as follows

Aeyty =epty — ey =T (o0 +0nt1), (B.6)

with T being the second-order tensor, depending on ty. = Ae (M) and the Poisson’s ratio.

The Cauchy stress tensor at time step n+ 1 is defined according to the constitutive relation (10]) by
ont+1 =Cy <Vsun+1 - 52}11 — €pt1 — Egil - €ffi1)7 (B.7)

where Cg is the matrix form of fourth-order tensor C(d) in Voigt notation.

By introducing the indicator R*, with

R =sign(tret), and R, =1-R} (¢, (B.8)

n —
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where sign(.) = 1 if (.) > 0, and, sign(.) =0 if (.) < 0.

It implies the general expression for elastic stiffness accounting for damage as
Cu= g(a) [ N@RE I [1] + 2u(0)Py | + | M@y [0 + 20(a)Py | (B.9)

where P is the matrix form of P (see Eq. (36)) in Voigt notation [43]

From Egs. (B.4), (B.6), (B.7), the new formulation for Cauchy stress in the incremental scheme is

thus rewritten
ont1 = Cg [Vsumrl —en —enty — [en Fent H A + (Agc + Tttc) Un]] ; (B.10)

with
-1
CS=Cy [1 + CgAl + C Tl (B.11)
Above, C§ can be considered as the effective stiffness, accounting for damage and corrected by

creep effects.

Remark: In the works proposed by [13], I5], the transient thermal creep strain and basic creep strain
are assumed to be induced by effective stress (without consideration of damage). It means that
the interaction among fracture, mechanical problem and creeps are neglected. In order to get a
stronger coupled model of fracture mechanics and multi-physics process of cement hydration, the
creep strains are here assumed to be induced by apparent stress, involving the stress degradation
cause of damage. Consequently, the proposed scheme dominates over the existing approaches
[13, [15]. More specifically, the present model is able to capture the decrease of creep strain rate
due to the stress relaxation (during crack propagation). In addition, the mechanical problem
will be directly considered by using final Cauchy stress instead of incremental stress. This is

needed for the use of unilateral contact formulation on the fracture assessment.

The displacement problem to be solved at time t,41 is expressed by seeking u(x) € S, such that
/Q Viu,, 1 C§ Viou dQ = /Q CS [sghﬂ +e2 +
+ent + e+ Al + (Agc + T“C) an}} Viou dQ. (B.12)
The linear system of equations is obtained for time step n + 1 as follows

Kou,i1 = Fu, (B.13)
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where

K, = /QBE CS B, dQ, (B.14)
and

F, = /Q BICe (sﬁj;l + e, el effe 4 Abe (Agc + T”C) an> dQ. (B.15)

Appendixz B.3. Phase field problem

Using the variational principle for Eq. , it yields the following phase field problem to be solved

at time t5,41

Nd. 2 — nd
/S2(2%n+1+1+ At)dnHéd dQ+/Q€ Vdpi1Vod dQ_/Q<2Hn+1+ Atdn)éd dQ.  (B.16)

The linear system of equations is given by

Kqdpi1 = Fa, (B.17)
where
B T Nd 2T
K, — / N (27—ln+1 F14 —) N, dQ + / BTB, d9, (B.18)
Q At Q
Fy= / NT (27—[n+1 + ﬁdn) an. (B.19)
o At

Appendixz B.4. Key steps of solution algorithm

The main steps of the solution procedure (or pseudo codes) are briefly described
e Initialization

(a) Initialize the temperature field Tp(x), the hydration degree field ap(x), and its time
derivatives Tp(x), co(x).

(b) Initialize the displacement field ug(x), the phase field dy(x), and the history functional
Ho = 0.

(c) Initialize the basic creep strain eb¢(x) = 0, the transient thermal creep strain 4°(x) = 0,

the dashpot stress O'é’ds (x) = 0, and Cauchy stress oo(x) = 0.

. . . i, d
e FOR "' < M given T}, Ty, Qin, G Up, dpyy Hp, €26, ¢, 0% and o,.

(1) Chemo-thermal problem
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. Compute T, and o,41 by solving the iterative scheme Eq. .
(2) Account age effects
. Material parameters are updated by taking into account the age effects Egs. , ,
(33)-
(3) Displacement problem
. (i) Compute P, R,, according to [34, 43].

. (ii) Compute Al{fm, T by Eq. (B.6)), and e, and €%, by Eq. (29).
. (iii) Compute K, and F, and then displacement field u,41(x) by solving problem
(B.13).

(4) Supplementary

. (i) Compute Cauchy stress o,+1 by Eq. , and dashpot stress a',fl’isl according to
Eq. .
. (ii) Compute 52‘;1 and el'¢; by Egs. , , and then elastic strain e, by
Eq. .
(5) Phase field problem

. (i) Compute history field Hp+1(x,7) by Eq. (49).
. (ii) Compute Ky, F4 and then phase field d,+1(x) by solving problem Eq. (B.17)).

()n < (.)n+1 and go to step (1).

¢ END
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