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Abstract. In this paper we present an approach to defeasible reasoning

for the description logic ALC. The results discussed here are based on
work done by Kraus, Lehmann and Magidor (KLM) on defeasible conditionals
in the propositional case. We consider versions of a preferential semantics

for two forms of defeasible subsumption, and link these semantic constructions
formally to KLM-style syntactic properties via representation results. In
addition to showing that the semantics is appropriate, these results pave

the way for more effective decision procedures for defeasible reasoning in
description logics. With the semantics of the defeasible version of ALC in
place, we turn to the investigation of an appropriate form of defeasible
entailment for this enriched version of ALC. This investigation includes

an algorithm for the computation of a form of defeasible entailment
known as rational closure in the propositional case. Importantly, the
algorithm relies completely on classical entailment checks and shows that

the computational complexity of reasoning over defeasible ontologies is

no worse than that of the underlying classical ALC. Before concluding,

we take a brief tour of some existing work on defeasible extensions

of ALC that go beyond defeasible subsumption.®
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1 Introduction

Description logics (DLs) [1] are central to many modern Al and database applications
since they provide the logical foundation of formal ontologies. Yet, as classical
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formalisms, DLs do not allow for the proper representation of and reasoning

with defeasible information, as shown up in the following example, adapted

from Giordano et al. [39]: Students do not get tax invoices; employed students

do; employed students who are also parents do not. From a naive (classical)

formalisation of this scenario, one concludes that the notion of employed student

is an oxymoron, and consequently the concept of employed student is unsatisfiable.
A more nuanced view is to represent such statements as defeasible.

Endowing DLs with defeasible reasoning features is therefore a promising
endeavour from the point of view of applications of knowledge representation
and reasoning. Indeed, the past 25 years have witnessed many attempts to
introduce defeasible reasoning capabilities in a DL setting, usually drawing on
a well-established body of research on non-monotonic reasoning (NMR). These
comprise the so-called preferential approaches [19-21, 30, 32, 40,44, 45,57, 58, 63]
and the circumscription-based ones [8,9,60], amongst others [7,36,46-48, 53,
56,62]. Not surprisingly, Franz was among those who first made a meaningful
contribution in this regard [2, 3].

Preferential extensions of DLs turn out to be particularly promising, mainly
because they are based on an elegant, comprehensive and well-studied framework
for non-monotonic reasoning in the propositional case proposed by Kraus, Lehmann
and Magidor [49, 52|, often referred to as the KLM approach. Such a framework is
valuable for a number of reasons. First, it provides for a thorough analysis of some
formal properties that any consequence relation deemed as appropriate in a non-
monotonic setting ought to satisfy. Such formal properties play a central role in
assessing how intuitive the obtained results are and enable a more comprehensive
characterisation of the introduced non-monotonic conditional from a logical point
of view. Second, the KLM approach allows for many decision problems to be
reduced to classical entailment checking, sometimes without blowing up the
computational complexity compared to the underlying classical case. Finally,
it has a well-known connection with the AGM approach to belief revision [38,
59] and with frameworks for reasoning under uncertainty [6,37]. It is therefore
reasonable to expect that most, if not all, of the aforementioned features of the
KLM approach should transfer to KLM-based extensions of DLs too.

Following the motivation laid out above, several extensions to the KLM
approach to description logics have been proposed recently [19,21,23,24, 27,
30, 32, 39,40, 44, 45], each of them investigating particular constructions and
variants of the preferential approach. Here we provide an overview of the formal
foundations of preferential defeasible reasoning in DLs. By that we mean (7) providing
a general and intuitive semantics; (i) showing that the corresponding representation
results (in the KLM sense of the term) hold, linking the semantic constructions
to the KLM-style set of properties, and (iii) presenting an appropriate analysis
of entailment in the context of ontologies with defeasible information with an
associated decision procedure that is implementable.

After a brief introduction to the required background on the DL we consider
here (in Section 2), we introduce the notion of defeasible subsumption along with
a set of KLM-inspired properties it ought to satisfy (Section 3). In particular,



using an intuitive semantics for the idea that “usually, an element of the class C'is
also an element of the class D”, we provide a characterisation (via representation
results) of two important classes of defeasible statements, namely preferential
and rational subsumption. In Section 4, we dicuss two obvious candidates for the
notion of entailment in the context of defeasible DLs, namely preferential and
modular entailment. These turn out not to have all properties seen as important
in a non-monotonic DL setting, mimicking a similar feature in the propositional
case [52]. This is followed in Section 5 by the presentation of a version of rational
entailment satisfying all the required properties, and which can thus be seen as
a suitable candidate for defeasible entailment. In Section 6 we discuss aspects of
defeasible reasoning going beyond defeasible concept inclusion. We conclude in
Section 7 with some pointers to research following on from the work presented
here, and remarks on future related endeavours.

The overview presented in this paper relies heavily on research conducted by
the present authors, et al. [15].

2 Background

Description Logics (DLs) [1] are decidable fragments of first-order logic with
interesting properties and a variety of applications. There is a whole family of
description logics, an example of which is ALC and on which we shall focus in
the present paper. The (concept) language of ALC is built upon a finite set of
atomic concept names C, a finite set of role names R and a finite set of individual

names | such that C, R and | are pairwise disjoint. With A, B, ... we denote
atomic concepts, with r,s,... role names, and with a,b,... individual names.
Complex concepts are denoted with C,D,... and are built according to the

following rule:
Cx=T|L|C|-C|CnC|CcucC|vr.C|3rC

With £ we denote the language of all ALC concepts.

The semantics of £ is the standard set theoretic Tarskian semantics. An
interpretation is a structure Z =g¢r (AT, -T), where AT is a non-empty set called
the domain, and - is an interpretation function mapping concept names A to
subsets AT of AT, role names r to binary relations r* over AZ, and individual
names a to elements of the domain A%, i.e., A7 C AT, vT C AT x AT, o € AL.
Define 1% (z) =qet {y | (z,y) € r*}. We extend the interpretation function -Z to
interpret complex concepts of £ in the following way:

TE =gqet AT, 1T =4et 0, (-C)F =gt AT\ C*
(C [l D)I =def cTn DI, (C (] D)I =def cTupD?
(Ir.C) =4e {x € AT |7 (2) N CT #£ 0}, (Vr.C) =4et {2 € AT | rE(x) C CT}

Given C, D € L, C C D is called a subsumption statement, or general concept
inclusion (GCI). C = D is an abbreviation for both C & D and D C C. An



ALC TBox T is a finite set of GCIs. We denote subsumption statements with
a, fB,...

An interpretation Z satisfies a GCI C' C D (denoted Z I C C D) if CT C DZ.
An interpretation Z is a model of a TBox T'B (denoted Z I+ 7)) if Z I+ « for every
a € T. A statement « is (classically) entailed by T, denoted T |= «, if every
model of 7 satisfies a.

Given C € L, r € R and a,b € |, an assertional statement (assertion, for
short) is an expression of the form a : C or (a,b) : 7. An ALC ABozx A is a finite
set of assertions. Given 7 and A, with KB =4 T U A we denote an ALC
knowledge base, a.k.a. an ontology. This chapter focuses on defeasibility for
description logic TBoxes only, and does not consider the extension to defeasible
knowledge bases that include ABox statements. Various solutions for defeasible
ABox reasoning have been proposed, that can be associated with the present
approach for TBoxes [30, 29, 45, 35].

3 Defeasible concept inclusions

In a sense, class subsumption (alias concept inclusion) of the form C' C D is the
main notion in DL ontologies. Given its implication-like intuition, subsumption
lends itself naturally to defeasibility: “provisionally, if an object falls under C,
then it also falls under D”, as in “usually, students are tax exempted”. In this
respect, a defeasible version of concept inclusion is the starting point for an
investigation of defeasible reasoning in DL ontologies. We also address defeasibility
of the entailment relation in later sections.

Definition 1 (Defeasible Concept Inclusion). Let C, D € L. A defeasible
concept inclusion axiom (DCI, for short) is a statement of the form C' i D.

A DCI of the form C L D is to be read as “usually, an instance of the class C
is also an instance of the class D”. For instance, the DCI

Stud & —3receives. Taxlnv

formalises the example above. Paraphrasing Lehmann [50], the intuition of CCD
is that “if C' were all the information about an object available to an agent, then D
would be a sensible conclusion to draw about such an object”. It is worth noting
that L, just as C, is a ‘connective’ positioned between the concept language
(object level) and the meta-language (that of entailment) and it is meant to be
the defeasible counterpart of the classical subsumption C.

Definition 2 (Defeasible TBox). A defeasible TBox (dTBox, for short)
is a finite set of DClIs.

Given a TBox 7 and a dTBox D, we let KB =g4of 7 U D and refer to it as a
defeasible knowledge base (alias defeasible ontology).



Ezample 1. The following defeasible knowledge base gives a formal specification
for our student scenario:

Stud & —dreceives. TaxInv,
T = {EmpStud C Stud}, D = EmpStud & Treceives. TaxInv,
EmpStud M Parent & —3receives. TaxInv

In the semantic construction later on, it will also be useful to be able to refer
to infinite sets of concept inclusions. Let KBi.s therefore denote a defeasible
theory, defined as a defeasible knowledge base but without the restriction on T
and D to finite sets.

In order to assess the behaviour of the new connective and check it against
both the intuition and the set of properties usually considered in a non-monotonic
setting, it is convenient to look at a set of L -statements as a binary relation of
the ‘antecedent-consequent’ kind.

Definition 3 (Defeasible Subsumption Relation). A defeasible subsumption
relation is a binary relation © C L x L.

The idea is to mimic the analysis of defeasible entailment relations carried
out by Kraus et al. [49] in the propositional case, where entailment is seen as a
binary relation on the set in propositional sentences. Here we adopt the view of
subsumption as a binary relation on concepts of our description language.

Sometimes (e.g. in the structural properties below) we write (C,D) € T
in the infix notation, i.e., as C' T D. The context will make clear when we will
be talking about elements of a relation or statements (DCIs) in a defeasible
knowledge base.

Definition 4 (Preferential Subsumption Relation). A defeasible subsumption
relation 5 is a preferential subsumption relation if it satisfies the following
set of properties, which we refer to as (the DL versions of the) preferential KLM
properties:

C=D, CLFE CCD CCE
I: b ~ ~ 9 ~
(Ref) CLC (LLE) —DCE (And) “CCDNE
(O)CEE,DEE (RW)CED,D;E ( )C§D7CEE
" TCUDCE CLE CANECD

The properties in Definition 4 result from a translation of those for preferential
consequence relations proposed by Kraus et al. [49] in the propositional setting.
They have been discussed at length in the literature for both the propositional
and the DL cases [19, 21,41, 42,49, 52] and we shall not repeat so here.

If, in addition to the preferential properties above, the relation & also satisfies
rational monotonicity (RM) below, then it is said to be a rational subsumption
relation:

RAM) CL D, CU¢Z-FE
( CNnELCD



Rational monotonicity is often considered a desirable property to have, one
of the reasons stemming from the fact that it is a necessary condition for
the satisfaction of the principle of presumption of typicality (more on that in
Section 4).

In what follows, we present a semantics for preferential and rational subsumption
by enriching standard DL interpretations Z with an ordering on the elements of
the domain AZ. The intuition underlying this is simple and natural, and extends
similar work in the propositional case by Shoham [61], Kraus et al. [49], Lehmann
and Magidor [52] and Booth et al. [10-12] to the case for description logics. This
is not the first extension of this kind, as evidenced by the work of Boutilier [14],
Baltag and Smets [4, 5], Giordano et al. [39,41-45], Britz et al. [17-21] and Britz
and Varzinczak [22-27]. The present paper presents a cohesive semantic account
of both preferential and rational subsumption, with accompanying representation
results and computational characterisation based on the standard semantics for
description logics.

Definition 5 (Preferential Interpretation). A preferential interpretation
is a tuple P =qer (AT,-7, <), where (A7, .P) is a (standard) DL interpretation

(which we denote by Ip and refer to as the classical interpretation associated

with P), and <% is a strict partial order on AP (i.e., < is irreflexive and

transitive) satisfying the smoothness condition (for every C € L, if CT # (),

then min_» CT # ()5

Preferential interpretations provide us with a simple and intuitive way to
give a semantics to DCls.

Definition 6 (Satisfaction). Let P be a preferential interpretation and let
C,D € L. The satisfaction relation |- is defined as follows:

- PIFCC D ifCP CDP;

— PIFCLC D if min_» C7 C DP.
If P I «, then we say P satisfies o. P satisfies a defeasible knowledge base KB,
written P I+ KB, if P It « for every a € KB, in which case we say P is a

preferential model of KB. We say C € L is satisfiable w.r.t. KB if there is
a model P of KB s.t. CF # ).

It is easy to see that the addition of the <”-component preserves the truth
of all classical subsumption statements holding in the remaining structure:

Lemma 1. Let P be a preferential interpretation. For every C,D € L, P I+
CCDifand only if Ip IF C C D.

It is worth noting that, due to the smoothness of <, every (classical)
subsumption statement is equivalent, with respect to preferential interpretations,
to some DCI.

¢ Given X C A", with min_» X we denote the set {x € X | for every y € X,y A" z}.



Lemma 2. For every preferential interpretation P, and every C,D € L, P I+
CCDifandonlyif PFCN-DLC 1.

An obvious question that can now be raised is: “How do we know our preferential
semantics provides an appropriate meaning to the notion of DCI?” The following
definition will help us in answering this question:

Definition 7 (P-Induced Defeasible Subsumption). Let P be a preferential
interpretation. Then Tp =qer {(C, D) | P I+ CCD} is the defeasible subsumption
relation induced by P.

The first important result we present here, which also answers the above
raised question, shows that there is a full correspondence between the class
of preferential subsumption relations and the class of defeasible subsumption
relations induced by preferential interpretations. It is the DL analogue of a
representation result proved by Kraus et al. for the propositional case [49, Theorem 3].

Theorem 1 (Representation Result for Preferential Subsumption). A
defeasible subsumption relation & C L x L is preferential if and only if there is
a preferential interpretation P such that T p = L.

What is perhaps surprising about this result is that no additional properties
based on the syntactic structure of the underlying DL are necessary to characterise
the defeasible subsumption relations induced by preferential interpretations.

In addition to preferential interpretations, we are also interested in the study
of modular interpretations, which are preferential interpretations in which the
<-component is a modular ordering:

Definition 8 (Modular Order). Given a set X, < C X x X is modular if
it is a strict partial order, and its associated incomparability relation ~, defined
by x ~ y if neither x < y nor y < x, is transitive.

Definition 9 (Modular Interpretation). A modular interpretation is a
preferential interpretation R = (AR, R <R such that <® is modular.

Intuitively, modular interpretations allow us to compare any two objects
w.r.t. their plausibility. Those that are incomparable are viewed as being equally
plausible. As such, modular interpretations are special cases of the preferential
ones, where plausibility can be represented by any smooth strict partial order.

The main reason to consider modular interpretations is that they provide the
semantic foundation of rational subsumption relations. This is made precise by
our second important result below, which shows that the defeasible subsumption
relations induced by modular interpretations are precisely the rational subsumption
relations. Again, this is the DL analogue of a representation result proved by
Lehmann and Magidor for the propositional case [52, Theorem 5].

Theorem 2 (Representation Result for Rational Subsumption). A defeasible
subsumption relation T C L x L is rational if and only if there is a modular
interpretation R such that Tr = .



It is worth pausing for a moment to emphasise the significance of these two
results (Theorems 1 and 2). They provide exact semantic characterisations of
two important classes of defeasible subsumption relations, namely preferential
and rational subsumption, in terms of the classes of preferential and modular
interpretations, respectively. As we shall see in Section 4, these results form the
core of the investigation into an appropriate form of entailment for defeasible DL
ontologies.

4 Defeasible entailment

From the standpoint of knowledge representation and reasoning, a pivotal question
is that of deciding which statements are entailed by a knowledge base. In the
present section we lay out the formal foundations for that.

4.1 Preferential entailment

In the exploration of a notion of entailment for defeasible ontologies, an obvious
starting point is to consider a Tarskian definition of consequence:

Definition 10 (Preferential Entailment). A statement « is preferentially
entatled by a defeasible knowledge base ICB, written KB =yt <1, if every preferential
model of KB satisfies c.

As usual, this form of entailment is accompanied by a corresponding notion
of closure.

Definition 11 (Preferential Closure). Let KB be a defeasible knowledge base.
With KBjet =det {0 | KB [Fpres a} we denote the preferential closure of KB.

Intuitively, the preferential closure of a defeasible knowledge base ICB corresponds
to the ‘core’ set of statements, classical and defeasible, that should hold given
those in ICB. Hence, preferential entailment and preferential closure are two sides
of the same coin, mimicking an analogous result for preferential reasoning in both
the propositional [49] and the DL [16, 21] cases.

Recall (cf. the discussion following Definition 2) that a defeasible theory
KByt is a defeasible knowledge base without the restriction to finite sets. When
assessing how appropriate a notion of entailment for defeasible ontologies is, the
following definitions turn out to be useful, as will become clear in the sequel:

Definition 12 (KBjnrInduced Defeasible Subsumption). Let KB, be a
defeasible theory. Then Dxp,,, =det {CSD | CCD € KBy} U{CTT-DC L |
CCDe ICBmf} is the dTBox induced by /CBinf and & KBiny =def {(C, D) |
CLDe D;CBW} is the defeasible subsumption relation induced by KB;,;.

So, the dTBox induced by KB,y is the set of defeasible subsumption statements
contained in KBy, together with the defeasible versions of the classical subsumption
statements in KCBj,s. The defeasible subsumption relation induced by KBj,s is
simply the defeasible subsumption relation corresponding to Dxp,,,-



Definition 13. A defeasible theory KBy is called preferential if the subsumption
relation induced by it satisfies the preferential properties in Definition 4.

It turns out that the defeasible subsumption relation induced by the preferential
closure of a defeasible knowledge base KB is exactly the intersection of the
defeasible subsumption relations induced by the preferential defeasible theories
containing 5.

Lemma 3. Let KB be a defeasible knowledge base. Then

L kB*

pref

= m{ L kB | KB C KBins and KBy is preferential}.

It follows immediately that the preferential closure of a defeasible knowledge
base ICB is preferential, and induces the smallest defeasible subsumption relation
induced by a preferential defeasible theory containing CB.

Preferential entailment is not always desirable, one of the reasons being that
it is monotonic, courtesy of the Tarskian notion of consequence it relies on (see
Definition 10). In most cases, as witnessed by the great deal of work in the non-
monotonic reasoning community, a move towards rationality is in order. Thanks
to the definitions above and the result in Theorem 2, we already know where to
start looking for it.

Definition 14 (Modular Entailment). A statement o is modularly entailed
by a defeasible knowledge base KB, written KB |Emod «, if every modular model
of KB satisfies a.

As is the case for preferential entailment, modular entailment is accompanied
by a corresponding notion of closure.

Definition 15 (Modular Closure). Let KB be a defeasible knowledge base.
With KBrog =det {& | KB [Emod @} we denote the modular closure of KB.

Definition 16. A defeasible theory KB is called rational if it is preferential
and kg, is also closed under the rational monotonicity rule (RM).

For modular closure we get a result similar to Lemma 3.

Lemma 4. Let KB be a defeasible knowledge base. Then

Cks:, = ﬂ{ L kB | KB C KBing and KBy is rational}.

That is, the modular closure of a defeasible knowledge base B induces the
smallest defeasible subsumption relation induced by a rational defeasible theory
containing B. However, the modular closure of KB is not necessarily rational.
That is, if one looks at the set of statements (in particular the L -ones) modularly
entailed by a knowledge base as a defeasible subsumption relation, then it need
not satisfy the RM property. This is so because modular entailment coincides
with preferential entailment, as the following result, adapted from a well-known
similar result in the propositional case [52, Theorem 4.2], shows.



Lemma 5. KB .4 = KB -

Hence, modular entailment unfortunately falls short of providing us with
an appropriate notion of defeasible entailment. In what follows, we overcome
precisely this issue.

4.2 Rational entailment

We now present a definition of semantic entailment which is appropriate in
the light of the discussion above. The constructions we are going to present
are inspired by the semantic characterisation of rational closure by Booth and
Paris [13] in the propositional case.

We start by focusing our attention on a subclass of modular orders, referred
to as ranked orders:

Definition 17 (Ranked Order). Given a set X, the binary relation < C X x
X is a ranked order if there is a mapping hr : X — N satisfying the following
convexity property:

— for every i € N, if for some x € X hgr(x) = i, then, for every j such that
0 <j<i, there is ay € X for which hg(y) = j,

and such that for every x,y € X, x <y iff hg(z) < hr(y).

It is easy to see that a ranked order < is also modular: < is a strict partial
order, and, since two objects z,y are incomparable (i.e., z ~ y) if and only
it hg(x) = hr(y), ~ is a transitive relation. By constraining our preference
relations to the ranked orders, we can identify a subset of the modular interpretations
we refer to as the ranked interpretations.

Definition 18 (Ranked Interpretation). A ranked interpretation is a
modular interpretation R = (AR R <R} st. <R is a ranked order.

We now provide two basic results about ranked interpretations. First, all
finite modular interpretations are ranked interpretations.

Lemma 6. A modular interpretation R = (AT R <R) st. AR is finite is a
ranked interpretation.

Next, for every ranked interpretation, the function hg is unique.

Proposition 1. Given a ranked interpretation R = (A™, . <R) there is only
one function hr : AT — N satisfying the convezity property and s.t. for every
r,y € ARz <y iff hr(x) < hr(y).

Proposition 1 allows us to use the function hg(:) to define the notions of
height and layers.



Definition 19 (Height & Layers). Let R = (AR, - R <®) be a ranked interpretation
with characteristic ranking function hg(-). Given an object v € AR, hp(x) is
called the height of x in R. For every ranked interpretation R = (AR R <R)

we can partition the domain AR into a sequence of layers (Lo,...,Ly,...),
where, for every object v € AR, we have x € L; iff hr(z) = i.

Intuitively, the lower the height of an object in an interpretation R, the more
typical (or normal) the object is in R. We can also think of a level of typicality
for concepts: the height of a concept C' € £ in R is the index of the layer to which
the restriction of the concept’s extension to its <®-minimal elements belong, i.e.,
hr(C) =i if ) C minz C® C L;.

Given a set of ranked interpretations, we can introduce a new form of model
merging, ranked union.

Definition 20 (Ranked Union). Given a countable set of ranked interpretations
R = {R1,Ra,...}, a ranked interpretation R™ =go¢ (A%, -1 <) is the ranked
union of R if the following holds:

— AR =4 Hren AR i.e., the disjoint union of the domains from R, where
each R € R has the elements x,y, ... of its domain renamed as xr, Yr, - -
so that they are all distinct in A™;

— xr € AV iff v € AR;

— (zr,yr) €TV If R =R’ and (x,y) € r*;

— for every xg € A™, hoy(zr) = hr(z).

The latter condition corresponds to imposing that xg <™ yr: iff hr(x) < hr:(y).
The following lemma will be useful in what follows.
Lemma 7. Ranked interpretations are closed under ranked union.

Let KB be a defeasible knowledge base and let A be a fixed countably infinite
set. Define

ModA(KB) =gef {R = (AT, R <R) | RIF KB, R is ranked and AR = A}.

The following result shows that the set Moda (KB) suffices to characterise modular
entailment:

Lemma 8. For every KB and every C,D € L, KB Emed CED iff RIFCE D,
for every R € Moda(KB).

Therefore, we can use just the set of interpretations in Moda (KB) to decide
the consequences of B w.r.t. modular entailment.

We can now use the set Moda(KB) as a springboard to introduce what will
turn out to be a canonical modular interpretation for XB. Using Moda(KB) and
ranked union we can define the following relevant model.



Definition 21 (Big ranked model). Let KB be o defeasible knowledge base.
The big ranked model of KB is the ranked model O =go¢ (A°,-©, <) that is
the ranked union of the models in Moda(KCB).

Since ranked interpretations are closed under ranked unions (Lemma 7), we
can state the following:

Lemma 9. O is a ranked model of KB.

Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in the context of defeasible ontologies:

Definition 22 (Rational Entailment). A statement a is rationally entailed
by a knowledge base KB, written KB [t «, if O IF a.

That such a notion of entailment indeed deserves its name is witnessed by
the following result, a consequence of Lemma 9 and Theorem 2:

Corollary 1. Let KB be a defeasible knowledge base and O its big ranked model.
Then {CE D | O+ CL D} is rational.

We shall see below that this form of entailment corresponds to the DL version
of a well-known form of propositional defeasible entailment [52].

In conclusion, rational entailment is a good candidate for the appropriate
notion of consequence we have been looking for. Of course, a question that arises
is whether a notion of closure, in the spirit of preferential and modular closures,
that is equivalent to it can be defined. In the next section, we address precisely
this matter.

5 Rational closure for defeasible knowledge bases

We now turn our attention to the exploration, in a DL setting, of the well-
known notion of rational closure of a defeasible knowledge base as studied by
Lehmann and Magidor [52]. For the most part, we shall base the presentation
of the constructions on the work by Casini and Straccia [30,32], amending it
wherever necessary. An alternative semantic characterisation of rational closure
in DLs has also been proposed by Giordano et al. [44, 45]; their characterisation
and the one we present here are equivalent [35, Appendix A].

As we shall see, rational closure provides a proof-theoretic characterisation
of rational entailment and the complexity of its computation is no higher than
that of computing entailment in the underlying classical DL.

5.1 Rational closure and a correspondence result

Rational closure is a form of inferential closure based on modular entailment
Emod, but it extends its inferential power. Such an extension of modular entailment
is obtained by formalising the already mentioned principle of presumption of



typicality [51, Section 3.1]. That is, under possibly incomplete information, we
always assume that we are dealing with the most typical possible situation that
is compatible with the information at our disposal. We first define what it means
for a concept to be exceptional, a notion that, as we shall see, is central to the
definition of rational closure:

Definition 23 (Exceptionality). Let KB be a defeasible knowledge base and
C € L. We say C is exceptional in KB if KB Emea T -C. A DCICL D is
exceptional in KB if C is exceptional in KB.

A concept C is considered exceptional in a knowledge base B if it is not
possible to have a modular model of KB in which there is a typical object
(i.e., an object at least as typical as all the others) that is in the interpretation
of C. Intuitively, a DCI is exceptional if it does not concern the most typical
objects, i.e., it is about less normal (or exceptional) ones. This is an intuitive
translation of the notion of exceptionality used by Lehmann and Magidor [52] in
the propositional framework, and has already been used by Casini and Straccia [30]
and Giordano et al. [45] in their investigations into defeasible reasoning for DLs.

Applying the notion of exceptionality iteratively, we associate with every
concept C' a rank in KB, which we denote by rankxp(C). We extend this to
DCIs and associate with every statement C' T D a rank, denoted rankxcgs(C' K D):

1. Let rankep(C) = 0, if C is not exceptional in KB, and let rankep(CSD) =0
for every DCI having C' as antecedent, with rankicg(C) = 0. The set of DCIs
in D with rank 0 is denoted as D" .

2. Let rankep(C) = 1, if C does not have a rank of 0 and it is not exceptional
in the knowledge base KB' composed of 7 and the exceptional part of D,
that is, KB' = (T, D\ D). If rankxs(C) = 1, then let rankxs(C 5 D) =1
for every DCI C' T D. The set of DCIs in D with rank 1 is denoted D",

3. In general, for ¢ > 0, a concept C is assigned a rank of ¢ if it does not have
a rank of i — 1 and it is not exceptional in KB* = (T,D\ U;;é D;a”k>. If
rankis(C) = 4, then rankeg(C & D) = 14, for every DCI C' I D. The set of
DCIs in D with rank i is denoted D"

4. By iterating the previous steps, we eventually reach a subset £ C D such
that all the DCIs in £ are exceptional (since D is finite, we must reach such
a point). If £ # (), we define the rank of the DCIs in £ as oo, and the set £
is denoted Drank,

The notion of rank can also be extended to GCIs as follows: rankxp(C C D) =
rankis(C).

Following on the procedure above, D is partitioned into a finite sequence
(Drank ... Drank prank) (n > 0), where D"k may possibly be empty. So, through
this procedure we can assign a rank to every DCI.

It is easy to see that for a concept C' to have a rank of co corresponds to not
being satisfiable in any model of KB, that is, KB Emeq C C L.

Lemma 10. rankicg(C) = oo iff KB Emea C C L.



Ezample 2. Let KB = T UD, where 7 and D are as in Example 1, ie., T =
{EmpStud C Stud} and

Stud & —3receives. TaxInv,

D EmpStud & Jdreceives. TaxInv,

EmpStud M Parent L —3receives. TaxInv

Examining the concepts on the LHS of each DCI in KB, one can verify that
Stud is not exceptional w.r.t. KB. Therefore, rankicp(Stud) = 0. We also find
that rankicg(EmpStud) # 0 and rankicg(EmpStud M Parent) # 0 because both
concepts are exceptional w.r.t. KB.

KB is composed of T and D \ Drenk| which consists of the DCIs in D except
for Stud © —3receives. TaxInv. We find that EmpStud is not exceptional w.r.t. KB'
and therefore rankicg(EmpStud) = 1. Since EmpStud M Parent is exceptional
w.r.t. KB, rankis(EmpStud M Parent) # 1. Similarly, KB? is composed of T
and {EmpStud M Parent [ —Jreceives. TaxInv}. We have that EmpStud M Parent is
not exceptional w.r.t. B2 and therefore rankxs(EmpStud M Parent) = 2.

Adapting Lehmann and Magidor’s construction for propositional logic [52],
the rational closure of a defeasible knowledge base B is defined as follows:

Definition 24 (Rational Closure). Let KB be a defeasible knowledge base
and C,D € L.

1. C L5 D is in the rational closure of KB if
rankxp(C M D) < rankip(C M —=D) or rankkep(C) = oo.
2. C C D is in the rational closure of KB if rankip(C M —D) = oco.

Informally, the definition above says that the DCI C' T D is in the rational
closure of KB if the modular models of ICB tell us that some instances of C'M1 D
are more plausible than all instances of C' 11 =D, while the GCI C C D is in the
rational closure of ICB if the instances of C'T =D are impossible. The attentive
reader will note that this definition has some similarity with the epistemic
entrenchment orderings used in belief revision [38, 59].

Ezample 2. (continued) Applying the definition above to the knowledge base
in Example 2, we can verify that Stud T —Jreceives.TaxInv is in the rational
closure of B because rankig(Stud M —3receives. TaxInv) = 0 and rankyg(Stud M
Jreceives. TaxInv) > 0. The latter can be derived from the fact that Stud M

dreceives. TaxInv is exceptional w.r.t. KB.
Similarly, one can derive that both DCIs EmpStud L dreceives. TaxInv and
EmpStud 1 Parent T —3receives. TaxInv are in the rational closure of KB as well.
O

We now state the main result of the present section, which provides an answer
to the question raised at the end of Section 4.2.



Theorem 3. Let KB be a defeasible knowledge base having a modular model. A
statement « is in the rational closure of KB iff KB =at .

An easy corollary of this result is that rational closure preserves the equivalence
between GCIs (of the form C' T D) and their defeasible counterparts (C' M
~DL1).

Corollary 2. C' C D is in the rational closure of a defeasible knowledge base KB
iff CMM—D L L is the restriction of the closure of KB under rational entailment
to defeasible concept inclusions.

Rational entailment from a knowledge base can therefore be formulated as
membership checking of the rational closure of the knowledge base. Of course,
from an application-oriented point of view, this raises the question of how to
compute membership of the rational closure of a knowledge base, and what is
the complexity thereof. This is precisely the topic of the next section.

5.2 Rational entailment checking

We now present an algorithm to effectively check the rational entailment of a
DCI from a defeasible knowledge base. Our algorithm is based on the one given
by Casini and Straccia [30] for defeasible ALC.

Let KB = T UD be a defeasible knowledge base. The first step of the
algorithm is to assign a rank to each DCI in D. Central to this step is the
exceptionality function Exceptional(-), which computes the semantic notion of
exceptionality of Definition 23. Given a set of DCIs D’ C D, Exceptional(T,D’)
returns a subset £ of D’ such that £ is exceptional w.r.t. T UD'.

Function Exceptional(T,D’)

Input: 7 and D' C D
Output: £ C D’ such that £ is exceptional w.r.t. 7 U D’
E+0
foreach CC D € D' do
if T=[1D’ C —~C then
| £« Eu{CcL D)

R wW N
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return &£

The function makes use of the notion of materialisation to reduce concept
exceptionality checking to entailment checking:

Definition 25 (Materialisation). Let D be a set of DCIs. With D =ger {—~CU
D | CL D e D} we denote the materialisation of D.

We can show that, given KB =T UD and D' C D, if T =[]D' C -C, a
DCI C £ D is exceptional w.r.t. T UD’, thereby justifying the use of Line 3 of
function Exceptional.



Lemma 11. For KB =T UD, if T = [|D C =C then C C D is exceptional
w.r.t. TUD.

While the converse of Lemma 11 does not hold, it follows from Lemma 13
below that this reduction to classical entailment checking, when applied iteratively
(lines 4-14 in function ComputeRanking below), fully captures the semantic
notion of exceptionality of Definition 23.

Ezample 2. (continued) If we feed the knowledge base in Example 2 to the
function Exceptional(-), we obtain the output

& = {EmpStud L Treceives. TaxInv, EmpStud M Parent  —3receives. TaxInv}.

This is because both concepts on the LHS of the DCIs in D’ are exceptional
w.r.t. B in Example 2.

We now describe the overall ranking algorithm, presented in the function
ComputeRanking(-) below. The algorithm makes a finite sequence of calls to
the function Exceptional(-), starting from the knowledge base B = T UD. The
algorithm terminates with a partitioning of the axioms in the dTBox, from which
a ranking of axioms can easily be obtained.

Function ComputeRanking(KB5)
Input: CB=TUD
Output: KB* = 7" UD" and a partitioning R = {Dy, ..., D, } for D*
T T
D* + D
R+ 10
repeat
10
50 < D*
&1 < Exceptional(7™, &)
While 5i+1 7é 57, do
14 1+1

L 5i+1 — Exceptional(T*, 51)
11 D%, « &
12 T+ T"U{CCD|CLDE€ED}
13 D* + D*\ D,
14 until D5 =0
15 for j < 1 to i do
16 Dj_l < 5]‘_1 \5]
17 R+ RU {Dj_l}

18 return KB* =T UD*, R

© 0N oL AN

i
o

We initialise 7* to 7 and D* to D (Lines 1 and 2 of ComputeRanking). We
then repeatedly invoke the function Exceptional to obtain a sequence of sets of



DCIs &, &1, ..., where & = D* and each &; 14 is the set of exceptional axioms
in & (Lines 4-14 of ComputeRanking(-)).

Now, let Cp+ =qet {C | C & D € D*}, i.e., Cp- is the set of all antecedents
of DCIs in D*. The exceptionality ranking of the DCIs in D* computed by
Exceptional(-) makes use of 7*, D*, and Cp-. That is, it checks, for each concept
C € Cp«, whether T* |= [|D* C —C. In case C is exceptional, every DCI
C LT D € D* is exceptional w.r.t. KB* = 7* UD* and is added to the set &;.

If & # &, then we call Exceptional(-) for 7* U &, defining the set &, and
so on. Hence, given KB* = T* U D*, we construct a sequence &, &1, ... in the
following way, for ¢ > 0:

— & =det D*
— &i+1 =det Exceptional(T*,&;)

Ezample 2. (continued) Using the knowledge base of Example 2, we initialise
T* as {EmpStud C Stud} and let

Stud & —3receives. TaxInv,
D" = EmpStud & Jreceives. Taxlnv,
EmpStud M Parent I —3receives. TaxInv

We then obtain the following exceptionality sequence:

Stud © —Jreceives. TaxInv,
& = EmpStud & Jdreceives. TaxInv,
EmpStud M Parent I —3receives. TaxInv

EmpStud & Jreceives. TaxInv,
b EmpStud M Parent I —3receives. TaxInv

&> = {EmpStud M Parent L —Jreceives. TaxInv}

Since D* is finite, the construction will eventually terminate with a fixed point
Ernx = Exceptional (T*, &ix). If this fixed point is non-empty, then the axioms in
there are said to have infinite rank. We therefore set DX as &ux (Line 11 of
ComputeRanking(+)), and the classical translations of these axioms are moved to
the TBox. Hence we redefine the knowledge base in the following way (Lines 12
and 13 of ComputeRanking(-)):

—T*+«T*U{CCD|CLDeD:};
— D* « D*\ D

Function ComputeRanking(:) must terminate since D is finite, and at every
iteration, D* becomes smaller (hence, we have at most |D| iterations). In the
end, we obtain a knowledge base KB* = T* U D* which is modularly equivalent
to the original knowledge base KB = T UD (see Lemma 12 below), in which D*
has no DCIs of infinite rank (all the strict knowledge ‘hidden’ in the dTBox has



been moved to the TBox). In the following, we say that such a knowledge base
is in rank normal form.

Once we have obtained the knowledge base KB* = T* U D* and the final
sequence &y, &1, ..., &, we partition the set D* into the sets Dy,...,D,, for
some n > 0 (Lines 15-17 of ComputeRanking(-)).

Ezample 2. (continued) For KB as in Example 2, we obtain the sequence:
Dy = {Stud & —3receives. TaxInv}
Dy = {EmpStud L Freceives. TaxInv}
Dy = {EmpStud M Parent  —3receives. TaxInv}

At this stage, we have moved all the classical information possibly ‘hidden’
inside the dTBox to the TBox, and ranked all the remaining DCIs, where the
rank of a DCI is the index of the unique partition to which it belongs, defined
as follows:

Definition 26 (Ranking). For every C,D € L:

— tk(C) =qet i, 0 < i < m, if [1&; is the first element in ([1&o,...,[1En) s.t.
T ¥~MN&ENCE L;

— rk(C) =gef 00 if there is no such [&;;

- I’k(C E D) =def rk(C)

Remark 1. For every i < j <n, E=[1& C[]&.
Remark 2. For every i < j <n, D, ND; = 0.

To summarise, we transform our initial knowledge base KB = TUD, obtaining
a modularly equivalent knowledge base KB* = T* U D* (see Lemma 12 below)
and a ranking of DCIs in the form of a partitioning of D*. The main difference
between ComputeRanking(-) and the analogous procedure by Casini and Straccia |30]
is the reiteration of the ranking procedure until D = @ (lines 4-14 in ComputeRanking(-)).
While the two procedures behave identically in the case where there are no DCIs
CE D s.t. rankep(C & D) = oo in D, the original procedure [30] did not handle
all the cases correctly in which there is strict information ‘hidden’ inside the
dTBox.

Given the knowledge base KB* = T* U D*, we can now define the main
algorithm for deciding whether a DCI C' & D is in the rational closure of KB.
To do that, we use the same approach as in the function Exceptional(-), that is,
given KB* = T* UD* and our sequence of sets &, ..., E,, we use the TBox T*
and the sets of conjunctions of materialisations [ &, ...,[]&n.

Definition 27 (Rational Deduction). Let KB =T UD and let C,D € L. We
say that C = D is rationally deducible from KB, denoted KB tox C & D, if
T* =[1&NC C D, where[|E; is the first element of the sequence [ &, .. .,[1En
s.t. T* = [& C =C. If there is no such element, KB - CCD if T* = C C D.



Function RationalClosure(KB, «)

Input: KB = 7 U D, the corresponding KB* = T* U D*, the sequence
Eo,...,En, and a query « = C' T D.
Output: true if KB+t C T D, false otherwise
140
while 7* =& NCCE L andi <n do
| iei+1
if i <n then
L return 7 =[1&NCC D
else
L return 7" =CLC D

(3 O U N
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Observe that Bt C C D if and only if KB b, CT1-D L 1) ie., if and
only if KBt CM =D C L (that is to say, T* = C C D).

The algorithm corresponding to the steps above is presented in the function
RationalClosure(-) below.

Ezample 2. (continued) Let B be as in Example 2 and assume we want to
check whether EmpStud & Jreceives. TaxInv is in the rational closure of ICB. Then,
the while-loop on Line 2 of function RationalClosure(-) terminates when i = 1.
At this stage, [1€; = (=EmpStud U Jreceives. TaxInv) M (=EmpStud U —~Parent U
—3Jreceives. TaxInv). Given this, one can check that 7* (£ [1& N1 C C 1, ie.,
{EmpStud C Stud} £ (-EmpStud U Jreceives. TaxInv) M (=EmpStud U —Parent U
—Jreceives. TaxInv) M EmpStud C L.

Finally, we can confirm that 7* £ [& M C C D, i.e., {EmpStud C Stud} p=
(—EmpStud U Freceives. TaxInv) M (=EmpStud L —Parent L —Jreceives. TaxInv) M
EmpStud C Jreceives. TaxInv.

Before we state the main theorem of this section, we need to establish the
correspondence between the ranking function rankxs(-) presented in Section 5.1
in the construction of the rational closure of B and linked by Theorem 3 to the
definition of rational entailment, and the ranking function rk(-) of Definition 26
used in the above algorithm. We also need to establish that the normalisation
of a knowledge base by our algorithm maintains modular equivalence.

Lemma 12. Let KB = T UD and let KB* = T* UD* be obtained from KB
through function ComputeRanking(-). Then KB and KB* are modularly equivalent.

Lemma 13. For every defeasible knowledge base KB =T UD and every C € L,
rankig(C) = rk(C).

Now we can state the main theorem, which links rational entailment to
rational deduction via Theorem 3.



Theorem 4. Let KB = T UD and let C;,D € L. Then KB ki C S D iff
KB e C S D.

As an immediate consequence, we have that the function RationalClosure(-)
is correct w.r.t. the definition of rational closure in Definition 24.

Corollary 3. Checking rational entailment is EXPTIME-complete.

Hence entailment checking for defeasible ontologies is just as hard as classical
subsumption checking.

We conclude this section by noting that although rational closure is viewed as
an appropriate form of defeasible reasoning, it does have its limitations, the first
of which is that it does not satisfy the presumption of independence [51, Section
3.1]. To consider a well-worn example, suppose we know that birds usually fly
and usually have wings, that both penguins and robins are birds, and that
penguins usually do not fly. That is, we have the following knowledge base:
KB = {Bird L Flies, Bird S Wings, Penguin C Bird, Robin C Bird, Penguin  —Flies}.
Rational closure allows us to conclude that robins usually have wings, since they
are viewed as typical birds, thereby satisfying the presumption of typicality.
But with penguins being atypical birds, rational closure does not allow us to
conclude that penguins usually have wings, thus violating the presumption of
independence which, in this context, would require the atypicality of penguins
w.r.t. flying to be independent of the typicality of penguins w.r.t. having wings.

This deficiency is well-known, and there are other forms of defeasible reasoning
that can overcome this, most notably lexicographic closure [31], relevance closure
[33], and inheritance-based closure [34,32]. But note that the presumption of
independence is propositional in nature. In fact, the DL version of lexicographic
closure is essentially a lifting to the DL case of a propositional solution to the
problem [51].

What is perhaps of more interest is the inability of rational closure to deal
with defeasibility relating to the non-propositional aspects of descriptions logics.
For example, Pensel and Turhan [54, 55] have shown that rational closure across
role expressions does not always support defeasible inheritance appropriately.

Suppose we know that bosses are workers, do not have workers as their
superiors, and are usually responsible. Furthermore, suppose we know that workers
usually have bosses as their superiors. We thus have the knowledge base:

Boss = Worker,
Boss = —3hasSuperior.Worker,
Boss L Responsible,
Worker & JhasSuperior.Boss

KB =

Since workers usually have bosses as their superiors, and bosses are usually
responsible, one would expect to be able to conclude that workers usually have
responsible superiors. But rational closure is unable to do so. From the perspective
of the algorithm for rational closure, this can be traced back to the use of
materialisation (Definition 25) when computing exceptionality, as Pensel and
Turhan [54] show. A more detailed semantic explanation for this inability is still
forthcoming, though.



6 Beyond defeasible concept inclusion

Defeasible reasoning in description logics extends beyond defeasible concept
inclusion. In this section, we outline two such extensions following on from
the work presented here, firstly to account for named individuals in defeasible
knowledge bases, and secondly to introduce defeasible class descriptions.

The introduction of defeasible reasoning also for ABox reasoning is a necessary
extension of the results we have presented in this chapter. We want to be able
to derive assertions of the kind “Presumably, the individual a falls under the
concept C”, and, in the present framework, the natural way of doing it would be
to model the presumption of typicality also w.r.t. the individuals named in the
ABox, that is, to maximise the amount of defeasible information we associate
with each individual: If all we know about Ann is that she is a student, we want
to be able to conclude that presumably Ann does not get a tax invoice. The main
technical problem in the present framework is the possibility of having multiple
distinct configurations that maximise the presumption of typicality w.r.t. the
individuals [30, Example 7]. Different solutions have been proposed [30,55, 45,
29, 35], but, as mentioned in Section 2, we are not going to introduce here the
different proposals regarding the introduction of defeasible reasoning for the
ABox.

The systems proposed by Giordano and others [39,40,44,45] introduce an
operator T (typical) associated to the concepts. This allows extra expressivity
in modelling defeasible information: an inclusion like Stud M —3receives. TaxInv C
T(Stud), indicating that the students that do not receive the a tax invoice
must be considered typical students, is not expressible in a language using only
defeasible subsumptions. However, in most of the systems they introduce, T
can be used only in expressions of the form T(C) C D, which is interpreted
exctly as an expression C'C D. Booth and others [10] have shown that, even at
the propositional level, using freely an operator like T creates the possibility of
multiple configurations satisfying the presumption of typicality, in a way that,
from the formal point of view, is analogous to the problem registered working
with the ABoxes.

Given the special status of subsumption in DLs in particular and the historical
importance of argument forms and entailment in logic in general, the bulk of
the effort in non-monotonic reasoning has quite naturally been spent on the
definition of a proper account of defeasible subsumption and the characterisation
of appropriate notions of defeasible entailment.

However, given the importance of concept descriptions in DLs, an extension of
this work to also represent defeasible classes is called for. This includes the ability
to represent notions such as plausible value or existential restrictions in complex
concept descriptions [17, 23,24, 27]. There are several ways to accomplish this,
and we focus here on one such proposal.

We could, for example, ask whether the constraint that workers usually
have bosses as their superior is necessarily correctly captured by the defeasible
subsumption: Worker C3hasSuperior.Boss. An alternative reading of the phrase is



that all workers have some superior, who is usually a boss. It is therefore the class
description JhasSuperior.Boss which is defeasible. rather than the subsumption
statement. This can be captured by extending the concept language of ALC as
follows:

C:=T|L|C|=C|CnC|CUC|Vr.C|IrC|¥r.C|dr.C
With £ we denote the extended language of all (possibly defeasible) ALC concepts.

Definition 28. Let P = (A7 .7 <p) be a preferential interpretation. Let r € R
and C € C. The truth conditions for defeasible universal restriction ¥r.C' and
strict existential restriction Jr.C are given by:

Wr.C)P =qet {z € AP | min<,, r”(z) C CT};
(Fr.C)P =qet {x € AP | min, 77 (z) N CP £ 0}.

That ~r.C' captures the notion of strict existential restriction follows since,
not only does the semantics require that some r-filler be in C”, but it also
demands that some most preferred r-filler be in C*. In contrast, defeasible
universal (value) restriction relaxes the condition that all r-fillers be in C7,
requiring only that all most preferred r-fillers be in C%.

Definition 28 now allows us to state that every worker has some typical
superior who is a boss, i.e., Worker C JhasSuperior.Boss, or that any superior of
a worker is usually a boss, i.e., Worker C ¥hasSuperior.Boss.

The defeasible quantifiers of Definition 28 are based on a single order on
objects, but this generalises naturally to a parameterised ordering on either
objects or role interpretations [23,27], the details of which we omit here. The
ramifications of extending the language with defeasible quantification have also
been investigated for modal logics, where it assumes the form of defeasible
modalities [25, 26].

7 Concluding Remarks

In this paper we have provided an overview of a specific approach to defeasible
reasoning — one that is based on work initiated by Kraus, Lehmann and Magidor
for the propositional case [49,52]. This approach has a number of attractive
characteristics: It has a simple and intuitive semantics for defeasible subsumption
in description logics that is general enough to constitute the core framework
within which to investigate defeasible extensions to DLs. It also allows for the
characterisation of two forms of defeasible subsumption relations — preferential
and rational subsumption — providing weight to the claim that the semantic
constructions are intuitively appropriate. In addition, it provides the basis for
defining an appropriate form of defeasible entailment — a description logic
version of what is known as rational closure in the propositional case. Moreover,
it comes equipped with an algorithm for computing the DL version of rational
closure with computational complexity that is no worse than the complexity



of entailment checking in ALC. Importantly from a practical perspective, the
algorithm can be reduced to a number of classical entailment checks, which
means that it can be implemented on top of existing (highly optimised) description
logic reasoners. In terms of performance, a relatively naive version of such an
algorithm has already been shown to scale well in practice [28].

Section 6 touched on some ways in which defeasible reasoning for description
logics has already been extended beyond defeasible concept inclusion, but all
these proposals are only preliminary investigations with much work that still
needs to be done. Further topics for future research include the study of role-
based defeasible constructors [23, 24, 27] and the investigation of defeasible versions
of query answering [64]. Finally, a somewhat different area for future exploration
is one that is aimed at exploiting the well-known connection between belief
revision and rational consequence in the propositional case [38]. Given this
connection on the propositional level, it seems reasonable to expect that the
results presented in this paper can form the basis of a different perspective on
belief revision for description logics.
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