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Abstract
In this paper, we investigate unsupervised acoustic model train-
ing approaches for dysarthric-speech recognition. These mod-
els are first, frame-based Gaussian posteriorgrams, obtained
from Vector Quantization (VQ), second, so-called Acoustic
Unit Descriptors (AUDs), which are hidden Markov models
of phone-like units, that are trained in an unsupervised fash-
ion, and, third, posteriorgrams computed on the AUDs. Exper-
iments were carried out on a database collected from a home
automation task and containing nine speakers, of which seven
are considered to utter dysarthric speech. All unsupervised
modeling approaches delivered significantly better recognition
rates than a speaker-independent phoneme recognition baseline,
showing the suitability of unsupervised acoustic model train-
ing for dysarthric speech. While the AUD models led to the
most compact representation of an utterance for the subsequent
semantic inference stage, posteriorgram-based representations
resulted in higher recognition rates, with the Gaussian posteri-
orgram achieving the highest slot filling F-score of 97.02%.
Index Terms: unsupervised learning, acoustic unit descriptors,
dysarthric speech, non-negative matrix factorization

1. Introduction
It is often said that a speech interface, e.g., to control household
devices, is particularly helpful for physically challenged peo-
ple [1, 2]. Unfortunately, a significant fraction of this group of
users also suffers from speech impairments, such as dysarthria,
a motor speech disorder, which makes their speech sound quite
differently compared to speech uttered by people without speak-
ing impairments. As a consequence, off-the-shelf automatic
speech recognition (ASR) systems exhibit unacceptably high
error rates for dysarthric speech [3]. The deviations from nor-
mal speech utterances are usually quite severe and conventional
speaker adaptation approaches, such as Maximum-a-posteriori
(MAP) or Maximum Likelihood Linear Regression (MLLR)
adaption are able to compensate for these deviations to adapt
the acoustic models to some extent to reduce the error rates for
impaired speech. A significant amount of research has there-
fore been devoted to the characterization and recognition of
dysarthric speech [4, 5, 6, 7, 8, 9, 10].
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An alternative to the adaptation of a speaker-independent
system is the training of a speaker-dependent recognizer. This
asks for the availability of labeled training data, i.e., recordings
of the user’s spoken utterances and the corresponding text files,
together with a pronunciation lexicon . In particular in the case
of dysarthric speech, pronunciations can be quite different from
the standard [11, 12, 13, 14], such that the appropriateness of
canonical transcriptions is questionable.

In order to avoid the effort for providing an appropriate pro-
nunciation lexicon and transcribing the training data, the AL-
ADIN project follows a different route [15, 16]. It is concerned
with the development of a self-learning vocal interface for a
home automation system, where the learning of the acoustic
models is done in a ”zero-resource” scenario, requiring neither
the transcription of the training data nor a pronunciation lexi-
con. The user still has to follow a training session, but this is
only to learn the mapping of the user’s commands, which he
can choose freely, to the action to be carried out in the home
automation system. To this end, only weak supervision is re-
quired – an action label assigned to an utterance – while no
literal transcription of the user’s utterance is needed. Thus the
system is maximally adapted to the particular artifacts of the
user’s (dysarthric) speech and to the preferred wording of the
user.

This approach, while attractive to the user, poses several
challenges, such as unsupervised acoustic model training and
the learning of the mapping between the user’s utterance and the
actions to be performed, using only weak supervision. While
the latter has been discussed in [17], where a Non-negative Ma-
trix Factorization (NMF) based approach was employed to ef-
fectively solve the semantic inference problem, this paper is
concerned with the first issue. In the past years several unsu-
pervised acoustic model training methods have been developed,
including Gaussian posteriorgrams [18], hidden Markov model-
based self-organising units [19], and non-parametric Bayesian
estimation of HMMs [20]. In [21] we have adopted a hierar-
chical approach, which has originally been developed for the
semantic analysis of the audio track of multimedia data [22], to
the unsupervised learning of speech representations. On the first
hierarchic layer, we learned Acoustic Unit Descriptors (AUDs),
phone-like units, which are similar to the HMM-based self-
organising units in [19]. The second layer is concerned with
the discovery of word-like units, which manifest themselves as
recurring sequences of AUDs. This approach showed very good
performance on the TiDigits corpus with recognition rates com-
ing close to a supervised training [21].

In this paper we discuss the suitability of unsupervised

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

1013



acoustic learning approaches for dysarthric speech. We con-
centrate on two representative approaches, Gaussian posterior-
grams computed from MFCC features, and the suprasegmental
AUDs. Furthermore, we will also evaluate posteriorgrams of
AUDs.

The paper is organized as follows: In the next section we
give a brief overview of the vocal user interface developed in the
ALADIN project. In Section 3 we introduce the different fea-
ture representations under investigation. The GMM based pos-
teriorgram is described in subsection 3.1 while the AUD based
representation is given in subsection 3.2. The database is pre-
sented in Section 4, followed by the section on experimental
results. We finish with a discussion and conclusion in section 6.

2. Vocal User Interface
This section gives a brief overview of the architecture of the Vo-
cal User Interface (VUI) that has been developed in the frame-
work of the ALADIN project, e.g. for the purpose of controlling
a home automation system. The main target group are people
who suffer from speech impairment, hence the system should be
able to adapt to voice pathologies [23]. The system is also de-
signed to learn and adapt to unconstrained spoken commands,
where the user can formulate a command in the words of his
choice.

The mapping between the voice command and an action on
the device’s user interface is learned during the training phase.
An action is represented by a semantic frame, a data structure
that is composed of slots, which in turn contain slots or values.
For example, a semantic frame can contain the slots <device>
and <action>, with the corresponding values <television, ra-
dio> and <on, off>, respectively.

During the training phase, recurrent acoustic patterns are
determined from the spoken commands using NMF [15]. NMF
decomposes a non-negative matrix that represents training data
into two lower rank matrices, i.e., a dictionary matrix containing
recurrent acoustic patterns and a matrix of activations of these
patterns. This process is weakly supervised by augmenting the
representation of the user’s utterance with labels indicating the
slot values the utterance is referring to.

During the decoding process the vector describing the
user’s utterance is again decomposed via NMF, and the decom-
position is compared with the trained dictionary, which included
the grounding information. By finding the closest match, an es-
timate of the slot values is obtained. This recognized command
is represented by the semantic frame, and finally sent to the tar-
get device [24].

As the mapping of the input utterance to a user command
is carried out using NMF, each utterance of the user has to be
represented by a vector of fixed size. The compilation and size
of these vectors depend on the acoustic representation of the
utterance, which will be described in the following section.

3. Acoustic Representations
The first step in the audio processing chain is the extraction of
Mel Frequency Cepstral Coefficient (MFCC) feature vectors,
which are augmented with the log energy and first and second-
order temporal difference features to arrive at a 39-dimensional
feature vector. Note that cepstral mean and variance normaliza-
tion is carried out per utterance.

The following different representations of the input
dysarthric speech were learned.

3.1. Gaussian Posteriorgrams

Here, the MFCC feature vector is transformed into a vector of
posterior probabilities of Gaussians forming a codebook, using
soft vector quantization. To this end, a 100 component full-
covariance Gaussian Mixture Model is trained on MFCC vec-
tors. The code book training starts off from a single cluster
describing all training data. It is then split along the dominant
eigenvector of its covariance matrix, followed by iterations of
the Expectation Maximization algorithm. This process is re-
peated until a desired number of mixture components is ob-
tained.

The posterior probability of each Gaussian mixture compo-
nent is then computed for each MFCC vector. From the posteri-
ors so-called histograms of acoustic co-occurrences (HACs) are
constructed. The HAC is an estimate of the joint posterior prob-
ability of two acoustic events happening at a predefined time lag
[25, 26].

3.2. AUD based representation

Acoustic subword units are meant to capture acoustically con-
sistent phenomena and will be referred to as acoustic unit de-
scriptors (AUDs) [27]. They represent similar recurring se-
quences of feature vectors.

The discovery of AUDs is done in two steps. In the ini-
tialization step input speech is segmented and the segments are
clustered to generate an initial transcription of the input speech
in terms of sequences of segment labels. The second step is
the iterative training of hidden Markov models (HMMs) for the
discovered clusters. The block diagrams of these steps are de-
picted in figure 1 and will be briefly described in the following.
For a more detailed description the reader is referred to [21].

Iter. HMM Train (3)
Speech

Init

Segmentation (1)

Audio Segments

Clustering (2)

Segment Labels

Model est.

Decoding

AUD Sequence

Figure 1: AUD discovery algorithm

3.2.1. Segmentation

In the segmentation step the speech input is segmented into con-
sistent speech segments according to a local distance measure
between the mean representative of the current segment and the
next feature vector. If the value of the local distance measure is
greater than a threshold, a new segment is created. A constraint
on the minimum segment length is used to prevent the genera-
tion of short segments. These parameters are chosen such that
the average segment length corresponds to the expected length
of a phoneme. As the local distance measure the cosine distance
is employed.

3.2.2. Clustering

In the clustering step the segments from the segmentation step
are grouped to obtained clusters according to acoustic consis-
tency. Clustering is carried out on a (sparse) adjacency ma-
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trix derived from the distances between representative segments
and all other segments. The (length normalized) dynamic time
warping distance between two segments is employed, using the
cosine distance as the local distance measure. The represen-
tative segments are chosen according to the kmeans++ initial-
ization [28, 29]. Finally the unsupervised graph clustering al-
gorithm by Newman [30] is used for clustering. As output for
each utterance, a sequence of cluster labels is assigned which
will serve as an initial label sequence for the iterative training
of the AUD models.

3.2.3. Iterative AUD HMM Training

In the iterative HMM training step, the cluster labels are inter-
preted to be AUD labels and used as an initial transcription T (0)

d

for the d-th input speech utterance. For each AUD we define a
3-state left-to-right HMM with Gaussian mixture output den-
sities and refer to the set of all AUD models as ΛA. We use
a zerogram language model to connect the AUDs. The HMM
parameters ΛA and the transcriptions Td are updated by alter-
nating between re-estimation of the AUD parameters, eq. (1),
and decoding of the input speech, eq. (2) [19, 22]:

Λ
(i+1)
A

= argmax
ΛA

D∏

d=1

p(Xd|T
(i)
d ; ΛA) (1)

T
(i+1)
d = argmax

Td

P (Td|Xd; Λ
(i+1)
A

). (2)

Here, i is the iteration index andXd denotes the MFCC feature
vector sequence of the d-th utterance. D is the total number of
utterances.

3.2.4. Mapping of utterance to fixed-length vector

The AUD sequences, which describe the utterance, are not di-
rectly amenable to NMF. They need to be mapped to a repre-
sentation of fixed dimension, in which linearity holds, i.e., that
the utterance-level speech representation is approximately equal
to the sum of the speech representations of the acoustic pat-
terns it contains [25]. This vector is created by replacing each
AUD in the recognized sequence of AUDs of an utterance by
an indicator vector, where the element of the vector represent-
ing the AUD is set to one and all other elements to zero. Using
all vectors of an utterance a histogram of occurrences and co-
occurrences is built and used as input to the NMF.

4. DOMOTICA-3 Database
In this work, we employ the DOMOTICA-3 database that has
been collected in the framework of the ALADIN project [16].
The DOMOTICA-3 database is a collection of recordings of
Flemish dysarthric speakers controlling a home automation sys-
tem. Recordings were collected in two phases. During the first
phase users were asked to command 26 distinct actions in a sim-
ulated 3D computer animation of a home environment, in order
to ensure an unbiased choice of words and grammar by the user.
In the second phase speakers were recorded reading these com-
mands to obtain enough repetitions of each spoken command.

In this study only speakers that have uttered at least five rep-
etitions of each command were included. They will be referred
to by unique id’s 17, 28, 29, 30, 31, 34, 35, 41 and 44. The
total number of utterances per speaker was in the range of 151
to 350, with an average of 238. The total size of the database
is about 4 hours of speech. Speech intelligibility scores were

obtained for all speakers by analysing their recorded speech us-
ing an automated tool [31], which led to the conclusion that all
except two speakers (id’s 17 and 44) were considered to utter
dysarthric speech.

5. Experiments
We performed our experiments on the DOMOTICA-3 database
using the NMF based command recognition framework. We
used the following setups:

1. Gaussian posteriorgram based representation

2. AUD sequence based representation

3. AUD posteriorgram based representation

4. Phoneme sequences derived using a speaker independent
general acoustic phoneme model

For setup 1 the results were produced by using 100 full-
covariance Gaussians trained on all speech material available
for that speaker as described in subsection 3.1. From these the
histogram of occurrences and the HACs at four different lags,
2, 5, 9 and 20 frames, were computed. The resulting vector to
be forwarded to the NMF-based semantic inference stage was
of size 4× 1002 + 100 = 40100.

For setup 2 we learned speaker dependent acoustic models
of the AUDs with and additional silence HMM on the speech
material available for that speaker. Each state has one 39-
dimensional Gaussian emission density with a diagonal covari-
ance matrix. A zerogram language model was used. The num-
ber of AUDs per speaker varied between 22 and 98 AUDs, de-
pending on the outcome of the unsupervised clustering algo-
rithm described in 3.2.2. We then produced lattices over AUDs
for each audio recording and used the algorithm described in
[32] to learn a 4-gram language model in an unsupervised way
over the sequence of AUDs and output a refined sequence of
AUDs. We then used the discovered sequence of AUDs, with
silence HMMs removed, as input to the command recognition
algorithm by computing the histogram of occurrences and a
HAC with lag 1. The resulting vector was on average of size
502 + 50 = 2550.

For setup 3 two different posteriorgram representations
were derived using the acoustic models of the discovered AUDs.
The first representation (AUD/GMM) was derived by concate-
nating the Gaussians learned for each state of the HMM to one
GMM to again calculate a posteriorgram similar to setup 1.
Each mixture component was assigned the same weight. For
the second representation (AUD/HMM) we used the posterior
probabilities of being in a certain state of the HMM calculated
with the Forward-Backward algorithm. In both cases we did
sum the probabilities of all the states belonging to one HMM
to generate an AUD based posteriorgram, similar to a phoneme
posteriorgram. Vectors in which silence had the highest prob-
ability were removed. From the resulting AUD based posteri-
orgrams a histogram of occurrences and HACs at four different
lags, 2, 5, 9 and 20 frames, were computed. The resulting vec-
tor, that was input to the command recognition framework, was
on average of size 4× 502 + 50 = 10050.

For setup 4, which served as a baseline, a pre-trained
speaker independent general acoustic model and a zerogram
language model were used to decode the audio recordings and
produce lattices for each recording. The speaker independent
general acoustic model was trained on Dutch speech. A se-
quence of phonemes was then generated using again the algo-
rithm of [32] and learning a 4-gram language model in an unsu-
pervised way. The sequence of phonemes was used to compute
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Table 1: F-scores of the different setups; for explanation see text.
Speaker 44 17 34 31 29 28 35 30 41 Average

# Utterances 166 350 335 235 181 214 284 223 151 238
# AUDs 98 56 59 38 58 30 53 22 32 50

Setup 1: Gaussian posteriorgrams 99.35 99.74 98.76 92.09 99.39 93.99 97.53 93.26 97.95 97.02
Setup 2: AUD sequences 95.49 96.92 90.38 79.88 92.74 76.18 94.31 85.31 90.78 89.49

Setup 3: AUD/HMM posteriorgrams 93.03 96.06 91.30 86.48 95.00 79.99 91.38 88.66 93.48 90.75
Setup 3: AUD/GMM posteriorgrams 96.29 99.24 97.67 90.50 98.12 89.51 95.65 93.22 94.58 95.30

Setup 4: Phoneme recognizer 90.75 87.17 78.69 66.32 84.84 54.23 80.99 56.16 64.81 74.70

a HAC-based representation in the same way as was done with
the AUDs above and then forwarded to the command recogni-
tion framework.

As a performance measure the slot Fβ=1 score of the ac-
tion recognition was used, which is the harmonic mean of slot
precision and slot recall. For its computation a five-fold cross
validation procedure was used as described in [17], with four
blocks for training and one for testing.

Figure 2 shows the recognized AUD sequences for two ut-
terances of the sentence “ALADIN hoofdeinde op stand 1” by
speaker 30. Note that the name assigned to an AUD is, of
course, arbitrary, as no phonetic interpretation can be given to it
in an unsupervised training. Same recognized AUD sequences
are marked in color. The similarity between the two sequences
is striking. The AUDs can be interpreted as phone-like units
and sequences of it as word-like entities. Differences between
the two recognized sequences can be viewed as recognition er-
rors or pronunciation variations.

Example 1:
AJ AE AA AC B AF F BJ C H H AH AB AF AC AD BJ C AC
F F AD E I AC H AH AB AF F
Example 2:
AJ AE AA AC B AF F BJ C H AH AB AF AC AD E C H BB
F AD E I AC H AH AB AF F

Figure 2: Recognized AUD sequences of two utterances of the
same sentence spoken by speaker 30

Figure 3 shows the posteriorgrams of the example utter-
ances obtained by the Forward-Backward algorithm on the
AUD/HMMs. A certain similarity can again be observed be-
tween the two posteriorgrams, indicating that posteriograms on
AUDs are also a consistent representation of an utterance.

Table 1 shows the slot F-scores of the individual speakers
and the average over all speakers (weighted by the relative num-
ber of utterances per speaker) for the different setups. Addi-
tionally the number of utterances per speaker and the number
of discovered acoustic units is shown.

The table is ordered so that the left most speaker has the
highest intelligibility score while the score decreases when go-
ing to the right. The Speakers 44 and 17 are considered as nor-
mal speakers.

6. Discussion and Conclusion
First of all, the results clearly show that all unsupervised mod-
eling approaches deliver significantly better slot F-scores than
the speaker-independent phoneme recognition baseline, show-
ing the suitability of unsupervised acoustic model training for
dysarthric speech. Of the unsupervised techniques, the Gaus-
sian posteriorgrams come out first, followed by the posterior-
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Figure 3: AUD/HMM: Example 1 (top), Example 2 (bottom)

grams computed from AUDs, while the AUDs themselves per-
formed clearly worse. It seems that the posteriorgrams are
able to capture more information relevant for semantic infer-
ence than is available in the mere presence or absence of an
AUD.

Note, however, that the Gaussian posteriorgrams are the
most expensive description of the utterance in terms of the vec-
tor length forwarded to NMF, which was 40100. The AUD-
based posteriorgrams are coded in a vector of only one quarter
of the size, and the AUDs in a vector of approximately one fif-
teenth of the size.

Another interesting observation is that the slot F-score does
not monotonously decrease with the intelligibility of the speech.
While the speakers are ordered in the table according to de-
creasing measured speech intelligibility score, the slot F-scores
obtained from the various ASR variants are not ordered in the
same way. Especially the speakers 29, 35 and 41 achieve higher
results than one would expect from their rank according to
speech intelligibility. One reason for this might be, that con-
sistency in utterances is more important for the recognition task
than intelligibility and that it is not measured in the intelligibil-
ity score.

While a definite statement is certainly not possible from this
limited dataset, these results nevertheless are encouraging, as
they point to the potential of self-learning vocal user interfaces:
not only are they superior to off-the-shelf speaker-independent
ASR solutions, unsupervised learning approaches have the po-
tential of performing on dysarthric speech as well as on normal
speech.
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