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Abstract

The development of novel optoelectronic applications crucially depends on the de-
tailed understanding of light–matter interaction in the candidate materials. From
a theoretical point of view, this task is especially difficult in the case of quasi–2D
semiconductors, since their optical response is dominated by strongly bound exci-
tons and many–body perturbation theory (MBPT) must be employed together with
first–principles computer simulations. The case of hexagonal boron nitride (hBN)
is interesting because its large band gap and high absorption/emission efficiency
make it amenable for the fabrication of UV emitting devices. However, the specific
microscopic mechanisms that govern the appearance of complex fine structures in
the optical spectra of different types of hBN samples (monolayers, few–layers, bulk
samples) are poorly understood, leading to discrepancies between experimental and
theoretical results. In this Thesis, we first show how the interlayer interaction in mul-
tilayers leads to a Davydov splitting of the excitonic states of single–layer hBN. We
study and characterize the absorption spectra in single layer, multilayer and bulk
hBN systems, focusing on the exciton symmetry and optical activity. We show that
in multilayers, Davydov splitting leads to a surface localization of the lowest–lying
optically active excitons.

These additional spectral features still cannot explain, by themselves, the experi-
mentally measured optical fine structure. Therefore, we calculate exciton dispersion
curves in order to search for the existence of indirect excitons with lower energy
than the lowest direct exciton. We find that in bilayer hBN the nature of the optical
gap (direct) changes with respect to the single–particle gap (indirect). In contrast, in
bulk hBN (and thicker few–layers of hBN) both optical and quasiparticle gaps are
indirect, i.e., they display a pronounced minimum in the excitonic dispersion curve
between Γ and K.

If the lowest exciton is indirect, as in bulk hBN, then phonon–assisted transi-
tions become relevant for the description of the optical spectra. The reliable ab initio
description of exciton–phonon coupling in indirect absorption and emission is the
main focus of this Thesis. We have tackled the problem with two approaches. In the
static approach, we calculate the coupling of excitons with phonons in a supercell
via a finite–displacement method. The supercell is commensurate with the k–point
corresponding to the minimum of the exciton dispersion. In this way, we are able to
reproduce the rich fine structure in the luminescence spectrum of bulk hBN in good
agreement with experiment and to explain it in terms of exciton–phonon coupling.

The finite–displacement approach is supposed to work for indirect optical spec-
tra in any material where the minimum of the exciton dispersion gives the domi-
nant phonon–assisted contribution. Since in the absorption case this is not always
true, we have employed a second, perturbative approach for the description of in-
direct absorption spectra which also includes dynamical effects and a microscopic
treatment of the coupling. We have implemented the required many–body quanti-
ties (namely, the exciton–phonon coupling matrix elements and self–energy) in the
Yambo many–body code. We expect this new method to allow us to overcome many
of the theoretical limitations of previous approaches to indirect absorption.
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Introduction

The interaction of light with matter is perhaps one of the most important natural
phenomena, its effects extending from the cosmological to the microscopic scale,
and from living organisms to inanimate objects. Down to the microscopic scale,
the interaction takes place via the atomic constituents, electrons and nuclei. If we
imagine two quantised, isolated energy levels with energies Ei < E f , with an elec-
tron occupying level i, the optical absorption process takes place when the electron
interacts with an incoming electro–magnetic field, whose quanta carry the energy
h̄ω = E f − Ei. The electron has a certain probability to absorb this energy and move
to the level f , leaving i empty. Then, the system is in an unstable excited state. The
excited electron will soon relax back to level i by emitting a photon with energy h̄ω.
This simple one–electron, two–level picture is considerably altered in a condensed
matter system, like a crystal, which contains ∼ 1023 particles per cm3: the electrons
are moving around the atomic nuclei which are arranged in an organized, symmet-
ric structure called lattice. In this case, the mutual interactions between the particles
complicate the response of the system to an incoming electro–magnetic field, with
various many–body phenomena possibly shaping it (e.g., metal or insulating char-
acter, magnetism, electronic correlations and screening, electron–lattice interaction,
...).

This thesis is concerned with the theoretical calculation of optical spectra in
hexagonal boron nitride, a prototypical layered material, taking into account the
coupling of optical excitations with lattice vibrations. We introduce the topics be-
low.

Theoretical spectroscopy

Spectroscopy is the study of the response of matter to external radiation, an electro–
magnetic (em) field. This radiation brings the system into an excited state. In par-
ticular, optical spectroscopy is concerned with the response of the matter system to
incoming em waves of frequencies (or equivalently wavelengths) broadly spanning
the range between infrared and ultraviolet light. Normally, the information about
the excited states of the system are encoded in a frequency–dependent response func-
tion, from which an optical spectrum can be obtained.1

In general, when light (coming, for example, from a laser beam) encounters the
surface of a material, it is partly reflected and partly transmitted within. Inside the
system, as light propagates in the presence of electronic and ionic charge densities,
it may be scattered or absorbed. In the latter case, and if our system is semiconduct-
ing, only em waves with energy h̄ω larger than the energy gap of the material may
be absorbed. The system (at least in the absence of defects) will be transparent to
the remaining light. Such light can then be collected in a detector upon exiting the

1In our case, we will always consider the response of the system to be linear, that is, its interaction
with the external field is weak enough to be described by first–order perturbation theory. Similarly,
the interation between the electrons and nuclei inside the material will be weak enough so that they
may be initially considered as separate systems.
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system and compared with the initial incoming field: the missing frequencies are the
absorbed ones. This is the simplest way to obtain an absorption spectrum.[1] Clearly,
the intensity, number, and energy of the spectral features depend on the probability
of light absorption. Therefore, by analysing absorption spectra we are able to obtain
a wealth of information on the electronic structure of the system. For example, the
onset of the absorption spectrum is an approximate measure of the energy gap of the
material: depending on its value, the material might become a valuable core com-
ponent of a transistor, LED, solar cell, or be a transparent substrate to other crystals,
et cetera. Furthermore, the intensities of the spectral peaks hint at the strength of the
coupling between the electronic wave functions and the incoming em wave, as well
as at the electronic density of states: this may give some insight into the possible
usage of the material in an efficient light absorbing or emitting device. We can then
conclude that optical spectra open a window into the inner, microscopic features of
the system, revealing the quantum interplay between its particle constituents.

When the energy carried by the light is transferred to a system previously in
its ground state (i.e. at equilibrium, undisturbed by external probes), we say that
the system enters an excited state, or that an excitation is created. The simplest
conceptualisation of such an excitation is the picture in which an electron is pro-
moted from a valence band (an allowed energy–momentum level for the system
at rest) to a conduction band (an allowed higher–energy level), that is the creation
of an electron–hole pair. Conversely, suppose now that a non–monochromatic laser
field excites many electrons to various conduction bands, or that a high–frequency
monochromatic field sends an electron well above the energy gap. The excited–state
relaxation dynamics of these electrons, taking place afterwards, will complicate the
description of the system. However we can imagine, in the simplest case, that the
excited carriers will relax fast to the respective band edges, and only then recombine
(i.e. restoring the ground state of the system) with a certain probability. When this
happens, the system must lose energy, and if the recombination is radiative a photon
with the appropriate frequency will be emitted. This process is called photolumines-
cence. The frequency–resolved detection of the emitted photons constitutes a lumi-
nescence (or more broadly emission) spectrum. Luminescence spectra are in general
more difficult to interpret than absorption ones, because they depend on the great
variety of relaxation processes that may take place when the system is pushed out
of equilibrium. However, since luminescence usually takes place only in a localised
region of the sample (close to where the laser excites the system), these experiments
are in most cases much easier to carry out than absorption ones. Furthermore, some
features that are not present or negligible in the absorption spectrum may become
dominant in the luminescence one (and viceversa), so that a comparison of the re-
sults from both techniques allows for a more complete insight into the electronic
structure of the system and the physical mechanisms regulating the excitation pro-
cess. Materials with high luminescence yield, for example, are well–suited for the
fabrication of light–emitting devices such as lasers.

If the electron–electron interaction inside the system is highly screened, the elec-
trons’ behavior approaches that of non–interacting particles moving in an electro-
static potential generated by the “frozen” atomic nuclei. If this is not the case, addi-
tional effects have to be considered to correctly describe the process of electron–hole
creation. For example, when an electron jumps to an excited state, it causes a redis-
tribution of the remaining electrons in response to its change of position and energy.
In particular, the electron will drag (or be pushed by) a cloud of nearby particles,
affecting its motion, energy, scattering rates et cetera. We call the excited electron
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“dressed” by its cloud a quasiparticle. A quasiparticle may also be formed by the ex-
cited electron plus its interaction with the nearby quantised lattice vibrations, i.e. the
phonons. Indeed, the atomic nuclei are not frozen in their equilibrium positions, but
oscillate around them in a type of collective motion determined by their own interac-
tion with the electronic charge density. This picture may be additionally complicated
when the electron non–negligibly interacts with its corresponding hole: in fact, the
hole acquires an effective positive charge because of the electron’s departure from its
energy level in the valence band. The presence of an electron–hole interaction means
that electron and hole motions are correlated. This can be in general conceptualised
by considering the electron and the hole (which in general have different effective
masses in a solid) as orbiting around each other. However, this is actually a collec-
tive excitation made of many different electron–hole pairs excited at the same time,
and we call it exciton. If the exciton is highly localised in momentum (i.e. reciprocal)
space, then it approaches the single electron–hole pair picture. In this thesis, we are
going to investigate all these effects and in particular focus on the excitons and their
further interaction with phonons as our main topic: in fact, we will study indirect
optical excitations.

Since in general the wave vector of light in the optical range is much smaller that
the one typically characterising the electronic wave functions in a solid — the latter’s
order of magnitude being determined by the crystal lattice constant — an electron
excited from the valence to the conduction band only changes its energy but not its
momentum. However, it is certainly possible that the bottom of the conduction band
and the top of the valence one lie at different momenta (like in silicon — in this case
the energy gap is indirect). Despite this, an electron–hole pair can still be optically
created by a second–order process involving phonons. In fact, although the phonon
energies are in general rather small compared to the electronic energy gap, their
crystal wave vectors are of the same magnitude as the electron ones. The electron can
then simultaneously (i) absorb light and (ii) be knocked “sideways” by a phonon,
which provides the necessary momentum transfer to bridge the indirect gap. This is
a phonon–assisted optical transition. Naturally, the reverse transition is also possible
(phonon–assisted recombination). The probability of an indirect transition, being the
product of the probabilities of both electron–light and electron–phonon scattering, is
in general much lower than that of a direct transition. The indirect spectral signature,
however, will be enhanced with respect to its direct counterpart in a luminescence
experiment: this is because in this case the indirect transitions lie at lower energy. A
scheme of direct and indirect optical transitions is displayed in Fig. 1

The necessity to obtain a theoretical equivalent to the experimental observables
for realistic, complex materials suggests that they should be modeled using com-
puter simulations. Indeed, the quantum mechanical equations governing the inter-
actions of a many–body system can be solved numerically at different levels of ap-
proximation. In general, these techniques are termed first–principles or ab initio,[2, 3]
in the sense that they do not require external fitting parameters and models, but only
the number and type of charged particles present in the system along with their mu-
tual Coulomb interaction. The most commonly employed of such first–principles
techniques, useful to calculate the electronic ground state of the system and an
approximation of its band structure, is called density functional theory (DFT).[4]
Phonons can also be obtained in a DFT–based formalism by density functional per-
turbation theory (DFPT).[5, 6] Finally, quasiparticle corrections[7] and excitons[8]
are obtained by many–body perturbation theory (MBPT), where the results of DFT
simulations are used as input data. As more sophisticated first–principles simula-
tions require more and more computational efforts, the availability of large–scale
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FIGURE 1: Two–band scheme for optical transitions (direct transtions: left, indirect: right).
The valence band is marked with a red line, the conduction band with a blue line. An elec-
tron (black dot) is excited from valence to conduction, leaving a hole (white circle) behind.
The presently formed electron–hole pair can also recombine via the inverse process. In the
direct case, the absorption or emission of a photon with energy h̄ω (blue arrow) enables the
transition. In the indirect case, the photon provides most of the energy to bridge the band
gap, but only the concomitant emission of a phonon (dotted arrow, energy h̄Ω) can account
for the needed momentum h̄q = h̄|k f − ki|. In this case the energies of the absorbed and
emitted photons are different (blue and orange arrows, respectively), leading to an energy
shift between absorption and luminescence spectra.

high–performance computing (HPC) facilities is crucial for the undertaking of what
we may also denote as “computational experiments”.

In this thesis, we develop the necessary tools to perform computational indirect
absorption and luminescence spectroscopy. We test this on a particularly interesting
material, described in the following.

Boron nitride: a simple structure leads to complex spectral fea-
tures

In the wake of the experimental discovery of graphene, the single layer of graphite,
by Novoselov, Geim et al. in 2004,2[10] an intense research effort — both experi-
mental and theoretical — was started to investigate the unusual properties enjoyed
by layered materials because of electronic quantum confinement along the stacking
direction,[11] particularly semiconducting ones.[9] Among these materials, boron
nitride holds the largest energy gap, deep in the UV range (see Fig. 2). Boron nitride
in its hexagonal form (hBN) is stable at room temperature and ambient pressure.[12]
Being made by stacked BN layers arranged in a hexagonal, honeycomb structure
dictated by strong sp2 covalent bonds, and weakly coupled to each other by van
der Waals forces and the overlapping pz orbitals, hBN acts as the insulating coun-
terpart of graphene/graphite.[13] It can be grown from solutions at high–pressure,
using solvents that contain both B and N,[14, 15] or by epitaxial techniques such as
chemical vapour deposition and molecular beam epitaxy.[16, 17] Few–layer samples
can also be obtained by epitaxy or by exfoliating the bulk material (however their
production has proven to be difficult due to easy defect creation[18]).

2K. S. Novoselov and A. K. Geim were awarded the 2010 Nobel Prize in Physics “for groundbreak-
ing experiments regarding the two-dimensional material graphene.” (https://www.nobelprize.org/
prizes/physics/2010/summary/).

https://www.nobelprize.org/prizes/physics/2010/summary/
https://www.nobelprize.org/prizes/physics/2010/summary/
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FIGURE 2: The “zoo” of 2D semiconductors. Figure taken from Ref. [9]. The layered materi-
als represented in the graph are ordered from left to right according to increasing band gap
energy. They start with graphene (0 eV) and end with hBN (> 6 eV)

Indeed, this material may appear quite simple at first sight: the required ingre-
dients are just a unit cell composed of two light and easy–to–model atoms, a highly
symmetric planar lattice structure (as shown in Fig. 2; see also Fig. 2.1), and only one
relevant valence and conduction band, both spin–degenerate. Yet, the physical phe-
nomena emerging from this uncomplicated structure are unusual, intriguing, and
often difficult to grasp. Indeed, the interesting physical properties of hBN have been
shown to be highly valuable for many applications, including graphene–based elec-
tronic devices (where hBN is used as an encapsulating substrate, flattening graphene
and improving its electron mobility)[19, 20] and electrical insulating applications in
vacuum and/or high temperature technology (in nanotube form).[16, 21, 22] Addi-
tionally, point defects in hBN have been proven to act as bright single–photon emit-
ters and the pristine material, viewed from the perspective of infrared nanopho-
tonics, can host hyperbolic phonon polaritons.[17] However, in the context of this
thesis we are interested in the ultraviolet spectroscopy of hBN, since this material is
also promising for optoelectronic applications in the deep UV range. In fact, its large
band gap, in combination with the observed high luminescence yield of high–quality
samples, makes hBN amenable for the fabrication of ultraviolet (UV) emitters.[14, 16,
21, 23] UV emitters have a variety of applications, arguably the simplest possible one
being information storage technology (optical storage, i.e. laser–based data reading
and writing). They may be also useful for environmental protection, since they can
trigger redox reactions in TiO2–based nanomaterials (i.e. photocatalysis): this pro-
cess is able to remove organic pollutants from air– or water–based environments.
Another important field of application is the medical one, since intense UV light can
be used, for example, to sterilise and purify water. In order to envisage efficient BN–
based UV emitters, however, the optical properties of bulk and few–layer hBN must
be thoroughly understood: we will offer several contributions towards this goal in
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this thesis.
From the experimental point of view, a variety of techniques have been used

to investigate the optical properties of hBN, including cathodo– and photolumines-
cence, deep inelastic x–ray scattering, Raman spectroscopy and two–photon spec-
troscopy.[13, 14, 18–20, 24, 25] Theoretically, the state–of–the–art MBPT techniques
— namely the quasiparticle and excitonic frameworks — have been employed in
numerical simulations.[21–23, 26–29] From the theoretical works, it is clear that bulk
hBN features an indirect quasiparticle gap, with the difference in energy with the
smallest direct transition from the valence to the conduction band being small com-
pared to the gap energy (about 0.5 eV). Excited electrons in hBN, however, are sub-
jected to a highly anisotropic screening of their Coulomb interaction by the other
electrons: the screening is high in the plane of the hexagonal layer, but very low in
the rest of the volume, where the charge density is much reduced. This condition
gives rise to strong electron–hole interactions. Indeed, the optical properties of hBN
are found to be dominated by excitonic effects both experimentally and theoretically,
and a description in terms of single–particle band structures is not possible. The
binding energy of the lowest–lying “direct” exciton in BN systems is of the order of
1 eV, a value that is two to three orders of magnitude larger than in 3D semiconduc-
tors, and still much larger than in other layered materials such as transition metal
dichalcogenides.[30]

Experimentally, the appearance of a rich fine structure (i.e. the presence of mul-
tiple spectral peaks in a small energy window) in the excitonic luminescence spectra
of BN systems raised interesting questions about the true nature of intrinsic optical
excitations in hBN[13, 18, 19, 24, 25, 31, 32] (see also Fig. 3.1). In fact, this com-
plicates the experimental interpretation of absorption/luminescence spectra, where
additional obfuscating effects due to defects, temperature, and low resolution (spec-
troscopy in the deep UV range is difficult) also play a role. Various explanations have
been proposed for this fine structure: an additional relaxation of the lattice geometry
taking place after optical excitation (an excitonic Jahn–Teller effect), thus splitting the
degeneracy of excitonic states and thereby creating multiple peaks;[24] interaction
with defect states, as well as breaking of the symmetry of the hexagonal lattice due to
their presence;[13, 27] phonon sidebands arising from exciton recombinations. The
latter interpretation has been convincingly advanced by Cassabois, Valvin and Gil
in order to interpret their photoluminescence (PL) spectra. They present a case for
phonon–assisted recombination of an indirect exciton in bulk hBN, albeit using the
single–particle picture in their intepretation.[19] This conclusion, however, carries
the implication that also the optical gap in hBN, that is, the energy gap at the exci-
ton rather than single–particle level, has indirect and not direct character, despite the
large binding energy theoretically predicted for the “direct” exciton. Indeed, phonon
replicas have been observed in the cathodoluminescence (CL) spectra of few–layer
hBN,[18] which would indicate the presence of a strong electron–phonon interaction
in this material, something that we will also establish from the theoretical side at the
end of Chapter 2. The energy position of the “indirect” peak in Ref. [19], however,
is very close to the “direct” one predicted by theoretical simulations. The simula-
tions also disagree with Ref. [19] about the nature of the excitons (either strongly or
weakly bound), and finally, the few experimental data available on absorption do
not show the expected mirror symmetry with the luminescence process. Certainly, a
phonon–assisted recombination could reduce the probability that an emitted photon
is immediately self–absorbed, since the two processes would then happen at differ-
ent photon frequencies: this allows to extract more light from the material and can
contribute to the observed high luminescence yield. However, the exciton–phonon
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coupling should also be extremely efficient in order to justify the aforementioned
high yield. In conclusion, the question of the nature of the optical gap in hBN, as
well as that of the competition between indirect and direct optical absorption pro-
cesses, had remained open.

Scope of this thesis

The goal of this thesis is to understand, calculate and explain the origin of the fine
structures in the optical spectra of hBN systems, both in multilayer and bulk form.
In particular, the coupling of finite–momentum excitons with phonons, leading to
indirect contributions to optical absorption and luminescence, will be the main fo-
cus. The only way to definitively interpret the puzzling experimentally observed
spectral features of hBN samples is to include the right physical mechanisms in the
analysis. First, we must consistently introduce an “excitonic” point of view, and pro-
ceed in our spectroscopy analysis from there. This is accomplished numerically by
systematically using the Bethe–Salpeter equation (BSE) for interacting electron–hole
pairs as the starting point of our investigations.

A thorough understanding of the structure of the excitonic wave functions in
hBN, including their symmetries and therefore their optical activity, can already pro-
vide some insight into the spatial localisation of the excitations: this is one source
of fine structures in systems where the lattice periodicity along the stacking direc-
tion is broken (i.e. few–layer samples). In order to carry out this analysis we con-
sider monolayer, bilayer, trilayer and “penta”–layer BN systems. The first–principles
study of finite–momentum excitons is a relatively new[33, 34] and until recently very
unexplored avenue. Experimentally, excitons are still often pictured as “defect–like”
energy levels situated within the band gap. However, also interacting electron–
hole pairs possess a dispersion relation, and its features might be crucial to explain
absorption and luminescence spectra. For example, the radial ΓK segment of the
hexagonal Brillouin zone (BZ), that in BN can discriminate between indirect and
direct absorption (because it hosts the indirect minimum of the single–particle con-
duction band), had not been explored before. We show that it is in fact possible for
the bilayer to still maintain a “direct” optical gap at the exciton level, with a direct–
to–indirect crossover happening at higher layer number. Such a crossover may also
be engineered by compressing the system in the planar direction. Additionally, we
uncover and analyse the excitons corresponding to electronic transitions towards
“nearly–free electron” (NFE) states,[35] which are usually ignored in the theoretical
spectroscopy of BN but could provide additional minima to the exciton dispersion
and potentially greatly reduce the luminescence yield for very thin films.

Once we have understood both the exciton and phonon dispersions and proper-
ties, we start delving into the electron-phonon (ep) and exciton–phonon (ExcP) in-
teractions. We first test the strength of the coupling with phonons in the monolayer
system and find that a strong (∼ 0.5 eV) renormalisation of both the single–particle
band gap and the exciton absorption spectrum is induced. Therefore, the ExcP cou-
pling cannot be discarded in the description of the optical properties of BN systems.

Switching to the bulk system, we then investigate the indirect contribution to the
absorption and luminescence spectra. Although some very recent advances have
been made in the ab initio description of indirect absorption at the independent–
particle (IP) level,[36, 37] these are few and far between, and even on the theoretical
side the many–body description of indirect absorption is still lacking: in fact, it usu-
ally only relies on approximations of a textbook second–order perturbation theory



8

formula that has severe limitations. We build upon the existing treatments in order
to extend their applicability to the exciton case.

The main achievement of the thesis consists in the reproduction of the experi-
mentally observed luminescence spectrum: we obtain it by developing an approach
to compute the phonon–assisted sidebands based on finite displacements of the
atomic nuclei according to the phonon eigenvectors. We analyse the excitons at the
wave vector q of the indirect gap. The evaluation of the ExcP coupling strengths
is performed in a static approximation by a second–order expansion of the optical
response function with respect to the atomic displacements within a simulation su-
percell commensurate with q. This expression reduces to the product of the mean
square displacement of the atoms with the second derivative of the excitonic oscilla-
tor strengths. Our previously established knowledge of the exciton symmetries and
dispersion relation allows us to compute the exciton–phonon–light selection rules,
which are fulfilled by our computational results. Detailed balance arguments then
allow us to obtain the luminescence spectrum from the absorption one if certain con-
ditions are met. In this way, not only we obtain a good agreement with experiment:
we also fully elucidate the underlying mechanisms regulating luminescence in this
system and explain why the absorption and emission spectra are different: two dif-
ferent exciton states dominate the two different processes.

Finally, we employ a microscopic description of the ExcP coupling which retains
dynamical effects, following an approach recently put forward in the context of plas-
mons.[38] We introduce it by analogy with simple single–particle models that can be
solved exactly; in particular, we find that it is possible to obtain the exact solution
for the (indirect) absorption spectrum of a two–level system featuring both electron–
phonon and electron–hole interaction. The extension of the model to realistic cases
is based on a dynamical correction to the BSE: the calculation of the dynamical part
of the phonon–mediated electron–hole interaction at first order is expressed in terms
of an exciton–phonon self–energy. This approach treats the ExcP coupling in a more
sophisticated way and in principle permits the description on the same footing of
both direct and indirect components of the absorption spectrum: this is because it
allows for a full integration over all exciton momenta in reciprocal space. We have
implemented the ExcP self–energy in the many–body code Yambo (after discussing
its link to the optical response functions of interest, focusing in particular on the
mixing of “longitudinal” and “transverse” excitons), and some preliminary results
are shown at the end of the manuscript.

Additional citations to the relevant literature are provided within the main body
of the manuscript for contextual consistency.

Structure of the thesis

Chapter 1 is an introduction to the theoretical background of first–principles calcu-
lations. We describe first DFT in Sec. 1.2 and then the Green’s function (GF) formal-
ism used to evaluate the dynamical electronic screening and provide quasiparticle
corrections to the DFT band energies (Sec. 1.3). We subsequently describe the con-
nection of the many–body response function thus defined to the optical observables,
in particular the absorption coefficient, in Sec. 1.4. This is followed by the expla-
nation of the BSE, the equation that permits to compute the excitons (Sec. 1.5), and
finally by the formalism employed for the calculation of phonons and ep coupling
(Sec. 1.6).
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In Chapter 2 we start the analysis of the excitons in hBN, from monolayer to the
bulk system. Particular attention is devoted to the excitonic energy levels in mono-
layer (Sec. 2.2),[39] and subsequently to the optical absorption of multilayer systems
(Sec. 2.3): we study the exciton symmetry and related selection rules and find that
the lowest–lying excitons are always localised on the surface layers, therefore pro-
viding an initial source of fine structure in the spectral features.[40] The second part
of the Chapter (Sec. 2.4) concerns the study of the exciton dispersion curves in the
bilayer and trilayer systems by solving the BSE at finite momentum. We study the
character of the optical gap (direct in bilayer, indirect in trilayer), its robustness with
respect to strain and compression of the lattice, and the effects of the NFE states on
the exciton dispersion.

Chapter 3 is contains the main results of the thesis.[41] We start Chapter 3 with
an introduction to the problem of luminescence in bulk hBN by discussing the exper-
imental results (Sec. 3.1). We also perform a computational study of the ep coupling
on the monolayer, including phonon–mediated renormalisation of the exciton ener-
gies and oscillator strengths (Sec. 3.2); in obtaining the latter results, we compare
two different computational approaches. Then, we continue with an in–depth de-
scription of indirect absorption at the IP level in Sec. (3.3). Finally, we introduce
our approach to obtain phonon–assisted sidebands from the static derivatives of the
excitonic response function (Sec. 3.4). Here we also compute the ExcP coupling selec-
tion rules and subsequently we perform the calculations to obtain the final spectra
for bulk hBN.

Chapter 4 deals with the microscopic, perturbative treatment of the ExcP cou-
pling. We introduce it by analogy with simple single–particle models that can be
solved exactly (Sec. 4.1). The full ExcP self–energy is described in Sec. 4.2.1 and
the results of the Yambo implementation are shown, along with our final microscopic
expression for phonon–assisted absorption including excitons.

The main text is complemented by a large body of Appendices (From A to J),
variously discussing simplified models, tips for numerical simulations, code devel-
opment, convergence parameters, and providing a reference for mathematical ex-
pressions and derivations.
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Chapter 1

Basic theory and implementations

1.1 Introduction

In this Chapter we will cover the theoretical foundations and approaches that con-
stitute the state of the art in Theoretical Solid–State Physics / Quantum Many–Body
Physics / Materials Science1 that are relevant for this thesis. The intent is to present
a treatment that is both concise, organic and reasonably self–contained (nonethe-
less previous basic knowledge of solid–state physics is required[43]). In particular,
we will establish the notation used throughout the thesis and put an emphasis on
what is needed for computational research using ab initio simulations. By ab initio or
first-principles simulation we refer to a computer simulation that takes as input only
the atomic and electronic positions of a crystal or molecule, as well as the values of
the various physical constants. It produces as output a quantity or observable that
can be directly compared with experimental results without relying on adjustable
parameters. However, the possibility to describe or not a certain physical property
depends on the approximations that need to be introduced in order to make the
computations feasible.

In the following, we will in general use atomic units (for example identifying fre-
quencies and energies), but exceptions will be made for some expressions. Likewise,
we will put the electronic charge e to unity as well, except for the initial expressions.
We will mainly follow Refs. [3, 44–53] (additional references will be provided within
the body of the Chapter). We start with the general matter Hamiltonian for a crystal:

Ĥ = T̂ion + V̂ion({R}) + T̂e + V̂e−e({r}) + V̂e−ion({r}, {R}). (1.1)

Here, T̂ion and T̂e are the kinetic energy operators for ions and electrons, while V̂ion,
V̂e and V̂e−ion represent the coulombic ion–ion, electron–electron and electron–ion
interactions. The set of the ionic positions is labeled by R and the one of the electronic
positions by r. We already stipulate the following conventions and approximations:
(i) relativistic corrections are neglected (because we will not be concerned with spin-
orbit coupling in this work); (ii) the spin degrees of freedom are always implied
(because we will not deal with spin-polarised systems); (iii) by ‘ion’ we mean the
composite of an atomic nucleus and the core electrons localised around it (under the
assumption that they can be treated on the same footing), and by ’electron’ we mean
a valence electron.

Here the ionic and electronic dynamics are coupled. However, we are not inter-
ested in the slow–moving ions, and we can partially decouple them from the elec-
trons: in fact, the ions will only react to a time–averaged potential generated by the
rapidly changing electronic density, while the electrons will mainly feel the presence

1The proper name to use for this field of Physics has changed during the course of the last century
and is currently mostly left to the author, as seen in Ref. [42].
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of an ‘external’ static potential determined by the set of ionic positions at equilib-
rium, {R0}. This is called adiabatic or Born–Oppenheimer (BO) approximation and
leads us to the following Hamiltonian:

ĤBO = Ĥ0
ion({R}) + Ĥe({r}, ({R0})) + Ĥe−ion({r}, {∆R}). (1.2)

In the following, we will focus on the interacting electronic system with the ions
fixed at their equilibrium positions (Ĥe). The term Ĥe−ion describes the effect that
lattice vibrations (i.e. displacements ∆R of the ions from their equilibrim positions)
have on the electronic system: this electron–lattice interaction will be reintroduced
later as a (small) perturbation, and we will do the same with the electron–light in-
teraction due to an external electro–magnetic field.

Now we have

Ĥe = T̂e + V̂e−e({r}) + V̂e−ion({r}, {R0})

= ∑
i

p2
i

2mi
+

1
2

Ne

∑
i 6=j

e2

|ri − rj|
−

Ne,Nn

∑
i,j

Zje2

|ri −R0
j |

,
(1.3)

where {p} is the set of electron momenta while−e, m and Zj are the electron charge,
electron mass and the effective atomic number of the jth ion, respectively. Ne and Nn
are the total numbers of electron and nuclei.

The first task in the study of a crystal is then to fully characterise its electronic
properties by solving the related Schrödinger (eigenvalue) equation of the interact-
ing many-electron system

ĤeΨMB(r1, . . . rNe) = EΨMB(r1, . . . rNe), (1.4)

where the superscript ‘MB’ means ‘many-body‘. The complicated eigenfunction
ΨMB (which is a function of ∼ 1023 variables) contains in principle all the informa-
tion about the electronic system (both ground state and excitations). However, the
computational effort required to diagonalise the full Ĥe prevents us from accessing
this information directly, even for isolated systems. Therefore, we first turn to DFT
in order to find a suitable way to simplify the problem: this will allow us to obtain
the electronic ground state.

1.2 Density functional theory

DFT was first developed in 1964 by Hohenberg and Kohn[54] and then Kohn and
Sham[55], and has since become one of the most popular tools of the computational
material scientist, quantum chemist, and solid–state physicist. Its foundation is the
possibility of expressing the total energy of a system as a functional E[ρ0] of the
ground–state electron density ρ0(r).2 The physical meaning of ρ(r), which is denoted
quantum–mechanically as the diagonal one–body density matrix, is connected to the
probability of finding one particle at point r. For the interacting electron system
of Eq. (1.4), it is defined as the expectation value of the density operator δ̂(r) =

2Technically, we may distinguish between the particle density n(r) and the charge density ρ(r) =
−en(r). We will not do so in the remainder of this manuscript.
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∑Ne
i δ(r− ri):

ρ(r) =
∫

d3r1 . . . d3rNe Ψ
∗ MB(r1, . . . rNe)δ̂(r)Ψ

MB(r1, . . . rNe)

= Ne

∫
d3r2 . . . d3rNe |ΨMB(r, r2 . . . rNe)|2.

(1.5)

Here, most of the information contained in ΨMB has been integrated away, and ρ(r)
is just a function of three spatial variables. Nevertheless, this will be enough if we
are interested in just the ground–state properties (i.e., expectation values) of the elec-
tronic system.

1.2.1 Theory

The first Hohenberg–Kohn theorem states that there is a one–to–one correspondence
between ρ0 and the external potential applied to the system. In the case of Eq. (1.3),
the external potential is V̂e−ion({r}, {R0}), which is periodic according to the sym-
metries of the crystal lattice. The second Hohenberg–Kohn theorem guarantees that
we can write the ground–state energy of the system, for any fixed V̂e−ion, as a unique
functional of the ground–state electron density. Therefore we have

E0 ≡ 〈ΨMB
0 | Ĥe |ΨMB

0 〉 = 〈ΨMB
0 | T̂e + V̂e−e + V̂e−ion |ΨMB

0 〉
= 〈ΨMB

0 | T̂e + V̂e−e |ΨMB
0 〉+

∫
d3rvR(r)ρ0(r)

= T[ρ0] + VH [ρ0] + Vxc[ρ0] +
∫

d3rvR(r)ρ0(r),

(1.6)

where for V̂e−ion we used the fact that a local operator can be written as a linear
functional of the one–body density matrix and vR(r) = −∑j e2Zj|r − R0

j |−1 is the
external (i.e. ionic) Coulomb potential. The rest can be broken up in a kinetic part T,
a classical charge–charge electrostatic interaction VH (called Hartree functional), and
an ‘exchange–correlation‘ part that encodes the quantum properties of the fermion–
fermion interaction. The Hartree functional is then

VH [ρ0] =
1
2

∫
d3r1d3r2

ρ0(r1)ρ0(r2)

|r1 − r2|
, (1.7)

but we still need to find a way to evaluate T and Vxc. The crucial insight comes
from the Kohn–Sham theorem: it is possible to write a single–particle Schrödinger
equation with an effective, local potential ve f f (r) in such a way that the ground–
state electron density of this auxiliary system is the same as the one of the original,
interacting system. The non–interacting Schrödinger equation, called Kohn–Sham
equation, is [

−1
2
∇2

r + ve f f (r)
]

ϕi(r) = εi ϕi(r), (1.8)

and the electron density of the auxiliary system ρs, equal to ρ0, can be expressed in
terms of the eigenfunctions ϕi as

ρ0(r) ≡ ρs(r) =
Ne

∑
i

ϕ∗i (r)ϕi(r). (1.9)
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We call εi the Kohn–Sham (KS) energies and ϕi the KS wave functions (the system
contains Ne electrons which contribute to the ground–state electron density; note
that Eqs. (1.8) may be solved also for i > Ne: these will represent unoccupied KS
states). We can now explicitly compute the kinetic energy functional of the non–
interacting system, Ts, and move the remaining unknown part into the exchange–
correlation functional with the following replacement: Vxc → Vxc + T− Ts. Now the
energy of the system will be given by E0 = Ts + VH +

∫
d3rv(r)ρ0(r) + Vxc. As for

the effective potential, we have

ve f f (r) = vR(r) + vH(r) + vxc(r),

vH(r) =
∫

d3r1
ρ0(r1)

|r1 − r| ,

vxc(r) ≡
δVxc[ρ0]

δρ0
.

(1.10)

Here, vH and vxc are the Hartree and exchange–correlation potentials, respectively.
So far, DFT is still exact (in the same sense that Eq. (1.4) is exact: an interacting
electron system in the BOapproximation for the ions, with no relativistic effects or
external electro-magnetic fields). In order to compute E0[ρ0], we first solve the KS
equations, obtain the ϕi, then build ρs. However, as it is clear from Eq. (1.10), the KS
equations themselves depend on ρs, therefore the solution must be obtained with a
self-consistent (sc) procedure: an initial guess ρ

(0)
s is given (for example an electron

density composed of pure atomic orbitals), Eqs. (1.8) are solved, a new ρ
(1)
s is found

and plugged back in Eqs. (1.8). The procedure ends when E(n)
0 − E(n−1)

0 is smaller
than the required accuracy.

In order to proceed with these calculations, however, we have to find suitable ap-
proximations for the unknown functional Vxc, with the reliability of DFT as a compu-
tational tool depending crucially on the type of approximation chosen. In this work
we will use the local density approximation (LDA), the simplest and most physically
motivated for a crystal, because we are only going to use DFT as a starting point:
complicated many–body effects related to electronic correlations and screening will
be included later via MBPT.3 Within LDA, the non–local exchange–correlation func-
tional is approximated as a local functional; this functional is given, at each point r,
by the exchange–correlation energy εHEG per particle of the homogeneous electron
gas with density ρ(r):

Vxc[ρ] ≡
∫

d3rρ(r)εHEG[ρ(r)]. (1.11)

1.2.2 Calculations in practice

In our case, the KS eigenstates ϕi describe non–interacting electrons moving in a
periodic, infinite crystal lattice (i.e. subject to a periodic effective potential), therefore
they can be identified with the Bloch functions from solid–state theory. They are
characterised by their discrete translational invariance due to the periodic crystal
lattice, and are therefore best treated in momentum space. For this reason, it is useful
to expand the ϕi in the plane–wave basis {ei(k+G)·r/

√
Ω}: here Ω is the volume of

the reciprocal unit cell and K = k+G is the momentum of the electron, with k ∈ BZ
being the crystal momentum and G a reciprocal lattice vector. Now, for the crystal

3It is important to note that both at the DFT and at the G0W0 levels (for the latter see Sec. 1.3.3), we
might need to replace LDA with other, more accurate approximations depending on the system and
physical properties under investigation.
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quantum numbers we have i→ nk, with k labeling the crystal momenta and n being
the band index (we will use v for valence bands and c for conduction ones), leading
to

ϕnk(r) = eik·runk(r) = eik·r ∑
G

cnk(G)eiG·r (1.12)

where unk(r) = unk(r + τ) (τ being a lattice translation vector) is a lattice–periodic
function and, for the electron density of Eq. (1.9), to

ρ0(r) = ∑
vk
|uvk(r)|2. (1.13)

It is clear from Eqs. (1.12) and (1.13) that the solution of the KS equations in a DFT
computer simulation yields the cnk(G) coefficients. The infinite sums over k and G
pose a problem of numerical convergence: a cutoff to both sums must be chosen in
such a way that the final E0[ρ0] does not depend on it. In the case of the sum over
k–vectors, this is achieved by performing the sum over a (usually regular) mesh of
k–points spanning the entire BZ, whose density is then increased until convergence
is achieved.4 In the following, we will switch back and forth from integral to discrete
sum when discussing an integration over the BZ:

∫
BZ d3k/ΩBZF(k) ↔ N−1

k ∑Nk
k Fk,

where Nk is the number of points in the k–mesh. In the case of the sum over G–
vectors, a cutoff is usually chosen in the form of an energy value h̄2|k + G|2/2m.
When convergence is achieved, the self–consistent solution of the KS equations will
yield the ground–state electron density and total energy of the system.5 At this point,
several additional non–self–consistent calculations may be performed for any arbi-
trary nk indices, in order to obtain quantities like the band structure along high–
symmetry directions, density of states, real–space representations of the Bloch func-
tions et cetera. All the DFT calculations presented in this thesis have been performed
with the QUANTUM ESPRESSO (QE) simulation package.[56]

1.2.3 Shortcomings of DFT

Historically, DFT has been very successful in predicting a wide range of material
properties while remaining computationally cheap. In spite of that, the access to
ground–state properties only and the reliance on approximated treatments of many–
body effects entail some crucial shortcomings. Below we list the three main flaws of
DFT and how we have dealt with them in this thesis.

(i) Test charge outside the matter system. The effective potential ve f f (r) is respon-
sible for confining the electrons inside the crystal; however, it decays exponentially
in the vacuum region outside the crystal and does not represent correctly its interac-
tion with an external charge. This unphysical behavior (there should be a long–range
decay) is due to the approximations of Vxc. For our purposes this is an advantage
because in systems with lowered periodicity (e.g. two–dimensional materials), we
will still be able to consider fully periodic simulation cells; this is achieved by stack-
ing repeated copies of the system with enough vacuum space separation between
them such that their spurious mutual interaction is rendered negligible. We will see
that this is not the case for many–body response functions beyond DFT.

4In most cases the symmetry operations under which the system is invariant, i.e., the elements of
the point group of the crystal plus time reversal, are employed in order to dramatically reduce the
spanned portion of the BZ. The smallest possible volume thus identified in reciprocal space is called
irreducible Brillouin zone (IBZ).

5The forces acting on the ions due to the electronic potential may also be computed, and it is then
possible to optimise the geometry of the crystal lattice via structural relaxation.
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(ii) Dispersion forces (i.e. Van der Waals interactions). These interactions are not
captured by standard DFT methods. Although corrective approximations are avail-
able, we will not deal with this problem in this work. Since we will be investigating
layered materials where Van der Waals interactions are important for the bonding of
one layer to another, we will fix the interlayer distances to the known experimental
values instead of relying on DFT structural relaxations.6

(iii) Band gap energy and single–particle states. When talking about the band struc-
ture of a material in the context of DFT, what we mean is the k-dispersion of the
KS eigenvalues, obtained solving Eqs. (1.8) for both occupied and unoccupied
states (the valence and conduction bands, respectively). However, these eigen-
values have no rigorous physical meaning: in principle there is no guarantee that
an interacting condensed matter system could be effectively described within a
single–particle framework, and the whole solid–state concept of a band structure
(i.e. non–interacting electrons in a periodic potential) could very well be mean-
ingless. In practice, this description works well for all materials where electronic
correlation could be treated as a perturbation (e.g., it may compare reasonably well
to experimental ARPES measurements.[57]) In this case, a more accurate treatment
of the electron–electron interaction beyond DFT leads to the concept of quasiparticles:
the system is still described in a single–particle framework, but the band energies
are shifted with respect to the KS eigenvalues, and furthermore acquire a finite
broadening which indicates that the single–particle states now have a finite lifetime
(i.e. they are not true eigenstates of the condensed matter system). From these
considerations, it follows that DFT is not able to correctly describe the band gaps
of insulating and semiconducting systems. In fact, the addition of one electron to
the interacting system (Ne → Ne + 1), now occupying the bottom of the conduction
band, induces a variation of the electron density with respect to the ground–state
one, and consequently there is a variation in the KS eigenvalues themselves. There-
fore we have the following relation between the band gap as defined in DFT–KS and
the “true” band gap that may be seen in photoemission / inverse photoemission
experiments:[1]

EKS
gap ≡ εH+1(Ne)− εH(Ne) < εH(Ne + 1)− εH(Ne) ≡ ETRUE

gap , (1.14)

where the subscript H labels the highest occupied KS state. Section 1.3.3 is concerned
with the treatment of the band gap underestimation problem via the quasiparticle
description of the electronic structure.

In addition to the previous point, since our goal is to investigate theoretical spec-
troscopy, we have to consider that an optical absorption experiment creates a neutral
excitation in the form of an electron–hole pair (a valence electron is given enough
energy to jump to a conduction state, with the overall electron number remaining
equal to Ne). Such an experiment would result in yet another gap, the optical gap,
which might be very different from the DFT–KS or quasiparticle band gaps when
the interaction between the excited, negatively charged electron and the positively
charged hole left in the valence band is poorly screened. This leads to the concept of
excitons, bound electron–hole states, that will be the main focus of this thesis. The ab
initio theory of excitons is laid out in Section 1.5.

6The LDA underestimates the interlayer distance. In many cases, the magnitude of this underesti-
mation is numerically very close to the neglected Van der Waals contribution.
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1.3 Many–body perturbation theory

All the results presented in this thesis are obtained using a MBPT framework, which
we outline in this Section.

1.3.1 Single–particle Green’s function

First of all, we switch to a second–quantisation description of the condensed matter
system. We introduce the fermionic creation and annihilation operators âi and â†

i ,
with the anticommutation properties {âi, â†

j } = δij and {âi, âj} = {â†
i , â†

j } = 0. These
operators act on the fermionic ground state by annihilating and creating a fermion,
respectively. In a crystal, by fermionic ground state we mean that all the bands
lying below the Fermi energy are occupied, all the ones lying above are empty. By
expanding these operators into the position basis |r〉 we obtain the field operators
(here written in the Heisenberg picture):

Ψ̂(r, t) = ∑
i

ϕi(r)e−iĤ0t âi,

Ψ̂†(r, t) = ∑
i

ϕ∗i (r)e
iĤ0t â†

i .
(1.15)

The single–particle wave functions ϕi(r) = 〈r|i〉 and energies (Ĥ0 |i〉 = εi |i〉) appear
in these expressions and we have [Ψ̂(r1, t), Ψ̂†(r2, t)]− = δ(r1 − r2). The connection
with the previous Section can be made at the level of the one-body density matrix,
Eq. (1.5), which can be written in second quantisation as

ρ(r) = 〈ΨMB
0 | Ψ̂†(r, t)Ψ̂(r, t) |ΨMB

0 〉 . (1.16)

(|ΨMB
0 〉 is the ground state of the many–body system). Now this expression can

be generalised by considering a version which is non–local in both space and time
coordinates:

iG(r, t; r′, t′) = 〈ΨMB
0 | T̂

[
Ψ̂(r, t)Ψ̂†(r′, t′)

]
|ΨMB

0 〉
= 〈ΨMB

0 | Ψ̂(r, t)Ψ̂†(r′, t′) |ΨMB
0 〉 θ(t− t′)

− 〈ΨMB
0 | Ψ̂†(r′, t′)Ψ̂(r, t) |ΨMB

0 〉 θ(t′ − t).

(1.17)

Here T̂ is the time–ordering operator. The first term of the difference is now con-
nected to the probability that a particle being initially created at space–time coordi-
nates (r′, t′) (i.e. a conduction electron) will propagate to (r, t) before being annihi-
lated. The second term instead starts with a particle initially annihilated at (r, t),
therefore a valence hole is created; it is connected to the probability that it will
propagate to (r′, t′) before being annihilated. Therefore, the physical meaning of
G(r, t; r′, t′) is that of a single–fermion propagator.

The mathematical meaning is instead that of the Green’s function (GF) of the time–
dependent Schrödinger equation for the electronic problem, with the following rela-
tions being formally valid:

[
i∂t − Ĥe

]
G(r, t; r′, t′) = δ(r− r′)δ(t− t′),

G(r, r′, ω) =
[
ω− Ĥe

]−1
.

(1.18)
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The second line is justified by the fact that if the Hamiltonian does not depend on
time, then G(r, t; r′, t′) = G(r, r′; t − t′): this allows the Fourier transform into the
frequency domain. Furthermore, if the system is also translationally invariant in
space we have G(r, r′; t− t′) = G(r− r′, t− t′), which allows the Fourier transform
into momentum space, so that finally G(r− r′, t− t′)→ G(K, ω). Note that now the
electron density from Eqs. (1.5) and (1.16) can be written in terms of the GF as7

ρ(r) = − lim
t′→t

iG(r, t; r, t′) (1.19)

Indeed, using the GF we can write an exact expression for the ground–state total
energy8 equivalent to Eq. (1.6),

E0 = −i
V
2

lim
η→0+

∫ d3kdω

(2π)4

[
h̄ω +

h̄2k2

2m
+ vR(K)

]
eiωηG(K, ω), (1.20)

which is known as the Migdal–Galitzki formula (V is the volume of the unit cell).
The first two terms come from the electron–electron interaction and the kinetic en-
ergy, respectively, with the third one accounting for the external potential.

The single–particle GF permits us to go beyond ground–state expectation values
and access directly the true single–particle excitation energies (as seen in Eq. (1.14)).
We can write G(k, ω) in the so–called Lehmann representation to make the excited
states appear explicitly:

G(k, ω) = V ∑
n

〈ΨMB
0 | Ψ̂(0) |ΨMB

nk ; Ne + 1〉 〈ΨMB
nk ; Ne + 1| Ψ̂†(0) |ΨMB

0 〉
ω− [En(Ne + 1)− E0(Ne)] + iη

+ V ∑
n

〈ΨMB
0 | Ψ̂(0) |ΨMB

n−k; Ne − 1〉 〈ΨMB
n−k; Ne − 1| Ψ̂†(0) |ΨMB

0 〉
ω− [E0(Ne)− En(Ne − 1)]− iη

.

(1.21)

Here |ΨMB
n±k; Ne ± 1〉 is the n–th many–body excited state for a system of Ne± 1 parti-

cles, where the created (annihilated) particle has momentum ±k; En(N) is the total
energy of the n–th excited state of the N–particle system. It is clear that the to-
tal energy differences in the denominators describe the change in the system after
the creation of one conduction electron (first term) and of one valence hole (second
term). We can express these differences in terms of single–particle energies εn as

En(Ne + 1)− E0(Ne) = [En(Ne + 1)− E0(Ne + 1)]− [E0(Ne + 1)− E0(Ne)] = εn(Ne + 1)− µ

E0(Ne)− En(Ne − 1) = [En(Ne)− E0(Ne − 1)] + [E0(Ne + 1)− En(Ne − 1)] = µ− εn(Ne − 1)
(1.22)

(the chemical potentia µ becomes the Fermi energy EF at zero temperature). There-
fore, the single–particle GF displays poles at the excitation energies of the system.

However, in order to have access to these quantities, the many–body problem has
to be solved exactly (i.e. the quantum electron–electron interaction has to be treated
exactly), which is not possible. Therefore, we will instead consider the GF of a non–
interacting electron system, G0, then introduce the interaction as a perturbation, and
ultimately find the new, approximate interacting GF denoted G. Our G0 will not

7The equal–time GF is ill–defined, therefore we introduce an infinitesimal value η ≡ t′ − t in such
a way that limt′→t ≡ limη→0+ .

8This is also true for the ground–state expectation value of any single–particle operator.
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be the free–electron GF, but rather the one relative to the KS equations (i.e. non–
interacting electrons moving under the influence of an effective potential, see Eq.
(1.8)): in this way we will be able to use the DFT–computed eigenvalues and wave
functions, which represent a much better starting point for perturbation theory than
the free electrons. Therefore G0 will be diagonal once expanded in the KS basis of
Bloch states |nk〉:

G0(r, r′; t− t′) = ∑
nk, n′k′

〈r|nk〉 〈nk|G0(t− t′) |n′k′〉 〈n′k′|r′〉

= ∑
nk
〈r|nk〉G0

nk(t− t′) 〈nk|r′〉

= ∑
nk

ϕnk(r)ϕ∗nk(r
′)G0

nk(t− t′).

(1.23)

We refer to the function G0
nk(t − t′) as the Green’s function for a particle of band

n and (crystal) momentum k. Since so far we are dealing with a non–interacting
system, G0

nk(ω) takes the simple form listed below:

G0
nk(ω) =

1− fnk

ω− εnk + iη
+

fnk

ω− εnk − iη
. (1.24)

For a gapped material at zero temperature, the occupation factors fnk become fvk = 1
and fck = 0: therefore it might be convenient to write G0

nk, in both time and frequency
domains, in the following way:

G0
ck(t21) = −iθ(t2 − t1) eiεck(t1−t2) =

t1 t2ck

G0
ck(ω) =

1
ω− εck + iη

G0
vk(t21) = iθ(t1 − t2) eiεvk(t1−t2) =

t1 t2vk

G0
vk(ω) =

1
ω− εvk − iη

.

(1.25)

Note that in these expressions we introduced a graphic representation for the prop-
agator of either a conduction electron or a valence hole.

We can rewrite the exact GF in a way that makes G0 explicit and allows for a di-
rect comparison with the DFT case (here we group the space–time variables together
as x → (r, t)):

G(x, x′) = G0(x, x′) +
∫

d4x1d4x2G0(x, x1)Σxc(x1, x2)G(x2, x)

G(K, ω) = G0(K, ω) + G0(K, ω)Σxc(K, ω)G(K, ω).
(1.26)

This is Dyson’s equation. We see now that the non–interacting Green’s function is
dressed by a complicated effective potential Σxc(x, x′), called the self–energy. The
self–energy, which is in general non–local in both space and time, represents an im-
provement with respect to the DFT treatment, in which Σxc

DFT(x, x′) = vxc[ρ0](r)δ(t−
t′). The non–locality in space is lost in DFT because of the need to express the
exchange–correlation functional in terms of the local particle density ρ(r). The non–
locality in time, as we shall see, refers to the time needed by the system to re-
spond to the presence of an extra charge, which leads to a frequency–dependent
(i.e., dynamical) screening of the electron–electron interaction. This can be captured
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FIGURE 1.1: Schematic representation of the bare exchange (left) and Hartree (right) self–
energy contributions, Eqs. (1.27) and (1.28) respectively.

efficiently by working with the self–energy. Note that, since in our definition the
KS energies entering G0 already contain an approximated correction due to vxc,
in order to avoid double–counting and maintain consistency it is always implied
that this quantity is subtracted from the self–energy operator, i.e. Σxc(x1, x2) →
Σxc(x1, x2) − vxc(x1, x2)δ(x1, x2). In order to keep the notation light we will write
down this difference explicitly only when required by the context.

Thanks to MBPT, we can now try to expand Σxc(x1, x2) in powers of the inter-
action (i.e. v(x21) = δ(t1 − t2)v(r21) = δ(t1 − t2)|r1 − r2|−1) to obtain a suitable
approximation of the exact function. To first order, the only contribution is

Σx(x1, x2) = iv(r21) lim
t2→t+1

G0(r1, r2; t1 − t2). (1.27)

This is not the full Σxc yet, because the interaction is still static. This contribu-
tion, called Σx, is the exchange or Fock term, i.e. the quantum part of the electrostatic
Coulomb interaction that arises due to the antisymmetric property of the fermionic
many–body wave functions. Since the Coulomb interaction is not time–dependent,
it means that at this level of approximation the presence of a perturbation (the addi-
tion or removal of an electron to the system) does not really cause a modification of
the energy levels (although total energies and therefore band gaps in the DFT sense
are affected). Predictably, this approximation is not sufficient in solids because the
dynamical electronic screening plays an important role: the electron density of the
system collectively reacts, polarises, oscillates, et cetera in response to an external
perturbation, and the frequencies associated to this response in turn modulate the
effects of the perturbation, typically reducing the strength of the interaction. This is
why a simple Hartree–Fock approach usually fails for solids, while DFT works bet-
ter: it adds an approximation to the electronic correlations responsible for screening
effects. Note that the classical or Hartree part of the electrostatic interaction (vH in
Eq. (1.10), already contained in G0) can also be written in terms of the GF using Eq.
(1.19):

ΣH(x1, x2) = −iv(r21) lim
t2→t+1

G0(r2, r2; t1 − t2) (1.28)

A schematic representation of these two terms is depicted in Fig. 1.1.
In order to obtain a more meaningful description of the condensed matter sytem

we then have to find a way to properly describe the electronic screening.

1.3.2 Screening functions

Let us consider a time–dependent perturbation to our electronic system in the form
of an external potential φext(r, t) due to external charges added to the system. We
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already know that the additional term perturbing the Hamiltonian can be written as
a functional of the electron density, i.e.

Ĥ′(t) =
∫

d3rρ̂(r)φext(r, t). (1.29)

This longitudinal perturbation (the external electric field due to the presence of addi-
tional charge being parallel to the propagation direction) induces a variation δρ in
the electron density. In turn, δρ generates an induced potential φind in such a way
that the total potential acting on the system is now φtot = φext + φind. We wish to
determine δρ up to linear order, since we consider φext to be a weak perturbation.

In linear response theory, we can employ Kubo’s formula for the first–order vari-
ation of any observable A(t) – i.e., the expectation value of the corresponding oper-
ator Â(t) – under the action of Ĥ′(t):

δ 〈Â(t)〉 =
∫

dt′CR
AH′(t, t′),

δ 〈Â(ω)〉 = CR
AH′(ω).

(1.30)

CR
AH′(t, t′) contains the response function, which mathematically assumes the form of

a retarded (t > t′) correlation function between Â at time t and Ĥ′ time t′:9

CR
AH′(t, t′) = −iθ(t− t′) 〈

[
Â(t), Ĥ′(t′)

]
〉0 (1.31)

(the Fourier transform being possible if CR
AH′(t, t′) = CR

AH′(t− t′)). The subscript 0
indicates that the expectation value is relative to the ground–state of the unperturbed
electronic system Ĥe (i.e., at linear order we are not dealing with out–of–equilibrium
quantities).

In the case of the electron density induced by Eq. (1.29) we obtain

δρ(x) = δ 〈ρ̂(x)〉 =
∫

dt′CR
ρH′(x, x′) =

∫
d4x′CR

ρρ(x, x′)φext(x′), (1.32)

with
χR(x, x′) ≡ CR

ρρ(x, x′) = −iθ(t− t′) 〈
[
ρ̂′(x), ρ̂′(x′)

]
〉0 , (1.33)

being the retarded, longitudinal charge–charge response function (with ρ̂′ = ρ̂− 〈ρ̂〉0
in this case). The perturbation acts at an earlier time t′; we measure its effects on the
system at a later time t. It is worth recalling here that MBPT gives us a mathematical
tool for the evaluation of time–ordered correlation functions, i.e. defined with the
same time structure as the single–particle GF in Eq. (1.17). Therefore, we define a
time–ordered version of the charge–charge response as

iχ(x, x′) = 〈T
[
ρ̂′(x)ρ̂′(x′)

]
〉0 . (1.34)

When the time–ordered (T) response has been computed, we can easily extract its re-
tarded (R) counterpart: for example in the frequency domain the following identity
for correlation functions holds:

CR
AB(r1, r2; ω) = θ(ω)CT

AB(r1, r2; ω) + θ(−ω)CT∗
AB(r1, r2; ω). (1.35)

From Eq. (1.16) we know that ρ̂(x) = Ψ̂†(x)Ψ̂(x), and let us recall the relationship

9Here we are implying that the perturbation is switched on at an indefinite earlier time ti → −∞
and that the response decays with increasing t− t′, as it physically makes sense.
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FIGURE 1.2: Graphical schemes of the electronic many–body functions. Top: single–particle
GF G and particle density ρ from Eq. (1.16). Bottom: two–particle correlation function L and
susceptibility χ from Eq. (1.37).

that links ρ and G: we can find that an analogous relationship exists between χ
and the two–particle correlation function. In particular, we introduce the two–particle
Green’s function G2 as follows:

G2(x1, x2, x3, x4) ≡ (−i)2 〈T
[
ψ̂(x1)ψ̂(x2)ψ̂

†(x3)ψ̂
†(x4)

]
〉

0
,

L(x1, x2, x3, x4) ≡ −G2(x1, x2, x3, x4) + G(x1, x3)G(x2, x4).
(1.36)

G2 describes the joint propagation of two (interacting) particles in the condensed
matter system, which are created at x3, x4 and annihilated at x1, x2 respectively. The
two–particle correlation function L is the same except for the removal of the uncorre-
lated part GG. We additionally constrain the time orderings in L so that it describes
the propagation of electron–hole pairs, not just any two particles. Therefore, at both
the earlier and later pair of times we will always have one electron and one hole. If
we further require that the electron and the hole are created and annihilated together
(i.e. the processes of electronic excitation or recombination), we have to set x3 = x+1
and x2 = x+4 , which leads us to the charge–charge response function. In short, we
have

iχ(x, x′) = L(x, x′+, x, x′+); (1.37)

The new induced electron density will give rise to the induced potential

φind(x) =
∫

d4x′v(x− x′)δρ(x′) =
∫

d4x′d4x′′v(x− x′)χR(x′, x′′)φext(x′′). (1.38)

Now the total potential φtot = φext + φind can be expressed in terms of the external
potential if we just define an additional function:

ε−1(x, x′) = δ(x− x′) +
∫

d4x′′v(x− x′′)χR(x′′, x′) =
δφtot(x)
δφext(x′)

. (1.39)

This is the inverse microscopic (longitudinal) dielectric function, and its physical
meaning is clarified by the last term in the equalities: it expresses the rate of variation
of the total potential with respect to the external one, i.e. it is a measure of the
screening of the external interaction by the induced potential. Now we can finally
write

φtot(x) =
∫

d4x′ε−1(x, x′)φext(x′). (1.40)
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This makes clear that in order to describe the electronic screening of an external po-
tential we need the dielectrict function, which in turn is determined by the response
function χ.

As mentioned above, the way in which an electron density responds to an ex-
ternal field can be perturbatively described in terms of neutral excitations of the
system. We are working in a single–particle (KS) framework and the simplest form
of such an excitation involves the formation of an electron–hole (eh) pair, whose si-
multaneous propagation is described by a two–particle correlation function. At the
zero order of approximation, this excitation will be described by a non–interacting
eh pair, created at time t1 and destroyed at time t2:

χ0(x1, x2) = −iG0(x21)G0(x12), (1.41)

while in Fourier space we can write

χ0(Q, Q′, t21) ≡ χ0
GG′(q, t21) =

∫
d3r1d3r2e−i(q+G)·r1+i(q+G′)·r2 χ0(r1, r2, t21). (1.42)

Here, we have Q = q + G and the response function is written as a tensor in the
reciprocal lattice vectors. It is a function of the energy and crystal momentum q =
k − k′ + G0 ∈ BZ transferred to the eh pair during the excitation process. This
process represents the excitation of an electron from KS energy εvk−q to KS energy
εck. The off–diagonal terms in χ0

GG′(q) represent the contributions to the short–range
response coming from the microscopic spatial inohomogeneities of the system (the
so–called local–field effects, see Sec. 1.4). In other words, they are present owing to
the discreteness of the lattice structure.

The response function χ0(r, r′) takes the following explicit form when expanded
in a basis of eh transitions (which we will call transition basis henceforth):

χ0(r, r′; t21) = ∑
cvk

ϕck(r)ϕ∗vk−q(r)ϕvk−q(r′)ϕ∗ck(r
′)χ0

cvkq(t21). (1.43)

In order to simplify the notation, we change the indices of the transition basis as
cvkq → Kq, with K labeling a single vck vertical transition between valence and
conduction bands. Now, taking Eq. (1.41) for χ0

Kq in the new transition basis, in
which it is diagonal, gives the simple forms

χ0
Kq(t21) = −iG0

vk−q(t21)G0
ck(t12) =

= −iθ(t2 − t1)ei∆εKq(t1−t2) + iθ(t1 − t2)ei∆εKq(t1−t2),

χ0
Kq(ω) =

1
2π

∫
dω′G0

vk−q(ω
′)G0

ck(ω + ω′)

=
1

ω− ∆εKq + iη
− 1

ω + ∆εKq − iη
,

(1.44)

which are formally analogous to their single–particle counterparts, Eqs. (1.25), and
allow for a similar physical intepretation, this time in terms of a polarisation prop-
agator with a resonant (iη) and antiresonant (−iη) term. We have further defined
∆εKq ≡ εck − εvk−q as the poles of the polarisation function and from now on we
will drop the space–time representation and focus on the momentum–frequency do-
main. Therefore, we insert Eq. (1.43) into the Fourier transform Eq. (1.42), finally
obtaining

χ0
GG′(q, ω) = ∑

K
$∗Kq(G)$Kq(G′)χ0

Kq(ω). (1.45)
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In the above equation we have defined a crucial integral to be numerically evaluated
by ab initio codes: the screening matrix element

$Kq(G) = 〈ck| ei(q+G)·r |vk− q〉 , (1.46)

which represents the coupling of the electrons with a longitudinal electric field car-
ryng both energy and momentum.

From Fig. 1.3 we see how χ0 gives a first–order correction to the bare Coulomb
interaction v. It is actually possible to improve on this and consider an infinite sum
of non–interacting eh pairs at all orders in v: this is a geometric series and therefore
exactly summable, leading to a huge improvement in the description of the screen-
ing. This is called Random Phase Approximation (RPA) and it represents the most
commonly used screening method when electron–hole interaction is neglected. We
first obtain the Dyson’s equation

χRPA
GG′ (q, ω) = χ0

GG′(q, ω) + ∑
G1

χ0
GG1

(q, ω)vG1(q)χ
RPA
G1G′(q, ω). (1.47)

here we have used vG(q), i.e. the Fourier transform of the bare Coulomb interaction
for a crystal,

v(|r− r′|) = ∑
qG

ei(q+G)·(r−r′) 4πδGG′

|q + G|2 = ∑
qG

ei(q+G)·(r−r′)vG(q). (1.48)

Equation (1.47) can now be inverted to give, formally, χRPA = [1− vχ0]−1χ0, and
from this the RPA inverse dielectric function ε−1

GG′(q, ω) can be constructed according
to Eq. (1.39), written concisely as ε−1 = 1 + vχRPA. Finally, the screened Coulomb
interaction is given, in accordance with Eqs. (1.40) and (1.47), by W(r, r′; t − t′) =
ε−1(r, r′; t − t′)v(|r− r′|) so that now we get a non–local, frequency–dependent in-
teraction in place of the bare Coulomb one:

W(r, r′; t− t′) = ∑
q

∑
GG′

ei(q+G)·r−i(q+G′)·r′e−iω(t−t′) ε−1
GG′(q, ω)

|q + G||q + G′|

WGG′(q, ω) ≡ ε−1
GG′(q, ω)

|q + G||q + G′| .
(1.49)

Equipped with a good description of the screened interaction, we can now go back
to the problem of the electronic self–energy.

1.3.3 Quasiparticle corrections I: electron–electron interaction

We can modify the self–energy of Eq. (1.27) by making a first–order expansion of the
GF with respect to the screened interaction W instead of the bare one v:

Σxc(x1, x2) = iW(x1, x2)G0(x1, x2),

Σxc(k, ω) =
1

(2π)4 ∑
GG′

∫
d3qdω′W(q, ω′)G0(k− q, ω−ω′)

(1.50)

(whe) This term (the lowest–order approximation to Σ) can be summed at all orders
in the expansion of the GF (in exactly the same way as for Eq. (1.47), see Fig. 1.4(a))
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FIGURE 1.3: Graphical representation of the main equations for the electronic screening.
a) Eqs. (1.43) / (1.45) (left), Eq. (1.48) (Fourier transform, center) and Eq. (1.49) (Fourier
transform, right). All the indices and summations are explicitly given. b) Eq. (1.47). c) Eq.
(1.44), W = ε−1v, as the RPA–screened Coulomb interaction (equivalently, Eq. (1.49)). Eq.
(1.39), ε−1 = 1 + vχRPA, is also implied in the last line.

leading to a Dyson’s equation for the new, quasiparticle (QP) Green’s function:

G(k, ω) = G0(k, ω) + G0(k, ω)Σxc(k, ω)G(k, ω). (1.51)

In fact, G is now describing the propagation of an electron or a hole “dressed” by
the electronic interactions contained in Σxc (a quasielectron and a quasihole). The
poles of G will give us both the QP energies and the energies of additional satellite
structures. Currently, we are interested in the former, which correct the KS eigen-
values and allow for a more realistic description of the band gap, as well as for a
more accurate band structure as a whole. This method is called the GW approxima-
tion (GWA), since we obtained an approximated self–energy composed of G0 and
W. The Dyson’s equation (1.51) represents a summation of self–energy contribu-
tions at infinite order in W. Some contributions at each order greater than the first
are nonetheless neglected. Such terms at second order are shown in Fig. 1.4(b) as an
example. A subset of the neglected terms, the so–called self–consistency diagrams,
can be included by (re)computing G self–consistently, but it is not guaranteed that
this will lead to better results: in most cases, the GW method consists of a one–shot
calculation with the DFT eigenvalues and wave functions as a starting point (in this
case we say that we are employing the G0W0 method[7]).10

If we want to compute the correction to a KS state |nk〉, we then take the corre-
sponding matrix element of G in the KS basis, and by inverting the Dyson equation

10The one–shot G0W0 method has been very successful in accurately describing the band gap of
a vast class of materials. We will not be concerned with its failures in this thesis, although we will
mention that it underestimates the actual band gap of BN systems.
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FIGURE 1.4: Graphical representation of the Dyson equation for the GW self–energy. a) Eq.
(1.51), G = G0 + G0ΣxcG. b) Terms contributing to the QP Green’s function G at second
order in the screened interaction W. The top one is included in Eq. (1.51), the bottom two
are neglected.

we obtain (recall that G0,−1
nk = ω− εnk)

Gnk(ω) =
1

ω− εnk − 〈nk|Σxc |nk〉 , (1.52)

and the focus of the ab initio calculation lies in the computation of the complex quan-
tity Σxc

nk(ω) ≡ 〈nk|Σxc(ω) |nk〉.11 This can be broken up into the sum of two integral
expressions, one for the static exchange Σx and the other for the dynamical correla-
tions part Σc. The exchange part is responsible for the opening of the band gap. The
correlation part instead closes the gap, however its contribution to the QP correction
is typically smaller than that of Σx.

Σx
nk(ω) = −∑

v
∑
G

∫
d3q

4π

|q + G|2 |$nvkq(G)|2,

Σc
nk(ω) = i ∑

m
∑
GG′

∫
d3qdω′

4π ε−1
GG′(q, ω′)

|q + G||q + G′|$nmkq(G)$∗nmkq(G
′)G0

mk−q(ω−ω′).

(1.53)

All the MBPT simulations performed in this thesis were run with the Yambo
code.[58, 59] In order to obtain converged and reliable results we need to pay at-
tention to Eqs. (1.47) and (1.53). First of all both the k–mesh and the q–mesh need
to be dense enough to properly evaluate the corresponding integrals. In general the
two meshes coincide and their convergence is handled at the same time: the con-
vergence requirements are in general much stricter than in a DFT calculation and
one needs either exceptionally dense grids within the (I)BZ or advanced numeri-
cal integration methods (the largest values used in this thesis are 42× 42× 1 and
36× 36× 6 for the 5–layer and bulk hBN, respectively). This is one of the main rea-
sons why ab initio MBPT is in general much more computationally expensive than

11Here only the diagonal components of Σxc in the single–particle basis are considered. They repre-
sent the perturbative corrections to the KS energies. Recall that we are implicitly subtracting the DFT
exchange–correlation potential from this expression.
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DFT, and allows treatment of much smaller systems (of the order of just ∼ 10 atoms
per unit cell). An additional difficulty is the sum over all empty KS bands appearing
in both equations. A cutoff number must be chosen, and in general it is very system–
specific. Nonetheless, a large number of empty bands is typically to be computed
with high accuracy at the DFT level in order to have reliable results (the required
energy range above the bottom of the conduction band can be of the order of ∼ 100
eV). A third requirement, which is especially heavy from a memory perspective, is
the size of the G–tensors. Here the cutoff values are normally given in energy units
and they regulate, among other things, how many local–field components of the di-
electric function are taken into account. Lastly, in the Σc calculation, the frequency
integral involving the dielectric function can be performed directly (in which case a
discrete grid of ω–values must be carefully converged), or a model dielectric func-
tion like the plasmon–pole approximation could be used and the integral perfomed
analytically (in which case the reliability of the model should be tested).

Once the self–energy has been obtained for state |nk〉, we can define and calculate
the QP correction. We see from Eq. (1.52) that it is given by the nonlinear equation

ω− εnk − Σxc
nk(ω) = 0 (1.54)

(with Σxc
nk = ΣR

nk + iΣI
nk), which is generally linearised by expanding its real part

around the original, real, KS eigenvalue, and then solved numerically:

ω− εnk − Σxc
nk(εnk)−

∂ΣR
nk(ω)

∂ω

∣∣∣∣
ω=εnk

(ω− εnk) = 0,

Z ≡
[

1− ∂ΣR
nk(ω)

∂ω

∣∣∣∣
ω=εnk

]−1

,

(1.55)

with Z called the renormalisation factor. With this definition, we can write the final
form of the QP GF and of the QP band energy:

Gnk(ω; Z) =
Z

ω− εnk − ZΣxc
nk(εnk)

,

Enk = εnk + ZΣxc
nk(εnk).

(1.56)

Therefore, the correction to the DFT band energies is ZΣxc
nk(εnk). The Z–factor is a

measure of the single–particle character of the system. If Z = 1, the electron ad-
dition/removal spectra (given by ImG) shows a single peak at the QP energy. The
width of the peak has the physical meaning of the inverse lifetime of the single–
particle state – due to electron–electron scattering – and is proportional to ΣI . Typ-
ically, if the system is not strongly correlated, Z . 1: in this case the missing spec-
tral strength is transferred to additional new structures called satellites. However,
it should be noted that a GW–type self–energy gives rise to a single satellite at the
wrong energy with respect to experimental observations. We will become concerned
with satellites (only the ones due the electron–phonon interaction) near the end of
this thesis, but so far we ignore them. If Z � 1, this is a signal that the material in
question is not well described from a single–particle perspective, and the theoretical
framework has to shift away from standard MBPT. In order to be able to consistently
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model the electron–hole interaction between single–particle states, while incorporat-
ing the QP corrections, we further define

Gnk(ω) ≡ 1
ω− Enk

=
1

ω− εnk − ZΣxc
nk(εnk)

. (1.57)

1.4 Optics

We will now start dealing with optical excitations: the response of the electronic
system to an external electro–magnetic (em) field, e.g. a laser field. The response is
described in terms of neutral excitations of the system that can be created (optical
absorption) or destroyed (radiative emission/recombination, luminescence). Let us
start with the former case: which is the basic physical mechanism that permits us
to understand optical absorption in a gapped material? Is it just the excitation of
an electron from the top of the valence band to the bottom of the conduction one,
upon absorption of the laser energy? We will see that more complex structures are in
general needed to model optical excitations if the electronic screening is weak, and in
many cases a description based on the band structure, useful as it is to conceptualise
the absorption process, must be formally abandoned.

The coupling of the electronic system to an external weak em field can be de-
scribed in linear response theory. The treatment is analogous to the one already
adopted for the screening (Eq. (1.29)), however now the external perturbation con-
tains both a longitudinal and transverse component and must be described in terms
of both a scalar and a vector potential φext(x) and Aext(x). The external perturbation
becomes, at linear order in the incoming fields:

Ĥ′(t) =
∫

d3rρ̂(r)φext(r, t)− 1
c

∫
d3rAext(r, t) · ĵ(r), (1.58)

where ĵ = h̄
2im [Ψ̂†(r)∇Ψ̂(r) − (∇Ψ̂†(r))Ψ̂(r)] is the current density operator, since

now an induced current will also be generated inside the material alongside the
induced charge. Actually, we can immediately choose the Coulomb gauge for the
em field, i.e. ∇ · Aext(r, t) = 0. This choice of gauge has the effect of separating
the optical character of the em interaction: now the scalar potential will describe an
instantaneous, purely longitudinal field (as we assumed in the screening section),
while the vector potential will be equivalent to a purely transverse field. As the
scalar potential gives rise to a longitudinal induced charge, which leads to Eq. (1.34)
for the charge–charge response function χ, in turn, the vector potential induces a
transverse current via the (transverse) current–current response function

↔
χ :12

i
↔
χ(x1, x2) = 〈T

[
ĵ′(x1)ĵ′(x2)

]
〉0 (1.59)

(with ĵ′ = ĵ − j). The connection of this function to the two–particle correlation
function is more cumbersome than in the case of χ, since we have

↔
χ(x1, x2) ∝ (∇r2 −

∇r4)L(x1, x2, x3, x4). Therefore, in general,
↔
χ(x1, x2) is not calculated explicitly, as

we will see later.
12Actually, there is also a mixed longitudinal–transverse response that leads to a transverse induced

charge and a longitudinal induced current. We will not introduce the corresponding response func-
tions here for simplicity (for further details, see Ref. [46]). This omission does not impact the discussion
in this section.
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Let us now start to develop the charge–charge response χ for the case of optical
absorption. In this case, the external field is macroscopic: it typically has wavelengths
that extend from the UV (180 nm / 7 eV) to the IR (1200 nm / 1 eV) range, so that
the characteristic length over which it varies is much larger than that of the elec-
tronic system. For example, if q is the momentum carried by the laser field and
a is the lattice parameter of the crystal (< 1 nm), we may write the following in-
equality: qa � 1. This is the optical limit, which in the q–dependent formulas will
appear as limq→0. What about the induced field φind: is it macroscopic as well?
The answer is no, since the crystal is discrete and so the electronic density is not
homogeneous: then the induced fields experience relevant variations at the micro-
scopic level. These so–called local–field effects add up in φind and consequently in
φtot = φext + φind. Mathematically, they are described by all the components of the
χGG′ tensor with G 6= 0 (i.e. short–range contributions in real space). In turn, the ex-
perimental observables are macroscopic quantities: as the incoming macroscopic field
impinges on the system, the outcoming macroscopic (i.e. G = 0) field is measured.

In order to proceed, we need to introduce yet another response function, the
proper one χ. Considering any invertible Dyson equation like χ = χ0 + χ0Kχ with
K = v + . . . (for example K = v in the RPA case of Eq. (1.47)), we can always write
the useful relation

χ−1 =
(
χ0)−1 − K. (1.60)

At this point we break the Coulomb interaction into two parts, v = v0 + v, where
v0 is the long–range component with G = 0, while v contains all the G 6= 0 compo-
nents. We can now define the proper response function as

χ−1 ≡
(
χ0)−1 − v. (1.61)

In the RPA case, χRPA satisfies the same Dyson equation (1.47) as χRPA, but now the
internal sum over G–vectors must have G1 6= 0. Furthermore, χ and χ are connected
by the following invertible relations:

χ = χ + χv0χ,
χ = χ− χv0χ.

(1.62)

In order to obtain the macroscopic quantities that describe optical absorption we
need to set G = 0, pass to the retarded functions and take the optical limit, therefore
we have (this time writing explicitly the dependencies)

χR
00(q, ω) =

χR
00(q, ω)

1 + v0(q)χR
00(q, ω)

=
χR

00(q, ω)

[ε−1(q, ω)]00
=⇒

[
ε−1(q, ω)

]
00

=
1

1− v0(q)χR
00(q, ω)

,
(1.63)

where in the second equality on the first line we have used the matrix version of Eq.
(1.39) to introduce the microscopic dielectric function. The notation using square
brackets is meant to emphasize that we are taking the first element of the inverse
function, and not the inverse of the of the first element. Now we introduce the
central definition of the macroscopic dielectric function, the quantity that will be con-
nected to the experimentally observable absorption spectrum:

εM(ω) = lim
q→0

1
[ε−1(q, ω)]00

, (1.64)
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which permits us to finally write

εM(ω) = 1− lim
q→0

4π

q2 χR
00(q, ω). (1.65)

The above equation is well–behaved in the small–q limit because

χR
00(q, ω) ∼

q→0
q2χR

00(ω) : (1.66)

this can be understood by considering the small–q expansion of the screening ma-
trix elements of Eq. (1.46). The macroscopic dielectric function can be equivalently
evaluated by simply inverting Eq. (1.39), ε−1 = 1+ limq→0 vχR, however this matrix
inversion depends on all the GG′ components of the tensor.

It is now time to make a somewhat obvious remark. The laser field impinging
on the crystal during an absorption experiment is a purely transverse one, carried
by Aext which is orthogonal to the direction of propagation of the laser wave. No ex-
ternal charge distribution is generally inserted into the system (φext = 0), something
that would justify the use of the longitudinal charge–charge response. Instead, a
purely transverse incoming field can in general generate excitations with both longi-
tudinal and transverse components. In a system with cubic symmetry, only a purely
transverse current density will be generated.[60] Therefore, we would have to con-
sider a dielectric tensor,

↔
ε M[ω;

↔
χ(q, ω)], expressed in terms of the current–current

response function. This quantity has in principle nine components and is consider-
ably more difficult to evaluate than Eq. (1.65). Therefore, the following assumption
may be made at this point: (i) The system has cubic symmetry, (ii) we are always
at the optical limit (q → 0). Condition (i) ensures that the transverse components
of
↔
χ(q, ω) are purely on the diagonal, while the longitudinal ones are off–diagonal;

together with condition (ii), it ensures that the dielectric tensor is a scalar function;
condition (ii) also ensures that this scalar function is equal to εM(ω). In short,

lim
q→0

↔
ε M(q, ω) =

↔
1 εM(ω), (1.67)

therefore the transverse response of the system is known when χ is known. Para-
phrasing Ref. [60] and [46], this means that, given conditions (i) and (ii): the trans-
verse response of a (cubic) gapped system is given by the longitudinal response of the same
system but with the Coulomb interaction v replaced by v. The computational literature
strongly relies on the calculation of εM(ω) to access the optical properties of systems
of any symmetry, giving mostly accurate results. This is because the longitudinal re-
sponse can describe the effects of external transverse fields even in non–cubic crys-
tals (provided that condition (ii) still holds), if the momentum q of the incoming light
is orthogonal to one of the principal axes of the dielectric tensor.[61] In other words,
if we consider a frame of reference in which the dielectric tensor is diagonal, and
the incoming electric field (orthogonal to the light momentum) is parallel to one of
the corresponding principal axes, then limq→0 [εM(q, ω)]αα (where α labels the prin-
cipal axis of choice) is still given by Eq. (1.65). This is condition (iii). In the course
of this thesis we will assume condition (iii), or rather its consequence, to always be
approximately valid, given that we are interested in hexagonal layered crystals with
incoming light polarised in the layer plane. However we will briefly go beyond con-
dition (ii) at the end, when discussing the effects of finite–q transitions mediated by
phonons on the optical absorption spectrum.
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Having discussed the response of the system to an em field, we can now look
for solutions to the macroscopic Maxwell’s equations for a monochromatic wave
penetrating the material (n being the polarisation versor)

Aext(r, t) = nA0(t)
(
eiq·r + e−iq·r) , (1.68)

leading to the well–known exponential attenuation of its intensity I along the direc-
tion of propagation z: I(ω)/I(0) = e−α(ω)z. The frequency–dependent absorption
coefficient α(ω) is the quantity to be determined by MBPT and computed ab initio.
Let us note down some useful relations: first, the macroscopic dielectric function has
a real and imaginary part: εM(ω) = ε1(ω) + iε2(ω). Note that ε1(0) is the static di-
electric constant. Then, the complex refractive index n(ω) = n1(ω) + in2(ω) can be
obtained from εM(ω) because the two are connected by the relation εM(ω) = n2(ω).
Finally, the absorption coefficient is given by

α(ω) =
ω

c
ε2(ω)

n1(ω)
. (1.69)

Therefore, α(ω) is completely determined by ε2(ω), which yields the absorption
spectrum and is the final quantity we aim to compute in this thesis.

We can clarify the last two paragraphs by computing the optical absorption in the
independent–particle case, using the zero–order polarisation χ0 = −iG0G0 defined
in Eq. (1.41). This example will further emphasise the need to introduce an addional
layer of theory (the electron–hole interaction) to obtain an accurate description of

this physical process. In this case, the analytical form of
↔
χ

0
is identical to χ0 as

given in Eqs. (1.33) and (1.44) (provided that we are in a cubic sytem or condition
(iii) holds). However, the matrix elements from Eq. (1.46) are different: since in
the Coulomb gauge [p, Aext] = 0 (with p = −i∇), then the transverse field in the
perturbing Hamiltonian (Eq. (1.58)) leads to the optical matrix elements

DKq(G) =
n · 〈ck| ei(q+G)·rp |vk− q〉

m(εck − εvk−q)
(1.70)

(this is to be compared with the screening matrix elements in Eq. (1.46)). We can

compare the microscopic dielectric functions obtained from χ0 and
↔
χ

0
, (called εlong

and εtrans respectively), considering for simplicity the resonant ω > 0 part (the only
one relevant for absorption):13

εlong(q, ω) = 1 +
8π

q2
e2

V ∑
GG′

∑
q

∑
K

$∗Kq(G)$Kq(G′)

w− ∆εKq + iη
,

εtrans(q, ω) = 1 +
8πe2

V ∑
GG′

∑
q

∑
K

D∗Kq(G)DKq(G′)

w− ∆εKq + iη
.

(1.71)

We approach the optical limit: we first take the long–wavelength Fourier compo-
nents G = G′ = 0 and obtain the modulus squared of the long–range optical and
screening matrix elements, |DKq|2 and |$Kq|2. We then expand the matrix elements at
first order in q: in the screening case the first non–zero term is ∝ |iq · 〈c| r− r′ |v〉 |2 =

13The factor of 2 coming from the spin summation is explicitly taken into account in these expres-
sions.
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q2|n · 〈c| r |v〉 |2. In the optical case, the first order is provided already by the momen-
tum operator p and we can simpy approximate the phase factor to one: this is the
so–called dipole approximation. We call the resulting matrix element dipole matrix
element (DME), dK, in the velocity gauge; furthermore we introduce the following
useful relation to convert it to the length gauge:14

dK ≡
ih̄
m

n · 〈ck|p |vk〉
∆εK

= n · 〈ck| r |vk〉 . (1.72)

All the above considerations show that

lim
q→0

εtrans(q, ω) = lim
q→0

εlong(q, ω) = εM(ω), (1.73)

and we can write the absorption spectrum in the independent–particle case as

ε2(ω) =
8π2e2

V ∑
K
|dK|2δ(ω− ∆εK). (1.74)

We have obtained the textbook result of Fermi’s golden rule from time–dependent
perturbation theory.

If this were enough to obtain spectra matching with experiments, there would
be little need for the complicated theoretical framework that we laid out until now.
This formula casts the absorption process in terms of single–particle, “vertical” tran-
sitions of electrons that absorb the incoming energy of the laser field. When a tran-
sition is allowed by symmetry (i.e. the integral dK is not identically zero), it appears
as a peak in the absorption spectrum, whose intensity is proportional to the prob-
ability of the transition taking place. The absorption edge of the system is at the
(direct) band gap energy Eg = minK{∆εK}. Clearly, in most cases the experimental
absorption edge lies higher in energy: this is because we did not account for the QP
correction and we are using the DFT band gap. By replacing G0 with the G obtained
from a G0W0 calculation (recall Eq. (1.57)) we can obviate this problem, as now
χ0 = −iGG. In this way, we obtain Eq. (1.74) with ∆EK instead of ∆εK.15 This might
work for materials where the electronic interaction is highly screened, but in many
cases we now find ourselves facing the opposite problem: the theoretical absorption
edge now lies too high in energy! Replacing χ0 with χRPA will not help us lower
the band gap of the system, therefore the missing part of the theory is not merely
a more advanced single–particle description of the response function. We need to
include electron–hole interaction in our theory. Conduction electron and valence
hole propagations are correlated, and if their interaction is strong enough they can
form a bound state whose binding energy lies below the single–particle band gap.
Such a structure is called exciton: it is not merely a below–band gap “defect–like”
state, but rather it requires a complete reframing of our description of the system.
We are dealing with a collective excitation that incorporates all electronic transitions
of the system, spanning in principle the whole energy–momentum phase space. To
elucidate this point, we will anticipate the form taken by ε2 when the electron–hole

14This relation is strictly valid only if the unperturbed Hamiltonian is local, but it can be extended
to the non–local case by adding an additional term. The Yambo code contains the correction for the
non–local case.

15However, note that the spectral intensities will change if the energies are shifted, since ε2(ω) must
respect the f–sum rule

∫ +∞
0 dωωε2(ω) = constant. In general, we will use arbitrary units for the

spectral intensities.
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FIGURE 1.5: Comparison of ε2(ω) calculated according to different approximations and lev-
els of theory for bulk hexagonal boron nitride. a) The independent–particle (IP) result, Eq.
(1.74), is shown for χ0 in blue and for χRPA in green. In both cases the peaks are at the
single–particle transition energies (the two functions share the same pole structure) and the
absorption onset is at the QP band gap. The BSE result, Eq. (1.75), is instead shown in red:
it shows a substantial oscillator strength transfer to the first excitonic state at 5.5 eV and the
absorption spectrum is completely altered. b) Comparison between the IP result at the DFT
level (dashed blue), at the GW level (blue) and at the GW+BSE level (red). The DFT onset
is around 4.5 eV, but the GWA corrects the band gap by about 1.6 eV. The binding energy of
the lowest energy exciton is 0.7 eV and sits around the midpoint between the DFT and GW
absorption onsets.

interaction is included via MBPT (see the next Section):

ε2(ω) =
8π2e2

V ∑
λ

∣∣∣∣∑
K

AKλ dK

∣∣∣∣
2

δ(ω− Eλ) (1.75)

Here, the possible excitations we are summing over are the excitons λ, and each exci-
ton is made of a linear combination of all single–particle transitions K. The weights
AKλ allow for the change from transition to exciton basis. They are computed, along-
side the exciton energies Eλ, by solving the Bethe–Salpeter equation (BSE). Some
numerical examples pertaining to the present discussion are presented in Fig. 1.5.

1.5 Excitons

In order to take into account excitonic effects, we need to consider a perturbation
expansion of the response function χ in terms of electron–hole interactions. We want
to consider these interactions at first order and in a consistent way with the single–
particle corrections (i.e., the GW self–energy). We can start from the inverted Eq.
(1.32) (in the time–ordered case):16

χ(12) =
δρ(1)

δφext(2)
. (1.76)

Here for simplicity we made the replacement 1 → x1, 2 → x2, . . . for the space–
time coordinates. It can be shown[3] that this equation leads to the Bethe–Salpeter

16In order to find more information about this functional approach we direct the reader to Ref. [3].
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equation (BSE) for χ, written as

χ(12) = χ0(12) +
∫

d(3456)χ0(134)K(3456)χ(562),

K(3456) =
δΣ(35)
δG(46)

,
(1.77)

whose graphical representation is shown in Fig. 1.6(a). We have a Dyson–like ex-
pression with the non–interacting contribution χ0 and then the interacting part: an
electron–hole pair is created at 1, then the electron experiences the interaction at 3, 4
and the hole at 5, 6 before recombining at 2. Both in χ0 and in the evaluation of the
kernel K we consider the QP Green’s function G obtained from the GW approxima-
tion (Eq. (1.57)). Therefore, G → G and Σ = ΣH + iGW with W obtained in the RPA
(Eqs. (1.28) and (1.49)). The kernel is then given by

K(3456) =
δΣH(35)
δG(46)

+
δΣxc(35)
δG(46)

= −iδ(35)δ(46)v(36) + i
δG(35)W(35)

δG(46)
' −iδ(35)δ(46)2v(|r3 − r6|)δt(t1 − t6) + iδ(36)δ(45)W(35),

(1.78)

where in the second line we neglected δW
δG

= W δχRPA

δG
W because it is of higher or-

der in W. One last simplification remains: recall that G is by definition the GW
Green’s function without its satellite structures, i.e., the effect of the dynamical part
of the interaction is only included at the level of the QP energies. For consistency
reasons, we then take the static approximation for the screened interaction within
K, W(35) = W(r3, r5)δt(t3 − t5). This means that upon external perturbation, the
electron density of the system polarises instantaneously. The static approximation
allows us to invert Eq. (1.77), because now the time integrations will be reduced
to just one time, and in the frequency domain the equation will only depend on
the incoming frequency, without an integration over the internal frequency of the
screening. In the final part of this thesis we will try to go beyond the static approx-
imation when including phonons into the kernel. Note that in order to compute χ
instead of χ it is enough to consider a kernel K where the bare Coulomb interaction
v constituting the first of the two terms is replaced with v (see Eqs. (1.60) and (1.61)).

Before inverting the BSE, let us write down explicitly the two components of the
kernel in the transition basis:

− iKq
KK′ = −Vq

KK′ + Wq
KK′ ,

Wq
KK′ = 〈K|W|K′〉 =

∫
d3rd3r′ϕv1k1−q(r)ϕ∗c1k1

(r′)W(r, r′)ϕ∗v2k2−q(r)ϕc2k2(r
′),

Vq
KK′ = 〈K|V|K′〉 = 2

∫
d3rd3r′ϕv1k1−q(r)ϕ∗c1k1

(r)v(|r− r′|)ϕ∗v2k2−q(r
′)ϕc2k2(r

′).

(1.79)

The first term represents an attractive, screened interaction between electron and
hole. This term is responsible for the formation of bound states lying at lower energy
than the single–particle band gap and is often called “direct” eh interaction; in order
to emphasize its origin from the derivative of Σxc, it may also be called “screened
exchange” term. The second term exchanges particle and hole indices and is repul-
sive, short–range and mediated by the bare Coulomb interaction. It has the effect
of reducing the exciton binding energy and is generally called “exchange” interac-
tion, although this can be quite confusing since it comes from the Hartree part of
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the self–energy, not the exchange part; therefore it may also be called “Hartee” term
to emphasize its origin. In order to make the connection with the previously com-
puted ab initio quantities, we take the Fourier transform of Eq. (1.79) and write the
final form of the “direct” and “exchange” matrix elements in terms of the screening
matrix elements,

Wq
KK′ =

1
NqΩ ∑

qW

∑
GG′

ε−1(qW , 0)
|qW + G||qW + G′|$

∗
v1v2k1−qqW

(G)$c1c2k1qW (G
′),

Vq
KK′ =

2
NqΩ ∑

G

4π

|q + G|2 $∗c1v1k1q(G)$c2v2k2q(G).
(1.80)

Note that the screened interaction depends on its own internal momentum qW =
k2 − k1 because of the presence of the microscopic inverse dielectric function, and
that the screening matrix elements couple different transitions in W and V. The
BSE with kernel K = −V + W is schematically shown in Fig. 1.6(b). Up to this
point, we implicitly considered only resonant electron–hole transitions, i.e., those
with positive Ec − Ev energy differences. However, when summing over electron–
hole pairsK, in principle we have to include also anti–resonant transitions, i.e. when
Ev − Ec < 0. In order to make this more explicit, we use the following definition:
given a transition labeled by K, then K will label the corresponding transition with
the opposite resonant character (i.e. if K = v1c1k1, then K = c1v1k1). Now we can
introduce a useful symmetry relation for the kernel:

[
Kq
KK′
]∗

= K−q
KK′ . (1.81)

We now need to find χ
q
KK′(ω). In order to proceed, we rewrite the inverted Eq.

(1.77), χ(ω) = [1− χ0(ω)K]−1χ0(ω), using its resolvent:17

χ
q
KK′(ω) = [H − 1z]−1

KK′ ∆ f q
K, (1.82)

where z = ω + iη, ∆ f q
K is a difference between occupation factors (if K is resonant

then ∆ f q
K = fc1k1 − fv1k1−q = −1 and ∆ f q

K = 1), and H is a matrix that always has
real eigenvalues, although it may not be hermitian if anti–resonant transitions are
considered. We call H excitonic Hamiltonian, since it is given by

Hq
KK′ = ∆EKqδKK′ − i∆ f q

K′K
q
KK′ , (1.83)

(if K′ is resonant then ∆ f q
K′ = −1 and ∆ f q

K′ = 1).
In order to solve the excitonic problem we have to diagonalise the Hamilto-

nian H. Its diagonal part consists of single–particle QP transition energies (here
δKK′ = δc1c2 δv1v2 δk1k2): if electron–hole interaction is neglected, this will lead us back
to Eq. (1.74). It is the non–diagonal part, which contains the electron–hole interac-
tion kernel, that forces us to reconsider the excitation problem: the eigenvalues Eq

λ
of H then represent the energy of the excitonic state λ, which is the real two–particle
excitation energy. Analogously, the eigenvectors of H, expressed as AKλq ≡ 〈Kq|λ〉,

17Here and henceforth, recall that we are explicitly considering electron–hole transitions only – i.e.
K = (v1c1k1), K′ = (v2c2k2) – for a gapped material at zero temperature. The following discussion
can be generalised by considering any two–particle transitions and adding explicitly the temperature–
dependent band occupation factors. In this case, the two–particle correlation function L, which is more
general than χ, should be used.
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FIGURE 1.6: Graphical representation of the static Bethe–Salpeter equation. a) The con-
tributions to the electron–hole interaction included in the kernel K, leading to Eq. (1.77)
χ = χ0 + χ0Kχ. The wiggly and dotted lines are the statically screened and bare Coulomb
interactions, respectively. b) Eq. (1.77) before its inversion (which leads to Eq. (1.82)). All the
indices and summations, including those for the kernel K = W −V, based on Eq. (1.80), are
explicitly written. The black dots represent the screening matrix elements, while the white
crossed dots become the dipole matrix elements at the optical limit.

are connected to the exciton wave functions, and we have

∑
K′

Hq
KK′ 〈K′q|λ〉 = Eq

λ 〈Kq|λ〉 . (1.84)
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Note that the eigenvectors relative to χ will be denoted A instead of A. If the eigen-
vectors are not orthogonal we can define an overlap matrix Nλλ′ = ∑K AK,∗

λ AKλ′
(which reduces to δλλ′ in the orthogonal case) and their completeness relation be-
comes

∑
λλ′

AKλ N−1
λλ′A

K′∗
λ′ = δKK′ . (1.85)

Then, the spectral representation of χ can be written in terms of the spectrum of H,
giving in particular for its retarded part (i.e. positive exciton energies)

χ
q,R
KK′(ω) = ∑

λλ′
AKλqN−1

λλ′A
K′∗
λ′q χ

q,R
λλ′(ω),

χ
q,R
λλ′ =

δλλ′

ω− Eq
λ + iη

.
(1.86)

Here χ
q,R
λλ′(ω) = χR

λ (q, ω) is the propagator written in the excitonic basis, in which it
is diagonal. Now we just need to express χR as a tensor in the G–vectors (Eq. (1.43)),

χR
GG′(q, ω) = ∑

KK′
∑
λ

AKλq$∗Kq(G)AK
′∗

λq $K′q(G′)χR
λ (q, ω) (1.87)

(here we assumed Nλλ′ = δλλ′ for simplicity). Finally, if we switch from χR
GG′ to

χR
GG′ and take the optical limit (G = G′ = 0, q → 0), we can use Eq. (1.65) to

access the macroscopic dielectric function εM(ω), and then we obtain Eq. (1.75) as
its imaginary part: this gives us the absorption spectrum including excitonic effects.
The exciton wave functions can also be represented in real space as six–dimensional
objects depending on both the electron and hole coordinates, given by

ψ
q
λ(re, rh) = ∑

vck
Avck

λq ϕck(re)ϕ∗vk−q(rh), (1.88)

with |ψq
λ(re, rh)|2 giving the electron–hole charge distribution. Similarly, in order

to analyse which transitions are the most important for a certain exciton λ, the k–
resolved excitonic weights ∑cvk |Acvk

λq |2 in the BZ can be considered.
Before moving on, let us take a look at the explicit matrix structure of H(q).

In particular, under which conditions are we allowed to restrict H to the resonant
part only? This is a relevant question because the diagonalisation of the excitonic
Hamiltonian, as we shall see, is a computationally demanding task. We have:

H(q) =

K′ K′( )
∆EKq + iKq

KK′ −iKq
KK′ K

iK−q
KK′ −

[
∆EKq + iK−q

KK′
]
K

(1.89)

where we have rewritten the second row using Eq. (1.81). We can see that reso-
nant (top left) and anti–resonant (bottom right) transitions are coupled by the off–
diagonal elements. However, their contribution in the absorption case is usually
very small and only non–negligible in the case of metals: therefore they are ne-
glected. This is called Tamm–Dancoff approximation (TDA). It reduces the size of
the kernel because now the resonant and anti–resonant blocks may be diagonalised
separately, and the latter may be computed in terms of the former, albeit with oppo-
site momentum. The two blocks then coincide at q = 0: since in general the ab initio
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solution of the BSE is done in the context of optical absorption, this is the only ker-
nel usually computed and diagonalised by the numerical codes.[8] If one is instead
interested in extracting information about the exciton dispersion, then the build–up
and subsequent diagonalisation of multiple H(q) matrices is in principle needed on
a certain mesh of q–points. Finally, in order to substantiate the discussion in this Sec-
tion with an example, the analytical solution for H in the case of a two–level system
is presented in App. A.

1.5.1 Calculations in practice with the BSE and Yambo

The usual flow of a many–body calculation starts from the ground–state properties,
then moves on to QP corrections, and finally goes on to the excitonic states. In short:
DFT→ GW→ BSE. The RPA screening can be obtained in the context of a GW cal-
culation or, if a model dielectric function is used for the GW step, its static part can
be computed before a BSE run. In the case of the calculations presented in this the-
sis, the DFT energies and wave functions computed with QE are read by the Yambo
code. Yambo produces several databases containing the data required either for sub-
sequent calculations or for analysis (QP energies and lifetimes, spectral functions,
components of χRPA, exciton eigenvectors and energies, et cetera).

For a BSE calculation, new convergence requirements must be satisfied in addi-
tion to those pertaining to the GW and screening parts (see Secs. 1.3.2 nad 1.3.3). In
particular, an independent convergence test on the k–mesh must be performed in or-
der to ensure the accuracy of the exciton energies and spectra. Also with regards to
Eq. (1.83), the number of c and v states to include in the excitonic Hamiltonian is cru-
cial; usually this number is not very high, as the contributions to the various exciton
states tend to be localised around few bands. Fulfilling these requirements means
rapidly increasing the size of H by adding more and more transitions K, something
that can very easily lead to memory problems during the calculations. Additionally,
the necessary numbers of G-vectors in the sums of the V and W components of the
kernel must also be carefully checked. Regarding the diagonalisation of H, different
methods are available depending on its size. In the best–case scenario of a tractable
problem, a full diagonalisation may be performed, giving access to all exciton eigen-
states and energies. This is presently the only possibility for finite–q calculations. If
the kernel size is too big, an iterative solution called Haydock’s method (based on
the Lanczos algorithm)[62] is available: this gives access to the absorption spectra
but not to the exciton wave functions. Recently, with the addition in Yambo of the
SLEPC library,[63] it is possible to perform an iterative solution valid also for the
eigenstates: in this case the number of excitonic states λ to be converged (starting
from the lowest–bound one) is set in the input.

Parallelisation of the calculations is possible and the k, q, c and v loops can be
efficiently parallelised in all the main sections of the code. In general, the paralleli-
sation over k–points increases the speed of the calculations, while the one over bands
allows for better memory distribution.

The implementation of the solution of the BSE at finite momentum has been re-
cently completed.

1.5.2 Additional caveats for two–dimensional materials

The ab initio simulation of a 2D material is especially delicate. First of all, due to
the lack of periodicity along the direction perpendicular to the layer plane (here and
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henceforth called the stacking direction), it is necessary to construct simulation su-
percells where the repeated copies of the system along the stacking direction are sep-
arated by enough vacuum space so as to not to interact with each other. This is easy
in the case of DFT, but when computing the many–body χ, the presence of the bare
Coulomb interaction v(r) means that the vacuum intersystem separation becomes
another parameter to be converged. Unfortunately, the other convergence param-
eters (k–grid and, sums over G vectors, number of unoccupied states) depend on
it.[64] Additionally, due to the long–range character of v, true convergence is often
impossible before the calculation becomes unfeasibly heavy.[26] In order to allevi-
ate this issue and speed convergence up, a truncation of the Coulomb potential in
real space (Coulomb cutoff) is performed: v(r) is put to zero outside a user–chosen
geometric region (e.g. sphere, cylinder, box).[65] This allows to obtain converged re-
sults with relatively small intersystem separations (∼ 20 Å in the case of the systems
studied in this thesis).

Another issue is the numerical instability of the q–integrals over a quasi–2D BZ
involving the Coulomb interaction v(q + G) ∝ |q + G|−2. To avoid divergences, the
random integration method (RIM) should be applied to these Coulomb integrals: for
each q of the discretised integration q–grid, the Coulomb interaction is replaced with
a Monte Carlo integral over a large (user–defined) number of random Q–points, as:
vRIM(q + G) =

∫
R d3Q v(q + G + Q) (where R is a small user–defined volume in

reciprocal space). This allows for a smoother function and a well–behaved q integra-
tion.

1.6 Lattice vibrations

This Section is concerned with the interaction of the electronic system with the ions.
We will describe the lattice vibrations, i.e. the phonons, in a framework that is useful
for Density Functional Perturbation Theory (DFPT) calculations, and then switch to
a many–body description. The treatment is mainly adapted from Refs.[5, 49, 66, 67].

1.6.1 Dynamical matrix and phonon dispersion

We first consider the ionic system in the BO approximation. Here the ions will in-
teract with each other and be subject to the potential due to the electronic system
evaluated at the static ionic positions. According to Eq. (1.2), we can write for the
ionic system:

〈Ĥion({R})〉 = 〈Ĥ0
ion({R})〉+ E[{R0}] + 〈Ĥe−ion({r}, {∆R})〉 (1.90)

where E[{R0}] is the DFT total energy. The interacting potential Ĥe−ion will give rise
to collective excitations of the ionic system in the form of lattice waves or phonons.
Actually, Ĥe−ion can be identified with the variation of E[{R}] when the atoms are
displaced from their equilibrium positions. Since in our case this interaction will not
be as strong as to break the BO approximation, we can perform a Taylor expansion
in the atomic positions up to the second order: this is the harmonic approximation.
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Therefore we obtain

E({R}) =E[{R0}] + 〈Ĥe−ion({r}, {∆R})〉 =

E[{R0}] + ∑
Liα

∂E({R})
∂R0

Liα

∣∣∣∣
0
(RLiα − R0

Liα)+

1
2 ∑

Liα
Mjβ

∂2E({R})
∂R0

Liα∂R0
Mjβ

∣∣∣∣
0
(RLiα − R0

Liα)(RMjβ − R0
Mjβ) + . . .

(1.91)

Several remarks are now in order. The atomic positions depend on three indices: the
Greek letter identifies the Cartesian direction; the lowercase Latin letter identifies
the ion within the unit cell of the crystal (therefore it runs over the crystal basis);
the uppercase latin letter counts the repeated unit cells (therefore we may call it
“supercell index”). In other words, the position of an ion in the crystal is expressed
as RLi = ri + τL, where ri is restricted to one unit cell and τL is a lattice vector. The
derivatives appearing in Eq. (1.91) are evaluated at the equilibrium ionic positions:
therefore the first derivative vanishes and we are left with the second–order term
only. In general,

FLiα ≡ −
∂E({R})

∂R0
Liα

(1.92)

is the restoring force that the electron system exerts upon the (Li)–th ion when it is
displaced along the α direction. Analogously,

CLiα
Mjβ ≡

∂2E({R})
∂R0

Liα∂R0
Mjβ

= − ∂FLiα

∂R0
Mjβ

. (1.93)

If ion (Li) is displaced along α, and ion (Mj) is displaced along β, then CLiα
Mjβ is

the variation in the restoring force acting upon (Li) induced by the displacement of
(Mj). Let us now define the atomic displacements uLi ≡ RLi − R0

Li. Now by consid-
ering the ionic momenta defined as PLi ≡ Miu̇Li and a constant energy shift Eshi f t

coming from the interaction energy of the ionic system at {R0}, we can write the
ionic Hamiltonian as

〈Ĥion({R})〉 ' Eshi f t +
1
2 ∑

Liα
Miu̇2

Liα +
1
2 ∑

Liα,Mjβ
CLiα

MjβuLiαuMjβ. (1.94)

The size of the force constant matrix C is then 3NNat, with N being the number of
unit cells within a periodically repeated supercell and Nat the basis of the crystal.
However, because of the unit–cell periodicity of the crystal, the force constants are
invariant under a translation of a lattice vector τ, i.e. they only depend on the differ-
ence τ I = τL − τM, which allows for the Fourier transform into reciprocal space. In
this way we can solve the problem just in a single unit cell of the crystal, replacing
the sums over the supercell index with q–sums in the BZ:

Diα
jβ(q) =

1√
Mi Mj

∑
I

CIiα
jβeiq·τ I . (1.95)
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This is the dynamical matrix. The lattice vibrations will be the solutions to the equa-
tion of motion for Eq. (1.94), which is

MiüLiα = −∂ 〈Ĥion({R})〉
∂uLiα

= − ∑
Mjβ

CLiα
MjβuMjβ. (1.96)

These can be found by first diagonalising D for each q, so that we obtain:

∑
iα

Diα
jβ(q)ξ

λq
iα = ω2

qλξ
λq
jβ . (1.97)

Here, the eigenvectors ξλq =
(

ξ
λq
1x ξ

λq
1y ξ

λq
1z |ξ

λq
2x . . . ξ

λq
Natz

)T
are the normal modes of the

oscillating system which are orthonormal,

∑
iα

ξ
λq∗
iα ξ

µq
iα = δλµ, ∑

λ

ξ
λq∗
iα ξ

λq
jβ = δijδαβ. (1.98)

The normal modes describe the phonons in terms of 3Nat collective, periodic oscil-
lations of the crystal with momentum q that are independent of each other, rather
than in terms of single–ion displacements. The smaller the momentum, the larger
the phonon periodicity in real space. Now ωqλ ≥ 0 is the frequency associated with
the phonon branch λ at momentum q (compare this with the Section about the exci-
tonic Hamiltonian, Eq (1.83)). The original atomic displacements u (the solutions of
the equation of motion) are obtained from the normal modes. They have the form
of standing waves and can be obtained in any real–space unit cell by a basis change
with the proper supercell phase factors:

uLiα(t) =
1√

NMi
∑
λq

eiq·τL ξ
λq
iα zλq(t),

zλq(t) =
1
2

[
Aqλ(T) exp−iωqλt +A∗qλ(T) expiωqλt

]
.

(1.99)

Here we have used the following properties: ωλ−q = ωλq, ξ
λq∗
iα = ξ

λ−q
iα and zλq∗

iα =

zλ−q
iα . Furthermore, the temperature–dependent amplitudes of the oscillations are

given by[68] Aqλ(T) =
√

2kBT/ωqλ, kB being the Boltzmann constant.
In summary, the relevant information about crystal lattice vibrations can be ac-

cessed by first computing the interatomic force constants (IFC) and then diagonalis-
ing the dynamical matrix.

1.6.2 Density functional perturbation theory

On the matter of computing the IFCs, again we can use DFT as a starting point, turn-
ing to DFPT.[5, 6] We give here only a brief account of the logic behind DFPT and
of the main quantities that result from an ab initio phonon calculation. In order to
compute the second derivatives of the total energy, we start with the first deriva-
tives and apply the Hellmann–Feynman theorem to transform the derivative of the
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expectation value into the derivative of the operators (see Eq. (1.6)),

∂E({R})
∂R0

Iiα
= 〈ΨMB

0 |
∂Ĥe

∂R0
Iiα
|ΨMB

0 〉 = 〈ΨMB
0 |

∂V̂e−ion

∂R0
Iiα
|ΨMB

0 〉

=
∫

d3r
∂vR(r)
∂R0

Iiα
ρ0(r),

(1.100)

where the second step stems from the fact that only the external potential depends
explicitly on the ionic positions. This leads to

CIiα
jβ =

∫
d3r

[
∂2vR(r)

∂R0
Iiα∂R0

0jβ
ρ0(r) +

∂vR(r)
∂R0

Iiα

∂ρ0(r)
∂R0

0jβ

]
. (1.101)

At this point, the task is reduced to the computation of the first derivatives of the
ground–state electron density. These are computed in a self–consistent scheme sim-
ilar to the standard DFT one, but this time yielding the derivatives of the KS wave
functions via the ones for the effective potential ∂Rve f f . These latter quantities will
also yield the electron–phonon coupling matrix elements. This method, although
quite cheap computationally–wise compared to those based on atomic displace-
ments,[49] is still much more computationally expensive than a standard DFT run,
as all the (Iiα) variations of ρ and ve f f , which in general lower the symmetry of the
crystal, have to be computed.

1.6.3 q→ 0 limit

The system will always have three acoustic phonon branches, and if Nat ≥ 2 it will
also feature 3Nat− 3 high–frequency optical branches. Additionally, in a layered ma-
terial we can distinguish between out–of–plane modes, where the ionic oscillations
are orthogonal to the layer plane, and planar modes. Among the planar modes we
have the longitudinal and transverse modes, in which the direction of propagation
of the phonon is either parellel or orthogonal, respectively, to their momentum q.
When the momentum goes to zero, the phonon periodicity tends to infinity: this has
consequences for both acoustic and optical phonons. The acoustic phonons have a
linear dispersion for small momenta, and respect the acoustic sum rule (which is
usually enforced by hand in numerical calculations to avoid spurious negative fre-
quencies):

∑
j

CIiα
jβ(|τ I | → ∞) = 0. (1.102)

This is a consequence of the translational invariance of the crystal, that must allow
for zero–frequency, rigid translations.

Let us consider a non–2D material (i.e. any crystal that is not just a 2D atomi-
cally thin sheet) which is also polar. The latter condition is realised when there is a
permanent dipole moment within its unit cell: this can happen for example when
there is a difference in electronegativity between the atoms in the crystal basis, and
the effects of the resulting spatially inhomogeneous charge distribution are not can-
celled by symmetries. In this case, when q → 0, a macroscopic electric field arises
due to dipole–dipole interactions. The optical modes, whose frequency at q = 0 is
finite, will be affected: ω0λ will depend on the direction along which the momentum
goes to zero. This induces a splitting between longitudinal and transverse modes at
small q, called LO–TO splitting, with the LO frequency becoming larger. This split-
ting can only be captured by adding a non–analytic part CNA to the matrix C, so that
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C → C(q = 0) + CNA(q → 0).[6] We list below the corresponding expression for
completeness:

CNA iα
jβ(q→ 0) =

4π

V
(q · Z∗iα) (q · Z∗iα)

∑αβ qαε∞
αβqβ

. (1.103)

Here ε∞
αβ is the electronic contribution to the dielectric permittivity tensor and Z∗iα =

∂Fiα/∂E the Born effective charge (also computed via DFPT); E is the macroscopic
electric field. There is an analogy between the LT phonon splitting and the appear-
ance of a LT exciton splitting at q = 0. Recall Section 1.5. Some of the (purely trans-
verse) degenerate excitonic states resulting from the excitonic Hamiltonian for χ are
split if the one for χ is used instead. This is because χ contains the longitudinal,
macroscopic component of the Coulomb interaction. However “longitudinal” exci-
tons cannot be seen in absorption experiments because the incoming field is purely
transverse. When a longitudinal perturbation is applied, instead, some states will
split depending on the direction along which q approaches 0.18

1.6.4 Quantisation of the phonons

For most applications where electron–phonon coupling is needed, the quantisation
of lattice vibration must be considered (for example, in order to account for zero–
point motion effects). We do this by transforming the normal coordinates z in Eq.
(1.99) into operators, according to the following relation:

ẑλq
(t) =

√
h̄

2ωqλ

[
e−iωqλtb̂qλ + eiωqλtb̂†

−qλ

]
, (1.104)

where b̂qλ (b̂†
qλ) is the annihilation (creation) operator of a phonon with momentum q

and branch index λ. These operators follow the commutation relations [b̂qλ, b̂†
q′λ′ ] =

δqq′δλλ′ and [b̂qλ, b̂q′λ′ ] = [b̂†
qλ, b̂†

q′λ′ ] = 0, and allow to rewrite the ionic Hamiltonian
(minus the constant energy shift) as a collection of quantum harmonic oscillators:

Ĥion = ∑
qλ

h̄ωqλ(b̂†
qλb̂qλ +

1
2
). (1.105)

We can thus see that in the BO and harmonic approximations, lattice vibrations are
quantised as perfect bosons.

The definition for the phonon propagator is then that of a bosonic Green’s func-
tion. In the present treatment, the field operators we are concerned with are then the
atomic displacement operators ûLiα(t) obtained combining Eqs. (1.99) and (1.104).
We then write the propagator as (compare with Eqs. (1.17) and (1.23))

iD(Liα, t; Mjβ, t′) = 〈ΩT| T̂
[
ûLiα(t)û†

Mjβ(t
′)
]
|ΩT〉

=
1
N ∑

λq
λ′q′

eiq·τL e−iq′·τM ξ
λq
iα ξ

λ′−q′

jβ 〈ΩT| T̂
[
ẑλq

(t)ẑλq†
(t′)
]
|ΩT〉

≡ 1
N ∑

λq
λ′q′

eiq·τL e−iq′·τM ξ
λq
iα ξ

λ′−q′

jβ iDλq(t, t′).

(1.106)

18furthermore, new collective excitations (plasmons, i.e., electron density oscillations) will become
visible and can be captured using χ instead of χ.
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Note that we have defined ξ
λq
iα ≡

√
h̄/2Miωqλξ

λq
iα for brevity. Here, we have consid-

ered explicitly a temperature–dependent phonon ground state, ΩT, as occupation
factors determine the phonon populations and therefore affect the probability of
electron–phonon scattering processes. We will deal with the non–interacting bosonic
propagator written in the basis of normal modes (where it is diagonal), which we
called Dλq. It assumes the following form

iDλq(t21) = (1+nqλ(T))
[
θ(t1 − t2)e−iωqλ(t1−t2) + θ(t2 − t1)eiωqλ(t1−t2)

]

nqλ(T)
[
θ(t1 − t2)eiωqλ(t1−t2) + θ(t2 − t1)e−iωqλ(t1−t2)

]
,

(1.107)

and its Fourier transform is

Dλq(ω) = [1 + nqλ(T)]
2ωqλ

ω2 −ω2
qλ + iη

− nqλ(T)
2ωqλ

ω2 −ω2
qλ − iη

. (1.108)

These equations contain the Bose–Einstein distribution function for phonons, nqλ =

(eωqλ/kBT − 1)−1. It is worth to point out that the first term in the above equation
will be involved in electron–phonon scattering processes where a phonon is emitted
by the electron system, while the second term will describe phonon absorption. We
can see that even at zero temperature – when no phonons are present in the system
– the quantum zero–point motion always allows for the probability of a spontaneous
phonon emission. In general these zero–point contributions can be very important
for the correct description of the electronic system (e.g. they may cause a reduction
in the band gap energy with respect to the DFT or GW values). Furthermore, once
the effects of quantum lattice vibrations have been incorporated into the electronic
system at T = 0 (via the perturbation theory of electron–phonon interaction), the
extension to finite T is often trivial.At T = 0, the phonon propagator becomes (com-
pare with Eqs. (1.25) and (1.44))

Dqλ(ω) =
1

ω−ωqλ + iη
− 1

ω + ωqλ − iη
=

w, lq
. (1.109)

This propagator will act on the electronic system as an effective dynamical interac-
tion, in a similar way to the screened electron–electron interaction, and will produce
its own kind of quasiparticle corrections. Because it permits a finite momentum
transfer between electron states, it will also lead to the appearance of “diagonal”
electronic transitions (for example finite–q eh pairs). Finally, a static limit to Dqλ(ω)
can be defined in this way:

Dst
qλ(t21) ≡ Dqλ(ω = 0)δ(t21) = −

2
ωqλ

δ(t2 − t1). (1.110)

1.6.5 Electron–phonon coupling

We are interested in describing the coupling between a Kohn–Sham electron and
a phonon mode. Therefore, we take the Kohn–Sham Hamiltonian, HKS({R0}) =
−∇2

r /2+ ve f f (r, {R0}) and we expand the effective potential to first order in the lat-
tice displacements. Now, the electron–phonon coupling Hamiltonian will be given
by

H(1)
ep = ∑

Liα

∂ve f f

∂RLiα
uLiα. (1.111)
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This expression can be written in terms of the normal coordinates in second quanti-
sation as

H(1)
ep = ∑

nmλkq
gλq

nmk â†
nk âmk−q(b̂λq + b̂†

λ−q) (1.112)

(note, for completeness, that the KS Hamiltonian in second quantisation is HKS =

∑nk εnk â†
nk ânk). Here, the electron–phonon coupling (EPC) matrix element g must

be defined: it controls the strength of the electron–phonon interaction and plays
the same role that the screening matrix element (Eq. (1.46)) plays in the case of the
electron–electron interaction. It is given by, using the notation by Giustino [49],

gλq
nmk ≡ gλ

nm(k, k− q) = ∑
i

ξ
λq
i · γmni(k, k− q)√

2Miωqλ
,

γmni(k, k− q) = ∑
L

eiq·(r−τL) 〈nk| ∂ve f f

∂ri

∣∣∣∣
r−τL

|mk− q〉 .

(1.113)

Here the overlines in the bra and ket states indicate that the integral is evaluated
in the unit cell of the crystal using the lattice–periodic parts unk(r) of the KS wave
functions (Eq. (1.12)). Note that this complicated expression can be simply recast as

gλq
nmk = 〈nk|∆qλve f f |mk− q〉 , (1.114)

which emphasises its physical meaning, by defining an effective derivative ∆qλ. By
evaluating higher–order derivatives of ve f f we can in principle compute higher–
order couplings, however these are usually neglected apart from the second–order
term

Λqλ,q′λ′
mn =

1
2
〈nk|∆qλ∆q′λ′ve f f |mk− q− q′〉 ∝ ∑

i
〈nk| ∂2ve f f

∂ri∂r′i
|mk− q− q′〉 . (1.115)

This term plays a role in the correction of the band energies, appearing in Eq. (1.117)
below. In particular, we will be interested only in the diagonal second–order cou-
pling (m → n, q′ = −q, λ′ → λ), which can be obtained by the first–order coupling
at q = 0.[69]

A final remark is in order about which kind of physics is captured by the cal-
culation of the EPCs from a DFT standpoint. Clearly, this is a vast improvement
with respect to the “bare” coupling given simply by ∂RvR (the derivatives with re-
spect to the bare electron–ion interaction), because it includes corrections due to the
interacting nature of the electron system (i.e. screening and “vertex” corrections),
albeit at the DFT level. Yet, Eq. (1.114) does not coincide with the true result for
a first–order EPC coming from a rigorous many–body treatment, because the elec-
tronic screening is only at the static RPA level and the non–local, dynamical vertex
corrections become local and static in the approximations for vxc. A detailed descrip-
tion of these subtleties goes beyond the scope of this thesis and can be found in Ref.
[49]: in this thesis, we will only deal with DFT–based EPCs.

1.6.6 Quasiparticle corrections II: electron–phonon interaction

The quasiparticle correction of the electronic band structure due to electron–phonon
interaction is treated along the same lines as that for the electron–electron interaction
(GW approximation) seen in Sec. 1.3.3. This time, however, instead of the electronic
screening we have the phonon propagator, which is the displacement–displacement
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FIGURE 1.7: Schematic representation of the Fan–Migdal (left) and Debye–Waller (right)
contributions to the electron–phonon self–energy (Eqs. (1.116) and (1.117) respectively. The
black diamond and square represent the electron–phonon coupling matrix elements.

correlation function and permits the description of the polarisation of the electronic
system due to lattice vibrations. We obtain a Dyson equation for the quasiparticle
Green’s function G in terms of the KS Green’s function G0 and the electron–phonon
self–energy. Since we are using the bare phonon propagator of Eq. 1.108, instead
of the screened Coulomb interaction, now the frequency integral in Eq. 1.50 can be
explicitly evaluated in the electron–phonon case, leading in the KS basis to

ΣFM
nk (ω; T) =

1
Nq

∑
mλq
|gqλ

nmk|2
[

nqλ(T) + 1− fmk−q

ω− εmk−q −ωqλ − iη
+

nqλ(T) + fmk−q

ω− εmk−q + ωqλ − iη

]
.

(1.116)
This is the Fan–Migdal (FM) self–energy,[70, 71] expressed as the first–order dy-
namical correction to the electronic state (nk) due to electron–phonon interaction.
It features a sum over the electronic states m as well as over the phonon branches
and momenta. In most cases, an additional self–energy term is found to add a non–
negligible shift to the bands: this is a second–order, static correction called Debye–
Waller (DW) self–energy[72] and given by

ΣDW
nk (T) =

1
Nq

∑
λq

Λqλ,−qλ
nnk

[
2nqλ(T) + 1

]
. (1.117)

The DW term is evaluated with the second–order, diagonal EPC matrix element. The
electron–phonon self–energy is schematically depicted in Fig. 1.7. These expressions
for the electron–phonon self–energy constitute the so–called Allen–Heine–Cardona
(AHC) theory.[73–75] We proceed in the same way as in the GW case and we obtain
for the QP Green’s function G, spectral function A, and QP energies E the following
expressions:

Gnk(ω, T) =
[
ω− εnk − ΣFM

nk (ω, T)− ΣDW
nk (T)

]−1
,

Ank(ω, T) =
1
π

ImGnk(ω, T),

Enk(T) = εnk + Znk(T)
[
ΣFM

nk (εnk, T) + ΣDW
nk (T)

]
(1.118)

where the renormalisation factor Z is defined according to Eq. (1.55).
By computing the electron–phonon self–energy, we are able to access the tem-

perature dependence of the band structure and most importantly of the band gap,
as well the electron–phonon scattering lifetimes (∝ [ImΣFM]−1) for the electronic
states, which will depend on the strength of the coupling |g|2 to the various phonon
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modes and on their occupation number (nqλ). It is important to remark that a signif-
icant effect may also be seen at T = 0, due to quantum zero–point motion. From the
computational point of view, generally the EPC matrix elements gqλ

nmk and phonon
frequencies ωqλ are evaluated thanks to DFPT,19 while the self–energy is computed
with YAMBO. The convergence of the summation over electronic states in Eq. (1.116)
is not too strict: as a rule of thumb, the states m contained in an energy window
of a few LO phonon frequencies above and below the (nk) state to be corrected are
sufficient. The convergence of the q–summation is instead more problematic, with
the self–energy expressions easily becoming numerically unstable at small q, where
the acoustic phonon frequencies are going to zero (note that at q = 0, the acoustic
modes are removed from the summation. For more details, see Ref. [76]). In general,
a partial cancellation between the DW and FM terms at small q tends to alleviate this
problem, and in addition techniques to correct this issue are used: for example the
interpolation of the EPC matrix elements to a very fine q–mesh,[77] or using a large
number of randomized q–points instead of a regular grid.

19If a large number of q–points is involved, the calculations are better managed with appropriate
scripts that allow for control over each step; one example would be the automatic resubmission in case
of a failure at a specific q, while the rest of the calculation proceeds without exiting.
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Chapter 2

Boron nitride and excitons

This chapter is partly based on our publications [39] and [40]. Some of the text and figures
contained in this Chapter are adapted from these references.

In this chapter, we are going to look at the excitonic properties of BN systems,
from monolayer to bulk. After characterising the excitonic series in these systems in
terms of symmetry and optical activity, we will study in detail how layer stacking
impacts properties like the energy gap and the absorption spectrum. Then, we will
broaden our analysis by solving the BSE at finite momentum for bilayer, trilayer and
bulk and investigating the resulting exciton dispersion curves.

2.1 Hexagonal Boron nitride

The experimental lattice parameters in the bulk material are a = 2.496 Å (in–plane)
and c = 3.305 Å (interlayer distance).[78] The values corresponding to freestanding
multilayer and monolayer systems are currently not known exactly. Previous first–
principle calculations have shown that the quasi–particle band gap of bulk hBN is
around 6.5 eV[21], so that this material is often considered a “large gap semiconduc-
tor”.[14, 19] This is due to the difference in electronegativity between nitrogen and
boron atoms: the highest–energy valence electron tends to be localized around the
nitrogen sites, and likewise the Bloch function corresponding to the bottom of the
conduction band is localised on the boron atoms, as shown in Fig. 2.1.

We start our analysis with the band structure. Figure 2.1 (right side) shows that,
unlike graphitic systems, the band–edge KS / Bloch wave functions in BN have a
strong overlap (> 99%) with the atomic pz orbitals they originate from in a simple
tight–binding picture. The relevant energy bands at the BZ edge are indeed of π
(valence) and π∗ (conduction) character, and may be conceptualised as localised pz
orbitals along the full KM symmetry direction and up to the crossing with the σ and
σ∗ bands around the midpoint of the ΓM and ΓK lines (see the band structures in the
left column of Fig. 2.2). This permits us to think of an optical excitation from valence
to conduction band as a “hopping” in real space from N to B atoms.[39] Although
the name “Van der Waals materials” is often employed as a synonym to “layered
materials”, it is important to emphasise that even though the Van der Waals inter-
action is crucial for the bonding of the stacked layers, there is also a non–negligible
amount of hybridization between vertically aligned pz orbitals. Its importance de-
pends on the stacking order[79] and in this thesis we will be concerned with the most
stable one, the so–called AA′ stacking, where nitrogen and boron atoms sit exactly
on top of each other in alternating order. In this case, the pz hybridization lowers the
bottom of the conduction band at the M point, making the quasiparticle band gap
indirect (approximately from K to M) for all systems except the monolayer, where it
is direct at K (this band gap transition is a common feature in many semiconducting
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FIGURE 2.1: Hexagonal boron nitride. Boron atoms are green, nitrogen ones are white.
Left: hexagonal unit cell (top view). Center: hexagonal BZ (Wigner–Seitz cell) with high–
symmetry points (top view). Right: the Kohn–Sham Bloch wave intensities for the mono-
layer, at the valence band maximum (bottom) and conduction band minimum (top), both at
the K point, appear as B/N–localised pz atomic orbitals, respectively.

layered materials). Additionally, increased screening has the effect of lowering the
quasiparticle gap with the addition of each new layer (this will be the case also for
exciton binding energies) . The energy difference between the direct and indirect
gap is largest in the bulk material, where it is around 0.5 eV (Fig. 2.3).

From Fig. 2.2 (left column) it may also be seen that a large number of parabolic
conduction bands are present around the Γ point. Upon the GW correction, the bot-
tom of the conduction band actually seems to lie at the Γ point, in correspondence
with the σ∗ bands, for all systems except bulk, meaning that the QP correction for the
σ–type bands is lower than the one for the π–type ones. This feature is obtained also
if hybrid functionals are used instead of the GW approximation.[80, 81] These states
are a combination of: (i) states with mixed σ∗ and π∗ character (this happens after
the σ∗–π∗ band crossing), which show a “nearly–free–electron” (NFE) localisation
type and can retain up to 30% π∗ character; (ii) vacuum states that slide down in
energy due to the high amount of vacuum space included in the computational su-
percell (if the intersystem separation along the stacking direction where infinite, they
would form a free–electron continuum). As the density of electronic states around Γ
increases in the case of multilayers, many (avoided) band crossings start to appear,
leading to band mixing. In these cases, our G0W0 calculation leads to an unnatural
steepness of some bands (see for example Fig. 2.2(d)). We believe that in order to
accurately reproduce the bands in this region of the BZ a fully self-consistent GW
calculation (where the electronic wave functions are also updated, instead of being
kept fixed at the DFT–LDA level) should be performed. However, for now we shall
not be concerned with these states since they do not participate in the optical absorp-
tion process (i.e. direct, q → 0 transitions). This is because they are either forbidden
by selection rules (π → σ∗, σ→ π∗ transitions) or the actual excitonic states are well
above the QP band gap energy (σ→ σ∗), or the weight of the transitions is negligible
(transitions to NFE, vacuum states). The region in BZ that contributes the most to
optical absorption is the one along KM (π → π∗), where the conduction bands are
almost flat and consequently the density of states is large, although the high-energy
region up to the π∗-σ∗ crossing is also relevant (more details about the relevant tran-
sition energy window are given in App. C). The NFE might nonetheless become
relevant if non–vertical (i.e. indirect, q 6= 0) transitions are considered (e.g. from
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K to Γ): therefore we will discuss such states in more detail (including “NFE–type”
excitons) in Sec. 2.4. We will now turn to the study of excitons in few–layer systems:
the BSE absorption spectra from monolayer (1L) to five–layer (5L) hBN are shown
in Fig. 2.2, right column).

Considering the poor screening of the electron–hole interaction, we expect the
optical properties of hBN to be dominated by excitonic effects, as it is indeed found
both experimentally and theoretically. In particular, existing theoretical calculations
predict strongly bound direct excitons: in bulk hBN the exciton binding energy is
around 700 meV.[21, 23, 27] Quasi–2D, few–layer systems display much stronger ex-
citonic effects with respect to their bulk counterpart due to the electronic screening
being reduced even more. Additionally, there is a complex interplay between opti-
cally active (bright) and inactive (dark) excitons in hBN–based systems[21, 23, 82]
that we will elucidate in the next Section (the BSE absorption spectra from mono-
layer (1L) to five–layer (5L) hBN are shown in Fig. 2.2, right column). Experimen-
tally, there has been much debate around the direct or indirect nature of the optical
gap in bulk hBN.[14, 19, 24, 83, 84] The most recent works on the subject present a
case for phonon–assisted creation of an indirect exciton: we will deal with this in
the next Chapter. For now, it is sufficient to summarise our findings in the follow-
ing way: an excitonic fine structure (i.e. the presence of multiple spectral peaks in a
small energy window) characterizes the lowest–bound hBN excitations, appearing
because of two independent reasons: (i) Davydov splitting of the excitonic levels
(Sec. 2.3) and (ii) phonon–assisted sidepeaks (Chapter 3).

2.2 Optical excitations: monolayer

Let us first take a look at the excitonic series in the monolayer,[39] as seen in Fig.
2.2(e). This systematic analysis will establish the framework that we will use to look
at excitations in more complicated systems, as well as showcase some useful general
properties of excitons in BN sheets.

The DFT–LDA direct band gap is 4.5 eV but the G0W0 correction brings it to 7.3
eV. Analogously, a giant binding energy of 1.9 eV is observed for the lowest–bound
exciton (main peak in the absorption spectrum) upon solution of the BSE. This is
a doubly degenerate exciton, whose wave function intensity (Eq. (1.88)) is shown
in Fig. 2.4(1) in real space (left), while the exciton weights in reciprocal space are
displayed on the right. In real space, we fix the hole position rh just above a nitrogen
atom: this is physically the most relevant position as can be seen from Fig. 2.1 (right
side). The plot then represents the probability to find the electron at position re if
the hole is located at rh. As expected, the electron density is centered on the boron
atoms, with a high probability — about 30% — on the first nearest neighbours. This
means that the exciton appears well localised in real space (so that we might expect
it to be delocalised in reciprocal space), however longer–range low–probability tails
are also present. Therefore, when we look at the relevant transitions in reciprocal
space, we see that most of the excitonic weights come from the area around the K
point (i.e. the direct band gap), while the BZ edge segments also give non–negligible
contributions. Note that the presented shape of the ground–state exciton remains
the same when we pass to few–layer and bulk systems, where electron and hole are
found to remain mostly confined to the same layer (in–plane ip exciton).

The second peak in the absorption spectrum corresponds to a doubly degenerate
exciton with a 1 eV binding energy, then we have two non–degenerate dark states,
and finally the third peak is again doubly degenerate. All these excitons (number
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FIGURE 2.2: Many–body results for monolayer [(a),(e)], bilayer [(b),(f)], trilayer [(c),(g)] and
pentalayer [(d),(h)] hBN. Left panels: DFT–LDA (red) and GW (blue) band structures. In (a)
the π and σ bands are labeled. Right panel: imaginary parts of the dielectric functions. The
vertical lines represent the GW direct band gaps. The red arrows in (f), (g), (h) indicate the
positions of low–energy dark (D) excitonic states. In (e), the first five excitons are labeled
according to their symmetry representations (see text and Ref. [39]). In (h), the bright peaks
(B) are labeled for later comparison with Fig. 2.7, and an additional bright exciton (B2),
which is hidden in the main two–peak structure, is highlighted. Note that in the case of the
pentalayer, the BSE was solved for states only up to the energy of ∼ 6 eV.
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FIGURE 2.3: Many–body results for bulk hBN. Left: DFT–LDA (red), G0W0 (light–blue) and
“semi–self–consistent GW” (sscG0W0, blue, see text on page 59) band structures. Right:
imaginary part of the dielectric function. The indirect and direct GW band gaps are labeled
with a dashed and solid black vertical line, respectively, and the red arrow labels the dark
(D) partner to the main bright exciton.

1 to 5) are represented in real and reciprocal space on the left and right columns of
Fig. 2.4, respectively. Since these are all excitons originating from π → π∗ band
transitions, the electron density is always mostly localised on boron atoms. The first
observation that we can make is that broadly speaking the excitons become more
delocalised in real space / localised in reciprocal space with decreasing binding en-
ergies. The ground–state exciton is more localised (a few unit cells); the other ex-
citons, lying 0.9 eV above and therefore much more weakly bound, extend across
multiple unit cells. In order to model the excitonic series in BN systems, our collab-
orators1 developed a tight–binding excitonic model (TBEM) using localised atomic
orbitals and a purely 2D electrostatic potential, called Keldysh potential.[85, 86] The
model requires fitting from ab initio data only for a few parameters.2 The TBEM re-
sults are in remarkable agreement with the first–principle calculations and, among
other things, permit us to shed more light on the symmetries of the excitonic wave
functions. More information can be found in Refs. [39, 40].

We can indeed see from Fig. 2.4 that the charge distribution of the BN excitations
is determined by the underlying symmetry of the crystal lattice. Starting now, sim-
ple group–theoretical arguments for the description of excitonic states will be made
throughout this thesis. This is not commonly done in the case of excitons, at least
when first–principle calculations are involved: we will nonetheless see that informa-
tion about the optical activity of the excitations, and even about their possible cou-
pling with phonon modes, can be obtained before running any computer simulation
and provide a clear reference to assess the validity of ab initio results. For the 2D BN
sheet, the point group symmetry is C3v which allows for three irreducible representa-
tions: the identity representation A1, another monodimensional representation, A2,
which differs from A1 because it is odd with respect to σv reflections, and the two–
dimensional representation E. Since in our plots the hole is fixed in a symmetrically
invariant position, we can use them to assess the symmetry of the full exciton wave
functions. We can immediately assign excitons number 1, 2 and 5, which are doubly
degenerate, to the E representation. Among the non–degenerate states, the identity

1Thomas Galvani, Hakim Amara, Sylvain Latil, and François Ducastelle.
2The fitting parameters are the excitonic hopping integral and the screening length of the Keldysh

potential. In the case of multilayers, two additional parameters are needed, being the interlayer hop-
ping integral and interlayer screening length.
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A1 is the only one that can allow some charge density on the hole site (because it
is even with respect to σv mirrors), therefore exciton number 4 transforms like A1.
Finally, exciton number 3 will transform as A2 (these symmetries are confirmed by
the TBEM). It is instructive to note that since the repulsive exchange contribution to
the BSE kernel acts at short–range, exciton A1, where electron and hole may overlap,
is the one most affected by it. Indeed, by rerunning the BSE calculations with the ex-
change term set to zero, we find that the binding energy of excitons 1, 2, 3 and 5 is
negligibly affected (therefore it may even be safely neglected if average accuracy is
required). In the case of exciton 4, however, the exchange contribution accounts for
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a 28% reduction in the binding energy.
A final remark concerns the optical activity of the excitations. In our calcula-

tions, since we are considering ultra–thin materials, the incoming electro–magnetic
field is always polarised in the plane of the layer, which means that the incoming
wave vector is parallel to the stacking direction, so that the light impinges on the
layer plane directly from above. Hexagonally symmetric systems are isotropic in
the plane, therefore the x and y light polarisation directions are equivalent. This
means that the dipole matrix element transforms like the E representation, and act-
ing on the exciton “vacuum” state,3 which has the full A1 symmetry, can only excite
E states. Indeed, all the visible peaks in the monolayer absorption spectrum are
doubly degenerate E excitons.

2.3 Optical excitations: multilayers

We will now investigate multilayer systems, focusing on the lowest–bound E exci-
tons.

Let us turn our attention to the right column of Fig. 2.2. We can check that when
more layers are added, the main, doubly–degenerate “monolayer” excitons localised
on each new layer have different energies. The absorption spectrum in the bilayer
case (f) is similar to the one of the monolayer, but now a dark exciton (shown by
the red arrow) appears before the main peak. This state is optically invisible, but
is nonetheless present as a solution of the BSE. The bright and dark states form a
“Davydov pair”, which becomes a triplet in the trilayer case (g) with two bright
excitons and a dark one in the middle. The pentalayer (h) shows two bright peaks
as well, but a low–intensity third one (shown with a superimposed Lorentzian) is
hidden between them. The “Davydov multiplet” is completed by the presence of
two dark excitons (red arrows). Therefore, in the case of 3L and 5L, the dominant
excitonic feature in the spectrum displays a visible fine structure.

The concept of Davydov splitting, originally developed to describe the energy
levels in clusters of identical molecules,[87] can be applied to molecular crystals,[88]
but then naturally also to layered materials consisting of identical layers stacked on
top of one another. For example, Davydov splitting of phonon frequencies is ob-
served in transition metal dicalchogenides few–layer systems.[89–92] Considering
an ideal monolayer, we may take into account an excitonic state S with degener-
acy m. If we start adding more layers to the system, but we keep them far enough
from each other as to not interact, S becomes a state with degeneracy Nm where N
is the number of layers. Now, if the N layers are brought closer together and start
interacting, the degeneracies may be lifted by the interlayer coupling and we might
have N m-fold degenerate states forming a “Davydov multiplet”. In bulk hBN, for
example (Fig: 2.3), we have a Davydov pair (as the number of layers per unit cell are
equivalent to the case N = 2) with an energy separation of 0.06 eV and both with
a large binding energy of 0.7 eV. However, only one state is optically allowed and
contributes to the strong exciton peak in the absorption spectrum, while in the mul-
tilayer case dark and bright states are found to be alternating within the multiplets.
We will discuss here the structure of the Davydov multiplets for increasing layer
number and their optical activity; we will show that the lowest–lying excitations
turn out to be localised on the surfaces.

3That is, when no excitons are present: all the valence bands are filled and all the conduction ones
are empty.
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Exciton 1 (×2) 2 (×2) 3 4 5 (×2) 6 7 (×2) 8
Bind. En. −1.644 −1.614 −1.17 −1.16 −1.02 −1.00 −0.94 −0.90

Bright no yes no no no no yes no
Symm. Eg Eu A1g A1u Eg A2g Eu A2u
Local. ip ip il il ip il ip il

TABLE 2.1: Bilayer excitons. The binding energies are in eV. The optical activities and sym-
metries of the states are also listed, as well as their localisation in terms of being in–plane
(ip) or interlayer (il).

2.3.1 Bilayer

The bilayer excitons can be characterised in the same way as for the monolayer. Their
symmetry can be checked with the TBEM, but also directly from the ab initio result
by exctracting the phase of the exciton wave functions, not just the intensity, in order
to gather the full information about the parity with which they transform under
certain symmetry operations. The results are presented in Table 2.1 up to exciton 8
of the series, and an explicit example of this procedure, both for doubly degenerate
and non–degenerate states, will be given below.

We have the following two main differences with the monolayer case. (i) A new
class of excitations is now possible, namely the interlayer il (or charge–transfer) exci-
tons, where the interacting electron and hole are mostly confined on different layers.
The wave function analysis shows that excitons 3, 4, 6 and 8 have il character, while
excitons 1, 2, 5 and 7 have ip character. (ii) At variance with the monolayer case, the
bilayer possesses the inversion symmetry I (its point group is called D3d): all the
original monolayer excitons have undergone Davydov splitting into pairs of even
(g) and odd (u) states with respect to I . The pairs need not be adjacent in energy
and in fact are given by (1, 2), (3, 8), (4, 6) and (5, 7). Pairs (1, 2) and (5, 7) corre-
spond to the splitting of the first two excitons of the monolayer. As for the optical
activity, the dipole matrix element transforms as a vector, therefore it is odd under
inversion (Eu). Consequently, only doubly degenerate Eu excitons with odd parity
with respect to inversion symmetry can be bright. The first exciton (transforming as
Eg) is thus dark, and the main peak of the absorption spectrum comes from the sec-
ond state. Note that the same qualitative considerations about the first two excitons
can be done for the bulk system as well.

If we look at the wave function intensities of the lowest–bound Davydov pair,
shown in the top frames of Fig. 2.5(a) and (b), the two states appear indistinguish-
able (they have the shape of the lowest-bound E monolayer exciton). However, state
S = 1 is optically dark, whereas state S = 2, which lies 0.06 eV above, is bright. This
suggests that S = 1 should be even under inversion symmetry and S = 2 should
be odd. Thus, the complete symmetry analysis requires to visualize the phase of the
excitonic wave function.

Since these states are doubly degenerate, we start the analysis by presenting a
simpler case, the non–degenerate (dark) state S = 3. Its intensity is shown in the top
frame of Fig. 2.5(c). This is an il exciton: if the hole is fixed on one layer, the electron
density is distributed on the other (which is the only layer shown in the Figure,
labeled Layer 1). In the middle frame of Fig. 2.5(c) we present a phase–intensity
plot of the same exciton.4 The phase is remarkably constant on each atom and, as

4The values of the phase are shown in the areas with intensity greater than 5% of its maximum
value.
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expected, any two adjacent boron sites are separated by a node of the wavefunction
(the phase difference is π). In the bottom frame of Fig. 2.5(c) we show the same plot,
but now the hole is fixed at a position r′h = I(rh). The resulting electron density is
now localized on the opposite layer (Layer 2) with respect to the previous case.

We can immediately see that the phase distribution does not change in the two
cases: state S = 3 is even under inversion symmetry, and we can assign it to the
A1g representation of point group D3d of bilayer hBN. In order to find its Davydov
partner, we look for an il state with the same symmetry, but odd under inversion
(i.e. belonging to representation A2u). We find that it is state S = 8, represented in
Fig. 2.5(d) and listed in Table 2.1, with a considerable Davydov splitting of 0.27 eV.

We are now ready to go back to the doubly–degenerate states S = 1 and S = 2.
In order to fully represent the phase information, it is necessary to rotate the two
complex wavefunctions in the degenerate subspace until they are (almost) fully real
or fully imaginary.5

In Fig. 2.5(a) and (b) we select one such wave function for each state (panel (a)
for S = 1 and (b) for S = 2), and we plot a linecut of the intensity along the three
boron atoms that are nearest neighbours to the nitrogen above which the hole is
fixed. These are the sites where most of the intensity is found. The value of the
phase (which rotates along the linecut) is shown in a color scale. In analogy with
panels (c) and (d), the corresponding wavefunctions under inversion symmetry are
plotted in the bottom frames of Fig. 2.5(a) and (b). We also show sections of the
phase–intensity plots for the leading peak in the insets. We can clearly see how
S = 1 is even (Eg, optically forbidden) and S = 2 is odd (Eu, optically active) under
inversion symmetry. This symmetry analysis is confirmed by the TBEM results.

2.3.2 Multilayers

The variation of the (π) band gaps in hBN as a function of layer number is displayed
in the top two frames of Fig. 2.6(a). The indirect gap (orange) and minimimum
direct gap (teal) are shown both in the DFT–LDA case (upper frame) and after the
GW correction (lower frame). The energy of the bottom of the conduction band at
M is lowered every time the number of hybridized layers is increased, reducing the
indirect gap. On the other hand, the value of the direct band gap is only negligibly
affected by layer stacking at the DFT level.

For both gaps the GW correction to the DFT values is huge (& 2 eV). As the
screening environment evolves from quasi–2D to 3D with layer stacking, the GW
gaps decrease, converging to the bulk value. In particular, in the case of the mini-
mum direct gap (the leading contributor to optical absorption), the DFT calculation
is completely unable to capture the increase in screening along the stacking direction
with every added layer, giving a constant value of 4.56/4.53 eV from monolayer to
bulk. After the GW correction, the gap in bulk (at 6.24 eV) is lower than the gaps in
monolayer and pentalayer by 1 and 0.3 eV, respectively.

The two bottom frames of Fig. 2.6(a) are concerned with excitonic states. In the
upper one, the binding energies of the lowest–bound Davydov multiplet are plotted
in green (dark excitons are in gray). In monolayer and pentalayer, the binding ener-
gies are 1.93 and 1.32 eV, respectively, as opposed to 0.7 eV in the bulk. By looking
at the absorption spectra, we can see that the effects due to the reduction in binding
energy and to the shrinking GW band gap tend to cancel: in fact, the absolute peak

5In particular, if ψa and ψb are the two degenerate wave functions, with the transformation (ψa ±
ψb)/

√
2 both of the new functions behave in the same way with respect to inversion symmetry as the

full exciton.
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FIGURE 2.5: Excitons in bilayer hBN under inversion symmetry. Panel (a) / (b): excitonic
state S = 1 (even, dark) / S = 2 (odd, bright). Panel (c) / (d): excitonic state S = 3 (A1g)
/ S = 8 (A2u). In the top frames of (a) and (b) the intensities of the full doubly degenerate
states on the BN lattice (hole fixed on the central nitrogen) are shown. Below, the choice of
one appropriate component wavefunction in the degenerate subspace (see text) permits the
representation of the phase of this excitonic state. In the middle and bottom frames the phase
is plotted for the electron distribution when the holes are fixed in two positions related by
inversion symmetry I (layer 1 and layer 2). The intensity is plotted along the triangle formed
by the borons which are nearest–neighbours to the hole nitrogen (B1 and B1′ = I(B1), B2
and B2′ = I(B2), and B3 and B3′ = I(B3): red triangle in the top frame). The phase,
which rotates around the path, is shown in color scale as in the other plots. The insets show
a section of the phase–intensity plots on both layers, relative to the boron with the largest
intensity. In the top frames of (c) and (d) the intensities of the wave functions of the non–
degenerate states are portrayed (since these are il excitons, the hole layer is not shown). The
phase–intensity plots are shown in the middle and bottom frames. For each exciton, two
wavefunctions connected by inversion symmetry (r′hole = I(rhole)) are depicted, showing
their respective parity [(c): even, (d): odd].

positions, shown as red (bright) and gray (dark) circles in the lower frame, are al-
most constant, averaging around 5.3 eV. The position of the bulk excitons is around
5.5 eV.

Figure 2.6(b) provides a scheme of the Davydov splitting from bilayer to bulk
for the lowest–bound exciton E. We make the following observations: (i) dark and
bright states alternate, and (ii) in tri– and pentalayer we have a bright–dark couple
at lower energy, while the rest of the multiplet lies above. These latter states corre-
spond to inner or “bulk–like” excitons (see the following), therefore they should be
compared with the bulk excitons. The bright–dark couple is made of surface excitons
that have no counterpart in the bulk crystal and their relative intensity decreases to
negligible values for increasing number of layers.

The bottom frame of Fig. 2.6(a) shows that the energy of the bright inner peaks
increases with layer number, which leads to the bulk values. However, this increas-
ing trend might be related to the numerics of the G0W0 approach, which has been
known to underestimate large band gaps.[93] Indeed, experimentally the first exci-
ton in multilayer and bulk systems is usually found around 6 eV,[19, 32] while in ab
initio calculations a value around 5.5 eV is obtained. In order to elucidate this point,
we performed simulations on monolayer and bulk using a semi self–consistent GW
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sitions (bottom) are shown as a function of the layer number. The orange squares label
the band gap, the teal circles label the minimum direct gap, the green (gray) crosses / red
(gray) empty circles label the binding energies / absolute peak positions of the bright (dark)
excitons. The red crosses in the bottom frames represent calculations made with a semi self–
consistent GW approach and with the optimized lattice constant for the monolayer. Panel
(b): scheme of the Davydov splitting in energy of the lowest–bound excitons for N–layer
systems (N = 2, 3, 5, ∞) starting from the energy of N isolated monolayer excitons. Solid
black (dashed gray) lines represent bright (dark) states. The energy separation within the
multiplets is in scale for all systems.

scheme (labeled sscGW or G1/2W0), updating the band energies in G during subse-
quent G0W0 runs until convergence. We obtain an additional correction to the band
gap and peak positions of monolayer and bulk by 0.34 and 0.22 eV, respectively. We
also used the LDA–optimized lattice constant for the monolayer (2.479 Å) instead of
the bulk one (2.496 Å), which accounts for another 0.1 eV increase in the peak energy.
The final band gap for the monolayer is 7.69 eV, and its main excitonic peak is now
almost at the same energy as the bulk one (5.76 eV, red crosses in Fig. 2.6(a)).

In conclusion, additional refinements in the calculations (e.g., fully self–consistent
GW[94] and using the “true” experimental few–layer lattice constants) may lead to
an inversion of the trend and show peak energies that are both higher and decreasing
towards the bulk value.

The various layers stop being equivalent when N > 2, because now we have
two surface layers and N − 2 inner ones. If we restrict our attention to the lowest–
bound Davydov multiplets (the only ones relevant for optical transitions), we know
that they have ip character and that their spatial localisation within the layer plane
is the same. However, now eh pairs on the surface layers will be considerably less
screened than they would be on the inner ones. Additionally, less nitrogen to boron
interlayer hopping sites are present on the surface, which according to the TBEM



60 Chapter 2. Boron nitride and excitons

(a)

(b)

(c)

Energy

|h1|Ψi|2
|h2|Ψi|2
|h3|Ψi|2
|h4|Ψi|2
|h5|Ψi|2

30 meV

15 meV 60 meV

∼ 1 meV 100 meV 50 meV

Surface excitons Inner excitons

B1 B2 B3D1 D2

FIGURE 2.7: Ab initio simulations: lowest–bound Davydov multiplets in (a) bilayer, (b) tri-
layer and (c) pentalayer hBN. Each wavefunction is plotted for N fixed positions of the hole
(N is the layer number) as explained in the text. The intensities shown in blue (gray) belong
to bright (dark) excitons. The energies of the splittings between and within surface and in-
ner exciton subsets are also given in meV. Bright (B) and dark (D) states are labeled in (c) for
comparison with Figs. 2.2.

lowers the overall exciton kinetic energy. As a consequence, we might expect a
larger binding energy for excitations formed on the surface. If that is the case, the
asymmetric energy separation within the Davydov multiplets (see Fig. 2.6(b)) can
be explained in terms of the energy gap between surface and “bulk–like” excitons.
The multilayer TBEM can be recast in this case into a finite linear chain model where
each chain site represents one layer[40] and gives the same predictions, additionally
providing the selection rules for the ip Davydov multiplets as follows: if N is even,
the system has inversion symmetry. Then, odd states are bright and even states are
dark. If N is odd, the crucial symmetry is the mirror symmetry with respect to the
central layer. In this case, even states are bright and odd states are dark.

Let us now check if the full ab initio results confirm these arguments. In order
to investigate the spatial localisation of the excitations let us consider the excitonic
wave function ψλ(r, rh) for a state λ belonging to the lowest–bound Davydov multi-
plet. We identify the hole subscript with the layer index: now h ∈ [1, N] denotes
the fixed position of the hole in a specific layer. We can then plot the quantity
∑N

i |ψλ(r, ri)|2 (i.e., an intensity plot for N different hole positions, one on each layer)
for bilayer, trilayer and pentalayer hBN. The results are shown in Fig. 2.7: the bright
excitons are portrayed in blue, the dark ones in gray. The Figure allows us to easily
verify that the selection rules stated above are rigorously respected: for example, no
intensity is allowed on the central layer of tri– and pentalayer for the dark states,
since they are odd.

Most importantly, there is indeed a separation within the multiplets between
low–energy surface states and high–energy inner states. Note that the leading peaks
in the imaginary part of the dielectric function – see Fig. 2.2(g) and (h) – come from
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the excitons that are mostly localized on the central layers; however, during the re-
laxation process that takes place after the excitation is formed by optical absorption,
the electron–hole pairs will diffuse towards the surface.

Let us now define the oscillator strength of an exciton state λ as fλ = |∑K AKλ |2
(i.e., if the exciton lifetime is not considered, the intensity of the peak in the absorp-
tion spectrum). An interesting observation is that this quantity depends on the layer
number: more precisely, the ratio between the oscillator strengths of inner and sur-
face excitons is determined by N. The TBEM permits to derive the following implicit
relation between the two quantities:[40]

1
N − 1

cot2
(

π

2(N − 1)

)
=

fm∗

fO
(2.1)

where the subscript O refers to the surface state and m∗ to the brightest inner state.
This relation can be approximated to an explicit one for large N.

2.3.3 Conclusion

The emergence of low–lying surface excitations in multilayer systems acts as a
source of fine structure in their optical spectra, as can be seen in Fig. 2.2(g) and (h).
This may help in the interpretation of experimental results,[32] while providing for
a general understanding of the effects of layer stacking on the optical properties
(e.g., Davydov splitting, dark vs bright excitons, et cetera), which we may now take
for granted. Yet, these results also call for additional investigations. For example,
we want to ascertain if excitations with large wave vectors may also be relevant to
the optical spectra: we will do this in the remainder of the Chapter.

2.4 Excitons at finite momentum

So far we have solved the BSE at q = 0, obtaining excitons that lie at the Γ point of
the first BZ and correspond to zero momentum transfer (q = k′ − k). Their binding
energies, for BN systems, are large enough that the lowest–bound exciton always lies
lower than the bottom of the conduction band even when the quasiparticle band gap
is indirect. Therefore it may be argued that the optical gap of these systems is “direct”
in the sense that the absorption spectrum would be dominated by the Γ excitons re-
gardless of the underlying band structure.6 However excitons have a momentum
dispersion as well, and even though finite–q excitons cannot be created with optical
light, they may become important in emission processes like luminescence: an ex-
citation is created at q = 0, it quickly relaxes to the bottom of its dispersion curve
q and later it may not annihilate (electron–hole recombination) without the absorp-
tion or emission of phonons with wave vector q. It then becomes relevant to study
the finite–q solutions of the BSE. Experimentally, excitonic states are often concep-
tualised as energy levels lying within the band gap of a system, downshifted with
respect to the conduction band energies. However a rigid downshift of the band
structure implies that the the q–dependence of BSE kernel Kq

KK′ , Eq. (1.80), is very
weak so that Kq

KK′ = K0
KK′ + O(q) ' K0

KK′ , something that is in general not true.
Since finite–q BSE calculations have become available in many–body codes,[34]

several studies involving bulk hBN and monolayer have been performed. These

6In the following, we will say that the optical gap is “direct” if the Γ point is the minimum of the
exciton dispersion, “indirect” if it lies elsewhere.
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works focused on x–ray scattering[29] (where finite–momentum excitations can be
created without the help of a phonon) or probed the low–q behavior of the dispersion
curve.[28, 95] The results we will present in this Section are preliminary,7 nonethe-
less they can shed more light on the nature of finite–momentum excitations in BN
systems and their possible consequences for the interpretation of luminescence spec-
tra in multilayers[32] (we will treat the bulk luminescence separately in Chapter 3).
Such studies were previously conducted only at the independent–particle level.[96]

Our calculations were performed using the proper response function χ (i.e. de-
scribing “transverse” excitons) instead of χ (see Secs. 1.4 and last paragraph of 1.6.3).
A comparison between the two can be found in Ref. [28] and we will come back to it
in Chapter 4. For now, suffice it to say that based on Eq. (1.60), χ−1 = χ−1 − v0, we
know that χ and χ tend to coincide away from the low–q regime: at low q, instead,
some energy levels that are degenerate in the spectrum of χ may split by acquiring
a longitudinal component in the spectrum of χ (they remain invisible to optical ab-
sorption at Γ since the external probe is a transverse field). Likewise, the exciton
coefficients AKλ and AKλ may be different at low q (yet, we know from Sec. 1.4 that
at the optical limit the same macroscopic dielectric function may be obtained, by
different relations, from both χ and χ).

2.4.1 Bulk

The exciton dispersion in the bulk system is displayed, starting with the first two
(doubly degenerate) exciton states at Γ, in Fig. 2.8(a) along every high–symmetry
direction in the 3D BZ.8 We can see that their degeneracy is lifted, away from Γ, in the
regions where the finite–q point groups do not allow two–dimensional irreducible
representations. The most important feature of the dispersion is shown in Fig. 2.8(b):
its minimum lies along the ΓK direction, not at Γ. The fine structure with two minima
and a local maximum between them (the latter being at |ΓK|/2) is directly inherited
from the single–particle valence bands which feature a pair of maxima close to the K
point (Fig. 2.3). Here, the lowest–lying exciton at Γ (the dark E2u state according to
the D6h point group of bulk hBN) splits into the non–degenerate i1 and i2 branches.
The electron–hole interaction “flattens” the dispersion with respect to the IP case, so
that now the difference between the “direct” and “indirect” optical gaps is between
0.1 and 0.15 eV (the former value if we take into account the dark Γ state E2u as the
direct minimum; the latter if we consider its bright Davydov partner E1g). It is worh
noting that such a difference is of the same order as the optical phonon frequencies
in bulk hBN (∼ 0.1 / 0.18 eV). In the IP case the direct–to–indirect band gap energy
difference was instead about 0.5 eV.

These results shows that indirect, phonon–mediated transitions must be in-
volved in the creation and annihilation of low–energy excitations in bulk hBN: in
particular, the fine structure reported in luminescence spectra should be interpreted
as a signature of phonon–assisted exciton annihilation. In Chapter 3 we will com-
pare first–principle calculations of such spectra to the experimental results.

Another interesting question now arises. Suppose that we have a system where
the direct–to–indirect IP energy difference is smaller than in the bulk case: will it
be possible in this case for the optical gap to remain “direct”? If so, the IP and BSE
treatments will give radically different predictions about how a luminescence spec-
trum should look like. In particular, our hypothesis is that there might be a crossover

7A publication is in preparation.
8The computational cost of this calculation is roughly Nq times the cost of a standard q = 0 BSE

calculation for optical absorption.



2.4. Excitons at finite momentum 63

K G

5.6

5.7

5.8

5.9

E
n
er

gy
(e

V
)

G M K G A L H A

5.6

5.8

6.0

6.2

6.4

6.6

E
n
er

gy
(e

V
)

a)

b)
E2g

B1 A1

i1

i2

�K

E
n
er

g
y

(e
V

)

��

FIGURE 2.8: Exciton dispersion for bulk hBN (DFT–LDA + sscGW + BSE). (a) The disper-
sion of the lowest–bound Davydov pair in the full BZ. (b) Zoom of the ΓK segment of the
BZ for the lowest–bound exciton. The wave function intensities are shown for q = 0 and
q = |ΓK|/2; in the latter case the black arrows denote the q direction (symmetry labels are
present, to be discussed in Chapter 3).

between a direct and phonon–assisted luminescence regime as more and more BN
layers are stacked in a few–layer system (we know already that in monolayer, where
no pz orbital hybridisation occurs, the minimum of the exciton dispersion remains
at the Γ point[97]). We will test this hypotesis in bilayer and trilayer hBN.

2.4.2 Bilayer and trilayer

There are two types of exciton dispersion branches relevant to few–layer systems.
The first type is composed of excitons formed by π → π∗ electronic transitions; this
is the only type relevant for the bulk case because it is periodic along the stacking
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FIGURE 2.9: Single–particle transitions in bilayer [(a), (b)] and trilayer hBN [(c), (d)]. [(a), (c)]:
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with arrows in the bilayer case. (b) IP transition energies ∆EKq for the bilayer. The direct and
indirect band gaps due to π → π∗ transitions are emphasised. (d) Lowest–lying conduction
Kohn–Sham states at Γ (trilayer). The KS wave function intensities |ϕnk(r)|2 are shown in
the simulation supercell for a vacuum and a NFE state (left and right, respectively — see text
for the characterisation of the states).

direction.9 The second type is composed of excitons formed by π → σ∗ electronic
transitions; these were not relevant for absorption at q = 0, but are important at finite
q. Consider for example the transition energies in the bilayer when no electron–hole
attraction is present, as shown in Fig. 2.9(b) (this is in other words a plot of the
quantity ∆EKq). We see the π → π∗ transitions being the lowest ones at Γ (direct
gap, K → K transitions, labeled 1) and |ΓK|/2 (indirect π gap, K → M transitions,
labeled 2). However the indirect, K → Γ transitions (labeled 3) provide an even
lower minimum in the dispersion at the K point.

Are these transitions physically relevant? The corresponding conduction bands
at Γ have a parabolic, free–electron–like behavior (which also explains why they ex-
perience a smaller GW correction than the π bands). Indeed, some of these states
are spurious bands relative to free electrons propagating in the vacuum between re-
peated copies of the system in the simulation supercell (first wave function in Fig.
2.9(d)). These are vacuum states which are not related to the BN system. There are,
however, also states where a delocalised electron lies both in the interstitial regions
between the layers and 1 − 2 Å above the surfaces (second wave function in Fig.
2.9(d)). These are the so–called nearly–free electrons (NFE), which are well known

9Provided that the polarisation of the incoming light is parallel to the layer plane. In any case the
σ–type excitons in bulk are far higher in energy than the π–type ones.
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to be a physically relevant feature of these systems (for example BN monolayer and
nanotubes as well as graphitic systems),[35, 98–102] therefore they should be prop-
erly analysed, especially since their role in the exciton picture is not known. They
should be almost dark for optical spectroscopy, because their π → σ∗ transition ma-
trix element is small: it is only non–zero because the σ∗ states are in reality partially
hybridised with the π states.10

Therefore, we organise the presentation of the results as follows: we focus first
on the analysis of the π → π∗ exciton branches, and in a second step we discuss the
π → NFE ones.

π–type exciton branches

We can disentangle the two branch types by just following the evolution of the exci-
tonic wave function along the BZ: we know that the π excitons are in–plane and that
their shape is constrained by the point group of the wave vector q.[97] We do so in
Fig. 2.10 starting from the lowest–lying Γ exciton Eu. Its π–type dispersion branch
is shown in blue, and its wave function intentities in different areas of the BZ are
shown below. We see immediately that in the bilayer case the same structure around
|ΓK|/2 that in the bulk case represented the minimum of the dispersion lies instead

10This can be verified by projecting the σ∗ KS wave functions at Γ onto the atomic pz orbitals.
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FIGURE 2.11: Exciton dispersion in bilayer hBN for different values of the lattice parameters.
The blue and light–blue curves have the same meaning as in Fig. 2.10. (a) Comparison
with the corresponding dispersion branch in the bulk system (red). (b) Comparison of the
same dispersion branches (red for π–type, orange for the rest) with the LDA–relaxed lattice
geometry. (c) Comparison of the same dispersion branches – same color scheme as in (b) –
with ±5% interlayer separation distance. (d) Comparison of the same dispersion branches
with 1% and 5% planar compression (green and red, respectively).

above the Γ excitons. This means that for π excitons, the relevant ones for optical
absorption, the optical gap is in fact “direct”, in contrast to the QP gap. This effect
is due to the electron–hole interaction, which acts here more strongly for q = 0. The
bottom branches at K and M (light–blue color in Fig. 2.10) are composed of NFE–
type excitons and provide the true minimum of the dispersion at K. The electron
distribution of the resulting excitons appear, when the hole is fixed above a nitrogen
atom, to be localised in the same regions as the original NFE states. Yet, most of their
intensity (up to 5% of the maximum value) is localised within few unit cells from the
hole. This demonstrates the bound character of these excitons.

A comparison of the lowest–lying branches between bulk and bilayer can be seen
in Fig. 2.11(a).11 These two systems have the same unit cell and differ only the
periodicity along the stacking direction (there is no periodicity in the bilayer). The
comparison makes it clear that in the bilayer the interlayer interaction is too weak to
induce an “indirect” optical gap (yet, it is strong enough to provide and indirect QP
gap if the eh interaction is neglected).

So far we have fixed the lattice parameters to the experimental bulk values. In

11Here we are more interested in comparing the dispersion curves than the absolute exciton energies,
since we know that the G0W0 band gap underestimation error might affect absolute exciton energies
differently in bilayer and bulk.
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this case, the energy difference between “direct” and “indirect” minima of the π–
type dispersion is just 0.08 eV (and 0.055 eV from the bright Γ state Eg). In Fig.
2.11(b), we perform the same calculation using the LDA–relaxed lattice parameters
(∼ 1% reduction in the planar lattice constant a, ∼ 4% reduction in the interlayer
distance d). The bottom π–type branches for the new calculations are shown in red,
the rest in orange. We see that in this case the “indirect” structure at |ΓK|/2 is almost
unaffected, while the energy of the Γ excitons is noticeably increased. Now, the local
minimum at |ΓK|/2 lies between the dark Eu and the bright Eg states at Γ. If we
keep a fixed to the bulk value, but we let d vary, we obtain the plot in Fig. 2.11(c)
where the red curves refer to a ±5% variation of d with respect to the bulk value
(blue curve). We see that in this case the Γ excitons do not change while the struc-
ture at |ΓK|/2 varies slightly. We can thus take the dispersion curves at±5% d as the
“errorbars” of our calculation with respect to the “true” van der Waals–dictated in-
terlayer separation. We also notice, based on Figs. 2.11(b) and (c) that the combined
effects of compression along a and along d tend to cancel away from Γ. Finally, we
fix d to the bulk value and we reduce a by 1 and 5%, obtaining the plot (green and
red curves) in Fig. 2.11(d). We can see that here the effect of the compression, which
strengthens the covalent sp2 planar bonds, is to dramatically increase the exciton
energies at Γ, reversing the ordering between “direct” and “indirect” optical gap
(further investigation will be needed to better elucidate this result).

In order to analyse the trilayer dispersion, we must get rid of the low–lying “vac-
uum” band featured in Fig. 2.9(c): we do so by setting its energies back to the DFT
values (thus neglecting the pathological negative GW correction) before moving on
to the BSE calculations. In this way, we finally obtain the dispersion relation depicted
in Fig. 2.12. The red lines represent the disentangled π–type excitons: we can see
that starting from the Davydov triplet at Γ, where we have three doubly–degenerate
states (the first two of which are the surface states from Sec. 2.3.2), the exciton levels
split into six non–degenerate states. Here, since the two branches originating from
the second (dark) surface exciton split farther apart in energy than the others, we
can identify two “triplets” of roughly parallel branches, the triplets being about 0.4
eV apart at |ΓK|/2. In the trilayer, the bright surface exciton at Γ and the minimum
of the π–type dispersion at |ΓK|/2 are roughly at the same energy, with the optical
gap being slightly “indirect” for bulk lattice parameters. The “true” minimum of the
dispersion is at the K point, due, as in the bilayer case, to NFE–type excitons (orange
lines in Fig. 2.12).

Effect of NFE–type branches at K

Let us now consider the effects of the low–lying NFE–type excitons at the K point.
As we remarked, π → NFE electronic transitions are not entirely forbidden because
of the hybridisation of the σ∗ and π∗ bands. We report in Fig. 2.13 a plot of the
microscopic dielectric function ε2(q, ω) for q = K. The bilayer is shown on the left,
the trilayer on the right. Note that since we are at large q, these spectra are essen-
tially equivalent to electron–energy loss (EELS) spectra.12 As expected, the domi-
nant peaks are related to the π–type excitons, i.e. to the branches originating from
the lowest–bound Davydov multiplets at Γ, whose onset is marked by the vertical
lines on the plot. We nonetheless see a faint signal at the energy of the NFE–type
excitons, preceding the largest peaks.

12The EELS spectrum, useful to identify collective longitudinal excitations (plasmons), is given by
Imε−1(q, ω) = v(q)Imχ(q, ω).
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most relevant features are connected to their origin in the exciton dispersion relations (in-
sets) by blue arrows. The other insets show the wave function intensities of the excitons
responsible for such features. The vertical black lines in the main plot mark the energies of
the lowest–bound excitons at the Γ point.

2.4.3 Conclusions

We can make the following conclusions. (i) It is possible to have a “direct” optical
gap in bilayer hBN, despite having an indirect QP gap (ii) Most likely, there will be a
competition between the direct and phonon–assisted π → π∗ transitions in absorp-
tion, with the leading mechanism depending on the environmental conditions of
the bilayer sample (strain, substrate, et cetera); while the phonon–assisted transitions
will always account for an additional fine structure, having a properly “direct” opti-
cal gap will affect the absorption/emission efficiency of UV light. (iii) It is possible,
in theory, to change the nature of the band gap by planar strain/compression. (iv)
For bulk parameters, the crossover between π–type direct–to–indirect gap already
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happens at layer number N = 3. (v) In the luminescence case, the role of the low–
lying NFE–type excitons should be further investigated. For example, experimen-
tally no luminescence signal could be observed for multilayers below N = 6.[32]13

Our results show that this may be due to the fact that the excitations are “trapped”
at the minimum at K with very long recombination lifetimes due to the low value
of the screening matrix element (to be further multiplied to the electron/exciton–
phonon coupling matrix element, reducing the probability of a recombination even
more). As the number of layers increases, and the material becomes more bulk–like,
the NFE–type branches are lifted up in energy and eventually disappear, allowing
recombination from the π–type excitons.

As a final remark, we point out that even with a deceptively simple system like
hBN, a complicated description of the optical response arises nonetheless, making
it difficult to capture the essential physics by simple models alone (for example, the
TBEM only works for π–type states).

13Private communication with F. Ducastelle and J. Barjon.
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Chapter 3

Indirect optical spectra:
many–body approaches

This chapter is partly based on our publication [41]. Some of the text and figures contained
in this Chapter are adapted from this reference.

3.1 Introduction: luminescence in bulk hBN

Recent experimental results on bulk hBN luminescence are displayed in Fig. 3.1.
The intrinsic luminescence spectrum in bulk hBN is shown from Refs. [24], [83] and
[84] (left, center and right, respectively). The characteristic shape composed of two
lower–intensity peaks between 5.85 and 5.9 eV, followed by a higher–intensity struc-
ture at lower energies (5.75 to 5.80 eV) is present. Note that the intensity of the two
main peaks in Ref. [83] is reversed with respect to the others, because in this case
the spectral response of the detection system (not negligible in the UV range) was
not subtracted. Refs. [24] and [83] are photoluminescence (PL) spectra, while Ref.
[84] reports the result of a cathodoluminescence (CL) experiment. In CL, an electron
beam is used instead of an optical laser to probe the system, leading to the generation
and eventual recombination of electron–hole pairs. The two techniques achieve the
same resulting spectra because the experimental conditions are similar, namely: (i)
low laser / electron beam power density, (ii) near–band gap excitation, (iii) continu-
ous pumping leading to a steady state between absorption and emission processes.
In the bottom panel (b) of Fig. 3.1, the CL/PL spectra (red) are compared to the pho-
toluminescence excitation spectra (PLE, blue). Ref. [19] is on the right, Ref. [84] is
on the left. Under the right conditions, PLE spectra are proportional to absorption
ones,1 and albeit at a lower resolution than their PL/CL counterpart, clearly dis-
play the main exciton peak at 6.05 eV. The energy difference between emission and
absorption spectra is called Stokes shift. In the case of indirect transitions, the two
spectra are expected to be roughly symmetric, mirrored around the energy of the
indirect transition that is involved in the phonon–assisted excitation/recombination
process. However, in the case of bulk hBN the two spectra are not symmetric at all.
We will show in the course of this Chapter that this asymmetry is due to the fact that
the absorption process is dominated by the direct exciton at Γ, while the emission
process is dictated by the indirect excitonic minimum in the middle of the ΓK seg-
ment. Therefore, two different excitonic states determine the two different physical
processes of absorption and emission.

1In PLE, the luminescence at a specific energy is detected as a function of the excitation energy. For
example, the energy of a certain exciton level may be selected. Varying the excitation energy, the PLE
spectrum then generally presents the same features of the absorption spectrum, despite some small
deviations.
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FIGURE 3.1: Luminescence in bulk hBN. (a) Intrinsic luminescence spectrum. Left: PL from
Ref. [24]. Center: PL from Ref. [83]. Right: CL from Ref. [84]. (b) Comparison between
PL/CL (red) and PLE (blue, proportional to absorption) spectra from Ref. [19] (left) and Ref.
[84] (right).

Our theoretical investigation on finite–momentum excitons in hBN, conducted
in the previous Chapter, provides strong support for the recent experimental in-
terpretation in terms of phonon–assisted optical excitations, since the minimum
of the exciton dispersion is found to lie away from the Γ point. Moreover, from
the above discussion and the previous Chapter it is clear that modifications of the
electronic/excitonic spectral structure due to exciton–phonon interactions cannot be
ruled out. Indeed, the ab initio theoretical description of phonon–assisted optical ab-
sorption is an important issue in condensed matter physics, that has yet to be tack-
led fully. In order to correctly evaluate the relative intensity of the indirect/direct
optical absorption processes in bulk hBN, for example, exciton–phonon coupling
needs to be included. In this way, the efficiency of hBN as an UV emitter — or
the way to tailor it towards the desired effect — could be established. Refs. [103]
and [36] provide an example of the theoretical calculation of a phonon–assisted op-
tical absorption spectrum (of GaN and silicon, respectively), although only in the
independent–particle picture and confined to the energy window where only in-
direct transitions contribute. We will discuss Ref. [36] in more detail in the next
Section. The Wialliams–Lax method discussed in Sec. 3.2 (Refs. [37, 104, 105]) pro-
vides a unified approach to describe on the same footing lattice–dependent band
features and phonon–assisted transitions. However, it is computationally expen-
sive if the BSE is involved while also restricted to static approximations, therefore
imprecise close to the absorption onset. Moreover, various models of the exciton–
phonon coupling including dynamical effects are available in the literature[82, 106–
111] (with Ref. [112] specifically tackling luminescence), although their direct test on
real materials from first principles is, again, computationally demanding. Therefore,
first–principles calculations of indirect absorption including excitons are still miss-
ing, and we bridge this gap by providing the first such calculations in this Chapter. It
is worth noting that layered materials in which phonons may play an important role
for optical spectroscopy, like hBN or transition metal dichalcogenides like MoS2[91]
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(which, with the exception of the monolayer form, displays an indirect band gap),
are the perfect candidates for this kind of analysis.

In general, starting from the form given in Eq. (1.75) for the excitonic macro-
scopic dielectric function, we expect it to be modified by the exciton–phonon inter-
action in the following way:

ε2(ω) =
8π

V ∑
λ

(1− Rλ)

∣∣∣∣∑
K
Aλ
KdK

∣∣∣∣
2

Im
(
[ω− (Eλ + ∆Eλ) + iη]−1

)
+F ({Eλq, ωµq}).

(3.1)
Here, Aλ

K can be equal to either Aλ
K or Aλ

K. The quantity Rλ represents a renormali-
sation factor determining how much oscillator strength is transferred from the direct
peaks to the phonon–assisted parts of the spectra, given here by the unknown func-
tions F depending in principle on all the exciton and phonon energies. The complex
energy correction ∆Eλ is the dressing of the exciton energy due to exciton–phonon
interaction. We will investigate this quantity in Sec. 3.2 for the monolayer case. In
this way we can show that phonon–assisted processes in BN systems are not only
possible, by virtue of the indirect optical gaps demonstrated in the previous Chap-
ter, but also likely, since our results in the aforementioned Section point to a strong
electron–phonon coupling in BN. Afterwards, when switching to the bulk system,
we will the ignore ∆Eλ, and assume that the exciton energies remain always at their
“bare” values. This will not affect our results because we are more interested in
studying the shape of the luminescence spectrum, while knowing already that its
absolute energy position will be incorrect anyway because the GW approximation
underestimates the band gap (as mentioned in Secs. 2.3.2 and 3.2.1).

We will thus focus on a way to reproduce the F functions, the phonon–assisted
contribution to the optical spectrum, using state–of–the–art computational many–
body techniques: in particular we will compute the derivatives of ε2 with respect
to static atomic displacements (Sec. 3.4). This will be enough to understand and
reproduce the results shown in Fig. 3.1, leading to the main result of this thesis.

We also anticipate that in Chapter 4, after identifying the phonon–assisted part of
the absorption spectrum as the satellites of the excitonic spectral function, we will pro-
pose a method, based on very recent theoretical developments,[38, 113] to include an
“exciton–phonon self–energy” in the ab initio simulations: in this way we can over-
come the previously mentioned static approximation and obtain the full absorption
spectrum including the Rλ factor.

3.2 Monolayer: testing electron– and exciton–phonon cou-
pling

As far as optical spectroscopy is concerned, the alteration of the electronic system
due to (perturbatively weak) electron–phonon interactions can be separated in two
main effects: the temperature dependence of band structures (seen in Sec. 1.6.6)
and the possibility of indirect optical transitions (e.g. indirect absorption).[114] Al-
though the two effects are intimately linked (both depend on the electron–phonon
self–energy, and in particular on the strength of the electron–phonon coupling ma-
trix elements), they can usually be treated separately as the band structure “renor-
malisation” causes an overall shift in the absorption spectra, while the indirect tran-
sitions modify its shape. We will be mainly concerned with the latter effect in the
remainder of this Chapter and in Chapter 4. Nonetheless, in this Section we will
present the results of electron–phonon (ep) calculations performed for monolayer
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FIGURE 3.2: Electron–phonon coupling in monolayer hBN. (a) Red: DFT–LDA band struc-
ture. Blue: Corrected quasiparticle band structure including the ep self–energy ΣFM

nk . The
correction is shown for the top valence and bottom conduction bands. The blue shaded
areas, of width 2ImΣFM

nk , are inversely proportional to the electron–phonon lifetimes. (b)
Phonon dispersion. To the right, the Eliashberg function FcK(ω) related to the bottom of the
electronic conduction band.

hBN according to Sec. 1.6.6. This allows us to gauge the strength of the ep cou-
pling in this system, and to gain new indications about the magnitude of the error
that the GWA makes, in its G0W0 forms, in correcting the band gaps of BN–type sys-
tems with respect to experimental observations. Furthermore, we will try to obtain a
phonon–mediated correction to the exciton energies as well (“exciton–phonon” cou-
pling). These latter results are not to be considered definitive, for reasons that will
be clarified in the following, but they are useful to get an idea of what to expect in
BN–type systems, where exceptionally strongly bound excitons plus very high opti-
cal phonon frequencies (because of the low atomic masses of B and N) may lead to
quite noticeable effects. Indeed we find that this is the case.

3.2.1 Band gap renormalisation

The phonon dispersion in monolayer hBN is shown in Fig. 3.2(b). Since we have
only two atoms per unit cell, three optical branches are obtained in addition to
the three acoustic ones. The maximum frequency of the of the longitudinal opti-
cal phonon is close to 190 meV (46 THz, 1530 cm−1), and the strong overbending
of this mode[115] leading to the LO–TO degeneracy at the Γ point (no LO–TO split-
ting at q = 0 is possible in purely 2D systems[116]) is reproduced correctly using
the method presented in Ref. [117]. We also compute ep coupling matrix elements
(Eqs. (1.114) and (1.115)) with DFPT and obtain the ep QP correction from the self–
energy (Eqs. (1.116), (1.117) and (1.118)) calculated with the Yambo code. At low
frequency (< 50 meV), the FM and DW terms tend to cancel, and the q–integrals
can be made stable by using a random integration method (Sec. 1.5.2) close to the
Γ point. The effect on the band structure is displayed in Fig. 3.2(a) at zero temper-
ature: in red, the DFT–LDA bands are shown; the phonon–corrected bands are in
blue, while the width of the shaded areas is given by 2ImΣFM (and therefore it is
inversely proportional to the quasiparticle lifetime). We notice immediately a huge
band gap renormalisation, by 0.522 eV, comparable with that of diamond.[118] This
is apparent already at zero temperature, therefore entirely due to quantum zero–
point motion. This result puts even more into question the accuracy of the electronic
G0W0 correction to the band gap: since the main exciton peak is expected experi-
mentally around 6 eV with a binding energy between 0.7 (bulk) and 1.9 (monolayer)
eV, this puts the single–particle band gaps to values ranging from 6.7 to 7.9 eV. So
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far, by resorting to the sscGW technique, the band gap underestimation would be
of about 0.2 eV as seen in Sec. 2.3.2. To this we should now add a redshift of ∼ 0.5
eV due to electron–phonon effects, which must be explicitly added to the theory but
is always present in the real system. Because of this consideration, we can roughly
estimate the band gap underestimation of the GW method to be between 0.5 and 1
eV for BN systems.

As for the lifetimes, let us simply note that they become longer as less and less
electron–phonon scattering channels become available for the electrons, until, at the
band gap, they become infinite (of course the electron–hole recombination probabil-
ity is not considered here). This is because at zero temperature, an electron can only
scatter from a band state to another by spontaneously emitting a phonon, which
means (in the case of a conduction electron) lowering its energy. However, at the
band gap, there are no lower energy states available, and therefore no scattering
is possible. We see that this condition applies through all the KM segment of the
conduction band due to its flatness.

Next, we look at which phonons play the most important role in the band gap
renormalisation, i.e. the ones that couple most strongly with the electronic states. On
the right side of Fig. 3.2(b) we show the Eliashberg function FcK(ω) related to the
bottom of the conduction band (π/pz electron at the K point). The Eliashberg func-
tion can be understood as a phonon density of states weighted with the ep coupling
strength to a particular electronic state. In our case it is given by:

Fnk(ω) =
1

Nq
∑
qλ

(
∑
m
|gqλ

nmk|2 + Λqλ,−qλ
nnk

)
[
2nqλ(T) + 1

]
δ(ω−ωqλ). (3.2)

We see that the leading contribution to the coupling comes from the LO mode at
its maximum frequency, which corresponds to a wave vector roughly around one
fourth of the distance between Γ and the zone edge, and therefore is related to
phonons with the periodicity of about 8 to 12 times the unit cell. This means that
these phonons are probably the most important for the correct description of the ab-
sorption edge of the system, also at the exciton level. Their dispersion is dictated,
since we are dealing with a polar material, by the long–range electron–phonon in-
teraction that includes the non–analytic part due to the macroscopic longitudinal
electric field (dipole–dipole interactions, Sec. 1.6.3).

3.2.2 Redshift of the absorption spectrum

We will now attempt to compute the correction to the exciton energies due to their in-
teraction with phonons. We will compare two approaches that modify the excitonic
Hamiltonian, Eq. (1.83), in order to account for the effects of lattice vibration. The
first one, which we will call quasiparticle (QP) method in this Section, is based on Ref.
[58]. An analysis of bulk hBN in this framework has been performed in Ref. [58],
and a monolayer study appears in Ref. [119] as well. The second approach, which is
based on static atomic displacements with calculations in large supercells (see App.
B), is called Williams–Lax (WL) method and is detailed in Refs. [37, 104, 105]. This is
the first time that the WL method is used in conjunction with the BSE.

As we shall see, both approaches have flaws that prevent a complete solution
of the problem, but they provide hints as to where such a solution might be found.
They also allow us to draw order–of–magnitude conclusions about the importance
of lattice vibrations in the description of BN exciton energies. We will be mainly
concerned with the description of indirect absorption in the rest of the thesis, but we
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consider it useful to present these results here as a demonstration that strong ep and
ExcP coupling are present in BN, leading to non–negligible effects. Therefore, this
should be kept in mind when attempting an accurate description of single–particle
and exciton energies, as well as absorption and emisssion spectra.
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FIGURE 3.3: Zero–temperature phonon dressing of the optical absorption spectrum (ε2) in
monolayer hBN. (a) Comparison between quasiparticle (QP) and Williams–Lax (WL) ap-
proaches (see text). Full gray and dashed gray lines: reference calculations in the unit cell
for WL and QP methods, respectively. Red line: QP method. Blue line: WL method (8× 8
supercell). The vertical lines represent the energy of the GW band gaps. Black: unit cell
reference; blue: QP method; full red and dashed red: WL method with 8× 8 and 10× 10
supercells, respectively. (b) Supercell convergence of the WL method. From blue (1× 1) to
red (8× 8), the spectra for displaced supercells of increasing size (see insets) are shown. The
vertical lines represent the corresponding GW band gaps.

Quasiparticle method

In the QP method, we ignore the dependence of the screened interaction and
exchange matrix elements on the atomic displacements, and we correct only the
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independent–particle (IP), diagonal block of Eq. (1.83). In particular, we include the
previously computed ep self–energy corrections to the KS energies in its first term
∆EKδKK′ . Since these are complex quantities, the excitonic Hamiltonian will now be
non–hermitian and yield complex exciton energies Eλ. Consequently, the energy–
conserving delta function in the absorption spectrum will become a Lorentzian with
an ab initio full width at half maximum:

πδ(ω− Eλ)→
ImEλ

(ω− ReEλ)2 + (ImEλ)2 . (3.3)

The modified BSE result for optical absorption is displayed by the blue spectrum in
Fig. 3.3(a). The frozen–atoms spectrum (obtained with a GW+BSE calculation) is
given by the dashed gray line. We find the main exciton energy to be redshifted by
0.56 eV, following the QP band gap redshift (blue vertical line).

What is the validity of these results? Here, we are computing the BSE kernel
in the frozen–atoms configuration, which means neglecting any phonon–mediated
renormalisation of the electron–hole interaction. The significance of the error intro-
duced in this way is difficult to evaluate: it may be that a correct treatment of the
BSE kernel would partially cancel the IP correction to the exciton energies (in fact this
happens in the case of the spectral weights of QP spectral functions[120]). Another
problem is the finite lifetime of the lowest–lying exciton. According to recent treat-
ments of the exciton–phonon couplings,[107] the lowest–lying excitation, having no
state to decay into, should have infinite lifetime. However, as we have already seen,
this exciton is composed of a linear combination of electronic transitions around the
K point in the BZ. Only the band gap transition at K will have an infinite lifetime
(i.e., for this transition the imaginary part of the self–energy is exactly zero). All
the other transitions will contribute complex electron and hole energy values whose
imaginary parts will not cancel exactly, resulting in a complex exciton energy also
for the lowest–bound state. Again, it is possible that including on the same footing
the electron–phonon interaction in the BSE kernel will lead to the needed cancella-
tions.2 Finally, the QP method can only correct the exciton peaks that are already present
in the frozen–atom configuration. In other words, additional components of the ab-
sorption spectrum due to phonon–mediated indirect excitations cannot be captured
in this way. Another way to see this is considering that the reduction in the overall
lattice symmetry due to the atomic displacements along the various phonon normal
modes may lead excitons that are dark in the frozen–atoms configuration to acquire
some oscillator strength.

Williams–Lax method

Here we consider the thermal average of the imaginary part of the electronic dielec-
tric function, that can be expressed as[37, 104]

ε2(ω; T) =
1
Z ∑

n
e−En/kBT〈ε2(ω; {R})〉n. (3.4)

Here, the energy n labels a nuclear quantum state evaluated in the Born–Oppenheimer
approximation (therefore it is an expectation value of the ionic Hamiltonian involv-
ing nuclear wave functions). The partition function is Z = ∑n exp(−En/kBT) and
the expectations values 〈ε2〉n of the dielectric function, parametrically depending on

2This possibility was discussed during the Workshop on Electron–Phonon Interaction (http://
elphon.etsf.eu/) and privately with A. Marini.

http://elphon.etsf.eu/
http://elphon.etsf.eu/
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the set of ionic coordinates R, are taken with respect to each nuclear state n (they are
therefore complicated integrals involving all the ionic coordinates). This expression
implies a semiclassical approximation of the ionic motion. If we now consider the
harmonic approximation, we can write the atomic displacementes in normal coor-
dinates xλ, where the index λ combines both phonon branches and wave vectors
(it can be consider as a real–space index where wave vectors are replaced by ad-
ditional folded phonon branches with the corresponding periodicities, see App. B).
Furthermore, in this case Eq. (3.5) can be recast as a product of Gaussian integrals

ε2(ω; T)∏
λ

∫
dxλ

ex2
λ /2σ2

λT√
2πσλT

ε2(ω; {x}), (3.5)

where σλT is the thermal average of the squared displacement x2
λ and will be given

explicitly in Eq. (3.21). This integral has been evaluated stochastically in Ref. [37]
by generating a large number of ionic configurations for ε2(ω; {x}). A final simpli-
fication is achieved by noting that in fact only a single, optimal ionic configuration is
needed to obtain the same result as the full integral,[105] but only in the limit of an
infinitely large supercell:

ε2(ω; T) = lim
N→∞

ε2(ω; {x}opt), (3.6)

with N being the supercell size3 and the atomic displacements making up {x}opt

given by

∆Riα = ∑
λ

(−1)λ−1ξλ
iα

h̄
2Miωλ

√
2nλ(T) + 1. (3.7)

Equation (3.6) was successfully applied to the IP optical spectra of silicon, diamond
and gallium arsenide.

We will now use it at zero temperature (zero–point motion only) on top of BSE
calculations for monolayer hBN supercells; the optimal atomic configurations for
each N were provided by M. Zacharias. In the limit of infinite supercell, the entire
BZ is mapped onto the Γ point, forming a continuum of states. If no atomic displace-
ments are present, i.e. we are in the frozen–atoms case, then the optical absorption
spectrum will be exactly the same as the one computed in the unit cell, as no new
physics has been added to the system. The additional states folded onto the Γ point
can only be dark. However, the reduced symmetry due to the static atomic displace-
ments will allow these finite–q excitations mapped to Γ to acquire some oscillator
strength depending on the wave vector (i.e., the long–range periodicity of the dis-
placements). All possible phonon modes are included in the sum in Eq. (3.7), and
each supercell size N corresponds to an equivalent wave vector sampling in recip-
rocal space.

For these calculations we applied a scissor operator to the KS energies in order to
reproduce exactly the frozen–atoms GW correction for all the supercells, without the
need to run an expensive GW calculation for each N. We are therefore neglecting the
variation in the GW correction to the energy eigenvalues due to the atomic displace-
ments. More information about the scissor operator can be found in Sec. D.5. The
next issue is the calculation of the static RPA screening χRPA, which becomes unfea-
sible for N > 6 with our computational resources. For this reason, we compute χRPA

in the frozen–atoms unit cell BZ and then fold it onto the supercell BZ developing a
Python script interfaced with Yambo. This is explained in Sec. B.1. In this way, we are

3In the case of monolayer hBN, a N × N × 1 supercelll is associated to each N.
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also neglecting the variation in the screening function due to atomic displacements.
However, we could compare this approximation to the exact value for all N up to
6 and found no appreciable difference. The last step is the BSE one. Here, the WL
theory provides a static correction to the excitonic Hamiltonian, Eq. (1.83), which
affects both single–particle energies and the electron–hole interaction kernel.

The convergence of the WL spectrum with respect to the supercell size N is
shown in Fig. 3.3(b). The equilibrium, unit–cell result is in blue and the final cor-
rection due to lattice vibrations (8× 8× 1 supercell) is in red. The QP band gaps
corresponding to the various supercells are marked by vertical lines (the dotted red
line is for a 10× 10× 1 supercell). Unfortunately, the BSE results could not be fully
converged, as calculations for N > 8 turned out to be unfeasible. We notice immedi-
ately a strong redshift of both the QP band gap and exciton peak energies (the latter
being 0.43 eV), as expected. In the WL method, the broadening of the peak does not
come from the imaginary part of the exciton energy, but rather from the presence of
the folded copies of the exciton around its main peak position. These folded states
are slightly displaced in energy with respect to the central one, and acquire a smaller
oscillator strength: their sum “dresses” the main peak (the broadening is mostly vis-
ible at the bottom of the peak). At the same time, because of the static displacements,
many other states that would be optically forbidden at equilibrium now become vis-
ible across the full energy range, generating a richer overall structure with respect
to what is possible to obtain with the QP method. We note that while the 2× 2 and
4× 4 peaks remain very close to the equilibrium one, there is a larger energy step
starting with the 6× 6 supercell. This is consistent with the observation, made in the
previous Section, that phonons with 6–fold periodicity and beyond are the ones that
couple significantly with the single–particle transitions that are responsible for this
excitonic shift.

Conclusion

Figure 3.3(a) shows a comparison between the phonon–dressed optical spectra ob-
tained with the QP (red) and WL (blue) approaches. The vertical lines represent the
QP band gaps (the dashed line being the 10× 10 WL calculation, and the black line
being the equilibrium reference). In order to compare the spectra, a partial f –sum
rule was enforced between reference (gray, εRef

2 ) and final results separately for both
methods, rescaling ε2 in order to satisfy

∫ ω f−δ

ωi−δ
ωε2(ω) =

∫ ω f

ωi

ωεRef
2 (ω). (3.8)

The energy window limits are ωi = 4.5 eV and ω f = 7 eV (almost all of the oscillator
strength in the unit cell case is contained in this interval), while δ is the value of the
peak shift.

It is clear that the dominant contribution to the phonon dressing of the excitons
comes from the IP block of the Bethe–Salpeter Hamiltonian, because in the WL case
the supercell convergence trend of the BSE follows that of the QP gap: therefore the
quasiparticles are dressed first, and then the electron–hole interaction binds them
into exciton states. However, the single–particle energy variation at each step is
bigger than the corresponding exciton peak variation, therefore it seems likely that
the contribution from the dressing of the BSE kernel (an electron–hole interaction
modified by lattice vibrations) opposes the IP contribution, reducing the redshift.
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Certainly, a more rigourous and formal study of the connection of the WL
method to a MBPT approach is required to definitively assess the accuracy of this
method. Similarly, the QP method needs to be expanded in order to include the BSE
kernel (we will give a contribution in this direction in Chapter 4). In this context, a
theoretical investigation on the coupling of excitons and long–range optical phonons
in polar materials (sometimes called Fröhlich coupling[121]) would also be bene-
ficial. Despite all these shortcomings, we can still conclude, based on the results
for the monolayer, that one should expect a very strong zero–point redshift of the
optical absorption spectrum in BN systems of approximately 0.5 eV.

We will now shift our focus to systems with an indirect energy gap: here, the
presence of a strong electron–phonon coupling can considerably change the relevant
spectral features, particularly by allowing for the creation of additional excitations,
which may dominate the spectral onsets at low energies.

3.3 Basics of indirect absorption

Indirect absorption in an independent–particle (IP) picture is usually conceptualised
as a two–step process in which a valence electron interacts first with a photon and
then with a phonon — or viceversa. The excited electron, having picked up both en-
ergy and momentum, will end up in a conduction band. Therefore, this process can
be modeled with second–order time–dependent perturbation theory starting from
an IP electronic Hamiltonian interacting with both an external em field and an ionic
potential. We will do this now because some of the developments will be relevant to
both Sec. 3.4, involving excitons, and Sec. 4.1.2, where a “diagrammatic” approach
is used to obtain the same results. Additionally, this is the approach taken in Ref.
[36] in order to reproduce, from ab initio calculations, the phonon–assisted shoulder
in the absorption spectrum of silicon. The expression for the indirect ε2 found in the
above–mentioned reference is reported in App. E as Eq. (E.1). Actually, a careful
derivation of this expression (following for example the prescriptions in Chapter XII
of the book of Grosso and Pastori Parravicini[43]) reveals that additional terms are
required to obtain the “full” formula of the indirect ε2, and its dependence on the
phononic and electronic occupation factors is slightly more complicated. Nonethe-
less, the reduced formula presented in Eq. (E.1) is enough to describe indirect ab-
sorption in silicon. However it may be relevant to discuss the full expression since
there might be cases in which it would be needed, for example when the occupa-
tion factors of the initial and final electronic states might be comparable (i.e. metals
and interband transitions as opposed to the absorption case where fck � fvk−q).
This is also relevant in order to assess properly under which approximations several
simplifications in said expression might be possible. In order to be consistent with
Eq. (E.1), we reintroduce here h̄. The phonon frequencies will be denoted with the
capital Omega as Ωqλ.

3.3.1 Any phonon–assisted transitions

Below we list the starting non–interacting electronic Hamiltonian H0, the coupling
Hamiltonian HeL with a classical em field (up to linear order in the field A, in the
Coulomb gauge and in the dipole approximation) and the coupling Hamiltonian
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He−ion with the crystal lattice vibrations via an electron–ion potential:

H0(r) =
p2

2m
+ V(r),

HeL(r, t) =
eA0

mc
e · p

(
e−iωt + eiωt) ,

He−ion(r, t) =
1

Nq
∑
qλ

(
Vλ

e−ion(q, r) e−iΩqλtb̂qλ + Vλ,∗
e−ion(q, r) eiΩqλtb̂†

qλ

)
.

(3.9)

An arbitrary state of the system will be specified by an electronic band state and a
phonon number: |mk〉 ⊗ |nqλ〉. It is understood that the phononic occupation func-
tions are produced by the action of He−ion on the initial state |nqλ〉:

b̂qλ |nqλ〉 =
√

nqλ |nqλ − 1〉 ,

b̂†
qλ |nqλ〉 =

√
nqλ + 1 |nqλ + 1〉 .

(3.10)

Now, the perturbation theory is carried out up to second order, but only the terms
at first–order simultaneously in both the em field and the phonon number will be
retained (these represent phonon–assisted transitions; the rest describe two–photon
and two–phonon processes). We also give the following definitions for the matrix
elements that describe the couplings:

〈jk|e · p|ik〉 ≡ e · vijk ≡ dijk,

〈jk|Vλ
e−ion(q, r)|ik− q〉 ≡ gqλ

ijk.
(3.11)

A transition i → j described in this way will undergo a two–step process: first the
absorption/emission of a photon brings the electron from i to an intermediate “vir-
tual” state m; then the absorption/emission of a phonon bridges the remainining
energy–momentum gap to the final state j. Alternatively, the phonon will be ab-
sorbed/emitted first, leading to the intermediate state; the absorption/emission of
a photon will then complete the process. The probability of the total i → j transi-
tion will be given by the modulus square of the sum of the two processes, thereby
including quantum interference effects.

The complete expression for the imaginary part of the dielectric function is then

ε2(ω) = C(ω) ∑
ijkqλ

fik−q(1− f jk){ nqλ|TA|2δ(εik−q − εjk + h̄ω + h̄Ωqλ)+

(nqλ + 1)|TB|2δ(εik−q − εjk + h̄ω− h̄Ωqλ)+

nqλ|TC|2δ(εik−q − εjk − h̄ω + h̄Ωqλ)+

(nqλ + 1)|TD|2δ(εik−q − εjk − h̄ω− h̄Ωqλ)}

(3.12)

(the coefficient C(ω) is given in App. E). Here, the first two lines refer to “reso-
nant” transitions (e.g., Eq. (E.1)) and the last two to “anti–resonant” ones. Ignoring
the latter is equivalent to a “Tamm–Dancoff” approximation. The T–factors are the
transition amplitudes: each of the four possible processes (as seen in Fig. 3.4(a)) is
split into two contributions (for a total of 8 terms) reflecting that the system can reach
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the intermediate state both via photon or phonon. Such terms are given by

TA = Sω
1 + SΩ

1 ,

TB = Sω
2 + SΩ

2 ,

TC = Sω
3 + SΩ

3 ,

TD = Sω
4 + SΩ

4 .

(3.13)

The S–terms describe all the possible combinations of absorption or emission of one
photon and one phonon. Their explicit expression is listed below:

Photon Phonon

Sω
1 (k, q) = ∑

m

dimk−q gqλ
mjk

εik−q − εmk−q + h̄ω + iη
Absorbed Absorbed

SΩ
1 (k, q) = ∑

m

gqλ
imk dmjk

εik−q − εmk + h̄Ωλq + iη
Absorbed Absorbed

Sω
2 (k, q) = ∑

m

dimk−q gqλ
mjk

εik−q − εmk−q + h̄ω + iη
Absorbed Emitted

SΩ
2 (k, q) = ∑

m

gqλ
imk dmjk

εik−q − εmk − h̄Ωλq + iη
Absorbed Emitted

Sω
3 (k, q) = ∑

m

dimk−q gqλ
mjk

εik−q − εmk−q − h̄ω + iη
Emitted Absorbed

SΩ
3 (k, q) = ∑

m

gqλ
imk dmjk

εik−q − εmk + h̄Ωλq + iη
Emitted Absorbed

Sω
4 (k, q) = ∑

m

dimk−q gqλ
mjk

εik−q − εmk−q − h̄ω + iη
Emitted Emitted

SΩ
4 (k, q) = ∑

m

gqλ
imk dmjk

εik−q − εmk − h̄Ωλq + iη
. Emitted Emitted

(3.14)

Note that the barred matrix elements, e.g. gqλ
mjk, indicate the mj-th element of the

conjugate and not the conjugate of gqλ
mjk. Here η → 0+ and if we consider only

the first four terms we obtain Eq. (E.1) (except for the structure of the electronic
occupation factors).

3.3.2 Net transition rate

The net transition rate R is the difference between the i → j and j → i transition
rates. If i is a valence band and j a conduction one, then the net rate will be the
difference between absorption and emission rates (and it will remain an absorption
rate if fv > fc). If we consider the band energies to be independent from their
occupations, the j→ i case is found by just swapping the indices ik− q and jk in Eq.
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(3.12). In the “Tamm-Dancoff” case (TD) the net absorption rate reads

RTD(ω) = C(ω) ∑
ijkqλ[

|TA|2nqλ fik−q f jk − |TD|2i←j(nqλ + 1) f jk f ik−q

]
δ(εik−q − εjk + h̄ω + h̄Ωqλ)+

[
|TB|2(nqλ + 1) fik−q f jk − |TC|2i←jnqλ f jk f ik−q

]
δ(εik−q − εjk + h̄ω− h̄Ωqλ)

(3.15)

where i← j means that the indices ik − q and jk are exchanged in Eq. (3.14) and
f jk ≡ 1− f jk. In principle, the different denominators prevent exact factorisation of
the terms on each of the two lines. However in the optical absorption/emission case
the transition amplitudes are often considered slowly varying if only states close to
the band minima contribute.[43]

In the simpler case of direct transitions, we instead obtain Eq. (1.74),

εdir
2 (ω) ∝ ∑

ijk
|dijk|2 fik(1− f jk)δ(εik − εjk + h̄ω), (3.16)

with the net rate given simply by

Rdir(ω) = εdir
2 − εdir

2 |i←j ∝ ∑
ijk
|dijk|2( fik − f jk)δ(εik − εjk + h̄ω). (3.17)

3.3.3 Optical absorption and emission

If we are considering optical transitions across a band gap (from valence to conduc-
tion), then the resonant lines of Eq. 3.12 describe absorption, the anti–resonant lines
describe emission:

εabs
2 (ω) = C(ω) ∑

cvkqλ

fvk−q f ck{ nqλ|TA|2δ(εvk−q − εck + h̄ω + h̄Ωqλ)+

(nqλ + 1)|TB|2δ(εvk−q − εck + h̄ω− h̄Ωqλ)},
εem

2 (ω) = C(ω) ∑
cvkqλ

f vk−q fck{ nqλ|TC|2δ(εvk−q − εck − h̄ω + h̄Ωqλ)+

(nqλ + 1)|TD|2δ(εvk−q − εck − h̄ω− h̄Ωqλ)}.

(3.18)

Figure 3.4(a) schematises the indirect absorption and emission processes between
a valence and a conduction state, the processes labeled A, B, C or D in accordance
with their respective transition amplitudes T. Note that only TB and TD (phonon
emission processes) are possible at zero temperature. The resulting optical absorp-
tion (blue) and emission (red) spectra for the two levels are depicted in Fig. 3.4(b)
(note that the two photon frequencies involved are ω1 and ω2 = ω1 + 2Ω).

3.3.4 Static approximation

Let us now restrict ourselves, for simplicity, to the photon absorption case only. We
use the static approximation and neglect the phonon frequencies in the transition
amplitudes, i.e. h̄Ωqλ = 0, leading to Sω

1 + SΩ
1 = Sω

2 + SΩ
2 . Now, we also take

the “resonant” approximation for the denominators where the photon frequency
appears explicitly, i.e. εvk−q − εmk−q + h̄ω + iη ' εck − εmk−q + iη (this is reasonable
if we took the static approximation for the phonon frequencies before). Now, for the
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FIGURE 3.4: Phonon–assisted transitions between a valence vk0 and a conduction ck1 state.
(a) Scheme of the possible transitions, from right to left: photon absorption with phonon
emission (B), photon absorption with phonon absorption (A), photon emission with phonon
emission (D) and photon emission with phonon absorption (C). The red arrows indicate a net
absorption process. (b) Resulting absorption (blue) and emission (red) spectra. The leading
peaks are produced by phonon emission.

absorption case, we arrive at the Hall–Bardeen–Blatt theory[114]:

εHBB
2 (ω) = ∑

cvkqλ

∣∣∣∣∑
m

dvmk−qgλq
mck

εck − εmk−q + iη
+ ∑

m

gλq
vmkdmck

εvk−q − εmk + iη

∣∣∣∣
2

(2nqλ + 1) fvk−q f ckδ(εvk−q − εck + h̄ω + h̄Ωqλ).

(3.19)

The HBB expression (albeit with h̄Ωλq = 0 also in the delta function) can actu-
ally be obtained in a different way: that is by taking static derivatives of the direct
absorption expression with respect to atomic displacements:[104, 105]

εHBB
2 (ω; T; {Ω} = 0) = ∑

qλ

∂2εdir
2 (ω; {Rλq})

∂R2
λq

σ2
λq(T). (3.20)

Here Rλq is a set of atomic displacements along phonon mode (λq) and σ2
λq(T) is the

average squared displacement of an harmonic oscillator (recall that we are consider-
ing harmonic phonons),

σ2
λq(T) = 〈nqλ|x̂2

qλ|nqλ〉 = 〈nqλ|l2
λq(b

†
qλ + bqλ)

2|nqλ〉 = l2
λq(2nqλ(T) + 1). (3.21)

Here the zero–temperature squared displacement is l2
λq = h̄/(2MqλΩqλ). Depending

on the normalisation choice for the the phonon eigenvectors, Mqλ ≡ M is taken
as a simple reference mass or, for example, as a weighted “unit–cell” mass Mλq =

∑Nions
i Mi|ξλq

i |2 (we will use the latter in our numerical simulations).
In the static / HBB case we also have |TA|2 = |TB|2 ' |TC|2 = |TD|2. The only

difference between transition rates for optical absorption and emission, once their
modulus square is taken, is that in the emission case the positions of the intermediate
state energies εmk and εmk−q are swapped between the denominators of Sω and SΩ,
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something that may in general be safely neglected. In our study about phonon–
assisted transitions involving excitons, Sec. 3.4, we will choose an analogous static
approach as well.

3.3.5 Luminescence spectra via the van Roosbroeck–Shockley relation

Our goal in the next section will be to model luminescence spectra. However, it
is easier for us to obtain absorption spectra via the BSE, since in general lumines-
cence can be a quite complicated, essentially out–of–equilibrium process whose
full many–body description is presently available only for direct transitions, while
non–equilibrium ab initio luminescence calculations are still lacking.[122–124] Fortu-
nately, the experimental conditions in which hBN luminescence is measured suggest
that various simplifications of the full problem are possible, and eventually allow
us to obtain the spontaneous emission rate (the physical quantity relevant for exper-
imental luminescence spectra) from the absorption coefficient.[125] In practice this
means that it will just be a byproduct of a modified BSE calculation.

The simplifications introduced are the following. We neglect all processes out
of equilibrium and assume all excited carriers relaxed to the bottom of the excitonic
dispersion curves. We take the probabilities of exciton formation and annihilation
to be the same (i.e. we have a detailed balance of phonon–assisted creation and anni-
hilation of excitations), a reasonable assumption in our scheme as we will be com-
puting the transition rates in a static approximation. This enables us to employ the
Van Roosbroeck–Shockley (RS) relation[126] to compute the spontaneous emission rate
Rsp(ω). This entails two commonly held experimental assumptions: (i) the (excited)
system is in a steady state, with the contribution from stimulated emission being
very small with respect to the spontaneous one; (ii) in the steady state, the occu-
pation functions of the excitonic states involved in recombination processes can be
approximated with those at thermal equilibrium. We summarise the RS relation be-
low for both the IP and exciton cases. Note that here we are mainly streamlining the
contents of Refs. [125] and [127], where a more exhaustive treatment can be found.

Direct transitions in the independent–particle case

Let us take the net transition rate (per unit energy, per unit volume) between the
optical absorption and stimulated emission processes:

R′,abs(ω) = K(ω)
2π

h̄
N (ω)

Nk
∑
cvk
Tcvk( fvk f ck − fck f vk)δ(εck − εvk − h̄ω), (3.22)

where Tcvk is the squared transition amplitude. We assume a time–independent
Fermi–Dirac distribution for electronic occupations in the steady state, fnk = [1 +
e(εnk−µe/h)/kBT]−1, with µe and µh being the chemical potentials for electrons and
holes, respectively. In the IP case the transition amplitude can be taken as the optical
matrix element in the dipole approximation: Tcvk = |dcvk|2. We can similarly write
the expression for the spontaneous emission rate,

Rsp(ω) = K(ω)
2π

h̄
G(ω)

Nk
∑
cvk
Tcvk fck f vkδ(εck − εvk − h̄ω). (3.23)

The spontaneous emission is only proportional to the photon density of states,
G(ω), while both absorption and stimulated emission are proportional to the the
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photon density per unit energy, N (ω). If we define an average photon number,
N , these two quantities are related by the total photon density

∫
N (ω)dω =∫

NG(ω)dω. The dimensional term K(ω) is made of quantities mainly related
to the the em field. We now list the relevant expressions for the optical quantities
involved.

Dimensional factor K(ω) =
2πe2h̄2

m2V
1

n1(ω)2h̄ω

Photon density of states G(ω) =
1

π2c2h̄3
n1(ω)2(h̄ω)2

Vg(ω)

Group velocity Vg(ω) =
c

n1(ω) + ω ∂n1(ω)
∂ω

≈ c
n1(ω)

Incoming photon flux F (ω) = N (ω)
c

n1(ω)

(3.24)

The absorption coefficient α(ω) can be written in terms of the absorption rate as
R′,abs(h̄ω) = F (ω)α(ω). Finally, we observe that independently from the specific
(cvk) transition considered, the following relation always holds:

fck f vk

fvk f ck − fck f vk
=

1
e(h̄ω−(µe−µh))/kBT − 1

≈ e−(h̄ω−∆µ)/kBT (3.25)

(where in the last step we replaced the resulting Bose–Einstein distribution with
a Boltzmann one; this simplification is not necessary). Then, by putting every-
thing together and comparing Eqs. (3.22) and (3.23), we find Rsp(ω) to be equal
to G(ω)Vg(ω)α(ω)e−(h̄ω−∆µ)/kBT.

This leads us to the RS relation:

Rsp(ω) =
n1(ω)2(h̄ω)2

π2c2h̄3 α(ω)e−(h̄ω−∆µ)/kBT

=
n1(ω)(h̄ω)3

π2c3h̄4 ε2(ω)e−(h̄ω−∆µ)/kBT,
(3.26)

where for the last equality we have used Eq. (1.69), α(ω) = h̄ωε2(ω)/(n1(ω)h̄c).

Direct transitions in the exciton case

In this case the absorption coefficient is computed including excitonic effects (just
for this Section we label it αexc(ω), and equivalently εexc

2 (ω), to avoid confusion); we
can always obtain the full refractive index as

nexc
1 (ω) =

√
1
2

√
εexc

1 (ω)2 + εexc
2 (ω)2 + εexc

1 (ω). (3.27)

Now the transition amplitude Tcvk in Eqs. (3.22) and (3.23) will be replaced by the
excitonic one, Tλ = |∑cvk Aλ

cvkdcvk|2, with the external sum now running over the
exciton index λ. Analogously, the energies of single–particle transitions will be re-
placed by the exciton energies Eλ. Concerning the occupation functions, if the ab-
sorption/emission features are dominated by the creation/annihilation of electron–
hole bound pairs, it is sufficient to replace the Bose–Einstein/Boltzmann factor in
Eq. (3.26) with a more appropriate term to describe the occupation of excitonic
states. We use the Boltzmann distribution nB(h̄ω) = e−(h̄ω−µ∗)/kBT, with µ∗ fixed
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to the energy of the lowest–bound exciton. Since below the quasiparticle gap we are
dealing with a discrete excitonic spectrum, nB will be a discrete function taking val-
ues for h̄ω = Eλ. Note that the use of a Boltzmann (or equivalently Bose–Einstein)
occupation function implies that we are treating excitons as pure bosons, i.e. the
excitations of a non–interacting bosonic Hamiltonian with commuting excitonic cre-
ation and annihilation operators. This is compatible with our previous assumption
of low laser power density, which leads to a low density of excitations inside the
material: in this regime excitons may be treated as non–interacting bosons.[107, 128]

Indirect transitions

In this case we have to take into account that the energy of a photon absorbed (h̄ωa)
and that of a photon emitted (h̄ωe) in a process mediated by the same phonon are
not the same, and they are both different from the energy of the indirect electronic
transition (h̄ω). In particular, with the help of Figs. 3.4(a) and 3.5 (the latter adapted
to the exciton case), we can write the following relations:

h̄ωe = h̄ωa ± 2h̄Ωqµ

h̄ωe = h̄ω± h̄Ωqµ

h̄ωa = h̄ω∓ h̄Ωqµ,
(3.28)

(the upper and lower signs referring to the cases of phonon absorption and emis-
sion, respectively). We need to write a generalised form of the RS relation that takes
these energy differences into account. Focusing on the case of an indirect transi-
tion mediated by the emission of a single phonon of branch µ and momentum q, the
second–order absorption and emission rates (per unit time, energy and volume) can
be expressed as (back in the IP case):

R′,abs
µq (ωa) = K(ωa)

2π

h̄
N (ωa)

Nk
∑
cvk
T (2)

cvkqµ(nqµ + 1)[ fvk−q f ck − fck f vk−q]

δ(εck − εvk−q + h̄Ωqµ − h̄ωa),

Rsp
µq(ωe) = K(ωe)

2π

h̄
G(ωe)

Nk
∑
cvk
T (2)

cvkqµ(nqµ + 1) fck f vk−qδ(εck − εvk−q − h̄Ωqµ − h̄ωe),

(3.29)

where T (2) = |TB|2 ' |TD|2 and the rate dependence on the phonon mode and wave
vector has been explicitly indicated.

Then, considering α(h̄ωa) = R′abs(h̄ωa)/F (h̄ωa) and writing the frequency–
dependent functions explicitly, we can write the final results:

Rsp
µq(ωe) =

n1(ωe)n1(ωa)(h̄ωe)(h̄ωa)

π2c2h̄3 α(ωa)e−(h̄ω−∆µ)/kBT

=
n1(ωe)(h̄ωe)(h̄ωa)2

π2c3h̄4 ε2(ωa)e−(h̄ω−∆µ)/kBT.
(3.30)

Or, in the excitonic case (dropping the labels on the frequencies):

Rsp,exc
µq (ω) ∝ nexc

1 (ω)ω(ω− 2Ωqµ)
2εexc

2 (ω− 2Ωqλ)nB(ω). (3.31)

The emission spectra shown in the next Section are obtained by using the latter equa-
tion and summing over all phonon modes with a specific momentum q = q, the one
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FIGURE 3.5: Simplified transition scheme for a finite–q exciton level at q = q, displaying
the processes of photon absorption (dashed blue arrows) and emission (dotted red arrows)
mediated by phonon absorption (left) and phonon emission (right). The “direct” exciton
at q = 0, lying directly above the excitonic ground state, is also shown with an energy
corresponding to the case of bulk hBN.

corresponding to the indirect gap. In the exciton case, the exciton–phonon squared
transition amplitude T (2)

λµq will be computed with a finite–difference method.

3.4 Phonon–assisted optical spectra I: finite–difference cor-
rections to the dielectric function

We will start this Section with an in–depth analysis of the electronic bands, excitons
and phonons relevant for indirect transitions in bulk hBN. Then, we will use group
theory to infer the selection rules for the exciton–phonon coupling. Finally, we will
calculate the optical spectra and present a comparison with experimental results.[41]

3.4.1 Electronic structure and non–diagonal supercell

The relevant part of the band structure (after the sscGW correction) is shown again
in Fig. 3.6(a). The direct QP gap is at 6.46 eV, and the indirect one is at 5.96 eV. The
direct gap is traditionally identified at the so-called T1 point[21]: From the Figure,
we see that this point lies close to K, along the ΓK symmetry line (to be precise:
|T1−K| ' 1/6|K−Γ|). However, there are other three points that give a comparable
band gap: M, T2 (along the MK line: |T2 −K| ' 1/3|K−M| = 1/6|K− Γ|), and H,
the high–symmetry point directly above K along the out–of–plane direction. In our
GW calculations, the band gaps at these points lie in a small 0.1 eV energy interval
(with EH

g < ET2
g < EM

g < ET1
g ), which corresponds to the accuracy of the GW method.

Since we know that GW underestimates the true quasiparticle corrections in hBN,
we have to assume that the relative energy differences between these band gaps
may change with more refined approximations and/or more accurate calculations.
Then, we choose to “average” the true position of the top of the valence band from
“around” K to exactly K, by taking q = |K−M| = 0.5|K− Γ| as the momentum
transfer corresponding to the indirect gap.
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FIGURE 3.6: Electronic, phononic and excitonic properties in bulk hBN (see text). (a) sscGW
QP band structure of bulk hBN, displayed in the relevant part of the BZ. The dashed horizon-
tal black line represents the position of the lowest-bound direct exciton, while the dashed red
lines correspond to the indirect excitons of momentum q. The exact valence band maxima
are labeled T1 and T2. (b) The phonon dispersion in bulk hBN. The teal vertical line high-
lights the frequencies of the phonon modes with momentum q. The 12 phonon modes are
labeled with the usual notation. (c) The imaginary part of the dielectric function including
only transitions at q = 0 (ε(0)2 (ω) in the text) is shown in blue. The peak broadenings are set
to 1.5 meV. The vertical black lines denote the quasiparticle indirect and direct gaps, while
the dotted blue line indicates the position of the dark E2g exciton with q = 0. The dashed
red lines indicate the positions of the B1 and A1 excitons at q (labeled i1 and i2, respectively).
The excitonic wave functions intensities are plotted in the insets: blue for the q = 0 pair, and
purple for q = q ones (the dashed red arrow labeling the q direction).

3.4.2 Excitons

Solving the BSE at q = 0, we obtain the two doubly degenerate excitons which form
the lowest–lying Davydov pair, as seen in the previous Chapter and depicted in Fig.
3.6(c): the first exciton is at 5.70 eV and is dark (dotted blue line). The second exciton
at 5.75 eV is instead bright (main blue peak). In order to study finite momentum q
excitons, we perform the same calculations on a non–diagonal hBN supercell, con-
taining 12 atoms per BN layer and chosen such that q will be folded onto Γ in its
new Brillouin zone, as explained in App. B and Ref. [129]. The supercell we gen-
erated for our calculations is represented in Fig. 3.7 and compared with the unit
cell. The comparison between the respective reciprocal–space Brillouin zones (BZ)
is also shown, emphasizing the folding of the q–point q (given in fractional coor-
dinates as (1/3,−1/6, 0)T) and the shape of the supercell BZ (note that both q and
−q are folded onto Γ in this way). Now, two additional excitonic states (dashed red
lines in Fig. 3.6(c)) appear at 5.63 and 5.65 eV, respectively, below the lowest–bound
direct exciton. These states originate from the splitting, at finite momentum, of the
doubly degenerate dark exciton at Γ, as evidenced by the full dispersion calculation
displayed in the inset of Fig. 2.8(b). These results are also in agreement with recent
Refs. [84, 97]. We denote the two branches, and therefore the two exciton states at q,
as i1 and i2. These finite–q states are dark by themselves but candidates for phonon–
assisted absorption and emission.4 Their wave function intensities are very similar.

4This makes clear why we are resorting to a supercell calculation instead of using the full dispersion
obtained by solving the finite–q BSE: we need to evaluate the strength of the exciton–phonon coupling
and we will do so applying atomic displacements commensurate with the phonon wave vector. The
method to perform a full unit–cell calculation of exciton–phonon couplings will be presented in Chap-
ter 4.
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FIGURE 3.7: Bulk hBN Unit cell (uc) versus non–diagonal supercell (sc). Top: representations
of the uc and sc used in our calculations. Bottom: schemes of the reciprocal–space BZ in
the two cases (the BZ borders are in gray and teal, respectively), showing that in the first
Brillouin zone of the supercell, the momentum q is folded back onto the Γ point.

One of them is displayed in purple in the second inset of Fig. 3.6(c), showing again a
mostly planar distribution as is typical of π–type excitons (some examples obtained
by finite–q BSE in the unit cell are displayed in Sec. 2.4). Note that although the wave
function in the fixed–hole representation looks approximately distorted along the
armchair lattice direction, the full wave function is actually symmetric with respect
to the zigzag direction (parallel to the q–vector) upon rotation around the principal
axis of the C2v symmetry group which is oriented in–plane along the q direction (see
next Section for clarifications on the group theory).

3.4.3 Symmetry of excitons and phonons

In bulk hBN, the point group (including the non–symmorphic point symmetry op-
erations of the space group) is D6h. It contains 24 symmetry operations grouped in
12 classes. It is the group that is also used for the characterizations of perturbations
(such as phonons and excitons) of hBN with zero wave–vector (corresponding to
the high–symmetry point Γ). In Table 3.1 we report a subsection of the character
table focusing on the operations and representations of interest to us. In Fig. 3.8 (left
panel) our choice for the Cartesian axes and for the lattice vectors is reported and
the three rotation axes belonging to D6h are drawn. Recall that bulk hBN displays
AA′ stacking (two inequivalent layers per unit cell): therefore many of the symme-
try operations are non–symmorphic. The point group for the symmetry analysis of a
perturbation with finite wave vector q is a subset of the one at Γ. In the case of q lying
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of the repeated unit cells are shown with dashed black lines. Left: original unit cell for the
hexagonal lattice (D6h point group) and lattice vectors. Right: non–diagonal supercell used
in the calculations and lattice vectors. The axes of rotation corresponding to the symmetries
of the q points of the systems are shown with solid black lines.

on the ΓK line, the point symmetry group is C2v with C2v ⊂ D6h, whose character
table of C2v is provided in Table 3.2. The only rotation axis of C2v is drawn in the
right panel of Fig. 3.8, showing the crystal lattice as repetitions of the non–diagonal
supercell used in our calculations. This axis runs along the zigzag direction, and it
is identified by checking the rotational symmetry of the phonon modes, as shown
in Fig. 3.9(a).5 From this we see that the C2 rotation in C2v coincides with the C′2
rotation in D6h, and we use this to make a connection between the elements of C2v
and D6h, shown in Table 3.3. The dipole operator transforms as the [x, y, z] vector
and belongs to representations E1u[x, y] + A2u[z] for D6h and A1[x] + B1[y] + B2[z]
for C2v. The in–plane component of the dipole transforms accordingly as E1u and
A1 + B1, respectively.

Let us first analyse the two excitons (one dark, one bright) of our system at Γ
(Fig. 3.6(c)). The incoming optical light (E1u) interacts with the ground state |G〉
of the system (which is fully symmetric, A1g) creating an excited state of symmetry
A1g ⊗ E1u = E1u. Therefore, the bright exciton corresponds to the E1u representation
(odd under inversion). The dark state is its Davydov partner, thus it must have
opposite parity with respect to inversion symmetry (see Sec. 2.3.2 and Ref. [40]) and
it corresponds to the E2g representation.

Any irreducible representation of D6h will be a reducible representation of C2v,
and therefore can be expressed in terms of a linear combination of irreducible repre-
sentations of C2v. These are the so–called compatibility relations that we will need
to analyse indirect processes from Γ to q (in particular, we want to describe the split-
ting of the E1u and E2g excitons). This applies also to the characters of the represen-
tations: if we define χG(Ck) as the character of a (reducible) representation of group

5We used the following online tool to visualise the phonon dispersion and lattice displacements
corresponding to different q–vectors: http://henriquemiranda.github.io/phononwebsite/phonon.
html

http://henriquemiranda.github.io/phononwebsite/phonon.html
http://henriquemiranda.github.io/phononwebsite/phonon.html
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D6h E C′2(x) σh(xy) σd(xz)
A1g +1 +1 +1 +1
A2u +1 −1 −1 +1
E1g +2 0 −2 0
E2g +2 0 +2 0
E1u +2 0 +2 0
E2u +2 0 −2 0

TABLE 3.1: Partial character table for point group D6h.

C2v E C2(x) σv(xy) σv(xz)
A1 +1 +1 +1 +1
A2 +1 +1 −1 −1
B1 +1 −1 +1 −1
B2 +1 −1 −1 +1

TABLE 3.2: Character table for point group C2v.

G with respect to symmetry operation Ck, the “wonderful orthogonality theorem”
(according to Ref. [130]) for characters establishes the coefficients aΓi of the linear
combination associated with irreducible representation Γi. In our case, the formulas
reduce to

χD6h(Ck) = ∑
Γi

aΓi χ
(Γi)
C2v

(Ck)

aΓi =
1
4 ∑

k
χ
(Γi)
C2v

(Ck)χD6h(Ck),
(3.32)

and we can compute the aΓi coefficients using the Tables 3.1, 3.2 and 3.3. We find
A2u → B2 and both E1u and E2g splitting as A1 + B1, confirming our previous iden-
tification of the dipole representations. Therefore, the two indirect excitons labeled
as i1 and i2 with momentum q can only have either A1 or B1 symmetry.

In fact, as we show below, the same symmetry considerations can be drawn for
the phonon dispersion, displayed in Fig. 3.6(b): at Γ, the in–plane phonon modes
form Davydov pairs and transform according to the E1u and E2g representation, re-
spectively. Along ΓK these representations reduce to A1 and B1. We list in Table 3.4
the results of our DFPT calculations for the symmetries of the phonon modes at q.
These are the phonon modes we are interested in, because they provide the neces-
sary momentum difference to assist the recombination of excitons i1 and i2 (we will
not be concerned with multi–phonon processes). The formation of quasi–degenerate
parallel phonon branches can be understood by zooming in on the region close to the

D6h C2v
C′2 → C2

σh(xy) → σv(xy)
σd(xz) → σv(xz)

TABLE 3.3: Connection between the elements of C2v and D6h.
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Mode Symm. Freq. (meV)
LO3 A1 183.00
LO2 B1 177.63
TO3 A1 159.58
TO2 B1 159.48
LA A1 93.33
LO1 B1 93.22
ZO3 A2 92.47
ZO2 B2 87.53
TO1 A1 65.10
TA B1 64.72

ZO1 A2 22.25
ZA B2 21.54

TABLE 3.4: Symmetry of the phonon modes at q. The modes are listed as Davydov pairs in
order of increasing frequency with the lowest–frequency mode at the bottom (compare with
Fig. 3.6(b)).
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FIGURE 3.9: Phonon information for bulk hBN. (a) Top view of the atomic displacements
and forces for the TO1 phonon mode at one of the six equivalent q–vectors/C2 rotation axes
(solid black line). The corresponding non–diagonal supercell is represented in dashed gray
lines. (b) Interplay between Davydov and symmetry splitting at very low wave vector for
the transverse and longidutinal phonon modes (TA, TO1, LA, LO1). The dispersion of modes
with symmetry A1 (TO1, LA) and B1 (TA, LO1) is shown in red and blue, respectively.

Γ point as in Fig. 3.9(b). At Γ we see the two degenerate TA and LA modes (E2u sym-
metry) at zero frequency, as well as their Davydov partner (TO1 and LO1 modes, E2g
symmetry) 6 meV above. The large value of the splitting is due to the constructive
interference of the Fourier components of the inter–layer interaction at zero wave
vector. When q 6= 0, the degenerate modes further split into two non–degenerate
ones of symmetry A1 and B1. The two A1 modes mix via an avoided crossing and
then approach their respective B1 mode. In this way two distinct Davydov pairs are
formed, each one with a tiny energy splitting. The low value of the splitting at finite
q is due to the destructive interference of the Fourier components of the inter–layer
interaction. The relationship between inter–layer interaction and the magnitude of
the Davydov splitting along the BZ is shown in App. F with a simple tight–binding
model for two interacting linear chains.
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3.4.4 Selection rules

In order to analyse the indirect process, we first consider the time–dependent per-
turbation theory for a model, unspecified “excitonic” Hamiltonian H0 with exciton–
radiation and exciton–lattice interactions as the perturbations: the coupling opera-
tors will be d and gq, respectively (a sum over all phonon modes is implied). We
want to qualitatively visualise the phonon–assisted processes leading to the forma-
tion or annihilation of a finite–q excitonic state |ψ f 〉. We only consider phonon emis-
sion contributions, and by analogy with Sec. 3.3 we obtain the second–order Fermi
golden rule expression for the transition probability per unit time as6

PI I
f =

2π

h̄

∣∣∣∣∑
α

〈ψ f | g†
q |ψα〉 〈ψα| d |G〉
Eα − h̄ω

+ ∑
α′

〈ψ f | d |ψα′〉 〈ψα′ | g†
q |G〉

Eα′ − h̄Ωq

∣∣∣∣
2

δ(E f − h̄ω + h̄Ωq)+

2π

h̄

∣∣∣∣∑
α

〈ψ f | g†
q |ψα〉 〈ψα| d† |G〉

Eα + h̄ω
+ ∑

α′

〈ψ f | d† |ψα′〉 〈ψα′ | g†
q |G〉

Eα′ − h̄Ωq

∣∣∣∣
2

δ(E f + h̄ω + h̄Ωq).

(3.33)

Here |ψα〉 is an intermediate excitonic state with energy Eα and |G〉 is the ground
state of the system. The first term corresponds to the process of photon absorption
with phonon emission creating the final excitonic state |ψ f 〉, while the second term
describes the combined photon and phonon emission. The first term in the squared
sum represents the creation of a direct virtual exciton |ψα〉 by light as the interme-
diate step, followed by a scattering to the finite–q state |ψ f 〉 via phonon emission.
The second term adds the contribution of the inverse process, when the virtual state
|ψα′〉 is created at finite–q by a phonon, and then arrives at the energy of |ψ f 〉 by
absorbing a photon.

For the purpose of finding the selection rules, the two contributions are equiva-
lent and thus we focus on the first one, 〈ψ f | g†

q |ψα〉 〈ψα| d |G〉. The final allowed exci-
tons in the energy window that we consider must have A1 and B1 symmetry and the
first matrix element in the process, 〈ψα| d |G〉, imposes E1u as the only possible rep-
resentation for the direct intermediate state |ψα〉. Since E1u → A1 + B1 and g†

q trans-
forms with the symmetry of the various phonon modes involved, for g†

q |ψα〉we have
the tensor product (A1 + B1 + A2 + B2)⊗ (A1 + B1). However, A1 ⊗ (A2 + B2) =
A2 + B2 and B1⊗ (A2 + B2) = B2 + A2, therefore the phonon modes transforming as
A2 or B2 cannot give the allowed final states and their coupling is forbidden. We see
from Table 3.4 that these representations correspond to the out–of–plane Z phonon
modes, while the in–plane ones T and L all transform as A1 or B1 and therefore are all
allowed. If we consider instead incoming light polarised out–of–plane (A2u → B2),
the picture changes and now (A1 + B1 + A2 + B2)⊗ B2 = B2 + A2 + B1 + A1, mean-
ing that if the polarization is exclusively out–of–plane only the Z phonon modes
can couple to excitons i1 and i2. This seems to be confirmed by recent experimental
results.[131]

3.4.5 Calculation of phonon–assisted optical spectra

Having understood the symmetry constraints for the coupling between finite–q exci-
tons and phonons, we now derive a general expression to calculate these couplings
and, thus, phonon–assisted optical spectra. We address this task by (i) using a static

6Note that this formula is not meant to give a rigorous, quantitative description of indirect absorp-
tion but that it serves only for the symmetry analysis of the involved phonons and excitons.
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approximation for the exciton formation probability and (ii) restricting the coupling
to harmonic phonons with momentum q. In our calculations, we focus on the energy
region close to the lowest–lying indirect excitons i1 and i2.

We start by obtaining the complex dielectric function ε(0)(ω), given by Eq. (1.75),
by a standard BSE calculation in the non–diagonal supercell, with the atoms clamped
at their equilibrium positions. We then proceed by considering the Taylor expan-
sion of ε(ω) up to second–order in the atomic displacements.[105] This gives a static
correction to the equilibrium response ε(ω) ' ε(0)(ω) + ε

st.,(2)
q (ω) as detailed be-

low. Let us consider the part of the response function due to excitonic state λ with
Tλ = ∑K AKλ :

χλ
R(ω) =

|Tλ
R |2

Eλ
R − h̄ω + iη

, (3.34)

where the subscript R denotes a parametric dependence on lattice displacements, i.e.
χλ

0 is the frozen–atom response function (we take for simplicity η to be independent
of R, an assumption that does not affect the validity of the results). We want to take
the Taylor expansion of Eq. (3.34) up to second order in the lattice displacements,
therefore as an initial step we need to compute its first derivative and evaluate it at
the equilibrium atomic positions:

∂χλ
R(ω)

∂R

∣∣∣
R=0

=
∂|Tλ

R |
∂R

∣∣∣
R=0

2|Tλ
R=0|[Eλ

R=0 − h̄ω + iη]−1

+
∂[Eλ

R − h̄ω + iη]−1

∂R

∣∣∣
R=0
|Tλ

R=0|2.
(3.35)

At this point we note that the oscillator strengths of any finite–q excitons for optical
absorption must be zero because of momentum conservation. In the case of a su-
percell, it means that the excitons being folded onto Γ from a different point in the
unit cell are dark if the atoms are clamped at their equilibrium positions. If we label
excitons belonging to such subset with λ′, this means that Tλ′

R=0 = 0 and therefore

∂χλ′
R (ω)/∂R

∣∣∣
R=0

= 0. This argument is analogous to the one often used in the case of

optical absorption in the independent–particle model for the vanishing of the dipole
optical matrix elements below the direct band gap.[105, 114]

The same argument applied to the second derivative of χλ
R leads to the vanishing

of the terms containing derivatives of the exciton binding energy. The only term that
remains is the one containing the second derivative of Tλ′

R :

∂2χλ′
R (ω)

∂R2

∣∣∣
R=0

=
∂2|Tλ′

R |2
∂R2

∣∣∣
R=0

[Eλ′
R=0 − h̄ω + iη]−1, (3.36)

This derivative is evaluated numerically using the finite–difference expression

∂2χR

∂R2 (ω) ≈ [χ(∆R; ω)− 2χ0(ω) + χ(−∆R; ω)]

∆R2 . (3.37)

The results, displayed in Fig. D.2 for each phonon mode, confirm the equivalence of
the two sides of Eq. (3.36). This means that, numerically, we can obtain the exciton–
phonon coupling for the calculation of phonon–assisted absorption/emission both
through a finite–difference calculation of the whole response function or through
a finite–difference calculation of just the excitonic oscillator strength. In our case,
we have R → Rµq, where Rµq refers to a set of atomic displacements according to
phonon mode µ with momentum q (indicated with a teal vertical line in the phonon
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dispersion plot of Fig. 3.6(b)). The normalised phonon displacements (rescaled by
the square root of the atomic masses) were used to compute the finite–difference
derivatives in order to give to the B and N atom a mass–dependent displacement. A
global scaling factor was multiplied by the displacements and converged to 0.0025
Å, which is just above the threshold of numerical noise. The harmonic behaviour
of ε(ω) with respect to the scaling factor was numerically verified, bringing explicit
numerical confirmation of the above equations. We developed a Python tool that
handles automatically the generation of the non–diagonal supercell as well as the
displacements of its ions starting from phonon eigendisplacements. This is briefly
described in App. B.

Now, the second–order correction to the full dielectric function, which adds the
contribution of transitions assisted by a single phonon of momentum q, reads

ε
st.,(2)
q (ω) =

1
2 ∑

µ




Nq

∑
i

1
2

2

∑
j

∂2ε
(0)
j (ω)

∂R2
µqi

∣∣∣
eq


 σ2

µq. (3.38)

In this expression j represents the polarisation direction of the incoming light, over
which we average, and i labels each of the Nq = 6 equivalent q-vectors in the BZ,
over which we sum. The factor σ2

µq is the thermal average of the squared displace-
ment of a quantum harmonic oscillator, given by Eq. (3.21). As we have seen, the
imaginary part of Eq. (3.38) is given by:

Im
∂2ε(0)(ω)

∂R2
µq

∣∣∣
eq

=
8π

NkV ∑
λ′

∂2|Tλ′ |2
∂R2

µq

∣∣∣
eq

Im
{

1
h̄ω− Eλ′ + iη

}
. (3.39)

This result allows us to reintroduce the phonon frequency dependence of ε
(2)
q (ω)

by imposing the correct energy conservation from perturbation theory and distin-
guishing between phonon emission (∝ nµq + 1) and phonon absorption (∝ nµq):
[2nµq + 1]/(h̄ω − Eλ′ + iη) → [nµq + 1]/(h̄ω − Eλ′ − h̄Ωµq + iη) + nµq/(h̄ω − Eλ′ +
h̄Ωµq + iη). Renaming the numerator between square brackets in Eq. (3.38) (includ-
ing the 1/2 factors) as |tstatic

µqλ′ |2, since it represents the static formation probability of
exciton λ′ mediated by a phonon mode µ with momentum q and frequency Ωµq , we
obtain the final expression:

ε
(2)
q2 (ω) = ∑

λλ′
|tstatic

λqλ′ |2l2
µq[nµq + 1/2∓ 1/2]δ(h̄ω− Eλ′ ± h̄Ωµq). (3.40)

Here, the upper (lower) sign refers to the process of phonon absorption (emission).
Applying Eq. (3.40) to the description of the process of exciton formation via

photon absorption together with phonon emission at T = 0 K, and computing the
derivatives of ε(ω) with finite–difference DFT–BSE calculations in the supercell, we
obtain the spectrum in Fig. 3.10(a). It is possible to identify a multi–peak structure
associated to the coupling of both the i1 and i2 excitons to all the in–plane phonon
modes, with the higher–energy state i2 accounting for most of the oscillator strength.
Since the phonon frequencies are close to the energy difference between direct and
indirect excitons, the phonon–assisted peaks are distributed around the brightest
direct exciton peak with most of the oscillator strength remaining in this narrow en-
ergy range. This result suggests that phonon–assisted absorption in hBN is at the
origin of the fine structure observed around the brightest exciton peak in absorption
experiments.[14, 84] Note, however, that the experimental indirect contribution to
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FIGURE 3.10: Phonon–assisted absorption in bulk hBN. (a) Imaginary part of the dielectric
function with contributions of transitions at q = q mediated by a single phonon (dashed red
line, ε

(2)
q2 (ω) in the text). The orange (green) peaks originate from the phonon couplings to i1

(i2) and the phonon modes responsible for them are labeled. The peak broadenings are set
to 1.5 meV for the temperature of 0 K. The dashed red vertical lines indicate the positions of
the two B1, A1 excitons at q (labeled i1 and i2). The thick gray vertical line is at the position
of the main optically active q = 0 exciton. (b) Same as (a), but resolved by direction of light
polarization and symmetry of contributing phonon modes. The contribution to absorption
is plotted (solid black line) for light polarization e along the x–direction (top frame) and
the y–direction (bottom frame). The dashed black line represents the full result obtained by
averaging over the two contributions. The red vertical lines serve as a guide for the eyes to
understand which phonon–assisted peaks come from the coupling to excitons i1 or i2. The
color of each phonon–assisted peak indicates the symmetry of the phonon mode responsible
for it (B1: blue, A1: red).

the optical absorption spectrum will not appear as a series of discrete peaks (as in
our approximation), but rather be a continuous function resulting from the integra-
tion over all q vectors in the BZ (since they can be connected to the q = 0 states by
phonons of different momentum). Furthermore, we verify that our first–principles
calculations respect the selection rules we have previously determined, as shown in
Fig. 3.10(b). This means that the coupling of i1 and i2 with specific phonon modes
depends on the light polarisation direction. In particular, if light is polarized exclu-
sively along the x/zigzag direction, i.e., it transforms as A1 (top frame), then only the
TA, LO1, TO2 and LO2 phonon modes (all transforming as B1, portrayed in blue)
can couple to i1 forming phonon–assisted peaks, and only the TO1, LA, TO3 and
LO3 modes (all transforming as A1, portrayed in red) can couple to i2. Conversely, if
light is polarized exclusively along the y/armchair direction, i.e., it transforms as B1 (bot-
tom frame), then only the A1 phonon modes couple with i1, and only the B1 modes
couple with i2. This unmistakably shows that exciton i1 (the lowest–energy one and
therefore the most responsible for the luminescence spectrum) has B1 symmetry,
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while exciton i2 transforms as A1. Additionally, we note that the leading peak for
absorption is due solely to the strong coupling between the i2 exciton and the LO3
phonon mode: therefore, this peak completely disappears when light is polarised
along the y direction (that is, orthogonal to the q vector). Finally, we confirm that the
total spectrum is π/3–periodic by varying the light polarization direction.
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FIGURE 3.11: Phonon–assisted emission in bulk hexagonal boron nitride. (a) Spectral func-
tion Rsp

q = ∑λ Rsp
λq (green solid line) at 10 K. The µ–components of the spectrum, belonging

to the different phonon modes, are also plotted in various colours. The exciton–phonon cou-
plings are labeled. (b) Comparison with the normalized experimental spectrum (black dots)
at 10 K from Ref. [84]. The multi–phonon overtones are denoted as “o.”. Note that here
our spectrum is blueshifted by 0.322 eV to match the experimental one. The temperature–
dependent peak widths are described according to a linear model[109] (parameters taken
from the experimental fit, see App. G). The experimental excitonic temperature Texc = 55 K
(see text) is used.

We now turn to the luminescence spectrum by means of the RS relation, Eq.
(3.31), applied on top of our finite–difference dielectric function Eq. (3.40). We know
that the energy of an emitted photon differs from the one of an absorbed photon
(indirect absorption with phonon emission) by twice the frequency of the phonon
involved. We thus define εem

λq (ω) ≡ ε
(2)
λq (ω − 2Ωλq). Because of this, each phonon–

assisted peak is mirrored with respect to the energy of the excitonic state involved.
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The expression for the spontaneous emission rate is:

Rsp
q (ω) = ∑

µ

ω(ω + 2Ωµq)2

π2h̄c3 n1(ω)Im{εem
µq (ω)}nB. (3.41)

It is sufficient to compute the refractive index from ε(0)(ω), which completely de-
termines its slow decay at low frequencies. The exciton occupation function is
nB(∆Ei1,λ) = e−(Eλ−Ei1)/kBTexc (Ei1 being the energy minimum of the exciton dis-
persion curve and Eλ the energy of any exciton λ). Because of the large energy
difference between Ei1 and the main direct peak, the latter will always be sup-
pressed by the Boltzmann factor nB up to room temperature, and therefore it should
not be seen in a luminescence experiment. This also means that only the phonon
sidebands related to i1 and i2 will now dominate the spectrum. The results for
Rsp

q (ω) are plotted in Fig. 3.11(a). The energy differences between excitonic levels
(∆Ei1,i2 = 17 meV) and the phonon frequencies (from 50 to 200 meV) are large,
giving rise to a well–spaced peak structure that can be easily resolved. We notice
two separated groups of features which are clearly seen in experiment (Figs. 3.6(a)
and 3.11(b), black dots): one at higher energy generated by low–frequency phonon
emission, and the other at lower energy due to high–frequency optical phonons. The
emission spectrum is almost completely dominated by the lowest–bound exciton i1
since the occupation factor quenches most of the peaks related to i2. However,
experiments have shown (Figure 1(c) of Ref. [19]) that in bulk hBN the excitonic
temperature Texc that goes into the Boltzmann factor nB is greater than the lattice
temperature TL. If we set Texc = TL = 10 K in Rsp

q , we obtain only the peaks coming
from i1, while setting Texc to the experimental value of 55 K (as in Fig. 3.11) leads
to the appearance of the quenched peaks from i2. On the experimental side, the
peaks due to high–frequency modes are clearly visible in Fig. 3.11(b) at 10 K: the
separation between these peaks thus corresponds to the separation between the
LO and TO modes at point q in the theoretical calculations, while in experiment it
corresponds to the splitting at point q + ∆q, where ∆q is the error committed by
approximating the “true” q–point |T1 − M| with q = |K − M|. We attribute to this
discrepancy the difference of ∼ 8 meV between the theoretical and experimental
peak separations. Our error in q–space is approximately 12 % of ΓK, with ∆q = 0.01
Å−1. The discrepancy in the position of the LO peak is consistent with the true
minimum of the excitonic dispersion lying on the K side of q. This is confirmed by
both our computational results, Sec. 2.4, and those of Ref. [84]. In our results, the
quasi–degenerate transverse modes TO2 and TO3 couple with similar strength to i1,
whereas the longitudinal mode LO3 has a higher frequency than LO2 and a much
weaker coupling to i1 (recall that in the absorption case, the coupling of mode LO3
with i2 is the strongest one). As expected, we cannot capture the various satellite
peaks in Fig. 3.11(b), which experimentally are assigned to multi–phonon processes
involving zone–center shear phonon modes.[132]

Therefore, the structure of the emission spectrum can be understood in terms of
a Davydov pair of finite–q excitons coupling with different strengths to the various
in–plane phonon modes. We can further add that the asymmetry observed exper-
imentally in the Stokes shift, Fig. 3.1(b), is due to the fact that the states mainly
involved in the absorption and emission processes are not the same. In absorption,
the E2u state at Γ remains the most visible,7 while the emission signal depends on the
lowest–lying exciton level at finite–q, i1/B1, lying 0.12 eV below the direct exciton.

7Experimental position of the Γ exciton: 6.05 eV; theoretical LDA+sscGW+BSE position: 5.75 eV.
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3.4.6 Conclusion

The elucidation of the luminescence spectrum of bulk hBN represents the main re-
sult of this thesis. We solve a long–debated issue in the spectroscopy community
by uncovering how electron–hole bound pairs and lattice vibrations concur in the
response to an electromagnetic field. We show that such a description is essential
for the correct interpretation of the optical spectra and can be obtained by modelling
the exciton–phonon coupling in a computationally feasible way.

The method developed here for hBN can be applied, in principle, to any material
with indirect gap. It is particularly suited for materials with strong excitonic effects
as they often occur in layered materials. For example, it could be applied to inves-
tigate bilayers of MoS2 as well as heterobilayers made of different transition metal
dichalcogenides, or even to the recently reported case of monolayer WSe2.[133] The
method will work particularly well when the excitonic density of states, multiplied
by the Boltzmann factor, is strongly peaked at the energy of the indirect q̄ exciton.
The full q–integration can then be replaced by just summing over excitons of wave
vector q̄, since all other contributions to the emission spectrum will be suppressed.

Despite the success of our static method, several interesting generalisations are
possible, namely: (i) performing a full q–integration in the BZ, so that a complete
indirect absorption spectrum may be reconstructed; (ii) obtaining a microscopic de-
scription of the ExcP coupling in terms of the constituent electronic and phononic
building blocks, as opposed to computing the derivative of the dielectric function;
(iii) overcoming the static approximation (this entails the inclusion of dynamical ef-
fects in the BSE). We will answer these questions in the next Chapter.
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Chapter 4

Phonon–assisted transitions as
satellites of the spectral function

This part of the thesis is the result of collaborations with P. Cudazzo and A. Marini. Results
are still preliminary.

Our goal for the last part of this thesis is to find a many–body, dynamical de-
scription of the exciton–phonon coupling. In this way, we will be able to perform
more refined calculations of the phonon–mediated exciton formation probabilities,
to compare directly the strength of the direct and indirect absorption processes and
to work in the unit cell, allowing us to obtain the fully q–integrated phonon–assisted
absorption spectrum. In other words, we aim to obtain a complete explicit form for
the excitonic, macroscopic dielectric function ε2(ω) including phonon contributions,
as sketched in Eq. (3.1).

We know from Chap. 1 that, in the case of a single–particle Green’s function G
corrected with a self–energy via the Dyson equation, its spectral function ImG shows
a QP peak at the corrected single–particle energy, followed by a satellite structure.
The satellites appear due to the frequency dependence of the self–energy. Here, the
key insight is that the structures due to indirect processes in the absorption spectra
can also be seen as the satellites of the exciton spectral function ImL (or Imχ) in the same
way as if we imagine correcting it with a “self–energy” encoding the dynamical in-
teractions between excitons and phonons. Then, the q–integrated satellite structures
of Imχ can be identified with the indirect component of the absorption spectrum.
Doing this requires considering a frequency–dependent kernel for the BSE, that is
usually evaluated only in the static approximation. This is a difficult problem, since
a dynamical BSE (see Eq. (1.77)) cannot easily be inverted, and its solution has only
rarely been attempted.[134–137] There is yet another complication: as we remarked
in Sec. 1.3.3, a GW–type approximation followed by the inversion of the Dyson
equation typically yields the wrong shape and position for the satellites, owing to
the neglected contributions at higher orders in the Dyson expansion. This problem
would be present also for L if we attempted an equivalent treatment.

In order to make these problems clear, we will first analyse the single–particle
case with a simple model (that of a localised electron interacting with a phonon) and
show how the correct description of the satellites is recovered in this case. By treat-
ing the electronic Green’s function G in perturbation theory, it can be emphasised
how the dynamical part of the interaction (represented by the phonon propagator
D) is responsible for the formation of the satellites of the spectral function ImG. The
connection with the exact solution of the model is made via the so–called cumulant
ansatz. In this framework, we will discuss again a simple model, this time a two–
level system interacting with a phonon, showing that it leads to the correct descrip-
tion of phonon–assisted absorption (as in Sec. 3.3), and eventually also to the exact
solution — even when the eh interaction is included — via the cumulant ansatz.
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The generalisation to extended systems including excitonic effects will be ex-
plained following the work of Cudazzo and Reining.[38, 113] According to this
work, a dynamical ExcP self–energy Πexc can be constructed with the solution of
the static BSE providing the “unperturbed” propagator to be dynamically corrected
by ep interactions. We will discuss the shape of this self–energy, and how it should
correct the absorption spectrum. Finally, we will present the two final contributions
of this thesis: the problem of the mixing of longitudinal and transverse excitons,
with its consequences for the absorption spectrum, and our implementation of the
exciton–phonon self–energy Πexc in Yambo. We will present some preliminary ab
initio results for bulk hBN.

4.1 Indirect absorption revisited

4.1.1 One–level system coupled to one phonon

Let us consider a filled electron state with energy ε, coupled to a boson with fre-
quency Ω (this is called Langreth’s model). This model was originally introduced
by Lundqvist[138] and then Langreth[139] to study the spectral function of a pho-
toexcited core electron. According to Eqs. (1.25) and (1.109), respectively, the GFs
for the electron and the boson at T = 0 are

G0(ω) =
1

ω− ε− iη
,

D(ω) =
1

ω−Ω + iη
− 1

ω−Ω− iη
.

(4.1)

Langreth has provided the exact solution to this model in terms of the interacting
electron GF. This is given in the time domain by[139, 140]

Gex(t12) = G0(t12) e−
g2

Ω2 ei g2
Ω (t2−t1) e

g2

Ω2 e−iΩ(t2−t1) , (4.2)

where g is the electron–boson coupling constant (with g2 ≡ |g|2). In the frequency
domain, this expression takes the form

Gex(ω) = e−
g2

Ω2
∞

∑
n=0

1
n!

(
g2

Ω2

)n 1

ω− (ε + g2

Ω ) + nΩ− iη
,

G(N)
ex (ω) =

N

∑
n=0

N−m

∑
m=0

(− g2

Ω2 )
m g2

Ω2

n

m!n!
1

ω− (ε + g2

Ω ) + nΩ− iη
,

(4.3)

with the second line describing the truncation of Gex at order N. We can have a look
at the resulting spectral function in Fig. 4.1(b) (red shaded region). We see that the
energy of the electronic level is dressed by the interaction with the boson, so that
εQP = ε + g2/Ω, and several satellites are present beyond the quasiparticle peak at
εQP. Their energies are εQP + nΩ and they correspond to the excitation of n bosons.

We will now try to get this result back by means of perturbation theory, comput-
ing the Fan–Migdal self–energy of the system as in Sec. 1.6.6, and as depicted in Fig.
4.1(a). We have

Σ(ω) = ig2
∫ dω′

2π
G0(ω−ω′)D(ω′) =

g2

ω− ε + Ω− iη
. (4.4)
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FIGURE 4.1: Langreth’s model. (a) First–order self–energy contribution to the Dyson equa-
tion of the electron–boson system in the one–level case. (b) Spectral functions for the one–
level system. The vertical black line is at the bare electronic energy ε. The red shaded area is
the exact solution at all orders, Eq. (4.3). The green curve is the result of the Dyson equation
(4.5), ImG̃, which obtains the correct QP peak but misplaces the satellite. The dashed blue
curve is the exact solution at first order, Eq. (4.8). The parameters are ε = 0.6, Ω = 0.2,
g2 = 0.01, η = 0.01.

From here, we write the Dyson equation G̃ = G0 + G0Σ(ω)G̃ to include the FM
self–energy at all orders. We invert it as G̃ = [G0,−1 − Σ(ω)]−1 and we expand the
resulting expression for small g2 since a weak coupling is a requirement for pertur-
bation theory to be valid. We obtain

G̃(ω) =
1− g2

Ω2

ω− (ε + g2

Ω )− iη
+

g2

Ω2
1

ω− ε + (Ω + g2

Ω )− iη
. (4.5)

Since the self–energy Σ has a single pole, only one satellite is generated and its en-
ergy is ω = ε − g2/Ω −Ω. We then have to compare it with the first–order term
(n = 1) of the exact solution, G(1)

ex : this can be seen in Fig. 4.1(b). Although the quasi-
particle energy in G̃ is the same as the exact one εQP, the satellite position is wrong.
This might not surprise us since we mentioned already in Sec. 1.3.3 that a GW–type
perturbative expansion, though often successful in describing QP corrections, typ-
ically gives rise to one satellite in the wrong position. Indeed, the position of the
first satellite depends on all the others, which are neglected in a Dyson approach but
obviously accounted for in the full solution.

Actually, we can point out that the full solution can be recovered from this pertur-
bative result by constructing a series expansion of G in terms of Σ which is different
from the Dyson one and is given by (Hedin, Ref. [141])

G(t12) = Gex(t12) = G0(t12)eC(t21). (4.6)

This is called cumulant ansatz, with C being the cumulant (whose expression can be
obtained by matching the first–order terms of both the cumulant and Dyson expan-
sions):

C(t12) = i
∫ t2

t1

dt1′

∫ t2

t′1
dt2′Σ(t1′2′)eiε(t′1−t′2). (4.7)
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At first order, we then have

G(1)(ω) = G(1)
ex (ω) =

1− g2

Ω2

ω− εQP − iη
+

g2

Ω2
1

ω− εQP + Ω− iη
. (4.8)

Here, the renormalisation factor for the QP peak (compare with Eq. (1.55)) is given
by

R(Ω) =
g2

Ω2 = − ∂

∂ω
Σ(ω)

∣∣∣∣
ω=εQP

. (4.9)

Starting from Langreth’s model and Hedin’s cumulant ansatz, the cumulant ex-
pansion has been the object of intense study in the past years.[120, 142–148] It has
been rigourously derived and generalised to extended systems with conduction and
valence electrons.[149–152] In this case, the cumulant G(ω) remains an approxima-
tion whose validity is at times difficult to estimate (a helpful discussion on this topic
is provided in Ref. [153]), but it proved to be very successful in describing satellite
structures in various systems, from silicon (where the electrons interact with plas-
mons during photoemission)[149] to transition metal oxides (where phonon–derived
sidebands are visible in ARPES measurments).[154] If an extended system is consid-
ered, a q–integration must be performed in addition to a sum over band states, which
transforms the satellites from simple peaks to DOS–like structures and adds a finite
electron–boson lifetime to the electronic states.

Our interest in this model lies in the possibility to apply an analogous approach
for the screening function χ, and describe the resulting phonon–derived satellites
from the perspective of electronic excitations. For the purposes of this thesis we
will stick to the first–order expressions (i.e. we will only study single–phonon pro-
cesses), although a full “excitonic” cumulant expansion is currently being the object
of further studies.[38, 113]

4.1.2 Absorption in a two–level system coupled to one phonon

Let us now consider a two–level system interacting with a phonon and compute its
phonon–assisted absorption. We aim to compute the relevant contributions up to
first order in the interaction: such contributions are schematically represented on
the first line of Fig. 4.2. From this point on, we explicitly take the TDA in order
to ensure that the hole and electron propagators have definite time directions; this
will result in a retarded response function for absorption, consistent with the way
we normally compute it both in the IP and sBSE cases. In the two–level system, the
TDA amounts to setting gcv = 0 (this is reasonable in materials with a band gap
much larger than the characteristic phonon frequency, like hBN). In this case, the
first–order corrections to the GFs corresponding to the “valence” v and “conduction”
c levels of a two–level system are given by (compare with Eq. (4.8)):

G(1)
v (ω) =

1− g2
vv

Ω2

ω− εQP
v − iη

+
g2

vv
Ω2

1

ω− εQP
v + Ω− iη

,

G(1)
c (ω) =

1− g2
cc

Ω2

ω− εQP
c + iη

+
g2

cc
Ω2

1

ω− εQP
c −Ω + iη

.

(4.10)
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Then, in order to compute the terms (a), (c1) and (c2) of Fig. 4.21 for the two–level
system, we recognise that they are given by the product (now expressed in the time
domain) of the “cumulant” GFs, where the product is kept at first order in g2:

χ
[c1]+[c2]
cv (t21) = −id2

cvGv(t1 − t2)Gc(t2 − t1)

∣∣∣∣
1st order in g2

(4.11)

(dcv is the dipole matrix element). We Fourier–transform the expressions Eqs. (4.10)
according to Eqs. (1.25) and obtain

χ
[c1]+[c2]
cv (t21) = −iθ(t2 − t1)

[
d2

cv

(
1− g2

vv + g2
cc

Ω2

)
e−i∆QP

cv (t2−t1)

+d2
cv

g2
cc + g2

vv
Ω2 e−i[∆QP

cv +Ω](t2−t1)

]
,

(4.12)

with the first term in the sum representing the absorption edge and the second one
the satellite due to the emission of the phonon. Here, ∆QP

cv = εQP
c − εQP

v . We still need
to calculate explicitly the “interference” contribution (c3). In order to do that, we first
redefine the Green’s function so that it already contains the quasiparticle energy
instead of the bare one (compare with Eq. (4.2)): GQP(t12) = G0(t12)exp{i g2

Ω (t2 −
t1)}. Now the expression amounts to:2

χ
[c3]
cv (t21) = d2

cv(g∗vvgcc + gvvg∗cc)
∫

dt′1t′2GQP
v (t11′)G

QP
c (t2′1)∆D(t2′1′)G

QP
v (t1′2)G

QP
c (t22′)

= −iθ(t2 − t1)d2
cv

[
g∗vvgcc + gvvg∗cc

Ω2

(
e−i∆QP

cv (t2−t1) − e−i[∆QP
cv +Ω](t2−t1)

)]
.

(4.13)

Here we have a double contribution due to the possible ordering of the internal
times: the phonon can be emitted first either by the hole (t1 < t′2 < t′1 < t2) or by the
electron (t1 < t′1 < t′2 < t2). Finally, in order to get the absorption spectrum (where
now indirect absorption mediated by one phonon is included), we just need to sum
Eqs. (4.12) and (4.13) and take the imaginary part (now switching to the frequency
domain). The result then takes on the following simple form:

ε2(ω) ∝
[

1− G 2

Ω2

]
d2

cvδ(ω− ∆QP
cv ) +

G 2

Ω2 d2
cvδ(ω− [∆QP

cv + Ω]). (4.14)

Here, we have incorporated the ep matrix elements into an “excitation–phonon”
coupling given by

G 2 = g2
vv + g2

cc − g∗vvgcc − gvvg∗cc = |gvv − gcc|2. (4.15)

Note also that no dynamical effects are possible if gcc = gvv.
How does this result compare with the textbook time–dependent perturbation

theory expression obtained in Sec. 3.3.3 (i.e. Eq. (3.18))? Since we are in the phonon
emission case, the energy conservation given by the delta function is the same as

1The labels referring to the various contributions are chosen consistently with the general picture
presented in Fig. H.1.

2Note that in this expression we don’t use the full phonon propagator D, but ∆D, which corre-
sponds to D without its static part. ∆D is given by Eq. (I.24). This trick is not necessary if we plan to
take the cumulant expansion at the end of the calculation. It is instead necessary to remove spurious
QP contributions if we stop at first order, since they are already fully included in GQP.
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in Eq. (4.14); furthermore, we have neglected anti–resonant transitions, so the only
term that contributes to the transition amplitude is |TB|2 = |Sω

2 + SΩ
2 |2. If we spe-

cialise the corresponding expressions in Eq. (3.14) to the two–level system and we
exploit the delta function to replace ω with ∆QP

cv + Ω in the denominator of Sω
2 , then

we have

Sω
2 =

dvcg∗cc
Ω

,

SΩ
2 = − g∗vvdvc

Ω
,

|TB|2 =
G 2

Ω2 .

(4.16)

Therefore, the indirect part of the absorption is recovered exactly. We see that the
(c3) term represents the interference between the two quantum paths of photon ab-
sorption, then phonon emission (given by (c1)) and phonon emission, then photon
absorption (given by (c2)). Note that a similar “diagrammatic” development of the
contributions to indirect absorption was already put forward long ago by Chow in
Refs. [155, 156]. In the case of Sec. 3.3.3, the strength of the direct part of the ab-
sorption is overestimated, since the first–order perturbation theory Eq. (3.16) does
not contain the phononic renormalisation factor equal to G 2/Ω2, so it is not possi-
ble to take its ratio with the indirect contribution in order to estimate their relative
strengths: rather, the two contributions have to be treated on the same footing in
order to conserve the spectral weight, as we did in this Section.

“Excitonic” effects can also be trivially included in the two–level system: in fact,
we know from App. A that in the TDA the role of the eh interaction is just to re-
duce the band gap energy to Evc = ∆QP

cv − Kd = ∆QP
cv − (Wvc

vc − 2Vvc
vc ). Therefore,

since no change between the excitation and the exciton bases is involved, it is suffi-
cient to replace ∆QP

cv by Evc in Eqs. (4.12), (4.13) and (4.15) to obtain the “full” result
represented by the second line of Fig. 4.2,

χ
(1)
cv (t21) = −iθ(t2− t1)

[
d2

cv

(
1− G 2

Ω2

)
e−iEvc(t2−t1) + d2

cv
G 2

Ω2 e−i[Evc+Ω](t2−t1)

]
. (4.17)

We have obtained an expression analytically equivalent to the one for the single–
particle GF G(1) in Langreth’s model, Eq. (4.8). In fact the analogies run deeper: if
we take the cumulant ansatz for χ

(1)
cv (t21), we actually obtain the exact solution for a

two–level system interacting with a dynamical boson in the TDA, which is provided
in Ref. [148].3 For reference, in our case this takes the form

χ
(1)
cv (t21) = χQP

cv (t21)
[
1 + G 2

(
−1 + e−iΩ(t2−t1)

)]
,

χ(t21) = χex(t21) = χQP
cv (t21)eG 2(−1+e−iΩ(t2−t1)),

(4.18)

where we have defined χQP
cv (t21) ≡ −iθ(t2 − t1)d2

cv exp[−iEvc(t2 − t1)] by analogy
with the single–particle case.

This result is a convincing indication that the presented treatment may provide
a viable description of phononic satellites in excitonic spectra, and, in the case of
realistic systems, a fully ab initio way to compute phonon–assisted absorption. In

3Section VI.C, equation (34), where we have already explicitly solved the time integrals because our
interaction matrix element is just Wnnmm(t− t′) = gnn∆D(t− t′)g∗mm.
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the following we will then consider the realistic case of extended systems with mul-
tiple electronic bands and phonon branches, and we will write the corresponding
expressions for χ(1) and ε2(ω).

K K K K

(d1) (d2) (d3) (d4)

(c1) (c2) (c3)

Indirect transitions (corrections to c)

BSE level (d):

IP level (c):

FIGURE 4.2: Contributions to the response function χ due to phonon–assisted transitions (schematic
representation). The meaning of the dots and arrows is explained in Chap. 1. The labeling of the
diagrams is consistent with the more general Fig. H.1. (c) Phonon–assisted transitions at first order at
the IP level. In the case of the two–level system, diagrams (c1) and (c2) are included in Eq. (4.12), while
diagram (c3) is given by Eq. (4.13). (d) Phonon–assisted transitions at first order, this time including
the static eh interaction kernel K (BSE level). In the case of the two–level system, the corresponding
expression is given by Eq. (4.17). In the general case, it is given by Eq. (4.26). Additionally, diagrams
(d) are discussed in more detail in App. I (see in particular Fig. I.2).

4.2 Phonon–assisted optical spectra II: the dynamically cor-
rected dielectric function

We summarise below the general theory of the dynamical exciton–phonon interac-
tion based on Refs. [38, 113]. An alternative, more qualitative description of the
same theory following a different approach is provided in App. H. Furthermore,
Fig. H.1 graphically summarises all the relevant many–body physics included in the
treatment.

4.2.1 The exciton–phonon self–energy

According to Ref. [113], the full dynamical BSE can be written using the four–times
two–particle correlation function as

L(1423) = L(0)(1423) + L(0)(12′21′)Ξ̃(1′4′2′3′)L(3′44′3). (4.19)

Here, L(0) is the solution of the static BSE (from now on sBSE), i.e. the two–particle
correlation function at zero order in the dynamical part of the interaction, given by
Eq. (1.87) with the usual kernel K = W − 2v. Then, the kernel Ξ̃, which is in prin-
ciple a quantity to be computed self–consistently as it depends itself on L, contains
the dynamical ep interaction. In principle, the solution of this equation is very com-
plicated, because the dynamical kernel makes it impossible to write it in terms of a
two–times L, like in the static sBSE case: therefore Eq. (4.19) is not easily inverted.
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However, the kernel Ξ̃ can be considered up to just the first order in the ep interac-
tion, giving the equation

L(1)(1423) = L(0)(1423) + L(0)(12′21′)Ξ(1′4′2′3′)L(0)(3′44′3). (4.20)

Now, the kernel Ξ contains the contributions corresponding to Fig. 4.2 (and equiv-
alently to Fig. H.1(d)). Note that these contributions are shown in detail in Fig. I.2,
while the explicit expression for Ξ is discussed in App. I. Furthermore, this equation
can now be written also for the two–times response function χ(13) = −ih̄L(1313) in
the excitonic basis, obtaining the one in Fig. H.1(e):

χ
(1)
αα′(t12) = χ

(0)
α (t12) +

∫ t2

t1

dt1′

∫ t2

t1′
t2′ χ

(0)
α (t11′)Πexc

αα′ (t1′2′)χ
(0)
α′ (t2′2). (4.21)

Again, χ(0) is the usual sBSE response function. Then, χ(1) represents its first–order
dynamical correction. Eq. (4.21) was originally derived in Ref. [38] to include the
dynamical part of the screened Coulomb interaction W. However, it can also be
applied to the the electron–phonon interaction D while keeping the Coulomb inter-
action in the static approximation. This can be justified with the argument that re-
tardation effects in the electronic system happen on a much smaller time scale than
in the electron–phonon case, since electrons move fast and ions move slowly, and
therefore an electronic excitation may still be regarded as instantaneously screened
even after one its constituents is scattered by a phonon.

Keeping in mind the analogies with the simpler cases analysed previously, it is
possible to derive an exciton–phonon self–energy Πexc = |G exc|2Dχ(0) from the kernel
Ξ in the TDA, and then use it to correct the response function and obtain χ(1) (this
is shown in App. I). Πexc has the form of the Fan–Migdal self–energy, Eq. (1.116),
where G0 is replaced by χ(0) and g by G exc: this is why we may regard it as an
excitonic self–energy. Now, two summations to infinite order are possible. A Dyson
equation may be taken, which is invertible, corresponds to a partial resummation of
the contributions included in the general Eq. (4.19), and yields a correction to the
exciton energies while failing to describe the satellites,

χD = χ(0) + χ(0)ΠexcχD. (4.22)

Alternatively, the cumulant expansion may be performed (for a diagonal self–
energy), which is able to capture the satellite physics:

χc = χ(0)eC (4.23)

(with Cα(t12) =
∫ t2

t1

∫ t2
t′1

dt′12Πexc(t′12)e
iEα(−t′12)). For the purposes of this thesis, how-

ever, we will just consider the first order of both expressions, that is Eq. (4.21): our
previous static approach (Sec. 3.4.5) was also confined to first order. We will also
neglect the corrections to the exciton energies and focus on the description of the
satellite structures (related at first order to scattering processes mediated by a single
phonon). This will already fully clarify the physics involved and its consequences
on the absorption spectrum. It will also give us all the ingredients for an implemen-
tation in Yambo in order to carry out the necessary numerical tests.
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4.2.2 Form of the exciton–phonon coupling

A sketch of the derivation of Πexc and a detailed description of the notation used,
together with all of the quantities and expressions involved, is provided in App. I.
Here we will just summarise the main results and consider for simplicity the ExcP
self–energy to be diagonal in the exciton index (this restriction is necessary if the
cumulant expansion is to be taken). Since we are interested in the corrections to
the optical absorption spectrum, we start from zero–momentum, optically created
excitons (index α). Their scattering with phonons (µq) will involve a sum over finite–
q exciton states (βq). Now the self–energy is given by

Πexc
αα (ω) =

1
Nq

∑
µβq

|G exc
βα,µq|2

ω− (Eβq + Ωqµ) + iη
. (4.24)

We see that the poles of the self–energy — related to phonon emission only since we
are at zero temperature — are at ω = Eβq + Ωqµ. Furthermore, the exciton–phonon
coupling matrix element G exc, describing the probability of the scattering of exciton
α into exciton βq by phonon µq, appears at the numerator. It is given by

G exc
βα,µq = gµq↓

βα − gµq↑
βα

= ∑
K1

[
∑
v2

(
Ac1k1,v2k1−q

βq

)∗
AK1

α gqµ
v1k1,v2k1−q −∑

c2

(
Ac2k1+q,v1

βq

)∗
AK1

α gqµ
c2k1+q,c1k1

]
.

(4.25)

The specific notation used (see Sec. I.2) is chosen with the aim of simplifying the
eventual Yambo implementation.4 Note that in the case of a two–level system, |G exc|2
reduces correctly to Eq. (4.15) and the final result, Eq. (4.17), is then obtained.

It should be noted that analogous expressions for the exciton–phonon coupling,
denoted for brevity as |G exc|2 = A∗gAg∗, already appeared in the literature, to the
best of our knowledge, in Refs. [107] (2017) and [110] (2005). In Ref. [107], more con-
cerned with temperature–dependent corrections to the exciton energies (and pos-
sibly with exciton–phonon scattering lifetimes), the excitons were treated as pure
bosons from the start (introducing excitonic creation and annihilation operators),
and made to couple directly with the electron–phonon interaction written in the ex-
citon basis. A full Dyson equation χfull = χ(0) + χ(0)Ξχfull was then assumed. In
Ref. [38], instead, the first–order correction to χ(0) in the dynamical part of the in-
teraction was derived starting from a general dynamical kernel for the BSE. As for
Ref. [110], a model exciton–phonon coupling of the type |G exc|2 = A∗gAg∗ appears
in a 1D tight–binding Hamiltonian including the excitons as linear combinations of
electron and hole creation and destruction operators, then individually coupled to
the phonon system. The interest here was precisely to describe the phonon–induced
sidebands appearing in the absorption spectra of carbon nanotubes in addition to
the main absorption peak. In this case, of course, the values of the required physical
quantities were chosen and not computed ab initio, but the model allows the authors
to perform a smooth integration over the q wave vectors in order to obtain (i) the
correct renormalisation of the main peak and (ii) a broad structure for the sideband
(instead of discrete Lorentzian peaks for each q).

4The calligraphic symbol A for the exciton eigenvectors is used as a reminder that we still did not
specify which response function we are correcting: it can be either χ, with A = A, or χ, with A = A.
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Back to our case, by using Eqs. 4.24 and 4.25, we can write χ(1) = χ(0) +
χ(0)Πexcχ(0) in the exciton basis as

χ
(1)
α (ω) =

1− Rα

ω− Eα + iη
+

1
Nq

∑
µβq

|G exc
βα,µq|2

W 2
βα,µq

1
ω− (Eα +Wβα,µq) + iη

, (4.26)

with the renormalisation factor R and energy denominator W given by

Rα =
1

Nq
∑
µβq

|G exc
βα,µq|2

W 2
βα,µq

,

Wβα,µq = Eβq − Eα + Ωqµ.

(4.27)

Again, this is a first–order correction in the dynamical part of the interaction.5 Con-
sequently, we see satellites appear with strength |G exc|2/W 2 (therefore at first order
in |G exc|2), accompanied by a reduction in the intensity of the main peak — recall
that χ

(0)
α (ω) = [ω − Eα + iη]−1. The position of the satellite is ω = Eα + Wβα,µq =

Eβq +Ωqµ. Writing it with the modified frequency W emphasises its nature as a satel-
lite of Eα; yet, the actual position of the peak is at the energy of the finite–q excitons
plus the emitted phonon frequency. This is exactly what we expect from our previ-
ous study of indirect absorption with excitons in bulk hBN (see Fig. 3.10). In that
case we had to add the phonon frequency Ωµq “by hand” since the exciton–phonon
coupling was calculated statically. Here instead, the correct result arises naturally
from the dynamical treatment of the interaction in perturbation theory. Finally, we
recall from Eq. (1.87) that the optical transition amplitude is Tα = ∑KAKα dK, so that
the G = 0, G′ = 0 component of the G–space tensor for χ(1) can be written as

χ
(1)
00 (ω) = ∑

α

|Tα|2χ
(1)
α (ω)

= ∑
α

[
|Tα|2[1− Rα]

ω− Eα + iη
+

1
Nq

∑
µβq

|Tα|2|G exc
βα,µq|2

W 2
βα,µq

1
ω− (Eα +Wβα,µq) + iη

]
.

(4.28)

This is the quantity, along with the self–energy Eq. (4.24), that we want to compute
by ab initio calculations.

4.2.3 Implementation

We implemented the self–energy, in particular Eqs. (4.24) and (4.25), in the Yambo
code. Notes and details about the implementation and the code structure are pro-
vided in App. J for the interested reader. This development is one of the main
achievements of this thesis because it enables ab initio calculations for a dynamical
BSE, and eventually will permit the computation of indirect absorption spectra.

Some test results are shown in Fig. 4.3 for an unconverged bulk hBN calcula-
tion (details in the caption). The quantities shown in (a) are ReΠexc

33 (ω) (in red) and
ImΠexc

33 (ω) (in blue). The subscript 3 refers to the lowest–lying bright excitonic level
(not counting degeneracies) at q = 0, whose energy is indicated by the vertical line.
In frame (a), Eq. 4.24 is computed using the full response function χ(0) in the finite–
q sBSE calculations (see Eq. (1.62) in Sec. 1.4). This is a recent development in the

5Note that we have neglected the the “quasiparticle” correction to the bare exciton energy Eα, since
we are not interested in that at this point.
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FIGURE 4.3: Exciton–phonon self–energies Πexc
αα , Eq. (4.24), computed for the lowest–lying optically

active exciton (α = 3) in a test calculation for bulk hBN. We used a 6×6×2 k– and q–grid sampling, two
valence and two conduction bands at the DFT level, and eleven excitonic states (note that the exciton
energies are rigidly shifted to their converged values). The peak broadenings are set at 0.04 eV. (a)
Πexc is computed using the the full response function χ(0) for the static BSE calculations. (b) Πexc is
computed using the proper response function χ(0) for the static BSE calculations. The imaginary part of
Πexc is shown in blue, the real part in red. The dashed blue lines mark the energy of the corresponding
exciton E3. (c) A comparison of ImΠexc (red) and ImΠexc (blue) is shown in a narrower energy range.
(d) Same as (b), but zoomed in around the energy E3; the peak broadening has been reduced to 0.01
eV. The black vertical lines indicate the finite–q transitions (as poles of the self–energy) lying below E3.
(e) Same as (d), but this time the self–energy is computed only at momentum q, whose position within
the IBZ is labeled in the inset with a red cross. The dashed red lines represent the two lowest–bound
excitons with momentum q, called i1 and i2. This plot is meant to be compared to Fig. 3.10(a).
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Yambo code. Thus, in this case, if we look at Eq. (4.25) we have that AKγ = AKγ .
In frame (b), we instead use the proper response function χ(0) to compute the self–
energy (now denoted Πexc). This is the response to a transverse external field that is
typically evaluated in the context of optical absorption. In this case, as seen in Eq.
(1.75), we have that AKγ = AKγ (with γ now explicitly labelling a “transverse” exci-
ton). Additionally, the energies of the poles of χ(0) and χ(0) may also differ, so we
relabel them as Eα and Eα, respectively, in order to avoid confusion.6 It can be seen
from Fig. 4.3(c) that the self–energy changes depending on the presence or absence
of the long–range component of the Coulomb interaction v0. Indeed, some of the
peak structures in ImΠexc

33 and ImΠexc
33 differ both in energy (since Eqβ + Ωqµ may be

different than Eqβ + Ωqµ) and in intensity (since the ExcP coupling will also be dif-
ferent). In particular, we know that in bulk hBN the bright exciton with symmetry
E1u is doubly degenerate (therefore E3 = E4): if v0 is included, then this exciton un-
dergoes a LT splitting, with its “longitudinal” part, the part not sensitive to optical
absorption, becoming the eleventh state in the series (E3 < E11, see also Ref. [28]).
All the other degenerate states in this energy range do not split.

The presence of low–lying indirect transitions is emphasised in Fig. 4.3(d): this
is the same as Fig. 4.3(b), but zoomed in around the energy E3. We can see the pres-
ence of a dense peak structure below E3, originating from allowed exciton–phonon
couplings with Eβq + Ωqµ < E3 and q 6= 0 (black vertical lines). In order to provide a
loose comparison with the indirect peak structure reported in Fig. 3.10(a) by means
of our finite–difference approach (see Chap. 3), we have plotted the self–energy
component of q–point q only in Fig. 4.3(e). Despite the fact that the two functions
compared are technically different7 and that the exciton and phonon energies are un-
coverged in the present calculation, the same characteristic spectral shape is present
in both figures: this indicates a likely agreement between the two approaches.

So far, we have discussed results at the self–energy level. As for the correction to
the absorption spectrum, we need the imaginary part of the dielectric function ε2(ω),
which can be directly obtained from Eq. (4.28). The indirect correction to the absorp-
tion associated with the excitonic level α will be similar to its self–energy spectrum,
renormalised by the the modified frequencies W 2. However, should we choose to
compute χ(1)(ω), in accordance with standard optical absorption calculations in the
direct case, or switch to χ(1)(ω)? We will discuss this in the next Section.

4.2.4 Longitudinal–transverse exciton mixing

A transverse incoming em field will generate transverse excitations in the system
which are properly described by the response function χ(q, ω). The longitudinal
excitations are absent in χ because the long–range component of the Coulomb inter-
ation, v0, has been removed. We have seen in Sec. 1.4 that this is only valid at q = 0
for optical absorption. Therefore, in principle there is no reason to remove the lon-
gitudinal poles of the full χ(q, ω) at finite wave vector. Furthermore, in the present
treatment the excitations are interacting, and the interaction is mediated by phonon
modes that can have both a longitudinal and a transverse component, something

6Recall that in our notation Eqα ≡ Eα if q = 0.
7The plot in Fig. 3.10(a), based on Eq. (3.40), represents the indirect component of the absorption

spectrum at point q. Therefore, the proper comparison should be with the imaginary part of the second
term in Eq. (4.28). In the imaginary part of the self–energy, Eq. (4.24), a scaling factor given by W 2 is
missing.
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that, as we have mentioned in Sec. 1.6, may be especially relevant for a polar ma-
terial like hBN. This means that the phonon–mediated mixing of longitudinal and
transverse excitons is possible and should be accounted for in our treatment: in or-
der to do that, the exciton–phonon self–energy should always be computed using
χ, even when we are interested in the dynamical correction to χ(0), i.e. χ(1). This
argument leads us to write Eq. (4.21) in the following way:

χ(1)(13) = χ(0)(13) + χ(0)(11′12′)Ξ(1′4′2′3′)χ(0)(3′34′3), (4.29)

where Ξ is computed using χ(0) and not χ(0), even though χ(0) is the response function
to be dynamically corrected.8

This physical consideration can be complemented by a mathematical one. So far
we have only considered a first–order correction to χ(0) or χ(0), but let us consider
the full Dyson equation appearing in Eq. (4.22):

χD,−1 = χ(0),−1 −Πexc. (4.30)

We know already that in the static case χ(0) and χ(0) are linked by Eq. (1.62), i.e.

χ(0),−1 = χ(0),−1 − v0. (4.31)

Therefore, we can replace Eq. (4.31) into Eq. (4.30), and then define χD,−1 ≡ χ(0),−1−
Πexc. This means, firstly, that we can write an expression relating χD and χD which
is consistent with Eq. (4.31):

χD,−1 = χD,−1 − v0. (4.32)

Secondly, a Dyson equation can now be written also for χ, but in terms of Πexc, a
quantity that is computed using χ, and not Πexc, as one might have expected:

χD = χ(0) + χ(0)ΠexcχD. (4.33)

The validity of this equation guarantees the proper connection of the two response
functions χD and χD to the microscopic dielectric function, concisely written as ε =
1− v0χD and ε−1 = 1 + v0χD.

The above considerations mean that we should consider Eq. (4.29), that is, the
first order contribution to Eq. (4.32), in order to express correctly the ExcP coupling
matrix elements in the absorption case:

G exc
βα,µq = gµq↓

βα − gµq↑
βα

= ∑
K1

[
∑
v2

(
Ac1k1,v2k1−q

βq

)∗
AK1

α gqµ
v1k1,v2k1−q −∑

c2

(
Ac2k1+q,v1

βq

)∗
AK1

α gqµ
c2k1+q,c1k1

]
.

(4.34)

Note the appearance of both AK1
α , referring to the optically created transverse ex-

citons, and AKβq, relative to the “internal” scattered excitons. The exciton–phonon
coupling strength now includes longitudinal–transverse (LT) mixing and is given

8This is clarified by looking at the expressions in App. I: it means that the part in blue brackets of
Eq. (I.16) is computed in terms of χ(0), while the part outside contains χ(0). When the change of basis

is made in Eq. (I.17), this will be from the transition basis to the basis of the AKα , whereas the internal
excitonic indices of Eq. (I.19) will be expressed in terms of the AKβ .
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by
|G exc

βα,µq|2

W 2
βα,µq

=
| 〈α|Ĝ exc

µq |β〉 |2
(Eβq − Eα + Ωµq)2

. (4.35)

Here the energy denominator includes the difference between the transverse and
longitudinal exciton energies (including, for example Eα-Eα which might be non–
zero).

It is clear then that in the indirect absorption case the knowledge of χ is always
required, while for direct absorption only χ is in principle needed. The description
of the phonon–mediated LT mixing of excitons represents the final contribution of
this thesis. In the future, we are going to investigate the effects of the LT mixing both
ab initio and with models. We know already that neglecting the mixing might be a
reasonable approximation: this is what we implicitly did in our static approach in
Sec. 3.4, since we computed the finite–difference derivatives of χ(0) and not χ(0), still
obtaining a good agreement with experiment. However, this might not always be
the case. Yet, the LT mixing can be captured also in the context of static approaches,
we just need to compute χ(0) directly: the only additional complication is that the
macroscopic dielectric function εM must then be obtained using Eq. (1.64) instead of
the simpler Eq. (1.65).

4.2.5 Conclusions

In light of these findings, we can now conclude this Chapter by writing our final
expression for the microscopic dielectric function, now including exciton–phonon
coupling (it is instructive to compare this with Eq. (4.14) and especially with Eq.
(1.75) by replacing the index λ with α):

ε2(ω) =
8π2e2

V ∑
α

|Tα|2[1− Rα]δ(ω− Eα)+

8π2e2

VNq
∑

αµβq

|Tα|2|G exc
βα,µq|2

W 2
βα,µq

δ(ω− (Eα +Wβα,µq)).
(4.36)

This expression paves the way for a significantly improved description of indirect
absorption, because it finally gives access to a more complete spectrum, including on
the same footing phonon–mediated and direct contributions. The phonon–mediated
part is then accurately described in terms of dynamical exciton–phonon interaction
(an advance on the theoretical side) and spans the full BZ of the crystal instead of
just a single q–point (an advance on the numerical side). Indeed, the self–energy
plot in Fig. 4.3(d) already clearly describes an indirect absorption shoulder, whose
smooth appearance is due to the fact that we are able to compute the ExcP couplings
at many different momenta9. The cumulant expansion of Eq. (4.36), given by Eq.
(4.33), may also be taken at this point.

As Eq. (4.36) suggests, the self–energies shown in Fig. 4.3 should be computed
as Πexc

αα =, i.e., including the LT mixing. The necessary ingredients are then: (i)
the Kohn–Sham electronic eigenvalues and wave functions — computed in DFT
— along with their QP corrections (GW); (ii) the full list of excitonic eigenvalues
and eigenvectors associated with the sBSE response function χ(0); (iii) the excitonic
eigenvalues and eigenvectors, only at q = 0, associated with the “proper” sBSE re-
sponse function χ(0); (iv) the full list of phonon frequencies and ep coupling matrix

9Note however that in this Figure the couplings are not rescaled by the frequency W .
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elements (computed with DFPT). On the one hand, the convergence of the q–sums in
Eq. (4.36) is a particularly delicate point: our early results suggest that dense meshes
might be needed, especially because the value of Rα is prone to numerical instabil-
ities (in analogy with standard ep self–energy calculations). Therefore, numerical
approaches to accelerate convergence (such as usage of the crystal symmetries to
reduce the value of Nq, interpolation schemes, et cetera) might be beneficial for com-
plicated systems.

Finally, we point out that Eq. (4.36) constitutes the starting point for a rich variety
of additional developments such as an extension to finite temperatures and/or the
application of the cumulant ansatz to include multiphonon scatterings.
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Conclusion

The research work presented in this thesis has been inspired by two connected sci-
entific problems: (i) on the theoretical side, the development of practical approaches
for the ab initio description of indirect absorption when strong excitonic effects are
present; (ii) on the materials side, the explanation of the fine structures appearing in
the optical spectroscopy of hexagonal boron nitride.

We briefly restate below our main results, followed by an assessment of the fu-
ture research avenues to be explored.

Main results

There is an intense computational and theoretical effort currently ongoing in the
study of the optical spectroscopy of 2D semiconductors. Less work has been done for
cases where phonon–assisted optical excitations are important to the response of the
material because of the difficulties in modeling the combined spectral contributions
of both excitons and phonons. We have solved the problem in this thesis, providing a
theoretical and computational description of the impact of exciton–phonon coupling
on the spectral features of a layered material with strongly bound excitons, namely
hBN.

In order to achieve this, we have elucidated the excitonic structure in BN sys-
tems. We established that exciton physics is essential to describe reliably this mate-
rial explaining how layer stacking, nearly–free electron states and the character of
the optical gap influence the spectral features. We have also proven that a strong
electron–phonon interaction is present in these systems together with a clearly indi-
rect optical gap for systems with more than three layers, including bulk.

We have developed a computationally feasible static approximation for the com-
putation of the exciton–phonon coupling by calculating the variation of the optical
response function with respect to the phonon–driven atomic displacements. By ap-
plying it to the description of the optical spectra, we were able to reproduce the ex-
perimentally observed spectral fine structure: we definitively prove that the much–
discussed sidebands in the hBN luminescence spectrum come from the coupling of
the two lowest–lying excitons, of wave vector q, with every in–plane phonon mode
of the same wave vector, as expected from our selection rules. The absorption onset,
instead, is still dominated by the direct excitons.

After overcoming this first important problem, we have started to tackle the re-
maining liminations in accuracy such as the limited q–point sampling and the static
approximation. We have considered a recent theory about a microscopic description
of the exciton–phonon coupling arising from a dynamical correction to the kernel of
the Bethe–Salpeter equation. We find that in this view, the phonon–assisted com-
ponent of the spectrum can be reframed as a collection of satellites of the excitonic
spectral function. We have successfully implemented the resulting equations, once
adapted to our physical problem, in the Yambo code and have obtained promising
first results. In particular, we modify our expressions in order to account for the
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phonon–mediated longitudinal–transverse mixing of the excitons, an effect that has
never been considered before.

Because of the significant steps forward described in this thesis, we believe that
it is finally possible to accurately describe indirect optical spectroscopy with first–
principles tools.

Outlook

Future theoretical development

The microscopic, dynamical ab initio treatment for IP indirect absorption, Ref. [36], is
accurate close to the indirect absorption onset but fails away from it. Conversely, the
static, supercell–based approach, Ref. [105], is valid up to many order of magnitudes
in the absorption coefficient, but fails at the absorption edge.

In the course of this thesis we joined the strong sides of these two approaches
in order to find a solution for our specific research problem at hand. However, var-
ious enticing questions remain. One is how to build a rigorous theoretical bridge
between the two methods, linking for example the exciton–phonon self–energy, Eq.
(4.24), to the derivatives of the excitonic oscillator strengths, Eq. (3.36), through a
series of controlled approximations. Another is how to construct a microscopic and
dynamical theory that allows for the description of the temperature dependence of
both exciton energies and exciton–dominated optical spectra on the same footing;
on this topic, the “cumulant” approach offers some interesting insight.

Another issue, though far harder to tackle than the previous ones, is the inclusion
of the microscopic exciton–phonon coupling into an out–of–equilibrium theoretical
framework for the consistent desciption of the luminescence process, including the
direct–to–indirect relaxation dynamics of excitations. This will eliminate the need
to pass through the van Roosbroeck–Shockley relation in order to describe lumines-
cence (and therefore remove all of its underlying assumptions, while leaving more
controlled approximations in their place).

Work in progress

Our first, ongoing, task is to transform our preliminary results obtained with the dy-
namical Bethe–Salpeter equation into a complete and converged phonon–assisted
absorption spectrum for bulk and monolayer BN. The code implementation will
be improved and made more efficient with the addition of symmetry operations
and parallelisation. It will also be streamlined so that it can be run just as a post–
processing tool after the computationally–heavy many–body data have been calcu-
lated and stored in databases. Further validation of the implementation will also be
performed with the help of simple, semi–analytical models.

This implementation can then be easily extended to cover the temperature de-
pendence of the excitonic optical spectra, and this will be our next step: in fact,
solving the exciton–phonon equations for a temperature–dependent phonon propa-
gator leads to the appearance of two satellite structures for each phonon scattering,
with the phonon Bose–Einstein occupation factor nBE now appearing. The structure
related to phonon emission is now weighted with nBE + 1, and the new structure
related to phonon absorption is weighted with nBE.
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Additionally, our implementation lends itself naturally to the introduction of the
cumulant ansatz for the exciton propagator: in this way we hope to be able to ex-
plain the overtone peaks in the luminescence spectrum, which are experimentally
attributed to multiphonon processes.

So far we have always ignored the possibility to correct the exciton energies
themselves using this method, since we focused on the dynamical corrections to the
spectral function at first order. However, after working on the excitonic cumulant
we will be able to extract complex “quasiparticle” corrections to the exciton energies,
with their imaginary part describing exciton–phonon scattering lifetimes. A new de-
velopment along this line will be helpful in order to tackle the very difficult problem
of out–of–equilibrium carrier relaxation in 2D systems, when the correlated motion
of electron and holes may strongly impact the dynamics.

Open problems in hBN and beyond

After having established our two approaches to the description of exciton–phonon
coupling, we now have the possibility to study indirect absorption in layered mate-
rials beyond the state of the art, and yet in a numerically feasible way. We will keep
pursuing the answers to the interesting and very relevant questions that still remain
on the spectroscopic properties of BN and other 2D materials.

One of the most intriguing findings is related to the hBN single layer: a very
recent paper,[157] the very first about luminescence in the single layer (epitaxially
grown on a graphite substrate), finds two visible peaks in the spectrum, whereas
only one is expected due to its expected direct–band gap nature. It has been sug-
gested that this is due to indirect emission, yet this is still unconfirmed and could
be due to other effects such as strain and substrate interactions, something that we
would like to investigate.

The spectroscopy of BN multilayers leads as well to another puzzling observa-
tion: the luminescence signal, usually very strong, seems to disappear when the
number of layers is reduced below 6.[32] We plan to use our results on the exciton
dispersion in multilayer BN systems to explore if the signal may be quenched by
the excitons related to nearly–free electrons, and/or by changes in the nature of the
optical gap.

Furthermore, we are in the process of applying our static, finite–difference ap-
proach to other materials possibly also showing an indirect minimum in the exci-
ton dispersion. In particular, we are interested in heterobilayers of transition metal
dichalcogenides: their low–lying interlayer excitons allow for photo–induced charge
separation, which make them viable for energy applications.

Last but not least, it has been suggested for certain transition metal dichalco-
genides that even in the single–layer limit some of them remain indirect band gap
materials. This might explain the recently observed rich spectral features.[133] We
cannot tackle this with a one q–point approach (the static approach), since a compe-
tition between direct and indirect transitions is likely: nonetheless, we can do it with
the perturbative approach.

The above examples show that the indirect optical spectroscopy of layered mate-
rials is rich with fascinating unanswered questions, that we are now in the position
to tackle.
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Appendix A

Excitonic Hamiltonian for a
two–level system

An exciton in the proper sense of the term cannot exist in a two–level system, be-
cause it is not possible to mix transitions arising from different regions in the BZ
and/or from different band states, since there are only one occupied and one unoc-
cupied level. We can equivalently say that the exciton is a solid–state concept and
cannot be properly applied to an isolated system. However, we can still have mixing
between the resonant and anti–resonant character of the same transition as long as
we do not employ the TDA.

We start with the excitonic Hamiltonian in the transition basis:

Hn1n2
n3n4

= (εn2 − εn1)δn1n3 δn2n4 + ( fn3 − fn4)
[
2Vn1n2

n3n4
−Wn1n2

n3n4

]
, (A.1)

with εn and fn being the single–particle energy and occupation of state n, respec-
tively, W being the statically screened Coulomb interaction and V the exchange con-
tribution. We label the hole level as v and the electron level as c. Furthermore, we
consider an insulator at zero temperature, so that fv − fc = 1.

First we define

Kd ≡Wvc
vc − 2Vvc

vc ,
Kod ≡Wvc

cv − 2Vvc
cv ,

ε ≡ εc − εv − Kd.
(A.2)

In a two–level system, W and V are real quantities and are symmetric under ex-
change of indices (e.g. Wvc

vc = Wcv
cv ). Now we can write

H =

[
ε Kod
−Kod −ε

]
. (A.3)

The solution of the eigenvalue equation HAλ = Eλ Aλ gives the exciton energies

E1 = +
√

ε2 − K2
od,

E2 = −
√

ε2 − K2
od,

(A.4)
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with the plus/minus sign referring to a resonant/anti–resonant excitation. The nor-
malised eigenvectors are

A1 =



−sgn(Kod)

√
ε+
√

ε2−K2
od

2ε
|Kod|√

2ε(ε+
√

ε2−K2
od)

,




A2 =



−sgn(Kod)

√
ε−
√

ε2−K2
od

2ε
|Kod|√

2ε(ε−
√

ε2−K2
od)


 .

(A.5)

Since the eigenvectors are not orthogonal, we construct the overlap matrix, defined
as Nλλ′ = Avc ∗

λ Avc
λ′ + Acv ∗

λ Acv
λ′ :

N =

[
1 |Kod|

ε
|Kod|

ε 1

]
,

N−1 =

[
1 − |Kod|

ε

− |Kod|
ε 1

]
1

1− K2
od/ε2

.

(A.6)

Let us now consider the electron–hole correlation function L. According to the
BSE, L is given, in frequency space, by the resolvent of H as

Ln1n2
n3n4

(ω) = [H − 1z]−1 n1n2
n3n4

( fn2 − fn1)

= (δn1v − δn2v)∑
λλ′

An1n2
λ N−1

λλ′A
n3n4 ∗
λ′

ω− Eλ + iηλ

= (δn1v − δn2v)∑
λλ′

An1n2
λ N−1

λλ′A
n3n4 ∗
λ′ Lλ(ω).

(A.7)

In the last step, we defined Lλ as the diagonal propagator in the excitonic basis, in
its causal (retarded) L1(ω) = (ω − E1 + iη)−1 and anti–causal (advanced) L2(ω) =
(ω− E2− iη)−1 parts (recall that E1 = −E2). In our case the propagator Ln1n2

n3n4 is made
up by four components, corresponding to the elements of H: resonant, anti–resonant
and off–diagonal. We compute explicitly all An1n2

λ N−1
λλ′A

n3n4 ∗
λ′ terms by making use

of Eqs. (A.4), (A.5), (A.6) and we obtain

Lvc
vc(ω) =

[
1
2

(
ε

E1
+ 1
)

L1(ω)− 1
2

(
ε

E1
− 1
)

L2(ω)

]
,

Lcv
cv(ω) = −

[
1
2

(
ε

E1
− 1
)

L1(ω) +
1
2

(
ε

E1
+ 1
)

L2(ω)

]
,

Lvc
cv(ω) =

sgn(Kod)

2

√
ε2

E2
1
− 1 [L1(ω)− L2(ω)] = Lcv

vc(ω).

(A.8)

Notice that ε/E1 ± 1 > 0 if Kod 6= 0, and that the expressions reduce as expected to

the TDA case Lvc
vc(ω) = L1(ω) when Kod = 0 (recall that in fact |Kod| =

√
ε2 − E2

1). In
the TDA case there is no mixing and the transition and “exciton” bases coincide. The
energy of the two–level transition is reduced from εc − εv to ε. The same calculation
as above also yields the completeness relation ∑λλ′ An1n2

λ N−1
λλ′A

n3n4 ∗
λ′ = δn1n3 δn2n4 .

As a final step, we write the full propagator in space–time coordinates. The
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(inverse) Fourier transform of Eq. (A.8) is simply given by the respective trans-
forms of L1 and L2, so that we have L1(t13) = −iθ(t3 − t1) exp(iE1(t1 − t3)) and
L2(t24) = iθ(t2− t4) exp(−iE1(t2− t4)). Now we introduce the single–particle wave
functions ϕn(r) and obtain the four–point L as

L(1423) =Lvc
vc(t1423)ϕv(r1)ϕ∗c (r2)ϕ∗v(r3)ϕc(r4)+

Lvc
cv(t1423)ϕv(r1)ϕ∗c (r2)ϕ∗c (r3)ϕv(r4)+

Lcv
vc(t1423)ϕc(r1)ϕ∗v(r2)ϕ∗v(r3)ϕc(r4)+

Lcv
cv(t1423)ϕc(r1)ϕ∗v(r2)ϕ∗c (r3)ϕv(r4).

(A.9)
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Appendix B

Supercells

We briefly introduce here, for reference, the technique of calculating finite momem-
ntum quantities using supercells. Here by supercell we intend a simulation cell
that contains multiple repeated copies of the crystal unit cell along the directions
in which the crystal itself is periodic: hence the x and y directions for 2D systems.

Starting with the primitive lattice vectors ai that define the unit cell in real space,
the reciprocal ones bi are defined as ai · bj = 2πδij, and a wave vector inside the
reciprocal unit cell is given by k = ∑i kibi = ∑i

ni
Ni

bi (0 ≤ ni ≤ Ni − 1). Here, ki are
the fractional coordinates and Ni represents the number of real–space unit cells along
the i–direction (when the Ni go to infinity, we have a continuum of wave vectors).
Therefore, each supercell size Nx NyNz can accommodate the real–space periodicity
of a perturbation with a corresponding wave vector k (like the periodicity of a lattice
vibration). This means that by performing a simulation at the Γ point of a specific su-
percell, we also obtain information about the eigenvalues and eigenvectors relative
to the reciprocal space k–points with compatible periodicities, which and are then
folded onto Γ in the supercell. This is exemplified in Fig. B.1 for the energy band of a
monoatomic, 1D crystal with lattice parameter a.1 If we double its lattice constant,
a2 = 2a, then the BZ size is halved and the k–point at the zone edge is folded onto the
Γ point in the new “supercell” band structure (blue line). If we perform a calculation
at Γ on a system four times the original size, a4 = 4a, we then obtain both the state
at the zone edge (now at half the periodicity of the new supercell) and a new one
coming from the zone center (red lines). This also makes clear that by resorting to a
supercell calculation, we are trading k–points for bands, i.e. decreasing the set spanned
by the k–index at the cost of increasing the one spanned by the n–index.

In order to define the supercell lattice vectors, aSi, and the supercell fractional
coordinates, kSi, we use the supercell matrix:[129]




aS1
aS2
aS3


 =




N1 0 0
0 N2 0
0 0 N3






a1
a2
a3


 ,




kS1
kS2
kS3


 =




N1 0 0
0 N2 0
0 0 N3






k1
k2
k3


 . (B.1)

Here, a k–point is correctly folded onto Γ in the supercell if the kSi are integers.
For example an M and a K point of an hexagonal BZ have fractional coordinates
(0, 1/2, 0)T and (1/3, 1/3, 0)T respectively. According to Eq. B.1, we need a 1 ×
2× 1 supercell (i.e. aM2 = 2a2, aM1 = a1, aM3 = a3) to fold M onto Γ, and a 3×
3× 1 supercell for K.2 We performed supercell BSE calculations in order to provide

1This is given by the tight–binding expression Ek = ε + 2γ cos(ka) where ε and γ are parameters.
2A smaller supercell for K can actually be obtained by rotating the lattice vectors to a

√
3×
√

3× 1
configuration.
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FIGURE B.1: Folding band states onto the Γ point in a one–dimensional crystal. The black
line is the dispersion in the primitive BZ, the blue line is the folded part when the real space
lattice constant is doubled, and the red lines are the folded parts when the lattice constant
becomes four times the original size. A band calculation at the Γ point in the latter supercell
BZ will net the folded red and blue points, which are labeled, as additional bands.

support to the TBEM predictions[97] and to test the implementation of the finite–
q BSE in the Yambo code, providing as a result equivalent finite–momentum wave
functions and energies to the ones shown in Fig. 2.10.

However, performing supercell calculations quickly becomes impractical when
the size N = N1N2N3 of the selected supercell increases beyond the first few in-
tegers, since the number of electrons in the system scales accordingly: in order to
maintain the same level of convergence as in the unit–cell calculations, the follow-
ing observations must be made. (i) The total number of k– or q–points Nk and Nq
needed for convergence is reduced by a factor N . (ii) The number of states (bands,
excitons, phonons) needed for convergence is increased by a factorN . (iii) The num-
ber of G–vectors needed for convergence is also increased by a factor N , since the
size of a supercell G–vector is a N –submultiple of the corresponding unit–cell one,
but they have to achieve the same energy cutoff.

It is possible to show that the minimum supercell size needed to fold a k–point
with coordinates (n1/N1, n2/N2, n3/N3)T is just the least common multiple of the Ni,
not their product. This is achieved by constructing a non–diagonal supercell, where
off–diagonal elements are added to the supercell matrix:[129]




kS1
kS2
kS3


 =




S1 S12 S13
0 S2 S23
0 0 S3






k1
k2
k3,


 (B.2)

where the S–elements (0 ≤ S12 < S2, 0 ≤ S13, S23 < S3) can be found in such a way
that the kSi are integers and the new supercell (where the new lattice vectors are not
related to the original ones by a simple scaling factor) has the desired minimal size.
We make use of non–diagonal supercells in Chapter 3. We have developed a Python
script compatible with the QUANTUM ESPRESSO code, to generate input files for
any supercells, diagonal or non–diagonal, starting from the input file of a unit cell.
Additionally, the supercell atomic positions can be displaced according to a phonon
mode with the correct wave vector q if such mode has been previously calculated in
the unit cell with DFPT. Such a static displacement is obtained from Eq. (1.99) with
a fixed t, e.g.,

uλq
Liα(t = 0) =

c√
Mi

Re
{

eiq·τL ξ
λq
iα

}
, (B.3)
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g2

g1

G1

G2

Unit cell

Supercell

FIGURE B.2: Unit cell versus supercell in reciprocal space. A two–dimensional, hexagonal
BZ (blue) is shown alongside its six nearest neighbors. The neighbors are the translation
of the original hexagon by a reciprocal lattice vector G. The q–point discrete sampling is
shown with the blue dots. In red, the BZ corresponding to a 2× 2 real–space supercell is
shown, its area being four times smaller. The supercell q–point sampling is shown with red
dots and three additional repetitions, two lying on the border of the original unit cell BZ and
one completely outside, are displayed. They are connected to the original supercell BZ by a
supercell reciprocal lattice vector g.

where c is a custom scaling factor.

B.1 Folding of the response function χ

For the reasons explained above, the static RPA screening function χRPA
GG′ (q), Eq.

(1.47), which includes sums over G–vectors and band states and must be computed
for a sufficiently large number of GG′ components, is difficult to compute for large
supercells. In order to obviate this problem, we developed a Python script that, tak-
ing as input a χ computed in the unit cell (uc), folds it onto a diagonal supercell (sc)
of choice, provided the q–point samplings of the uc and sc are commensurate. Let us
denote the uc reciprocal space vectors with capital letters and the sc ones with small
letters. We know, because the supercell is diagonal, that each uc G–vector must be
a multiple of some sc g–vector. We also know, because the momenta grids are com-
mensurate, that each uc Q–point is related to a sc q–point by a specific sc g–vector, so
that Q = q + gQ (gQ can and will be 0; these observations are clarified by looking at
Fig. B.2). The next observation is that the sum of gQ with a uc G–vector must be a sc
g–vector, so that g = G + gQ. Therefore, the routine matches the uc and sc extended
Q + G grids (see Figure) and finds gQ for each Q–point. Ultimately it converts a
previously computed Yambo database for χ on the uc Q + G grid to a sc database in
the q + g grid that can immediately be read by the code in the context of a supercell
BSE calculation. In short, the operation implemented is shown below:

uc→ χG1G2(Q) = χ(Q + G1, Q + G2) = χ(q + gQ + G1, q + gQ + G2)

= χ(q + g1, q + g2) = χg1g2(q)← sc.
(B.4)

Both of the implementations described here were developed in the form of
yambo–py3 classes (respectively called supercell.py and foldvX.py).

3See https://yambopy.readthedocs.io/en/latest/introduction.html.

https://yambopy.readthedocs.io/en/latest/introduction.html
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Appendix C

How many single–particle
transitions make up a converged
exciton?

In order to reduce the excitonic Hamiltonian size and make its diagonalisation more
efficient, while performing a BSE calculation, one should only include the single–
particle transitions (cvk) that give a finite contribution to the excitonic states of in-
terest. However, the choice of such transitions is somewhat delicate in BN, where
the excitonic weights can decay slowly in reciprocal space. Let us consider bilayer
hBN. In Fig. C.1(a), The transition energies ∆cv(k) = Ec(k)− Ev(k) obtained from
the disentangled GW valence and conduction bands are shown in different colors.
In order to obtain converged ab initio results for the absorption spectra in multilayer
hBN, one might be tempted to only include in the calculations the area around the
K point or along the KM region in the BZ (transitions below lines (A), (B) or (C) in
the figure). This seems justified by looking at Fig. C.1(b), which shows the weights
∑cv |Ψλ

cv(k)|2 of the electronic transitions in the BZ for the lowest-bound bright exci-
ton. However, it can be seen from Fig. C.1(c) that this would produce unconverged
spectra. In fact, transitions up to 12 eV and located in the middle of the BZ still give
non–negligible contributions to the first exciton, even though the band gap is at 7
eV and the exciton close to 5.5 eV. This is due to the fact that the Fourier intensities
decay slowly away from the K point. Therefore, the converged result is obtained by
increasing the energy window included in the calculation up to the π∗-σ∗ crossing
((E) lines in Fig. C.1(a)-(b)).
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FIGURE C.1: Transition energy region (TER) for absorption, in the case of bilayer hBN. In
(a), the transition energies obtained from the disentangled π and π∗ bands are shown with
different colors in the relevant part of the BZ. The lowest σ → σ∗ transition is shown in
black. The horizontal lines labeled from A to E represent different TERs. They include (A)
only the K point, (B) the lowest transition along KM, (C) all transitions along KM, (D) parts
of the ΓM and ΓK directions, (E) all energies of the relevant region. The excitonic weights
in k-space for the first bright exciton are shown in (b). Most of the weight comes from the
area around the K point. The intersections between the irreducible wedge of the BZ (white
triangle) and the white dashed circles labeled A,E represent the fraction of the BZ which
is included in the BSE calculations in the two cases. The imaginary part of the dielectric
functions obtained using the five TERs from A to E are shown in (c). It can be seen how only
a very wide TER – in this case the one labeled (E) – is able to reproduce the fully converged
result (gray shadow).
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Appendix D

Computational details for all the
results presented in the Thesis

In this Appendix we give the computational details regarding all the first–principles
calculations presented in this Thesis: converged values, tips for calculations, numer-
ical accuracy and issues, et cetera.

D.1 Sections 2.2 and 2.3

These Sections were concerned with optical absorption and excitonic Davydov split-
ting in multilayer hBN (from monolayer to bulk).

The QE DFT–LDA calculations were performed using norm–conserving von
Barth–Car pseudopotentials. The DFT convergence of the energy cutoff (110 Ry be-
ing the maximum value used) and of the k–point grid (12× 12× (1)/(4)) is standard
procedure. However, if a subsequent Yambo calculation is in order, the following ad-
ditional caveats should be considered: (i) if including a high number of conduction
bands, make sure that they accurately converged. (ii) Non–symmorphic symme-
tries should be disabled. (iii) If dealing with a non–bulk system, it is advisable to
position the system within the simulation supercell in such a way that it does not
break the symmetry of the discrete real space grid used in the Fast Fourier Trans-
form (FFT) routine. For example, if z = 0 is the bottom of the supercell, and the
interlayer distance is d, the z–coordinates for the layers of a bilayer system should
be −d/2, d/2; in the trilayer case it should be −d, 0, d. This will help Yambo identify
correctly important symmetries (such as inversion symmetry).

Table D.1 summarizes the most important parameters needed to obtain con-
verged GW π and π∗ bands and converged (lowest–lying) excitonic peaks.

The convergence of the internal Yambo parameters was carefully checked by reg-
ularly increasing each one until differences in band energies (for GW) or excitonic
peak positions (for BSE) were less than 0.01 eV each time (except for the pentalayer,
where the threshold was increased to 0.02 eV), which is the precision of the GW
method. As we are dealing with quasi–2D materials, special attention was paid to
the amount of vacuum space introduced between repeated copies of the systems in
the vertical direction. The Coulomb cutoff allows convergence with a separation dis-
tance of vz = 20 Å. Another important observation is that if h is the thickness of the
system and Lz = h + vz the supercell height, as we increase the number of atomic
layers Lz becomes larger, and consequently we might need to use a denser k–point
mesh and to sum over more G–vectors. We will also need to some over more un-
occupied states since the number of electrons in the system is increased. Table D.1
summarizes the needed parameters to obtain converged GW π and π∗ bands and
converged (lowest–lying) excitonic peaks.
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System k–point mesh number of bands LFE cutoff (Ry)
1L 24× 24× 1 120 10
2L 36× 36× 1 200 10
3L 42× 42× 1 200 9
5L 48× 48× 1 350 12

Bulk 18× 18× 6 280 14

TABLE D.1: Size of the k–point mesh, number of bands and energy cutoff of the local field
effects (LFE) in the RPA screening used in the GW and BSE calculations of monolayer (1L),
bilayer (2L), trilayer (3L), pentalayer (5L) and bulk hBN. Only the highest values used be-
tween the GW and the BSE calculations are reported.

In the GW case, the plasmon–pole approximation was used for the computa-
tion of the electronic response function.[158] Its validity was checked, for the mono-
layer, against the direct integration in frequency space, yielding excellent agreement.
Moreover, our GW bandgap value (7.26 eV) for the hBN monolayer is in good agree-
ment with other results obtained with different many–body codes (7.36 eV[95] and
7.37 eV[159]). The numerical shift of 0.1 eV is entirely due to the underlying DFT cal-
culation: the cited results can be obtained exactly by switching to the optimized lat-
tice constant for the monolayer. Our optical spectrum for the monolayer also agrees
with the one in Ref. [95].

An additional convergence check was performed on the monolayer, by decreas-
ing the convergence threshold by almost an order of magnitude (using a 48× 48× 1
k-point mesh, a vacuum separation of 30 Å, and summing up to 400 states). The
results for GW band gap and excitonic peak positions differ by about 0.03 eV (rigid
shift) from the ones obtained with the parameters listed in Tab. D.1. We conclude
therefore that our results are well converged. Our reference calculations for the bulk
system (convergence parameters also listed in the Table) are in agreement with pre-
viously established results.[21, 23]

D.2 Section 2.4

In this Section we calculated the exciton dispersion curves for BN systems (bilayer,
trilayer, bulk) using the finite–q BSE.

The convergence parameters used are essentially the same as in the previous
Section. The DFT–LDA pseudopotentials where changed to the “fhi” ones from Ref.
[160]. For bulk, the GW and BSE k/q–grid was increased to 36× 36× 6 in order to
have better reciprocal–space resolution.

D.3 Section 3.2

Here we computed electron–phonon couplings and the zero–point redshift of the
absorption spectrum in monolayer BN.

The prescriptions from the previous two Sections were followed, with the cal-
culations being now performed at the optimised lattice constant for monolayer BN.
Checking for the converged values of the total energy and of the forces acting on
each ion (respectively for the scf and DFPT calculations) is standard procedure, and
the q–point grid sampling for the interatomic force constants was 24 × 24 × 1. In
order to guarantee a very accurate convergence of the electron–phonon self–energy,
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FIGURE D.1: (a) Figure referring to Sec. 3.2. The 8100, randomly generated q–points in
the 2D BZ used for the calculation of electron–phonon couplings in monolayer hBN. (b)
Figure referring to Sec. 3.4. The imaginary part of the dielectric functions are plotted for
the hBN unit cell (blue, DFT–GW–BSE calculation on fine k–point grid) and non–diagonal
supercell (red, DFT–scissor–BSE calculation on coarse k–point grid). Only the first 480 states
are included in the iterative solution of the BSE in the supercell. The black vertical line is at
the energy of the indirect quasiparticle band gap. Both spectra have a broadening parameter
of 0.04 eV. Differences in the spectra (due to finite k–point samplings) only occur in the
energy region above the band gap. In the relevant energy region below the band gap, both
spectra are identical.

40 electronic states were included over a q–grid of 8100 (90× 90) randomly generated
q–points in the 2D BZ (randomized q–samplings can accelerate convergence for low–
dimensional systems) — see Fig. D.1(a). The calculations of the required electron–
phonon coupling matrix elements gλq

nmk were automatised using Python scripts. The
random integration method (Sec. 1.5.2) was used to attenuate numerical instabili-
ties in the self–energy q–integrations. The convergence of the electron–phonon self–
energy was checked on the full spectral functions for the band edges at the high–
symmetry points in the BZ (not just on the band gap energies). It is worth noting
that the Newton method (default option) fails to solve properly the quasiparticle
equation, Eq. (1.55), and gives wrongly shifted energies. Therefore, we apply the se-
cant method directly on the spectral function ImGnk(ω) for each corrected (nk) state
with an external Python script.

Supercells.12 Extreme care was taken in ensuring that every frozen–atoms super-
cell calculation shared the same level of convergence as the unit–cell one. This was
done by properly scaling the internal yambo convergence parameters, and compar-
ing the results of the calculations. The same approach was taken in the construction
of the scissor operator for the supercells, in such a way that the resulting scissor+BSE
supercell spectra coincided with the GW+BSE unit cell one.
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FIGURE D.2: Figure referring to Sec. 3.4: static exciton–phonon couplings between the i1 and
i2 excitons and the 12 different phonons at q = 1

2 |ΓK|. We compare results obtained from the
full second derivative of the response function (dashed blue lines) — which contains also
derivatives of the exciton energies — and from the second derivative of just the oscillator
strengths (full red lines), see Eq. (3.36). An average over polarization of the incoming light
and sum over the 6 equivalent directions of phonons with wave vector |q| is performed.

D.4 Section 3.4

The phonon frequencies and eigenmodes were computed with DFPT in the unit cell,
using a q–point grid sampling of 18× 18× 6. The G0W0 and semi–self–consistent
GW (sscGW) corrections to the band energies were obtained with Yambo for the unit
cell, using the plasmon–pole approximation for the dynamical screening. The di-
rect and indirect gaps were converged with the same parameters as in the previous
Sections, the QP corrections being computed for the last 4 valence bands and the
first 6 conduction bands (the sscGW amounts to an additional opening of the band
gap by 0.22 eV with respect to the one–shot G0W0 calculation). The fully converged
result was subsequently used to construct a k–dependent scissor operator (see next
Section) in such a way that, when applied to the supercell, it would yield exactly
the same optical absorption spectrum as the unit cell (here we neglect the changes in
the GW corrections due to lattice displacements). The BSE in the supercell is solved
iteratively in the Yambo code for the proper response function χ using the SLEPC
library[63] for the first 600 eigenvalues and eigenvectors. In the unit cell, a reason-
ably converged calculation of the static screening can be obtained by considering an
18 × 18 × 6 k–point grid and summing 250 bands. However, the energy window
close to the absorption edge is already converged with a 12× 12× 4 sampling. As

1For a general discussion about how to scale some previously converged parameters in the unit cell
in order to obtain an equivalent accuracy level in a supercell, see App. B.

2For a general discussion about how to use the scissor operator to replace a GW calculation, and
about the specificities of BN systems, see Sec. D.5.
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FIGURE D.3: Linear regression to obtain the scissor operator for bilayer hBN. The GW band
energies throughout the IBZ are plotted against the DFT–LDA values. Valence bands are in
red, conduction bands π∗ and σ∗ are in green and blue, respectively. The red and blue lines
represent the linear fits for valence and conduction states, respectively.

the non–diagonal supercell contains 6 times the atoms of the unit cell, the conver-
gence parameters were changed accordingly, using a 12× 2× 4 k–point grid, and
including enough states in the Bethe–Salpeter kernel to span the transition energy
region relevant for the absorption edge. The static screening was computed sum-
ming 1.2 · 6 · 250 bands. The factor 1.2 is a safety margin to account both for the
folded bands from the zone edge and for spurious finite–q bands (see Fig. D.1(b)
for a comparison of the optical absorption spectra ε

(0)
2 (ω) between unit cell and su-

percell). All in all, the spectra of ε
(2)
q2 (ω) and Rsp

q (ω) shown in Figs. 3.10 and 3.11
required∼ 70 DFT–RPA–BSE calculations in the (displaced) 24–atoms non–diagonal
supercell. This figure arises when atomic displacements, phonon modes and light
polarisation directions are all taken into account. In order to manage the volume of
data required both to pre–process and post–process the actual simulations, several
Python scripts, interfaced with both QE and Yambo, were developed. The main ob-
jective of the scripts were: (i) the automatic generation of displaced supercells and
relative input files for the two codes; (ii) the direct extraction of the exciton oscillator
strengths and energies from the Yambo databases (ensuring the highest possible pre-
cision), followed by externally performed finite–difference calculation of the second
derivatives as well as construction of the required response functions.

Concerning Eq. (3.36), its numerical verification is shown in Fig. D.2.

D.5 Scissor operator

A scissor operator is a correction applied “by hand” to the DFT Kohn–Sham energies
in order to avoid computationally expensive GW calculations. This can be useful
when the precise value of the QP band gap is not a quantity of interest, or when a
BSE calculation is feasible but a GW one is not. The latter case typically applies to
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supercell calculations. The scissor energy correction may be just a rigid shift of the
conduction bands, but in order to improve accuracy such shift can be made momen-
tum/energy dependent to better reflect the behaviour of the actual GW self–energy.
If converged GW calculations are already available, for example in the unit cell, then
the scissor operator can be “tailored” so that the optical spectrum resulting from a
DFT–scissor–BSE calculation is exactly the same as that of a DFT–GW–BSE one. In
this case, the GW energies thoroughout the BZ can be fitted with a linear function,
as it is shown in Fig. D.3 for bilayer hBN: the GW band energies are plotted versus
the LDA ones, with the valence bands in red and the conduction ones in blue/green.
In order to obtain a correct optical absorption spectrum for BN systems, the fitting
on the conduction bands should include only the π∗ states (in green) and neglect the
σ∗ ones (blue) which have a different energy shift while not contributing to optical
transitions. We call the fitted conduction and valence band slopes sc and sv, respec-
tively. The DFT band gap is εg = εcB− εvT and the intercept of the fits gives the band
gap GW correction, ∆g = ∆cB + |∆vT|. Then, the Kohn–Sham states are corrected as
follows:

Evk = εvT − sv(εvT − εvk),
Eck = εcB + ∆g + sc(εck − εcB).

(D.1)

If sc = sv = 1 we just obtain a rigid shift by ∆g of the whole band structure.
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Appendix E

Reference for expressions
appearing in the literature

E.1 Indirect absorption in silicon: Ref. [36]

In this paper, the authors write the following dielectric function for indirect optical
transitions mediated by a single phonon:

ε2(ω) = C(ω) ∑
ijkqλ

|S1 + S2|2Pδ(εik−q − εjk + h̄ω± h̄Ωqλ) (E.1)

Here, Ωqλ is the phonon frequency and εnk is the energy of an electronic state. The
prefactor C(ω) reads 2 4π2e2

Vm2 Nk Nqω2 with V being the unit cell volume. We also have

S1(k, q) = ∑
m

e · vimk−q gqλ
mjk

εmk−q − εik−q − h̄ω + iΓmk−q

S2(k, q) = ∑
m

gqλ
imk e · vmjk

εmk − εik−q ± h̄Ωqλ + iΓmk
,

(E.2)

with vijk and gqλ
mjk being the optical matrix element in the dipole approximation and

the electron–phonon coupling matrix element, respectively. The light polarisation
is e and P = (nqλ + 1

2 ± 1
2 )( fik−q − f jk) is the dependence on the occupation factors

(Bose–Einstein distribution n for phonons, Fermi–Dirac distribution f for electrons).
Finally, Γmk represents a broadening of the intermediate electronic states. Based on
the result obtained in Section 3.3, we can make the following observations on Eq.
(E.1):

• Eq. (E.1) is in the “Tamm–Dancoff” approximation (in this context, it means
only considering the contributions of resonant transitions i→ j), which is only
justified if εjk − εik−q > 0 and larger than any phonon frequency. Otherwise
there are more terms involved than just S1 and S2 (their relevance might be
negligible anyway).

• The terms in Eq. (E.2) refer to the photon absorption case exclusively. How-
ever, if there is competing emission (i.e. phonon–assisted recombination) from
the final state, the screening is reduced and one should consider the net ab-
sorption rate, which is the difference between absorption and emission rates
for any transition i→ j and involves more terms than just S1 and S2.

• The Fermi functions in the factor P seem to represent the dependence on the oc-
cupation factors in the case of the net absorption rate for direct transitions.[43]
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The rest of the P–factor instead seems to refer to the absolute absorption rate for
indirect transitions. Even in the approximation of f j << fi where j is a conduc-
tion and i a valence band, the occupation dependence has a slightly different
form.

• The factors Γnk are added “by hand” and don’t come out of the time–dependent
perturbation theory employed in order to derive this formula (they can
nonetheless be computed separately with an electron–phonon self–energy
calculation).
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Appendix F

Magnitude of the Davydov
splitting along the wave vector

na (n + 1)a(n� 1)a

�

�0�1�2�j

FIGURE F.1: Scheme of the tight–binding model for two interacting linear chains.

Here we construct a simple tight–binding model to reproduce the difference in
the magnitude of Davydov splitting for states as one goes from Γ (where the split-
ting is 6 meV for phonons, 50 meV for excitons in hBN) to large momentum (where
both splittings drop below 1 meV). The model consists of two identical simple lin-
ear chains with periodic boundary conditions (sketched in Fig. F.1). We consider
for simplicity a basis of localised atomic orbitals |n, X〉, with na being the position
along one linear chain (a is the interatomic distance), X = A, B labeling the two
chains and the resulting Bloch sum being |k, X〉 = 1/

√
N ∑n eikna |n, X〉. The intra–

chain interaction is not important for our purposes, therefore we limit it to the first
nearest neighbours with on–site terms 〈n, X|H |n, X〉 = 0 and hopping elements
〈n± 1, X|H |n, X〉 = c.c. = γ, giving for the two bands of the system the dispersion
E(k) = 2γ cos ka. We are more interested in the long–range inter–chain interaction,
therefore we consider the hopping between sites on different chains up to infinite
order: 〈n, A|H |n, B〉 = β0 and 〈n± j, A|H |n, B〉 = 〈n± j, B|H |n, A〉 = c.c. = β j
with j ∈ [1, ∞) (if only the β0 contribution is retained, the two bands will be parallel
and shifted by 2β0). We obtain the following tight–binding matrix,

M =

(〈k, A|H |k, A〉 〈k, A|H |k, B〉
〈k, A|H |k, B〉 〈k, A|H |k, A〉

)
, (F.1)

whose elements can be easily computed to give the energies E±(k) = 2γ cos ka ±
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FIGURE F.2: Results of the double linear chain model in the one–dimensional BZ. For all
plots γ = −2, β0 = −1, a = 1. a) Davydov splitting with C = 1, β1 = −0.6 and M
converged. b) Plot for increasing values of M (darker curve means larger M) with C = 0.6
and β1 = −0.6. c) Increasing values of |β1| (darker curve means larger |β1|) with C = 1 and
M converged. d) Decreasing values of C (darker curve means smaller C) with β1 = −0.6
and M converged.

[β0 + 2 ∑∞
m=1 βm cos mka]. In order to model the spatial decay of the inter–chain in-

teraction we define βm ≡ β1e−C(m−1), which gives the βm coefficients up to infinite
order from the parameters β1 and C (the latter parameter can be made dependent
on the inter–chain distance). This allows us to write the analytical results

E±(k) = 2γ cos ka±
[

β0 + β1
−1 + eC cos ka
cosh C− cos ka

]
,

EM
± (k) = 2γ cos ka±

[
β0 + β1

−1 + eC cos ka + e−MC(cos Mka− eC cos(M + 1)ka)
cosh C− cos ka

]
,

(F.2)

where the first expression stands for infinite inter–chain neighbors and the second
one for the partial sum to M. Our results, reproducing the strong reduction in the
splitting away from Γ, is displayed in Fig. F.2(a). We make the following observa-
tions: (i) the inclusion of β1, which has the periodicity of the BZ, causes the bands to
come closer together toward the zone edges; (ii) to reproduce the strong bending ob-
served for the Davydov splitting (see e.g. the phonon dispersion of hBN or MoS2),1

it is necessary to have at least a second non–negligible oscillatory contribution (e.g.
β2); this means that (iii) the parameters C and β1, controlling the long–range decay
and the strength of the inter–chain interaction, should take values such that the sum
is not converged after just one term and β1/β0 & 0.5 (Fig. F.2 (b) to (d)).

1See http://henriquemiranda.github.io/phononwebsite/phonon.html

http://henriquemiranda.github.io/phononwebsite/phonon.html
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Appendix G

Temperature dependence in the
finite–difference spectra
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FIGURE G.1: Temperature dependent spectra from Eq. (3.41). The computed spontaneous
emission rate (see Sec. 3.4 of the main text) is shown with a green line for various tempera-
tures. The main phonon modes responsible for the peaks are labeled, as well as the overtones
(“o.”). The peak broadenings as a function of temperature, as well as the effective “excitonic”
temperatures, are discussed in the text. Black dots: experimental PL emission spectrum[83]
(uncorrected for setup response). Blue squares: experimental CL emission spectrum.[84]

In our calculations from Sec. 3.4, the temperature–dependent exciton lifetime,
which is related to the imaginary part of the exciton–phonon self–energy and in-
versely proportional to the line broadenings η, remains an empirical parameter. As
the imaginary part of our response functions intrinsically gives a Lorentzian shape
for single peaks (Im[ω− E− iη]−1), we focus on the range of temperatures in which
the experimental phonon–assisted peaks can also be reasonably described with a
Lorentzian broadening (from 0 to 100 K).[83] We use a linear model where the line
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broadening η is given by[109]

η = Γ0 + aT + bNBE(T), (G.1)

where NBE = [eEO/kT − 1]−1 is the Bose-Einstein distribution. The values of the
parameters are taken from the experimental fit in Ref. [83]: Γ0 = 3 meV, a = 0.1
meV/K, b = 150 meV, and EO = 25 meV. For completeness, in Fig. G.1 we provide
a version of Fig. 3.11(b) of the main text with several temperatures (T= 8, 20, 60 and
100 K). The effective “excitonic” temperatures Texc entering the Boltzmann factor of
Eq. (3.41) of the main text are taken from the data points in Fig. 1c of Ref. [19]. At
the lowest temperature (8− 10 K, top frame), both the experimental spectra obtained
from photoluminescence (PL, black dots, from Ref. [83]) and cathodoluminescence
(CL, blue squares, from Ref. [84]) are compared with the computed one (green line).
The temperature–dependent data are only available for the PL spectrum. Notice
however that, contrary to the CL spectrum, the PL one is uncorrected for the re-
sponse of the luminescence experimental setup, giving rise to wrong relative peak
intensities in the low–energy structure.
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Appendix H

The many–body case for
phonon–mediated absorption

We have seen with Eq. (1.76) that the response function χ can be generated by the
derivatives of the interacting electron density ρ with respect to an external perturba-
tion φext. We will do this now, only graphically, by considering an electron density
where both the electron–electron and the electron–phonon interactions are present
at first order. The resulting terms are displayed in Fig. H.1. The zero–order contri-
bution (a) gives the non–interacting eh pairs described by χ0. To fix the ideas, we
can imagine that all the electronic lines in the upper halves of the diagrams refer
to conduction bands c, and all those in the lower halves to valence bands v.1 The
first–order contribution in the electron–electron interaction (b) gives rise to the BSE
with the kernel of Eq. (1.78). The first–order contribution in the electron–phonon
interaction (c) produces terms from (1) to (4) in Fig. H.1. Here, the (c1) and (c2)
contributions would be normally already included in the electron–phonon single–
particle QP corrections if the single–particle GF is G: this is why analogous terms
are not considered in the electron–electron case. However, the dynamical part of the
electron–phonon interaction in this diagrams contributes to the satellite structure,
therefore we explicitly list these terms here. Contribution (c3) is a new one, that
we will call interference term.2 We will neglect the last phononic term (c4) for two
reasons: (i) a contribution of this type is already approximately incorporated in the
electron–phonon coupling matrix elements gµq

nmk if they are computed within DFPT
(as mentioned in Sec. 1.6.5; more information in Ref. [49]), and (ii) these terms are
zero in the TDA, since for phonons it implies that gµq

vck = 0. Finally, at first order
in both the electron–electron and the electron–phonon interactions, we obtain the
terms in Fig. H.1(d): these are be the main new contributions that will describe the
exciton–phonon coupling.

The exciton–phonon scattering cross–section is described by the following pro-
cesses. First, an electron–hole pair is optically created; then the electron or the hole
is scattered by a phonon, changing its energy and momentum; now the scattered
particle interacts with the other one via the electronic kernel K = W − 2v; later the
lost energy and momentum are recovered by the eh pair via another phonon scat-
tering, and ultimately the excitation annihilates emitting optical light. A first–order
dynamical correction can then be obtained for the full static BSE (sBSE) by going
to all orders in the electronic part: let us imagine inserting an infinite number of
kernels K = W − 2v in between the start and end times of the phonon interaction,
obtaining the expression in Fig. H.1(e). The kernels that fall outside the phonon

1Fixing this actually implies taking the Tamm-Dancoff approximation.
2In Ref. [107] this is called “phonon exchange diagram”.
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interaction part reconstruct the response function χ from the sBSE. This final expres-
sion contains the (a), (b), (c) and (d) terms. It is clear that this expression represents
a first–order dynamical correction to the sBSE.

Note that a similar development could be made by considering the dynamical
part of the electron–electron interaction (and indeed this is the goal in Ref. [38]) in
order to describe plasmonic satellites, however this is not our interest here. There-
fore, we will maintain the static approximation for the BSE electronic kernel: the full
kernel is then made dynamical just by the presence of the electron–phonon interac-
tion mediated by the phonon propagator D(ω).

The full expression for (e) is discussed in Secs. 4.2.1 and 4.2.2, and explicitly
derived in App. I.
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FIGURE H.1: Response function χ at zero and first orders in the electron–electron and ep interaction.
(a) Non–interacting eh pairs, Eq. (1.44). (b) Static, electronic eh interaction at first order (i.e. static BSE,
sBSE, Eq. (1.87)). We are not interested in its dynamical part here, which is neglected. Note that the
single–particle GF G (solid lines) already includes quasiparticle corrections, Eq. (1.57). (c) Dynamical ep
interaction at first order. The phonon QP correction is either neglected or will be summed at a later step
to all orders. (d) Both dynamical ep and static eh interaction present at first order (the static phonon
contribution to the eh interaction is either neglected or included in the kernel K). (e) By keeping the ep
interaction at first order [(c) and (d)] and summing the sBSE kernel at all orders [(a)+(b)], a correction
to the sBSE at first order in the ep interaction can be obtained (Eq. (4.21) and Ref. [113]).
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Appendix I

Reference for the derivation of the
exciton–phonon self–energy

In this Appendix we sketch the derivation of the exciton–phonon self–energy Eq.
(4.24) and Fig. H.1(e). We follow Ref. [38] and provide several useful identities for
reference. Our conventions for the energy and momentum flows are shown in Fig.
I.1(b), as well as a scheme of the notation we employed. These choices will lead to
the indexing of the exciton–phonon coupling (ExPC) used in Eq. (4.25), which is
particularly favourable in the case of finite–momentum matrix elements computed
with QE and Yambo. The mathematical expressions will soon become large and com-
plicated; however the schematic representation in Fig. I.2 provides a reference that
emphasises the physical meaning of the processes considered.

We consider the two–particle correlation function in the excitation basis, LKK′(t13)
(t1 and t3 being the initial and final times, respectively). Let us recall that when the
four–times dependence of L is collapsed to just two times, in order to describe si-
multaneous electron–hole pair generation, we just have χ(t13) = −iL(t13). Now,
L(0)
KK′(t13) is the correlation function obtained in the BSE with a static electronic

kernel (sBSE, Sec. 1.5):
L(0) = L(0)

0 + L(0)
0 KL(0), (I.1)

where L(0)
0 is the independent–particle electron–hole propagation, corresponding to

χ0 elsewhere in the thesis. Notice that in this case we can pass from the excitation to
the excitonic basis, where L(0) is diagonal, as

L(0)
KK′(t13) = ∑

α

AKα
[
AK′α

]∗
L(0)

α (t13) = ∑
α

AKα
[
AK′α

]∗
θ(t3 − t1)e−iEα(t3−t1). (I.2)

For now, our L(0) can be equivalently the full one or the one without the long–range
components of the Coulomb interaction (elsewhere denoted as L or χ), as can its
eigenvector components A and exciton energies Eα. We denote as Ldyn

KK′(t13) the cor-
relation function given by the first–order correction to the static kernel in the dy-
namical phonon propagator Dµq, Eq. (I.24), as in Eq. (4.21). Then, the full correlation
function up to first order in the dynamical effects is given by

L(1)
KK′(t13) = L(0)

KK′(t13) + Ldyn
KK′(t13). (I.3)
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I.1 Several identities used in the derivation

T–matrix. We can rework the sBSE in order to cast the electron–hole interaction com-
pletely inside a new quantity, called the T–matrix:

L(0) = L(0)
0 + L(0)

0 TL(0)
0 . (I.4)

This leads, after comparison with the inverted Eq. (I.1), to the following expression
for T:

T = K + KL(0)K (I.5)

(a graphical representation of this equation is shown in Fig. I.1(a)). The usefulness
of T consists in the fact that it allows us to rewrite the dynamical correction in Eq.
(I.3) explicitly in terms of a modified dynamical kernel Ξ which, as we will see, is in
turn written in terms of the T–matrix:

L(1) = L(0) + Ldyn = L(0) + L(0)Ξ[T]L(0). (I.6)

The expression of T entering the calculations, with explicit transition indices and
time variables, is:

TK1K2(t1423) = iKK1K2 δ(t13)δ(t34)δ(t12)− ∑
K3K4

KK1K3 L(0)
K3K4

(t31)KK4K2 δ(t12)δ(t34)

= iKK1K2 δ(t13)δ(t34)δ(t12)− SK1K2(t31)δ(t12)δ(t34).
(I.7)

Replacing the static electronic kernel with a difference of single–particle transitions and
exciton energies. By reworking the eigenvalue equation for the excitonic Hamiltonian,
Eq. (1.84), we obtain the following identities:

∑
K′

KKK′AK
′

α = [εck − εvk − Eα]AKα ,

∑
K

KKK′
[
AKα
]∗

= [εc′k′ − εv′k′ − Eα]
[
AK′α

]∗
.

(I.8)

Notice that here we indicate the single–particle energy associated to Gnk as εnk and
not as Enk like in the main text: this is to avoid confusion with the exciton energies.
By using Eqs. (I.2) and (I.8) we can rewrite the S function in the T–matrix expression,
Eq. (I.7), in terms of single–particle energies and the excitonic quantities:

SK1K2(t31) = ∑
α

[εc1k1 − εv1k1 − Eα][εc2k2 − εv2k2 − Eα]AK1
α

[
AK2

α

]∗
L(0)

α (t31). (I.9)

Expressing the three–times L(0) in terms of time–ordered, two–times L(0). As can be
seen from the diagrams in Fig. I.2, Ldyn contains, to the left and to the right, two sBSE
correlation functions depending on three time variables: we have L(0)

(cvk)(c1v1k1)
(t12′11′)

and L(0)
(c2v2k2)(c′v′k′)

(t3′34′3), respectively. In order to evaluate the time integrals involv-
ing these functions, we notice that they can be reduced to two–times L0 functions
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via the following identity:

L(0)
(cvk)(c1v1k1)

(t12′11′) = θ(t2′ − t1′)e
iεc1k1

(t1′−t2′ )L(0)
(cvk)(c1v1k1)

(t11′)

+ θ(t1′ − t2′)e
iεv1k1

(t1′−t2′ )L(0)
(cvk)(c1v1k1)

(t12′),

L(0)
(c2v2k2)(c′v′k′)

(t3′34′3) = θ(t3′ − t4′)e
iεc2k2 (t4′−t3′ )L(0)

(c2v2k2)(c′v′k′)
(t3′3)

+ θ(t4′ − t3′)e
iεv2k2 (t4′−t3′ )L(0)

(c2v2k2)(c′v′k′)
(t4′3)

(I.10)

(this can be proven relatively easily for L(0)
0 = GG; the proof for L(0) is more cum-

bersome and is done using the T–matrix expression, Eq. (I.4)).

I.2 Specific notation for finite momentum quantities
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FIGURE I.1: (a) Graphical expression for the T–matrix in terms of the sBSE kernel K and
correlation function L(0). (b) Choice of notation and momentum flows for electron–phonon
couplings with simultaneous electron–hole propagation (see also text).

Valence bands are denoted with the letter v and conduction ones with c. If the
phonon scattering happens on the valence band, we denote the momentum transfer
as q ↓, while if it happens on the conduction band we write q ↑. The momentum
flows in both cases are chosen as shown in Fig. I.1(b), so that in terms of transition
indices K we may write

Kq↓
1 = (c1k1)(v1k1 − q),

Kq↑
1 = (c1k1 + q)(v1k1).

(I.11)
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In particular, when expressing the electron–phonon coupling matrix element gqµ
nkn,mkm

using transition indices, we write
[

gµ

K1Kq↓
2

]∗
=
[

gqµ
v1k1,v2k1−q

]∗
δc1c2 δk1k2 ,

gµ

K2Kq↓
1

= gqµ
v2k1,v1k1−qδc1c2 δk1k2 ,

gµ

Kq↑
1 K2

= gqµ
c1k1+q,c2k1

δv1v2 δk1k2 ,
[

gµ

Kq↑
2 K1

]∗
=
[

gqµ
c2k1+q,c1k1

]∗
δv1v2 δk1k2 .

(I.12)

I.3 Calculation of the first–order dynamical correction to the
response function

With reference to Fig. H.1, Ldyn is given by the sum of all the contributions previ-
ously discussed,

Ldyn
KK′(t13) = L[c1]+[c2]+[c3]+[e1]+[e2]+[e3]+[e4]

KK′ (t13). (I.13)

The terms [e1] to [e4] contain the T–matrix, i.e. the full summation of the kernel K to
infinite order, and at first order in K reduce to the [d1]–[d4] terms in Fig. H.1.

Now, we will proceed to write explicitly the [e2] term to emphasise some crucial
aspects of the derivation. The remaining terms can be obtained in a similar way: all
the [e] terms are explicitly shown diagrammatically in Fig. I.2, while the [c] terms
are sketched in Fig. I.3. We have

L[e2]
KK′(t13) = ∑

K1,K2

∫
dt1′2′3′4′L

(0)
KK1

(t12′11′)Ξ
[e2]
K1K2

(t1′4′2′3′)L(0)
K2K′(t3′34′3). (I.14)

Here, the two L(0) functions refer to the propagation of the exciton via a static elec-
tronic kernel before and after the phonon scattering event. The kernel Ξ[e2], which
contains the dynamical phonon scattering at first order (and the static electronic ker-
nel at all orders), refers in particular to the case of the hole component of the exciton
being scattered. The [e1] term refers to the conduction electron being scattered, and
[e3], [e4] are the interference terms.

We can write Ξ[e2] explicitly by looking at the corresponding diagram in Fig. I.2:

Ξ[e2]
K1K2

(t1′4′2′3′) = ∑
K1K2

∑
µq

[
gµ

K1Kq↓
3

]∗
gµ

K2Kq↓
4

iDµq(t1′3′)

∫
dt1′′ t3′′GKq↓

3
(t1′1′′)TKq↓

3 K
q↓
4
(t1′′4′2′3′′)GKq↓

4
(t3′′3′).

(I.15)

Here, we already explicitly introduced the T–matrix and the single–particle GFs G
are given by Eq. (1.57). They may contain GW and/or the electron–phonon quasi-
particle corrections. The first task is the evaluation of the time integrals in Eq. (I.15)
for all the diagrammatic contributions: this will lead us to the exciton–phonon self–
energy. Secondly, thanks to Eq. (I.14), we will obtain the dynamical correction to
L(0) as in Eq. (I.3). This will in turn provide us with an expression for the phonon–
assisted absorption spectrum as χ(1) = −iL(1), Imχ(1)(ω)→ ε2(ω).
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FIGURE I.2: Diagrammatic representation of the terms entering the first–order dynamical
correction to the two–particle response function, Ldyn. The time labels are written in blue.
Only the terms corresponding to Fig. H.1(d) are shown (with the T–matrix replacing the
sBSE kernel: therefore they are denoted with the letter (e).)

The evaluation proceeds as follows. First, we use Eq. (I.10) to break down Eq.
(I.14) in two integrals involving only two–times L(0) functions with different inter-
nal time orderings. Second, we evaluate the internal time integrals appearing in Eq.
(I.15) using Eq. (I.7) for the T–matrix. We also use Eq. (I.8), along with the complete-

ness relation δKK′ = ∑α AKα
[

AK
′

α

]∗
, to simplify the resulting expressions in terms
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X(c)

FIGURE I.3: Graphical representation of the terms corresponding to Fig. H.1(c), where the
T–matrix is not present. The sum of all the Ξ(e) and Ξ(c) terms adds up to the full dynamical
kernel Ξ shown in Fig. H.1(e) and Eqs. (I.6) and (4.21).

of excitonic quantities. In the end, the calculation for [e2] produces two terms: one,
only involving the phonon propagator D, is exactly cancelled by the result for [c2],
while the other remains. Therefore, the resulting contribution from [e2] reads

L[e2]
KK′(t13) = −i ∑

K1,K2

∫ t3

t1

dt1′

∫ t3

t1′
t3′ L(0)

KK1
(t11′)Dµq(t1′3′)

∑
qµ

[
∑
K3K4

∑
β

(
gµ

K1Kq↓
3

)∗
AK

q↓
3

β gµ

K2Kq↓
4

(
AK

q↓
4

β

)∗]
e−iEβq(t3′−t1′ )L(0)

K2K′(t3′3).

(I.16)

The quantity between blue square brackets represents a contribution to the exciton–
phonon coupling coming from this term. The other [e] terms are evaluated in a simi-
lar way and after cancellations with the corresponding [c] terms produce analogous
results.

In particular, we can now write the complete Ldyn in the exciton basis, obtaining
the expression

Ldyn
αα′ (t13) = ∑

KK′

(
AKα
)∗
AK′α′ Ldyn

KK′(t13)

=
∫ t3

t1

dt1′

∫ t3

t1′
t3′ L(0)

α (t11′)Πexc
αα′ (t1′3′)L(0)

α′ (t3′3),
(I.17)

where all the complicated ExcP interaction has been hidden inside an exciton–phonon
self–energy Πexc

αα′ . Notice that in the case of optical absorption, the excitons labeled as
α represent the optical excitations induced by the external laser field: therefore, α
excitons always have q = 0. The internal sum over excitons β, instead, includes
every possible exciton level Eβq that can be connected to Eα0 ≡ Eα by emitting one
phonon with frequency Ωqµ. The self–energy can be written in a “GW”–type form
as

Πexc
αα′ (t1′3′) = ∑

µβq
Dµ

(α,βq)(βq,α′)(t1′3′)L(0)
βq (t1′3′). (I.18)

Here, the exciton–phonon “interaction” D contains the dynamical phonon propaga-
tor D and the quantities between blue square brackets in Eq. (I.16) and analogous
terms, which represent the coupling.
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I.4 Form of the exciton–phonon coupling

We can write the interaction D by making the phonon propagator appear explicitly:

Dµ

(α,βq)(βq,α′)(t1′3′) =− iDµq(t3′1′) ∑
K1K2

(
AK1

α

)∗
Ξqµ,↑↑
K1K2

AK2
α′ [e1]

− iDµq(t1′3′) ∑
K1K2

(
AK1

α

)∗
Ξqµ,↓↓
K1K2

AK2
α′ [e2]

+ iDµq(t3′1′) ∑
K1K2

(
AK1

α

)∗
Ξqµ,↑↓
K1K2

AK2
α′ [e3]

+ iDµq(t1′3′) ∑
K1K2

(
AK1

α

)∗
Ξqµ,↓↑
K1K2

AK2
α′ . [e4]

(I.19)

The Ξ–factors are the ExcP coupling contributions coming from the various terms
in Fig. I.2, the one on the second line being given by the quantity in blue square
brackets in Eq. (I.16). Their explicit expression reads:

Ξqµ,↑↑
K1K2

= ∑
K3K4

∑
β

(
gµ

Kq↑
3 K1

)∗
AK

q↑
3

β gµ

Kq↑
4 K2

(
AK

q↑
4

β

)∗
,

Ξqµ,↓↓
K1K2

= ∑
K3K4

∑
β

(
gµ

K1Kq↓
3

)∗
AK

q↓
3

β gµ

K2Kq↓
4

(
AK

q↓
4

β

)∗
,

Ξqµ,↑↓
K1K2

= ∑
K3K4

∑
β

(
gµ

Kq↑
3 K1

)∗
AK

q↑
3

β gµ

K2Kq↓
4

(
AK

q↓
4

β

)∗
,

Ξqµ,↓↑
K1K2

= ∑
K3K4

∑
β

(
gµ

K1Kq↓
3

)∗
AK

q↓
3

β gµ

Kq↑
4 K2

(
AK

q↑
4

β

)∗
.

(I.20)

This can be written in a considerably more compact form with the additional defini-
tions

gµq↓
βα ≡ ∑

K1K2

(
AK

q↓
2

β

)∗
AK1

α gµ

K1Kq↓
2

,

gµq↑
βα ≡ ∑

K1K2

(
AK

q↑
2

β

)∗
AK1

α gµ

Kq↑
2 K1

.
(I.21)

Thus, we obtain the exciton–coupling matrix element as

G exc
βα,µq = gµq↓

βα − gµq↑
βα . (I.22)

These definitions are chosen in such a way that now the interaction D will be given
by D|G exc|2 if α = α′. Now, the full non–diagonal exciton–phonon self–energy, Eq.
(I.18), is written as

Πexc
αα′ (t1′3′) = −i ∑

µβq
Dµq(t1′3′)G

exc
βα′,µq

(
G exc

βα,µq

)∗
L(0)

βq (t1′3′). (I.23)

Armed with this result, we may now take the cumulant expansion, χc =

χ(0) expΠexcχ(0)
. This will automatically include approximated descriptions of multi-

phonon scattering processes and renormalisations of the exciton energies. If instead
we want to stick to the first order, where cumulant and Dyson approaches coincide,
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then the final result for χ(1) = −iL(1), that is Eq. (I.3), can be obtained by solving
Eq. (I.17) explicitly, using L(0)(t1′3′) = θ(t3′ − t1′) exp[−iEβq(t3′ − t1′)]. In this case
we need to neglect completely the spurious contribution to the renormalisation of
the exciton energy (because it is only treated correctly at all orders) and focus on
the single–phonon satellite. Therefore, we remove the static part of the phonon
propagator and only consider its purely dynamical part, given by (see Eqs. (1.109)
and (1.110))

∆Dλq(t21) = Dλq(t21)− Dst
qλ(t21) =

− i
[
θ(t1 − t2)e−iωqµ(t1−t2) + θ(t2 − t1)eiωqµ(t1−t2)

]
+

2
ωqµ

δ(t2 − t1).
(I.24)

I.5 Dynamical response function

Let us consider first the case of a one–exciton system (α) interacting with a single
phonon at frequency Ω, with a diagonal self–energy. The result is (in Fourier space)

χ
(1)
αα (ω) =

1− |G exc
αα |2
Ω2

ω− Eα + iη
+
|G exc

αα |2
Ω2

1
ω− (Eα + Ω) + iη

. (I.25)

One satellite due to phonon emission appears in the spectrum. Notice that this re-
sult, a part from the quantities involved, is analytically equivalent to the first–order
dynamical GF in Langreth’s model (one–level fermion interacting with one boson,
Eq. (4.8)). Notice that here we have the bare exciton energies instead of the quasiparti-
cle–corrected ones, since we neglected this part of the theory and focused only on the
dynamical structure of χ. Moreover, if we take the limit of a two–level system (one
valence state v, one conduction state c), the result correctly reduces to the expres-
sion found in Sec. 4.1.2, Eq. (4.18), with the exciton–phonon coupling in particular
reducing from Eq. (I.22) to eq. (4.15).

Below, we will write the full expressions for Πexc and χ(1) in frequency space.
We consider both the case of a non–diagonal (upper formulas) and diagonal (lower
formulas) self–energy, and for the sake of generality we let the exciton α have any
momentum, labeled as q. In the main text, we always discuss the diagonal case with
q = 0 for optical absorption. The self–energy is

Πexc
αα′ (q, ω) =

1
Nq

∑
µβq

G exc
βq+q α′q, µq

(
G exc

βq+q αq,µq

)∗

ω− (Eβq+q + Ωqµ) + iη
,

Πexc
αα (q, ω) =

1
Nq

∑
µβq

|G exc
βq+q αq, µq|2

ω− (Eβq+q + Ωqµ) + iη
,

(I.26)

and for χ(1) we have:

χ
(1)
αα′(q, ω) =

1− Rαα′q

ω− Eαq + iη
+

1
Nq

∑
µβq

G exc
βq+q α′q, µq

(
G exc

βq+q αq,µq

)∗

Wβαq,µq(Wβαq,µq − ∆α′αq)

1
ω− (Eαq +Wβαq,µq) + iη

,

χ
(1)
αα (q, ω) =

1− Rαq

ω− Eαq + iη
+

1
Nq

∑
µβq

|G exc
βq+q αq, µq|2

W 2
βαq,µq

1
ω− (Eαq +Wβαq,µq) + iη

.

(I.27)
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Like in Sec. 4.1.1, the renormalisation factors are given by

Rαα′q =
1

Nq
∑
µβq

G exc
βq+q α′q, µq

(
G exc

βq+q αq,µq

)∗

Wβαq,µq(Wβαq,µq − ∆α′αq)
= −∂Πexc

αα′ (q, ω)

∂ω

∣∣∣∣
ω=Eαq

,

Rαq =
1

Nq
∑
µβq

|G exc
βq+q αq, µq|2

W 2
βαq,µq

= −∂Πexc
αα (q, ω)

∂ω

∣∣∣∣
ω=Eαq

,

(I.28)

with the energy denominators being

Wβαq,µq = Eβq+q − Eαq + Ωqµ,

∆α′αq = Eα′q − Eαq.
(I.29)

Finally, in the diagonal case, we go in the basis of the G–vectors, Eq. (1.87), so
that we can write the χ(1) corresponding to a periodic crystal that may be computed
with first–principles calculations:

χ
(1)
GG′(q, ω) = ∑

α
∑
K

(
AKαq

)∗
$K(q + G)∑

K′
AK′αq $∗K′(q + G′) χ

(1)
αα (q, ω),

χ
(1)
00 (q, ω) = ∑

α

|Tα|2χ
(1)
αα (q, ω).

(I.30)
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Appendix J

Notes on the implementation of the
exciton–phonon self–energy

We give here a brief outline of the steps taken so far for the implementation of the
exciton–phonon coupling and self–energy in the Yambo code.

Symmetries. Ideally, an exciton–phonon calculation would be performed in a q–
vector grid spanning just the irreducible part of the BZ. However, this task is made
difficult by the fact that the phases of both the exciton eigenvectors A and ep cou-
pling matrix elements g are relevant to construct the coupling Ag∗A∗g. Since the
BSE is solved in the full BZ, and the g matrix elements are computed in DFPT us-
ing the symmetries of the crystal, in order to match the correct A with the correct
g in Eq. (4.25) it is necessary to know how these quantities transform under crys-
tal symmetry operations. This is not a trivial task, especially when we are dealing
with degenerate band and exciton states. As a consequence, for the moment, all the
exciton–phonon calculations have to be performed in the full BZ with the symmetries
of the system turned off. Clearly, this represents a major hindrance for a calculation
that is already computationally very demanding on its own: therefore we will pur-
sue the solution of this issue in the future.

Electron–phonon coupling matrix elements. Within the TDA, we only have two
types of ep coupling matrix elements, as defined in Sec. 1.6 and discussed in App.
H:

gµq
vv′k = 〈vk|∆qµVe f f |v′k−q〉 /(2Ωµq),

gµq
c′ck+q = 〈c′k+q|∆qµVe f f |ck〉 /(2Ωµq).

(J.1)

In Yambo, the default convention for the momentum transfer q is the one on the first
line (i.e. k− k′ = q). In order to obtain the second line (i.e. k′ − k = q), we need to
introduce a mapping function M that associates the index k in the momentum grid
and the index q in the momentum transfer grid to a third momentum p in the same
grid as k:

M : {k + q} → {p},
p = M(k + q) = p|k+q,

k = M−1(p) = p|k+q − q.

(J.2)

In this way, the required matrix element in the k′ − k grid can be recovered from one
already computed in the k− k′ grid:

gµq
c′ck+q = gµq

c′cp|k+q
. (J.3)



158 Appendix J. Notes on the implementation of the exciton–phonon self–energy

As for the phonon frequencies at the denominators, it is implied that the three acous-
tic modes at q = 0, where Ωqµ = 0, are not included in the qµ sums.

Exciton eigenvector components. The last basic ingredient is AKq
α , coming from the

diagonalisation of the excitonic Hamiltonian. Again, the default convention in Yambo
for finite–q calculations is

|αq〉 = ∑
K
AKq↓

α |ck〉 ⊗ |vk−q〉 (J.4)

(for the meaning of the (q ↓) notation, the reader is referred to App. H). For the
construction of the ExcP coupling we also need:

AKq↑
α = {〈ck+q| ⊗ 〈vk|} |αq〉 . (J.5)

This can be obtained from the (q ↓) components by again using the mapping Eq.
(J.2):

P →
(
cvp|k+q

)
,

AKq↑
α = AP q↓

α .
(J.6)

The self–energy loop. Out objective is to compute Eq. (I.26). The exciton and
phonon energies, as well as the EPC matrix elements and exciton eigenvector com-
ponents, are read externally from databases produced by (i) the Yambo finite–q BSE
calculations and (ii) the Yambo interface with QE (for the EPC). We start from Eq.
(I.20) for the Ξ–components of the exciton–phonon coupling. We break the four
terms down using the following definitions (where S =↓, ↑):

ξ
µq↓
βK ≡∑

K′
gqµ

KK′q↓
(
AK′q↓β

)∗
,

ξ
µq↑
βK ≡∑

K′
gqµ

K′q↑K

(
AKq↑

β

)∗
,

Ξqµ,SS′

K1K2
= ∑

α

ξ
µqS
αK1

ξ
µqS′

αK2

(J.7)

(here the overline indicates the complex conjugate). In particular, switching back
to band indices and using the previously defined mappings, the ξ–components are
written as

ξ
µq↓
βK ≡∑

v′
gqµ

vv′k

(
Acv′k

β

)∗
,

ξ
µq↑
βK ≡∑

c′
gqµ

c′cp|k+q

(
Ac′vp|k+q

β

)∗
.

(J.8)

Equation (J.8) represents the first quantity computed in the innermost loops of the
“exciton–phonon” Fortran routine. In a subsequent step, the quantity TL is com-
puted from the ξ–terms and the exciton eigenvectors AKα at q = 0:

T qµ
L αβ = ∑

K
AKα (ξµq↓

βK − ξ
µq↑
βK ), (J.9)
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and by defining TR = TL we reconstruct the ExcP coupling matrix element as

Tqµ
αα′β = T qµ

L αβ T qµ
R α′β. (J.10)

Now, loops over β and µ are performed. Here we add the frequency denominator in
order to obtain the self–energy at each q,

Πq
αα′(ω) = ∑

µβ

1
Nq

Tqµ
αα′β

ω− (Eβq + Ωqµ) + iη
. (J.11)

Every time a BSE calculation is performed at a certain q, the code calls the exciton–
phonon routine to compute Πq

αα′ . The routine returns as output both Πq
αα′ and Tqµ

αα′β.
Finally, the full self–energy is given by

Πexc
αα′ (ω) = ∑

q
Πq

αα′(ω). (J.12)
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nip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D. Jones, G. Kresse,
K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M.
Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J.
Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese,
S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thun-
ström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. van Setten, V. Van Spey-
broeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S. Cottenier, “Reproducibility
in density functional theory calculations of solids”, Science 351, 1415 (2016).

[5] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and
related crystal properties from density-functional perturbation theory”, Rev.
Mod. Phys. 73, 515–562 (2001).

[6] X. Gonze and C. Lee, “Dynamical matrices, Born effective charges, dielectric
permittivity tensors, and interatomic force constants from density-functional
perturbation theory”, Phys. Rev. B 55, 10355–10368 (1997).

[7] M. S. Hybertsen and S. G. Louie, “Electron correlation in semiconductors and
insulators: Band gaps and quasiparticle energies”, Phys. Rev. B 34, 5390–5413
(1986).

[8] M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra
from first principles”, Phys. Rev. B 62, 4927–4944 (2000).

[9] A. Castellanos–Gomez, “Why all the fuss about 2D semiconductors?”, Nat.
Photonics 10, 202 EP (2016).

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin
Carbon Films”, Science 306, 666–669 (2004).

[11] C. N. R. Rao, H. S. S. Ramakrishna Matte, and U. Maitra, “Graphene Ana-
logues of Inorganic Layered Materials”, Angew. Chem. Int. Edit. 52, 13162–
13185 (2013).

[12] L. Wirtz and A. Rubio, “Optical and Vibrational Properties of Boron Nitride
Nanotubes”, in B-C-N Nanotubes and Related Nanostructures (Springer New
York, New York, NY, 2009), pp. 105–148.

http://dx.doi.org/10.1126/science.aad3000
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/physrevb.55.10355
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1038/nphoton.2016.53
http://dx.doi.org/10.1038/nphoton.2016.53
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1002/anie.201301548
http://dx.doi.org/10.1002/anie.201301548
http://dx.doi.org/10.1007/978-1-4419-0086-9_5


162 BIBLIOGRAPHY

[13] S. Galambosi, L. Wirtz, J. A. Soininen, J. Serrano, A. Marini, K. Watanabe, T.
Taniguchi, S. Huotari, A. Rubio, and K. Hämäläinen, “Anisotropic excitonic
effects in the energy loss function of hexagonal boron nitride”, Phys. Rev. B
83, 081413 (2011).

[14] K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and
evidence for ultraviolet lasing of hexagonal boron nitride single crystal”, Nat.
Mater. 3, 404–409 (2004).

[15] G. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, “Far-
ultraviolet plane-emission handheld device based on hexagonal boron ni-
tride”, Nat. Photonics 3, 591–594 (2009).

[16] Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep Ultraviolet Light-
Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure”,
Science 317, 932–934 (2007).

[17] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, and D. N.
Basov, “Photonics with hexagonal boron nitride”, Nat. Rev. Mater. 4, 552–567
(2019).

[18] A. Pierret, J. Loayza, B. Berini, A. Betz, B. Plaçais, F. Ducastelle, J. Barjon,
and A. Loiseau, “Excitonic recombinations in h−BN: From bulk to exfoliated
layers”, Phys. Rev. B 89, 035414 (2014).

[19] G. Cassabois, P. Valvin, and B. Gil, “Hexagonal boron nitride is an indirect
bandgap semiconductor”, Nat. Photonics 10, 262–266 (2016).

[20] R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill,
K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunt-
ing for Monolayer Boron Nitride: Optical and Raman Signatures”, Small 7,
465–468 (2011).

[21] B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, “Huge Excitonic Effects
in Layered Hexagonal Boron Nitride”, Phys. Rev. Lett. 96, 026402 (2006).

[22] S. Wang, Y. Li, J. Yip, and J. Wang, “The excitonic effects in single and double-
walled boron nitride nanotubes”, J. Chem. Phys. 140, 244701 (2014).

[23] L. Wirtz, A. Marini, M. Grüning, C. Attaccalite, G. Kresse, and A. Rubio,
“Comment on “Huge Excitonic Effects in Layered Hexagonal Boron Ni-
tride””, Phys. Rev. Lett. 100, 189701 (2008).

[24] K. Watanabe and T. Taniguchi, “Jahn-Teller effect on exciton states in hexag-
onal boron nitride single crystal”, Phys. Rev. B 79, 193104 (2009).

[25] G. Cassabois, P. Valvin, and B. Gil, “Intervalley scattering in hexagonal boron
nitride”, Phys. Rev. B 93, 035207 (2016).

[26] L. Wirtz, A. Marini, and A. Rubio, “Excitons in Boron Nitride Nanotubes:
Dimensionality Effects”, Phys. Rev. Lett. 96, 126104 (2006).

[27] C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, and L. Wirtz, “Coupling of
excitons and defect states in boron-nitride nanostructures”, Phys. Rev. B 83,
144115 (2011).

[28] J. Koskelo, G. Fugallo, M. Hakala, M. Gatti, F. Sottile, and P. Cudazzo, “Ex-
citons in van der Waals materials: From monolayer to bulk hexagonal boron
nitride”, Phys. Rev. B 95, 035125 (2017).

[29] G. Fugallo, M. Aramini, J. Koskelo, K. Watanabe, T. Taniguchi, M. Hakala, S.
Huotari, M. Gatti, and F. Sottile, “Exciton energy-momentum map of hexag-
onal boron nitride”, Phys. Rev. B 92, 165122 (2015).

http://dx.doi.org/10.1103/PhysRevB.83.081413
http://dx.doi.org/10.1103/PhysRevB.83.081413
http://dx.doi.org/10.1038/nmat1134
http://dx.doi.org/10.1038/nmat1134
http://dx.doi.org/10.1038/nphoton.2009.167
http://dx.doi.org/10.1126/science.1144216
http://dx.doi.org/10.1038/s41578-019-0124-1
http://dx.doi.org/10.1038/s41578-019-0124-1
http://dx.doi.org/10.1103/PhysRevB.89.035414
http://dx.doi.org/10.1038/nphoton.2015.277
http://dx.doi.org/10.1002/smll.201001628
http://dx.doi.org/10.1002/smll.201001628
http://dx.doi.org/10.1103/PhysRevLett.96.026402
http://dx.doi.org/10.1063/1.4880726
http://dx.doi.org/10.1103/PhysRevLett.100.189701
http://dx.doi.org/10.1103/PhysRevB.79.193104
http://dx.doi.org/10.1103/PhysRevB.93.035207
http://dx.doi.org/10.1103/PhysRevLett.96.126104
http://dx.doi.org/10.1103/PhysRevB.83.144115
http://dx.doi.org/10.1103/PhysRevB.83.144115
http://dx.doi.org/10.1103/PhysRevB.95.035125
http://dx.doi.org/10.1103/PhysRevB.92.165122


BIBLIOGRAPHY 163

[30] E. Torun, H. P. C. Miranda, A. Molina-Sánchez, and L. Wirtz, “Interlayer and
intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers”, Phys.
Rev. B 97, 245427 (2018).

[31] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-Like Two-Dimensional Ma-
terials”, Chem. Rev. 113, 3766–3798 (2013).

[32] L. Schue, B. Berini, A. C. Betz, B. Placais, F. Ducastelle, J. Barjon, and A.
Loiseau, “Dimensionality effects on the luminescence properties of hBN”,
Nanoscale 8, 6986–6993 (2016).

[33] Y. Feng, J. A. Soininen, A. L. Ankudinov, J. O. Cross, G. T. Seidler, A. T.
Macrander, J. J. Rehr, and E. L. Shirley, “Exciton spectroscopy of hexagonal
boron nitride using nonresonant x-ray Raman scattering”, Phys. Rev. B 77,
165202 (2008).

[34] M. Gatti and F. Sottile, “Exciton dispersion from first principles”, Phys. Rev.
B 88, 155113 (2013).

[35] X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Quasiparticle band struc-
ture of bulk hexagonal boron nitride and related systems”, Phys. Rev. B 51,
6868–6875 (1995).

[36] J. Noffsinger, E. Kioupakis, C. G. Van de Walle, S. G. Louie, and M. L. Cohen,
“Phonon-Assisted Optical Absorption in Silicon from First Principles”, Phys.
Rev. Lett. 108, 167402 (2012).

[37] M. Zacharias, C. E. Patrick, and F. Giustino, “Stochastic Approach to Phonon-
Assisted Optical Absorption”, Phys. Rev. Lett. 115, 177401 (2015).

[38] P. Cudazzo and L. Reining, “Correlation satellites in optical and loss spectra”,
Submitted. (Private communication with P. Cudazzo) (2019).

[39] T. Galvani, F. Paleari, H. P. C. Miranda, A. Molina-Sánchez, L. Wirtz, S. Latil,
H. Amara, and F. Ducastelle, “Excitons in boron nitride single layer”, Phys.
Rev. B 94, 125303 (2016).

[40] F. Paleari, T. Galvani, H. Amara, F. Ducastelle, A. Molina-Sánchez, and L.
Wirtz, “Excitons in few-layer hexagonal boron nitride: Davydov splitting and
surface localization”, 2D Materials 5, 045017 (2018).

[41] F. Paleari, H. P. C. Miranda, A. Molina-Sánchez, and L. Wirtz, “Exciton-
Phonon Coupling in the Ultraviolet Absorption and Emission Spectra of
Bulk Hexagonal Boron Nitride”, Phys. Rev. Lett. 122, 187401 (2019).

[42] J. D. Martin, “What’s in a Name Change?”, Physics in Perspective 17, 3–32
(2015).

[43] G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press,
2000).

[44] G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional
versus many-body Green’s-function approaches”, Rev. Mod. Phys. 74, 601–
659 (2002).

[45] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).

[46] G. Strinati, “Application of the Green’s functions method to the study of the
optical properties of semiconductors”, Riv. Nuovo Cimento 11, 1–86 (1988).

[47] W. Schäfer and M. Wegener, Semiconductor Optics and Transport Phenomena
(Springer, 2002).

http://dx.doi.org/10.1103/PhysRevB.97.245427
http://dx.doi.org/10.1103/PhysRevB.97.245427
http://dx.doi.org/10.1021/cr300263a
http://dx.doi.org/10.1039/C6NR01253A
http://dx.doi.org/10.1103/PhysRevB.77.165202
http://dx.doi.org/10.1103/PhysRevB.77.165202
http://dx.doi.org/10.1103/PhysRevB.88.155113
http://dx.doi.org/10.1103/PhysRevB.88.155113
http://dx.doi.org/10.1103/PhysRevB.51.6868
http://dx.doi.org/10.1103/PhysRevB.51.6868
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevLett.115.177401
http://dx.doi.org/10.1103/PhysRevB.94.125303
http://dx.doi.org/10.1103/PhysRevB.94.125303
http://stacks.iop.org/2053-1583/5/i=4/a=045017
http://dx.doi.org/10.1103/PhysRevLett.122.187401
http://dx.doi.org/10.1007/s00016-014-0151-7
http://dx.doi.org/10.1007/s00016-014-0151-7
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1007/BF02725962


164 BIBLIOGRAPHY

[48] F. Bechstedt, Many-Body Approach to Electronic Excitations (Springer, 2015).

[49] F. Giustino, “Electron-phonon interactions from first principles”, Rev. Mod.
Phys. 89, 015003 (2017).

[50] G. D. Mahan, Many-Particle Physics (Plenum Press, 1990).

[51] A. L. Fetter and J. D. Walecka, Quantum Theory of Many–Particle Systems
(Dover Publications, 2003).

[52] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter
Physics: an Introduction (Oxford University Press, 2004).

[53] L. Reining, “The GW approximation: content, successes and limitations”, Wi-
ley Interdiscip. Rev. Comput. Mol. Sci. 8, e1344 (2018).

[54] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev. 136,
B864–B871 (1964).

[55] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and
Correlation Effects”, Phys. Rev. 140, A1133–A1138 (1965).

[56] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D.
Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli,
S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM
ESPRESSO: a modular and open-source software project for quantum simu-
lations of materials”, J. Phys. Condens. Matter 21, 395502 (2009).

[57] A. Damascelli, “Probing the Electronic Structure of Complex Systems by
ARPES”, Phys. Scripta T109, 61 (2004).

[58] A. Marini, C. Hogan, M. Grüning, and D. Varsano, “yambo: An ab initio
tool for excited state calculations”, Comput. Phys. Commun. 180, 1392–1403
(2009).

[59] D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia,
P. Melo, M. Marsili, F. Paleari, A. Marrazzo, G. Prandini, P. Bonfà, M. O.
Atambo, F. Affinito, M. Palummo, A. Molina-Sánchez, C. Hogan, M. Grün-
ing, D. Varsano, and A. Marini, “Many-body perturbation theory calculations
using the yambo code”, J. Phys. Condens. Matter 31, 325902 (2019).

[60] V. Ambegaokar and W. Kohn, “Electromagnetic Properties of Insulators. I”,
Phys. Rev. 117, 423–431 (1960).

[61] R. Del Sole and E. Fiorino, “Macroscopic dielectric tensor at crystal surfaces”,
Phys. Rev. B 29, 4631–4645 (1984).

[62] R. Haydock, “The Recursive Solution of the Schrodinger Equation”, in ,
Vol. 35, edited by H. Ehrenreich, F. Seitz, and D. Turnbull, Solid State Physics
(Academic Press, 1980), pp. 215–294.

[63] V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc, A scalable and flexible
toolkit for the solution of eigenvalue problems”, ACM Trans. Math. Softw.
31, 351–362 (2005).

[64] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Screening and many-body ef-
fects in two-dimensional crystals: Monolayer MoS2”, Phys. Rev. B 93, 235435
(2016).

http://dx.doi.org/10.1103/RevModPhys.89.015003
http://dx.doi.org/10.1103/RevModPhys.89.015003
http://dx.doi.org/10.1002/wcms.1344
http://dx.doi.org/10.1002/wcms.1344
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://stacks.iop.org/0953-8984/21/i=39/a=395502
http://dx.doi.org/10.1238/physica.topical.109a00061
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1088/1361-648x/ab15d0
http://dx.doi.org/10.1103/PhysRev.117.423
http://dx.doi.org/10.1103/PhysRevB.29.4631
http://dx.doi.org/https://doi.org/10.1016/S0081-1947(08)60505-6
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1103/PhysRevB.93.235435
http://dx.doi.org/10.1103/PhysRevB.93.235435


BIBLIOGRAPHY 165

[65] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, “Exact
Coulomb cutoff technique for supercell calculations”, Phys. Rev. B 73, 205119
(2006).

[66] S. Reichardt, “Many-Body Perturbation Theory Approach to Raman Spec-
troscopy and Its Application to 2D Materials”, PhD thesis (Physics and Ma-
terials Science Research Unit, University of Luxembourg, 2018).

[67] H. Miranda, “Ab initio approaches to Resonant Raman Spectroscopy of Tran-
sition Metal Dichalcogenides”, PhD thesis (Physics and Materials Science Re-
search Unit, University of Luxembourg, 2017).

[68] P. Brüesch, Phonons: Theory and Experiments I (Springer, 1982).

[69] S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete, and X.
Gonze, “Erratum: “Temperature dependence of the electronic structure of
semiconductors and insulators” [J. Chem. Phys. 143, 102813 (2015)]”, J. Chem.
Phys. 146, 099901 (2017).

[70] H. Y. Fan, “Temperature Dependence of the Energy Gap in Monatomic Semi-
conductors”, Phys. Rev. 78, 808–809 (1950).

[71] H. Y. Fan, “Temperature Dependence of the Energy Gap in Semiconductors”,
Phys. Rev. 82, 900–905 (1951).
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