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Multiple-q noncollinear magnetism in an itinerant
hexagonal magnet
R. Takagi1*, J. S. White2, S. Hayami3, R. Arita1,4, D. Honecker5, H. M. Rønnow6,
Y. Tokura1,4, S. Seki1,7*

Multiple-q spin order, i.e., a spin texture characterized by a multiple number of coexisting magnetic modulation vec-
torsq, has recently attracted attention as a sourceof nontrivialmagnetic topology and associatedemergent phenome-
na. One typical example is the triple-q skyrmion lattice state stabilized by Dzyaloshinskii-Moriya interactions in
noncentrosymmetric magnets, while the emergence of various multiple-q states of different origins is expected
according to the latest theories. Here, we investigated themagnetic structure of the itinerant polar hexagonalmagnet
Y3Co8Sn4, in which several distinctive mechanisms favoring multiple-q states are allowed to become active. Small-
angle neutron-scattering experiments suggest the formation of incommensurate triple-qmagnetic order with an in-
plane vortex-like spin texture, which can be most consistently explained in terms of the novel four-spin interaction
mechanism inherent to itinerant magnets. The present results suggest a new route to realizing exotic multiple-q
orders and that itinerant hexagonal magnets, including the R3M8Sn4 family with wide chemical tunability, can be a
unique material platform to explore their rich phase diagrams.
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INTRODUCTION
Recently, noncollinear and noncoplanar spin textures have been ex-
tensively investigated as a source of rich emergent phenomena. In par-
ticular, two- or three-dimensionally modulated multiple-q spin
textures often display a nontrivial topology, which enables current-
induced spin manipulation or magnetic control of electron transport
properties through the emergent electromagnetic field associated with
quantum Berry phase or relativistic spin-orbit interactions (1–4). For
example, the triple-q state represented by the superposition of helical
spin textures can be often considered as a crystallized form ofmagnetic
skyrmions, i.e., noncoplanar swirling spin texture with topologically
protected particle nature (5–14). Skyrmions are now attracting attention
as information carriers and are providing a naturalmagnonic crystal po-
tentially suitable for magnetic data processing (15–18), and the further
search of exotic multiple-q states of novel origin is highly anticipated.

The formation of triple-q skyrmion states has been experimentally
observed mainly in materials with noncentrosymmetric crystal struc-
ture, where the Dzyaloshinskii-Moriya (DM) interaction is the key
for the emergence of helimagnetism (16, 17). For these systems, the
single-q helimagnetic order appears at zero magnetic field, and the
application of a magnetic field stabilizes the hexagonal skyrmion lattice
state with triple-q nature. Here, the detail of the spin texture depends on
the symmetry of the crystal structure and associatedDM interaction (5),
and various forms of skyrmion spin textures, such as the Bloch-type
one in the chiral system (7–10), the Néel-type one in the polar system
(11–13), and the antivortex-type one in theD2d symmetry system (14),
have recently been discovered.

On the other hand, according to the latest theories, it is also expected
that nontrivial multiple-q spin orders can be stabilized even without
breaking of inversion symmetry. For example, magnetic frustration be-
tween the nearest neighboring and next nearest neighboring exchange
interactions on the triangular lattice is proposed to stabilize the triple-q
skyrmion order under themagnetic field applied along the out-of-plane
direction (19–21). Another promising approach is the employment of
itinerant magnetism in the high-symmetry (hexagonal or tetragonal)
lattice system (22–27), where the four-spin interaction can stabilize var-
ious multiple-q orders even in zero magnetic field.

To realize the potential multiple-q helimagnetism expected from
these novel mechanisms, the search for appropriate material systems
fulfilling the corresponding conditions is essential. Our target material
Y3Co8Sn4 is amember of theR3M8Sn4 (R being Y or a rare earth element
and M being a 3d transition metal element) family characterized by a
polar hexagonal crystal structure (Fig. 1A) and an itinerant nature of
the magnetism (28–30). This material family is unique because all of
the abovementioned mechanisms, i.e., (i) DM interaction in noncentro-
symmetric systems, (ii) frustrated exchange interactions in triangular
lattice systems, and (iii) four-spin interaction in itinerant hexagonal
systems, are allowed to become active in principle, depending on the
relative magnitude of each interaction. For Y3Co8Sn4, the emergence
of incommensuratemagnetismhas previously been proposed by a pow-
der neutron diffraction study (30), while detailed information on the
magnetic structure and associated mechanisms are still lacking.

In this work, we investigated the detailed magnetic structure for the
itinerant hexagonal magnet Y3Co8Sn4, through polarized and un-
polarized small-angle neutron scattering (SANS) experiments on a
single-crystal specimen under various applied magnetic fields and tem-
peratures. Our results suggest the formation of triple-qmagnetic order
describing in-plane vortex-like spin textures, which can be most
consistently explained in terms of the four-spin interaction mechanism
activated in the itinerant hexagonal systems.
RESULTS
Figure 1A indicates the crystal structure of Y3Co8Sn4, which belongs to
the polar hexagonal space group P63mc with the polar axis along the
[001] direction (25). Y3Co8Sn4 undergoes a ferromagnetic transition
around 55 K (Fig. 1C, inset). The comparison of M-H (magnetization-
magnetic field) profiles for H || [001] and ½1�10� in Fig. 1B demonstrates
1 of 5
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that the system has an easy-plane anisotropy perpendicular to the [001]
axis. The saturation magnetization Ms is 0.35 mB/Co at 2 K. These
magnetic properties are in good agreement with previous reports on
polycrystalline samples (29, 30). The temperature (T) dependence of
the magnetic susceptibility (Fig. 1C) shows a notable reduction below
20 K, which implies a transition into the modulated spin state.

To elucidate the long-wavelength magnetic structure of Y3Co8Sn4,
we performed SANS measurements. Figure 1 (G to J) shows the tem-
perature dependence of the SANS patternsmeasured on the (001) plane
under zero magnetic field. At 1.5 K (Fig. 1G), we observe a sixfold
symmetric pattern with magnetic Bragg reflections aligned along the
〈1�10〉 directions (equivalent to the a* directions) and with a wave
Takagi et al., Sci. Adv. 2018;4 : eaau3402 16 November 2018
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number of qout ~0.081 A
−1 that corresponds to a modulation period

of 8 nm. In addition, we found a weak ring-shaped signal with a wave
number of qin ~ 0.040 A−1 (i.e., modulation period of 16 nm). On
increasing the temperature, the sixfold qout magnetic reflections become
obscure around 14 K and vanish at T1 = 18 K, while the ring-shaped qin
signal becomes stronger above 14K and survives up toT2 = 26K. Figure
1D shows the temperature variations of the integrated intensities for qout
and qin, taken for the boxed regions shown in Fig. 1J. The intensity due
to sixfold qout reflections is dominant below 13 K, while it is gradually
replaced by the ring-shaped qin intensity as the temperature increases.
Above T1 = 18 K, the ring-shaped qin intensity becomes dominant, and
then, it gradually disappears atT2 = 26 K. Such a clear anticorrelation of
intensity with temperature indicates that the two magnetic reflections
qout and qin represent distinct magnetic phases and that their volume
fractions vary with temperature. The distinctive nature of sixfold qout
and ring-shaped qin can also be confirmed by the different temperature
dependence of their wave numbers (Fig. 1E); the wave number of qout
monotonically decreases toward higher T, while that of qin is almost
temperature independent.

Next, we investigate the magnetic field dependence of the magnetic
scattering. Figure 2 (A to D and E to H) shows the SANS patterns at
1.5 K and in a magnetic field applied along the [001] and ½1�10� axes,
respectively. For both qout and qin, the integrated intensities (Fig. 2, I and
K) decrease monotonically with increasingH, accompanied by gradual
increase of the wave numbers (Fig. 2, J and L). The SANS pattern de-
scribed by qout keeps the sixfold symmetry for both in-plane and out-of-
plane orientations ofH, even with a largeH value close to the transition
into the saturated ferromagnetic state. In contrast, the ring-shaped pat-
tern of qin is easily transformed into a twofold pattern under an in-plane
H || ½1�10� (see fig. S1), which indicates the alignment of modulation
vector qin along the H direction.

To investigate the magnetic structures described by qout and qin in
greater detail, we performed SANS with longitudinal neutron spin po-
larization analysis, using a 3He spin analyzer setup, as shown in Fig. 3C.
We used a longitudinal geometry, where the incident neutron spin po-
larization (Sn) was aligned parallel to both the incident beam (kin) and
the [001] axis of the sample. The longitudinal (parallel to Sn) and trans-
verse (perpendicular to Sn) spin components of the magnetic order in
the sample can be evaluated independently, since the corresponding
magnetic scattering contributes to a purely non–spin-flipped (NSF)
or spin-flipped (SF) response, respectively (Fig. 3D) (31). Thus, in our
configuration, the SF (NSF) signal is due to spin components normal
(parallel) to the [001] axis, which is referred to as Sxy (Sz). Figure 3 (A and
B) showspolarized SANSpatterns for the SF andNSF channelsmeasured
at 1.5 K under zeromagnetic field. The magnetic reflections are observed
in the SF channel but not in the NSF channel for both qout and qin. This
proves that neither qout nor qin has a Sz component in the ground state,
and therefore, the magnetic moments always lie within the (001) plane.
The temperature development of each spin component for qout and qin is
summarized in Fig. 3 (E and F). Note that the Sz component of qin
gradually becomes finite above 14 K, which may reflect the onset of
spin fluctuations close to the critical temperature T2.

On the basis of the present results, we have summarized the H-T
phase diagrams forH || [001] and ½1�10� in Fig. 4 (A and B). Considering
the observed alignment of modulation vectors along the in-planeH, the
ring-shaped qin pattern represents multiple domains of a single-q state
with spin components modulating within the (001) plane, where the q
vectors can orient randomly along any arbitrary in-plane direction
(fig. S1). On the other hand, the observed SANS pattern of qoutmaintains
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Fig. 1. Structural/magnetic properties and temperature dependence of SANS
patterns for Y3Co8Sn4. (A) Crystal structure of Y3Co8Sn4. (B) Magnetic field
dependence of the magnetization measured under H || ½1�10� (red) and H ||
[001] (black) at 2 K. (C) Temperature dependence of magnetic susceptibility (M/H
at m0H = 0.02 T) for H || [001]. (D and E) The integrated scattering intensity and
the magnitude of the wave number for the two types of magnetic reflection, qout
and qin, as a function of temperature obtained from SANS profiles. (F) Schematic
illustration of the experimental geometry for SANS measurement. kin and kout are
the incident and scattered neutron wave vectors, respectively. (G to J) SANS patterns
measured for the (001) plane at zero magnetic field at various temperatures. The
color scale indicates the scattering intensity. The integrated intensities in (D) are
taken from the boxed area shown in (J). a.u., arbitrary units; f.u., formula unit.
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a sixfold symmetry even under a large in-planeH, strongly suggestive of
the formation of a triple-q spin texture.

The emergence of a uniquemultiple-qmagnetic order has been pre-
dicted theoretically from various distinctive mechanisms, such as (i)
DM interaction in noncentrosymmetric systems (16, 17), (ii) frustrated
exchange interactions in triangular lattice systems (19–21), and (iii)
four-spin interaction in itinerant hexagonal systems (26, 27). Since
Y3Co8Sn4 is characterized by a polar hexagonal crystal structure with
itinerant magnetism, all of the above mechanisms may become active
in principle. If the DM mechanism is responsible for the present case,
then the polar symmetry of the crystal structure should favor cycloidal
spin textures withmagneticmoments confinedwithin the ac plane, and
application of H || [001] could lead to the formation of a triple-q Néel-
type skyrmion lattice state (5, 11–13, 32). Both of these magnetic orders
should contain nonzero magnitude of the Sz component. However, the
observed confinement of the spins within the (001) plane is inconsistent
with this scenario; therefore, the DM interaction is not the main source
of incommensurate magnetism in Y3Co8Sn4. Another potential source
is frustrated exchange interactions, but this contribution is also
determined to beminor because the Curie-Weiss temperature obtained
from the temperature dependence of the inversemagnetic susceptibility
is positive (i.e., ferromagnetic) and agrees well with Tc (27). Further-
more, this scheme rather assumes the frustration of short-ranged ex-
change interactions among localized moments, and its validity is less
Takagi et al., Sci. Adv. 2018;4 : eaau3402 16 November 2018
clear for the present case of Y3Co8Sn4 with itinerant nature of magnet-
ism. In principle, the two mechanisms above stabilize long-wavelength
multiple-q spin orders only under an out-of-plane magnetic field.
Therefore, the observed triple-q spin order atH = 0 in Y3Co8Sn4 should
be ascribed to a different origin.

On the basis of such an analysis, we focus on the mechanism asso-
ciated with the four-spin interaction (25–27). In itinerant magnets, the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction usually favors the
formation of a single-q helical spin order. On the other hand, from re-
cent theoretical studies, it is suggested thatmultiple-q spin orders can be
preferred because of additional four-spin interactions originating from
electron hopping between four sites, when the system is characterized
by a high-symmetry (i.e., hexagonal or tetragonal) crystal lattice (25–27).
Since the magnetic anisotropy was not considered explicitly in previous
theoretical works, we performed simulated annealing for the simple
 on N
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ber 16, 2018
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Fig. 3. Polarized SANS study of the modulated magnetic states at zero field.
(A and B) Polarized SANS patterns of (A) SF and (B) NSF channels measured at 1.5 K
under zero magnetic field, which detects in-plane and out-of-plane spin compo-
nents (Sxy and Sz), respectively. The color represents the scattering intensity.
(C and D) Schematic illustration of (C) experimental setup and (D) the magnetic
scattering selection rules. Only a local magnetization normal to q can give rise to
magnetic neutron scattering. The additional selection rules provided by the lon-
gitudinal polarized beam geometry are that SF scattering arises due to Sxy spin
components perpendicular to both q and kin (red arrow) and that NSF scattering
arises due to Sz components || kin (blue arrow). Here, Sn represents the direction
of the neutron polarization, which can be chosen experimentally to be either
aligned or anti-aligned with kin. (E and F) Temperature variations of the scattering
intensity of SF and NSF channels (corresponding to Sxy and Sz, respectively) for
(E) qout and (F) qin. The data were integrated over the same detector regions, as
shown in Fig. 1J.
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Fig. 2. Magnetic field dependence of SANS patterns for Y3Co8Sn4. (A to H)
SANS patterns taken at 1.5 K with various magnitudes of magnetic field for H ||
[001] (A to D) and H || ½1�10� (E to H). The color scale indicates the scattering in-
tensity. (I to L) The scattering intensity and the magnitude of the wave number
for two magnetic reflections qout and qin as a function of magnetic field,
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hexagonal lattice systemwith additional easy-plane anisotropy based on
the effective spinHamiltonian proposed in (27) (see the Supplementary
Materials for details). This result of the simulations confirms that the
four-spin interaction can stabilize the vortex-like triple-q spin texture
with moments confined within the hexagonal lattice basal plane, as
shown in Fig. 4 (C and D), which is consistent with the present SANS
results. Note that Y3Co8Sn4 is characterized by a large crystallographic
unit cell with four inequivalent Co sites, and the real spin texture in this
compound may be more complicated due to the contribution of other
factors neglected in the present model. For example, the observed ap-
pearance of a single-qorderwith a differentmodulationperiod at higher
temperatures implies the delicate balance of competing instabilities as-
sociated with the intricate character of Fermi surfaces. Nevertheless, the
main conclusion of this theoretical framework, i.e., the emergence of
triple-q order with in-plane noncollinear spin textures in the ground
state atH = 0, will be valid in general, irrespective of thematerial details.
DISCUSSION
The presently used four-spin interaction mechanism in itinerant
magnets is unique, because it allows the emergence of multiple-q states
even in zero magnetic field and without the necessity of inversion
symmetry breaking. Recently, it has been reported that this four-spin
interaction plays a key role in the emergence of a double-q square
skyrmion lattice in the Fe monolayer on Ir(111), where the magnitude
of the four-spin interaction turned out to be of the same order as the
two-spin exchange interaction (33). Our present results for Y3Co8Sn4
suggest that a similarmechanismmaybe also active in single-phase bulk
itinerant magnets. Note that Y3Co8Sn4 with easy-plane anisotropy is
characterized by a coplanar spin texture, which is topologically trivial
Takagi et al., Sci. Adv. 2018;4 : eaau3402 16 November 2018
in terms of skyrmion number. On the other hand, the emergence
of a noncoplanar multiple-q order with nonzero skyrmion number
has theoretically been predicted for the system with weak or easy-axis
magnetic anisotropy (26, 27), and the systematic control of magnetic
anisotropy is possible for the R3M8Sn4 family due to its wide chemical
tenability (28, 34, 35). Our experimental results suggest a new paradigm
to realize exotic (and potentially topological) multiple-q orders and call
for further exploration of other itinerant hexagonal magnets including
the family of R3M8Sn4.
MATERIALS AND METHODS
Sample preparation
Single crystals of Y3Co8Sn4 were synthesized by arc-melting stoichio-
metric amounts of pure Y, Co, and Sn pieces, followed by slow cooling
in a silica tube under vacuum. Powder x-ray diffraction analysis con-
firmed the single-phase nature of the crystal (fig. S4). The crystal orien-
tation was determined by both x-ray Laue and neutron diffraction. The
sample had a volume of 6 mm by 4 mm by 1 mm, with the widest sur-
face parallel to the (001) plane.

Magnetization and SANS measurements
Magnetization was measured using a SQUIDmagnetometer (Magnetic
Property Measurement System, Quantum Design). The SANS mea-
surements were carried out using the SANS-I and SANS-II instruments
at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institut,
Switzerland, and the D33 instrument at the Institut Laue-Langevin
(ILL), Grenoble, France. The wavelengths of the neutron beam were
set to 5 Å (SANS-I and SANS-II) and 4.6 Å (D33). The incident beam
was always directed along the [001] axis. The SANS diffraction patterns
were obtained by summing together two-dimensional multidetector
measurements taken over a range of sample + cryomagnet rotation
(rocking) angles. Background data at each rocking angle were obtained
forT= 60Kwell aboveTc and subtracted fromdata obtained at lowT to
leave only the magnetic signal. All H (magnetic field) scans were per-
formed in theH-increasing process after zero-field cooling (ZFC), andT
(temperature) scans were performed in the warming process after ZFC.

In the SANS experiments, with longitudinal polarization analysis
(POLARIS) using D33 at the ILL (36), the incident neutron beamwas
spin polarized using an Fe-Si transmission polarizer, with the spin po-
larization reversible by means of an radio frequency spin flipper. The
neutron spin state after scattering from the sample was analyzed using
a nuclear spin-polarized 3He cell. The longitudinal neutron spin po-
larization axis was preserved by means of magnetic guide fields of the
order of several milliteslas on the intermediate flight path between po-
larizer and analyzer. At the sample position, the guide field of 5 mT
was applied by the cryomagnet, with the field being sufficiently low as
the zero-field magnetic state of the sample was kept intact. The effi-
ciency of the overall setupwas characterized by the flipping ratio of 14.
By measuring all possible spin-state combinations, corrections for the
polarizing efficiency of the overall setupwere taken into account in the
data analysis. The polarized (and unpolarized) data reductionwas per-
formed using the GRASP software.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau3402/DC1
Section S1. SANS investigation of qin under in-plane magnetic field
A B

DC

Fig. 4. Magnetic phases in Y3Co8Sn4. (A and B) H-T magnetic phase diagrams
derived from the field and the temperature dependence of the SANS intensity under
(A) H || [001] and (B) H || ½1�10�. (C) Triple-q spin configuration obtained by simulated
annealing basedon themodel describedby eq. S5,with the parametersa =0.4 and K=
1.5 ( J̃ ¼ 1). Arrows represent the xy components of the magnetic moment. (D) Simu-
lated SANS patterns corresponding to (C), with the color indicating the square root of
the spin structure factor in arbitrary units. Hexagons in (C) and (D) represent the
magnetic unit cell and first Brillouin zone, respectively.
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Section S2. Theoretical simulation of spin configuration
Section S3. Crystal characterization
Section S4. Band structure calculation
Section S5. Neutron diffraction of ferromagnetic phase
Fig. S1. Magnetic field dependence of SANS patterns for Y3Co8Sn4 under in-plane H.
Fig. S2. Theoretical simulation for spin textures in the itinerant hexagonal magnet.
Fig. S3. Directional preference of magnetic modulation vector under in-plane magnetic field.
Fig. S4. Room temperature powder x-ray diffraction pattern of Y3Co8Sn4.
Fig. S5. Band structure and electronic density of states for Y3Co8Sn4.
Fig. S6. Temperature dependence of the magnetic contribution for the integrated (100) peak
intensity at zero field.
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