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Abstract—Hybrid analog-digital (A/D) transceivers are an
appealing solution to reduce the transceiver hardware complexity
and power consumption for the millimeter wave (mmWave)
communication and more general large-scale antenna array
(LSAA) systems. In contrast to fully digital conventional multiple-
input-multiple-output (MIMO) systems, the baseband precoding
operation splits into a lower-dimensional digital precoder fol-
lowed by a network of analog phase shifters. In this paper,
we consider the hybrid precoder design as a constant modulus
constrained matrix factorization (CMCMF) problem for the most
common types of hybrid architectures namely, the fully and
the partially connected ones. Two lines of algorithms based
on the majorization-minimization (MM) and the minorization-
maximization framework, respectively are proposed for these
architectures. In particular, we present efficient algorithms scal-
able for LSAA systems with provable convergence guarantees
to a stationary point. We also consider the hybrid postcoder
design at the receiver end. Simulation results demonstrate that
the proposed algorithms converge faster to a stationary point as
compared to the state-of-the-art solutions that exist in literature.
Furthermore, the solution tailored for the partial connected
case achieves significantly improved performance in terms of
the system spectral efficiency when compared to the existing
solutions.

Index Terms—Hybrid precoding, majorization-minimization,
MM, mmWave MIMO communications, alternating minimiza-
tion, large-scale antenna arrays.

I. INTRODUCTION

Large-scale antenna arrays (LSAAs) are generally used in
massive MIMO systems and are an essential requirement for
a mmWave communication system. This is due to a fact that
the mmWave frequencies suffer from several losses including
propagation, penetration loss, etc., [1]–[5]. Thus, LSAAs are
generally employed at the transceivers to achieve beamforming
gains and combat the losses associated with the system. This is
also feasible from the manufacturing perspective where many
antenna elements are closely packed, due to shorter wave-
lengths at the mmWave frequencies. However, to build such
a fully digital transceiver, in general, each antenna element

The authors are with the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), University of Luxembourg, Luxembourg. Part of this work
was presented in IEEE GLOBECOM 2019.

Emails: {aakash.arora,christos.tsinos, bhavani.shankar,symeon.chatzinotas,
bjorn.ottersten}@uni.lu.

This work is supported by the National Research Fund (FNR), Luxembourg
under the AFR-PPP grant for Ph.D. project SPASAT (Ref.: 11607283), the
CORE-PPP project PROSAT, ECLECTIC, and CI-PHY.

has to be driven by a radio frequency (RF) chain. This strict
requirement of a single RF chain per antenna substantially
increases the hardware complexity and power consumption,
when LSAAs are employed at the transceiver.

To address the aforementioned issues several precod-
ing/beamforming approaches have been proposed in the lit-
erature. At first, analog-only beamforming was considered in
[6]–[8], in which a bank of analog phase shifters is driven
using a single RF chain and may support only single-stream
transmission. But, this technique is not suitable for a MIMO
system in which several streams are multiplexed. As an
alternative, the phase-shifting network is replaced by analog
switches [9]–[11], which substantially degrades the array gain.

In order to have a high beamforming gain while sup-
porting simultaneous multiple streams transmission, hybrid
A/D transceivers are proposed in [1]. In this architecture,
the precoding operation splits into a lower-dimensional digital
baseband precoder followed by a network of analog phase
shifters. A similar architecture can also be considered on the
receiver’s side. The development of the hybrid precoder is
based on the fact that the number of RF chains is limited
by the number of transmit streams whereas the array gain is
proportional to the number of antenna elements.

A. Literature Review

For mmWave systems, the hybrid transceivers were first
introduced in [2], [3] and it was shown that the near-optimal
hybrid precoders can be designed by maximizing the spectral
efficiency (SE). In the literature, a variety of works exist
for the hybrid precoder design [1]–[3], [5], [12]–[25]. These
works can be classified into two categories namely, codebook
based and codebook free approaches. In the codebook based
design, the analog and digital precoders are precomputed and
stored offline in a codebook structure [3], [13], [14]. This
facilitates limited channel feedback from the user to the base
station (BS). This procedure saves a significant amount of
computation involved in computing the hybrid precoders [13].
In codebook free design, the problem of SE maximization
is directly addressed [12] and the optimal precoders are
designed with some approximations of the original problem.
As already mentioned, there are many works available in
the literature considering different problems associated with
hybrid precoders design. First, we briefly summarize some of
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the recent works, then we proceed towards our problem of
interest.

In [13], a hybrid beamforming design is proposed to de-
termine the number of RF chains and phase shifters required
to achieve the performance of a fully digital precoder. The
problem with finite resolution phase shifters is considered
in [14] and shown that the performance using 2-bit analog
phase shifters is shown to be comparable to unquantized phase
shifters. A hybrid design with a reduced number of phase
shifters is proposed in [15]. Apart from SE maximization, the
problem of energy efficiency maximization is also considered
in [5], [17]. Another approach based on two-timescale hybrid
precoding is studied in [22], [23]. In the referenced works,
the analog precoder is designed by adapting to the channel-
state-information (CSI) statistics, whereas the digital precoder
is updated based on the effective CSI. However, in this paper,
our aim is to design hybrid precoders by spectral efficiency
maximization [3], [12].

In general, the problem of maximizing the SE is intractable
for the joint-optimization over digital and analog precoders.
To that end, it is shown in [3] that, instead of maximizing
the SE, the optimal precoders can be found by minimizing
the Euclidean distance between the fully digital and the
hybrid precoders. This problem can be viewed as a CMCMF
problem. The analog precoder is designed based on a code-
book, using sparse signal processing techniques based on the
orthogonal matching pursuit (OMP) [26], [27] concept. This
approach developed a low complexity solution albeit it has
poor performance in several cases [5]. Their performance is
generally good under low-rank channels and when the hybrid
transceivers are employed with more number of RF chains
than the number of transmitted streams. To achieve better
performance, some alternative works exist in the literature that
improves performance by considering a codebook free design.
For example, in [12] codebook free transceivers are proposed
for different hybrid architectures, resulting in significantly im-
proved performance as compared to codebook based approach.
The optimal hybrid precoders were designed based on the
Euclidean norm approximation. For simplicity, we follow the
Frobenius norm approximation method, as well.

In [12], two algorithms are proposed namely, MO-ALTMIN
and PE-ALTMIN for mmWave MIMO systems to solve the
CMCMF problem using alternating minimization. Alternating
minimization is a widely accepted tool for solving constrained
matrix factorization problems [28]–[32]. Although, alternat-
ing minimization is very successful in dealing with such
problems, proving convergence of these algorithms depends
upon the specific problem under consideration. Herein, we
have a nonconvex constrained version of the problem, which
imposes additional challenges. The MO-ALTMIN algorithm
uses sophisticated manifold optimization techniques to solve
the problem, whereas the PE-ALTMIN algorithm imposes
unitary constraints on the digital baseband precoder. Al-
though the MO-ALTMIN algorithm does not require unitary
constraints on the digital precoder, its scalability for larger
system dimension is an issue due to the large computational
complexity. The referenced work also proposed an algorithm
for the partially connected case namely, SDR-ALTMIN, which

is again based on alternating minimization between digital
and analog precoders. The algorithm solves the non-convex
quadratically constrained quadratic program (QCQP) using
semidefinite relaxation to obtain the digital precoder, which
is further limited by its computational complexity for larger
system dimensions and its implementation becomes impracti-
cal.

B. Contributions

Our work is motivated by the problem of providing low
complexity algorithms without imposing additional constraints
on the design of digital and analog precoders. In particular, we
develop algorithms to solve the CMCMF problem for large-
scale antenna arrays where solutions like MO-ALTMIN and
SDR-ALTMIN become impractical. One of the challenges
in solving hybrid transceivers design problems is the unit-
modulus constraints. The unit-modulus constraints also appear
in the context of radar sequence design [33] and the MM based
algorithms are proposed in the literature to solve different
problems [33], [34]. However, the existing algorithms in the
literature can not be directly applied to the CMCMF problem
due to fundamental differences in the problem formulation and
constraint characterization. Our main contributions are:
• We propose efficient low-complexity algorithms for the

fully connected and the partially connected hybrid ar-
chitectures. For the fully-connected case, the hybrid A/D
precoding problem is solved using a combination of alter-
nating minimization and the majorization-minimization
framework, whereas for the partially connected case the
problem is solved using variable elimination and the
minorization-maximization framework. First, the objec-
tive function is concentrated with respect to the digital
precoder and it is eliminated from the problem. Then,
the resulting objective is optimized first for the analog
precoder using the MM framework. Once the concen-
trated objective converges to a stationary point, the digital
precoder is obtained using the closed-form solution.

• Convergence to a stationary point of the iterates obtained
from both the algorithms is established.

• We analyze the performance of the proposed algorithms
by comparing the objective function value achieved with
the number of iterations and the central processing unit
(CPU) time, and a comparison of the SE with SNR
and the number of RF chains is also presented. It is
observed that the proposed algorithms converge faster to a
stationary point as compared to the existing work in [12].
Results demonstrating the scalability of the algorithms are
also shown.

Remark 1. It is important to note that the hybrid postcoding
design problem at the receiver is similar to the one at the
transmitter with a change in matrix dimensions. Thus, we also
employ the proposed algorithms at the receiver side.

C. Organization of the Paper

The remainder of the paper is organized as follows. In
Section II, the system model is described and the problem is
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formulated. In Section III, an algorithm to design the hybrid
precoders for the fully connected architecture is presented,
followed by its convergence analysis. Section IV presents
the algorithm design for the partially connected architecture,
followed by a proof of convergence. Simulation results are
presented in Section V and Section VI concludes the work.

D. Notations Used

The following notations are used throughout the paper. A
vector and a matrix are represented by a and A respectively.
The i, j element of a matrix is denoted as A(i, j). The
complex exponential operation on each entry of a matrix is
represented as e(jA), the phase/argument of each element of
a matrix is denoted as arg (A). The trace operator and the
Frobenius norm are represented as Tr (A) and ‖A‖F ; ‖a‖2
denotes the `2-norm of the vector. The real part of a scalar
complex variable z or a matrix variable Z, is represented
as Re (z) or Re (Z), respectively. The symbol | · | denotes
the modulus of a complex number. The Hermitian operation,
conjugate, and transpose of a matrix are denoted as AH , A∗,
and AT respectively. The Schur-Hadamard product between
two matrices is represented as A◦B; A � 0 denotes a positive
semi-definite (PSD) matrix. The set of Hermitian positive
semi-definite matrices is represented as S+n . The expectation
operator is denoted as E(·).

Note that, throughout this paper, we use the term MM in-
terchangeably for denoting both the majorization-minimization
and the minorization-maximization frameworks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, we consider a system model for the
point-to-point single user mmWave MIMO system and then,
present the problem formulation.

A. System Model

Let us assume a single user MIMO system with Rx receive
and Tx transmit antennas. The transmitter is equipped with
Nt << Tx RF chains while Nr << Rx RF chains are
on the receiver’s side. The system is designed to transmit
Ns ≤ min{Nt, Nr} streams. For this reason, a hybrid pre-
coder Pt = AtDt with dimensions Tx × Ns is employed
at the transmitter, thus, the transmitted signal is written as
x = AtDts, where s ∈ CNs×1 is the transmitted symbol
vector, At ∈ CTx×Nt is the analog precoding matrix, and
Dt ∈ CNt×Ns is the lower-dimensional baseband (BB) digital
precoding matrix. On similar lines, a hybrid postcoding oper-
ation with matrix Pr = ArDr with dimensions Rx × Ns
is performed at the receiver, where Ar ∈ CRx×Nr is the
analog postcoding matrix, and Dr ∈ CNr×Ns is the digital
BB postcoding matrix.

The total transmit power constraint is given by ‖AtDt‖2F =
Ns. The analog pre/post-coding matrices map the signals
from the RF chains to the transmit/receive antennas using
the phase-shifting networks. Therefore, every phase shifter in
the network should satisfy unit-modulus constraints, which is
translated as a constraint on each entry of the analog pre/post-
coding matrices, that is, |At(i, j)| = 1, |Ar(i, j)| = 1, for all

i, j. We consider the two most common hybrid architectures
namely, the fully-connected and partially-connected ones. In
the former, the signal from each RF chain is connected to
all the antennas via the phase-shifting network, whereas in
latter, the signal from each RF chain is connected to a subset
of antennas [3], [35]. The total number of phase shifters
required to implement a fully connected architecture on the
transceiver sides are TxNt and RxNr, respectively. For the
partially connected case, each RF chain is connected to Tx/Nt
antenna on the transmitter side and Rx/Nr antennas on the
receiver side, as shown below,

At =


a1 0 . . . 0
0 a2 . . . 0
...

. . . 0
0 0 . . . aNt

 , (1)

where each ai is Tx/Nt×1 dimensional vector consisting unit-
modulus entries. Therefore, this architecture requires fewer
phase shifters compared to the fully connected architecture, but
at the expense of loss in spectral efficiency. Correspondingly,
the matrix Ar can be written in a similar manner having block-
diagonal structure, with each block of size Rx/Nr × 1.

Considering a narrow-band block-fading propagation chan-
nel, the signal received at the receiver before and after the
post-coding operation is given by,

y = HPts + n, (2)
yr= PH

r y, (3)

where H ∈ CRx×Tx is the channel matrix, and n ∈ CRx×1

is independent identically distributed (i.i.d) circular-symmetric
complex Gaussian noise, CN (0, σ2

nI), σ2
n represents the noise

variance. Considering the symbol vector to be zero-mean, with
i.i.d entries, then its second order statistical characterization is,
E{ssH} = σ2

sI, where σ2
s is the variance of si,∀i. The SE of

such a system is given as,

SE = log2 det
(
I + R−1n PH

r HPtP
H
t HHPr

)
, (4)

where Rn = σ2
nPH

r Pr and we have assumed that the
input symbol vector s follows a Gaussian circular symmetric
distribution [5], with σ2

s = 1.

B. Channel Model

A narrowband clustered channel is considered based on
the Saleh-Valenzuela model, which accurately captures the
characteristics of a typical mmWave channel including severe
path loss, limited scattering, high correlation among anten-
nas due to closely packed antenna arrays, etc., [36], [37].
Assuming a total number of Np propagation paths between
the transceiver’s ends, the channel is modeled by,

H =

√
TxRx
Np

Np∑
k=1

αkbr(φ
r
k)bt(φ

t
k)H , (5)

where br(φ
r
k) and bt(φ

t
k) represents the normalized array re-

sponse or steering vectors associated with receive and transmit
antenna arrays, αk ∈ C is the gain along the k−th path, φrk and
φtk are the azimuth angle of arrival and departure, respectively
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for the k−th path. Assuming a uniform linear array (ULA)
of isotropic antenna elements at the transmitter and at the
receiver, then the steering vector in a direction φ is given by,

b(φ) =

√
1

M

[
1, ejkd sin(φ), . . . , ej(M−1)kd sin(φ)

]
(6)

where k = 2π
λ is the wavenumber, λ is the carrier wavelength,

M is the number of antenna elements in the array, and d is
the inter-element spacing between two antennas.

C. Problem Formulation

The problem is to find the optimal hybrid precoder and
postcoder by maximizing the system SE as shown in (4) by
solving the following optimization problem,

P1 : max
At,Dt,Ar,Dr

SE(At,Dt,Ar,Dr)

subject to At ∈ χt,Ar ∈ χr
‖AtDt‖2F = Ns, (7)

where χt and χr are the sets imposing power, unit-modulus
and structural constraints on the design of analog precoder
and postcoder, respectively. Problem P1 is intractable due to
the nonconvexity of the objective function and the constraints.
Even for the fully digital scenario, it is difficult to solve
this problem [38]. For this reason, the most commonly used
approach is to decouple the designs at the transmitter’s and
the receiver’s side [3]. Thus, instead of maximizing the SE,
the optimal hybrid precoders are designed by maximizing
the mutual information achieved with Gaussian signaling [3].
Therefore, the optimization problem is given by,

P2 : max
At,Dt

log2 det
(
I + σ−2n HAtDtD

H
t AH

t HH
)

subject to At ∈ χt
‖AtDt‖2F = Ns. (8)

It is easy to see that problem P2 is still nonconvex and difficult
to solve. In order to solve this problem, it has been shown in
[3] that the optimal precoders can be equivalently found by
minimizing the Euclidean distance between the fully digital
and the hybrid precoders,

P3 : min
At,Dt

‖Pt −AtDt‖2F
subject to At ∈ χt

‖AtDt‖2F = Ns. (9)

Problem P3 is equivalent to finding the projection of the fully
digital precoder onto the set of hybrid precoders. Equivalently
it can also be considered as a CMCMF problem. We will
revisit this problem later and provide efficient solutions under
different hybrid architectures.

For the receiver, the minimum mean square error (MMSE)
based criterion is employed,

P4 : min
Ar,Dr

E
∥∥s−DH

r AH
r y
∥∥2
2

subject to Ar ∈ χr.

Problem P4 is also nonconvex. An equivalent formulation of
this problem as shown in [3] is given by,

P5 : min
Ar,Dr

∥∥∥E{yyH
} 1

2 (Pr −ArDr)
∥∥∥2
F

(10)

subject to Ar ∈ χr, (11)

where E
{
yyH

} 1
2 is the positive square root of the covariance

matrix E
{
yyH

}
. Problem P5 has a similar mathematical

structure to that of problem P3. The only difference here is
that instead of standard Frobenius norm, the projection is with
respect to the E

{
yyH

} 1
2 -weighted Frobenius norm. However,

this weight does not affect the matrix factorization structure
of the problem and the algorithms developed herein are
applicable to both problems of precoder as well as postcoder
designs.

Therefore, we primarily focus on the precoder design and
apply the same algorithms for the postcoder design. For nota-
tional convenience, from now onwards we drop the subscript
(·)t associated with the digital and the hybrid precoders. We
formulate the following optimization problem,

P6 : min
A,D

‖P−AD‖2F
subject to A ∈ A

‖AD‖2F = Ns, (12)

where P, A, and D denotes the fully digital, analog, and
BB digital precoding matrices. The set A introduces struc-
tural constraints on the design of analog precoding matrix in
different hybrid architectures. In this problem, we basically
try to approximate the beam-response obtained by a fully
digital precoding matrix with a hybrid precoding structure. For
a single user MIMO system, the unconstrained fully digital
precoder is obtained from the singular value decomposition
(SVD) of the channel matrix and the water-filling algorithm
[39].

The problem P6 is a CCMMF one. Our main objective
in this paper is to provide efficient algorithms to solve P6

with guaranteed convergence under different hybrid architec-
tures. In the subsequent sections, we consider both the fully
connected as well as the partially connected architectures
and propose efficient algorithms to solve the problem with
provable convergence to a stationary point.

III. MAJORIZATION-MINIMIZATION BASED HYBRID
PRECODING FOR THE FULLY CONNECTED ARCHITECTURE

In a fully-connected architecture, each RF chain is con-
nected to all the antennas, which imposes a unit-modulus
constraint on each entry of the analog precoding matrix A.
Therefore, the set A of problem P6 is given as, A = {A ∈
CTx×Nt | |A(i, j)|2 = 1, 1 ≤ i ≤ Tx, 1 ≤ j ≤ Nt}. For the
receiver side a similar set is constructed by replacing Tx with
Rx and Nt with Nr. It is important to note that here, we
have assumed a squared constant modulus constraint instead
of constant modulus constraint, to alleviate the differentiability
issues associated with the constant modulus function. This
small change does not introduce ambiguities and will help
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later while deriving the KKT conditions to prove convergence
of the proposed algorithm.

It is important to note that, problem P6 is intractable
because the objective function is nonconvex in variables A
and D, jointly. Moreover, the constraints are also nonconvex,
which further complicates the problem. It can be seen that the
objective function is convex in one variable given the other.
Therefore, we adopt an alternating minimization approach to
solve the problem [31]. The idea behind alternating minimiza-
tion is to exploit partially convexity in the optimization prob-
lem and split the joint optimization problem into several sub-
problems depending upon the number of unknown variables.
In other words, it iteratively minimizes the objective function
in one variable by fixing the remaining variables, and vice-
versa. This procedure is repeated for all the variables until
some convergence criterion is satisfied. In our case, although
the objective function of problem P6 is partially convex in
A and D, the constraints are still nonconvex. To tackle this,
we consider the problem without the power constraint and
then normalize the digital precoder with an appropriate scaling
factor [12]. We first consider the optimization problem over A
provided D = Dl, where Dl is an estimate of D available at
iteration l. For this sub-problem, we still have the nonconvex
unit-modulus constraints on the entries of matrix A. Therefore,
we propose to use the majorization-minimization framework,
which leads to a very simple algorithm to compute the analog
precoder.

Before proceeding further, we now briefly introduce the
basic idea behind the majorization-minimization framework to
solve minimization problems and then, propose an algorithmic
solution to solve problem P6.

A. MM framework

The majorization-minimization method works on the philos-
ophy of iteratively solving a sequence of easier problems [33],
[40], [41]. For example, consider the problem of minimizing
a function f(x) over set x ∈ G. The direct minimization of
the function in general can be difficult, specifically when the
objective and/or constraints are nonconvex. Thus, instead of
directly minimizing the function f(x), a surrogate function
f̃(x; xk) majorizing the original objective function f(x) is
minimized at the k-th iteration. A valid surrogate function for
the minimization problem has the following properties,

f̃(x; xk) > f(x),∀x ∈ G (13)
f̃(xk; xk) = f(xk) (14)
∇f̃(xk; xk)= ∇f(xk). (15)

The above properties indicate that the surrogate function
should be a tight upper bound of the original objective func-
tion. Therefore, an algorithm based on this framework starts
with a feasible initial-point x0 ∈ G and iteratively minimizes
the surrogate function,

xk+1 ∈ arg min
x∈G

f̃(x; xk). (16)

Because of the tight upper bound property of the surrogate
function, at every step, the objective function value is de-
creased and the sequence of iterates {xk} converges to a

stationary point of the original problem. For brevity, the steps
of the majorization-minimization method are summarized as
follows,

1) Initialize x0 to a feasible point from the set G.
2) Construct a majorizing function f̃(x; xk) of the function

f(x) at xk satisfying properties (13)-(15).
3) Update xk+1 ∈ arg minx∈G f̃(x; xk).
4) If a convergence condition is met, then stop. Otherwise,

increment k to k + 1 and go to step 2.

For more detailed information on the MM framework, one
may refer to [33], [40], [41] and references therein. Since,
the surrogate function f̃(x; xk) is a tight majorizer of the
original function f(x) and satisfies the properties (13) to (15),
thereby, implying that the objective value at every iteration
decreases monotonically. To formally prove the convergence of
an MM algorithm, first, we introduce the first-order optimality
condition for the minimization of a continuously differentiable
function [42].

Proposition III.1. Consider f : Rn → R be a continuously
differentiable function and if x∞ is a local minimum of f over
a subset G of Rn, then

∇f(x∞)T (x− x∞) ≥ 0,∀x ∈ G. (17)

A vector x satisfying the optimality condition (17) is
referred to as a stationary point. For more insights into
the convergence properties of the MM framework, one may
refer to [33], [40], [41] and references therein. To deal with
maximization problems, the surrogate function should be a
tight minorizer of the objective one, and this framework is
known as the minorization-maximization.

B. Majorization-Minimization Based Analog Precoder Design

Based on the alternating minimization framework, the first
step is to solve the problem for the analog precoder assuming a
solution for the digital precoder. We rewrite the minimization
problem P6 as,

P7 : min
A

‖P−ADl‖2F
subject to A ∈ A. (18)

For the time being, we have omitted the power constraint in P7

and will be dealt with later in the next sub-section. Problem P7

is a nonconvex optimization problem because of the nonconvex
unit-modulus constraints.

In order to solve problem P7 using the majorization-
minimization framework, the first step is to find a majorizing
function of the objective such that the overall problem is easily
solved. We present the following lemma which is useful in the
construction of the majorizing function [33], [34], [40], [41].

Lemma III.2. The quadratic function of the form aHSa,
with S being a PSD matrix is majorized by aHTa +
2 Re

(
aH(S−T)ak

)
+ aHk (T− S)ak at the point ak, where

T is a PSD matrix such that T � S.
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Proof. The proof of the above argument is fairly straightfor-
ward. Consider the second order Taylor’s expansion of the
function aHSa around ak,

aHSa =

aHk Sak + 2 Re
(
aHk S(a− ak)

)
+ (a− ak)HS(a− ak)

Now, replacing the Hessian matrix S with a matrix T such
that T � S, this implies,

aHSa ≤
aHk Sak + 2 Re

(
aHk S(a− ak)

)
+ (a− ak)HT(a− ak).

Upon rearranging the above equation and using a fact that
Re (z) = Re (z∗), we get,

aHSa≤
aHTa + 2 Re

(
aH(S−T)ak

)
+ aHk (T− S)ak.

This concludes the proof. �

For any twice differentiable function with bounded curva-
ture, Lemma III.2 is also known by the name of quadratic up-
per bound principle [40]. First, we rewrite the objective using
the row-wise decomposition of the matrix P and equivalence
between the Frobenius and l2 norms, as,

P8 : min
A

Tx∑
i=1

pHi pi − 2 Re
(
pHi DH

l ai
)

+ aHi DlD
H
l ai

subject to A ∈ A, (19)

where pHi and aHi are the i−th rows of the matrices P and
A, respectively. The last term in the objective function is the
summation of Tx convex functions, which is a convex function.
To use the MM framework, each component function of the
third term in the objective function is majorized using Lemma
III.2, i.e.,

aHi Slai ≤ (ai,k)HSlai,k + 2 Re ((ai − ai,k)Slai,k)

+(ai − ai,k)HTl(ai − ai,k), (20)

where (ai,k)H is the iterate available at k−th iteration, Sl =
DlD

H
l , and T is a Hermitian positive semi-definite matrix

such that, Tl � Sl. Here, we choose Tl = λmax(Sl)I, where
λmax(Sl) is the maximum eigenvalue of the matrix Sl. Then,
we get,

aHi Slai ≤ λmax(Sl)a
H
i ai + 2 Re

(
aHi (Sl − λmax(Sl)I)ai,k

)
+(ai,k)H(λmax(Sl)I− Sl)(ai,k). (21)

It is readily seen that the first term on the right side of the
above inequality is just a constant, that is, aHi ai = Nt,∀i and
also the last term is independent of the variable aHi . Thus,

Algorithm 1 MM Based Analog Precoder/Postocder
Input: The matrix P,D and A0 ∈ A
Output: A
Set k = 0 and S = DDH

1: repeat . index over k = 0 : N − 1
2: Ck = DlP

H − (S− λmax(S)I)AH
k ;

3: Compute A = e−j arg (CT
k );

4: until convergence

the objective function of problem P8 by using the surrogate
function from (21) is replaced as,

f(A; Dl) =

Tx∑
i=1

pHi pi − 2 Re
(
pHi DH

l ai
)

+ aHi DlD
H
l ai

f̃(A; Ak,Dl) =

Tx∑
i=1

pHi pi − 2 Re
(
pHi DH

l ai
)

+λmax(Sl)a
H
i ai

+2 Re
(
aHi (Sl − λmax(Sl)I)ai,k

)
+(ai,k)H(λmax(Sl)I− Sl)(ai,k),

It should be pointed out that the surrogate function
f̃(A; Ak,Dl) has the following properties,

f̃(A; Ak,Dl) ≥ f(A; Dl),∀ ∈ A, (22)
f̃(Ak; Ak,Dl) = f(Ak; Dl), (23)
∇Af̃(Ak; Ak,Dl)= ∇Af(Ak; Dl). (24)

Therefore, the function f̃(A; Ak,Dl) is a valid majorizer of
the function f(A; Dl) [33], [40], [41]. Now, using the above
surrogate function and adopting the MM framework we solve
the problem P8 iteratively,

P9 : min
A

f̃(A; Ak,Dl)

subject to A ∈ A. (25)

After ignoring the constant terms in problem P9 we arrive at
the following projection problem,

P10 : min
A

Tx∑
i=1

‖ai − ci,k‖22

subject to A ∈ A, (26)

where ci,k = [Dlpi − (S− λmax(S)I)ai,k]. It is straight-
forward to see that the above problem admits the following
closed-form solution,

ai = ej arg (ci,k),∀i, (27)

and the update for the complete matrix A is given by,

A = e−j arg (CT
k ), (28)

where Ck = DlP
H − (S−λmax(S)I)AH

k . Now, for the sake
of convenience, we summarize the overall algorithm and it is
given in Algorithm 1.
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Algorithm 2 AMAP: Alternating Minimization + MM Based
Hybrid Analog-Digital Precoding/Postcoding
Input: The matrix P and A0 ∈ A
Output: A,D
Set k = 0

1: repeat . index over k = 0 : M − 1
2: Fix A = Ak, find Dk+1 = (AHA)−1AHP;
3: Fix D = Dk+1, find Ak+1 using Algorithm 1;
4: until convergence
5: Normalize digital precoder, D =

√
Ns

‖AD‖F
D.

C. Digital Precoder Design

Now, we focus on the design of digital BB precoding matrix,
D provided, A is given. Thus, we formulate the following
problem,

P11 : min
D

‖P−AlD‖2F
subject to ‖AlD‖2F = Ns, (29)

where, Al is an estimate of the matrix A available at l−th
iteration. It is easy to see that above the problem is a
nonconvex QCQP, because of the convex equality constraint.
To solve problem P10, one approach is to relax the equality
constraint with inequality, then, it becomes a convex minimiza-
tion problem, and can be efficiently solved using the solvers
like CVX, SeduMi. But we want to avoid this route, as it incurs
huge computation burden for larger systems. One can also
solve the unconstrained problem for D, provided P satisfies
the power constraint. In such a case, it is readily seen that the
total power constraint on P = AD is always satisfied, that is
‖AD‖2F = ‖ΠAP‖2F ≤ Ns, provided P satisfies ‖P‖2F ≤ Ns
where ΠA = A(AHA)−1AH is the orthogonal projection
operator of the matrix A. But this is not the optimal solution,
because the power constraint is satisfied with inequality.

In order to satisfy the power constraint with equality, one
can simply solve the unconstrained version of the problem P11

as,

D = (AH
l Al)

−1AH
l P, (30)

where the inverse (AH
l Al)

−1 is guaranteed to exist because
Al is a full-column rank matrix, as Tx >> Nt. Then, nor-
malize the digital precoder by a factor of

√
Ns

‖AD‖F
. An insight

from this normalization comes from the fact that as long as the
Euclidean distance between the optimal fully digital precoder
and the hybrid precoder without equality constraint is small,
that is if the estimate obtained from the closed-form solution
is consistent, one can also achieve a small distance with this
normalization [12].

The complete algorithm to design the hybrid precoder from
the fully digital precoder, henceforth referred to as AMAP
(Alternating Minimization + MM Based Hybrid Analog-
Digital Precoding/Postcoding), is presented in Algorithm 2.
For the postcoder design, the digital BB postocder is obtained
without scaling factor

√
Ns

‖AD‖F
appearing AMAP algorithm.

D. Convergence Analysis of Algorithm AMAP

In this section, we provide an outline of the convergence
proof. This algorithm uses a combination of the MM and the
alternating minimization framework [43]. The MM method
iteratively minimizes the upper bound of the objective function
to solve the nonconvex analog precoding problem.

Theorem III.3. The solution sequence obtained from algo-
rithm AMAP converges to the set of KKT points (K) of problem
P3, excluding the power constraint and the corresponding
scaling in step 5 of the algorithm.

Proof. See Appendix A. �

E. Complexity Analysis of Algorithm AMAP

Algorithm 2 uses alternating minimization, to compute the
analog and digital precoding matrices. In each step of the MM
algorithm, we need to carry out matrix multiplications and
the number of floating-point operations (FLOPS) required to
compute one matrix multiplication X× Z are (mp(2n− 1)),
where X and Z are the matrices with dimensions m × n
and n × p, respectively. Here we investigate the worst-
case complexity of the algorithms. Considering the naive
implementation of matrix multiplications, we first analyze the
complexity of Algorithm 1. The complexity of carrying out the
multiplication AkS is O(TxN

2
t ), for PDH it is O(TxNsNt).

The complexity of carrying out the exponential operation is
O(TxNt). Thus, the worst-case complexity of Algorithm 1 is
O(TxN

2
t ) per iteration. Apart from this, the maximum eigen-

value of Hermitian positive semidefinite matrix S needs to be
computed, which is easy to compute even for large matrices
using Krylov–Schur Algorithm [44]. Thus, our algorithm is
computationally efficient. Similarly, the worst-case complexity
of the AMAP algorithm is O(T 3

x ) per iteration. This can
be improved provided matrix multiplications and inverses
carried out efficiently. To compute the digital precoder, both
algorithms use the same update step to compute pseudo-
inverse with O(T 3

x ) operations.

IV. HYBRID PRECODING FOR THE PARTIALLY
CONNECTED ARCHITECTURE

In a partially-connected architecture each RF chain is con-
nected to Tx/Nt × 1 antenna elements as shown in (1). The
CMCMF problem for this architecture is given by,

P12 : min
A,D

‖P−AD‖2F
subject to A ∈ C,

‖AD‖2F = Ns, (31)

where the set C contains the block-matrices of the form and the
dimensions presented in equation (1), with each block having
constant modulus entries. Due to this structural constraint
on the analog precoding matrix A, the power constraint can
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be significantly simplified as, ‖AD‖2F = ‖D‖2F = NsNt

Tx
.

Therefore, problem P12 can be written as,

P13 : min
A,D

‖P−AD‖2F
subject to A ∈ C,

‖D‖2F =
NsNt
Tx

= β. (32)

Problem P13 is a nonconvex optimization problem because
neither the objective nor the constraints are convex. Problem
P13 is solved using a combination of variable elimination
and the MM framework, which leads to a much simpler and
efficient solution compared to the one for the fully connected
case.

A. Derivation of the Algorithmic Solution
The basic idea behind variable elimination is to concentrate

the objective function with respect to one of the parameters
and substitute back its closed-form solution in the objective,
to obtain the problem in terms of only one variable. This
approach significantly simplifies the objective in some cases,
where the back substitution does not make the problem ill-
posed.

In order to solve problem P13, we first concentrate the
objective with respect to D assuming A is given,

P14 : min
D

‖P−AD‖2F
subject to ‖D‖2F = β. (33)

Upon expanding the objective function we have,

P15 : min
D

Tr
(
PHP− 2 Re

(
PHAD

)
+ DHAHAD

)
subject to ‖D‖2F = β. (34)

Using the orthogonality of columns of the matrix A, that is,
AHA = NtI, the last term in the above objective is βNt,
which is a constant. Thus, after ignoring the constant terms in
the objective of the above problem we get,

P16 : min
D

∥∥AHP−D
∥∥2
F

subject to ‖D‖2F = β.

It is easy to see that the above problem is a projection problem
for which the solution admits a closed-form given by,

D = β
AHP

‖AHP‖F
. (35)

Substituting back this solution into the objective function of
problem P12 we get,

P17 : min
A

∥∥∥∥P− βA
AHP

‖AHP‖F

∥∥∥∥2
F

subject to A ∈ C. (36)

The objective function of P17 is simplified after expanding it
as,

Tr

{
PHP− 2βRe

(
PHA

AHP

‖AHP‖F

)}
+β2 Tr

{
PHA

‖AHP‖F
AHA

AHP

‖AHP‖F

}
.

Further simplification leads to the following function,

−β
∥∥AHP

∥∥
F

+ β2Nt. (37)

Thus, after ignoring the constant terms, we have the follow-
ing problem,

P18 : min
A

−
∥∥AHP

∥∥
F

subject to A ∈ C. (38)

Equivalently, the above problem can be reformulated as the
following maximization problem,

P19 : max
A

∥∥AHP
∥∥2
F

subject to A ∈ C. (39)

It is easy to see that the above objective can be rewritten as,

P20 : max
A

g(A) =

Nt∑
i=1

ãHi PPH ãi

subject to A ∈ C, (40)

where ãi is the i−th column of the matrix A. It is important
to note that the objective function in P20 is a sum of Nt
quadratic convex functions. It is a well-known fact that each
quadratic convex function is lower bounded by its first-order
Taylor’s expansion [45]. Therefore, adopting the minorization-
maximization (MM) framework, we first construct a surrogate
function using the first-order Taylor’s expansion which is
a tight minorizer of the original function. Using this fact
each function of the sum of the objective function in P20 is
minorized as,

ãHi PPH ãi ≥ ãHi,kPPH ãi,k

+2 Re
(
(ãi − ãi,k)HPPH ãi,k

)
. (41)

Thus, the overall objective can be minorized as,

g(A) ≥ g̃(A; Ak)=

Nt∑
i=1

ãHi,kPPH ãi,k

+2 Re
(
(ãi − ãi,k)HPPH ãi,k

)
. (42)

Similar to the properties satisfied by a valid majorizer from
(22)-(24), the above surrogate function also satisfies the same
properties except with reversed inequality in (22), since it
minorizes the original function. Therefore, after neglecting the
constant terms of the above surrogate function, the minorized
version of the problem P20 can be written as,

P21 : max
A

Nt∑
i=1

Re
(
ãHi PPH ãi,k

)
subject to A ∈ C. (43)

Problem P21 can be further reformulated to,

P22 : min
A

Nt∑
i=1

∥∥ãi −PPH ãi,k
∥∥2
2

subject to A ∈ C. (44)

The latter formulation is derived by using the fact that each
block of the matrix is a vector having only Tx/Nt non-zero
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Algorithm 3 VMAP: Variable Projection + MM Based Hy-
brid Analog-Digital Precoding/Postcoding
Input: The matrix P
Output: A, D
Set k = 0 and initialize A0 ∈ C

1: repeat . index over k = 0 : N − 1

2: ai,k+1 = ej arg (P̃iP̃
H
i ai,k),∀i = 1, 2, . . . , Nt;

3: until convergence
4: Digital precoder, D = β AHP

‖AHP‖F
.

elements according to the structure presented in (1). It means,
that only a sub-matrix of PPH is required to get the next
update. Thus, we arrive at the following formulation of the
problem,

P23 : min
A

Nt∑
i=1

∥∥∥ai − P̃iP̃
H
i ai,k

∥∥∥2
2

subject to A ∈ C, (45)

where ai is the i−th non-zero block of matrix A as shown
in (1) and ai,k is its corresponding k−th iterate. The matrix
P̃i = Pi:i+Tx

Nt
−1,: is the i−th submatrix formed by extracting

the i−th to (i + Tx

Nt
− 1)−th rows of matrix P. Therefore,

the problem can be solved in a parallel manner for all Nt
blocks simultaneously. It is readily seen that problem P23 is
a least-squares projection problem and admits the following
closed-form solution,

ai = ej arg (P̃P̃Hai,k),∀i = 1, 2, . . . , Nt. (46)

Thus, by using the minorization-maximization framework,
once we converge for the analog precoding, the solution of the
digital BB precoding matrix is given by (35). The complete
algorithm to design the hybrid precoder from the fully digital
precoder, henceforth referred to as VMAP (Variable Projection
+ MM Based Hybrid Analog- Digital Precoding/Postcoding),
is presented in Algorithm 3.

B. Convergence Analysis of Algorithm 3

We now, prove the convergence of the iterates generated by
the algorithm VMAP to the set of stationary points. Since this
framework first eliminates the variable D, we only need to
show the convergence of the sequence {Ak}.

Theorem IV.1. Let {Ak} be the sequence of iterates gen-
erated by Algorithm VMAP. Then, every limit point of the
sequence {Ak} is a stationary point of problem P19.

Proof. See Appendix B. �

C. Complexity of Algorithm VMAP

Algorithm VMAP requires a matrix-matrix, matrix-vector
multiplications and phase computation operation at each itera-
tion. As compared to SDR-ALTMIN proposed in [12], here
we do not require to solve the problem using alternating
minimization. The SDR-ALTMIN algorithm solves a non-
convex QCQP using semidefinite relaxation and uses solvers
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Fig. 1. Objective function variation with time for the fully connected
architecutre, Nt = Nr = Ns = 6.

like CVX, SeduMi to solve the problem. As compared to
this, our algorithm does not require any external solvers, thus
more computationally efficient. Similar to the fully connected
architecture the worst-case complexity to carry out matrix
multiplication of the term P̃iP̃

H
i is O((Tx/Nt)

2Ns). The
exponential operation can be carried in O((Tx/Nt)Ns) op-
erations. Thus, our algorithm is much more computationally
efficient and is easily scalable to large dimensions.

V. SIMULATION RESULTS

In this section, we provide numerical simulation results to
test the performance of proposed algorithms and show their
potential under different regimes. In the considered scenario a
transmitter of Tx = 144 and a receiver of Rx = 36 is assumed.
The channel parameters are Nc = 5 clusters and Np = 10
propagation paths. The element spacing of the ULA is set to
d = λ

2 . Next, we study the evolution of the objective function
with the number of iterations and the CPU time required to
converge for the AMAP and MO-ALTMIN algorithms.

A. Objective Value Comparison

First, we compare the evolution of the objective function
of the problem P1 with CPU time for the fully-connected
case. As a benchmark, we compare the performance proposed
algorithm AMAP with MO-ALTMIN algorithm from [12].
The comparison is made in terms of the CPU time required
by the two algorithms to converge with a fixed number of
iterations. The running time for the algorithms consists of
the computation of the two precoding matrices. As both al-
gorithms work on the philosophy of alternating minimization,
we initialize them with the same analog precoding matrix. It
is readily seen from Figures 1 and 2 that the AMAP algorithm
and the MO-ALTMIN algorithm perform very close to each
other, though AMAP converges much faster. Note that we have
not shown other existing codebook free approaches from [24],
[25] as they optimize different objective functions. But later,
we do compare them on the basis of the SE achieved.
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Fig. 2. Objective function variation with iteration for the fully connected
architecutre, Nt = Nr = Ns = 6.
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Fig. 3. Objective function variation with the number of iterations for the
partially connected architecture, Nt = Nr = Ns = 6.

For the partially connected architecture, the objective func-
tion evolution of problem P21 with CPU time is shown in
Figure 3. As expected, the objective function value monoton-
ically increases with the number of iterations and converges.

B. Spectral Efficiency Comparison

In order to compute the spectral efficiency of the system,
we use the same algorithms at the receiver’s side. As already
mentioned, both the problems at the transmitter’s as well as
at the receiver’s have the same mathematical structure, with
a change in the dimensions at the two ends. For the fully
connected case, the spectral efficiency achieved by different
algorithms when Nt = Nr = Ns = 6, is shown in Figure 4.
As it is readily seen from there apart from MO-ALTMIN, we
have compared the results with other existing works including
OMP [3], phase projection [24], Alt-MaG [25] algorithms
and the fully digital precoder designed by the singular value
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Fig. 4. Spectral efficiency comparison for different algorithms for the fully
connected architecture, Nt = Nr = Ns = 6.

decomposition (SVD) of the channel matrix and the water-
filling algorithm [39]. The hybrid A/D precoder and postcoder
updates for the Alt-MaG algorithm are obtained using the
MaGiQ algorithm proposed in the same referenced work. The
primary reason behind showing the SE achieved by a fully
digital precoder is to compare the loss in SE achieved by
employing the hybrid architecture. The proposed algorithm
achieve the SE efficiency closed to the one achieved by the
fully digital precoder. It is also observed that all the algorithms
perform very close to the fully-digital case, whereas Figure 1
reveals that AMAP algorithm gains significantly on the time
required to converge in comparison with the MO-ALTMIN
algorithm.

Next, we consider the SE variation with the different number
of RF chains for the fully connected architecture, by fixing the
number of streams. We consider the variation only in the case
when Ns ≤ Nt < 2Ns; this is because when the number
of RF chains becomes twice the number of streams, the SE
achieved by fully connected architecture coincides with the
system employing fully digital precoding. The variation with
the Nt is shown in Figure 5. Once again, we perform similar
to the MO-ALTMIN algorithm, whereas the phase projection
based algorithm [24] and Alt-MaG from [25] does not scale
well with the number of RF chains.

The SE efficiency comparison for the partially connected
architecture is shown in Figure 6. It is readily observed that
the SE achieved by our algorithm is significantly larger than
to that of SDR-ALTMIN algorithm.

The SE efficiency variation with the number of RF chains is
shown in Figure 7. To get the block-diagonal structure and to
avoid divisibility issues in constructing the analog precoding
matrices, we have used a different arrangement with Tx = 144
and Rx = 72, such that Tx/Nt and correspondingly Rx/Nr
are integers. It is clear from the results that the proposed
VMAP algorithm provides improved performance compared
to the SDR-ALTMIN algorithm.
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C. Scalability of the Algorithms

In this section, we present simulation results to investigate
the scalability of the proposed algorithms. As AMAP and MO-
ALTMIN algorithms minimize the same objective we compare
their average running time. For the remaining algorithms, later
we provide a table summarizing the average time required
to design the complete transceiver as they consider different
optimization problems. We plot in Figure 8, the average
running time for the AMAP and MO-ALTMIN algorithm with
the number of streams as well as with the different number of
transmitting and receiving antennas.

We increase both the number of streams and RF chains for
each arrangement having a different number of transmitting
and receiving antennas. It is easy to see that the proposed
algorithms are much faster than the MO-ALTMIN algorithm.
Table I shows the comparison of SE achieved by the different
techniques along with the time required to design the fully-
connected hybrid transceiver at a SNR of 0 dB. There, SEX
represents the SE achieved in bits/s/Hz and TX denotes the
time required in seconds, with the subscript X representing the
names of different techniques. In the referred table, we have
fixed the same number of maximum iterations for the AMAP
and Alt-MaG algorithms. It is observed that the proposed
algorithms achieve better SE in comparison with the other
algorithms, with significant gains in the average run time. The
phase projection has lower computational complexity among
all the algorithms but it has marginal improvements in the
SE achieved with the number of RF chains. Therefore, the
proposed algorithm AMAP is a good compromise between
the complexity and the performance.

A comparison of the VMAP and SDR-ALTMIN algorithms
for the partially connected case is shown in Figure 9. It is
observed that the VMAP algorithm has many orders lower
average running time than the SDR-ALTMIN algorithm.
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TABLE I
AVERAGE RUNNING TIME AND SE ACHIEVED BY DIFFERENT ALGORITHMS, Tx = 64, Rx = 16 AND Ls = 6

Average running time (in seconds) and SE (in bits/s/Hz) achieved
Nt and Nr =

NRF

TAMAP SEAMAP TMO-ALTMIN SEMO-ALTMIN TAlt-MaG SEAlt-MaG TPhase projection SEPhase projection

6 0.8688 24.3515 16.1905 24.3996 4.2433 24.7777 0.1771 24.3336
7 0.9689 25.4934 21.8647 25.5188 4.2696 24.7777 0.2042 24.4707
8 1.0430 25.8546 26.2132 25.8553 4.1964 24.7777 0.2228 24.5241
9 1.2021 25.9699 32.0642 25.9696 4.3754 24.7777 0.2660 24.6410

10 1.2665 26.0067 37.6997 26.0068 4.1591 24.7777 0.2841 24.6967
11 1.4505 26.0121 50.1005 26.0121 4.4254 24.7777 0.3526 24.6388
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Fig. 9. Average running times variation with the number of RF chains and
the number of streams under different system dimensions for the partially
connected architecutre, SNR = 0 dB.

VI. CONCLUSIONS

In this paper, we have studied the problem of hybrid analog-
digital transceiver design for a mmWave MIMO system. We
have proposed two algorithms to solve the hybrid design
problem for the fully connected and the partially connected
architectures, respectively. For the fully connected case, the
AMAP algorithm was developed based on the majorization-
minimization and the alternating minimization frameworks.
Convergence to a stationary point of the iterates generated
from the algorithm was also established. An efficient algorithm
namely, VMAP was developed for the partially connected
case. First, the digital BB precoding matrix was eliminated
from the objective function and the problem for analog precod-
ing was solved using the minorization-maximization frame-
work. Once, the algorithm converges to a stationary point,
the digital precoder then obtained in closed-form. From the
numerical simulation results, we list the following observations
which unveil the importance of our algorithms:

• The AMAP algorithm converged faster compared to the
state-of-the-art solution in literature. The hybrid precod-
ing matrices obtained from the proposed algorithm had
similar performance to the state-of-the-art MO-ALTMIN
algorithm in terms of SE of the system.

• The VMAP algorithm easily scaled to larger system
dimensions and significantly gained on the SE achieved

as compared to the SDR-ALTMIN algorithm.
• Both the proposed algorithms scaled to larger system di-

mensions with several orders of gain on average running
time.

Our results clearly demonstrate the aforementioned gains of
the proposed algorithms by utilizing a new approach based on
the MM framework, variable elimination and the alternating
minimization with provable convergence guarantees.

APPENDIX A
PROOF OF THEOREM III.3

Proof. To show the convergence of the iterates to a Karush-
Kuhn-Tucker (KKT) point, we start with the properties of the
surrogate function from (22)-(24) for the analog precoding
problem and show that the iterates obtained decreases the
objective function monotonically. To show that, we first write
the updates of the algorithm AMAP as,

Ak+1= arg min
A∈A

f̃(A; Ak,Dk) (47)

Dk+1= arg min
D

f(Ak+1,D), (48)

where the solution Ak for the matrix A is obtained after
the convergence of Algorithm 1 convergence, k represents the
iteration number of the AMAP algorithm and the update for
matrix D is obtained from the closed form solution. From
property (23) we have,

f(Ak,Dk)= f̃(Ak; Ak,Dk), (49)
≥ f̃(Ak+1; Ak,Dk), (50)
≥ f(Ak+1,Dk), (51)
≥ f(Ak+1,Dk+1), (52)

where Ak and Ak+1 are the minimizers obtained from Al-
gorithm 1. Equation (50) follows from the descent prop-
erty of the MM framework [40], which is f(Al+1,Dk) ≤
f̃(Al+1; Ak+1,Dk) ≤ f̃(Al; Ak,Dk) ≤ f(Al,Dk). The
inequality (51) holds because of (22), and (52) follows from
(48). Therefore, {f(Ak,Dk)} is a monotonically decreasing
sequence and it thus converges, since it is lower bounded.
Consider a convergent subsequence {Ask ,Dsk}, indexed by
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sk, converging to the limit-point {A∞,D∞}. Then, we can
write,

f̃(A; Ask ,Dsk)≥ f̃(Ask+1; Ask ,Dsk) (53)
≥ f(Ask+1,Dsk) (54)
≥ f(Ask+1,Dsk+1) (55)
≥ f(Ask+1

,Dsk+1
) (56)

= f̃(Ask+1
; Ask+1

,Dsk+1
). (57)

The inequality (53) follows from (47), (54) holds be-
cause of (22), (55) follows from (48), (56) comes from
(48), and equation (57) is obtained from (23). Since,
f̃(Ask+1

; Ask+1
,Dsk+1

) is a continuous function, we can take
the following limit,

lim
k→∞

f̃(A; Ask ,Dsk)≥ lim
k→∞

f̃(Ask+1
; Ask+1

,Dsk+1
)

f̃(A; A∞,D∞) ≥ f̃(A∞; A∞,D∞),∀A ∈ A,

which means that A∞ is a coordinate-wise minimizer of
f̃(A; A∞,D∞), and thus, it satisfies the partial KKT con-
dition with respect to A, that is,

∇Af̃(A∞; A∞,D∞) + 2Ψ1 ◦A∞ = 0, (58)
∇Af(A∞,D∞) + 2Ψ1 ◦A∞ = 0, (59)

where Ψ1 is the dual variable associated with the squared
unit-modulus constraint. The last equation holds due to the
gradient-consistency between the surrogate and the original
function, as depicted in (24). Working on the similar lines
and using (48), we derive the following,

f(Ask ,D) ≥ f(Ask ,Dsk). (60)

By similar arguments made earlier, we can take the limit k →
∞ on both sides of the above inequality, resulting in,

f(A∞,D) ≥ f(A∞,D∞). (61)

This proves that D∞ is coordinate-wise minimizer of
f(Ask ,D) and thus, it satisfies the KKT condition for D,

∇Df(A∞,D∞) = 0. (62)

Therefore, using (59) and (62), it is readily established that
the every limit point of the solution sequence is a KKT point.
In order to show that the whole sequence {Ak,Dk} together
converges to the KKT point, we first establish the boundedness
of the iterates. The solution obtained from Algorithm 1 lies
in a compact set, and it is a well known result that if a set is
compact then, it is bounded [46]. Another way to prove that
a sequence is bounded easily follows from generalization of
the boundedness of a vector sequence [42], [46]. A sequence
{Ak} is bounded if and only if there exists a scalar c such that
‖Ak‖F ≤ c, for all k [42], [46]. Since, each entry of the matrix
Ak is unit-modulus, it follows that ‖Ak‖F ≤

√
TxNt. To

prove that the sequence {Dk} is bounded, we use the similar
argument and we have,

‖D‖F ≤
∥∥(AHA)−1

∥∥
2

∥∥AHP
∥∥
F

(63)

≤
∥∥(AHA)−1

∥∥
2

∥∥AH
∥∥
F
‖P‖F , (64)

where inequality (63) follows from ‖XY‖F ≤ ‖X‖2 ‖Y‖F
[47], ‖X‖2 represents the spectral norm of the matrix X which
is defined as the square-root of the maximum eigenvalue of
matrix XHX, that is

√
λmax(XHX). The last inequality (64)

follows from Cauchy-Schwarz inequalty [47]. All the terms
on right hand side of (64) are bounded, the spectral norm can
be shown to be bounded if A is a full-rank matrix,∥∥(AHA)−1

∥∥
2

=
√
λmax ((AHA)−2) (65)

=
1

λmin(AHA)
. (66)

From simulations it is observed that the matrix A is always
full-column rank, thus (AHA)−1 exists. Hence, the quantity
‖D‖F < ∞. Therefore, all the quantities on the right hand
side of the inequality (64) are bounded, thus the sequence is
bounded.

Now, consider that whole sequence does not converge to the
set of KKT points K. Therefore, there exists a subsequence
not converging to any element of K. But we have already
shown, the boundedness of {Ak}, {Dk}, which implies that
every subsequence has a limit point and every limit point is a
KKT point. This contradicts our assumption that the sequence
does not converge to the set of KKT points. Thus, the whole
sequence converges to a KKT point. �

APPENDIX B
PROOF OF THEOREM IV.1

Proof. The objective function g(A) of problem P19 is mi-
norized by the surrogate function g̃(A; Ak) from (42), where
Ak is the feasible solution available at k−th iteration. Accord-
ing to the MM framework and the similar arguments presented
in section III-D, we have,

g(Ak+1) ≥ g̃(Ak+1; Ak) ≥ g̃(Ak; Ak) = f(Ak),

this means that the sequence {g(Ak)} increases monotoni-
cally. Assume that there exists a subsequence {Akj} converg-
ing to A∞, then we can write,

g̃(Akj+1
; Akj+1

)= g(Akj+1
) ≥ f(Akj+1)

≥ g̃(Akj+1; Akj ) ≥ g̃(A; Akj ),∀A ∈ C.

Now, using the continuity of the function f̃(·) and taking the
limit as j →∞,

g̃( lim
j→∞

Akj+1
)≥ g̃(A; lim

j→∞
Akj ) (67)

g̃(A∞; A∞) ≥ g̃(A; A∞). (68)

The above inequality means that A∞ is a global maximizer
of the function g̃(A; A∞) over the set C. Thus, it satisfies the
KKT condition,

∇Ag̃(A∞; A∞) + 2Ψ2 ◦A∞ = 0. (69)

where Ψ2 is the dual variable associated with the squared
constant modulus equality constraint. Since, A∞ is a global
maximizer of g̃(A; A∞), it should satisfy the first-order
necessary condition as,

Re
{

Tr
(
∇Ag̃(A∞; A∞)H(A−A∞)

)}
≤ 0,∀A ∈ C′



14

where C′ is the set constructed by replacing the squared con-
stant modulus equality constraint of the set C with inequality.
In other words, it is a convex approximation of the set C. Now,
by consistency of the gradients between g(·), and g̃(·), we get,

∇Ag(A∞) + 2Ψ2 ◦A∞ = 0,

Re
{

Tr
(
∇Ag(A∞)H(A−A∞)

)}
≤ 0,∀A ∈ C′.

The above inequality and the KKT condition implies that A∞
is a stationary point of the problem P19. �
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