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ABSTRACT. Let K be a number field, and let G be a finitely generated subgroup of K×.
We are interested in computing the degree of the cyclotomic-Kummer extension K( n

√
G) over

K, where n
√
G consists of all n-th roots of the elements of G. We develop the theory of

entanglements introduced by Lenstra, and we apply it to compute the above degrees.

1. INTRODUCTION

Let K be a number field, and let us work in a fixed algebraic closure K̄. Let G be a finitely
generated subgroup of K×. For any fixed n > 1, let n

√
G be the group of all n-th roots of the

elements of G (which includes the n-th roots of unity). We are interested in computing the
degree of the cyclotomic-Kummer extension

K
( n√

G
)
/K .

In [7] Lenstra proposed a theory of entanglements to take care of the fact that radicals of ele-
ments of G can be contained in cyclotomic extensions of K, and to study this phenomenon
we may as well suppose that G is torsion-free and of positive rank. Consider the group
AutK×(Bn) consisting of the group automorphisms of Bn := 〈K×, n

√
G〉 which are the iden-

tity on K×. The core of the theory is the so-called entanglement group E(Bn), which is the
quotient of AutK×(Bn) by the Galois group of K( n

√
G)/K (the latter is a normal subgroup

of the former by [8, Theorem 1.6]). The group E(Bn) should measure the additive relations
between the radicals in K( n

√
G) and the n-th roots of unity. Palenstijn proved in [8, Theorem

1.6] that E(Bn) is an abelian group, and it is clearly finite. In Section 7 we prove the following
statement (which in a different form over Q has been proven by Palenstijn in [8, Proposition
4.3]), where ζp denotes a root of unity of order p.

Theorem 1. Setting ∆n :=
∏
p prime, p|n,ζp /∈K

p−1
p , we have[

K
( n√

G
)

: K
]

=
[Bn : K×]

#E(Bn)
·∆n .

We may compute [Bn : K×] with a result by Debry and the first author [3, Theorem 15], so we
are left to compute the size of the entanglement group. The following result says in particular
that #E(Bn) remains bounded as n varies, and that in order to compute the entanglement
groupE(Bn) for all n it suffices to calculateE(Bd) for all divisors d of some integer depending
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only on K and G. This result will be proven using Theorem 36, which is an assertion about
the eventual maximal growth of the degrees of cyclotomic-Kummer extensions (notice that in
Section 7 we express degrees of Kummer extensions in terms of entanglement groups).

Theorem 2. There is a computable integer n0 > 1 (depending only on K and G) such that for
every n > 1 we have

E(Bn) = E(Bgcd(n,n0)) .

Throughout the paper, whenever we talk about about the computability of a certain object
depending only on K and G, we mean that there exists a finite procedure that, given as input
the field K and the group G, produces as output the desired object. In order to work with our
theoretical algorithms in practice, one can assume that the field K is presented in the sense of
[5, Chapter 19], which implies that its elements are representable on a computer. Moreover,
one should know a finite set generators for the groupG. We refer to Remark 41 for more details
about the computations.

We focus on the subgroup Bn,ab of Bn which consists of abelian radicals, by which we mean
the elements x ∈ K̄× such that xm ∈ K× for some integer m > 1 and such that the extension
K(µn, x)/K is abelian, where µn denotes the group of n-th roots of unity. Palenstijn proved
in [8, Theorem 1.10] that there is a quite explicit description of the entanglement group E(Bn)
if Bn,ab = 〈K×, µ,H〉, where µ is a group of roots of unity and H is a group of Kummer
radicals, by which we mean those x ∈ K̄× such that xω ∈ K×, where ω is the order of the
torsion part of K×. A large portion of the article is thus devoted to express Bn,ab in terms of
Kummer radicals and roots of unity (in Sections 5 and 6 we describe Bn,ab, first in the special
case where n is a prime power and then in general). An example of our results is the following,
where µK denotes the group of roots of unity contained in K (and where by ‘divisibility’ of an
element in a group – denoted multiplicatively – we mean the supremum of the natural numbers
n such that the element is an n-th power in the group).

Theorem 3. Suppose that every element of G has the same divisibility in K× and in K×/µK .
Then for every n > 1 we have

Bn,ab = 〈K×, µn, Hn〉 ,
where Hn is a group of Kummer radicals. Moreover, we have

E(Bn) = Gal
(
K(Hn) ∩Q(µn)/Q(〈K×, Hn〉 ∩ µn)

)
.

This result will be a consequence of Theorem 29 in view of Remark 11. Notice that it would
not be true without assumptions on G, see Example 26.

Finally in Section 8 we prove the following general statement about the failure of maximality
for the cyclotomic-Kummer degree, and in Remark 40 we generalize it to groups which are not
necessarily torsion-free.

Theorem 4. Let G be a finitely-generated and torsion-free subgroup of K× of positive rank r.
Then there is a computable integer n0 > 1 (depending only on K and G) such that for every
n > 1 we have

ϕ(n)nr

[K( n
√
G) : K]

=
ϕ(g)gr

[K( g
√
G) : K]
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where g := gcd(n, n0).

This theorem says, in other words, that the degree [K( n
√
G) : K( g

√
G)] is maximal.

In Section 9 we present examples of the computation of the degree of cyclotomic-Kummer
extensions. Notice that in the case that the base field is Q, Palenstijn computed cyclotomic-
Kummer degrees with the theory of entanglements [8, Chapter 4] while the authors computed
those degrees by a different method [9].

2. PRELIMINARIES ON STRONGLY INDIVISIBLE ELEMENTS

2.1. Notation. Let K be a number field, and fix some algebraic closure K̄. We denote by µK
the group of roots of unity contained in K and set ω := #µK . For an integer n > 1 we denote
by ζn a primitive n-th root of unity in K̄, and by µn the group of n-th roots of unity in K̄. We
also define µ∞ := ∪n>1µn. If ` is a prime number, then we set µ`∞ := ∪n>1 µ`n , we denote
by v` the `-adic valuation on Q, and we write ω` := v`(ω).

2.2. Strong `-independence. Let ` be a prime number. We call a ∈ K× strongly `-indivisible
if there is no root of unity ζ in K (whose order we may suppose to be a power of `) such that
aζ ∈ K×`. If ζ` /∈ K, then strongly `-indivisible means not being an `-th power; in general, it
means that the class of the element in K×/µK is not an `-th power.

If a ∈ K× is not strongly `-indivisible, then we can decompose it as the product of an element
of µ`ω` times the `-th power of some element of K×; if the latter element is not strongly `-
indivisible, then we can iterate the decomposition. So if a ∈ K× is not a root of unity, then
we can write it as a = ζb`

d
for some strongly `-indivisible element b ∈ K×, for some integer

d > 0 and for some ζ ∈ µ`ω` . We refer to d as the d-parameter for the `-divisibility of a (it is
uniquely determined); we refer to b as the strongly `-indivisible part of a (in general, it is only
determined up to a root of unity); if ζ has order `h, then we refer to h as the h-parameter for
the `-divisibility of a (it may depend on the decomposition, and clearly we have 0 6 h 6 ω`).

We call a1, . . . , ar ∈ K× strongly `-independent if ax11 · · · axrr is strongly `-indivisible whenever
x1, . . . , xr are integers not all divisible by `. If ζ` /∈ K, then strongly `-independent means
that the classes of the elements in K×/K×` are linearly independent in this F`-vector space;
in general, we work instead with the F`-vector space (K×/µK)/(K×/µK)`.

Strongly `-independent elements are each strongly `-indivisible, and for a single element the
two notions coincide. Notice that if e1, . . . , er are integers coprime to ` and a1, . . . , ar ∈ K×
are strongly `-independent, then also ae11 , . . . , a

er
r are strongly `-independent.

Lemma 5. Let b1, . . . , br ∈ K× be strongly `-independent. For every n > 1, if

ζ ·
r∏
i=1

bxii

is an `n-th power in K× for some integers xi and for some ζ ∈ µK , then `n | xi for all i.

Proof. We prove the statement by induction on n. For n = 1, the statement holds by definition
of strong `-independence. An `n-th power in K× is in particular an `-th power, so by the case
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n = 1 we can write xi = `yi for some integers yi and ζ is an `-th power in K×. So there is
ξ ∈ µK such that ξ ·

∏
i b
yi
i is an `n−1-th power in K×. By the induction hypothesis we have

`n−1 | yi for all i and we conclude. �

Lemma 6 (Schinzel, [11, Theorem 2]). Let b ∈ K× be strongly `-indivisible. Then the exten-
sion K(µ`n ,

`n
√
b)/K is abelian if and only if n 6 ω`.

Proof. The if part is clear because µ`n ⊆ K. Conversely, suppose that the given extension is
abelian and that n > ω`. Then b`

ω` is an `n-th power in K× by [11, Theorem 2], which is
impossible by Lemma 5. �

2.3. Divisibility parameters. Consider a finitely generated and torsion-free subgroup G of
K× of positive rank r, and fix some prime number `. If g1, . . . , gr is a basis of G as a Z-
module, then we can write

gi = ζ`hi · b
`di
i

for some strongly `-indivisible element bi of K×, for some integer di > 0 and for some root
of unity ζ`hi in K of order `hi . We call g1, . . . , gr an `-good basis of G if their strongly `-
indivisible parts b1, . . . , br are strongly `-independent or, equivalently, if

∑
i di is maximal

among the possible bases of G, see [3, Section 3.1]. In this case we call di and hi the
d-parameters and the h-parameters for the `-divisibility of G in K, respectively. The d-
parameters are unique up to reordering, while the multiset of the h-parameters may depend
on the choice of the gi’s and the bi’s (but one could require additional conditions as to make the
pairs (hi, di) unique up to reordering, see [3, Appendix]). Recall from [3, Theorem 14] that an
`-good basis of G always exists.

Remark 7. As shown in [3, Section 6.1], the parameters for the `-divisibility of G are com-
putable. They are zero for all ` outside of a finite computable set of primes which depends
only on K and G (for the d-parameters this is shown in [10, Proposition 4.5], while for the
h-parameters it suffices that ` - ω). See also Remark 41. To apply some of our results, we need
to verify that for some given ` (with ` | ω) the h-parameters for the `-divisibility can be taken
to be zero: this amounts to testing whether the computable h-parameters from [3, Proposition
31] are zero.

Lemma 8. The strongly `-indivisible parts of a basis of G generate a torsion-free subgroup of
K× of rank r.

Proof. With the above notation, suppose that
∏
i b
ei
i = 1 for some integers ei. Setting m =

maxi(hi + di), we have 1 =
∏
i b
mei
i =

∏
i g
fi
i for some integers fi. Since G is torsion-free

and the bi’s are not roots of unity, we deduce that fi = 0 and hence ei = 0 for all i. �

Lemma 9. The strongly `-indivisible parts of the elements of G are in the group generated by
µ`ω` and by the strongly `-indivisible parts of the elements of any fixed `-good basis of G.

Proof. If g ∈ G, write g = ξb`
d

where b ∈ K× is strongly `-indivisible and ξ ∈ µ`ω` . With
the above notation, expressing g in terms of the basis gi, we deduce that

b`
d

= ζ

r∏
i=1

bxii
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for some ζ ∈ µ`ω` and for some integers xi. By Lemma 5 we have `d | xi for every i and we
conclude. �

Lemma 10. Call di the d-parameters for the `-divisibility of G. If an element of G different
from 1 has a strictly positive h-parameter, then its d-parameter d satisfies d < maxi(di) + ω`.

Proof. The given element is of the form g = ζ · b`d , where b ∈ K× is strongly `-indivisible,
and where ζ 6= 1 is in µ`ω` . Suppose that d > maxi(di) + ω`. Then g is not an `d-th power in
K×. Expressing the elements of an `-good basis of G in terms of their strongly `-indivisible
parts bi, we can write

g =
r∏
i=1

(
ξib

`di
i

)xi
where ξi ∈ µ`ω` and xi ∈ Z. Since gζ−1 is an `d-th power in K×, Lemma 5 implies that
`d | `dixi. Since d > di + ω` we have ξxii = 1 and hence g is an `d-th power in K×,
contradiction. �

Remark 11. If ` is a prime number, then the the following conditions are equivalent:

(1) Every element of G has the same divisibility in the groups K× and K×/µK .
(2) Every element ofG\{1} is the `d-th power of a strongly `-indivisible element for some

integer d > 0.
(3) The h-parameters for the `-divisibility of G can be taken to be zero (i.e. they are zero

for some `-good basis and for some choice of the strongly `-indivisible parts of the
elements of this basis).

Indeed, the first and second condition are clearly equivalent and imply the third. To prove that
the third condition implies the second one, suppose that G = 〈b`dii : i = 1, . . . , r〉 where the
bi’s are strongly `-independent, and write an element of G \ {1} as

g =
∏
i∈I

b`
dixi
i

for some non-empty I ⊆ {1, . . . , r} and for some integers xi 6= 0. The d-divisibility parameter
for g is d := mini(di + v`(xi)) by Lemma 5, and the above expression implies that g ∈ K×`d .

3. PRELIMINARIES ON RADICAL GROUPS

Let K be a number field. An element x ∈ K̄× is called a radical if xn ∈ K× for some integer
n > 1, i.e. if the class of x in K̄×/K× is torsion. We call a multiplicative subgroup B ⊆ K̄×

a radical group if K× ⊆ B and B/K× is torsion (the latter condition means that B consists
of radicals). A radical group B is called Galois if the exponent of B/K× divides the exponent
of the torsion part of B (i.e. for every x ∈ B there is n > 1 such that xn ∈ K× and µn ⊆ B),
or equivalently if the extension K(B)/K is Galois.

We denote by AutK×(B) the group of K×-automorphisms of B, i.e. the automorphisms of B
that are the identity on K×.
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Proposition 12 (Palenstijn, [8, Lemma 1.9]). If x is a radical such that xn ∈ K×, then the
following are equivalent:

(1) We have xω ∈ 〈K×, µ∞〉.
(2) The group AutK×(〈K×, µn, x〉) is abelian.
(3) The extension K(µn, x)/K is abelian.

We call a radical abelian if it satisfies the conditions of the previous proposition. The abelian
radical group of B, denoted by Bab, consists of the abelian radicals contained in B, and it is
again a radical group. We call Kummer radical an abelian radical such that xω ∈ K×.

IfB is a Galois radical group, then the Galois group Gal(K(B)/K) is a subgroup of AutK×(B).
In particular, by [8, Theorem 1.6] it is a normal subgroup, and the quotient

E(B) := AutK×(B)/Gal(K(B)/K)

is an abelian group, which is called the entanglement group of B over K. By [8, Corollary
2.27] we know that E(B) = E(Bab).

Theorem 13 (Palenstijn, [8, Theorem 1.10]). Let B be a Galois radical group, and suppose
that Bab = 〈µ,H〉, where µ is a group of roots of unity and H is a radical group of Kummer
radicals. Then we have a group isomorphism

E(B) ∼= Gal
(
K(H) ∩Q(µ)/Q(H ∩ µ)

)
.

In the above result we can take as µ the torsion part of B; then it is possible to choose H such
that H ∩ µ = µK .
Notice that if B ⊆ B′ are two radical groups, then we have Bab ⊆ B′ab, and the condition
B′ = B′ab implies B = Bab.

Lemma 14. If B ⊆ B′ are two Galois radical groups, then E(B) is a quotient of E(B′).

Proof. It suffices to prove that E(Bab) is a quotient of E(B′ab), and we have Bab ⊆ B′ab. So
we may reduce to prove the assertion in the special case B = Bab and B′ = B′ab. We have the
following commutative diagram of abelian groups given by restrictions:

Gal(K(B′)/K(B)) //

��

Gal(K(B′)/K)

��

// Gal(K(B)/K)

��

// 0

0 // ker(φ) // AutK×(B′)
φ

// AutK×(B)

By the Snake Lemma we have an epimorphism between the cokernels of the second and third
vertical maps, which gives exactly that E(B) is a quotient of E(B′). �

4. ON MAXIMAL ABELIAN EXTENSIONS

Let K be a number field, and fix a finitely generated and torsion-free subgroup G of K× of
positive rank r. We focus on the abelian radicals x such that xn ∈ G for some n > 1: these,
together with K×, form a radical group which we denote by B∞,ab. If ` is a prime number,
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then we consider the abelian radicals x such that x`
n ∈ G for some n > 0: these, together with

K×, form a radical group which we denote by B`∞,ab.

Remark 15. Consider a Galois radical group of the form 〈K×, H〉. If we require that the
group H/(G ∩ H) is torsion (respectively, an `-group) and that the extension K(H)/K is
abelian, then 〈K×, H〉 is a subgroup of B∞,ab (respectively, B`∞,ab).

As a consequence of the following lemma, the group B∞,ab is generated by the groups B`∞,ab
by varying `.

Lemma 16. Consider an integer n > 1, and let n =
∏
`e be the prime factorization. If H

is a subgroup of K̄× containing µn, then for every a ∈ K× we have n
√
a ∈ H if and only if

`e
√
a ∈ H for all `.

Proof. The only if part is clear. For the if part notice that the integers n/`e are coprime and
hence n

√
a can be expressed as a product of powers of the elements `e

√
a for an appropriate

choice of the roots. �

Definition 17. Let ` be a prime divisor of ω, and let b1, . . . , br be the strongly `-indivisible
parts associated to an `-good basis of G. We define the group of Kummer radicals

S` :=
〈
`ω
√̀
b1, . . . ,

`ω
√̀
br
〉

(for some fixed choice of the `ω`-th roots). We also define S := 〈S` : ` | ω〉.

Notice that the group S` is torsion-free because it has rank r (notice that S` contains Gω), and
that the choice of the `ω`-th roots will not matter for our results.

Lemma 18. We have S` ∩ 〈K×, µ`∞〉 = 〈b1, . . . , br〉.

Proof. The former group clearly contains the latter. Let s ∈ S` be of the form s = aζ with
a ∈ K× and ζ ∈ µ`∞ . Since s`

ω` ∈ K, we deduce that ζ`
ω` ∈ K. So we have

a`
2ω` = s`

2ω` =
∏
i

bzii

for some integers zi which are all divisible by `2ω` by Lemma 5 . Since S` is torsion-free, we
deduce that s is a product of powers of the bi’s. �

Proposition 19. We have 〈K×, S〉 ∩ µ∞ = µK .

Proof. The former group clearly contains the latter, and it suffices to prove that for every prime
number ` the group 〈K×, S〉 ∩ µ`∞ is contained in K. To study this intersection, we may
replace S by Sw, where w > 1 is coprime to `. If ` - ω, then we choose w = ω and we
conclude. If ` | ω, then we choose w = ω/`ω` and deduce〈

K×, S
〉
∩ µ`∞ =

〈
K×, S`

〉
∩ µ`∞ .

If ζ is in the latter group, then we can write for some a ∈ K× and for some integers zi

ζ`
ω` = a`

ω`
∏
i

bi
zi ∈ K .

By Lemma 5 we have `ω` | zi for every i and hence ζ ∈ K. �
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Lemma 20. We have B∞,ab = 〈K×, µ∞, S〉, and for every prime ` we have

B`∞,ab =

{
〈K×, µ`∞〉 if ` - ω
〈K×, µ`∞ , S`〉 if ` | ω .

Proof. The assertion on B∞,ab follows from the description of B`∞,ab. In both cases B`∞,ab
contains the given group, so we are left to prove the inclusion. If ` - ω, then by Lemma 6 the
abelian radicals x such that x`

n ∈ K× for some n > 0 are contained in 〈K×, µ`∞〉. Now let
` - ω and consider an abelian radical x such that x`

n ∈ G for some n > 0. If x`
n

= 1, then
x ∈ µ`∞ , else we can write

x`
n

= ζb`
d

for some ζ ∈ µ`ω` , for some integer d > 0, and for some b ∈ K× which is strongly `-
indivisible. If n 6 d, then we have x ∈ 〈K×, µ`∞〉. If n > d, then `n−d√b is an abelian radical
and hence by Lemma 6 we must have n− d 6 ω`. By Lemma 9 we conclude that `n−d√b, and
hence x, is contained in 〈µ`∞ , S`〉. �

Remark 21. There is some computable integer n > 1 (depending only on K and G) such that
K(S) ∩Q(µ∞) ⊆ Q(µn). Indeed, we can take n =

∏
`∈P `

e` , where P consists of the prime
numbers ramifying in K(S)/Q, and where e` is at least the ramification index of ` (we can
take e` = ωr[K : Q] because [K(S) : K] divides ωr). Since K(S)/K is the compositum of
cyclic Kummer extensions, by a classical result [4, Lemma C.1.7 and its proof] we can take P
to be the set of primes ` that divide the discriminant of K or are such that for some prime p of
K above ` and for some i ∈ {1, . . . , r} the p-adic valuation ordp(bi) is not a multiple of ω (in
particular, a prime with the latter property appears in the prime factorization of the absolute
norm of the fractional ideal (bi)). See also Remark 41.

To obtain various results we will work with an integer satisfying two properties: that such an
integer exists and is computable is explained by the following proposition.

Proposition 22. There is a computable integer n0 > 1 (depending only onK andG) such that
K(S) ∩Q(µ∞) ⊆ Q(µn0) and v`(n0) > maxi(di) + ω` for every prime number `, where the
di’s are the d-parameters for the `-divisibility of G.

Proof. It suffices to combine Remarks 7 and 21, recalling that the d-parameters for the `-
divisibility of G are computable. �

5. RADICAL GROUPS WITH `-RADICALS

We keep the previous notation, and define for every integer n > 0 the radical group

B`n :=
〈
K×,

`n
√
G
〉

where `n
√
G denotes the group of all `n-th roots of the elements of G. Notice that B`n and

B`n,ab are Galois radical groups containing µ`n .
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Lemma 23. If ` is a prime number, then there is some computable integer e0 (depending only
on K, G, and `) such that

B`n,ab =

{
〈K×, µ`n〉 if ` - ω
〈K×, µ`n , S`〉 if ` | ω and n > e0 .

Proof. The assertion for ` - ω follows from Lemma 20, so suppose that ` | ω and set e0 :=
maxi(di) + ω`, where the di’s are the d-parameters for the `-divisibility of G. Thus B`e0 ,ab
contains S` and we are left to prove thatB`n,ab is contained in 〈K×, µ`n , S`〉 for every n > e0.
By Lemma 20 it suffices to prove that any root of unity ζ ∈ B`n,ab ∩ µ`∞ is contained in µ`n .
The property ζ`

n ∈ K×`n is enough to conclude because n > ω`.

Write ζ`
n

= a`
n
g for some a ∈ K× and for some g ∈ G. If g = 1 we are done, so suppose

that g 6= 1 and write g = ξb`
d

for some ξ ∈ µ`∞ ∩ K, for some integer d > 0, and for
some b ∈ K× which is strongly `-indivisible. Since ξ/ζ`

n
is in µK , Lemma 5 implies that

d > n. If ξ = 1, then we are done, and we cannot have ξ 6= 1 because Lemma 10 would imply
d < maxi(di) + ω` 6 n. �

Proposition 24. Let ` be a prime divisor of ω and let n > 0. For the Galois radical group

B′`n := 〈B`n , µ`n+ω` 〉

we have
B′`n,ab = 〈K×, µ`n+ω` , S` ∩B

′
`n〉 .

The group S` ∩B′`n consists of Kummer radicals. More precisely, we have

(1) S` ∩B′`n = 〈 `
max(0,min(ω`,n−di))

√
bi : i = 1, . . . , r〉

where the bi’s are the strongly `-indivisible parts of an `-good basis for G and the di’s are the
divisibility parameters of the corresponding generator (and the roots of the bi’s are chosen so
that they are in S`).

Notice that, if G contains ζ`ω` times an `n-th power in K×, then B′`n = B`n .

Proof. For the first assertion, since B′`n,ab clearly contains the given group, it suffices to prove
that the abelian radicals in `n

√
G are contained in 〈K×, µ`n+ω` , S`〉. So let g ∈ G, and suppose

that K(µ`n , `
n√g)/K is abelian. We may suppose that g 6= 1, so we can write g = ζb`

d
for

some ζ ∈ µ`ω` , for some integer d > 0, and for some b ∈ K× which is strongly `-indivisible.
If n 6 d, then we have `n

√
g ∈ 〈K×, µ`n+ω` 〉, so let n > d. It is enough to prove that

`n−d√b ∈ 〈µ`n+ω` , S`〉. Since this is an abelian radical, Lemma 6 implies n− d 6 ω`. We can
write

b`
d

= ζ−1g = ξ
∏
i

b`
dizi
i

for some ξ ∈ µK and for some integers zi. By Lemma 5 we have di + v`(zi) > d. Recalling
that n − d 6 ω`, we deduce that `n−d√b is, up to an element in µ`n+ω` , the product of powers
of the elements `ω

√̀
bi.
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Now consider (1). The inclusion ⊇ is clear because, for each i, the given root of bi is in S` and
it is, up to an element of µ`n+ω` , the `n-th root of an element of G. For the inclusion ⊆, by
Lemma 18 it suffices to prove that

S` ∩B′`n ⊆ 〈K×, µ`n+ω` ,
`max(0,min(ω`,n−di))

√
bi : i = 1, . . . , r〉 .

Noticing that S` ∩B′`n consists of abelian radicals, this inclusion follows from the fact that the
element `n−d√b considered above is also in

〈µ`n+ω` ,
`max(0,n−di)

√
bi : i = 1, . . . , r〉 .

�

Proposition 25. Let ` be a prime divisor of ω and let n > 0. Suppose that the h-parameters
for the `-divisibility of G can be taken to be zero. Then we have

B`n,ab = 〈K×, µ`n , H`n〉

where H`n is a group consisting of Kummer radicals. We may take for H`n the computable
groups

(2) H`n =

{
`n
√
G if n 6 ω`

S` ∩ 〈B`n , µ`n+ω` 〉 if n > ω` .

Proof. If n 6 ω`, then `n
√
G consists of Kummer radicals and we may easily conclude. Now

let n > ω` and take for H`n the group in (1) (which consists of Kummer radicals and is
computable). Notice that B`n,ab contains K× and µ`n . Moreover, it contains H`n because this
group consists of abelian radicals, which are in B`n by our assumption on the h-parameters.
We are left to prove that B`n,ab ⊆ 〈K×, µ`n , H`n〉. An element x ∈ B`n,ab ⊆ B′`n,ab is such
that x`

n
= y`

n
g, where y ∈ K× and g ∈ G. By Proposition 24 we can write

x = aξh where a ∈ K× ξ ∈ µ`n+ω` h ∈ H`n .

Because of our assumption on the h-parameters we have g ∈ 〈b1, . . . , br〉 and hence ξ`
n

is an
`n-th power in K× times

∏
i b
zi
i for some integers zi. By Lemma 5 we have `n | zi for every i,

and we conclude that ξ ∈ 〈K×, µ`n〉. �

To justify the assumptions of the previous proposition, consider the following example.

Example 26. Let K = Q and G = 〈−4〉. The radical group B4,ab = 〈Q×, µ4, 4
√
−4〉 contains

only abelian radicals, however 4
√
−4 is not a Kummer radical. We cannot write B4,ab =

〈Q×, µ,H〉 where µ ⊆ µ∞ and H consists of Kummer radicals, because we would have
µ ⊆ µ4 and hence B4,ab would consist of Kummer radicals.

6. RADICAL GROUPS IN THE GENERAL CASE

We keep the previous notation, and define for every integer n > 1 the radical group

Bn :=
〈
K×,

n
√
G
〉
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where n
√
G denotes the group of all n-th roots of the elements of G. The radical groups Bn

and Bn,ab are Galois and contain µn. The entanglement group E(Bn) = E(Bn,ab) is finite
because Bn/K× is finite.

Lemma 27. If ` is a prime number, then we have

Bn ∩ µ` =

{
µ` if ` | nω
1 otherwise .

Proof. If ` | nω, then clearly ζ` ∈ Bn. Now suppose that ` - nω, and that ζ` = a n
√
g for some

a ∈ K× and g ∈ G. We deduce that ζn` ∈ K and hence ζ` ∈ K, contradiction. �

Lemma 28. Consider an integer n > 1, and let n =
∏
`e be the prime factorization. Then

Bn,ab is generated by the groups B`e,ab.

Proof. We clearly have B`e,ab ⊆ Bn,ab. Conversely, consider an abelian radical of the form
a n
√
g where a ∈ K× and g ∈ G. Since K(µn, n

√
g)/K is abelian, the same holds for

K(µ`e , `
e√g)/K, and we deduce that `e

√
g is in B`e,ab. We conclude by Lemma 16. �

Theorem 29. Let n > 1 be an integer, and suppose that for every prime divisor ` of n the
h-parameters for the `-divisibility of G can be taken to be zero. Then we can write

Bn,ab = 〈K×, µn, Hn〉
where Hn is a group consisting of Kummer radicals. We have

E(Bn) = Gal
(
K(Hn) ∩Q(µn)/Q(〈K×, Hn〉 ∩ µn)

)
.

If n =
∏
`e is the prime factorization, then we can take for Hn the group generated by the

groups H`e from (2) for ` | ω. With this choice we have 〈K×, Hn〉 ∩ µn = µgcd(n,ω).

Proof. We apply Lemma 28. If ` - ω, then B`e,ab = 〈K×, µ`e〉 by Lemma 23; if ` | ω, then we
can apply Proposition 25 to get the description of B`e,ab.

The assertion onE(Bn,ab) follows from Theorem 13 because 〈K×, Hn〉 is a group of Kummer
radicals. Notice that with our choice ofHn we have 〈K×, Hn〉∩µn = µgcd(n,ω) by Proposition
19 because our assumption on the h-parameters implies that Hn ⊆ 〈µK , S〉. �

Proof of Theorem 3. The statement follows from Theorem 29, in view of Remark 11. �

Lemma 30. There is some computable integer n0 > 1 (depending only on K and G) such that
Bn,ab = 〈K×, µn, S〉 holds for every multiple n of n0. It suffices to take n0 as in Proposition
22.

Proof. Combine Lemma 28 with Lemma 23. �

The following result is a generalization of [8, Theorem 1.4].

Theorem 31. There is some computable integer n0 > 1 (depending only on K and G) such
that

E(Bn) = Gal
(
K(S) ∩Q(µn0)/Q(µK)

)
holds for every multiple n of n0. It suffices to take n0 as in Proposition 22.
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Proof. Take n0 as in Proposition 22. We have µK ⊆ µn0 and hence 〈K×, S〉 ∩ µn = µK
by Proposition 19. Since 〈K×, S〉 is a group of Kummer radicals, combining Lemma 30 with
Theorem 13 gives the statement. �

The following proposition should be compared with Theorem 29 (we now have no additional
assumptions on G).

Proposition 32. Consider an integer n > 1. We have

〈Bn, µnω〉ab = 〈K×, µnω, Rn〉 ,

where Rn is a group consisting of Kummer radicals. Let n =
∏
`e be the prime factorization.

Then we can takeRn to be the group generated by the groupsR`e := S`∩B′`e as in (1) if ` | ω.
With this choice, we have

E(〈Bn, µnω〉) = Gal
(
K(Rn) ∩Q(µnω)/Q(µK)

)
.

Proof. By Lemma 28 the group 〈Bn, µnω〉ab is generated by the groups 〈B`e , µ`e+ω` 〉ab. If
` - ω, then the latter group is 〈K×, µ`e〉 by Lemma 6, while for ` | ω we can apply Proposition
24. Finally we can apply Theorem 13 because 〈K×, Rn〉 is a group of Kummer radicals and
we have 〈K×, Rn〉 ∩ µnω = µK by Proposition 19 noticing that Rn ⊆ S. �

7. KUMMER DEGREES VIA ENTANGLEMENT GROUPS

The formula given in [8, Proposition 4.3] extends to a general number field K.

Theorem 33. If B is a Galois radical group such that B/K× is finite, then we have

[K(B) : K] =
[B : K×]

#E(B)
·∆

where ∆ =
∏
p prime,ζp∈B\µK

p−1
p . In particular, #E(B) is a divisor of [B : K×] ·∆.

Proof. The assumptions on B implies that the quantities in the formula are well-defined and
finite. From the definition of entanglement group it is clear that

[K(B) : K] =
# AutK×(B)

#E(B)

and by [8, Theorem 2.19] we have # AutK×(B) = [B : K×] ·∆. �

Proof of Theorem 1. It suffices to apply Theorem 33 withB = Bn, where ∆ = ∆n by Lemma
27. �

The following result implies that for every n > 1 we have [Bn : K×] =
∏
` prime[B`v`(n) : K×].

Proposition 34. Consider an integer n > 1, and let n =
∏
`e be the prime factorization. Then

we have
Bn/K

× ∼=
∏
`

B`e/K
× .
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Proof. The groups B`e/K× generate the finite abelian group Bn/K×, and their orders are
pairwise coprime. �

Proposition 35. If ` is a prime number and e > 0, then we have[
B`e : K×

]
=
[
G : G ∩K×`e

]
· `max(0,e−ω`) .

Proof. Let H = 〈µ`e , `
e√
G〉, and hence B`e = 〈K×, H〉. By the fundamental isomorphism

theorem we then have
B`e

K×
∼=

H

K× ∩H
.

Considering the map [`e] raising an element to the `e-th power, we have

ker([`e] : H → G) = µ`e and ker([`e] : K× ∩H → (K× ∩H)`
e
) = µ`min(e,ω`) .

Thus we obtain [
H : K× ∩H

]
=
[
G : (K× ∩H)`

e
]
· `max(0,e−ω`)

and we are left to prove that G ∩K×`e = (K× ∩H)`
e
. The former group contains the latter

because any element of (K×∩H)`
e

is inK×`
e

and inH`e = G. Now consider g ∈ G∩K×`e ,
and write g = a`

e
for some a ∈ K×. Since a`

e ∈ G we must have a ∈ H and hence
g ∈ (K× ∩H)`

e
. �

One can find
[
G : G ∩K×`e

]
using [3, Theorem 15] because the parameters for the `-divisibility

of G are computable.

8. THE EVENTUAL MAXIMAL GROWTH OF THE KUMMER DEGREES

Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K× of
positive rank r.

Theorem 36. There is a computable integer n0 > 1 (depending only on K and G) such that,
if n,N are multiples of n0 with n | N , then we have

[K( N
√
G) : K]

[K( n
√
G) : K]

=
N rϕ(N)

nrϕ(n)
.

It suffices to take n0 as in Proposition 22.

Proof. We may reduce to the case N = n`, where ` is a prime number. Our choice of n0 is as
in the proof of Theorem 31, so n0 is computable and we have E(Bn) = E(Bn`). We apply
Theorem 1.

If ` - n, then by Proposition 34 we have [Bn` : K×]/[Bn : K×] = [B` : K×]. This
index equals `r+1 by Proposition 35 because [G : G ∩ K×`] = `r by [3, Theorem 15] (all
d-divisibility parameters are 0). We conclude that

[K(
n
√̀
G) : K]/[K(

n
√
G) : K] = [B` : K×](`− 1)/` = (n`)rϕ(n`)/nrϕ(n) .
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If ` | n, set e := v`(n). By Propositions 34 and 35 we have

[Bn` : K×]

[Bn : K×]
=

[B`e+1 : K×]

[B`e : K×]
= ` · [G : G ∩ (K×)`

e+1
]

[G : G ∩ (K×)`e ]
.

The right-hand side equals `r+1 by [3, Theorem 15] and hence

[K(
n
√̀
G) : K]/[K(

n
√
G) : K] = `r+1 = (n`)rϕ(n`)/nrϕ(n) . �

Corollary 37. There is a computable integer n0 > 1 (depending only on K and G) such that,
if n,N are multiples of n0 with n | N , then the restriction to BN gives a group isomorphism

Gal(K(BN )/K(Bn)) ∼= AutBn(BN ) .

It suffices to take n0 as in Proposition 22.

Proof. The restriction to BN gives an injective group homomorphism, so we prove that the
two finite groups have the same size. By [8, Lemma 1.8] the restriction map AutK×(BN ) →
AutK×(Bn) is surjective, and the kernel is AutBn(BN ). We conclude because E(BN ) =
E(Bn) by Theorem 31. �

Theorem 38. There is a computable integer n0 > 1 (depending only on K and G) such that
for every n > 1 we have

K(Bn) ∩K(Bn0) = K(Bgcd(n,n0))

and E(Bn) = E(Bgcd(n,n0)). It suffices to take n0 as in Proposition 22.

Proof. Set g := gcd(n, n0) and l := lcm(n, n0). The first assertion will follow from the fact
that Gal(K(Bn)/K(Bg)) and Gal(K(Bl)/K(Bn0)) have the same size. Consider the bottom
row of the following commutative diagram given by restrictions (recall from [8, Lemma 1.8]
that the restriction AutK×(B′) → AutK×(B) is surjective if B ⊆ B′ are Galois radical
groups):

Gal(K(Bn)/K(Bg)) //

��

Gal(K(Bn)/K)

��

// Gal(K(Bg)/K)

��

// 0

0 // AutBg(Bn) //

��

AutK×(Bn) //

��

AutK×(Bg) //

��

0

0 //
AutBg(Bn)

Gal(K(Bn)/K(Bg))
// E(Bn) // E(Bg) // 0

By Corollary 37 we have

# AutBn0 (Bl) = # Gal(K(Bl)/K(Bn0)) 6 # Gal(K(Bn)/K(Bg)) 6 # AutBg(Bn)
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so it suffices to prove # AutBn0 (Bl) > # AutBg(Bn). By [8, Theorem 2.19] we have

# AutBn0 (Bl) = #
Bl
Bn0

·
∏

p prime, ζp 6∈K
p|l, p-n0

p− 1

p
,

# AutBg(Bn) = #
Bn
Bg
·

∏
p prime, ζp 6∈K
p|n, p-g

p− 1

p
.

Since the two products over p are the same, we conclude because we have

Bn
Bg

=
Bn

Bn0 ∩Bn
∼=
Bn ·Bn0

Bn0

⊆ Bl
Bn0

.

�

Proof of Theorem 2. This is a consequence of Theorem 38. �

Theorem 39. There is a computable integer n0 > 1 (depending only on K and G) such that
for every n > 1 we have

ϕ(n)nr

[K( n
√
G) : K]

=
ϕ(g)gr

[K( g
√
G) : K]

,

where g := gcd(n, n0). It suffices to take n0 as in Proposition 22.

Proof. By Theorem 1, and in view of Theorem 38, it suffices to prove that

[Bn : K×]∆n

ϕ(n)nr
=

[Bg : K×]∆g

ϕ(g)gr
.

The assertion is obvious for n = 1, so suppose that n > 1 and let n =
∏
`e be the prime

factorization. By Propositions 34 and 35 we have

[Bn : K×]∆n

ϕ(n)nr
=
∏
`|n

[
G : G ∩K×`e

]
`max(0,e−ω`)∆`e/ϕ(`e)`er ,

and a similar formula holds by replacing the pair (n, e) by (g, v`(g)). By the choice of n0 and
by [3, Theorem 15] the ratio [G : G∩K×`e ]/`er does not change if we replace e by v`(g), and
the same holds for `max(0,e−ω`)∆`e/ϕ(`e). �

Proof of Theorem 4. This is a consequence of Theorem 39. �

We now consider Kummer extensions for groups which are not necessarily torsion-free.

Remark 40. Let G′ = G × 〈ζm〉, where m > 1 and where G is a finitely generated and
torsion-free subgroup ofK× of positive rank r. Then there is some computable positive integer
n′0 (depending only on K and G′) such that

(3) [K(
n
√
G′) : K] =

ϕ(nm)nr

ϕ(gm)gr
[K(

g
√
G′) : K]
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where g := gcd(n, n′0). Indeed, taking n0 as in Proposition 22 forGm and setting n′0 := n0/m
(we havem | n0 because the d-parameters for the `-divisibility ofGm are at least v`(m)), then
we get

[K(
nm
√
Gm) : K] =

ϕ(nm)(nm)r

ϕ(gm)(gm)r
[K(

gm
√
Gm) : K] .

Formula (3) precisely says that the degree of K( n
√
G′)/K( g

√
G′) is maximal. Indeed, setting

L := K( g
√
G′), we have

[K(
n
√
G′) : L] 6 [L( n

√
ζm) : L] · [L(

n
√
G) : L]

and the former degree is at most [Q( n
√
ζm) : Q( g

√
ζm)] = ϕ(nm)/ϕ(gm) because g

√
ζm ∈ L

while the latter degree is at most nr/gr because L = L( g
√
G). In particular, for every n > 1

we have
K( n
√
ζm) ∩K(

n
√
G) ⊆ K(

g
√
G′) .

9. EXAMPLES

In order to work with our theoretical algorithms in practice, we assume that the field K is
presented in the sense of [5, Chapter 19], which implies that its elements are representable on
a computer. Moreover, we assume that a list of generators for the group G is known explicitly.

Remark 41. Some more information on K is needed for the computations in Remark 7 and
Remark 21. To compute the parameters for the `-divisibility for G as in [3] we need to tell
whether an element a ∈ K× has some `-th root in K× (we can factor the polynomial x` − a
as in [6]). We have to consider every prime number `, but we may restrict to those dividing
all exponents in the factorization of the fractional ideal (a). To factor (a), we first compute
its absolute norm N(a) and factor (p) for every prime number p such that vp(N(a)) 6= 0, as
described in [2, §4.8]; we finally determine the correct exponent for each prime ideal using as
bound the corresponding exponent in the factorization of (N(a)). Moreover, we need to know
µK , which can be computed together with the whole unit group of the ring of integers of K,
see the algorithm described in [1].

Example 42. Let K = Q(
√

5) and G = 〈g〉, where g = (2 − 2
√

5) ·
√

5. We compute the
degree of K( n

√
G)/K for every n > 1 by applying Theorem 1.

Since g = ε22
√

5, where ε = 1−
√
5

2 is a fundamental unit, g is strongly `-indivisible for all
primes `. From [3, Theorem 15] we see that

[
G : G ∩K×`e

]
= `e for all prime powers `e,

thus Propositions 34 and 35 give [Bn : K×] = n2/ gcd(2, n).

Since µK = µ2, we immediately get Bn,ab = 〈K×, µn, Hn〉, where

Hn =

{
〈1〉 if n is odd,
〈√g〉 if n is even.

The expressions of sine and cosine of 2π/5 in terms of radicals show that K(
√
g) = Q(µ5).

Setting Ln := K(Hn) ∩Q(µn), by Theorem 13 we have E(Bn,ab) ∼= Gal(Ln/Q).

If 5 | n, then we have K(Hn) ⊆ Q(µn) and hence Ln = K(Hn). In this case we deduce that
#E(Bn) = #E(Bn,ab) = 2 gcd(2, n).
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If 5 - n, then K and Q(µn) are linearly disjoint over Q. Moreover
√
g 6∈ K(µn), so we get

Ln = Q and thus #E(Bn) = 1.

Notice that we have

(4)
∏

p odd prime
p|n

p− 1

p
=
ϕ(n) gcd(2, n)

n
.

We conclude that

[
K(

n
√
G) : K

]
=
n2/ gcd(2, n)

#E(Bn)
· ϕ(n) gcd(2, n)

n
=


nϕ(n) if 5 - n,
nϕ(n)/2 if gcd(10, n) = 5,

nϕ(n)/4 if 10 | n.

The failure of maximality of the above Kummer degree is due to the following two facts:
K ⊆ Q(µ5) and

√
g ∈ Q(µ5).

Example 43. Let K = Q(
√

3) and G = 〈11, 75〉. We compute the degree of K( n
√
G)/K for

every n > 1. The given basis of G is an `-good basis of G for every prime `. Moreover, 11 is
strongly `-indivisible for every `, while 75 = (5

√
3)2 is a square and strongly `-indivisible for

every odd `. By [3, Theorem 15] for every prime power `e we have

[G : G ∩K×`e ] =

{
22e−1 if ` = 2,

`2e otherwise

so we deduce that [Bn : K×] = n3/ gcd(2, n)2. For the computation of the entanglement
group, we take into account the following facts:

• µK = µ2
• K ⊆ Q(µ12) = K(µ12), and K is linearly disjoint from Q(µn) over Q if 12 - n
•
√

11 ∈ Q(µ44) and
√

33 ∈ Q(µ33)

• 2e
√

75 does not belong to K(µ∞) if e > 2 (because 4
√

3 /∈ Q(µ∞) by Lemma 6).

From Theorem 29 we deduce that Bn,ab = 〈K×, µn, Hn〉, where

Hn =


〈1〉 if 2 - n
〈
√

11〉 if gcd(4, n) = 2

〈
√

11,
√

5
√

3〉 if 4 | n .

For the computation of #E(Bn) we apply Theorem 29. We have Q(µn ∩ K) = Q. Setting
Ln := K(Hn) ∩Q(µn), we have E(Bn) ∼= Gal(Ln/Q).

If 12 | n, then we have two cases: if 11 | n, then Ln = K(
√

11), else Ln = K. So #E(Bn)
is 4 if 11 | n and it is 2 otherwise.

If 12 - n but n is even, then we have: Ln = Q(
√

11) if 44 | n, Ln = Q(
√

33) if 33 | n, else
Ln = Q. Thus #E(Bn) is 2 if 44 | n or 33 | n and it is 1 otherwise.

If n is odd, then we always have #E(Bn) = 1 because Ln = Q.
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By (4) we conclude that

[
K(

n
√
G) : K

]
=

n2ϕ(n)

gcd(2, n) ·#E(Bn)
=


n2ϕ(n) if gcd(132, n) is odd,
n2ϕ(n)/2 if gcd(132, n) ∈ {2, 4, 6, 22},
n2ϕ(n)/4 if gcd(132, n) ∈ {12, 44, 66},
n2ϕ(n)/8 if gcd(132, n) = 132.

The failure of maximality of the above Kummer degree is due to the following facts: 75 is a
square in K; K ⊆ Q(µ12);

√
11 ∈ Q(µ44);

√
11 · 5

√
3 ∈ Q(µ66).
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