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Abstract Scientific research in the formal sciences comes in multiple degrees
of formality: fully formal work; rigorous proofs that practitioners know to be
formalizable in principle; and informal work like rough proof sketches and
considerations about the advantages and disadvantages of various formal sys-
tems. This informal work includes informal and semi-formal debates between
formal scientists, e.g. about the acceptability of foundational principles and
proposed axiomatizations. In this paper, we propose to use the methodology
of structured argumentation theory to produce a formal model of such in-
formal and semi-formal debates in the formal sciences. For this purpose, we
propose ASPIC-END, an adaptation of the structured argumentation frame-
work ASPIC+ which can incorporate natural deduction style arguments and
explanations. We illustrate the applicability of the framework to debates in
the formal sciences by presenting a simple model of some arguments about
proposed solutions to the Liar paradox, and by discussing a more extensive —
but still preliminary — model of parts of the debate that mathematicians had
about the Axiom of Choice in the early 20th century.

Keywords Argumentation theory - Formal sciences - Natural deduction -
Hypothetical reasoning - Axiom of Choice

1 Introduction

Scientific research in the formal sciences (mathematics, logic, theoretical com-
puter science, axiomatic metaphysics, formal linguistics, game theory etc)
comes in multiple degrees of formality: fully formal work, which is often per-
formed with the help of computer systems for interactive theorem proving, as
it quickly becomes too tedious for humans to explicate all their reasoning in a
formal system; fully rigorous proofs that practitioners precisely know how to
formalize; practically rigorous work that practitioner know to be formalizable
in principle; and informal work like rough proof sketches and considerations
about the advantages and disadvantages of various formal systems. Histori-
cally, there has been a move from more informal approaches to more formal
ones, e.g. in the mathematics of the first half of the 20th century, when the
foundational crisis led to an increased attention to axiomatization and to rig-
orous proofs. This move has generally been accompanied by debates among
formal scientists, e.g. about the acceptability of foundational principles and
proposed axiomatizations. Despite being informed by formal considerations,
these debates have generally been articulated in an informal or semi-formal
way.

In this paper, we propose to use the methodology of structured argumenta-
tion theory (see Besnard et al, |2014) to produce formal models of such infor-
mal and semi-formal debates in the formal sciences. Structured argumentation
theory allows for a fine-grained model of argumentation and argumentative
reasoning based on a formal language and evaluated according to the princi-
ples developed in Dung-style abstract argumentation theory (see Dung), [1995;
Baroni et al| [2011)).
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One of the dominant formal frameworks for structured argumentation is
the ASPIC+ framework (see Modgil and Prakken, 2014). In ASPIC+, argu-
ments are built from axioms and premises as well as from strict and defeasible
rules, in a similar manner as proofs are built from axioms and rules in a
Hilbert-style proof system. The distinction between strict and defeasible rules
amounts to the difference between deductively valid modes of inference (e.g.
conjunction introduction), and defeasible principles that generally hold but
allow for exception (e.g. that dogs generally have four legs). Three kinds of
attacks between arguments, undermines, undercuts and rebuttals, are defined
between arguments, and finally an argumentation semantics from abstract ar-
gumentation theory (see Baroni et al| [2011)) is applied to determine which sets
of arguments can be rationally accepted.

Arguments in the formal sciences often involve hypothetical reasoning,
which involves reasoning based on an assumption or hypothesis that is lo-
cally assumed to be true for the sake of the argument, but to which there is
no commitment on the global level. Such hypothetical reasoning is captured
well by natural deduction proof systems, whereas the Hilbert-style definition
of arguments in ASPIC+ cannot account for such hypothetical reasoning.

ASPIC+ does not allow strict rules to be attacked, which means that
debates about which rules of inference are correct, cannot be modeled in
ASPIC+. But sometimes formal scientists debate about which rules of infer-
ence are deductively valid. ASPIC-END replaces the strict rules of ASPIC+ by
intuitively strict rules, which formalize the prima facie laws of logic which we
pre-theoretically consider to be valid without exceptions, but which can nev-
ertheless be given up after more careful examination. Unlike the strict rules of
ASPIC+, an intuitively strict rule can be attacked by another argument, but
unlike for a defeasible rule, the conclusion of an intuitive strict rule cannot be
rejected if both the antecedent of the rule and the rule itself is accepted.

Scientific discourse is characterized not only by the exchange of arguments
in favor and against various scientific hypotheses, but also by the attempt
to provide scientific explanations. In the context of abstract argumentation,
Seselja and Strafler| (2013) have therefore proposed to incorporate the notion
of explanation into argumentation theory, in order to model scientific debate
more faithfully. So far, this incorporation of explanation into argumentation
theory has not been extended to the case of structured argumentation. The two
contributions of the current paper in this direction are a general framework
for incorporating explanation into structured argumentation and a particular
proposal for how to define explanations in instantiations of that framework in
the domain of paradoxes arising in the formal sciences.

We propose an adaptation of the ASPIC+ framework called ASPIC-END
that allows for incorporating hypothetical reasoning and explanations (see
Section 3). We illustrate the applicability of the framework to debates in the
formal sciences through two instantiations of the framework: First, we present
in detail a model of a very simple set of arguments about proposed solutions
to the Liar Paradox (see Section 4). The presentation of this model only serves
to illustrate the functioning of ASPIC-END on a simple example and does not
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purport to be a model of philosophically noteworthy arguments on this topic.
In Section 5 we sketch and discuss a more extensive model that formalizes
parts of the debate that mathematicians had about the Axiom of Choice in
the early 20th century (see Moore, [1982)). Given that the model still leaves
out many contributions to that debate and additionally simplifies some of
the contributions that it does take into account, we consider it to only be a
preliminary model that we plan to extend in the future. However, we hope that
this more extensive model gives some insight into the strengths and drawbacks
of the modeling capacities of ASPIC-END, as well as inspiration for further
research into this direction.

In order to ensure that the ASPIC-END framework behaves as one would
rationally expect, as was previously done for ASPIC+ (see[Modgil and Prakken)|
2013)), we have proved multiple rationality postulates about ASPIC-END in a
technical online appendix (Cramer and Dauphin, [2018)).

We see two primary motivations for applying the methodology of struc-
tured argumentation theory to debates in the formal sciences: First, it is a
suitable testbed for structured argumentation theory: Applying structured ar-
gumentation theory to real-life debates is often very challenging, because of
many layers of uncertainty and imprecision in the interpretation of most types
of debates, caused by ambiguities and vagueness of natural language, by a
lack of a formal understanding of the domain of discourse of the debate, as
well as by the limited rationality of the humans involved in the debate. In the
case of debates in the formal sciences, all of these problems are alleviated to
some degree: Formal scientists tend to avoid ambiguities and minimize vague-
ness in their scientific usage of natural language, especially so in the more
formal parts of their work, but also in the more informal parts. We have a
much better formal understanding of the domains of discourse of the formal
sciences than of practically any other domains of discourse. And the debates
that scientists have on scientific topics of their field generally show a higher
degree of rationality than debates that non-scientists have. For these reasons,
it can be hoped that structured argumentation theory can be more easily, and
thus hopefully more fruitfully, applied to debates in the formal sciences than
to many other kinds of debates to which it has been applied so far. This could
also more clearly than existing application bring to light the drawbacks of
current approaches in structured argumentation theory, which could become
an impetus for further developments in the field.

The second motivation for applying structured argumentation theory to de-
bates in the formal sciences is that in the long run, once the methodology and
the models it produces become more mature, such models could contribute to a
better understanding of what is at stake in debates in the formal sciences, and
hence to a better understanding about the foundations of formal sciences. In
this respect, we see the proposed methodology as complimentary to and com-
binable with the work within the emerging field of computation metaphysics,
in which methods from automated and interactive theorem proving are used to
fully formalize axiomatic theories of metaphysics. The term computation meta-
physics was first coined by |Fitelson and Zaltal (2007), who formalized parts
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of Abstract Object Theory (see |Zalta) |2012)) with PROVER9. More recently,
significant contributions to this field of research were made by |Benzmiller
and Woltzenlogel Paleo| (2016), who with the help of an automated higher-
order theorem prover discovered a so far undetected inconsistency in Godel’s
ontological argument, and by [Benzmiiller et al| (2017)), who used higher-order
theorem provers to expose some mistakes and novel insights in a long-standing
controversy between Hayek and Anderson concerning a variant of Godel’s on-
tological argument. This work shows that full formalization of work in a formal
field of research can yield real benefits to advance the research in such a field.
But so far, this methodology has been limited to the study of the object level
of formal axiomatic theories, whereas the meta-level debates that formal scien-
tists have about such theories could not be captured within the formalizations.
One way in which the methodology proposed in this paper could complement
the existing methodology of automated theorem proving is that is could allow
such meta-level debates to also be captured within a formal model, so that the
discovery of mistakes and new insights with the help of automated theorem
proving could be extended to this level.

2 Related work & motivation for ASPIC-END

The work of Dung| (1995) introduced the theory of abstract argumentation, in
which one models arguments by abstracting away from their internal structure
to focus on the relation of conflict between them. This gives rise to the notion
of an argumentation framework, which formally is just a directed graph, whose
informal interpretation is that the vertices stand for arguments and the edges
stand for the attack relation between arguments, i.e. the relation between a
counterargument and the argument that it counters. Given an argumenta-
tion framework, the goal is to select a set of arguments deemed acceptable on
the sole basis of the attack relation between the arguments. There are vari-
ous approaches for making such selections, based on different criteria such as
conflict-freeness (i.e. never simultaneously accepting two arguments where one
attacks the other), defense (accepting an attacked argument only if you also
accept counterarguments to all its attackers), and maximality (which among
other things ensures that an unattacked argument will always be accepted).
A selection of arguments that are deemed simultaneously acceptable accord-
ing to some criteria is called an extension. Sometimes, especially when there
are cycles in the argumentation framework, there might be multiple exten-
sions that satisfy the given criteria. For this reason, the formal definition of
an abstract argumentation semantics is that it is a function that maps any
given argumentation framework to a set of sets of arguments (vertices) of that
argumentation framework.

In structured argumentation, one models also the internal structure of ar-
guments through a formal language in which arguments and counterarguments
can be constructed (Besnard et al, |2014)). One important family of frameworks
for structured argumentation is the family of ASPIC-like frameworks, which
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is based on the work of John Pollock (e.g. 1987} |1995) and consists among
others of the original ASPIC framework (Prakken) [2010), the ASPIC+ frame-
work (Modgil and Prakken| 2014), and the ASPIC- framework (Caminada
et all 2014)). We briefly sketch ASPIC+, as it is the basis for our framework
ASPIC-END.

In ASPIC+, one starts with a knowledge base and a set of ruledl| which
allow one to make inferences from given knowledge. There are two kinds of
rules: Strict rules logically entail their conclusion, whereas defeasible rules
only create a presumption in favour of their conclusion. Arguments are built
either by introducing an element of the knowledge base into the framework,
or by making an inference based on a rule and the conclusions of previous
arguments. Attacks between arguments are constructed either by attacking a
fallible premise of an argument (undermining), by attacking the conclusion of
a defeasible inference made within an argument (rebuttal), or by questioning
the applicability of such a rule (undercutting). Preferences between arguments
can be derived from preferences between rules. An abstract argumentation
framework can thus be built and acceptable arguments can be selected using
any abstract argumentation semantics.

Caminada and Amgoud| (2007)) have introduced the notion of rationality
postulates for structured argumentation frameworks. These are conditions that
structured argumentation frameworks would rationally be expected to satisfy,
such as closure under strict rules of the output and consistency of the con-
clusions given consistency of the strict rules. (Caminada and Amgoud| (2007)
showed that the original ASPIC system did not satisfy these postulates, but
proposed minor changes that made it satisfy them. These changes have been
incorporated into ASPIC+ (Modgil and Prakken) [2013)).

ASPIC-END features three main differences from ASPIC+. The first is
that it allows for arguments to introduce an assumption on which to reason
hypothetically, just like in natural deduction. In natural deduction, hypothet-
ical derivations are employed in the inference schemes called —-Introduction
(or proof by contradiction), D-Introduction (we use D for the material impli-
cation), and V-Elimination (or reasoning by cases). Allowing for the usage of
defeasible rules within hypothetical reasoning leads to specific problems that
have been studied for the inference scheme of reasoning by cases in a recent
paper by Beirlaen et al (2017)). In the current paper we avoid these problems by
not allowing defeasible rules within hypothetical reasoning. However, a conclu-
sion made on the basis of an inference scheme involving hypothetical reasoning

1 In this paper, we use the word rule in the way in which it is usually used in the

structured argumentation literature. There is one important difference between this usage
of rule and the way the word is usually used in the logical literature outside of structured
argumentation theory: A rule, as the word is used in structured argumentation theory, is
what would normally be called an instance of a rule. For this reason, it makes sense to speak
of a rule scheme (as we will frequently do in Section , which is what would normally be
just called a rule.
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may still be incorporated into an argument that uses defeasible rules, so that
there is some integration of defeasible and hypothetical reasoningﬂ

The second difference is that ASPIC-END allows for arguments about the
correct rules of logical reasoning. In ASPIC+, such arguments cannot be mod-
eled, as the rules of logical reasoning represented by strict rules, and arguments
involving only strict rules can never be attacked. Argumentation about the
correct rules of logical reasoning is quite common in debates in the formal sci-
ences. For example, our prima facie intuitions suggest that it is a law of logic
that a sentence that is not true must be false. However, the Kripke-Feferman
solution to the Liar paradox (Reinhardt] 1986} Feferman, [1991) suggests that
some sentences, such as the Liar sentence, are neither true nor false, since
giving them either one of the two truth values leads to a contradiction. This
solution is not putting forward an argument against the falsehood of the sen-
tence by rebutting it, nor is it undermining any of the argument’s premises.
It is undercutting the argument by attacking the inference made from the
negation of truth to falsehood.

To allow such arguments about the correct laws of logic to be modeled in
ASPIC-END, we replace strict rules by intuitively strict rules whose applica-
bility can be questioned, as in the case of defeasible rules in ASPIC+, but
which behave like strict rules when their applicability is accepted. This means
that conclusions of intuitively strict rules cannot be rebutted, just as for strict
rules in ASPIC+. Intuitively strict rules represent prima facie laws of logic,
i.e. purportedly logical inference rules which make sense at first but are open
to debate.

The third difference is that ASPIC-END has a notion of explanations ad-

ditionally to the notion of arguments. This feature is based on the work of
Seselja and StraBer (2013), who have extended Dung-style abstract argumen-
tation with explananda (phenomena that need to be explained) and an ez-
planatory relation, which allows arguments to either explain these explananda
or deepen another argument’s explanation. In Section [3] we will need some
definitions from [Seselja and Strafer| (2013):
Definition 1. An explanatory argumentation framework (EAF) is a tuple
(A, X, —,--+), where A is a set of arguments, X is a set of explananda, — is
an attack relation between arguments and --» is an explanatory relation from
arguments to either explananda or arguments.

If A--» B, we say that A explains B.
Sets of admissible arguments are then selected:

Definition 2. Let A = (4, X, —,--») be an EAF, A € Aand S C A. We say
that S is conflict-free iff there are no arguments B,C € S such that B — C.

2 The early formalisms of [Pollockl (1987)) and [Pollock| (1995) also allowed for arguments
involving hypothetical reasoning. Most of the work in structured argumentation theory that
built on this early work of Pollock ignored this type of arguments. In a recent paper, |Beirlaen
et all (2018)) have critically assessed the way hypothetical arguments function in Pollock’s
formalisms and have identified three problematic features of the formalism in|Pollock| (1995).
By not allowing defeasible rules within hypothetical reasoning, we avoid these problematic
features.
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Fig. 1 Example of explanatory power and depth: {B} >, {C} and {A, B} >, {B}, but
{A} and {C} are incomparable with respect to explanatory power. {A, D} >4 {A}, but {A}
and {B} are incomparable with respect to explanatory depth.

We say that S defends A iff for every B € A such that B — A, there exists
C € S such that C' — B. We say that S is admissible iff S is conflict-free and
for all B € S, S defends B.

The most suitable admissible sets are then selected by also taking into
account their explanatory power and depth. These are measured by first iden-
tifying the explanations present in each set of arguments.

Definition 3. Let A = (A, X, —,--») be an EAF, S C Aand F € X. An
explanation X[E|] for E offered by S is a set S’ C S such that there exists a
unique argument A € S’ such that A --+ E and for all A’ € S\ {A}, there
exists a path in --+ from A’ to A.

In order to be able to compare sets of arguments on how many explananda
they can explain and in how much detail, the two following measures are
required:

Definition 4. Let A = (A4, X, —,--3) be an EAF and 5,5’ C A. Let £ be
the set of explananda S offers an explanation for and £’ the set of explananda
S’ offers an explanation for. We say that S is explanatory more powerful than
S" (S >p 8 if and only if £ D &'

Definition 5. Let A = (A, X', —, --») be an EAF and S, S" C A. We say that
S is explanatory deeper than S’ (S >4 S’) if and only if for each explanation
X'’ offered by S’, there is an explanation X offered by S such that X’ C X
and for at least one such X and X’ pair, X' C X.

Seselja and StraBer| (2013) define two procedures for selecting the most
suitable sets of arguments. The first procedure (for the argumentative core)
consists in selecting the most explanatory powerful conflict-free sets, from
which the maximal most defended sets are then retained. The second procedure
(for the explanatory core) selects the most explanatory powerful conflict-free
sets, from which the most defended sets are taken, and then from those selects
the minimal explanatory deepest sets. In our formalism, we will slightly alter
and reformulate these procedures.

3 ASPIC-END

In this section, we define ASPIC-END and motivate the details of its definition.
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Definition 6. An argumentation theory is a tuple (£, R, n, <), where:

— L is alogical language containing a set of free variables £, and closed under
the binary connective disjunction (V), the unary connectives negation (—),
the three types of assumability (Assumable—,, Assumabley, Assumable-),
and the existential quantifiers (if ¢ € £ and x € £,, then Vx.p, Jz.p € L)
such that 1 € L.

— R =TR;s URy is a set of intuitively strict (R;s) and defeasible (Rg) rules
of the form ¢1,...,p, ~ ¢ and ¢1,...,9, = @ respectively, where n > 0
and ¢;, ¢ € L.

— n: R — L is a partial function.

— Ree ={(L~a)|aeL} CRi, and Vr € Ree, n(r) is undefined.

— < is an asymmetric and transitive relation over R4 which represents pref-
erence.

Note that we interpret | not just as any contradiction but as the conjunc-
tion of all formulas in the language. We thus require that rules are present
in the framework which allow one to derive any formula from 1, which are
effectively rules of conjunction elimination.

We now inductively define how to construct arguments. At the same time,
we define five functions on arguments that specify certain features of any given
argument: Conc(A) denotes the conclusion of argument A. As_(A), Asy(A4)
and As—(A) denote the set of assumptions under which argument A is operat-
ing: As_(A) stands for the assumptions made for a proof by contradiction, or
negation introduction, Asy (A) stands for the assumptions made for reasoning
by cases, or disjunction elimination, and As-(A) stands for the assumptions
made for an implication introduction. As a short-hand, we will sometimes write
As(A) := As_(A) U Asy(A) U As5(A). So whenever As(A) # (), A is a hypo-
thetical argument. Sub(A) denotes the set of sub-arguments of A. DefRules(A)
denotes the set of all defeasible rules used in A. TopRule(A) denotes the last
inference rule which has been used in the argument if such a rule exists, and
is undefined otherwise.

Definition 7. An argument A on the basis of an argumentation theory X =
(L,R,n, <) has one of the following forms:

1. Ay,..., A, ~ 1, where Ay,..., A, are arguments such that there exists
an intuitively strict rule Conc(A;), ..., Conc(A,) ~ ¥ in Rys.
Conc(A4) := 1, As_(A) :=As_ (A1) U---UAs_(4,),

Asy(A) :=Asy (A1) U---UAsy(A,), As5(A) :=As5 (A1) U---UAs5(4,),
Sub(A) := Sub(A;)U---USub(A,) U {4},

DefRules(A) := DefRules(A;) U - - - U DefRules(A4,,),

TopRule(A) := Conc(4;),...,Conc(4,,) ~ 1.

2. Ay,..., A, = 1, where A;,..., A, are arguments s.t. As(4;) U ... U
As(A,,) = 0 and there exists a defeasible rule Conc(A4;),...,Conc(A,) = ¢
in Rd.

Conc(A) := 1, As_(A) =0,
Asy(A) =0, As5(A):=0
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Sub(A) :=Sub(A;)U---USub(A,) U{A},
DefRules(A) := DefRules(A;) U - - - U DefRules(A4,,) U
{Conc(A4y),...,Conc(A,) = v},

TopRule(A) := Conc(A4y),...,Conc(A,) = .

. Assume_(¢), where ¢ € L.

Conc(4) := ¢, s-(4) := {e},

Asy (A) =0, ASD( ) =0,

Sub(A) := {Assume_(¢)},

DefRules(A) := 0, TopRule(A4) is undefined.
. Assumey (¢), where ¢ € L.

Conc(4) = . As(4) =0,

Asy(A) == {p}, As5(A) =0,

Sub(A) := {Assumey ()},

DefRules(A) := 0, TopRule(4) is undefined.
. Assumes (¢), where ¢ € L.

Conc(A) := o, As_(A) =,

Asy(A) =0, As5(A) = {e},

Sub(A) := {Assume- (i)},

DefRules(A) := 0, TopRule(A) is undefined.

. ProofByContrad(—¢, A’), where A’ is an argument such that ¢ € As_(A4")
and Conc(A’) = L

Conc(A4) := —, As_(A) := As_(A") \ {¢},
Asy (A) := Asy(4"), As5(A) := As5 (4",
Sub(A4) := Sub(A") U {ProofByContrad(—p, A’)},

DefRules(A) := DefRules(A’), TopRule(A) is undefined.

. ReasonByCases(1), A1, Ay, A3), where:

A, is an argument such that ¢ € Asy (A1) and Conc(A;) = 1,

As is an argument such that ¢’ € Asy(As) and Conc(4s) = ¥,

Ajz is an argument such that Conc(As) = ¢V ¢'.

Conc(A) := v,

As_(A) := As_ (A1) UAs_(A2) UAs_(As),

Asy(4) = (Asy (A1) \ {o}) U (Asy (A2) \ {¢'}) U Asy (4s),

As5(A) := As5 (A1) U As5(A2) U As5(Az),

Sub(A) := Sub(A;)USub(A43) USub(A3)U{ReasonByCases(t), A1, As, A3)},
DefRules(A) := DefRules(A;) U DefRules(Az) U DefRules(As3),

TopRule(A) is undefined.

. D-intro(¢ D ¢, A’), where A’ is an argument such that ¢ € As5(A’) and

Conc(4’) = .

Conc(4) := v D Y, As_(A) := As_(A),

Asy (A) = Asy (4'), As5(A) = As5(A) \ {e},
Sub(A) := Sub(A") U {D-intro(¢ D ¢, A’)},

DefRules(A) := DefRules(A’), TopRule(A4) is undefined.

. V-intro(Vz.(z), A"), where A’ is an argument such that for some = € L,,
there is no 1 € As(A’) such that x is free in 1, and Conc(A’) = ¢(x).
Conc(A) :=Vz.p(x), As_(A) := As_(4"),

Asy (A) := Asy(4"), As5(A) := Aso (4",
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Sub(A) := Sub(A") U {V-intro(Vz.p(z), A")},
DefRules(A) := DefRules(A’), TopRule(A) is undefined.

Notice that we do not allow for the use of defeasible rules within hypo-
thetical arguments, as reflected in the condition of Def. [7] item 2 that the
sub-arguments cannot have any assumptions. We do however allow for the
conclusions of defeasible arguments to be imported inside of a hypothetical
argument. This is motivated by the fact that allowing for proofs by contra-
diction amounts to allowing for transpositions of any rule that can be used
within a proof by contradiction, and transpositions are usually assumed only
for strict rules in structured argumentation (Caminada and Amgoud, [2007}
Modgil and Prakken) 2013)).

Example 1. Consider an argumentation theory ATy = (£, R,n, <), where L
is the smallest set containing {p, ¢, r, s, u} and satisfying Definition @ item 1,
Ris ={p ~ ¢;q ~ L;~r}, Rqg = {-p,r = s;u = q} and < is the empty
relation. We can then construct an argument for s as follows:

— Aj:= Assume_(p), with As_(A;) = {p}, Conc(4;) =p

- AQI: Al ~ q, with AS_,(AQ) = {p}, COI’]C(AQ) =q

— Ag:= Ay ~ L, with As_(A3) = {p}, Conc(A3) = L

= ProofByContrad(—p, A3), with As_(A4) =0, Conc(A4) = —p
— As:= ~ r, with As_(45) = 0, Conc(45) =r

- AGZ: A47 A5 = S, with ASﬂ(AG) = (Z), COnC(A(;) =S

We can see that A; introduces the assumption p, and from there the argu-
ments A; and A3z manage to derive a contradiction, which allows the construc-
tion of argument A4 with conclusion —p under no assumption. We can then use
this together with the premise r to form an argument for s. Note however that
we cannot form an argument for —u using a proof by contradiction, because to
derive an inconsistency from u we would have to use da. However, defeasible
rules can only be applied under no assumption, hence we would be unable to
apply it in the proof by contradiction for —u.

\
o
=

\

We now need to define the attack relation in our framework. Notice that
in ASPIC-END, we also allow for an argument A to attack an argument B
which makes an assumption ¢ if A concludes that ¢ is not assumable. For
example, if one were to assume that the number 5 is yellow, since numbers do
not have colors, it should be possible to attack the argument that introduces
this assumption and any argument making an inference from this assump-
tion. We also separate the assumption-attack into the three different kinds of
assumptions, so that one can, for example, deny a formula’s assumability for
reasoning by cases but still allow it to be assumed for implication-introduction.
Additionally, if one wishes, for example, to refute the well-foundedness of a
construction such as proof by contradiction while still accepting reasoning by
cases, one simply needs to attack the —-assumability of all formulas.

Definition 8. Let X' = (£, R,n, <) be an argumentation theory and A, B two
arguments on the basis of X. We say that A attacks B iff A rebuts, undercuts
or assumption-attacks B, where:



12 Marcos Cramer, Jérémie Dauphin

— A rebuts argument B (on B’) iff Conc(A) = —p or =Conc(A) = ¢ for some
B’ € Sub(B) of the form BY,..., B! = ¢ and As(A) = 0.

— A undercuts argument B (on B’) iff Conc(A4) = —n(r) or =Conc(A4) = n(r)
for some B’ € Sub(B) such that TopRule(B’) = r, there is no ¢ € As(B’)
such that —=¢ = Conc(A’) or ¢ = —Conc(A’) for some A’ € Sub(A), and
there are arguments By, ..., B, such that By = B’, B,, = B, B; € Sub(B;1)
for 1 <i<nand As(A) C As(By) U---UAs(B,).

— A assumption-attacks B (on B’) iff for some B’ € Sub(B) such that
As(A) = () and one of the following holds:

— B’ = Assume_ () and Conc(A) = —~Assumable_(p);
— B’ = Assumey () and Conc(A) = —Assumabley (p);
— B’ = Assumes (¢) and Conc(A) = —Assumable~ ().

We require that any attacking argument A is making fewer assumptions
than the B’ it attacks, as to prevent arguments from attacking outside of
their assumption scope. Note that in the case of rebuttal, since the attacked
argument cannot have assumptions, we require that the attacking argument
have none either.

In the case of undercutting, we also have the requirement that A does not
use the contrary of any assumptions made by B’ in any of its inferences, since
the attack would not stand in the scope of B’. Additionally, we allow A to
make use of any assumptions appearing in the chain of arguments leading B’
to B, as these assumptions, even if they have been retracted, still constitute
valid grounds on which to form an attack.

Similarly as in ASPIC+, one can also define a notion of successful attack
by lifting the preference relation from rules to arguments as follows:

Definition 9. Let ¥ = (£, R,n,<) be an argumentation theory and A, B
be two arguments on the basis of Y. We define the lifting of < to arguments
< to be such that A < B iff there exists r, € DefRules(A), such that for all
ry € DefRules(B), we have r, < 7.

Notice that this lifting corresponds to elitist weakest-link as described by
Modgil and Prakken| (2014]). We believe that this ordering is best suited for
modeling philosophical and scientific arguments.

We now define what it means for an attack to be successful:

Definition 10. Let X~ = (£,R,n,<) be an argumentation theory, A, B be
two arguments on the basis of X. We say that A successfully rebuts B iff A
rebuts B on B’ for some argument B’ and A £ B’, and that A defeats B iff
A assumption-attacks, undercuts or successfully rebuts B.

The aim of our system is to generate an EAF as defined in Section 2] For
this three things need to be specified: A set X' of explananda, a condition
under which an argument explains an explanandum, and a condition under
which an argument explains another argument. The first two of these three
details are domain-specific, and are thus to be specified in an instantiation
of the ASPIC-END framework. The third one, on the other hand, should be
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the same in all domains. The reason for this can be found in the informal
clarification that Sedelja and StraBer (2013) provided for what it means to
say that an argument b explains an argument a: “argument b can be used
to explain one of the premises of argument a [...] or the link between the
premises and the conclusion.”

In the context of structured argumentation, this informal clarification can
be turned into a formal definition:

Definition 11. Let A, B be arguments. We say that B explains A (on A’)
iff A" € Sub(A), As(B) C As(A’) and at least one of the following two cases
holds:

— A’ ¢ Sub(B) and either A" = (~ Conc(B)) or A’ = (= Conc(B)).
— Conc(B) = n(TopRule(A4’)) and #B’ € Sub(B) such that TopRule(B’) =
TopRule(A4’).

Intuitively, the idea behind this definition is that an argument B explains
another argument A if B non-trivially concludes one of A’s premises or one of
the inference rules used by A.

We now have all the elements needed to build an EAF.

Definition 12. Let ¥ = (£,R,n,<) be an argumentation theory. Let X
be a set of explananda, and let C be a criterion for determining whether an
argument constructed from Y explains a given explanandum F € X. The
explanatory argumentation framework (EAF) defined by (X, X,C) is a tuple
(A, X, —,--+), where:

— A is the set of all arguments that can be constructed from X satisfying
Definition

— (A,B) € — iff A defeats B, where A, B € A;

— (A, F) € —-» iff criterion C is satisfied with respect to A and E, where
Ae Aand F € X;

— (A, B) € --» iff A explains B according to Definition where A, B € A.

Once such a framework has been generated, we want to be able to extract
the most interesting sets of arguments. Such a set should be able to explain
as many explananda in as much detail as possible, while being self-consistent
and plausible.

We define two kinds of extensions corresponding to the two selection pro-
cedures defined by |Seselja and StraBer (2013). As suggested in the informal
discussion in their paper, we chose to give higher importance to the criterion
of defense compared to the criterion of explanatory power. This prevents some
absurd theories which manage to explain all explananda but cannot defend
themselves against all attacks from beating plausible theories which fail to
explain some of the explananda but are sound and fully defended.

Definition 13. Let ¥ = (£,R,n,<) be an argumentation theory, A =
(A, X, —,--+) the EAF defined by X and S C A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S’ C A
such that S’ >, S and S’ is admissible.
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2. We say that S is insightful iff S is satisfactory and there is no S’ C A such
that S" >4 S and S’ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of A iff
S is satisfactory and there is no S’ D S such that S’ is satisfactory.

4. We say that S is an exzplanatory core extension (EC-extension) of A iff S
is insightful and there is no S’ C S such that S’ is insightful.

The AC-extensions are sets of arguments which represent the theories
explaining the most explananda, together with all other compatible beliefs
present in the framework. EC-extensions represent the core of those theories
and only include the arguments which defend or provide details for them.

We define the conclusions of the arguments in a given extension as follows:

Definition 14. Let ¥ = (£,R,n,<) be an argumentation theory, A =
(A, X,—,--+) be the EAF defined by X' and S be an extension of A. Then, we
define the conclusions of S, denoted Concs(S), to be Concs(S) = {Conc(A)|A €
S s.t. As(A) = 0}.

4 Modelling explanations of semantic paradoxes in ASPIC-END

In this section, we discuss how ASPIC-END can be applied to modeling ar-
gumentation about explanations of semantic paradoxes, and illustrate this
potential application with a simple example. We start by briefly motivating
this application of structured argumentation theory.

Philosophy is an academic discipline in which good argumentative skills
are a central part of every student’s training. Philosophical texts are often
much richer in explicit formulation of arguments than texts from other aca-
demic disciplines. For these reasons, we believe that modeling arguments from
philosophical textbooks, monographs and papers can be an interesting test
case for structured argumentation theory.

Different areas of philosophy vary with respect to how much logical rigor
is commonly applied in the presentation of arguments. Even logically rigorous
argumentation poses many interesting problems, as the rich literature on ab-
stract and structured argumentation attests. In order to not confound these in-
teresting problems with issues arising from the lack of logical rigor, it is a good
idea to concentrate on the study of logically rigorous argumentation. Philo-
sophical logic is an area of logic where logically rigorous arguments abound.
One topic that has gained a lot of attention in philosophical logic is the study
of semantic paradoxes such as the Liar paradox and Curry’s paradox (Beall
et al,|2016; [Field, 2008)). We therefore use the argumentation about the various
explanations of the paradoxes that have been proposed in the philosophical
literature as a test case for structured argumentation theory.

In our application of ASPIC-END to argumentation about explanations
of semantic paradoxes, the explananda are the paradoxes (i.e. arguments that
derive an absurdity under no assumption without using defeasible rules), which
other arguments can explain by attacking the said derivation. So we instantiate
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the set X" of explananda and criterion C for an explanation of an explanandum
by an argument as specified in the following two definitions:

Definition 15. Let ¥ = (£, R,n,<) be an argumentation theory. For every
argument A on the basis of X such that DefRules(A) = §,As(4) = 0 and
Conc(A) = L, we stipulate an explanandum E4, and say that Source(E4) = A.
We define the set X of explananda based on X to be the set of all explananda
FE 4 that we have thus stipulated.

Definition 16. Let X' = (£, R, n, <) be an argumentation theory, A an argu-
ment and E an explanandum based on Y. We say that criterion C is satisfied
with respect to A and F iff A defeats Source(E).

The following example illustrates an application of ASPIC-END to a ver-
sion of the Liar paradox and two very simple explanations of itﬂ

Example: Define L to be the sentence “L is false”. If L is true, i.e. “L is
false” is true, then L is false, which is a contradiction. So L is not true, i.e. L
is false. So “L is false” is true, i.e. L is true. So we have the contradiction that
L is both true and false from no assumption.

A truth-value gap explanation: In this paradox, the only inference steps
that are not justified by the laws of classical logic are the steps that involve
reasoning about the meaning of “true” and “false”. Since classical logic is a
well-studied system for formalizing rational reasoning, we should accept it.
Thus we need to give up some inference rules based on the meaning of “true”
and “false”. This can be achieved by giving up the assumption that every
sentence is either true or false for problematically self-referential sentences
such as L. In the paradox, this assumption is used when concluding that L is
false because L is not true, so this inference should be rejected.

A paracomplete explanation: If we give up some of the natural inference
rules that are based on the meaning of “true” and “false”, our formalism no
longer correctly captures the meaning of “true” and “false”, so we should
not give up these rules. In order to avoid the paradox, we therefore need to
limit some rules of classical logic. This can be achieved by allowing a proof by
contradiction based on assumption ¢ only in case the law of excluded middle
holds for ¢, i.e. in case ¢ V —¢. The law of excluded middle should not be
accepted for problematically self-referential statements like L, and thus also

3 Note that our aim here is not to present a detailed case study of how a debate about a
semantic paradox can be formalized in ASPIC-END, but only to illustrate the way ASPIC-
END works and could be used for such a case study in future work. For this reason, we
restrict ourselves to a simple exposition of the Liar paradox and two very simple explana-
tions of it, a truth-value gap explanation and a paracomplete explanation. See |Field| (2008)
for comprehensive presentations of truth-value gap and paracomplete explanations, besides
many others. Additionally note that, for the sake of simplicity, we only include in our model
those instances of rules that are actually used in the explanations that we formalize, so we
leave out other instances of the general rules (rule schemes) that lie behind these instances.
A detailed case study would have to consider what happens when all instances of these rules
are included; for this purpose, other paradoxes like Curry’s paradox and various revenge
versions of the Liar paradox would need to be considered as well, as the instances of these
rules applied to the paradoxical sentences from these other paradoxes would be included in
the model.
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not for the statement “L is true”. So “L is true” cannot be assumed for a
proof by contradiction, i.e. the derivation of “L is not true” based on deriving
a contradiction from the assumption the L is true is not valid.

We now proceed to the ASPIC-END model of the reasoning and argumen-
tation involved in the paradox and the two explananda. We use T" and F' to
mean true and false respectively; the other abbreviations we use should be
self-explanatory from the context. The rules in our model are such that R;, is
the smallest set satisfying Def [f] item 1 and including the rules listed below.
For each intuitively strict rule, we provide either a brief explanation of where
the rule comes from, or we refer to the name of the corresponding rule in |[Field
(2008)), of which the rule in question is an instance:

T(L)~T(F(L)) (by definition, as L is defined to mean F(L))

T(F(L))~ F(L); (T-Elim)

T(L),F(L)~ L; (a sentence cannot be both true and false)
=T(L)~ F(L); (a sentence that is not true is considered false)
F(L)~T(F(L)); (T-Introd)

T(F(L))~T(L); (by definition, as L is defined to mean F'(L))

~Yr.(used_in_paradox(r) A = T-F-rule(r) D r € classical_logic)
(all inference rules that are used in the derivation
of the paradox and that are not based on the
meaning of “true” and “false” are admissible in

classical logic)

The naming function is defined by n(=T(L)~~F(L)) = r1. The set R4 of
defeasible rules is defined as follows:

— = formalizes_rational_reasoning( classical_logic);

— formalizes_rational_reasoning(classical_logic)= accept( classical_logic);

Vr.(used_in_paradox(r) A = T-F-rule(r) D r € classical_logic),

accept(classical_logic) = Ir.(T-F-rule(r) A give_up(r));

— = problematically_self-referential(L);

— problematically_self-referential(L), Ir.(T-F-rule(r) A give_up(r)) = —rq;

— = correctly_capture( TF-meaning);

— correctly_capture( TF-meaning) = —3r.(T-F-rule(r) A give_up(r));

— Vr.(used_in_paradoz(r) AN = T-F-rule(r) D r € classical_logic),
—3r.(T-F-rule(r) A give_up(r)) = —accept( classical_logic);

— problematically_self-referential(L), accept( classical_logic) =
—accept(T(L) V =T(L));

— —accept(T(L) V =T (L)) = - Assumable-(T'(L))

Infinitely many arguments can be constructed from this argumentation
theory. However, the following set of arguments is the set of most relevant
arguments, in the sense that other arguments will not defeat these arguments
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Fig. 2 The relevant arguments, explanandum, attacks and explanations from the example

and will not add relevant new conclusions.

Aj 2 = ProofByContrad(—T'(L), (Assume_ (T'(L)),
((Assume—(T'(L)) ~T(F(L))) ~ F(L))~ 1)) ~ F(L)
Asas = ((A1~T(F(L))) ~T(L)), A1~ L

By = (~ Vr.(used_in_paradoz(r) A ~T-F-rule(r) D r € classical_logic))
By = By, (= formalizes_rational_reasoning( classical_logic)) = accept( classical_logic)
Bs = By = 3r.(T-F-rule(r) A give_up(r))

By 5 = (= problematically_self-referential(L)), Bs = —r4
Cy = (= correctly_capture( TF-meaning)) = —3r.(T-F-rule(r) A give_up(r))
Cy = By, Cy = —accept(classical_logic)

C3,4 = (= problematically_self-referential(L)), Co = —accept(T(L) vV -T(L))
C5 = C5 4 = —~Assumable~(T(L))

We get the explanandum E with Source(E) = As4s. Bajs defeats A
on A; and C5 defeats As on Assume(7T'(L)), thus they both explain E. The
AC-extensions are {Bl, BQ, B3, B475} and {Bl7 Cl, 02, 03,4, 05}7 and the EC-
extensions are {Bs, By s} and {Cs, Cs}.

5 Modelling argumentation on Axiom of Choice

Additionally to the relatively simple model presented in the previous section,
we have also applied ASPIC-END to produce a more extensive model of a
debate in the formal sciences, namely a model of parts of the debate that
mathematicians had about the Axiom of Choice (AC) in the early 20th century
(see Moore}, [1982)). Given that this model is too extensive to be presented
within this paper, we will here only present some fragments of the model,
briefly describe some features of the overall model, and discuss some of the the
insight into the strengths and drawbacks of the modeling capacities of ASPIC-
END that we have gained from producing this model. A complete description
of our model can be found in our technical online appendix (Cramer and
Dauphin| [2018]).
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In 1904, the German mathematician Ernst Zermelo published a proof of
the Well-Ordering Theorem, in which he explicitly referred to a set-theoretic
principle that came to be known as the Axiom of Choice (Zermelo| [1904)). The
Axiom of Choice states that for each set M whose elements are non-empty
sets, there is a function f that maps each element m € M to an element
f(m) € m. In the first years after its publication, Zermelo’s proof received a
lot of critique, a significant part of which questioned the general validity of the
Axiom of Choice (see (Moore} |1982))). In the long run, however, the proof got
accepted, as the Axiom of Choice got accepted as a valid part of the de-facto
standard foundational theory for mathematics, Zermelo-Fraenkel set theory
with the Axiom of Choice (ZFC).

The two critiques of Zermelo’s Axiom of Choice that we consider in our
model are those of |Peano| (1906) and Lebesgue (see [Hadamard et al, [1905).
Furthermore, we consider the counterarguments to these critiques put forward
by |Zermelo| (1908) and by Hadamard (see [Hadamard et al, [1905). When con-
structing the formal model, we have made a number of design choices that
enabled us to keep the model relatively simple and concise:

— We have only considered the contributions of Zermelo, Peano, Lebesgue
and Hadamard to this debate, leaving out some of the other contribu-
tions to the debate that are discussed in |[Moore| (1982). The choice of
which contributions to include was partially based on the importance of
those contributions from the point of view of the history and philosophy
of mathematics, and partially based on considerations about which contri-
butions best illustrate the interesting formal features of the ASPIC-END
framework.

— In the case of some arguments, we have opted not to formalize the internal
details of the argument, but instead include the conclusion of the argument
as a defeasible premise in our model, as this significantly simplifies the
model. This solution allows the effect of the argument on the overall debate
to be faithfully represented even when the internal details of the argument
are not made explicit by the model.

— An additional way in which we kept our model simple was by not formaliz-
ing in any detail the uncontested mathematical reasoning that is related to
the debate, e.g. parts of the proof of the Well-Ordering Principle that do
not make use of the Axiom of choice or the proof of the Partition Principle
that Zermelo refers to in one of his arguments.

Due to these simplifications, we consider our model to only be a preliminary
model that we plan to extend in the future. However, the model already gives
some insight into the strengths and drawbacks of the modeling capacities of
ASPIC-END, as well as inspiration for further research into this direction.

In our model, the purely mathematical and purely logical demonstrations
and reasoning are formalized using intuitively strict rules, while the philosoph-
ical and metamathematical argumentation and reasoning is formalized using
defeasible rules. Most of the attacks between arguments attack defeasible argu-
ments, i.e. philosophical or metamathematical arguments. But given that some



Structured Argumentation for Modeling Debates in the Formal Sciences 19

of the mathematical and logical principles that were applied in the mathemat-
ical and logical reasoning that we model, e.g. the Axiom of Choice and the
non-constructivist parts of classical logic, are attacked by some philosophical
or metamathematical arguments, there are also some arguments using only
intuitively strict rules that get attacked. By the design of ASPIC-END, all
such attacks have to be undercuts.

The debate about the Axiom of Choice that we have formalized in our
model concerns the purported justification that Zermelo has given for the
Axiom of Choice as well as attacks on this purported justification, but it does
not involve any mathematical explanations. For this reason, our model of this
debate does not make use of the explanatory machinery included in ASPIC-
END, but it does make use of other two novel features of ASPIC-END, i.e.
hypothetical reasoning and undercuts of intuitively strict rules.

In order to give a flavor of our formal model, we now present some frag-
ments of it and describe some feature of the overall model. We start by looking
at the first argument Zermelo presented for the Axiom of Choice in 1904:

“this logical principle cannot be reduced to a still simpler one, but is
used everywhere in mathematical deduction without hesitation. So for
example the general validity of the theorem that the number of subsets
into which a set is partitioned is less than or equal to the number of its
elements, cannot be demonstrated otherwise than by assigning to each
subset one of its elements.” (Zermelo|, 1904, p. 516)

Here are the formal ASPIC-END arguments that we construct to represent
this argument and its subarguments:

79 = (= simple(AC))
Z9* = (= —3z. calls_to_doubt(z, usage(AC)))
Z9* = (= Ip. demonstrates(p, PP))
7% = (= Vp. (demonstrates(p, PP) D uses(p, AC)))
Zg4 = Assume- (demonstrates(p, PP))
73 = (Z9*, Z9* - 3p, t. (demonstrates(p, t) A uses(p, AC)))
Z2* = > -intro(demonstrates(p, PP) D 3p, t. (demonstrates(p, t) A uses(p, AC)))
Z3* = V-intro(Vp. (demonstrates(p, PP) D 3p,t. (demonstrates(p, t) A uses(p, AC))))
Z3t = (7294, Z9* ~ Fp, t. (demonstrates(p, t) A uses(p, AC)))
708 = (23 = widely_used(AC))
70 = (29, 238, 78 = accept(AC))
The rules that are needed to construct these arguments can actually be
read off from the arguments, and are explicitly stated in the technical online

appendix (Cramer and Dauphin| 2018 p. 4-6). The notation (Aj,..., A, F
1) used in argument Z{* stands for an argument that uses multiple rules of
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intuitionistic logic to get from the conclusions of arguments Ay, ..., 4, to the
conclusion . Of course, all these rules are included in our model. Note that
argument Z%* makes use of D-Introduction, Z2* makes use of V-Introduction.

In a letter to Borel that shortly afterwards got published in the Bulletin de
la Société mathématique de France (Hadamard et al, [1905)), Lebesgue made a
constructivist argument against the Axiom of Choice:

“I believe that we can only build solidly by granting that it is impossible
to demonstrate the existence of an object without defining it.”

We formalize Lebesgue’s argument through a defeasible premise according
to which an existence proof requires definition and a strict rule that allows to
reject the Axiom of Choice based on this defeasible premise:

LY® = (= existence_proof_requires_definition)
L = (L ~» —accept(AC))

The rules that we included in the model in order to formalize the arguments
that have been explicitly mentioned in the historical debate on the Axiom
of Choice can also be used to construct implicit arguments that were not
explicitly mentioned in the historical debate. It should not come as a surprise
that at the current level of development of our methodology, the model has not
given rise to philosophically insightful implicit arguments. However, there is
an implicit argument that plays an important role with respect to the formal
behavior of our model: It is an argument that makes use of the proof by
contradiction to construct an attack on Lebesgue’s argument LY based on
Zermelo’s 1908 argument Z3 for the Axiom of Choice:

Assume_, (existence_proof_requires_definition))
I ~» —accept(AC))

= (
=(
( 297 Iy ~~ J—)
= (ProofbyContrad (I3, —existence_proof_requires_definition))

The idea is that assuming a premise (“existence_proof_requires_definition”)
of Lebesgue’s argument against the Axiom of Choice, we can derive that the
Axiom of Choice should not be accepted, which in combination with Zermelo’s
argument for the acceptance of the Axiom of Choice leads to a contradiction.
So we have a proof by contradiction for —existence_proof_requires_definition,
which thus attacks Lebesgue’s argument. The relevance of this argument to
the formal properties of our model is explained in Section 1.7 of the technical
online appendix (Cramer and Dauphin 2018)).

While the model described here has not led to philosophically relevant
implicit arguments, we believe that the methodology we are proposing has
the potential to bring to light such arguments once more sophisticated formal
models of debates in the formal sciences are constructed. We expect the use
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of automated theorem provers to be helpful in order to discover philosophi-
cally relevant implicit arguments in more sophisticated models, just like they
already have been used by Benzmuller and Woltzenlogel Paleo| (2016) and
Benzmuller et al| (2017) to discover philosophically relevant mistakes and in-
sights in axiomatic theories of metaphysics, as explained in the last paragraph
of the Introduction. This would allow for the discovery of mistakes and new
insights at the meta-level of debates about formal theories rather than just at
the object level of the theories themselves.

We consider it one of the strengths of our methodological approach that
it allows to identify such implicit arguments that no one has put forward, but
that could be put forward and that could have a relevant influence on the
outcome of the debate.

Without imposing preferences on the set of rules, all attacks in our model
other than the just mentioned undercuts would become practically bidirec-
tional. By this we mean that even though there can be a unidirectional attack
from some argument A to some argument B, in such a case there will always
be an attack back onto A from some argument B’ that is closely related to
B and accepted in the same circumstances as B. In order to make the model
more interesting and more realistic, we have therefore include in it a preference
order on the rules, which by Definition [J] gives rise to a preference order on
the arguments. One drawback of our methodology is that it gives no method-
ological guidance on how to select a preference order on the rules, which is
the main determining factor for which extensions are finally accepted. In our
model, we followed our common sense of the relative strength of different ar-
guments from the historical debate in order to specify the preference order
between the rules.

The set of rules of our model allow for infinitely many arguments to be
constructed, so that the EAF corresponding to the model will also be infinite.
However, only a small finite subset of this infinite EAF contains attacks that
are relevant for the overall status of the acceptability of the Axiom of Choice,
which was the focus of attention of the debate that we have formally modeled.
In Figure [3] we depict the small subset of relevant arguments and the defeats
between them. In this depiction, the letter in the argument name (Z, P, L
or H) refers to either Zermelo, Peano, Lebesgue or Hadamard as the source
of the argument, and the subscript indicates the year in which the argument
was presented (with the 19 dropped, as they were all presented between 1904
and 1908). For the precise content of the argument and the details of their
formalization in ASPIC-END, please refer to the technical online appendix
(Cramer and Dauphin| 2018). Here we concisely sketch the content of the
arguments that have not yet been specified above:

— PY5: Peano points out that in an 1890 publication he had already con-
sidered and rejected the assumption that infinitely many arbitrary choices
can be made in an argument.

— P$: Peano points out that while a single arbitrary choice and thus any fi-
nite number of arbitrary choices can be formalized in his Formulario Math-
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ematico, an infinite number of arbitrary choices would require an infinitely
long argument, which is not allowed in his Formulario Mathematico. This
argument has the implicit premise that an argument can be accepted if
and only if it can be formalized in the Formulario Mathematico.

— Z88: Zermelo points out that Peano himself arrived at the fundamental
principles of his Formulario Mathematico by analyzing the rules of infer-
ence that have historically been recognized as valid and by referring both
to the intuitive evidence for the rules and to their necessity for science.
He then argues that the Axiom of Choice can be justified in the same
way: Multiple set theorists have implicitly applied it, which supports both
the claim that it has historically been recognized as valid and that it is
intuitively evident. Furthermore, Zermelo lists seven theorems which he
believed not to be provable without the Axiom of Choice, and concludes
that the Axiom of Choice is necessary for science.

— Z98: The implicit assumption in P (see above) is incorrect, because by
798 arguments using the Axiom of Choice can be accepted even though
they cannot be formalized in Peano’s Formulario Mathematico.

— H$: Hadamard argues against Lebesgue’s premise that an existence proof
requires definition by pointing out that historical progress in mathematics
was achieved by annexing notions which had previously been considered
to be outside mathematics because it was impossible to describe them.

Restricted to this set of relevant arguments, there are two argumentative
core (AC) extensions: Sy = {PY, 798, 798 85,14}, and Sy = {PJ¢ 798 195
L%}. This means that arguments PS5 and Z98 are accepted in every AC-
extension of our model, while PP, Z04 and Z are rejected in every AC-
extension, and the status of the arguments Z29, Iy, LY and L$® depends
on the choice of AC-extension. This set of relevant arguments contains two
arguments with conclusion accept(AC), namely Z% and Z95. While the first
one gets rejected in both extensions, the second one gets accepted in one
and rejected in the other extension, so that overall, the status of the claim
accept(AC) depends on the choice of the AC-extension.
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These properties of our formal model intuitively correspond to the situation
that on the one hand there are compelling arguments both in favor and against
the Axiom of Choice, and purely formal methods will not decide which of the
two stands is “correct” (if there even is a single “correct” answer here), while
on the other hand certain arguments in favor or against the Axiom of Choice
are so weak that they do not hold up against the scrutiny provided by certain
counterarguments against them.

Of course, the fact that the status of the Axiom of Choice in our formal
model of the debate is not determined but depends on the choice of the AC-
extension is to a certain extent an artifact of the choice of arguments that
we formalized and of the preference order that we imposed. We could have
gotten a different result, for example if we had chosen to formalize only strong
arguments in favor of the Axiom of Choice and weak arguments against it, or if
we had just made significantly different judgments about the preference order
on the rules involved in our model. So at the current level of development, such
a model cannot be seriously defended as a method for deciding which side in
a debate is right. What it can do, however, is to help us discover relevant
implicit arguments like argument I in our model (and hopefully with a more
developed model also philosophically more relevant implicit arguments), to
help us get a more precise understanding of what assumptions are made and
what is at stake in a given debate, and to point towards weaknesses of the
current methodology of structured argumentation theory, like the lack of a
methodological guidance for choosing a preference order on the rules.

6 Conclusion and Future Work

We have proposed the application of the structured argumentation method-
ology to formally model informal and semi-formal debates in the formal sci-
ences. For this purpose, we have proposed a modification of ASPIC+ called
ASPIC-END, which incorporates a formal model of explanations, and features
natural-deduction style arguments. We have then discussed two instantiations
of ASPIC-END, one that models relatively simple arguments about two solu-
tions the Liar Paradox, and one that constitutes a more extensive model of
part of the debate that mathematicians had about the Axiom of Choice in the
early 20th century.

In a technical online appendix ((Cramer and Dauphin, |2018)) we have proved
four rationality postulates for ASPIC-END that are analogous to the four pos-
tulates that Modgil and Prakken| (2013)) have established for ASPIC+, as well
as two new postulates motivated by the application of structured argumenta-
tion to debates in the formal sciences. One problem that ASPIC-END shares
with ASPIC+ and that we have left for future work is that it does not satisty
the non-interference postulate (see (Caminada et al, 2012)).

As explained in the introduction, we believe the methodological approach
proposed in this paper to be of significant potential for further research. The
model of the debate about the Axiom of Choice sketched in Section [B could
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be extended to a model covering a wider range of topics related to the founda-
tional questions in mathematics as well as active research questions in philo-
sophical logic. Given that with increasing size of the model it becomes more
and more difficult to produce the model manually and to find all relevant ar-
guments and attacks, we propose that interactive theorem provers like Isabelle
(Nipkow et al, |2002)) or HOL Light (Harrisonl |2009) be used for producing and
studying such extensive formal models. Furthermore, combining the method-
ology of structured argumentation theory with insights from natural language
semantics could lead to formal models that are more faithful to the logical
form implicit in natural language, which could strengthen the link between
the formalization of a debate and the original natural language form of the
debate.
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