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—— Abstract

Given a partially-ordered finite alphabet ¥ and a language L C X", how large can an antichain
in L be (where L is given the lexicographic ordering)? More precisely, since L will in general be
infinite, we should ask about the rate of growth of maximum antichains consisting of words of length
n. This fundamental property of partial orders is known as the width, and in a companion work
[10] we show that the problem of computing the information leakage permitted by a deterministic
interactive system modeled as a finite-state transducer can be reduced to the problem of computing
the width of a certain regular language. In this paper, we show that if L is regular then there is
a dichotomy between polynomial and exponential antichain growth. We give a polynomial-time
algorithm to distinguish the two cases, and to compute the order of polynomial growth, with the
language specified as an NFA. For context-free languages we show that there is a similar dichotomy,
but now the problem of distinguishing the two cases is undecidable. Finally, we generalise the
lexicographic order to tree languages, and show that for regular tree languages there is a trichotomy
between polynomial, exponential and doubly exponential antichain growth.
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1 Introduction

Computing the size of the largest antichain (set of mutually incomparable elements) is the
‘central’ problem in the extremal combinatorics of partially ordered sets (posets) [14]. In
addition to some general theory [7], it has attracted study for a variety of specific sets,
beginning with Sperner’s Theorem on subsets of {1,...,n} ordered by inclusion [12, 2, 11],
and for random posets [1]. The size of the largest antichain in a poset is called its width.

In this work we study languages L (regular or context-free) over finite partially ordered
alphabets, with the lexicographic partial order. Since such languages will in general contain
infinite antichains, we study the sets L_,, of words of length n, and ask how the width of
L_,, grows with n; we call this the antichain growth rate of L.

In addition to its theoretical interest, the motivation for this work is the study of quantified
information flow in computer security: we wish to know whether a pair of isolated agents
interacting with a common central system (for example different programs running on a single
computer and communicating with the operating system) can obtain any information about
each other’s actions, and if so how much. In a companion work [10] we show that if the central
system is modeled as a deterministic finite-state transducer then this leakage is equivalent
to the width of a certain regular language (roughly speaking, antichains corresponding to
consistent sets of observations for one agent). The dichotomy we obtain in this paper thus
corresponds to a dichotomy between logarithmic and linear information flow.

In Section 2 we set out basic definitions and results on the lexicographic order, antichains
and antichain growth. In Section 3 we show that for regular languages there is a dichotomy
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between polynomial and exponential antichain growth, and give a polynomial-time algorithm
for distinguishing the two cases. In Section 4 we give a polynomial-time algorithm to compute
the order of polynomial antichain growth. In Section 5 we show that for context-free languages
there is a similar dichotomy between polynomial and exponential antichain growth, but that
the problem of distinguishing the two cases is undecidable. In Section 6 we show that for
regular tree languages there is a trichotomy between polynomial, exponential and doubly
exponential antichain growth. Finally in Section 7 we discuss open problems.

For reasons of space, many proofs have been omitted or sketched in the conference version
of this work; an extended version with full proofs may be found at [9].

2 Languages, lexicographic order and antichains

» Definition 1. Let ¥ be a finite alphabet equipped with a partial order <. Then the
lezicographic partial order induced by < on X* is the relation < given by
(i) e 2w for allw € £* (where € is the empty word), and
(ii) For any x,y € ¥, w,w’ € ¥*, we have xw =< yw' if and only if either x <y or x =y
and w < w'.

If words = and y are comparable in this partial order we write z ~ y. If = is a prefix of y
we write © < y. For a language L, we will often write L—,, to denote the set {w € L | |w| = n}
(with corresponding definitions for L, etc.), and |L|=,, for |L—,]|.

The main subject of this work is antichains, that is sets of words which are mutually
incomparable. It will sometimes be useful also to consider quasiantichains, which are sets
of words which are incomparable except that the set may include prefixes (note that this
is not a standard term). The opposite of an antichain is a chain, in which all elements are
comparable.

» Definition 2. A language L is an antichain if for every l1,lo € L with Iy # ls we have
l1 % ly. L is a quasiantichain if for every ly,lo € L we have either Iy <ls, lo <1y orly % ls.
L is a chain if for all l1,l € L we have l; ~ ls.

It is easy to see that the property of being an antichain is preserved by the operations of
prefixing, postfixing and concatenation.

» Lemma 3 (Prefixing). Let w,wq,ws be any words. Then wy ~ we if and only if wwy ~
wwy. Hence for any language L, wL is an antichain (respectively quasiantichain) if and only
if L is an antichain (quasiantichain).

» Lemma 4 (Postfixing). Let w,wq,ws be any words. Then wy ~ wy if wiw ~ wew. Hence
for any language L, Lw is an antichain if L is an antichain.

» Lemma 5 (Concatenation). Let wy,ws, wi,wh be any words such that wy € wa and
wy L wy. Then wiw) ~ wew} if and only if wy ~ wy. Hence if Ly and Lo are antichains
then LiLy is an antichain.

Clearly the property of being an antichain is not preserved by Kleene star, since L* will
contain prefixes for any non-empty L. The best we can hope for is that L* is a quasiantichain.

» Lemma 6 (Kleene star). Let L be an antichain. Then L* is a quasiantichain.

Ultimately we are going to care about the size of antichains inside particular languages.
Since these will often be unbounded, we choose to ask about the rate of growth; that is,
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if L1, Ls, L3,... C L are antichains such that L; consists of words of length i, how quickly
can |L;| grow with 7 We will call |, L; an antichain family and ask whether it grows
exponentially, polynomially, etc.

» Definition 7. A language L is an antichain family if for each n the set L—,, of words in L
of length n is an antichain.

» Definition 8. A language L is exponential (or has exponential growth) if there exists
some € > 0 such that

|L|=n

lim sup >0,

n—o00 2
and the supremum of the set of € for which this holds is the order of exponential growth.

L is polynomial (or has polynomial growth) if there exists some k such that

|L|=n
k

lim sup < 00.

n—00 n

|L]=n

If 0 <limsup,,_, ., =7+ < oo then we say that L has polynomial growth of order k.

For notational convenience, we will sometimes later adopt the convention that a language

L which is finite (and so lim sup,,_, ‘LT‘;" =0 for all k) has polynomial growth of order —1.

A reasonable alternative choice of notation would have been to define the quantity w,, to
be the size of the largest antichain consisting of words of length n, and then ask about the
growth of the series wi,ws,.... This is clearly equivalent to the definitions we have given
above.

Note that we will sometimes use other characterisations that are clearly equivalent; for
instance L has exponential growth if and only if there is some € such that |L|—,, > 2" infinitely
often. We will sometimes refer to a language which is not polynomial as ‘super-polynomial’,
or as having ‘growth beyond all polynomial orders’ Of course there exist languages whose
growth rates are neither polynomial nor exponential; for instance |L|—, = ©(2V™).

» Definition 9. A language L has exponential antichain growth if there is an exponential
antichain family L' C L. L has polynomial antichain growth if for every antichain family
L' C L we have that L' is polynomial.

Antichain growth generalises the classical notion of language growth, which is just
antichain growth with respect to the discrete partial order (in which all elements of ¥ are
incomparable).

Note that we could have chosen to define exponential antichain growth as containing
an exponential antichain (rather than an exponential antichain family). We will eventually
see (Corollary 17) that for regular languages the two notions are equivalent. However, for
general languages they are not; indeed the following proposition shows that the two possible
definitions are not equivalent even for context-free languages.

» Proposition 10. There exists a context-free language L such that L has exponential
antichain growth but all antichains in L are finite.

Proof. Let ¥ = {a,b,0,1} with <= {(a,b)}. Let L = U>—, L, = U, a"*b{0,1}".

Then each L, is an antichain of size 2" consisting of words of length 2n, but we have
Ly > Ly > L3 > ... so any antichain is a subset of L for some k and hence is finite (the
notation Ly > Lo means that for any w; € Ly and we € Ly we have wy < wyq). Plainly L is
a context-free language. <
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We observed above that Kleene star does not preserve the property of being an antichain.
We conclude this section by establishing Lemma 12, which addresses this problem; if our
goal is to find a large antichain, it suffices to find a large quasiantichain (where the precise
meaning of ‘large’ is having exponential growth).

As a preliminary, we observe the straightforward fact that taking finite unions does not
change the polynomial or exponential growth character of languages.

» Lemma 11. Let Ly, Lo, ..., Ly be languages, such that Ule L; has exponential growth of
order € (respectively super-polynomial growth). Then L; has exponential growth of order e
(respectively super-polynomial growth) for some 1.

We are now ready to prove Lemma 12.

» Lemma 12. Let L be an exponential quasiantichain. Then there exists an exponential
antichain L' C L.

Proof sketch. We construct an exponential subset of I which is prefix-free, and is therefore
an exponential antichain. We do this by a Ramsey-style argument: always maintaining the
invariant of exponential growth, at each step we pick a fixed word w of length &k, throw
away that word if it is in the set, and also throw away all longer words of which w is not a
prefix; by Lemma 11 it is always possible to choose w such that this process preserves the
invariant. <

3 Regular languages

The dichotomy between polynomial and exponential language growth for regular languages
has been independently discovered at least six times (see citations in [4]), in each case based
on the fact that a regular language L has polynomial growth if and only if L is bounded (that
is, L C wy...w;j for some wy, ..., wy); otherwise L has exponential growth.

In [4], Gawrychowski, Krieger, Rampersad and Shallit describe a polynomial time algo-
rithm for determining whether a language is bounded. The key idea is to consider the sets
L, of words which can be generated beginning and ending at state ¢. L is bounded if and
only if for every ¢ we have that L, is commutative (that is, that L, C w* for some w), and
this can be checked in polynomial time.

In this section, we generalise this idea to the problem of antichain growth by showing
that L has polynomial antichain growth if and only if L, is a chain for every ¢, and otherwise
L has exponential antichain growth. This is sufficient to establish the dichotomy theorem
(Theorem 16). To give an algorithm for distinguishing the two cases (Theorem 18), we show
how to produce an automaton whose language is empty if and only if L, is a chain (roughly
speaking the automaton accepts pairs of incomparable words in L).

Before proving the main theorems, we first establish (Lemma 13) that if L; and Ly have
polynomial antichain growth then so does L Lo. Moreover if the rates of polynomial growth
of Ly and Ly are at most k; and ks respectively then the rate of polynomial growth of L1 Lo
is at most k1 + k2 + 1. For the proof of this see the extended version [9].

» Lemma 13. Let Ly, Ly be languages with polynomial antichain growth of order at most kq
and ko respectively. Then L1 Lo has polynomial antichain growth of order at most ki + ko + 1.

We are now ready to prove the main theorem, generalising the condition for polynomial
language growth (that L, is commutative for every ¢) to one for polynomial antichain growth:
that L, is a chain for every relevant g.
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» Definition 14. A state q of an automaton A = (Q, X, A, qo, F') is accessible if g is reachable
from qo and co-accessible if F' is reachable from q.

» Definition 15. Let A = (Q,%,A,qo, F) be an NFA. Then for each q1,q2 € @, the
automaton Alh#]’z £ (Qa EvAvqla {QZ})

» Theorem 16. Let A= (Q,X, A, qo, F) be an NFA over a partially ordered alphabet. Then
(i) L(A) has polynomial antichain growth if and only if L(Ay4) is a chain for every
accessible and co-accessible state q, and
(it) if L(A) does not have polynomial antichain growth then it contains an exponential
antichain (and hence has exponential antichain growth).

Proof. Suppose that wy,wq € L(Ay,q) With w1 o wy and ¢ accessible and co-accessible, so
w € L(Agy,q) and w' € L( Ay 4 ) for some w,w’ and some ¢’ € F. Now by the Kleene star
Lemma we have that (w; +ws)* is an exponential quasiantichain and so by Lemma 12 there
is an exponential antichain L’ C (w7 + w2)*. Then by the Prefixing and Postfixing Lemmas
we have that wL'w’ C L is an exponential antichain.

For the converse, we proceed by induction on |Q|. Let Q" = Q\ {go}, F' = F'\ {qo} and
A'(g,a) = A(g,a) \ {qo} for all ¢ € Q',a € . For any g € @', let A = (Q', X, A’ q, F').
Then by the inductive hypothesis we have that E(.A;) has polynomial antichain growth. Also,
since Ly, = L(Aygy,q,) is a chain it has polynomial (in particular constant) antichain growth.
Now we have

LA C LU ) | Lgal(A)).

q€Q’ a€A(qgo,q)

By Lemma 13, each Lg,aL(A;) also has polynomial antichain growth, and hence by

Lemma 11 so does the finite union. <

A trivial restatement of part (ii) of the theorem shows that the two possible definitions
of antichain growth are equivalent.

» Corollary 17. Let L be a regular language. Then L has exponential (respectively super-
polynomial) antichain growth if and only if L contains an exponential (respectively super-
polynomial) antichain.

Using Theorem 16 we can produce an algorithm for distinguishing the two cases.

» Theorem 18. There exists a polynomial time algorithm to determine whether the language
of a given NFA A has exponential antichain growth.

Proof sketch. We construct an NFA B which accepts interleavings of incomparable words
over ¥ and ¥’ (a fresh copy of the alphabet). We then have that £(A,,) is a chain if and
only if L((Aqgq ||| Aj,) N B) is empty, where A’ is a copy of A over alphabet X’. This can
be checked in polynomial time. <

4 Precise growth rates

In [4] the authors give an algorithm to compute the order of polynomial language growth for
the language of a given NFA; on the other hand efficiently computing the order of exponential
growth is an open problem. In this section we give an algorithm to compute the order of
polynomial antichain growth for the language of a given NFA. We do this by first giving an
algorithm for DFA, and then showing that in fact it also works for NFA. We will assume
throughout without loss of generality that all states are accessible and co-accessible.
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» Definition 19. Let A = (Q,qo, F,X,0) be a DFA over a partially ordered alphabet. Let
Ga = (Q, E) be the directed graph with vertez-set Q such that (q,q') € E if and only if
g2 g for some w € T*.

Let G'y = (Q, E’) be the directed graph with (q,q') € E’ if and only if there exist words

w A w' € X* such that ¢ = q and ¢ — ¢'. We will write Ly g = L(Agq)-

We will generally omit the subscript As from now on, where this will not cause confusion.

Note that by Theorem 16, we have that G’ is a directed acyclic graph (DAG) if and only
if £(.A) has polynomial antichain growth. By a similar argument to the proof of Theorem 18,
the graph G’ can be computed in polynomial time. Clearly G can be computed in polynomial
time using a flood fill.

» Definition 20. Let A= (Q,qo, F,%,0) be a DFA with polynomial antichain growth. For a
directed path P = qoqi ... q (not necessarily simple) in G 4, let

1if |Lqm,qz‘ =00

D(P):{i€{07'~-7l_1}|(Qi>Qi+1)eE(G;\)H"i_{ . ;
0 otherwise.

where m = max{i + 1|(¢;, gi+1) € G'4} if this exists, and 0 otherwise.
Observe that if |Lg,, 4| = oo then we have ww*w” C Ly, 4 for some w,w’, w”.

» Lemma 21. Let A = (Q,qo, F,X,0) be a DFA with polynomial antichain growth. Let P
be the set of directed paths from qo to an element of F. Then the quantity

Dy = D(P
A= DP)

1s well-defined and can be computed in polynomial time.

Proof. To show that D 4 is well-defined, observe that no directed cycle in G contains an edge
in G’. Indeed, suppose that q1qa...q is a directed cycle in G, with (g1, ¢2) € E(G’"). Then
we have ¢, — ¢ and ¢ w—/> g2 for some w £ w' € ¥*. Also we have ¢ w—”> q1 for some
w” € ¥*. But then ¢; whw, g1 and w'w” £ w by the Concatenation Lemma, contradicting
polynomial antichain growth of £(.A). Hence D(P) is bounded.

For a polynomial time algorithm, first expand G and G’ by adding a sink vertex vy for
each f € F. For each ¢ such that |Ly s| = oo put (¢,vf) € E(G) and (¢q,vs) € E(G’). Then
add a further vertex v with (f,v) € E(G) and (vy,v) € E(G) for all f € F. Then D4 is
precisely the maximum number of edges of G’ contained in a directed path from gy to v in G.

Form the graph G” on vertex-set Q U {v} by (v1,v2) € E(G") if and only if there is a
path from vy to v9 in G containing a single edge of G’. Then we have that G” is a DAG (by
the first observation), and D 4 is the longest path from ¢y to v in G”, which can be found by
a simple dynamic programming algorithm. |

We will show that the order of polynomial antichain growth of £(A) is precisely D4 — 1.

» Lemma 22. Let A= (Q,q, F,%,08) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at least D4 — 1.

Proof. Let P = qoq1...q be a path with D(P) = Dy4. Let iq,...,4 be such that
(¢i;,qi;+1) € E(G'y) for all j. Let wi,...,wy,wi...,wp,w € ¥* be such that w; # w}

. w'. 4
for all j, g, SN qi; for all j, g;; 4 qi;,, forall j <k, g, RN q, and qo — ¢;,.
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Suppose that |L,,, 4| = oo (with m = i), defined as in Definition 20), and let w’, w”, w”" €
Y* be such that w'w”*w"” C L, 4. Then L = wwjwjwsw) ... wiw'w”*w"” is an antichain
family with polynomial growth of order k¥ = D4 — 1. Similarly if |L,,, 4] < oo, then
L = wwjwjwiwh ... wiw), is an antichain with polynomial growth of order k—1 = D4—1. <«

We will now prove the upper bound. Our strategy will be to classify words by the edges
of G’ they visit. We first show a preliminary lemma, which bounds the antichain growth
from regions between edges of G'.

» Lemma 23. Let q1,92 € Q, and let L C Ly, 4, be the set of words such that no edges of
G’ appear in the runs corresponding to elements of L. Then L has antichain growth of order
at most 0.

Proof. Without loss of generality we may assume that A does not have any transitions
labelled by more than a single letter (by introducing additional states if necessary; in
particular we can set Q' = @ X ¥ and ensure that 6’(¢,z) € Q x {z} for all z € ¥).

We will show that L cannot contain two incomparable words that correspond after removal
of loops to the same sets of simple paths in G.! Since G is finite and hence contains only
finitely many simple paths, this suffices to establish the result.

Suppose that w; ¢ ws correspond to the same simple path P. Suppose that the first
point of divergence of wy and ws is at state ¢; that is, that w; = wriw] and we = wrow)
with 21 # 22 € ¥ and ¢1 — ¢ (see Figure 1). Without loss of generality we may assume that
g and 0(q,z1) lie on P.

Since the path for wy corresponds to P after removal of cycles, we must have that

1"

. Tow? w
wh = wiwy with ¢ = ¢ and ¢ —— ¢o. But w; o wo and 1 # x5 50 1 % x5 and so

x1 % zowh. Hence (q,0(q,21)) € G’, which is a contradiction. <

Figure 1 The proof of Lemma 23

» Lemma 24. Let A= (Q,qo, F,X,0) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order at most D4 — 1.

Proof. We may assume without loss of generality that there is only a single accepting state,
say qy (otherwise consider seperately the automata A, ..., Ajr which agree with A except
for having only a single accepting state; then on the one hand we have D4 = max D 4,, but
on the other hand £(A) = |J.A; which is a finite union and hence the order of antichain
growth of £(A) is the maximum of the orders of growth of the £(A4;)).

! Note that since removal of loops may be done in many different ways, a single path may correspond
to multiple simple paths. We are asserting that L cannot contain two incomparable words which
correspond to precisely the same sets of simple paths.
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We classify words by the edges of G’ that appear in their accepting runs. We shall show
that the set of words corresponding to a fixed sequence P of G’-edges has antichain growth of
order at most D(P) (where D(P) = |P| —1 or |P| depending on whether the set of accepted
words beginning at the last vertex of P is finite). Since the number of relevant G’-edge
sequences is finite (recalling that no edge of G’ is contained in a directed cycle in G and so
no G’'-edge can appear more than once), this will suffice to establish the result.

Let (q1,4}),---,(qr, q),) be a set of G’-edges. Then the set L of words which have this
sequence of G'-edges in their run is given by

L=L _ _ XL,

q0,91 91,92

XQLI . .Xk;L;/

qa;‘B : kodf’

where X; = {z € ¥ | §(gi,¥) = ¢;} and L] ,, C Ly is the set of words whose runs do not
include edges of G'.
The X; are finite and hence have antichain growth of order —1. By Lemma 23 the L;,

i di+1

and also Lj , and L;/ ar have antichain growth of order at most 0. Moreover if L a5

5 ko .09 )

is finite then so is L;, ar C Ly g and so it has antichain growth of order —1. The result
.

follows by Lemma 13. |

Combining Lemmas 21, 22 and 24 yields

» Theorem 25. Let A= (Q,qo, F,X,0) be a DFA with polynomial antichain growth. Then
L(A) has polynomial antichain growth of order exactly D — 1, which can be computed in
polynomial time.

We now show how to extend this algorithm to the case of NFA. Note that D 4 as defined
above is well-defined for NFA just as for DFA, and that the algorithm to compute it in
polynomial time is equally applicable. It therefore remains to show that for NFA we also
have that if A has polynomial antichain growth then it has antichain growth of order exactly
Dy —1.

We do this by showing (Lemma 27) that D4 depends only on the language £(A), so
that if A and A" are NFA with £(A) = £(A") then D4 = D 4. Having shown this we then
consider A’ to be the determinisation of \A. This is a DFA with £(A") = L(A), and by
Theorem 25 we have that £(.A’) has polynomial antichain growth of order D4 —1 = D4 — 1.

We will first show (Lemma 26) that if L = vowjviwivs ... wivr C L(A) then there exists
a single sequence of states g1, ¢a, ..., qr which essentially realises L (that is, up to various
offsets we have v; € L(Ag, ¢,.,) and w; € L(Ag, q4,))-

» Lemma 26. Let A= (Q,qo, F,X,A) be an NFA such that vowjviwivs ... wivy C L(A).
Then then there exists a sequence of states qi,qo,...,qk+1 and integers mi,ma,... My,
my, mh,...,m) and ni,ng,...,n, such that

(i) vowi" € L(Agy,q,) and wlTkUk € L(Ag,,F),

(i) for all 0 < i <k we have w; "vyw] 1" € L(Aqg, q,11), and

(iii) for all 0 < i < k we have w;" € L(Ag,.q:)-

Proof. Consider an accepting run for vowllQHlvlngHlvg ... wLQ‘Hvk € L(A), and write
q(s) for the state reached in this run after the word s. By the pigeon-hole principle,
we must have q(vowi™) = q(vow™*") = ¢ (say) for some m; > 0 and some n; > 0
with my +n; < |Q|+ 1. Let mj = |Q| +1 —my — ny. Similarly for each ¢ we have
q(vlwllQHlvg owM) = q(vlw‘lQ‘va CwMTMY) = ¢, (say) for some m; > 0 and n; > 0
with m; + n; <|Q| + 1. Let m} = |Q| + 1 — m; — n;. Then these ¢;, m;, m; and n; give the
result. <
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» Lemma 27. Let A and A’ be NFA with L(A) = L(A’). Then Dy = D 4.

Proof. Let A= (Q,qo, F,X,A) and A" = (Q’, ¢}, F', 3, A").

Suppose that D4 = k. Then by an identical argument to the proof of Lemma 22 we
have that vowiviwivs ... wivy € L(A') = L(A) for some v, ..., v, w1,...,w € L* with
w; % v;. Then by Lemma 26 there exists a sequence of states q1,q2,...,q+1 € @ and
integers mq, ma, ..., My, my, My, ... my, and ny, na, ..., ng such that (i)—(iii) in the statement
of the lemma hold. Now since w; o v; we have wr ™ £ w;n, viw;y 1" for sufficiently large k;
and so Dy > k = D 4. Similarly D4 > D4, and hence Dy = D 4. <

» Theorem 28. Let A be an NFA with polynomial antichain growth. Then L(A) has
polynomial antichain growth of order exactly D 4 — 1.

Proof. Let A’ be the powerset determinisation of A, so A’ is a DFA with £(A") = L(A).
By Theorem 25, £(.A’) has polynomial antichain growth of order exactly D4 — 1, and by
Lemma 27 we have D4 = D 4. |

5 Context-free languages

In [6], Ginsburg and Spanier show (Theorem 5.1) that a context-free grammar G generates
a bounded language if and only if the sets L4(G) and R4(G) are commutative for all non-
terminals A, where L4 and R4 are respectively the sets of possible w and u in productions
A = wAu. They also give an algorithm to decide this (which [4] improves to be in polynomial
time).

We generalise this to our problem by showing that G generates a language with polynomial
antichain growth if and only L4(G) and also the sets R4 ,(G) of possible u for each fixed
w are chains, and that otherwise £(G) has exponential antichain growth. However, we will
show that the problem of distinguishing the two cases is undecidable, by reduction from the
CFG intersection emptiness problem.

Except where otherwise specified, we will assume all CFGs have starting symbol S
and that all nonterminals are accessible and co-accessible: for any nonterminal A we have
S = wAu for some u,u’ € ¥* and A = v for some v € T*.

» Definition 29. Let G be a context-free grammar (CFG) over ¥.. Then for any nonterminal
A let

La(G)={we = 3uecX*: A wAu}.

» Lemma 30. Let G be a CFG over ¥ and A some nonterminal such that L4(G) is not a
chain. Then L(G) contains an exponential antichain.

Proof. Since L 4(G) is not a chain, we have w1, wa, u1, ug with wy o ws such that A = wi Aug
and A = wyAus. Now A is accessible and co-accessible so also S = uwAu’' and A = v for
some u,u’,v € X*.

Hence uwj, Wi, ... w5, 0u;, Uy, ... uj v’ C L(G), for any i1is...i9; € {1,2}*. Write
¢ : (w1 +wa)* — (ug +uz2)* for the map w;, wi, ... w;, — w4, _, .. u;; (with any ambiguity
resolved arbitrarily).

Now {w; ws, ... w;, i1 .. .9 € {1,2}*} = (w1 + wa)* is a quasiantichain by Lemma 6,

clearly it is exponential and hence by Lemma 12 it contains an exponential antichain L.

By the Concatenation Lemma we have that L' = {lvg(l)|l € L} is an antichain, and it is
exponential because there is a bijection between L and L’ such that the length of each word in

48:9
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L' exceeds the length of the corresponding word in L by a factor of at most %

By the Prefixing and Postfixing Lemmas we have that uL'v’ C £(G) is an exponential
antichain. <

» Definition 31. Let G be a CFG over . Then for any nonterminal A and any w € X*, let
Raw(G) = {u € oA S wAu}.

» Lemma 32. Let G be a CFG over &, A some nonterminal and w € * such that R4 ., (G)
is not a chain. Then L(G) has exponential antichain growth.

Proof. We have v, w,u,u’ € ¥* and u1 # ug € X* such that S = udu/, A = v, A S wAu,
and A = wAusy. Let L; = uw?v(ujug + uguy)’u’. Then L; is an antichain and U2, L; is
an exponential antichain family. |

» Lemma 33. Let G be a CFG over ¥ such that Ls(G) and Ra.,(G) are chains for all
nonterminals A and oll w € ¥*. Then L(G) has polynomial antichain growth.

Proof sketch. Induction on the number of nonterminals, similarly to the proof of Theorem
16. |

Combining these three lemmas gives:

» Theorem 34. Let L be a context-free language. Then either L has exponential antichain
growth or L has polynomial antichain growth.

It is a straightforward exercise to show that the ambiguity of an NFA (the maximum
number of accepting paths corresponding to a given word) can be represented as the width
of a suitable context-free language, and hence Theorem 34 implies the well-known result that
the ambiguity of an NFA has either polynomial or exponential growth (see Theorem 4.1 of
[13]).

We now show that the problem of distinguishing the two cases of antichain growth is
undecidable for context-free languages, by reduction from the CFG intersection emptiness
problem. In fact, it is undecidable even to determine whether a given CFG generates a chain.

» Definition 35. CFG-INTERSECTION is the problem of determining whether two given
CFGs have non-empty intersection. CFG-CHAIN is the problem of determining whether
the language generated by a given CFG is a chain. CFG-EXPANTICHAIN is the problem
of determining whether the language generated by a given CFG has exponential antichain
growth.

» Lemma 36. CFG-INTERSECTION ¢s undecidable.
Proof. [5], Theorem 4.2.1. |

» Lemma 37. There is a polynomial time reduction from CFG-INTERSECTION to CFG-
CHAIN.

Proof. Let G, G2 be arbitrary CFGs over alphabet X. Let Y =3YU {0,1}, with an arbitrary
linear order on ¥, and ¥ < 0,3 < 1 but 0 and 1 incomparable. Let G be a CFG such that

L(G) = (L(G1)0) U (L(G2)1)

(which can trivially be constructed with polynomial blowup). Then £(G) is a chain if and
only if G1 NGs = 0. ]
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» Lemma 38. Let L be a prefiz-free chain. Then L* is a chain.

Proof. Let lw « I'w’ be a minimum-length counterexample with [,!’ € L and w,w’ € L*.
By minimality and the Prefixing Lemma we have that [ # I’. Then by the Concatenation
Lemma since L is prefix-free we have that [ » I’, which is a contradiction. <

48:11

» Lemma 39. There is a polynomial time reduction from CFG-CHAIN to CFG-EXPANTICHAIN.

Proof. Let G be a CFG over a partially ordered alphabet ¥. Let ¥ = ¥ U {0}, with ¥ < 0.
Let G be a CFG such that £(G) = (£(G)0)*.

We claim that L'(é) has exponential antichain growth if and only if £(G) is not a chain.
Indeed, suppose that I # ls € L(G). Then 1,0 # 130 and so by Lemmas 6 and 12 we have
that (1,0 4 150)* C £(G) contains an exponential antichain.

Conversely, suppose that £(G) is a chain. Then £(G)0 is a prefix-free chain and so by

Lemma 38 we have that £(G) is a chain. <

Combining these lemmas gives:

» Theorem 40. The problems CFG-CHAIN and CFG-EXPANTICHAIN are undecidable.

6 Tree automata

In this section, we generalise the definition of the lexicographic ordering to tree languages,
and prove a trichotomy theorem: regular tree languages have antichain growth which is
either polynomial, exponential or doubly exponential.

Notation and definitions (other than for the lexicographic ordering) are taken from [3], to
which the reader is referred for a more detailed treatment. Results in this section are stated
without proof; all proofs may be found in the extended version [9].

» Definition 41. Let F be a finite set of function symbols of arity > 0, and X a set of
variables. Write F, for the set of function symbols of arity p. Let T(F,X) be the set of
terms over F and X. Let T(F) be the set of ground terms over F, which is also the set of
ranked ordered trees labelled by F (with rank given by arity as function symbols).

For example, the set of ordered binary trees is T'(F), where F = {f, g,c} and f has arity
2, g arity 1 and c arity 0.

Note that this generalises the definition of finite words over an alphabet X, by taking
F =X U {e}, giving each a € ¥ arity one and € arity zero.

A term t is linear if no free variable appears more than once in ¢. A linear term mentioning
k free variables is a k-ary context.

» Definition 42. Let F be equipped with a partial order <. Then the lexicographic partial
order induced by = on T'(F) is the relation < defined as follows: for any f € Fp, f' € F,
and any t1,...,t, € T(F) and ty,...,t; € T(F) we have f(ty,...,t,) 2 f'(th,...,t,) if and
only if either f < " or f = f" and t; <t} for alli.

Note that this generalises Definition 1, by taking € < a for all a € X. As before we will
write t ~ ¢/ if ¢,¢ € T(F) are related by the lexicographic order; the definitions of chain and
antichain are as before. To quantify antichain growth we need a notion of the size of a tree.
The measure we will use will be height:

» Definition 43. The height function h: T(F,X) — N is defined by h(x) =0 for all z € X,
h(t) =1 for allt € Fy and h(t(t1,...,tn)) =1+ max(h(t1,...,tn)) forallt € F, (n >1)
and ty,...,t, € T(F,X). For a language L, the set {t € L | h(t) = k} is denoted L—y.
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For example, taking the earlier example of binary trees, ground terms of height 3 include
F(F(e,0), £e,0)), fle, (e, e)) and g(f(c, ).

We say that L has doubly exponential antichain growth if there is some € such that the
maximum size antichain in L_,, exceeds 22" infinitely often.

» Definition 44. A nondeterministic finite tree automaton (NFTA) over F is a tuple
A= (Q,F, Qs A) where Q is a set of unary states, Q¢ C Q is a set of final states, and
A a set of transition rules of type f(qi1(x1),...,qn(xn)) = q(f(x1,...,2,)), for f € Fn,
q,q1,---,qn € Q and x1,...,x, € X. The move relation 7 is defined by applying a transition
rule possibly inside a context and possibly with substitutions for the x;. The reflexive transitive
closure ofj s denoted %

A tree t € T(F) is accepted by A if there is some ¢ € Qf such that t i) q(t). The set of
trees accepted by A is denoted L(A).

Again this generalises the definition of an NFA: put in transitions e — ¢(¢) for all accepting
states ¢, a(q(z)) = ¢'(a(z)) whenever ¢ € A(¢’,a), and set Q as the initial state.

The critical idea for the proof is to find the appropriate analogue of L,. This turns out
to be the set P, of binary contexts such that if the free variables are assigned state g then
the root can also be given state ¢. By analogy to the ‘trousers decomposition’ of differential
geometry (also known as the ‘pants decomposition’), we refer to such a context as a pair of
trousers. It turns out that a sufficient condition for L to have doubly exponential antichain
growth is for P, to be non-empty for some g (note that this does not depend on the particular
partial order on ¥). On the other hand, if P, is empty for all ¢, then there is in a suitable
sense no branching and so we have a similar situation to ordinary languages.

» Definition 45. Let A = (Q,F,Q5,A) be an NFTA and ¢ € Q. A linear term t €
T(F,{z1,22}) is a pair of trousers with respect to q if x1,x2 appear in t and t[zxy +
q(z1), 29 + q(x2)] % q(t). The set of pairs of trousers with respect to q is denoted P,(A).

» Lemma 46. Let A= (Q,F,Qs,A) be a reduced NFTA. If there exists some q € Q such
that P,(A) is non-empty, then L(A) contains a doubly exponential antichain.

» Lemma 47. Let A= (Q,F,Qy,A) be a reduced NFTA such that Py(A) =0 for all ¢ € Q.
Then L(A) has at most exponential growth.

In the case where there are no pairs of trousers, the situation is essentially equivalent
to ordinary NFA, and so we have a further dichotomy between exponential and polynomial
antichain growth. To show this, we define a set equivalent to L, 4, and show that we have
polynomial growth if it is a chain and exponential growth otherwise.

» Definition 48. Let A = (Q,F,Qy¢,A) be an NFTA, and g € Q. Define L,(A) C T(F,{z1})
to be the set of unary contexts t such that t[x; + q(z1)] —;> q(t).

Note that unary contexts are linear terms in which exactly one free variable appears, so
L4(A) does not contain ground terms. Note also that z1 € £,(A) for any A.

To give meaning to the statement ‘L,(.A) is a chain’, we must extend the definition of
the lexicographic order from the set T'(F) of ground terms to the set T'(F,{z1}) of unary
contexts. We do this by extending the relation < on F to F U{z1} by 1 < f for all f € F,
and extending this to the lexicographic order as before.

» Lemma 49. Let A = (Q,F,Qy,A) be a reduced NFTA such that Py(A) = 0 for all q.
Then L(A) has polynomial antichain growth if L,(A) is a chain for all g, and otherwise L(A)
has exponential antichain growth.
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Combining these lemmas gives

» Theorem 50. Let L be a regqular tree language over a partially ordered alphabet. Then
L has either doubly exponential antichain growth, singly exponential antichain growth, or
polynomial antichain growth.

The special case of the trivial partial order (in which elements are only comparable to
themselves) yields the fact that the language growth of any regular tree language is either
polynomial, exponential or doubly exponential, which may not have previously appeared in
the literature.

» Corollary 51. Let L be a reqular tree language. Then L has either doubly exponential
language growth, singly exponential language growth or polynomial language growth.

Finally, we show that there is a polynomial algorithm to detect doubly exponential growth,
by determining whether or not the language of a given NFTA contains a pair of trousers.

» Theorem 52. There exists a polynomial time algorithm to determine whether the language
of a given NFTA has doubly exponential growth.

7 Open problems

It is remarkable that, many decades after the discovery of the dichotomy between polynomial
and exponential language growth, and 11 years after the work of Gawrychowski, Krieger,
Rampersad and Shallit [4], it remains unknown whether there is an efficient algorithm
to compute the order of exponential language growth of a given NFA. Consequently we
consider that resolving this question (by providing either a polynomial-time algorithm or an
appropriate hardness result) is the most important open problem in this area.

For a DFA, on the other hand, the order of exponential language growth is easily computed
as the spectral radius of the transition matrix. However, it is not clear how such ‘algebraic’
methods can be applied to the case of antichain growth, and so a second open problem is to
find a polynomial-time algorithm to compute the order of exponential antichain growth for
DFA. Such a result would have immediate application to the field of quantified information
flow, since it would allow one to compute the flow rate in the ‘dangerous’ linear case, at
the cost of determinising the automaton representing the system (with overhead roughly
corresponding to the amount of hidden state the system contains).

The final problem in this direction is the combination of the preceding two: to find a
polynomial-time algorithm to compute the order of exponential antichain growth for a given
NFA.

Alternatively we may wish to ask not about growth rates in the asymptotic limit, but
instead about the precise width of L—,, or L<, for given n. This is particularly relevant
to applications in computer security, where we may want not just an approximation ‘for
sufficiently large n’ but a concrete guarantee. For the case of a language given as a DFA
and n given in unary there is a straightforward dynamic programming algorithm to compute
these quantities (for details see p.89 of [8]), but what about for NFA and for more concise
representations of n?

Finally we pose a more speculative question: what other phenomena, apart from informa-
tion flow, can antichains with respect to the lexicographic order usefully represent?
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