
Neutron spin-flip scattering of nanocrystalline cobalt

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Phys.: Condens. Matter 23 016003

(http://iopscience.iop.org/0953-8984/23/1/016003)

Download details:

IP Address: 158.64.77.122

The article was downloaded on 07/12/2010 at 08:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/23/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 23 (2011) 016003 (4pp) doi:10.1088/0953-8984/23/1/016003

Neutron spin-flip scattering of
nanocrystalline cobalt
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Abstract
We report results of longitudinal (one-dimensional) neutron polarization analysis on
polycrystalline bulk Co with an average crystallite size of D = 10 nm. The spin-flip
small-angle neutron scattering (SANS) data are analyzed in the approach-to-saturation regime
within the framework of micromagnetic theory. In particular, we provide a closed-form
expression for the spin-flip SANS cross section d�±∓/d�. From the data analysis, we find a
room-temperature value of A = (2.6 ± 0.1) × 10−11 J m−1 for the exchange-stiffness constant,
which agrees well with earlier data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The downscaling of the individual building blocks of solid-
state materials to the nanometer scale results in an increase
of the interface-to-volume ratio and in concomitant structural
disorder due to the local misfit of the building units [1]. For
nanocrystalline magnetic bulk materials, the structural disorder
due to the relatively large volume fraction of internal interfaces
(grain or phase boundaries) is accompanied by disorder in
the magnetic microstructure, which is a consequence of the
existence of the magnetoelastic coupling energy that links the
strain tensor to the magnetization vector field [2]. On top
of interface-induced spin disorder, the randomly fluctuating
magnetic anisotropy field of the individual nanocrystallites
may represent an additional source of spin nonuniformity [3].

Polarized neutron scattering [4] is an ideal technique
for studying these types of spin disorder, since it is a bulk
probe with a spatial resolution that extends from the unit-
cell dimension to the micron range. In particular, neutron
polarization analysis (e.g. [5–12]) allows for the separation
of nuclear and magnetic scattering, and recent progress in
the development of 3He spin filters [13] enables one to
investigate magnetic nanostructures by means of longitudinal
polarization analysis on a small-angle neutron scattering

(SANS) instrument [14–16].3 As is well known, the interesting
spin-misalignment scattering can be ideally studied in the spin-
flip channel (see below), which does not contain the nuclear
coherent scattering.

In this article, we report our recent polarized neutron
results on polycrystalline Co with an average crystallite size
of 10 nm. This material may be taken as a prototypical
nanocrystalline random anisotropy ferromagnet. The spin-flip
data are analyzed within a recent theoretical description of
magnetic SANS of random anisotropy ferromagnets based on
the continuum theory of micromagnetics [17].

2. Experimental details

The neutron experiments were carried out at room temperature
at the SANS instrument D22 at the Institut Laue-Langevin,
Grenoble, France [18]. The mean wavelength of the incident
neutron beam was λ = 8 Å with a wavelength spread
of �λ/λ = 10% (FWHM). A remnant FeSi supermirror
transmission polarizer was used to select one of the two
neutron-spin states. The incident neutron polarization was
reversed by means of an rf spin flipper. Measurement of
the four partial neutron intensities I ++, I −−, I +−, and I −+

3 Note that instead of longitudinal or one-dimensional polarization analysis,
the term uniaxial polarization analysis is also found in the literature.
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became possible through a polarized 3He spin-filter cell,
which was placed inside a homogeneous-field cavity. The
initial polarization of the 3He nuclear magnetic moments
is about 70%, and their relaxation time is typically 200–
300 h [13]. Magnetic guide fields of the order of 1 mT served to
maintain the polarization between polarizer, rf flipper, and 3He
filter. An electromagnet provided the external magnetic field
perpendicular to the incoming neutron beam. The scattered
neutrons were detected by a multi-tube detector which consists
of 128 pixels × 128 pixels (resolution: 8 mm × 8 mm). Raw-
data treatment was carried out by means of the GRASP [18]
and BerSANS [14, 19] software packages. Due to the
limited beamtime and in the interest of exploring a maximum
range within the experimental parameter space, we have not
performed a so-called spin-leakage correction. Based on the
measurement of the flipping ratio, we estimate that at most
about 10–15% of ‘spin contamination’ (from the two non-spin-
flip channels) may be contained in the present spin-flip (sf)
data.

The nanocrystalline Co sample was prepared by pulsed
electrodeposition. The average crystallite size of the Co
specimen was determined by analysis of wide-angle x-ray
diffraction data and found to be D = 9.5 ± 3.0 nm. For more
details on sample characterization, see [20].

3. The spin-flip SANS cross section

For the scattering geometry where the internal magnetic field
Hi ‖ ez is normal to the wavevector k0 ‖ ex of the incident
neutron beam, the scattering vector q varies in the ey–ez plane,
and the angle θ is used to specify the orientation between Hi

and q, i.e., q ∼= q(0, sin θ, cos θ). The elastic differential
spin-flip (sf) cross sections of an isotropic polycrystalline
ferromagnet, d�±∓/d�, can be written as [10, 15–17, 21, 22]

d�±∓

d�
(q) = 8π3

V
b2

H(|M̃x |2 + |M̃y |2 cos4 θ

+ |M̃z |2 sin2 θ cos2 θ), (1)

where V denotes the scattering volume, M̃(q) = [M̃x(q),

M̃y(q), M̃z(q)] represents the Fourier transform of the
magnetization vector field M(x) = [Mx(x), My(x), Mz(x)],
and bH = 2.7 × 10−15 m/μB, where μB is the Bohr
magneton. For polycrystalline magnetic materials, where
helical scattering terms are of no relevance, the two sf cross
sections are independent of the polarization of the incident
neutrons and are expected to be identical (see, e.g., figure 4
in [15]). In writing down (1), we have neglected a cross
term d�±∓

d�
∝ M̃y M̃z sin θ cos3 θ [15, 16], which is expected

to cancel out for isotropic polycrystalline ferromagnets.
The information on the underlying magnetic microstruc-

ture in (1) is contained in the functions M̃(q), which
depend on the magnetic-interaction parameters and on the
applied magnetic field. As outlined in [17], by means of
micromagnetic theory [2, 23–26] it becomes possible to derive
a closed-form expression for the magnetization vector field
for the particular case that the magnetic moments deviate
only slightly from the applied-field direction. For qx =
0 (as adapted to the above described scattering geometry),

the small-misalignment solution of Brown’s equations for the
Fourier coefficient M̃(q) = (M̃x , M̃y, 0) of the transversal
magnetization can be expressed as [17]

M̃x (q) = Mshx(q)

Heff(q, Hi)
,

M̃y(q) = Mshy(q)

Heff(q, Hi) + Ms sin2 θ
,

(2)

where hx(q) and hy(q) represent the Cartesian components of
the Fourier transform of the perturbing anisotropy field Hp(x),
and Heff(q, Hi) = Hi(1+l2

Hq2) and lH(Hi) = √
2A/(μ0Ms Hi)

denote, respectively, the effective magnetic field and the
exchange length of the field (Ms: saturation magnetization; A:
exchange-stiffness parameter; μ0: permeability of free space).

By inserting (2) in (1) and following the arguments
in [17], we can express the sf cross section of an isotropic
polycrystalline ferromagnet near saturation as

d�±∓

d�
(q, Hi, θ) = SH(q)R(q, Hi, θ)

+ 8π3

V
b2

H|M̃z |2 sin2 θ cos2 θ, (3)

where SH(q) = 8π3V −1b2
mρ2

a M−2
s h2(q) is the so-called

anisotropy-field scattering function, and h2(q) = h2
x(q) +

h2
y(q) (bm: atomic magnetic scattering length; ρa: atomic

density). The dimensionless micromagnetic response function
for SANS takes on the form

R(q, Hi, θ) = p2

2

(
1 + cos4 θ

(1 + p sin2 θ)2

)
, (4)

where p(q, Hi) = Ms/Heff. These equations predict enhanced
scattering along the field direction, since R(θ = 0◦) = p2

and R(θ = 90◦) = p2/2. If the a priori unknown real
functions M̃z(q) and SH(q) depend only on the magnitude q of
the scattering vector, one can perform the average of (3) with
respect to the angle θ , i.e., (2π)−1

∫ 2π

0 (· · ·)dθ , to obtain

d�±∓

d�
(q, Hi) = SH(q)R(q, Hi) + f (q), (5)

where

R(q, Hi) = 1

2
+ p2

2
− 1

4
(2 − p)

√
1 + p, (6)

and f (q) = π3V −1b2
HM̃2

z (q). As a consequence of the factor
cos4 θ in (4), rather than cos2 θ , the micromagnetic response
function for sf scattering is slightly different from the R for
the case of unpolarized neutrons, which reads R = p2/2 +
p2/(4

√
1 + p) [17].

The numerical value of the response function is known for
given materials parameters A and Ms and at each experimental
q and Hi value. Hence, from straight-line fits of plots
of the measured d�±∓/d� versus R at discrete q = q ′
and for various Hi, one can determine SH (slope) and f
(intercept) at the particular q ′ value (compare (5) and figure 7
in [17]); note that we neglect the field dependence of
M̃2

z (q), which is justified in the approach-to-saturation regime.
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Figure 1. Spin-flip scattering cross section of nanocrystalline Co on
the 2D area detector at various internal magnetic fields Hi

(horizontal): (a) 1239 mT; (b) 181 mT; (c) 53 mT; (d) 24 mT. The q
range (from the center to the corner of the detector) corresponds to
0.03 nm−1 � q � 0.5 nm−1.

However, compared to the case of unpolarized neutrons,
where the intercept value that is obtained from such a data
analysis contains also the nuclear scattering, the function f (q)

exclusively provides information on the residual magnetic
scattering due to fluctuations in the longitudinal magnetization
Fourier component M̃2

z . In other words, f (q) describes the
magnetic scattering which is not related to the micromagnetic
structures under study.

For the analysis of the 2D magnetic SANS data (see
figure 1), we have computed radial (azimuthal) averages of
the anisotropic data. This procedure allows for a convenient
comparison with the theoretical expression (5) for the radially
averaged spin-misalignment SANS cross section.

In order to test these theoretical predictions, we discuss in
the following sf data of nanocrystalline Co.

4. Experimental results and discussion

Figure 1 illustrates the field dependence of the sf cross
section d�±/d� of nanocrystalline Co in the 2D detector
plane, and figure 2 depicts the corresponding radially averaged
data. For all fields investigated, d�±/d� exhibits enhanced
scattering along the field direction, and the radially averaged
d�±/d� decreases by more than two orders of magnitude
as Hi increases from 24 to 1239 mT. This observation
clearly demonstrates the existence of strong spin-misalignment
scattering from transversal magnetization components. The
solid lines in figure 2 represent the prediction of the
micromagnetic theory, equation (5). Note that applied fields
of the order of a few 10 mT are required for approaching
saturation (compare figure 4 in [20]). From these fits we
obtain A = (2.6 ± 0.1) × 10−11 J m−1 for the exchange-
stiffness constant, a value which agrees within error bars
with earlier data for this quantity obtained by analysis of
unpolarized SANS data [20]. For comparison, we also quote
the corresponding value for the spin-wave stiffness constant,
D = 460 ± 20 meV Å

2
, where D was computed according

to D = 2AgμB/Ms using the g-factor of Co, g = 2.21,
and Ms = 1434 kA m−1 [20]. This value for D agrees well
with literature data obtained on a Co single crystal by inelastic
neutron scattering [27].

Also shown in figure 2 are the anisotropy-field scattering
function SH(q) and f (q). While SH(q) reflects the spatial
structure of the magnetic anisotropy field, f (q) is directly
proportional to the magnitude-square of the Fourier coefficient
of the longitudinal magnetization component M̃2

z (q). It

Figure 2. Field dependence of the radially averaged sf scattering of
nanocrystalline Co. Field values (from top to bottom): (�) 24 mT;
(�) 53 mT; (�) 181 mT; ( ) 1239 mT. Solid lines: fits to the
micromagnetic model, equation (5). The open symbols (◦) and (�)
represent, respectively, the function f (q) ∝ M̃2

z (q) and the
anisotropy-field scattering function SH(q).

is readily seen that the total sf scattering is significantly
exceeding this contribution at all experimental q and even at
the highest field of 1239 mT. This suggests that the residual
small-angle scattering due to fluctuations in the longitudinal
magnetization is small relative to the spin-misalignment
scattering. In other words, spatial variations in the magnitude
of the magnetization, Ms(x), play only a minor role for the
magnetic SANS of nanocrystalline electrodeposited Co, a
conclusion which is in accordance with the micromagnetic
model where uniform values for A and Ms are assumed.

Analysis of SH(q) provides lower bounds for the
magnitude of the mean anisotropy and magnetostatic field [28].
For instance, the mean-square anisotropy field 〈|Hp|2〉v can be
estimated according to 〈|Hp|2〉v ∝ ∫ qmax

qmin
SH(q)q2 dq , where

qmin and qmax refer, respectively, to the lower and upper limit
of experimental scattering vectors. (A similar formula can be
used to determine the mean magnetostatic field.) However,
such an analysis could not be carried out here, since the
respective integrands did not show signs of convergence within
0.03 nm−1 � q � 0.4 nm−1 (roughly SH(q) ∝ q−1),
suggesting that there are significant scattering contributions
outside this range.

Equation (4) predicts R(q, Hi, θ = 0◦)/R(q, Hi, θ =
90◦) = 2. In order to illustrate the field dependence of the
azimuthal anisotropy of the scattering pattern on the detector,
figure 3 shows the ratio r(Hi) of ±7.5◦ sector averages of the
scattering parallel over normal to the applied-field direction.
The data exhibit r � 2, in reasonable agreement with (3). Note
that the value of r = 2 is expected to be strictly valid only for
θ = 0◦ and for 90◦; sector averaging and additional scattering
contributions due to spin leakage may result in r < 2.

5. Summary and conclusions

By means of longitudinal (one-dimensional) neutron polar-
ization analysis, we have measured the spin-flip (sf) small-
angle neutron scattering (SANS) cross section d�±∓/d� of

3
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Figure 3. Field dependence of the ratio r of the sf scattering (±7.5◦
sector averages) parallel (θ = 0◦) over perpendicular (θ = 90◦) to
the applied-field direction at selected q values (see inset). The lines
are to guide the eyes.

nanocrystalline bulk Co with an average crystallite size of
D = 10 nm. Using linearized micromagnetic theory, we
have derived a closed-form expression for d�±∓/d�. We
find that the variation of the radially averaged d�±∓/d� with
the scattering vector and the applied magnetic field can be
excellently reproduced by the theory. From the analysis, a
value of A = (2.6 ± 0.1) × 10−11 J m−1 for the exchange-
stiffness constant is determined, which is in good agreement
with published data determined by unpolarized SANS and by
inelastic neutron scattering on single crystals. In contrast to the
case of unpolarized SANS, the present approach provides the
magnitude-square of the Fourier coefficient of the longitudinal
magnetization component M̃2

z (q). It is concluded that the
experimental data for nanocrystalline Co support well the
predictions of the micromagnetic model.
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