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Abstract: Fractional linear prediction (FLP), as a generalization of conventional linear prediction (LP),
was recently successfully applied in different fields of research and engineering, such as biomedical
signal processing, speech modeling and image processing. The FLP model has a similar design as
the conventional LP model, i.e., it uses a linear combination of “fractional terms” with different
orders of fractional derivative. Assuming only one “fractional term” and using limited number of
previous samples for prediction, FLP model with “restricted memory” is presented in this paper
and the closed-form expressions for calculation of FLP coefficients are derived. This FLP model
is fully comparable with the widely used low-order LP, as it uses the same number of previous
samples, but less predictor coefficients, making it more efficient. Two different datasets, MIDI
Aligned Piano Sounds (MAPS) and Orchset, were used for the experiments. Triads representing
the chords composed of three randomly chosen notes and usual Western musical chords (both of
them from MAPS dataset) served as the test signals, while the piano recordings from MAPS dataset
and orchestra recordings from the Orchset dataset served as the musical signal. The results show
enhancement of FLP over LP in terms of model complexity, whereas the performance is comparable.

Keywords: audio signal processing; linear prediction; fractional derivative; musical signal

1. Introduction

The sinusoidal model is widely used for representation of pseudo-stationary signals, especially in
audio coding [1] and musical signal processing [2]. Parameters of the sinusoidal model are determined
frame-wise from the input audio/musical signal, and a sound is synthesized using the extracted
parameters [3]. A pure tone can be represented as a single sine wave, whereas the musical chords are
produced by combining three or more sine waves with different frequencies. In fact, any musical tone
can be described as a combination of sine waves or its partials, each with its own amplitude, phase
and frequency of vibration [4]. A sine wave can be fully described using three parameters: amplitude,
phase and frequency. Obviously, such signal is redundant; hence, there is no need to encode and
transmit each signal sample.

Linear prediction (LP) can be used to remove redundancy by predicting the current signal sample
from the signal history, as the weighted linear combination of past samples. In that case, only the
coefficients of the predictor need to be transmitted, not the signal samples themselves. While LP is
extensively used for modeling speech signal [5–7], it did not prove to be the best choice for modeling
audio signals. This is unexpected, since a signal represented by a combination of sine waves should
be perfectly predicted using an LP model with an order twice larger than the number of sinusoids.
The problem might be the fact that LP can model well signals with equally distributed tonal components
in the Nyquist interval, which is not the case with audio, where tonal components are concentrated in
a substantially smaller frequency region in comparison to the signal bandwidth [8]. This happens due
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to the fact that audio signals are usually sampled at a much higher frequency than the frequency of
their tonal components. Nevertheless, there are applications of LP in audio coding algorithms using
the so-called frequency-warped LP [9,10], where the unit delays are replaced by the first-order all-pass
filter elements to adjust the frequency resolution in the spectral estimate to closely approximate the
frequency resolution of human hearing [9]. LP is also used in acoustic echo cancelation [11], music
dereverberation [12], audio signal classification [13] and audio/music onset detection [14,15].

The idea of using the signal history is fundamentally rooted in fractional calculus [16]. Fractional
linear prediction (FLP), as a generalization of LP for fractional (arbitrary real) order derivatives,
was recently used in electroencephalogram (EEG) [16,17] and electrocardiogram (ECG) signal
modeling [18], as well as in speech coding [16,19–21]. While in [17–19] the full signal history is
used for predicting the current signal sample, which is impractical from the implementation point
of view, a model with restricted signal memory that uses only the recent signal samples and its
applications is proposed in [21,22]. However, to the best of our knowledge, there are no applications
of FLP in audio/musical signal processing. In this paper, we present FLP with memory restricted to
maximum of four previous samples and apply it to prediction of randomly generated test chords, usual
chords in Western music and piano parts extracted from the MIDI Aligned Piano Sounds dataset; and
musical parts extracted from symphonies, ballets and other classical musical forms, and interpreted by
symphonic orchestras, from the Orchset dataset.

The paper is organized as follows. Section 2 presents an overview of conventional LP and the FLP
with “restricted memory”. Datasets used for experiments are described in Section 3. The numerical
results using the test chords, piano and orchestra musical parts are discussed in Section 4, followed by
concluding remarks in Section 5.

2. Linear Prediction

2.1. Conventional Linear Prediction

Let the signal x(t) represent a linear and stationary stochastic process, where x[n] = x(nT) is the
nth signal sample at arbitrary time t, and T is the sampling period. The signal x(t) at time instance
t = nT is modeled as the linear combination of p previous signal samples:

x̂[n] =
p

∑
i=1

aix[n−i], (1)

where x̂[n] denotes the predicted signal sample and ai are the linear predictor coefficients. The order of
a linear predictor denotes the number of linear predictor coefficients, which is equal to the number of
samples used for prediction.

The prediction error e[n] = x[n] − x̂[n] is defined as the deviation of the predicted signal x̂ from the
original signal x, and the mean-squared prediction error is equal to:

J = E
[
e2
[n]

]
= E

[
x[n] −

p

∑
i=1

aix[n−i]

]2

, (2)

where E[·] is the mathematical expectation. The optimal predictor coefficients ai can be determined by
equating the first derivative of J, with respect to ai, to zero. After some manipulation, we obtain:

p

∑
i=1

aiRxx(k− i) = Rxx(k), k = 1, 2, . . . , p, (3)

where Rxx(k) = E
[

x[n]x[n−k]

]
denotes the autocorrelation function at lag k. Equation (3) is known as

the Yule–Walker equation [7] and can be rewritten in the matrix form as:
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Rxx · a = rxx, (4)

where

Rxx =


Rxx(0) Rxx(1) Rxx(2) . . . Rxx(p− 1)
Rxx(1) Rxx(2) Rxx(3) . . . Rxx(p− 2)

...
...

...
. . .

...
Rxx(p− 1) Rxx(p− 2) Rxx(p− 3) . . . 0

 ,

a =
[
a1 a2 a3 . . . ap

]T ,

rxx = [Rxx(1) Rxx(2) Rxx(3) . . . Rxx(p)]T .

The optimal linear predictor coefficients a can be found from:

a = Rxx
−1 · rxx. (5)

2.2. Fractional Linear Prediction with “Restricted Memory”

FLP is a generalization of LP using the fractional-order derivatives. Using the analogy from LP,
the nth signal sample can be represented as the linear combination of q “fractional terms”, and can be
written as [16]:

x̂[n] =
q

∑
i=1

aiDαi x[n−1], (6)

where x̂[n] is the estimate of the nth signal sample, q is the number of “fractional terms” used for the
prediction, ai are the FLP coefficients, and Dαx[n−1] are the fractional derivatives of order αi of the
time-delayed signal, where αi ∈ R.

The fractional derivative Dα can be approximated by the Grünwald–Letnikov (GL) definition of
a function x(t) at time instant t [23]:

aDα
t x(t) = lim

h→0

1
hα

b t−a
h c

∑
j=0

(−1)j
(

α

j

)
x(t− jh), (7)

where h is the sampling period, a and t are lower and upper limits of differentiation, and α ∈ R
is the order of fractional differentiation. Note that the upper limit of summation tends to infinity.
Accounting only for the recent history of the signal, i.e., replacing the lower limit a by the the moving
lower limit t− L (L is the memory length), the “short memory” principle [23] is employed. Due to
this approximation, the number of addends in Equation (7) is not greater than K = bL/hc. For t = nh,
Equation (7) becomes:

Dαx(nh) = lim
h→0

1
hα

K

∑
j=0

(−1)j
(

α

j

)
x((n− j)h). (8)

Replacing x(nh) with x[n], and assuming that in the signal prediction only the past samples are used for
the estimation of the predicted signal sample, without including the current sample, i.e., introducing a
time-delay in Equation (8) of one sample, one gets:

Dαx[n−1] = h−α
K

∑
j=0

(−1)j
(

α

j

)
x[n−1−j]. (9)

Taking into account only one “fractional term” from Equation (6), i.e., when q = 1, one obtains [21,22]:

x̂[n] = aDαx[n−1]. (10)
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Considering K ∈ I as the upper limit of the summation in Equation (9), i.e., for K = 1:

Dαx[n−1] =
1
hα

(
x[n−1] − αx[n−2]

)
, (11)

K = 2:

Dαx[n−1] =
1
hα

(
x[n−1] − αx[n−2] −

α(1− α)

2
x[n−3]

)
, (12)

and K = 3:

Dαx[n−1] =
1
hα

(
x[n−1] − αx[n−2] −

α(1− α)

2

(
x[n−3] +

2− α

3
x[n−4]

))
, (13)

we get three modifications of FLP model with “restricted memory” (Equation (10)), which use the
memory (M) of two, three, and four samples, respectively.

Employing the memory of two samples, i.e., substituting Dαx[n−1] from Equation (11) into
Equation (10), the two-sample FLP model is defined as:

x̂[n] =
a

hα

(
x[n−1] − αx[n−2]

)
, (14)

and the prediction error is evaluated as e[n] = x[n] − x̂[n]. Minimizing the mean squared prediction

error J = E
[
e2
[n]

]
and substituting the autocorrelation function, the optimal coefficient a can be found.

After some manipulation, the optimal FLP parameter can be written as:

a = hα Rxx(1)− αRxx(2)
Rxx(0)− 2αRxx(1) + α2Rxx(0)

. (15)

In case the order of fractional derivative α tends to zero, we get:

lim
α→0

a = lim
α→0

hα Rxx(1)− αRxx(2)
Rxx(0)− 2αRxx(1) + α2Rxx(0)

=
Rxx(1)
Rxx(0)

, (16)

i.e., the optimal first-order linear predictor is only a special case of the proposed FLP model with
“restricted memory” using the memory of two previous samples.

Considering the FLP model with “restricted memory” of three samples, where Dαx[n−1] is
estimated using Equation (12), the predicted sample becomes:

x̂[n] =
a

hα

(
x[n−1]−αx[n−2]−

α(1−α)

2
x[n−3]

)
. (17)

Minimizing the mean squared prediction error J = E
[
e2
[n]

]
, the optimal coefficient a can be found as:

a = hα Rxx(1)− αRxx(2)− α(1−α)
2 Rxx(3)

Rxx(0)− 2α
(

Rxx(1)− α−1
2 Rxx(2)

)
+ α2

(
Rxx(0)− (α− 1)Rxx(1) +

(α−1)2

4 Rxx(0)
) . (18)

As in the case of FLP model with two-sample memory, when the order of fractional derivative α tends
to zero, the computation of the FLP coefficient a reduces to a = Rxx(1)/Rxx(0), meaning that the
first-order LP is a special case of the FLP model with “restricted memory” using the memory of three
previous samples.
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The last modification of the presented FLP model with “restricted memory” (Equation (10))
is taking into account the memory of four previous samples, i.e., Dαx[n−1] is estimated using
Equation (13):

x̂[n] =
a

hα

(
x[n−1] − αx[n−2] −

α(1− α)

2

(
x[n−3] +

2− α

3
x[n−4]

))
. (19)

Computing the prediction error e[n] = x[n] − x̂[n] and minimizing the mean squared prediction error

J = E
[
e2
[n]

]
by finding the first derivative of J with respect to a and equating to zero, optimal coefficient

a is obtained in the form:

a = hα Rxx(1)− αRxx(2)− α(1−α)
2

(
Rxx(3)− α−2

3 Rxx(4)
)

Rxx(0)− 2αRxx(1) + α2Rxx(0) +
α2(α−1)2

4 #1 + α(α− 1)#2
(20)

where

#1 =

(
Rxx(0)−

2α− 4
3

Rxx(1) +
(α− 2)2

9
Rxx(0)

)
,

#2 =

(
Rxx(2)− αRxx(1)−

α− 2
3

Rxx(3) +
α(α− 2)

3
Rxx(2)

)
.

Again, as in the case of FLP model with two-sample and three-sample memory, in the case of using the
memory of four samples, when the order of fractional derivative α tends to zero, the computation of
the FLP coefficient a is reduced to a = Rxx(1)/Rxx(0). This confirms that the proposed FLP models
with the “restricted memory” are generalizations of the low-order LP, i.e., the first-order LP is only
a special case of the presented FLP model.

It was proven in [21,22] that the parameter α of the FLP model with “restricted memory” can
be estimated as the inverse of the number of samples used by the FLP model, i.e., α = 1/M. Thus,
the order of fractional differentiation is in this paper assumed fixed, with the values α = 0.5 for FLP
model with two-sample memory, α = 0.33 for FLP model with three-sample memory, and α = 0.25
for FLP model with four-sample memory. It follows that the FLP model with “restricted memory”
practically uses only one predictor coefficient, which has to be encoded and transmitted, regardless of
the number of previous samples used for prediction.

3. Datasets

3.1. MAPS Dataset

The MIDI Aligned Piano Sounds (MAPS) dataset contains 65 h of stereo audio recordings sampled
at 44.1 kHz with 16 bit resolution (CD quality), recorded either using the software-based sound
generation, or the Disklavier piano [24,25]. The dataset contains four subsets: isolated notes (ISOL);
chords composed of randomly chosen notes (RAND); usual chords in Western music (UCHO); and
piano classical music pieces (MUS). The audio samples were recorded in different recording conditions
(e.g., studio, jazz club, church, and concert hall). RAND, UCHO and MUS subsets were used in the
experiments using all four recording conditions.

3.2. Orchset Dataset

Orchset database contains 64 mono and stereo audio recordings, sampled at 44.1 kHz, extracted from
symphonies, ballets and other classical musical forms and interpreted by symphonic orchestras [26]. The
lengths of the recordings are 10–32 s (mean 22.1 s, standard deviation 6.1 s), the number of recordings
per composer is 1–13, with 15 composers in total. Music excerpts were selected to have a dominant
melody, maximizing the existence of voiced segments per excerpt. In all excerpts, the melody was
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played using more than one instrument from the instrument section, except for one excerpt where only
oboe was used (with orchestral accompaniment).

3.3. Signal Preprocessing

In signal processing applications, e.g., when processing speech or audio signal that are
non-stationary signals, the signal is usually divided into short-time windows, denoted as frames,
where the signal is approximately stationary. In the case of audio signal, the frame length is typically
10–120 ms [27,28]. In this study, the experiments were performed using three different frame-sizes,
equal to 10 ms, 60 ms and 120 ms.

The audio signal may contain silent periods, usually at the beginning or at the end of a signal.
This was especially evident in RAND and UCHO subsets of the MAPS dataset, where the silence
periods were even longer than the signal itself. Modeling silent frames is unnecessary since the
resources are spent on parts of the signal which do not contribute to signal reconstruction. Therefore,
the silence frames were removed before further processing. Furthermore, DC offset was removed
from the audio signal, as the signal compression, or any other processing of the signal that includes
the absolute signal levels may lead to distortions and other non-desirable results. Finally, all stereo
recordings were converted to mono by combining left and right channels prior to further processing.

4. Numerical Results and Discussion

The proposed FLP with “restricted memory” given in Equation (10) with the memory of
two (Equation (14)), three (Equation (17)) and four samples (Equation (19)) was compared to
conventional low-order LP using the same signal history. Experiments were performed using two
test signals: the three-note chords composed of randomly chosen notes (MAPS–RAND subset), usual
three-notes Western musical chords (MAPS–UCHO subset), and two musical signals: piano recordings
(MAPS–MUS subset) and orchestra recordings (Orchset). The signals belonging to one recording
condition (studio, jazz club, church, or concert hall) of the particular dataset were concatenated to one
signal prior to applying either LP or FLP.

The prediction gain (PG) served as the predictor performance measure, defined as the ratio
between the variance of the input signal and the variance of the prediction error measured in decibels:

PG (dB) = 10 log10
σx

2

σep
2 . (21)

The smaller is the error generated by the predictor, the higher is the gain [29].

Experiments

The results for the randomly generated chords (MAPS–RAND subset) for different recording
conditions (studio, jazz club, church, and concert hall) using four low-order LP models (first-order,
second-order, third-order and fourth-order) and FLP models with the two-sample, three-sample and
four-sample memory are presented in Table 1. The results show that the first-order LP is inappropriate;
however, increasing the prediction-order beyond the second-order LP is not necessary, as it does not
bring significant improvement. Similar behavior can be observed for FLP models, where the best
performing model is the one with the two-sample memory. For the frames having 120 ms length,
its performance is only slightly lower than the performance of the second-order LP, albeit obtained
using only one predictor coefficient (note that the second-order LP that also uses the memory of two
samples, requires the optimization of two predictor coefficients). By decreasing the frame length,
the performance of both LP and FLP decrease, but with FLP approaching LP for the memory of
three and four samples. Note that the results for FLP with the memory of three and four samples
were obtained using two and three predictor coefficients less than in the case of the third-order and
fourth-order LP.



Mathematics 2019, 7, 580 7 of 13

The prediction results for the chords composed of three randomly chosen notes from the
MAPS–RAND subset are also presented in Figure 1, where the prediction error using the second-order,
third-order and fourth-order LP (black solid line) is compared to the prediction error obtained
using the FLP model with two-sample, three-sample and four-sample memory (red dot-dashed
line). Ten characteristic frames with the length of 60 ms are shown in the figure. The results confirm
that the performance of the second-order LP and the FLP with two-sample memory is comparable for
the signals recorded under different conditions (studio, jazz club, church, and concert hall), and the
difference between the prediction error of the LP and FLP models is generally increasing with the
length of the used memory.

Table 1. Prediction gain (dB) for the chords composed of three randomly chosen notes (MAPS–RAND subset).

MAPS–RAND

Studio Jazz Church Concert

120 ms

LP

First-order 17.41 17.53 19.10 15.48
Second-order 23.94 23.91 26.25 22.51
Third-order 24.85 24.52 26.89 23.55

Fourth-order 25.25 24.79 27.15 23.96

FLP
Two-sample memory 23.40 23.36 25.82 22.14

Three-sample memory 23.41 23.68 26.02 22.01
Four-sample memory 23.11 25.06 25.88 21.63

60 ms

LP

First-order 17.15 17.35 18.90 15.23
Second-order 22.90 22.82 25.15 21.43
Third-order 23.51 23.42 25.70 22.14

Fourth-order 23.85 23.66 25.93 22.51

FLP
Two-sample memory 22.32 22.25 24.71 21.07

Three-sample memory 22.47 22.66 25.01 21.08
Four-sample memory 22.28 22.73 24.96 20.81

10 ms

LP

First-order 16.35 16.58 18.13 14.65
Second-order 19.82 19.95 21.65 18.86
Third-order 20.28 20.48 22.19 19.29

Fourth-order 20.46 20.68 22.38 19.50

FLP
Two-sample memory 19.30 19.37 21.22 18.50

Three-sample memory 19.74 19.96 21.78 18.80
Four-sample memory 19.81 20.17 21.94 18.76

Similar behavior as in case of randomly generated chords can be observed when using usual
three-notes Western musical chords (MAPS–UCHO subset). Again, the performance of FLP with
two-sample memory is comparable to the second-order LP for all frames, although FLP is using one
coefficient less (see Table 2).

Ten characteristic frames with the length of 60 ms are shown in Figure 2 for the MAPS–UCHO
subset, where the prediction error using the second-order, third-order and fourth-order LP (black solid
line) is compared to the prediction error obtained using the FLP model with two-sample, three-sample
and four-sample memory (red dot-dashed line). The results confirm that the performance of the
second-order LP and the FLP with two-sample memory is comparable for the signals recorded under
different conditions (studio, jazz club, church, and concert hall), and also that the difference between
the prediction errors of the LP and FLP models is increasing with the length of the used memory.
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Figure 1. The prediction error results for the random chords (MAPS–RAND) for second-order,
third-order and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample
memory: (a) studio recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.

Table 2. Prediction gain (dB) for the usual Western music three-notes chords (MAPS–UCHO subset).

MAPS–UCHO

Studio Jazz Church Concert

120 ms

LP

First-order 17.03 18.54 18.74 17.44
Second-order 24.51 25.75 26.62 25.22
Third-order 25.25 26.29 27.12 26.02

Fourth-order 25.61 26.52 27.34 26.39

FLP
Two-sample memory 23.95 25.08 26.29 24.92

Three-sample memory 23.90 25.44 26.46 24.78
Four-sample memory 23.57 25.47 26.29 24.37

60 ms

LP

First-order 16.83 18.37 18.53 17.15
Second-order 23.53 24.58 25.42 24.07
Third-order 24.04 25.10 25.91 24.62

Fourth-order 24.32 25.29 26.08 24.93

FLP
Two-sample memory 22.97 23.89 25.07 23.76

Three-sample memory 23.05 24.36 25.36 23.76
Four-sample memory 22.82 24.47 25.30 23.46

10 ms

LP

First-order 16.07 17.46 17.71 16.38
Second-order 20.44 21.15 21.77 20.85
Third-order 20.87 21.74 22.32 21.29

Fourth-order 21.01 21.93 22.49 21.45

FLP
Two-sample memory 19.95 20.51 21.45 20.57

Three-sample memory 20.34 21.15 21.99 20.90
Four-sample memory 20.37 21.42 22.14 20.88
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Figure 2. The prediction error results for the three-notes chords (MAPS–UCHO) for second-order,
third-order and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample
memory: (a) studio recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.

The results for the piano music excerpts using MAPS–MUS subset are also presented for three
different frame sizes, i.e., 10 ms, 60 ms and 120 ms (see Table 3). For shorter frames (10 ms),
the performance of FLP is always comparable to the performance of the corresponding LP that uses the
same signal memory. For longer frames, PG of FLP is comparable to PG of the corresponding LP for
jazz club and church recording conditions, while the performance deteriorates by 1–2 dB only for FLP
with the memory of three and four samples for studio and concert recording conditions, suggesting that
FLP is better suited for signals recorded in reverberant or non-ideal acoustical conditions. Note that
FLP always uses only one predictor coefficient, regardless of the signal memory used for prediction.
For example, for the FLP with the four-sample memory, comparable performance is obtained to the
corresponding fourth-order LP, but with three predictor coefficients less that need to be optimized. This
can lead to substantial savings in bit rate, as predictor coefficients need to be encoded and transferred
to receiver end. Furthermore, note that better performance is obtained using longer frames for both LP
and FLP; hence, more frequent coefficient update does not bring any improvement.

The last experiment was performed using the orchestra music excerpts from the Orchset dataset.
Since LP models are, in general, known to perform well on piano music, we tested the performance of
our model on a more challenging music signal played by the orchestra (see Table 3). The performance
of FLP in comparison to LP is lower than in piano music; however, the model with two-sample memory
is still comparable to the corresponding second-order LP for all frame lengths. Third- and fourth-order
LP models perform better than FLP at the expense of two and three additional coefficients, respectively.
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Table 3. Prediction gain (dB) for musical signal of classical music pieces played by piano (MAPS–MUS
subset) and the classical music pieces performed by orchestra (Orchset dataset).

MAPS–MUS Orchset
Studio Jazz Church Concert

120 ms

LP

First-order 20.54 22.13 21.90 19.60 18.12
Second-order 31.60 34.04 32.95 30.21 26.82
Third-order 32.36 34.52 33.51 31.24 27.94

Fourth-order 32.86 34.75 33.78 31.74 28.15

FLP
Two-sample memory 31.59 34.02 32.94 30.18 26.70

Three-sample memory 31.20 34.25 32.98 29.69 26.03
Four-sample memory 30.55 33.98 32.65 28.96 25.29

60 ms

LP

First-order 20.49 22.00 21.79 19.58 18.08
Second-order 30.27 32.05 31.28 29.10 26.18
Third-order 30.81 32.63 31.87 29.82 26.99

Fourth-order 31.17 32.80 32.07 30.22 27.18

FLP
Two-sample memory 30.25 32.04 31.26 29.08 26.09

Three-sample memory 30.14 32.56 31.57 28.83 25.56
Four-sample memory 29.66 32.44 31.39 28.25 24.91

10 ms

LP

First-order 19.68 20.94 20.77 18.90 17.53
Second-order 25.18 25.92 25.66 24.60 23.01
Third-order 25.75 26.75 26.40 25.15 23.37

Fourth-order 25.92 27.01 26.62 25.35 23.49

FLP
Two-sample memory 25.17 25.92 25.66 24.57 23.00

Three-sample memory 25.70 26.74 26.39 24.97 22.93
Four-sample memory 25.64 27.00 26.52 24.81 22.62

When evaluating the prediction error in case of using musical signals from the MAPS–MUS subset
(see Figure 3) under the same recording conditions as in previous experiments (e.g., studio, jazz club,
church, and concert hall), an interesting observation can be made, i.e., the difference between the
prediction error of the LP and FLP models is not increasing that significantly with the length of the
used memory (especially for the jazz club and church recording conditions), as was the case of using
signals representing chords. Furthermore, it is obvious that the second-order LP and the FLP with
two-sample memory for the shown signals perform at the same level for all four recording conditions.
Similar behavior is present in the case of using orchestra music excerpts from the Orchset dataset
(see Figure 4). Please note that, in Figures 3 and 4, again ten characteristic frames with the length of
60 ms are shown, and that the prediction error using the second-order, third-order and fourth-order LP
(black solid line) is compared to the prediction error obtained using the FLP model with two-sample,
three-sample and four-sample memory (red dot-dashed line).

Here, it should be emphasized that LP and FLP models always use the same number of previous
samples (two, three and four) that allows a fair comparison. Furthermore, it is important to emphasize
that all FLP models show comparable performance in comparison to LP models, even though they
use only two coefficients, i.e., one predictor coefficient a and one order of fractional derivative α,
in comparison to LP models that use two, three and four predictor coefficients (based on the order of
the LP predictor). Moreover, the order of fractional differentiation α does not have to be computed
or optimized. It might be estimated as the inverse of the predictor memory, as previously shown
in [21,22], resulting in only one FLP coefficient that has to be encoded and transmitted. This makes the
proposed FLP significantly more efficient than LP.
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Figure 3. The prediction error results for the musical signals (MAPS–MUS) for second-order, third-order
and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample memory: (a) studio
recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.
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Figure 4. The prediction error results for the musical signal (Strauss–BlueDanube–ex1, from the Orchset)
for second-order, third-order and fourth-order LP and the FLP with the two-sample, three-sample, and
four-sample memory.
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5. Conclusions

Fractional linear prediction with “restricted memory” that uses two, three, and four previous
samples, respectively, for audio signal prediction is discussed in this work and the closed-form
expressions for the FLP predictor coefficient are derived. Two datasets were used for the experiments
to test the performance of the model and compare it to linear prediction, i.e., MAPS dataset, which
contains chords composed of randomly chosen notes, usual chords in Western music, and piano music
excerpts; and Orchset dataset, which contains music excerpts, extracted from symphonies, ballets and
other classical musical forms, and interpreted by symphonic orchestras.

Using the same number of previous samples for prediction, the results show that FLP is better
suited for prediction of audio signal than the conventional low-order LP models, since it provides
comparable performance, even though it uses less parameters (one predictor coefficients and one order
of fractional derivative). Furthermore, the order of fractional derivative does not have to be optimized
and can be assumed as the inverse of the memory length of the FLP model, making it even more
efficient in comparison to LP model, where the number of predictor coefficients is always equal to
the predictor order. For example, FLP with the memory of four samples requires only one predictor
coefficient, whereas the corresponding fourth-order LP requires four predictor coefficients, at similar
performance. Therefore, substantial savings in transmission costs are possible.
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