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ABSTRACT. We prove that the Galois pseudo-representation valued in the mod pn cuspidal Hecke

algebra for GL(2) over a totally real number field F , of parallel weight 1 and level prime to p, is un-

ramified at any place above p. The same is true for the non-cuspidal Hecke algebra at places above p

whose ramification index is not divisible by p − 1. A novel geometric ingredient, which is also of

independent interest, is the construction and study, in the case when p ramifies in F , of generalised

Θ-operators using Reduzzi–Xiao’s generalised Hasse invariants, including especially an injectivity cri-

terion in terms of minimal weights.
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INTRODUCTION

Starting with Wiles [24] and Taylor–Wiles [21], R = T theorems have been developed and taken a
role as cornerstones in number theory. They provide both the existence of Galois representations with
values in Hecke algebras satisfying prescribed local properties and modularity lifting theorems. The
state of R = T theorems for 2-dimensional representations in residual characteristic p of the absolute
Galois group GQ of Q and Hecke algebras acting on elliptic modular forms is quite satisfactory. In
particular, the notoriously difficult case of Galois representations that are unramified at an odd prime p
has been settled by ground-breaking work of Calegari and Geraghty [3], in which they show that those
correspond to modular forms of weight 1. More precisely, given an odd irreducible representation
ρ̄ : GQ → GL2(Fp) unramified outside a finite set of places S not containing p, they show that

RS
Q,ρ̄

∼−→ T(1)
ρ̄ ,

where RS
Q,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime

to p.
In this article, we address the corresponding question for parallel weight 1 Hilbert modular forms

over a totally real field F of degree d = [F : Q] ⩾ 2 and ring of integers o. We focus on the
construction of the Galois (pseudo-)representation with values in the parallel weight 1 Hecke algebra
with p-power torsion coefficients and proving its local ramification properties. In particular, given a
finite set S of places in F relatively prime to p and a totally odd irreducible representation ρ̄ : GF →
GL2(Fp) unramified outside S we show that there exists a surjective homomorphism

RS
F,ρ̄ ↠ T(1)

ρ̄ ,

where RS
F,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime to

p (see Corollary 3.10 for a precise statement).
Let Mκ(n, R) be the R-module of Hilbert modular forms of parallel weight κ ⩾ 1 and prime to p

level n over a Zp-algebraR, as in Definition 2.1. ThisR-module is equipped with a commuting family
of Hecke operators Tq as well as with diamond operators ⟨q⟩ for all primes q of F not dividing n.
Let K/Qp be a finite extension containing the images of all embeddings of F in Qp, and let O
be its valuation ring, ϖ a uniformiser and F = O/ϖ its residue field. We put Mκ(n,K/O) =

lim−→
n

Mκ(n,O/ϖn) and define the parallel weight 1 Hecke algebra

T(1) = im
(
O[Tq, ⟨q⟩]q∤np → EndO(M1(n,K/O))

)
,

as well as its cuspidal quotient T(1)
cusp acting faithfully on the submodule of parallel weight 1 cus-

pforms. We can now state the main results of this article. Let po =
∏

p|p p
ep with ep ⩾ 1. We

emphasise that there is no restriction on the ramification of p in F .
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Theorem 0.1. There exists a T(1)-valued pseudo-representation P (1) of GF of degree 2 which is
unramified at all primes q not dividing np and satisfies P (1)(Frobq) = (Tq, ⟨q⟩).

Moreover, if p− 1 does not divide ep for some p | p, then P (1) is also unramified at p and satisfies
P (1)(Frobp) = (Tp, ⟨p⟩), in particular Tp ∈ T(1).

Finally, the pseudo-representation P (1)
cusp obtained after composing P (1) with the natural surjection

T(1) → T(1)
cusp is unramified at all p | p and satisfies P (1)

cusp(Frobp) = (Tp, ⟨p⟩).

The strategy of the proof is based on the doubling method developed in [23], further simplified
and conceptualised in [14] and [3]. The parallel weight 1 Hilbert modular forms over O/ϖn can
be mapped into some higher weight in two ways, per prime p dividing p, either by multiplication
by a suitable power of the total Hasse invariant, or by applying a V -operator. That doubling map is
used by Calegari–Specter in [4] to prove an analogue of Theorem 0.1 when F = Q, for which they
successfully develop the notion of a p-ordinary pseudo-representation. In that case, one knows by a
result of Katz that the doubling map is injective. Furthermore, the existence of the Hecke operator Tp
acting on weight 1 modular forms and the knowledge of its precise effect on the q-expansion (both
due to Gross) allow one to show that the image of the doubling map is contained in the p-ordinary
part of the higher weight space.

The existence of an optimally integral Hecke operator Tp acting on parallel weight 1 Hilbert modu-
lar forms with arbitrary coefficients having the desired effect on their q-expansions (see [6] improving
on and correcting previous works such as [15] and [14]) allows us to adapt the overall Calegari–
Specter strategy to the Hilbert modular setting, while slightly generalising and clarifying some as-
pects of their arguments (see §3), the main challenge being to prove the injectivity of the doubling
map. Note that the simple calculation in [14] showing that injectivity after restriction to an eigen-
space is insufficient as the Hecke algebra modulo p need not be semi-simple. Instead, we observe
that the injectivity of the doubling map would follow from the injectivity of a certain generalised
Θ-operator, introduced in the foundational work [2] of Andreatta–Goren for Hilbert modular forms
in characteristic p defined over the Deligne–Pappas moduli space. When p is unramified in F , the
theory of partial Θ-operators was also developed by Diamond–Sasaki [10] in a more general setting
using a slightly different approach from that of [2]. However, when p is ramified in F , the results
of [10] do not apply, while those of [2] are not sufficiently precise for our purposes, as the Hilbert
modular forms defined over the Deligne–Pappas model ‘miss’ some weights, and as a consequence
the injectivity result of the latter paper is not optimal. In order to tackle this problem, we go back to
the root of the problem and work with the Pappas–Rapoport moduli space, which does not miss any
weight.

Capitalising on the theory of generalised Hasse invariants developed by Reduzzi–Xiao [17] in this
context, we carefully revisit [2] and develop in §1.5 the needed theory of generalised Θ-operators over
the Pappas–Rapoport moduli space and prove a refined injectivity criterion in terms of the minimal
weights. In particular, we show that the generalised Θ-operators are indeed injective on parallel
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weight 1 Hilbert modular forms provided their weight is minimal at p. By the recent works [8, 9] of
Diamond and Kassaei (see §1.3) weight 1 Hilbert modular forms having ‘non-minimal’ weight at p
could only possibly exist when p − 1 divides ep, and are products of forms of partial weight 0 at p
with generalised Hasse invariants.

In order to show the vanishing of the space of Katz cuspforms of partial weight 0 at p, and thus
complete the proof of the second and third parts of the Theorem, in §1.4 we construct a partial
Frobenius endomorphism Φpe of this space and show that it is simultaneously injective and nilpotent.
Our construction is inspired by the one in Diamond–Sasaki [10, §9.8] in the case when p is unramified
in F . We also compute its effect on q-expansions, which is crucially used in our proof and, in order
to avoid having to switch between different cusps, we only study the partial Frobenius operator of an
appropriate power of p, rather than of p itself.

In the language of linear representations, we prove the following result, which can be seen as a
first step towards an R = T theorem.

Corollary (Corollary 3.10). For every non-Eisenstein maximal ideal m of T(1) (see Definition 3.8)
there exists a representation

ρm : GF → GL2(T
(1)
m ),

unramified at all primes q not dividing n such that tr(ρm(Frobq)) = Tq and det(ρm(Frobq)) = ⟨q⟩.

We believe that our modest contribution to the theory of generalised Θ-operators in the setting
of the Pappas–Rapoport splitting model is worthwhile on its own, beyond the application to our
main theorem. On our way to the injectivity criterion, we also explore some related themes, such
as the relation between Hilbert modular forms defined over the Pappas–Rapoport model with those
defined over the Deligne–Pappas model, and the q-expansion and vanishing loci of the generalised
Hasse invariants defined by Reduzzi–Xiao. We hope that it bridges the gap between many existing
references in the literature and also clarifies some important aspects of the theory of mod p Hilbert
modular forms. In the meantime, motivated by geometric Serre weight conjectures, Diamond [7]
extended the techniques of [10] to also construct partial Θ-operators which have an optimal effect on
weights in the case where p ramifies in F . Moreover, Diamond generalised in [7] the construction
of the partial Frobenius operators (our partial Frobenius operator Φpe is essentially Diamond’s V e

p ).
Note that Diamond also describes kernels of partial Θ-operators in terms of images of his partial
Frobenius maps Vp (see [7, Thm. 9.1.1]). However, our construction is less technical because we
restrict to the Rapoport locus and we only consider the case of weights 0 at p.

Acknowledgements. The authors are indebted to Fabrizio Andreatta, Adel Betina, Frank Calegari, Fred Dia-
mond, Payman Kassaei, Sheng-Chi Shih and Liang Xiao for many clarifying explanations and discussions.
The debt to the works of Andreatta–Goren [2] and Reduzzi–Xiao [17] is evident.

The authors would particularly like to thank the anonymous referee for the careful reading pointing out
several inaccuracies and for the insightful comments which helped tremendously improve the manuscript.
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Notation. Throughout the paper, we will use the following notation. We let F be a totally real
number field of degree d ⩾ 2 and ring of integers o. We denote by Q ⊂ C the subfield of algebraic
numbers and denote by GF = Gal(Q/F ) the absolute Galois group of F . For every prime q of F
we denote by Frobq ∈ GF a fixed choice of an arithmetic Frobenius at q. Let p be a prime of F
dividing p. Fixing an embedding ιp of Q into a fixed algebraic closure Qp of Qp allows one to see the
absolute Galois group GFp = Gal(Qp/Fp) of Fp as a decomposition subgroup of GF at p, and we
let Ip denote its inertia subgroup. Furthermore, we fix a finite extension K/Qp containing the images
of all embeddings of F in Qp, and let O be its valuation ring, ϖ a uniformiser and F = O/(ϖ) its
residue field.

For a prime p of F dividing p, denote the residue field of Fp by Fp and the ring of Witt vectors of
Fp by W (Fp). We also let fp and ep denote the residue and the ramification index of p, respectively.
Let Σ be the set of infinite places of F , which we view as embeddings F ↪→ Qp via ιp. We have a
natural partitioning Σ =

∐
p|pΣp where Σp contains exactly those embeddings inducing the place p.

For σ ∈ Σp, we denote by σ its restriction to the maximal unramified subfield of Fp or, equivalently,
the induced embedding of Fp(τ) into Fp. Furthermore, we let Σp = {σ | σ ∈ Σp} and Σ = {σ | σ ∈
Σ} =

∐
p|pΣp. As a general rule, elements of Σ will be called σ whereas τ usually designates an

element of Σ. In both cases, p(σ) and p(τ) denotes the underlying prime ideal. When either σ or τ
is clear from the context, we will just denote this prime ideal by p. In particular, an element τ ∈ Σp

denotes both an embedding Fp(τ) ↪→ F and the corresponding p-adic one W (Fp(τ)) ↪→ O. Denoting
the absolute arithmetic Frobenius on F by ϕ, we have Σp = {ϕj◦τ | j ∈ Z} ≃ Z/fpZ ≃ Gal(Fp/Fp)

for any choice τ ∈ Σp. For any τ ∈ Σp, we let Στ = {σ ∈ Σp | σ = τ} = {στ,i | 1 ⩽ i ⩽ ep},
where the numbering is chosen in an arbitrary, but fixed way. As an abbreviation, we write τ̃ = στ,ep .

Let C be a fixed set of representatives, all relatively prime to p, for the narrow class group of F .

1. HILBERT MODULAR FORMS IN FINITE CHARACTERISTIC

This section refines the theory of Θ-operators developed by Andreatta–Goren in [2], when p rami-
fies in F , in the setting of Hilbert modular forms defined over the Pappas–Rapoport splitting models
for Hilbert modular varieties with the aim of proving the injectivity of the doubling map in §2. Along
the way, we will need the generalised Hasse invariants of Reduzzi and Xiao [17], results of Dia-
mond and Kassaei [8, 9] about minimal weights as well as a partial Frobenius operator generalised
from [10].



6 SHAUNAK V. DEO, MLADEN DIMITROV, AND GABOR WIESE

Throughout this section we fix an ideal n of o relatively prime to p and having a prime factor which
does not divide 6d, where d denotes the different of F .

1.1. Pappas–Rapoport splitting models for Hilbert modular varieties. Since we allow our base
field F to ramify at p, we have to be careful with the model we choose for our Hilbert modular variety.

Fix c ∈ C. We first consider the functor from the category of locally Noetherian Zp-schemes to
the category of sets which assigns to a scheme S the set of isomorphism classes of tuples (A, λ, µ)
where:

(i) A is a Hilbert-Blumenthal Abelian Variety (HBAV) over S, i.e., an abelian S-scheme of relative
dimension d, together with a ring embedding o ↪→ EndS(A).

(ii) λ is a c-polarisation of A/S, i.e., an isomorphism λ : A∨ → A⊗o c of HBAV’s over S such that
the induced isomorphism Homo(A,A⊗o c) ≃ Homo(A,A

∨) sends elements of c (resp. of the
cone c+ of its totally positive elements) to symmetric elements (resp. to polarisations),

(iii) µ is a µn-level structure on A, i.e., an o-linear closed embedding of S-schemes µ : µn → A,
where µn denotes the Cartier dual of the constant group scheme o/n over S.

Under our assumption on n above, this functor is representable by a Zp-scheme XDP of finite type,
called the Deligne–Pappas moduli space (see [2, Rem. 3.3] and [13, Lem. 1.4]).

Suppose now that A is an HBAV over a locally Noetherian O-scheme S with structure map s :

A→ S and let Ω1
A/S be the sheaf of relative differentials of A over S. Define

ωS = s∗Ω
1
A/S ,

i.e., ωS is the sheaf of invariant differentials of A over S. Consider the decomposition

o⊗Z OS = (o⊗Z Zp)⊗Zp OS =
∏
p|p

op ⊗Zp OS =
∏
τ∈Σ

op(τ) ⊗W (Fp(τ)),τ OS .(1.1)

It implies that we have a corresponding decomposition

ωS =
⊕
τ∈Σ

ωS,τ .(1.2)

The sheaf ωS,τ is locally free over S of rank ep(τ) (see [17, §2.2]). Note that on ωS,τ , the action of
W (Fp(τ)) ⊂ op(τ) is via τ . Fix a uniformiser ϖp(τ) of op(τ). From the product decomposition above,
we get an action of op(τ) on ωS,τ . Denote the action of ϖp(τ) on ωS,τ by [ϖp(τ)].

We are now ready to present the Pappas–Rapoport model. Consider the functor from the category
of locally Noetherian O-schemes to the category of sets which assigns to a scheme S the set of
isomorphism classes of tuples (A, λ, µ, (Fp)p|p) where (A, λ, µ) is as above and for all p | p, Fp is a
collection (F i

τ )τ∈Σp,0⩽i⩽ep
of o⊗OS-modules, which are locally free as OS-modules, such that:

• 0 = F0
τ ⊂ · · · ⊂ F

ep
τ = ωS,τ ,

• for any σ = στ,i ∈ Στ , the OS-module ωS,τ,i = ωS,σ = F i
τ/F i−1

τ is locally free of rank 1

and annihilated by [ϖp]− σ(ϖp). Note that the numbering here depends on the one for Στ .
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This functor is representable by a smooth O-scheme X of finite type called the Pappas–Rapoport
moduli space (see [17, Prop. 2.4] and [13, Lem. 1.4]).

In order to better understand the relation between the Deligne–Pappas and the Pappas–Rapoport
moduli spaces, we recall that the Rapoport locus XRa is the open subscheme of XDP classifying
HBAV’s s : A → S satisfying the following condition introduced by Rapoport: s∗Ω1

A/S is a locally
free o ⊗Z OS-module of rank 1. Then XRa is the smooth locus of XDP and its complement is
supported in the special fibre and has codimension at least 2 in it. The forgetful map X → XDP

O
induces an isomorphism on the open subscheme XRa

O (see [17, Prop. 2.4]). If p is unramified in F ,
the different schemes agree: X = XRa

O = XDP
O (see [17, §1]).

Let A be the universal abelian scheme over X with structure morphism s : A → X . Let ωX =

s∗Ω
1
A/X . Note that the restriction of ωX to XRa

O is a locally free sheaf of rank 1 over o ⊗Z OXRa
O

.

As abbreviation we write ω, ωτ , ωτ,i, ωσ for ωX , ωX ,τ , ωX ,τ,i, ωX ,σ. In particular, for each τ ∈ Σ,
the sheaf ωτ is equipped with a filtration the graded pieces of which are the invertible sheaves ωσ

for σ ∈ Στ . In [17] this is referred to as the universal filtration. We point out explicitly that the last
graded piece ωτ̃ is a quotient of ωτ .

Next we give, following Katz, a geometric definition of the space of Hilbert modular forms.

Definition 1.1. A Katz Hilbert modular form of weight k =
∑

σ∈Σ kσσ ∈ Z[Σ], level n and coeffi-
cients in an O-algebra R is a global section of the line bundle ω⊗k =

⊗
σ∈Σ ω

⊗kσ
σ over X ×O R.

We will denote by MKatz
k (c, n;R) the corresponding R-module.

Its R-submodule of cuspforms SKatz
k (c, n;R) consists of those Katz Hilbert modular forms that

vanish along the cuspidal divisor of any toroidal compactification of X ×O R (see [17, §2.11]).

As X admits toroidal compactifications (see [17, §2.11]) which are smooth and proper overO and
to which ωσ extends for all σ ∈ Σ, the Koecher principle implies, in view of [22, Tag 02O5], that
MKatz

k (c, n;R) is a finitely generated R-module.

Remark 1.2. When the weight k ∈ Z[Σ] is parallel, i.e., kσ = κ ∈ Z for all σ ∈ Σ, one also could
define a Katz Hilbert modular form of parallel weight κ ∈ Z, level n and coefficients in a Zp-algebra

R as a global section of the line bundle
(∧d s∗Ω

1
A/XDP

)⊗κ
over XDP ×Zp R. By Zariski’s Main

Theorem applied to the proper birational map X → XDP
O between normal varieties, this would lead

to the same space as in Definition 1.1.

1.2. Generalised Hasse invariants. From this point onwards we will work over F. Let X be the
Pappas–Rapoport moduli space over F, i.e., the special fibre X ×O F of X . There is a natural
morphism X → XDP ×Zp F obtained by forgetting the filtrations. Let XRa = XRa ×Zp F. We have
the equality

o⊗Z F =
∏
p|p

op ⊗Zp F ≃
∏
τ∈Σ

op(τ) ⊗W (Fp(τ)),τ F =
∏
τ∈Σ

F[x]/(xep(τ)),(1.3)

https://stacks.math.columbia.edu/tag/02O5
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coming from (1.1). Note that the last equality of (1.3) depends on the choice of the uniformiser
ϖp(τ) of op(τ), made in the previous subsection for every τ ∈ Σ, and allows us to view ωτ as an
OX [x]/(xep)-module. If S is a locally Noetherian F-scheme and A is an HBAV over S satisfying
the Rapoport condition, then ωS,τ is a locally free OS [x]/(x

ep(τ))-module of rank 1. Hence, there is
a unique filtration on ωS,τ satisfying the Pappas–Rapoport conditions given by xep(τ)−iωS,τ for 0 ⩽

i ⩽ ep(τ). We point out again that the definition of X depends on the numbering of the embeddings
in Στ fixed above, but that X is independent of any such choice (see also [17, Rem. 2.3]).

If p | p and τ ∈ Σp, then suppose the universal filtration on ωτ is given by (F i
τ )1⩽i⩽ep . We now

recall Reduzzi–Xiao’s constructions of generalised Hasse invariants hσ given in [17]. Let p | p and
τ ∈ Σp and assume first that 2 ⩽ i ⩽ ep. There is a map F i

τ → F i−1
τ which sends a local section

z of F i
τ to the section x · z of F i−1

τ , where the action of x is given by [ϖp(τ)]. Hence, we get a
map F i

τ/F i−1
τ → F i−1

τ /F i−2
τ inducing a section hτ,i = hστ,i of ωτ,i−1 ⊗ ω−1

τ,i over X . This hσ
is the generalised Hasse invariant at σ = στ,i (see [17, Construction 3.3] and [15, §2.11] for more
details). As (ωτ )|XRa is a locally free sheaf over OXRa [x]/(xep) of rank 1, we have (F i

τ )|XRa =

(xep−iωτ )|XRa . It follows that hτ,i is a nowhere vanishing section over XRa and multiplication by
hτ,i induces an isomorphism between (ωτ,i)|XRa and (ωτ,i−1)|XRa .

For the case i = 1, the generalised Hasse invariant hτ,1 is defined as a global section over X of
ω⊗p
ϕ−1◦τ,ep⊗ω

⊗−1
τ,1 (see [17, Construction 3.6] for more details). We let hτ =

∏
σ∈Στ

hσ =
∏ep

i=1 hτ,i.

It is a modular form of weight p · ϕ̃−1 ◦ τ − τ̃ .

Remark 1.3. LetA be the universal abelian scheme overX and Ver : A(p) → A be the Verschiebung
morphism, where A(p) = A ×F,ϕ F. It induces maps ωτ → ω

(p)
ϕ−1◦τ and further Fep

τ /Fep−1
τ →

(Fep
ϕ−1◦τ/F

ep−1

ϕ−1◦τ )
(p). Note that Fep

τ /Fep−1
τ = ωτ,ep , (Fep

ϕ−1◦τ/F
ep−1

ϕ−1◦τ )
(p) = ω⊗p

ϕ−1◦τ,ep and the res-

ulting section of ω⊗p
ϕ−1◦τ,ep ⊗ ω

⊗−1
τ,ep over X is precisely given by hτ (see [17, Lem. 3.8]). Moreover,

its restriction to XRa
F coincides with Andreatta–Goren’s partial Hasse invariant constructed in [2,

Def. 7.12]. In particular, when p is unramified in F , the generalised Hasse invariants constructed by
Reduzzi–Xiao are the same as the partial Hasse invariants constructed by Andreatta–Goren.

We will now determine the geometric q-expansions of these generalised Hasse invariants. We will
mostly follow conventions of [11, §8]. Let ∞c be the standard infinity cusp whose Tate object is
given by (Gm ⊗Z c∗)/qo (see [14, §2.3]). Here c∗ = c−1d−1. Let X∧ be the formal completion of a
toroidal compactification of X along the divisor at the cusp∞c (see [11, Thm. 8.6]). By loc. cit., the
pull back of ω to X∧ is canonically isomorphic to OX∧ ⊗ c. Choosing an identification

F⊗ c
∼−→ F⊗ o(1.4)
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one can canonically identify ωτ |X∧ with τ(OX∧⊗o) = OX∧ [x]/(xep(τ)) (see (1.3)). A global section
of ωτ over X∧ is an element of ∑

ξ∈c+∪{0}

aξq
ξ | aξ ∈ F[x]/(xep(τ)) and au2ξ = τ(u)aξ, ∀u ∈ o×, u− 1 ∈ n

 ,

whereas a section z of ωτ,i over X∧ is an element ofxep(τ)−i ·
∑

ξ∈c+∪{0}

bξq
ξ | bξ ∈ F and bu2ξ = τ(u)bξ, ∀u ∈ o×, u− 1 ∈ n


whose q-expansion is given by

∑
ξ∈c+∪{0} bξq

ξ with respect to the choice of basis of ωτ,i|X∧ corres-
ponding to xep(τ)−i.

Lemma 1.4. Let p|p, τ ∈ Σp. Then for every 1 ⩽ i ⩽ ep, the geometric q-expansion of the
generalised Hasse invariant hτ,i at∞c is 1. In particular, it does not vanish at any cusp.

Proof. When i > 1, as x · z is a section of ωτ,i−1 having by definition the same q-expansion, one
concludes that hτ,i has q-expansion 1, thus proving the claim in that case. In the remaining case
of i = 1, we observe that the q-expansion of hτ =

∏ep(τ)
i=1 hτ,i at ∞c is 1 by Remark 1.3 and [2,

Prop. 7.14]. Hence the q-expansion of hτ,1 at∞c is 1. Finally, since the hτ,i can be defined in any
level, we deduce their non-vanishing at all cusps from the non-vanishing at∞c. □

We now collect some properties of the generalised Hasse invariants that will be used in the sequel.
Let Zσ ⊂ X be the divisor of hσ and, in order to shorten the notation, we let Zτ,i = Zστ,i .

Lemma 1.5. The complement of XRa in X coincides with
⋃

τ∈Σ
⋃ep(τ)

i=2 Zτ,i. Moreover, for any
I ⊆ Σ, the intersection

⋂
σ∈I Zσ is, either empty, or equidimensional of dimension d − |I|. In

particular, the zero loci of two different generalised Hasse invariants do not have a common divisor.

Proof. The first claim has been established in [15, Prop. 2.13 (2)]. For the second, if ∩σ∈IZσ is non-
empty, then the tangent space computation in [17, Thm. 3.10] ensures the correct dimension. □

Remark 1.6. Diamond and Kassaei also prove Lemma 1.5 and obtain in addition the non-emptiness
of the intersection (see [9, Prop. 5.8]). Here we sketch a constructive proof, following ideas of An-
dreatta and Goren [1], if ep(τ) is odd for all τ ∈ Σ.

Let A = E ⊗Z o∗, where E is a supersingular elliptic curve over F. We see, as in [1, Proof of
Thm. 10.1], that ωA,τ ≃ F[x]/(xep(τ)) for all τ ∈ Σ. Let FrobA : A → A(p) be the Frobenius map
and H = ker(FrobA)[

∏
p|p p

[ep/2]]. By imitating the calculations of [1, §8] (more specifically [1,
Prop. 6.5, Lemmas 8.6, 8.9, Prop. 8.10]), one sees that if A(1) = A/H , then

ωA(1),τ ≃ x
[ep(τ)/2] · F[x]/(xep(τ))

⊕
xep(τ)−[ep(τ)/2] · F[x]/(xep(τ)) for all τ ∈ Σ.(1.5)

Note that A(1) is a c′-polarised HBAV over F for some c′ ∈ C. Let a ⊂ o be an ideal relatively
prime to p such that ac′ and c represent the same element in the narrow class group of F . Let H(1)
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be an o-invariant subgroup scheme of A(1)[a] isomorphic to o/a and let A(2) = A(1)/H(1). By [16,
§1.9], A(2) is a c-polarised HBAV over F and since a is relatively prime to p, we have ωA(2) = ωA(1) .
Endowing each ωA(2),τ with the ‘alternating’ filtration between the two summands in (1.5) yields a
point in

⋂
τ∈Σ

⋂ep(τ)
i=2 Zτ,i, showing that the latter is non-empty.

If ep(τ) is odd, then the filtration on ωA(2),τ described above is unique. Moreover, as A(2) is
supersingular (i.e. its p-torsion subgroup has no étale component), the map ωA(2),τ → ωA(2),ϕ−1◦τ
induced by the Verschiebung morphism is the zero map. Hence, we conclude, using the structure of
ωA(2),τ and the definition of the Hasse invariant hτ,1, that any such point also lies in Zτ,1. Thus, if
ep(τ) is odd for all τ ∈ Σ, then we get a point in

⋂
τ∈Σ

⋂ep(τ)
i=1 Zτ,i.

We illustrate the weights of the generalised and partial Hasse invariants in Table 1.2, where we let
τ ∈ Σ and write e = ep(τ) as abbreviation.

FIGURE 1. Weights of Hasse invariants.

Weights
ϕ−1 ◦ τ τ ϕ ◦ τ

· · · e− 1 e 1 2 · · · e− 1 e 1 2 · · ·
hϕ−1◦τ,e 1 −1
hτ,1 p −1
hτ,2 1 −1
...

. . . . . .

hτ,e−1 1 −1
hτ,e 1 −1
hϕ◦τ,1 p −1
hϕ◦τ,2 1 −1
hτ p −1

One of the advantages of Definition 1.1 is that it allows us to define mod p Hilbert modular forms
in any weight k =

∑
σ∈Σ kσσ ∈ Z[Σ], while the definition in [2] was missing some weights when

p ramifies in F , namely theirs are indexed by Σ, instead of Σ. Indeed, the space of modular forms
introduced by Andreatta and Goren [2, Prop. 5.5] is

MAG
k̄ (c, n;F) = H0(XRa,

⊗
τ∈Σ

ωkτ
τ̃ ), where k̄ =

∑
τ∈Σ

kττ ∈ Z[Σ].(1.6)

We will denote by SAG
k̄

(c, n;F) the subspace of MAG
k̄

(c, n;F) consisting of cuspforms, which are
defined as modular forms such that the constant coefficient of the q-expansion at every cusp vanishes.
If k =

∑
σ∈Σ kσσ ∈ Z[Σ], then for every τ ∈ Σ, let kτ =

∑
σ∈Στ

kσ and define k̄ :=
∑

τ∈Σ kττ ∈
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Z[Σ]. We let

HRX
k =

∏
τ∈Σ

ep(τ)∏
i=2

h
∑i−1

j=1 kτ,j
τ,i ,(1.7)

where kτ,j = kστ,j . In view of the table of weights of the generalised Hasse invariants, for every
τ ∈ Σ, the (τ, i)-component of the weight of f/HRX

k is 0 if 1 ⩽ i ⩽ ep(τ)− 1 and the τ̃ = (τ, ep(τ))-
component is kτ . Since HRX

k is invertible on XRa, we obtain the following result.

Lemma 1.7. The restriction from X to XRa yields an injection of MKatz
k (c, n;F) into MAG

k̄
(c, n;F)

sending f to f/HRX
k .

A converse is described in Lemma 1.12 below.

1.3. Minimal weights. We recall the notion of minimal weight of a mod p Hilbert modular form.

Definition 1.8. We define the minimal weight of 0 ̸= f ∈ MKatz
k (c, n;F) to be the unique weight k′

such that f = g ·
∏

σ∈Σ h
nσ
σ , where g ∈ MKatz

k′ (c, n;F) and the integers (nσ)σ∈Σ are as large as
possible.

Lemma 1.9. The notion of minimal weight is well defined.

Proof. First note that Zσ is non-empty for every σ ∈ Σ. Indeed, this follows from [9, Cor. 5.7].
Alternatively, we have shown in Remark 1.6 thatZτ,i is non-empty for every τ ∈ Σ and 2 ≤ i ≤ ep(τ).
Moreover, it is well known that the zero locus of hτ =

∏ep(τ)
i=1 hτ,i in XRa is non-empty for every

τ ∈ Σ (see [2, Cor. 8.18]). By Lemma 1.5, the Hasse invariants hτ,i with τ ∈ Σ and 2 ≤ i ≤ ep(τ)

are invertible on XRa. Therefore, it follows that the divisor Zτ,1 is non-empty for every τ ∈ Σ.
Recall from Lemma 1.5 that the zero loci of two different generalised Hasse invariants do not have

a common divisor. Let jσ be the order of vanishing of a Hilbert modular form f ̸= 0 on Zσ. So, if
we divide f by

∏
σ∈Σ h

jσ
σ , we get the modular form g needed in Definition 1.8. Hence, it follows

that the notion of minimal weight is indeed well defined (see also the proof of [2, Thm. 8.19] and [9,
§8]). □

Remark 1.10. When p is unramified in F (i.e., Σ = Σ), the notion of minimal weights from Defin-
ition 1.8 is the same as the one introduced by Andreatta and Goren [2, §8.20]. On the other hand,
when p is ramified, multiplying 0 ̸= f ∈ MKatz

k (c, n;F) having minimal weight k with arbitrary
powers of generalised Hasse invariants (hτ,i with 2 ⩽ i ⩽ ep) yields forms sharing the same k̄ but
whose weights are not minimal anymore.

In [8, 9], Diamond and Kassaei define the minimal cone by

Cmin =

∑
τ∈Σ

ep(τ)∑
i=1

kτ,iστ,i ∈ Q[Σ]
∣∣∣ ∀ τ ∈ Σ,∀ 1 ⩽ i < ep(τ), kτ,i+1 ⩾ kτ,i, pkτ,1 ⩾ kϕ−1◦τ,ep(τ)

 .
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Regarding the minimal weights for Hilbert modular forms, Diamond and Kassaei prove the following
result in [8, Cor. 5.3], when p is unramified in F , and in [9, Cor. 8.2], when p is ramified in F .

Proposition 1.11 (Diamond–Kassaei). The minimal weight of 0 ̸= f ∈ MKatz
k (c, n;F) belongs to

Cmin.

The minimal weights allow us to further elaborate on the relation between the modular forms
defined by Andreatta and Goren [2] and those of Definition 1.1.

Lemma 1.12. Let k̄ ∈ Z[Σ]. There is a finite subsetK ⊂ Cmin such that for every f ∈MAG
k̄

(c, n;F),
there is k′ ∈ K, a modular form g ∈ MKatz

k′ (c, n;F) and a product of generalised Hasse invariants
H =

∏
τ∈Σ

∏ep(τ)
i=1 h

jτ,i
τ,i with jτ,i ∈ Z and jτ,1 ⩾ 0, such that the restriction toXRa of g ·H equals f .

In particular, f and g have the same geometric q-expansion at the cusp∞c.

Proof. The result is trivial for f = 0. Seeing 0 ̸= f ∈MAG
k̄

(c, n;F) as a meromorphic section of the
line bundle

⊗
τ∈Σ ωτ̃

⊗kτ over X , we let jτ,i ∈ Z be the order of vanishing of f along the divisor Zτ,i

defined by the Hasse invariant hτ,i for τ ∈ Σ and 1 ⩽ i ⩽ ep(τ). As f is holomorphic on XRa, which
intersects every irreducible component of Zτ,1 non-trivially by Lemma 1.5, we deduce that jτ,1 ⩾ 0.
Dividing f by H =

∏
τ∈Σ

∏ep(τ)
i=1 h

jτ,i
τ,i yields a holomorphic section on all of X , i.e., a Katz modular

form g in a weight k′ which is by construction minimal, hence belongs to Cmin by Proposition 1.11.
As the q-expansions of all generalised Hasse invariants at the cusp∞c equal 1 by Lemma 1.4, both f
and g have the same q-expansion.

We next prove that given k̄, there are only finitely many k′ ∈ Cmin that can appear for non-zero
modular forms in MAG

k̄
(c, n;F) via the method in the previous paragraph. Since dividing by hτ,1 (for

any τ ∈ Σ) subtracts (p − 1) from the sum of the weights, whereas multiplying or dividing by hτ,i
for τ ∈ Σ and 2 ⩽ i ⩽ ep(τ) leaves that sum unchanged, we deduce that

∑
σ∈Σ k

′
σ ⩽

∑
τ∈Σ kτ . As

in the language of [9], the minimal cone is contained in the standard cone, we have k′σ ⩾ 0 for all
σ ∈ Σ and the claimed finiteness follows. □

The finiteness of K in Lemma 1.12 yields the following result.

Corollary 1.13. The F-vector space MAG
k̄

(c, n;F) is finite dimensional.

We now further use the work of Diamond and Kassaei to study the minimality of the weight for
modular forms of parallel weight one.

Corollary 1.14. Suppose f ∈MKatz
1 (c, n;F) is a non-zero Hilbert modular form and k is its minimal

weight. Then, for any prime p | p, either kσ = 1 for all σ ∈ Σp (in that case, we say that the weight
is minimal at p), or kσ = 0 for all σ ∈ Σp, the latter case being possible only if (p− 1) divides ep.

Proof. By Proposition 1.11, we know that k ∈ Cmin. By definition of Cmin one has kσ ⩾ 0 for all
σ ∈ Σ and, moreover, if kσ = 0 with σ ∈ Σp for some p | p, then kσ = 0 for all σ ∈ Σp.
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We assume for the rest of this proof that kσ = 0 for all σ ∈ Σp. Denote the weight of the Hasse
invariant hτ,i by wτ,i. By the definition of the minimal weight, there exist integers nτ,i ⩾ 0 such that

∑
σ∈Σp

σ =
∑
τ∈Σp

ep∑
i=1

nτ,iwτ,i.(1.8)

From the description of wτ,i (see Table 1.2), it follows that for all i ⩾ 2 one has nτ,i = nτ,i−1+1 and
furthermore pnτ,1 = nϕ−1◦τ,1 + ep. It is then easy to find that nτ,1 =

ep
p−1 for all τ ∈ Σp, showing

that p− 1 divides ep. □

The following result, the proof of which will be completed in the next subsection, shows that one
can be more precise when restricting to cuspforms.

Proposition 1.15. Let p be a prime of F dividing p. Let k =
∑

σ∈Σ kσσ ∈ Z[Σ] be a weight such
that kσ = 0 for all σ ∈ Σp. Then SKatz

k (c, n;F) = 0.

Proof. By Lemma 1.7, SKatz
k (c, n;F) injects into SAG

k̄
(c, n;F), which is zero by Proposition 1.22.

Alternatively, if there is a unique prime p of F dividing p, then k = 0 and Koecher’s principle applied
to an embedding of the connected scheme X in a toroidal compactification implies that H0(X,OX)

consists only of forms which are constant, thus it does not contain any non-zero cuspforms. □

Corollary 1.16. The weight of any non-zero parallel weight 1 cuspform is minimal.

Proof. Let f be a non-zero cuspform of parallel weight 1 and let k be its minimal weight. Suppose
the minimal weight k is not

∑
σ∈Σ σ. Then by Corollary 1.14 we already know that there exists

p | p such that kσ = 0 for all σ ∈ Σp. Moreover, as the generalised Hasse invariants do not vanish
at any cusp (see Lemma 1.4), we have constructed a non-zero cuspform of weight k, contradicting
Proposition 1.15. This proves the corollary. □

Remark 1.17. Confusion may arise from the fact that parallel weight 1 forms in our sense have
weight exponents ep(τ) when seen as a modular form in MAG

k̄
(c, n;F) as

∧ep(τ) ωτ ≃ ω
⊗ep(τ)
τ̃ for

τ ∈ Σ over the Rapoport locus (see Lemma 1.7).

1.4. Partial Frobenius operator. Fix c ∈ C and let e ∈ N be such that peep = (α) with α ∈ o+ and
α ≡ pe ≡ 1 (mod n). Also let β ∈ o+ such that pe = α · β. In order to lighten notation, we let
Y = XRa denote the Rapoport locus and let s : A → Y be the universal c-polarised HBAV endowed
with µn-level structure. Let A(pe) = A ×Y,Fre Y be the base change by the e-th power of absolute
Frobenius Fr : Y → Y . The e-th power of Verschiebung then defines an isogeny over Y

A(pe) Vere−−−→ A,

the kernel of which we denote by H . It is a finite group scheme with an o/(pe)-action. Hence we
can apply the Chinese remainder theorem to obtain the direct product decomposition H = Hp ×H ′

p,
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where Hp = H[α] is the p-component of H and H ′
p = H[β] is the product of p′-components of H

for all p′ ̸= p dividing p. We now define the abelian variety

B = A(pe)/H ′
p,

through which Vere factors, leading to an isogeny over Y

B
VA //

t

$$

A.
s

yy
Y

(1.9)

Lemma 1.18. The abelian variety B inherits a µn-level structure and an α−1c-polarisation λα.

Proof. As A(pe) → B is a p-primary isogeny, the µn-level structure on A(pe) yields one on B.
Regarding the polarisation, following a suggestion of the referee (see also [16, §1.9]), we claim

that the kernel of the composed isogeny

δ : B ⊗o c
VA⊗1−−−→ A⊗o c

λ−1

−−→ A∨ V ∨
A−−→ B∨

equals the α-torsion of B ⊗o c, i.e., ker(δ) is α-torsion and has the same order as (B ⊗o c)[α]. As
the order of finite flat group schemes is locally constant, it suffices to check this point-wise on the
ordinary locus of Y which is dense.

As Vere is étale at an ordinary closed point y ∈ Y , its kernel is isomorphic to the constant group
scheme given by o/peo, whence ker(VAy) ≃ o/αo. Consequently, the kernel of the dual isogeny
V ∨
Ay

is isomorphic to the Cartier dual µαo of o/αo. This gives us a short exact sequence of finite flat
commutative group schemes

0→ c/αc ≃ ker(VAy)⊗o c ↪→ ker(δy)
λ−1◦(VAy⊗1)
−−−−−−−−→ ker(V ∨

Ay
) ≃ µαo → 0.

As the connected-étale sequence of any finite flat group scheme over a perfect field splits (see [20,
§3.7]), we deduce that ker(δy) is isomorphic to the group scheme (c/αc)×µαo. In particular ker(δy)
is α-torsion and has the same order as (By ⊗o c)[α]. Therefore, it follows that ker(δ) = (B ⊗o c)[α].

Since (B⊗o c)/(B⊗o c)[α] is canonically isomorphic to B⊗o (α
−1c), we deduce an isomorphism

B ⊗o (α
−1c)

∼−→ B∨ the inverse of which is the desired α−1c-polarisation λα. □

We now verify that the HBAV B/Y satisfies the Rapoport condition. Recall that ωA/Y = s∗Ω
1
A/Y

and ωB/Y := t∗Ω
1
B/Y .

Lemma 1.19. For any τ ∈ Σ \ Σp, the map V ∗
A,τ : ωA/Y,τ → ωB/Y,τ is an isomorphism.

On the other hand, if τ ∈ Σp, then the isogeny A(pe) → B induces an isomorphism

ωB/Y,τ ≃ ωA(pe)/Y,τ ≃ (Fre)∗ωA/Y,ϕ−e◦τ .

Proof. Let rp be the projection of o/(pe) on its p-primary component and let γ ∈ o be such that its
image in o/(pe) represents rp. The the image of γ′ = 1− γ in o/(pe) represents the complementary
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idempotent r′p = 1 − rp. As γ′ kills ker(VA), the isogeny B γ′·−→ B factors through VA, yielding a
factorisation

ωB/Y //

γ′·

''
ωA/Y

V ∗
A // ωB/Y

If p′ | p and p′ ̸= p, the projection of γ′ on the p′-component of o/(pe) is 1. Hence, it induces the
identity on the p′-component of ωB/Y . So the map V ∗

A is split on the p′-component and hence ωB/Y,τ

is isomorphic to a direct summand of ωA/Y,τ for all τ ∈ Σp′ . Recall that both ωB/Y,τ and ωA/Y,τ are
locally free sheaves over Y of the same rank. Therefore, after passing to their stalks, we conclude
that V ∗

A,τ is an isomorphism for all τ ∈ Σp′ .
Similarly, as γ annihilates the kernel of the isogenyA(pe) → B, we obtain an isomorphism between

ωA(pe)/Y,τ and ωB/Y,τ for all τ ∈ Σp. This proves the lemma. □

We get a c-polarisation on B from the α−1c-polarisation λα (which is obtained in Lemma 1.18)
after identifying α−1c with c by multiplication by α. Thus, using Lemma 1.19, the universal property
of A → Y yields a Cartesian diagram

B //

t

��

A,

s

��
□

Y
ϕα // Y,

(1.10)

from which we deduce a natural isomorphism ϕ∗αωA/Y
∼−→ ωB/Y of o⊗OY -modules.

Let k =
∑

σ∈Σ kσσ ∈ Z[Σ] be a weight such that kσ = 0 for all σ ∈ Σp. By Lemma 1.19

V ∗
A : ω⊗k

A/Y

∼−→ ω⊗k
B/Y .(1.11)

Definition 1.20. Let k =
∑

σ∈Σ kσσ ∈ Z[Σ] be a weight such that kσ = 0 for all σ ∈ Σp. The partial
Frobenius operator Φpe is defined as the composition of the adjunction morphism coming from (1.10)
with (1.11)

Φpe : H
0(Y, ω⊗k

A/Y )
ϕ∗
α−→ H0(Y, ω⊗k

B/Y )
(V ∗

A)−1

−−−−→
∼

H0(Y, ω⊗k
A/Y ).

We next study the effect of Φpe on q-expansions. To this end, we recall the definition and properties
of Tate objects. For fractional ideals a, b, c of o such that ab ⊂ c and a cone C in c∗+, we let

Ta,b = (Gm ⊗ a∗)/qb → S
◦
C = Spec(R◦

C)

be the Tate HBAV over the Noetherian algebra R◦
C ⊃ F[[qξ, ξ ∈ c+]] (for more details we refer to

[11, §2], whereR◦
C is denoted byR∧

C⊗RC
R). It is equipped with a µn-level structure which depends

on the choice of an isomorphism between a/na and o/n. Moreover, the natural isomorphism

λa,b : T
∨
a,b = Tb,a → Ta,b ⊗o (ab

−1)
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endows Ta,b with a canonical ab−1-polarisation. Note that Tc,o = (Gm ⊗ c∗)/qo is a Tate HBAV at
the standard cusp∞c of Y fitting, by universality of A/Y , into a Cartesian diagram

Tc,o //

��

A

s

��
□

S
◦
C

αY // Y.

(1.12)

This gives a natural isomorphism α∗
Y ωA/Y ≃ ωTc,o/S

◦
C

and further, by adjunction and choice of
canonical trivialisations using (1.4), we obtain a q-expansion map at the cusp∞c:

H0(Y, ω⊗k
A/Y )

α∗
Y−−→ H0(S

◦
C , ω

⊗k

Tc,o/S
◦
C

) ≃ R◦
C .

Next we describe Vere on Tate objects. Define T (pe)
c,o = Tc,o ×S

◦
C ,Fre S

◦
C as the base change

by the e-th power of absolute Frobenius. Note that T (pe)
c,o = Tpec,o and the relative Frobenius map

FrobeTc,o
: Tc,o → Tpec,o is the map induced by the inclusion pec ↪→ c. The pe-th Verschiebung

is the dual of the pe-th relative Frobenius on T∨
c,o, i.e., Vere = (FrobeT∨

c,o
)∨. We do not identify

((T∨
c,o)

(pe))∨ with T (pe)
c,o (as is usually done while defining Verschiebung) in order to get the desired

maps on Tate objects. In particular, FrobeT∨
c,o

: To,c → Tpeo,c is the map induced by the inclusion
peo ↪→ o. Therefore, its dual map Vere : Tc,peo → Tc,o is the natural projection obtained by going
modulo qo.

Our next aim is to specialise ϕα to the Tate objects. It follows from the previous paragraph that the
base change of (1.9) to S◦

C is given by the following commutative diagram:

Tc,αo
VT //

%%

Tc,o

yy
S
◦
C

where the map VT is the natural projection obtained by going modulo qo. Combining with (1.10), we
get the following Cartesian diagram:

Tc,αo //

��

B //

t

��

A

s

��
□ □

S
◦
C

αY // Y
ϕα // Y.

(1.13)

On the other hand, considering the c-polarized HBAV Tc,o over S◦
αC gives a Cartesian diagram

Tc,αo //

��

Tc,o //

��

A

s

��
□ □

S
◦
C

fα // S
◦
αC

α′
Y // Y,

(1.14)
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where fα is induced by the morphism R◦
αC → R◦

C sending qξ to qαξ. We would like to emphasise
that αC is considered as a cone in c∗+, hence the dual cone (used in the construction of R◦

αC , see [11,
§2]) is considered as a cone in c (and not in α−1c). In particular, the morphismR◦

αC → R◦
C , q

ξ 7→ qαξ

is not étale.

Lemma 1.21. Under the notation developed above, ϕα ◦ αY = α′
Y ◦ fα.

Proof. The proof proceeds by showing that the c-polarisation and µn-level structure on Tc,αo obtained
from the base change in (1.13) coincide with the ones obtained from the base change in (1.14). This,
along with the universality of A/Y , implies ϕα ◦ αY = α′

Y ◦ fα.
As Mumford’s construction of Tate objects presented in [11, §2] is functorial in (a, b, c) and C,

we deduce that the c-polarisation on Tc,αo arising from (1.14) is obtained from λc,αo after identifying
α−1c with c by multiplication by α.

We now derive the c-polarisation on Tc,αo via the base change in (1.13). To do this, we proceed as
in the proof of Lemma 1.18 to first obtain a α−1c-polarisation on Tc,αo from λc,o. From the proof of
Lemma 1.18, it follows that the kernel of the isogeny

Tc,αo ⊗o c→ Tc,o ⊗o c→ To,c → Tαo,c.

is just the α-torsion of Tc,αo ⊗o c. Here the first map is induced by VT (the natural projection given
by going modulo qo), the second map is λ−1

c,o , and the final map is induced by the inclusion αo ⊂ o.
Therefore, this composition of maps induces an isomorphism

λ : T∨
c,αo = Tαo,c

∼−→ (Tc,αo ⊗o c)⊗o α
−1o = Tc,αo ⊗o α

−1c,

which is the α−1c-polarisation on Tc,αo induced from λc,o. From the description of the maps above,
it follows that λ = λc,αo. Hence, the c-polarisation on Tc,αo via the base change in (1.13) is obtained
from λc,αo by identifying α−1c with c by multiplication by α. Therefore, it follows that these two
c-polarisations on Tc,αo coincide.

As α ≡ 1 (mod n), the multiplication by α map preserves the µn-level structure of Tc,o. Hence,
the µn-level structure on Tc,αo induced by fα is same as the one coming from the quotient map
Tc,peo → Tc,αo. This concludes the proof of the lemma. □

We are now ready to compute the effect of Φpe on q-expansions at∞c.

Proposition 1.22. Let k̄ =
∑

τ∈Σ kττ ∈ Z[Σ] such that kτ = 0 for all τ ∈ Σp. Then the map Φpe

defines an endomorphism of MAG
k̄

(c, n;F), sending f =
∑

ξ∈c+ aξq
ξ to Φpe(f) =

∑
ξ∈c+ aξq

αξ. In
particular, the restriction of Φpe to SAG

k̄
(c, n;F) is injective and nilpotent, hence SAG

k̄
(c, n;F) = {0}.

Proof. By definition, the q-expansion of Φpe(f) at∞c is the image of f under the map H0(Y, ω⊗k
A/Y )→

H0(S
◦
C , ω

⊗k

Tc,αo/S
◦
C

) coming from the Cartesian diagram (1.13), followed by (V ∗
T )

−1. By Lemma 1.21,
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one can use instead the Cartesian diagram (1.14). Hence, the q-expansion of Φpe(f) at ∞c can be
obtained as the image of f under the adjunction morphism

H0(Y, ω⊗k
A/Y )

α′
Y

∗

−−→ H0(S
◦
αC , ω

⊗k

Tc,o/S
◦
αC

)
f∗
α−→ H0(S

◦
C , ω

⊗k

Tc,αo/S
◦
C

)

followed by the map (V ∗
T )

−1 : H0(S
◦
C , ω

⊗k

Tc,αo/S
◦
C

)
∼−→ H0(S

◦
C , ω

⊗k

Tc,o/S
◦
C

). Since the q-expansion∑
ξ∈c+ aξq

ξ of f at the cusp ∞c is independent of a particular choice of a cone, it is given by the
image of f under the map α′

Y
∗ : H0(Y, ω⊗k

A/Y )→ H0(S
◦
αC , ω

⊗k

Tc,o/S
◦
αC

). As fα is induced by the map

sending qξ to qαξ we deduce that f∗α(
∑

ξ∈c+ aξq
ξ) =

∑
ξ∈c+ aξq

αξ. Finally, as VT is induced from
the identity map on the torus Gm ⊗ c∗, the morphism V ∗

T is the identity on the q-expansions, i.e.,
(V ∗

T )
−1(

∑
ξ∈c+ aξq

αξ) =
∑

ξ∈c+ aξq
αξ, yielding the desired formula.

The rest follows from the q-expansion principle and the finite dimensionality of SAG
k̄

(c, n;F). □

1.5. Refined injectivity criterion for Θ-operators. The purpose of this section is to extend the
definition of the Andreatta–Goren operators ΘAG

τ for τ ∈ Σ and prove an injectivity criterion refining
[2, Prop. 15.10] when p ramifies in F . Given f ∈ MKatz

k (c, n;F), by Lemma 1.7 and the discussion

after it, ΘAG
τ

(
f

HRX
k

)
defines a meromorphic section over X , whose poles lie outside XRa. A careful

study of the order at these poles will first show that multiplication by HRX
k leads to a holomorphic

section and further allow us to establish Proposition 1.28 (injectivity criterion). If p is unramified
in F , our Θ-operators coincide exactly with those of Andreatta–Goren, and in that case everything
that we prove here has already been proved in [2] (see also [10]).

The construction of ΘAG
τ goes via the Kummer cover. By definition, the ordinary locus Xord of

XRa is endowed with a Galois cover Xord(µ(p)) → Xord with group (o/(p))×, where X(µ(p)) is
the Deligne–Pappas moduli space of level pn. Taking the quotient by the p-Sylow subgroup yields a
cover π : XKum → Xord with group

∏
p|p(o/p)

×, called the Kummer cover. Let π̃ : X̃ → X be the
normal closure of X in XKum. It can be described explicitly using the generalised Hasse invariants
as follows. For τ ∈ Σ, we write p = p(τ), f = fp and we let

Hτ =

f−1∏
j=0

(hϕ−j◦τ )
pj .(1.15)

It is a modular form of weight (pf − 1)τ̃ and XKum is obtained by adjoining a (pf − 1)-th root sτ of
it for all τ ∈ Σ. The nowhere vanishing section sτ provides a trivialisation of the line bundle π∗ωτ̃

over XKum (see [2, Def. 7.4]), and by definition of the normalisation, it also defines a section over X̃
(see [2, Prop. 7.9]). As

Hp
ϕ−1◦τ = Hτ · (hτ )p

f−1,(1.16)

Hp
ϕ−1◦τ/Hτ is a (pf − 1)-th power, this construction does not depend on the choice of τ ∈ Σp.



UNRAMIFIEDNESS OF WEIGHT 1 HILBERT HECKE ALGEBRAS 19

Next we describe the Kodaira–Spencer maps. By [17, Thm. 2.9] there is a decomposition

Ω1
X/F =

⊕
τ∈Σ

Ω1
X/F,τ(1.17)

where each Ω1
X/F,τ is endowed with a filtration whose successive subquotients are naturally iso-

morphic to ω⊗2
τ,i with 1 ⩽ i ⩽ ep for p = p(τ) in descending order, i.e., ω⊗2

τ̃ = ω⊗2
τ,ep is naturally a

quotient. As the map π : XKum → Xord is étale, we have Ω1
XKum/F = π∗Ω1

Xord/F, the elements of

which we view as meromorphic sections of the sheaf π̃∗Ω1
X/F over X̃ . Given a section of π̃∗Ω1

X/F, we
denote by a subscript τ ∈ Σ its projection onto the τ -component via (1.17). Consider the surjective
map

KSτ : π̃∗Ω1
X/F,τ → π̃∗ω⊗2

τ̃ .

Definition 1.23. Let k =
∑

σ∈Σ kσ ∈ Z[Σ] and kτ =
∑

σ∈Στ
kσ for τ ∈ Σ. Let f ∈MKatz

k (c, n;F).
Recall that f/HRX

k ∈MAG
k̄

(c, n;F) (see Lemma 1.7). We put

HAG
k =

∏
τ∈Σ

skττ , and Hk = HAG
k · π∗(HRX

k ).

Similarly to [2, Def. 7.19], we further put

r(f) = π∗
(
f/HRX

k

)
/HAG

k = π∗(f)/Hk ∈ H0(XKum,OXKum)

where we restricted f and HRX
k to Xord.

Definition 1.24. For τ ∈ Σ, we define the generalised Θ-operator acting on f ∈MKatz
k (c, n;F) as

Θτ (f) = KSτ
(
d(r(f))τ

)
·Hk · π∗(hτ ) = HRX

k ·ΘAG
τ

(
f

HRX
k

)
,

viewed as an element of H0(XKum, π∗ω⊗k′) where

(1) If τ ̸= ϕ−1 ◦ τ , then k′σ =


kσ + 1 if σ = στ,ep(τ) = τ̃ ,

kσ + p if σ = σϕ−1◦τ,ep(τ) = ϕ̃−1 ◦ τ ,

kσ otherwise.

(2) If τ = ϕ−1 ◦ τ , then k′σ =

kσ + p+ 1 if σ = στ,ep(τ) = τ̃ ,

kσ otherwise.

We will now prove that Θτ (f) yields an element of MKatz
k′ (c, n;F). In order to prove this, we pro-

ceed as in [2] to calculate the poles of d(r(f))τ along the divisors of the generalised Hasse invariants.
Using the trivialisation of the line bundles π∗ωτ̃ given by the sections sτ and the generalised Hasse

invariants hτ,i’s for i > 1, we get trivialisations of π∗ωτ,i for all τ ∈ Σ and 1 ⩽ i ⩽ ep(τ). Using these
trivialisations we can view the pullbacks π̃∗hτ,i and π̃∗hτ of Hasse invariants as functions over X̃
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(see [2, §12.32] for more details), whose differentials are denoted by d(hτ,i) and d(hτ ), respectively
(viewed as meromorphic sections of π̃∗Ω1

X/F).

For τ ′ ∈ Σ, we let Z̃ be an irreducible component of the effective Weil divisor of X̃ associated
to π̃∗(hτ ′) (see §1.2). From the construction of X̃ and [2, §9.3, Prop. 9.4] (see also [2, §12.32]),

we can choose a uniformiser δ at the generic point of Z̃ such that δp
fp(τ ′)−1 = Hτ ′ (see (1.15) for

the definition of Hτ ′). We fix this choice from now on and let vδ be the corresponding normalised
discrete valuation. For the sake of readability, we will often drop π̃∗ from the notation when pulling
back Hilbert modular forms, especially generalised Hasse invariants; for instance, we usually write
vδ(hτ ) for vδ(π̃∗(hτ )).

We will first calculate vδ((dδ)τ ), where (dδ)τ is viewed as a meromorphic section of π̃∗Ω1
X/F,τ

over X̃ . We also prove some complementary results which will be used in the proof of the injectivity
criterion.

Lemma 1.25. (i) Let τ ∈ Σ different from τ ′. Then (dδ)τ = 0.
(ii) There is a unique 1 ⩽ i0 ⩽ ep(τ ′) (depending on Z̃) such that vδ(hτ ′,i0) = pfp(τ ′) − 1 and

vδ(hτ ′,i) = 0 for all i ̸= i0. Moreover, vδ(hτ ′) = pfp(τ ′) − 1 and vδ(hτ ) = 0 if τ ̸= τ ′.
(iii) vδ(d(hτ ′,i)) ⩾ 0 for all i and for i0 found in (ii) , vδ(d(hτ ′,i0)) = 0.
(iv) vδ(sτ ′) = 1, vδ(sτ ) = pj if τ = ϕj ◦ τ ′ and vδ(sτ ) = 0 if τ ̸= ϕj ◦ τ ′ for any integer j.
(v) vδ((dδ)τ ′) = 2− pfp(τ ′) .

(vi) (dδ)τ ′ = D + g · (d(hτ ′,i0))τ ′ where g = −δ2−p
fp(τ ′) ·

(∏fp(τ ′)−1

j=1 (hϕ−j◦τ ′)
pj
)
·
(∏

j ̸=i0
hτ ′,j

)
and D is a meromorphic section of π̃∗Ω1

X/F,τ ′ such that vδ(D) ⩾ 0.

(vii) KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0 and if Z̃ is an irreducible component of the effective Weil divisor of

X̃ associated with π̃∗(hτ ′,ep(τ ′)), then vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s
−2
τ ′ ) = −2.

Proof. Recall that we have chosen δ such that δp
fp(τ ′)−1 = Hτ ′ . Hence

−δp
fp(τ ′)−2dδ =

( fp(τ ′)−1∏
j=1

(hϕ−j◦τ ′)
pj
)
· d(hτ ′).

Since XRa is Zariski dense in X , it follows from [2, Lem. 12.34] that (d(hτ ′))τ = 0 if τ ̸= τ ′.
Hence, we get dδ = (dδ)τ ′ , which implies that (dδ)τ = 0 if τ ̸= τ ′. Now

d(hτ ′) = d(

ep(τ ′)∏
i=1

hτ ′,i) =

ep(τ ′)∑
i=1

(∏
j ̸=i

hτ ′,j
)
· d(hτ ′,i).

Since δ is a uniformiser at the generic point of Z̃, there is a unique i0 such that vδ(hτ ′,i0) > 0.
Note that vδ(hτ ′,i) = 0 for i ̸= i0 and vδ(d(hτ ′,i)) ⩾ 0 for all i. Moreover, it follows from [17,
Thm. 3.10] that vδ(d(hτ ′,i0)) = 0. So (ii) and (iii) follow from the discussion above. Combining this
with (1.16) gives (iv). Hence, vδ(d(hτ ′)) = vδ(

∏
i ̸=i0

hτ ′,i(d(hτ ′,i0))) = 0 from which (v) follows
and combining this with (ii) and (iii) gives us (vi).
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We will now prove Statement (vii). Recall that, by [17, Thm 2.9], Ω1
X/F,τ ′ admits a canonical

filtration whose successive subquotients are (isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i ⩽ ep(τ ′). Recall that

KSτ ′ is the surjective map from π̃∗Ω1
X/F,τ ′ onto its first subquotient π̃∗ω⊗2

τ ′,ep(τ ′)
. On the other hand,

by [17, Thm. 3.10], Ω1
Zτ ′,ep(τ ′)

/F,τ ′ admits a canonical filtration whose successive subquotients are

(isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i < ep(τ ′). Here Zτ ′,ep(τ ′)

⊂ X is the divisor of hτ ′,ep(τ ′) . Therefore,
we conclude that KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0. Since sτ ′ gives a trivialisation of the line bundle π∗ω

τ̃ ′
,

vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s
−2
τ ′ ) is well defined. We conclude vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ ) = −2 by

combining [17, Thm. 3.10] with (iii) and (iv) (see also [2, Prop. 12.37]). This concludes the proof of
the lemma. □

In order to compute vδ(d(r(f))τ ), it is sufficient to work in the discrete valuation ring obtained by
localising at the generic point of Z̃. Letting r(f) = u

δn , with vδ(u) = 0, we have

d(r(f))τ =
(du)τ
δn

− nu(dδ)τ
δn+1

.(1.18)

Lemma 1.26. Let τ ∈ Σ and let f ∈MKatz
k (c, n;F). Then

(i) vδ((du)τ ) ⩾ inf{0, vδ((dδ)τ )},
(ii) vδ(d(r(f))τ ) ⩾ vδ(r(f)), if τ ̸= τ ′,

(iii) vδ(d(r(f))τ ′) ⩾ vδ(r(f))− (pfp(τ ′) − 2), if p|vδ(r(f)),
(iv) vδ(d(r(f))τ ′) = vδ(r(f))− (pfp(τ ′) − 1), if p ∤ vδ(r(f)).

Proof. Let τ ∈ Σ. The proof of (i) is similar to the proof of [2, Prop. 12.35] and we reproduce parts of
it here. LetB (resp. B̃) be the local ring of the generic point of π̃(Z̃) (resp. of Z̃). As in [2, Cor. 9.6],

we have B ⊂ Bet ⊂ B̃ where Bet is étale over B and B̃ = Bet[δ]. Writing u =
∑p

fp(τ ′)−2
h=0 uhδ

h

with uh ∈ Bet, we have

(du)τ =

pfp(τ
′)−2∑

h=0

(
δh(duh)τ + huhδ

h−1(dδ)τ
)
.

Now δh(duh)τ lies in B̃⊗Bet Ω1
Bet/F, which is the same as π̃∗Ω1

B/F since Bet is étale over B. Hence
δh(duh)τ has no poles and (i) follows. Combining this inequality with (1.18) and Lemma 1.25(i), (v)
gives us the other parts of the lemma. □

Finally we are ready to prove that Θτ (f) is also a mod p Hilbert modular form.

Proposition 1.27. Let τ ∈ Σ, f ∈ MKatz
k (c, n;F) and k′ be as in Definition 1.24. Then Θτ (f)

descends to a global section of the line bundle ω⊗k′ over Xord, and further extends to a section over
X , yielding an element Θτ (f) ∈MKatz

k′ (c, n;F).

Proof. The descent follows by applying [2, Thm. 12.39] to f/HRX
k .

As KSτ is a surjective map of locally free sheaves with a locally free kernel over the normal
scheme X̃ , the orders of the poles of KSτ (d(r(f))τ ) are less than or equal to the orders of the
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poles of d(r(f))τ , i.e., vδ(KSτ (d(r(f))τ )) ⩾ vδ(d(r(f))τ ) (see the proof of [2, Prop. 12.37] for
more details). Note that r(f) · Hk = π∗(f) has no poles on X̃ , i.e., vδ(π∗f) ⩾ 0. Combining
Lemma 1.25(ii) and Lemma 1.26, we get that Θτ (f) has no poles over X̃ . Hence, the section obtained
by descending from XKum to Xord extends to all of X and is thus a Hilbert modular form. □

The effect of Θτ on the geometric q-expansions of Hilbert modular forms will be used in §2.2
and can be described as follows. The identification (1.4), used in defining the geometric q-expansion∑

ξ∈c+∪{0} aξ(f)q
ξ of f at the cusp∞c, allows one to consider the map

τ̄c : F⊗ c
∼−→ F⊗ o ↠ F[x]/(xep(τ)) ↠ F,

where the middle map is given by the idempotent at τ . By [2, Cor. 12.40] we obtain the following
q-expansion at the cusp∞c:

Θτ (f) =
∑
ξ∈c+

τ̄c(1⊗ ξ)aξqξ.(1.19)

The proof of our main theorem uses the injectivity of Θτ on certain mod p Hilbert modular forms.

Proposition 1.28. Let f ∈ MKatz
k (c, n;F) and let τ ∈ Σp. Suppose p ∤ kτ,ep and hτ,ep does not

divide f . Then Θτ (f) ̸= 0.
In particular, if the weight of f is minimal at p, and p ∤ kτ,ep , then Θτ (f) ̸= 0.

Proof. We follow the proof of [2, Prop. 15.10]. Let δ be the uniformiser at the generic point of an
irreducible component of the Weil divisor of X̃ attached to π̃∗hτ,ep chosen just before Lemma 1.25.
As vδ(π̃∗(f)) = 0, using Lemma 1.25(ii),(iv) (see also [2, Prop. 15.9]) we deduce

n := vδ(r(f)) = −
f−1∑
j=0

pjkϕj◦τ − (pfp − 1)

ep−1∑
j=1

kτ,j ≡ −kτ,ep (mod p).

Hence p ∤ n and Lemma 1.26 (i) shows that the right most term in (1.18) has a strictly lower valuation
than the other term on the right hand side. Thus, Lemma 1.25 (vi) shows that

d(r(f))τ = D′ −
nuδ2−p

fp(τ) ·
(∏fp(τ)−1

j=1 (hϕj◦τ )
pj
)
·
(∏

j ̸=ep
hτ,j

)
δn+1

(dhτ,ep)τ ,

where D′ is a meromorphic section of (π̃∗Ω1
X/F)τ and the right most term has a strictly smaller

valuation than D′. Combining this with Lemma 1.25 (vii), we get that KSτ (d(r(f))τ ) ̸= 0. This
implies that Θτ (f) ̸= 0. □

Remark 1.29. When p is unramified inF , Proposition 1.28 can also be deduced from [10, Thm. 8.2.2]
whose proof is different. Furthermore, in [10, Thm. 9.8.2], Diamond and Sasaki also determine the
kernel of Θτ in terms of the partial Frobenius operator at τ that they define. Meanwhile, the case
when p is ramified in F has been treated in [7]. Proposition 1.28 follows from [7, Thm. 5.2.1] and
the kernel of Θτ is described in terms of partial Frobenius operators in [7, Cor. 9.1.2].
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2. DOUBLING AND HECKE ALGEBRAS

2.1. Hilbert modular forms of parallel weight 1. It is important to distinguish between Katz Hil-
bert modular forms defined on the fine moduli space and those on the coarse quotient by the action of
the totally positive units of o. The latter enjoy the good Hecke theory for GL(2) and are the natural
objects to study in relation with two dimensional Galois representations (see [14]). In this section, we
will define Hilbert modular forms of parallel weight building on Definition 1.1. Even though we give
a definition valid in all levels n that are prime to p, we nevertheless need to consider the following
condition (which is stronger than the one we imposed in §1) expressing that n is sufficiently divisible:

n is divisible by a prime above a prime number q splitting completely in F (
√
ϵ | ϵ ∈ o×+),

and such that q ≡ −1 (mod 4ℓ) for all prime numbers ℓ such that [F (µℓ) : F ] = 2.
(2.20)

This condition ensures that XDP is a scheme on which [ϵ] ∈ E = o×+/{ϵ ∈ o×|ϵ − 1 ∈ n}2 acts
properly and discontinuously by sending (A, λ, µ) to (A, ϵλ, µ) (see [12, Lem. 2.1(iii)]). For any
c ∈ C, any Zp-algebra R, and any parallel weight k, this induces an action of E on MKatz

k (c, n;R),
whose invariants are denoted by MKatz

k (c, n;R)E . The following definition is equivalent to the one
used in [14, §2.2].

Definition 2.1. If n satisfies (2.20), then the space of Hilbert modular forms over a Zp-algebra R of
(parallel) weight κ ∈ Z and level n is given by

Mκ(n, R) =
⊕
c∈C

MKatz
k (c, n;R)E ,

where k =
∑

σ∈Σ κσ. For a general level n, let q1 ̸= q2 be primes such that both nq1 and nq2

satisfy (2.20) and define

Mκ(n, R) =Mκ(nq1, R) ∩Mκ(nq2, R),

where the intersection can be taken in Mκ(nq1q2, R). Note that the primes q1 and q2 can be chosen
from a set of primes of positive density and that the definition does not depend on this choice.

For f ∈ Mκ(n, R), we let
∑

b∈I∪{(0)} a(b, f)q
b be the adelic q-expansion of f , where I denotes

the group of fractional ideals of F (see [14, §2.6]).
We denote by Sκ(n, R) the R-submodule of Mκ(n, R) consisting of Hilbert modular cuspforms.

For f ∈ Mκ(n, R) and c ∈ C, we will let fc denote the corresponding E-invariant element of
MKatz

k (c, n;F) or, equivalently, its geometric q-expansion at the cusp∞c (see [14, §2.5]). Recall that
when n satisfies (2.20),Mκ(n, R) is endowed with Hecke and diamond operators (see [14, §3.1-3.3]).
When n is not sufficiently divisible, Hecke and diamond operators exist nonetheless because they sta-
bilise the intersection Mκ(nq1, R) ∩Mκ(nq2, R), where the auxiliary primes q1, q2 may be chosen
appropriately. When it is not clear from the context, a superscript between brackets indicates the
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weight of the space of Hilbert modular forms on which an operator acts, e.g. T (1)
p . Since we are inter-

ested in torsion coefficients, we let Mκ(n,K/O) = lim−→
n

Mκ(n,O/ϖn), where the inductive limit is

taken by identifying Mκ(n,O/ϖn) with the subspace Mκ(n,O/ϖn)⊗O (ϖO) of Mκ(n,O/ϖn+1).

2.2. Doubling. We shall rely on the following lifting result.

Lemma 2.2. Suppose that n satisfies (2.20). There exists a κ0 ∈ Z such that for all κ ⩾ κ0 and all
n ∈ N, the natural map

Mκ(n,O)⊗O O/ϖn →Mκ(n,O/ϖn)

is a Hecke equivariant isomorphism.

Proof. The proof of [14, Lem. 2.2] works unchanged after replacing Zp by O and p by ϖn. □

We also need a generalisation of the total Hasse invariant modulo ϖn.

Lemma 2.3. For every n ∈ N, there is a κn ∈ N such that (κn − 1) is a multiple of (p − 1)pn−1,
and a modular form hn ∈ Mκn−1(o,O/ϖn) having q-expansion equal to 1 at∞c for all c ∈ C. In
particular, it does not vanish at any cusp.

Proof. Let h ∈ Mp−1(o,F) be the usual Hasse invariant (see [14, §3.4]). Note that since it exists
for every level satisfying (2.20), it exists in level o. For r such that r(p − 1) is big enough to apply
Lemma 2.2, the modular form hr ∈Mr(p−1)(o,O) has q-expansion congruent to 1 moduloϖ at each
cusp∞c, c ∈ C. A big enough power of it satisfies the required congruence relation and condition on
the weight. □

The theory of generalised Θ-operators presented in §1.5 allows us to prove the following result.

Lemma 2.4. Assume that n satisfies (2.20). Then there does not exist any 0 ̸= f ∈ M1(n,F) such
that fc has minimal weight at a fixed prime p dividing p (see Corollary 1.14) for all c ∈ C and such
that a(b, f) = 0 for all ideals b ⊂ o not divisible by p.

Proof. The minimality of the weight at p implies that there exists a τ ∈ Σp such that hτ̃ does not
divide fc (the proof of Corollary 1.14 implies that this is true for all τ ∈ Σp). Let b = (ξ)c−1. Then,
by definition, aξ = a(b, f) and this is zero unless p | b, in which case p | (ξ). Thus, it follows that
τ̄c(1⊗ ξ) = 0. By (1.19), this shows that the geometric q-expansion of Θτ (fc) vanishes at∞c for all
c ∈ C, i.e., Θτ (fc) = 0, contradicting the injectivity criterion from Proposition 1.28. □

For p | p and n ∈ N, we define the Vp-operator by (see [6], improving on and correcting previous
works such as [15] and [14], for the definition of T (1)

p )

Vp,n = ⟨p⟩−1(hnT
(1)
p − T (κn)

p hn)
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with hn and κn from Lemma 2.3. A simple computation on q-expansions (see [14, Prop. 3.6]) shows
that Vp,n has the following effect on adelic q-expansions:

a((0), Vp,nf) = a((0), f)[p−1],

a(r, Vp,nf) = a(p−1r, f)

for non-zero ideals r ⊆ o.

Proposition 2.5. Let p | p be a prime and assume that n satisfies (2.20).

(i) If f ∈ S1(n,K/O) and a(b, f) = 0 for all ideals b ⊂ o not divisible by p, then f = 0.
(ii) For all n ∈ N, the ‘doubling map’

(hn, Vp,n) : S1(n,O/ϖn)⊕2 (f,g)7→hnf+Vp,ng−−−−−−−−−−−→Mκn(n,O/ϖn)

is injective and compatible with the Hecke operators Tq for q ∤ np. The Hecke operator T (κn)
p

acts on the image by the formula T (κn)
p ◦ (hn, Vp,n) = (hn, Vp,n) ◦

(
T

(1)
p 1

−⟨p⟩ 0

)
. In particular, the

image Wp,n of (hn, Vp,n) lies in the p-ordinary part of Mκn(n,O/ϖn) and is stable under all
Hecke operators Tq for q ∤ np.

If (p − 1) does not divide ep, then the same statements hold after replacing the spaces S1(n,K/O)
and S1(n,O/ϖn) by M1(n,K/O) and M1(n,O/ϖn), respectively.

Proof. (i) For f ∈ S1(n,O/ϖ), the claim is precisely the content of Lemma 2.4, in view of Corol-
laries 1.14 and 1.16. The induction step from n− 1 to n follows from the q-expansion principle and
the exact sequence

0→ S1(n,O/ϖ)⊗O ϖ
n−1O → S1(n,O/ϖn)→ S1(n,O/ϖn−1).

(ii) The injectivity follows from (i) applied to the first component of an element in the kernel. The
matrix is obtained from a calculation as in [14, Lem. 3.7]. □

2.3. Hecke algebras. For κ ⩾ 1 and n ∈ N, we consider the following complete Artinian (resp.
Noetherian) semi-local O-algebras

T(κ)
n = im

(
O[Tq, ⟨q⟩]q∤np → EndO(Mκ(n,O/ϖn))

)
,

T(κ)
cusp,n = im

(
O[Tq, ⟨q⟩]q∤np → EndO(Sκ(n,O/ϖn))

)
, resp.,

T(κ) = im
(
O[Tq, ⟨q⟩]q∤np → EndO(Mκ(n,K/O))

)
= lim←−

n

T(κ)
n ,

T(κ)
cusp = im

(
O[Tq, ⟨q⟩]q∤np → EndO(Sκ(n,K/O))

)
= lim←−

n

T(κ)
cusp,n.

(2.21)

Note that they all contain ⟨p⟩ for p | p since p is relatively prime to n. Moreover, the restriction to
the cusp space gives surjective morphisms T(κ)

n ↠ T(κ)
cusp,n and T(κ) ↠ T(κ)

cusp. We also consider the
torsion free Hecke O-algebra:

T(κ)
O = im

(
O[Tq, ⟨q⟩]q∤np → EndO(Mκ(n,O))

)
.
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Let In be the annihilator of T(κ)
O acting onMκ(n,O)⊗O (O/ϖn). Then we have natural surjective

ring homomorphisms

T(κ)
n ↠ T(κ)

O /In and T(κ) ↠ T(κ)
O ,

the latter coming from the fact that the intersection
⋂

n In is zero. For sufficiently large κ, both
homomorphisms are isomorphisms due to Lemma 2.2. However, this need no longer be true in our
principal case of interest κ = 1 since the inclusions

M1(n,O)⊗O (O/ϖn) ↪→M1(n,O/ϖn) and M1(n,O)⊗O (K/O) ↪→M1(n,K/O)

need not be isomorphisms, in general. The kernel of T(1) ↠ T(1)
O is a finitely generated torsion

O-module, which is isomorphic to the kernel of T(1)
n → T(1)

O /In for n ∈ N sufficiently large. Recall
that multiplication by the Hasse invariant hn allows us to see M1(n,O/ϖn) inside Mκn(n,O/ϖn)

equivariantly for all Hecke operators Tq and ⟨q⟩ for q ∤ np, yielding a surjection T(κn)
n ↠ T(1)

n (see
Proposition 2.5). For a prime p | p, consider also the Hecke algebra:

T̃(κn)
n = T(κn)

n [T
(κn)
p ] ⊂ EndO(Mκn(n,O/ϖn))

)
.(2.22)

Corollary 2.6. Let p | p. Then for any n ∈ N, there is a surjection sending T (κn)
p to U (considered

as a polynomial variable):

T̃(κn)
n ↠ T(1)

cusp,n[T
(1)
p , U ]/

(
U2 − T (1)

p U + ⟨p⟩
)
.

The same statement holds after replacing T(1)
cusp,n by T(1)

n , provided (p− 1) ∤ ep.

Proof. The injection from Proposition 2.5 gives a morphism T̃(κn)
n → EndO

(
S1(n,O/ϖn)⊕2

)
of

O-algebras compatible with Tq and ⟨q⟩ for all q ∤ np and, hence, we get a surjection T(κn)
n ↠

T(1)
cusp,n. Moreover, T (κn)

p acts on the image of S1(n,O/ϖn)⊕2 via the matrix
(

T
(1)
p 1

−⟨p⟩ 0

)
, whence

it is annihilated by its characteristic polynomial U2 − T
(1)
p U + ⟨p⟩ and does not satisfy any non-

trivial linear relation over T(1)
n [T

(1)
p ], thus proving the existence of the desired homomorphism. For

the surjectivity, let us observe that the image of S1(n,O/ϖn)⊕2 is contained in the T (κn)
p -ordinary

subspace ofMκn(n,O/ϖn), and that the endomorphism T
(κn)
p +⟨p⟩(T (κn)

p )−1 of the latter space acts

on the former as
(

T
(1)
p 0

0 T
(1)
p

)
. Finally, assuming (p− 1) ∤ ep allows us to apply Proposition 2.5 with

M1(n,O/ϖn) instead of S1(n,O/ϖn), leading to the validity of the result with T(1)
cusp,n replaced by

T(1)
n . □

3. PSEUDO-REPRESENTATIONS FOR WEIGHT 1 HECKE ALGEBRAS

3.1. Pseudo-representations of degree 2. In this section, we recall some definitions due to Chene-
vier [5] and Calegari–Specter [4].
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Definition 3.1. Let R be a complete Noetherian local O-algebra with maximal ideal m and residue
field R/m = F considered with its natural m-adic topology. An R-valued pseudo-representation of
degree 2 of GF is a tuple P = (T,D) consisting of continuous maps T,D : GF → R such that

(i) D is a group homomorphism GF → R×,
(ii) T (1) = 2 and T (gh) = T (hg) = T (g)T (h)−D(g)T (g−1h) for all g, h ∈ GF .

We extend T : GF → R to an R-linear map R[GF ]→ R and we denote this map by T as well.
Given g ∈ GF , we define D(g − 1) := D(g)− T (g) + 1.
The pseudo-representation P = (T,D) is said to be unramified at p ifD(h−1) = T (g(h−1)) = 0

for all g ∈ GF and all h ∈ Ip.

Any continuous representation ρ : GF → GL2(R) yields a degree 2 pseudo-representation
Pρ = (tr ◦ρ, det ◦ρ). The converse is true when the semi-simple representation ρ̄ : GF → GL2(F)
corresponding to the residual pseudo-representation is absolutely irreducible (see [5, Thm. 2.22]).
Further, if ρ is unramified outside a finite set of places S, then so is Pρ. Again, the converse is true in
the residually absolutely irreducible case. This can be seen by applying loc. cit. to the Galois group
of the maximal extension of F unramified outside S over F .

We introduce a notion of ordinarity inspired from Calegari–Specter [4].

Definition 3.2. Let P̃ = (P, αp) with P = (T,D) a degree 2 pseudo-representation of GF over R
and αp ∈ R a root of X2 − T (Frobp)X +D(Frobp) ∈ R[X].

We say that P̃ is ordinary at p of weight κ ⩾ 1, if for all h, h′ ∈ Ip and all g ∈ GF we have

(i) D(h−1) = 0 and T (h−1) = χκ−1
p (h)−1, where χp denotes the p-adic cyclotomic character,

(ii) T
(
g(h− χκ−1

p (h))(h′ Frobp−αp)
)
= 0.

Remark 3.3. Note that our notion of p-ordinary pseudo-representations implies the one of Calegari–
Specter ([4, Def. 2.5]). Let P = (T,D) : GF → R2 be a degree 2 pseudo-representation and let
(T̄ , D̄) : GF → F2 be its residual pseudo-representation. Suppose there exists a lift Frobp ∈ GFp

of the arithmetic Frobenius at p such that the polynomial X2− T̄ (Frobp)X + D̄(Frobp) has distinct
roots in F. Then (P, αp) is a p-ordinary pseudo-representation in the sense of Definition 3.2 if and
only if it is p-ordinary in the sense of Calegari–Specter. However, if this hypothesis does not hold,
then we expect that the two notions are not equivalent.

Let P = (T ,D) : GF → F2 be a fixed degree 2 pseudo-representation unramified outside np∞.
Denote by P ps = (T ps, Dps) : GF → (Rps)2 the universal deformation of P unramified outside
np∞ in the category of complete Noetherian local O-algebras with residue field F and consider the
quotient

Rps[X]/(X2 − T ps(Frobp)X +Dps(Frobp)) ↠ Rord(3.23)

which classifies pairs (P, αp) such that P is a deformation of P unramified outside np∞ and (P, αp)

is ordinary at p of weight κ. The universal ring Rord, classifying deformations of P which are
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unramified outside np∞ and are ordinary at p of weight κ, is the quotient of the ring Rps[X]/(X2 −
T ps(Frobp)X +Dps(Frobp)) by the ideal generated by the set{
Dps(h− 1), T ps(h− 1)− χκ−1

p (h) + 1, T ps
(
g(h− χκ−1

p (h))(h′ Frobp−X)
)
| h, h′ ∈ Ip, g ∈ GF

}
and a direct computation shows that Rord is independent of the choice of Frobp.

Note that Rord is a finite Rps-algebra. As Rps is a local ring, it follows that Rord is a semi-local
ring and all of its maximal ideals contain the unique maximal ideal mps of Rps. After going modulo
mps in Rord, it is easy to see, using the description of the ideal from the previous paragraph, that the
number of maximal ideals of Rord is the number of distinct α ∈ F such that (P , α) is a p-ordinary
pseudo-representation of weight κ.

Now suppose P is unramified at p and κ ≡ 1 (mod p− 1). Then we have

T
(
g(h−χκ−1

p (h))(h′ Frobp−X)
)
= T

(
g(h−1)h′ Frobp

)
−XT (g(h−1)) = T (h′ Frobp g(h−1)) = 0.

Here we are repeatedly using the fact that T (g(h − 1)) = 0 for all g ∈ GF and h ∈ Ip, which
is a consequence of the assumption that P is unramified at p. Thus, in this case, we see that
(P , α) is a p-ordinary pseudo-representation of weight κ if and only if α is a root of the polyno-
mial X2 − T (Frobp)X +D(Frobp). Hence, in this case, Rord is a semi-local Noetherian ring with
two maximal ideals if the polynomial X2 − T (Frobp)X +D(Frobp) has two distinct roots and it is
a local Noetherian ring otherwise.

3.2. Existence of an ordinary Hecke algebra-valued pseudo-representation. We continue to use
the notation from §2. Let m be any maximal ideal of T(1) (or equivalently of T(1)

n for some n) and
denote also by m the maximal ideals of T(κn) and T(κn)

n defined as the pull-back of m ⊂ T(1)
n .

Lemma 3.4. There exists a T(κn)
n,m -valued pseudo-representation P (κn)

n,m of GF of degree 2 which is
unramified at all primes q ∤ np and P (κn)

n,m (Frobq) = (Tq, ⟨q⟩). In particular, after replacing O by a
finite unramified extension, there exists a unique semi-simple Galois representation

ρm : GF → GL2(T(1)/m)

unramified outside np∞ satisfying

tr(ρm(Frobq)) = Tq (mod m) and det(ρm(Frobq)) = ⟨q⟩ (mod m)

for all primes q ∤ np.

Proof. After enlarging K, we may assume that it contains all the eigenvalues of T(κn) acting on
Mκn(n,O). TheO-algebra T(κn) generated by the Hecke operators outside the level and p is torsion-
free and reduced, hence T(κn)

m ⊗O K =
∏

g∈N K whereN denotes the set of newforms occurring in
Mκn(n,O)m. As is well known, one can attach to each such eigenform g a GF -pseudo-representation
Pg of degree 2 unramified outside np∞ such that Pg(Frobq) = (a(q, g), ψg(q)N(q)

κn−1) for all
q ∤ np, where ⟨q⟩g = ψg(q)g. Since the natural homomorphism T(κn)

m → T(κn)
m ⊗O K is injective,

in view of the Chebotarev Density Theorem, we obtain a T(κn)
m -valued GF -pseudo-representation
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P
(κn)
m unramified outside np∞ such that P (κn)

m (Frobq) = (Tq, ⟨q⟩N(q)κn−1) for all q ∤ np (see [5,
Cor. 1.14]).

Note that N(q)κn−1 ≡ 1 (mod ϖn). Composing P (κn)
m with the surjection T(κn)

m ↠ T(κn)
n,m , we

get the desired pseudo-representation. Finally T(κn)
n /m = T(1)

n /m along with [5, Thm. A] finishes
the proof of the lemma. □

Let Rps
m be the universal deformation ring of the corresponding degree 2 pseudo-representation

Pm = (tr ◦ρm, det ◦ρm) unramified outside np∞ in the category of complete Noetherian local O-
algebras with residue field F (chosen large enough in order to contain the residue field of T(1)

m ). Using
the surjection T(κn)

m ↠ T(κn)
n,m ↠ T(1)

n,m and then passing to the projective limit T(1)
m = lim←−

n

T(1)
n,m, we

obtain the following result.

Corollary 3.5. For any maximal ideal m of T(1), there exists a T(1)
m -valued pseudo-representation

P
(1)
m of GF of degree 2 which is unramified for all primes q ∤ np and P (1)

m (Frobq) = (Tq, ⟨q⟩). It
yields a surjection Rps

m ↠ T(1)
m .

Note that for a maximal ideal m of T(κn)
n , the algebra T̃(κn)

n,m is in general only semi-local (see
(2.22)). By the main result of [14], ρm is unramified at p, allowing us to consider the ideal

m̃ =
(
m, (T

(κn)
p )2 − ̂tr(ρm(Frobp))T

(κn)
p + ̂det(ρm(Frobp))

)
⊂ T̃(κn)

n ,(3.24)

where ̂tr(ρm(Frobp)) and ̂det(ρm(Frobp)) are some lifts of tr(ρm(Frobp)) and det(ρm(Frobp)), re-
spectively in T(κn)

n . Note that the ideal m̃ does not depend on the choices of these lifts.
Let T̃(κn)

n,m̃
be the completion of T̃(κn)

n with respect to m̃. The algebra T̃(κn)
n,m̃

then has at most two
local components. Let Rord

m be the universal O-algebra classifying deformations of Pm unramified
outside primes dividing np∞ and ordinary at p of weight 1 (see (3.23)).

Lemma 3.6. There exists a p-ordinary T̃(κn)
n,m̃

-valued pseudo-representation P̃ (κn)
n,m̃

= (P
(κn)
n,m , T

(κn)
p )

of degree 2 and weight 1 of GF such that P (κn)
n,m (Frobq) = (Tq, ⟨q⟩) for all q ∤ np. It yields a

surjection Rord
m ↠ T̃(κn)

n,m̃
.

Proof. Let T̃(κn) = T(κn)[T
(κn)
p ] and denote also by m̃ the ideal of T̃(κn) defined as the pull-back of

m̃ ⊂ T̃(κn)
n . Let T̃(κn)

m̃
be the completion of T̃(κn) with respect to m̃.

We have T̃(κn)
m̃
⊗O K =

∏
g∈Ñ K, where Ñ denotes the subset of N (see the proof of Lemma

3.4) consisting of newforms occurring in Mκn(n,O)m̃. As p does not divide n, any g ∈ Ñ is an
eigenvector for T (κn)

p (resp. ⟨p⟩) whose eigenvalue a(p, g) (resp. ψg(p)) is necessarily a p-adic unit
by (3.24), i.e., g is p-ordinary. By a result due to Hida and Wiles, when g is ordinary at all places
dividing p, and to Saito [18] and Skinner [19] in general, p-adic Galois representation ρg attached to g
is ordinary at p, i.e., its restriction to GFp has a one-dimensional unramified quotient on which Frobp

acts by the (unique) p-adic unit root αp,g of the Hecke polynomialX2−a(p, g)X+ψg(p)N(p)
κn−1.

This implies that αp,g is also a root of X2 − tr(ρg)(Frobp)X + det(ρg)(Frobp), for any choice
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of a Frobenius element Frobp ∈ GFp . Thus, the pseudo-representation Pg = (tr(ρg), det(ρg)) is
p-ordinary of weight κn with respect to αp,g in the sense of Definition 3.2.

Since T̃(κn)
m̃

is a semi-local finite O-algebra, applying Hensel’s lemma to each local component

shows that the polynomial X2 − T (κn)
p X + ⟨p⟩N(p)κn−1 admits a unique unit root U in T̃(κn)

m̃
. By

the Chebotarev Density Theorem, gluing the p-ordinary pseudo-representations P̃g = (Pg, αp,g) for
all g ∈ Ñ gives us a T̃(κn)

m̃
-valued p-ordinary pseudo-representation (P

(κn)
m , U) of weight κn such

that P (κn)
m (Frobq) = (Tq, ⟨q⟩N(q)κn−1) for all q ∤ np. We have χκn−1

p (g) ≡ 1 (mod ϖn) for all

g ∈ GF . Hence, the reduction of (P (κn)
m , U) to T̃(κn)

n,m̃
is a p-ordinary pseudo-representation of weight

1. Note that by Hensel’s Lemma, U reduces to T (κn)
p in T̃(κn)

n,m̃
, since the former (resp. the latter) is

the unique unit root of X2 − T (κn)
p X + ⟨p⟩N(p)κn−1 in T̃(κn)

m̃
(resp. in T̃(κn)

n,m̃
). As N(q)κn−1 ≡ 1

(mod ϖn) for all q ∤ np, this completes the proof of the lemma. □

3.3. Proof of the main theorem. In the proof of Theorem 0.1 we can assume without loss of gen-
erality that n satisfies (2.20), because given any prime q, the Hecke algebra in level n is a quotient of
the one in level nq. Moreover, since the algebra T(1) is semi-local, equal to the product of T(1)

m where
m runs over its maximal ideals, it is enough to prove the theorem after localisation at m.

Recall that in Corollary 3.5 we constructed a T(1)
m -valued pseudo-representation P (1)

m = (T,D) of
GF , whose image under the surjective homomorphism T(1)

m ↠ T(1)
cusp,m ↠ T(1)

cusp,n,m will be denoted
by P (1)

n,m = (Tn, Dn), for n ∈ N. This gives the first row of the following commutative diagram:

Rps
m

Cor. 3.5 // //

��

T(1)
cusp,m

// // T(1)
cusp,n,m� _

��

Rord
m

Lemma 3.6 // // T̃(κn)
n,m̃

Cor. 2.6 // // T(1)
cusp,n,m[T

(1)
p , U ]/(U2 − T (1)

p U + ⟨p⟩).

(3.25)

The morphisms in the second row come from Lemma 3.6 and Corollary 2.6. Combining them, we
see that P̃ (1)

n,m = (P
(1)
n,m, U) is a p-ordinary pseudo-representation of weight 1.

We now perform the key ‘doubling’ step, as presented in [4, Prop. 2.10], and slightly improved
upon, since the surjectivity of the composed map Rord

m → T(1)
cusp,n,m[T

(1)
p , U ]/(U2 − T (1)

p U + ⟨p⟩)
will not be used in the sequel. One has

T(1)
cusp,n,m[T

(1)
p , U ]/(U2 − T (1)

p U + ⟨p⟩) = T(1)
cusp,n,m[T

(1)
p ]⊕ U · T(1)

cusp,n,m[T
(1)
p ].

Since P̃ (1)
n,m is ordinary at p of weight 1, for all g ∈ GF and h ∈ Ip the following equality holds:

Tn(ghFrobp)− Tn(g Frobp) = U(Tn(gh)− Tn(g)) ∈ T(1)
cusp,n,m[T

(1)
p ] ∩ UT(1)

cusp,n,m[T
(1)
p ] = {0},

hence Tn(gh) = Tn(g), i.e., P (1)
n,m is unramified at p.

Note that U satisfies the following relations

U2 − T (1)
p U + ⟨p⟩ = 0 and U2 − Tn(Frobp)U +Dn(Frobp) = 0
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in the ring T(1)
cusp,n,m[T

(1)
p , U ]/(U2 − T

(1)
p U + ⟨p⟩). Indeed, the second relation follows from the

fact that (P (1)
n,m, U) is a p-ordinary pseudo-representation of weight 1. As the former polynomial

is minimal, one obtains the desired equality (Tn(Frobp), Dn(Frobp)) = (T
(1)
p , ⟨p⟩), in particular

T
(1)
p ∈ T(1)

cusp,n,m. Letting n vary finishes the proof of Theorem 0.1 for T(1)
cusp,m.

In order to obtain the theorem for T(1)
m , we replace T(1)

cusp,m by T(1)
m , T(1)

cusp,n,m by T(1)
n,m, and

S1(n,O/ϖn) by M1(n,O/ϖn) throughout. The arguments continue to work if we assume that
p− 1 does not divide ep, which is used in Corollary 2.6.

Corollary 3.7. Let p | p. Then T (1)
p ∈ T(1)

cusp, i.e., for all n ∈ N, the Hecke operator T (1)
p acts on

S1(n,O/ϖn) by an element of T(1)
cusp,n. Moreover, if (p− 1) ∤ ep, then one also has T (1)

p ∈ T(1).

3.4. Non-Eisenstein ideals.

Definition 3.8. A maximal ideal m of T(κ) (or of T(κ)
n ) is called Eisenstein if the corresponding

(T(κ)
m /m)-valued pseudo-representatation of GF is the sum of two (T(κ)

m /m)-valued characters.

We now prove that in the non-Eisenstein case it suffices to consider the cuspidal Hecke algebra.

Proposition 3.9. The localisation of the natural surjection T(κ)
n ↠ T(κ)

n,cusp at any non-Eisenstein
maximal ideal m of T(κ)

n is an isomorphism.

Proof. It suffices to prove that the localisation of Mκ(n,O/ϖn)/Sκ(n,O/ϖn) at a non-Eisenstein
ideal vanishes. By multiplication by a suitable power of hn which does not vanish at any cusp
(see Lemma 2.3), we can assume that κ is sufficiently large so that Lemma 2.2 applies yielding
Mκ(n,O/ϖn) =Mκ(n,O)⊗O (O/ϖn). Hence the natural Hecke equivariant morphism

Mκ(n,O)/Sκ(n,O)→Mκ(n,O/ϖn)/Sκ(n,O/ϖn)

is surjective. The former, however, can be Hecke equivariantly embedded into Mκ(n,C)/Sκ(n,C)
which is well known to be generated by Eisenstein series whose Galois representations are reducible.
This proves the proposition. □

Henceforth we assume m to be a non-Eisenstein ideal of T(1), so that the corresponding residual
Galois representation ρm is absolutely irreducible. Therefore, by combining Theorem 0.1 with a
result of Chenevier ([5, Thm. 2.22]), we get a representation

ρm : GF → GL2(T
(1)
m ),

unramified outside np∞, and uniquely characterised by the property that for all primes q ∤ np one has
tr(ρm(Frobq)) = Tq and det(ρm(Frobq)) = ⟨q⟩. By combining Theorem 0.1 with Proposition 3.9,
we deduce that the pseudo-representation P (1)

m is unramified at all primes p | p and, by the discussion
after Definition 3.1, we conclude that ρm is unramified at these primes as well. Let S be the set of
places of F dividing n∞ and let RS

F,ρm
be the universal deformation ring of ρm unramified outside S
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in the category of complete Noetherian local O-algebras with residue field F. Hence ρm induces an
O-algebra homomorphism RS

F,ρm
→ T(1)

m .
As T(1) is generated by Tq and ⟨q⟩ for q ∤ np as an O-algebra, we obtain the following result.

Corollary 3.10. There exists a surjective homomorphism RS
F,ρm

↠ T(1)
m of O-algebras.
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