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Abstract

The large-scale development of high-throughput sequencing technologies has allowed the genera-

tion of reliable omics data related to various regulatory levels. Moreover, integrative computational

modeling has enabled the disentangling of a complex interplay between these interconnected levels

of regulation by interpreting concomitant large quantities of biomedical information (‘big data’)

in a systematic way. In the context of human disorders, network modeling of complex gene-gene

interactions has been successfully used for understanding disease-related dysregulation and for

predicting novel drug targets to revert the diseased phenotype.

Recent evidence suggests that changes at multiple levels of genomic regulation are responsible

for the development and course of multifactorial diseases. Although existing computational ap-

proaches have been able to explain cell-type-specific and disease-associated transcriptional regula-

tion, they so far have been unable to utilize available epigenetic data for systematically dissecting

underlying disease mechanisms.

In this thesis, we first provided an overview of recent advances in the field of computational

modeling of cellular systems, its major strengths and limitations. Next, we highlighted various

computational approaches that integrate information from different regulatory levels to under-

stand mechanisms behind the onset and progression of multifactorial disorders. For example, we

presented INTREGNET, a computational method for systematically identifying minimal sets of

transcription factors (TFs) that can induce desired cellular transitions with increased efficiency.

As such, INTREGNET can guide experimental attempts for achieving effective in vivo cellular

transitions by overcoming epigenetic barriers restricting the cellular differentiation potential. Fur-

thermore, we introduced an integrative network-based approach for ranking Alzheimer’s disease

(AD)-associated functional genetic and epigenetic variation. The proposed approach explains how

genetic and epigenetic variation can induce expression changes via gene-gene interactions, thus

allowing for a systematic dissection of mechanisms underlying the onset and progression of multi-

factorial diseases like AD at a multi-omics level. We also showed that particular pathways, such as

sphingolipids (SL) function, are significantly dysregulated in AD. In-depth integrative analysis of

these SL-related genes reveals their potential as biomarkers and for SL-targeted drug development

for AD. Similarly, in order to understand the functional consequences of CLN3 gene mutation in

vii



Batten disease (BD), we conducted a differential gene regulatory network (GRN)-based analysis

of transcriptomic data obtained from an in vitro BD model and revealed key regulators maintaining

the disease phenotype.

We believe that the work conducted in this thesis provides the scientific community with a valu-

able resource to understand the underlying mechanism of multifactorial diseases from an integra-

tive point of view, helping in their early diagnosis as well as in designing potential therapeutic

treatments.
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Chapter 1

General Introduction

The remarkable development of high-throughput sequencing technologies has enabled the col-

lection of a variety of “omic” modalities for various human diseases, generated at the whole

genome-level, including genomic, epigenomic, transcriptomic, proteomic and metabolomic data.

Computational analysis of such datasets has provided compelling evidence for various genetic,

epigenetic and transcriptional changes to be associated with the onset and progression of vari-

ous human disorders [102, 306]. Owing to the multifactorial nature of most of these disorders,

recent advancements in computational disease modeling, by integrating regulatory information

from different levels, provide a new framework for understanding the complex nature of human

health and disease. For example, modelling of complex gene interaction networks has been very

useful for disease modelling [143, 13, 182] and for disentangling the interplay between differ-

ent regulatory layers [193, 93, 195]. These regulatory network models constitute the starting

point for the identification of key regulatory circuits and motifs within large-scale interaction

datasets built from genome-wide gene expression profiling, corresponding to the most influen-

tial interactions determining network stability, or triggering disease progression or differentiation

[143, 13, 303, 197]. However, integrative network modelling approaches –i.e. linking different

regulatory layers– [193, 93, 195, 104] are still scarce, which hampers the possibility of studying

the crosstalk established among regulatory layers for determining a given phenotype or mediating

phenotypic transitions [73]. As such, developing tailor-made computational models is a crucial

step in understanding the contributions of genomic, epigenomic, and transcriptomic landscapes in

cellular circuitry, lineage specification, and the onset and progression of human disease.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 In vitro applications of computational disease modeling

The startling breakthrough of obtaining induced pluripotent stem cells (iPSCs) from differen-

tiated fibroblasts by over-expressing a set of transcription factors (TFs) –usually referred to as

cellular reprogramming– laid the foundation of in vitro human disease modeling and downstream

applications [70]. iPSCs-based disease models have allowed the generation of patient-specific

differentiated cell types, overcoming the gap between studies using animal-based disease mod-

els and pre-clinical therapeutic research [268, 256]. This disease-in-a-dish technology has pro-

vided new avenues for understanding functional dysregulation associated with diseases, discover-

ing disease-related genes and promoting personalized medicine [140, 48]. Beside understanding

disease mechanisms, these iPSCs-based disease models can be used for drug screening, in order

to mitigate disease phenotypes by targeting particular pathological molecular mechanisms iden-

tified by analysing these models [268]. Owing to the complications in obtaining specialized cell

types and tissue samples for experimental studies [97], researchers are relying on using iPSCs

to generate more representative models for studying human disease. For example, a schematic

illustration of generating an iPSCs-based neurological disease model is shown in Figure 1, where

patient-specific differentiated cell types are obtained from somatic cells of a patient.

Figure 1: Workflow of in vitro iPSCs-based disease modeling

The traditional workflow of generating iPSCs-based disease models by reprogramming patient-

specific somatic cells poses significant challenges in terms of time and resources [210, 305].

Similar to reprogramming, where one wants to differentiate iPSCs into a particular lineage and

a specific mature cell type, trans-differentiation aims at obtaining the same cell type of interest

2



CHAPTER 1. GENERAL INTRODUCTION

without undergoing an intermediate pluripotent state. For example, researchers have been able to

successfully achieve a directed conversion of human dermal fibroblasts into cardiac progenitors

by over-expressing the TFs ETS2 and MESP1 [118], contributing to the paradigm of regenerative

medicine for treating cardiovascular diseases. Although directed cellular conversions dramatically

reduced the time required for obtaining a specific cellular disease model, the identification of effi-

cient TFs, i.e. to achieve a successful conversion, remained a trial-and-error experimental process,

limiting its utility and applicability. To this end, various computational methods have been devel-

oped to speed up this process by utilizing transcriptomic data sets and systematically predicting

candidate TFs that can convert one fully differentiated cell type into another [59, 232, 198]. How-

ever, despite these developments, limited cellular conversion efficiency still represents a major

problem that has not yet been solved by these methods, limiting the application of this technique

in regenerative medicine.

Experimental evidence suggests that only including information on transcription, i.e. expression

profiles, is insufficient for identifying a suitable set of TFs that can produce efficient cellular con-

version, as it is the interplay of epigenetic and transcriptional regulation that mediates cellular

conversion [191, 137, 244]. Dysregulation at these regulatory levels has been found to disrupt

physiological cellular differentiation and lies at the core of many disorders [161, 295], requiring

an ex vivo or in vitro application for the development of novel treatment strategies. For exam-

ple, mesenchymal stem cells (MSCs) represent a rare stem cell type whose in vitro expansion

is vital for obtaining sufficient amounts of cells for treating various heart- [5, 174, 226, 123],

brain- [122, 178, 162] and wound healing- [300, 301] related disorders. However, progressive

spontaneous differentiation and aging of MSCs may occur during expansion, both of which can

be modulated by extrinsic epigenetic signals such as histone H3 acetylation, playing a key role

in regulating these intricate processes [161]. Similarly, epigenetic mechanisms have been found

to be crucial for regulating B-cell maturation and their dysregulation has been associated to the

initiation and acceleration of multiple autoimmune diseases such as systemic lupus erythematosus

[296, 297, 298] and rheumatoid arthritis [184, 95, 184]. Taken together, this evidence suggests that

epigenetic mechanisms, along with other regulatory layers, play a crucial role in normal cellular

differentiation processes. As such, generating computational disease models by integrating epige-

netic and transcriptomic information can provide deeper insights into the underlying mechanisms,
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allowing us to predict specific external stimuli (e.g. TF over-expression or compound-based in-

duction) that can overcome the epigenetic barriers restricting the differentiation potential of cells

in different disorders.

1.2 Reconstruction of integrative cell-type-specific network models

Modeling human diseases by network-based approaches demands the reconstruction of reliable

network models that are context-specific and explain the regulation of gene expression program.

It has become increasingly clear that it is the cross-talk between transcriptomic and epigenetic

layers that regulates gene expression programs across various human cell types [53, 274, 41]. In

addition, epigenetic mechanisms, such as CpG DNA methylation [238, 164], histone modifica-

tions [67, 44] and chromatin accessibility [203, 68] have been shown to be an important factor in

controlling and predicting the variability of gene expression signatures across different cell and tis-

sue types. A few methods that acknowledge the importance of these different, but interconnected

layers of regulation in controlling gene expression programs exist, all suggesting that integrating

information from both layers to generate more precise network models of human cell and tissue

types is the way forward [204, 245, 113, 175, 64]. Most of these methods rely on the integration of

active enhancer information with transcriptomic profiles and position weight matrix (PWM)-based

TF-binding predictions to link regulators with their target genes.

Although existing integrative methods for reconstructing network models for different cell and

tissue types provide meaningful insights for understanding the underlying mechanisms of gene

regulation, these approaches suffer from some important limitations. Foremost, these methodolo-

gies usually rely on histone modification marks for active enhancer identification (H3K27ac) to

predict active enhancer regions and associate them to their target genes based on ad hoc criteria,

such as the nearest gene or all genes within a defined range. Such enhancer annotations might

lead to the inference of false-positive (and -negative) interactions as it has been widely known

and also experimentally verified that enhancers do not necessarily act on the closest promoter,

but may also bypass neighbouring genes to act on more distant genes along the same as well as

a different chromosome [100, 109]. Secondly, these approaches rely on PWM-based predictions

of TF bindings in regulatory regions to associate regulator TFs with their respective target genes.
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Such PWM-based predictions might lead to the inference of many false-positive interactions due

to the detection of false-positive motifs, as indicated by existing studies [313, 163]. Lastly, these

methods lack systematic benchmarking of predictive network models against experimental cell-

type-specific TF chromatin immunoprecipitation (ChIP) sequencing (Seq) data. These limitations

suggest that there is still a need for a more sophisticated integrative computational method that

relies only on experimental data from different regulatory levels to reconstruct reliable context-

specific networks. Furthermore, systematic benchmarking of these reconstructed networks should

be carried out to prove their context-specificity. Moreover, the application of such tailor-made

integrative network models is yet to be explored in the context of predicting combinations of TFs

that could produce highly efficient cellular conversions between two cell types of interest.

1.3 Network-based modeling in Alzheimer’s disease

Variations at multiple levels of genomic regulation, including genetic aberrations (e.g. single

nucleotide polymorphisms [SNPs]), epigenetic (e.g. DNA methylation) and gene expression

changes, are known to be associated with various human diseases, including Alzheimer’s dis-

ease (AD). Many studies exist that use information from an individual regulatory level to identify

causal genes and understand the mechanisms underlying the pathogenesis of AD. For example,

genome-wide association studies (GWAS) have successfully identified numerous susceptibility

genes for AD [89, 286]. Similarly, a crucial role for changes in DNA methylation [290, 61] and

gene expression levels [286, 121] has been observed in AD patients. Nevertheless, the hetero-

geneous and multifactorial nature of AD demands the integration of regulatory information from

different omic levels in order to adequately capture the mechanisms underlying the onset and pro-

gression of this disease. Yet again, systematic analytical approaches for identifying multi-omics

AD biomarkers to prioritize key genes are still scarce.

Apart from genome-wide hypothesis-generating approaches assessing different layers of regula-

tion in an integrative fashion, similar multi-omics approaches might also be useful in studying ex-

isting hypothesis on the pathogenesis of AD, e.g. those on sphingolipid [190] and the tryptophan-

kynurenine pathways [293, 98]. As such, an in-depth integrative analysis of genes involved in

such pathways can help identifying causal genes, as well as generate testable hypotheses from
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analysed changes in associated gene expression and DNA methylation signatures. Such analyses

have the potential to provide novel biomarkers and druggable targets in AD, and propose new

disease modifying agents that can help in slowing down the progression or reverting the disease

phenotype.

Taken together, recent evidence have suggested that changes at multiple levels of genomic regula-

tion are responsible for the development and course of multifactorial diseases. Although existing

computational approaches have been able to explain cell-type-specific and disease-associated tran-

scriptional regulation, they so far have been unable to utilize available epigenetic and transcrip-

tomic data for systematically dissecting underlying disease mechanisms. In order to bridge this

gap in the literature, we have presented various computational approaches in this thesis that inte-

grate information from different regulatory levels to understand mechanisms behind the onset and

progression of multifactorial disorders. Thus, helping in their early diagnosis as well as providing

avenues for designing more effective therapeutic treatment strategies.

1.4 Thesis outline

The research conducted in this thesis can be divided into five parts. CHAPTER 2 constitutes a

concise overview of existing computational methods in the field of systems biology. Particular

attention is paid to state-of-the-art gene regulatory network (GRN) based methods for instructive

factors determination and human disease modeling. Along with the strengths, the limitations of

these methods are highlighted, thereby providing avenues for the research conducted and described

in the following chapters.

Owing to the limited cellular conversion efficiency and lack of integrative methods for predict-

ing more efficient sets of instructive factors, CHAPTER 3 describes INTREGNET, an integra-

tive computational method for systematically identifying reliable minimal sets of TFs that can

induce desired cellular conversions with increased efficiency. The application of this method is

demonstrated in an in vitro setting, where limited conversion efficiency is a crucial barrier for its

application in regenerative medicine.

As explained above, the heterogeneous and multifactorial nature of AD requires the integration of

regulatory information from different -omics levels in order to capture the underlying mechanisms
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behind the onset and progression of this disease. In CHAPTER 4, global multi-omics alterations

in AD patients are identified by comparing genomic (gene aberration), epigenomic (DNA methy-

lation) and transcriptomic data sets of 46 diseased patients with 32 age-matched controls.

CHAPTER 5 features an integrative exploration of specific neurobiological pathways known to

be impaired in AD. A comprehensive analysis of gene expression and DNA methylation levels is

performed for genes known to be associated with sphingolipid function. The identified key genes

and their particular methylation signatures offer mechanistic insights into AD pathology and may

act as potential biomarkers.

In vitro modeling of human diseases allows us to gain crucial insights into mechanisms underlying

disorders, hence devising and optimizing new strategies for therapeutic intervention. CHAPTER

6 features the differential network-based analysis of transcriptomic data sets obtained from brain

organoids that served as an in vitro model of Batten disease. This study focuses on identifying key

genes and pathways that are disrupted during the course of this disease.
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2.1 Abstract

The large-scale development of high-throughput sequencing technologies has allowed the genera-

tion of reliable omics data at different regulatory levels. Integrative computational models enable

the disentangling of a complex interplay between these interconnected levels of regulation by in-

terpreting these large quantities of biomedical information in a systematic way. In the context

of human diseases, network modeling of complex gene-gene interactions has been successfully

used for understanding disease-related dysregulation and for predicting novel drug targets to re-

vert the diseased phenotype. Furthermore, these computational network models have emerged as

a promising tool to dissect the mechanisms of developmental processes such as cellular differenti-

ation, trans-differentiation, and reprogramming. In this chapter, we provide an overview of recent

advances in the field of computational modeling of cellular systems, its major strengths and lim-

itations. Particularly, attention is paid to highlight the impact of computational modeling in our

understanding of stem cell biology and the complex multifactorial nature of human disorders and

their treatment.

2.2 Introduction to Systems Biology

Systems biology is the integration of computational and experimental research to study the mech-

anisms underlying complex biological processes as integrated systems of many interacting com-

ponents. Systems biology offers a holistic rather than reductionistic approach for understanding

and controlling biological complexity, which arises due to the interconnected components working

together in a synchronized fashion to maintain the phenotype of an organism. Systems biology-

based approaches help us in exploring these systems at the level of a cell, tissue, organ, organism,

as well as a population and an ecosystem. Characterization of these systems in their full complex-

ity allows us to better understand the properties of the components involved and their static as well

as the dynamic behaviour.

During the last decade, various experimental techniques have enabled the large-scale generation

of high-throughput (HT) biological data across different levels of regulation. Among them, the

ones which have been extensively used for modeling biological systems are, mutation detection
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by single nucleotide polymorphism (SNP) genotyping [273], gene expression quantification by

messenger ribonucleic acid sequencing (RNA-seq) [11], identification of protein interactions with

deoxyribonucleic acid (DNA) via chromatin immunoprecipitation sequencing (ChIP-Seq) [7], and

quantification of different metabolite levels in the organism by HT metabolic screening [264].

The associated plethora of data has spurred the development of computational models, allowing

the dissection of the complex mechanisms underlying different biological processes at different

regulatory levels. This vast amount of data across different levels of a biological system has also

opened a new gateway to integrate data from these different but interconnected layers to gain a

deeper system-level understanding.

2.3 Computational Modeling of Cellular Systems

The complexity of biological systems can be broken down to an individual molecule or atom,

but to study their overall effect on the system, we need to understand their interactions with each

other and with other ongoing processes or pathways in the system. This is even crucial for under-

standing their role in the onset or progression of diseases such as cancer and Alzheimer’s disease.

Mathematical models of biological systems, which use efficient algorithms and data structures,

enable researchers to investigate how complex regulatory processes are intertwined and how any

perturbation in these processes can lead to the development of disease. Recent advancements

in computational resources and large-scale generation of so-called “omics” data sets has led to

model, visualize, and rationally perturb systems at different levels such as modeling and designing

from an atomic resolution to cellular pathways and the analysis of guided alterations in systems

and their propagation.

A computational model of a complex system can help us in understanding the behavior of that sys-

tem by simulating its dynamics. Numerous computational models have been developed to address

different kinds of processes – for example, flight simulator models [152], protein folding models

[2], and artificial neural network models [1]. Moreover, computational modeling has emerged as a

powerful and promising approach to investigate and manipulate biological systems. In particular,

different categories of cellular processes have been modelled by using the computational models,

such as gene regulation, signaling pathways, and metabolic processes [29]. However, modeling
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the biological system at a cellular level is a convoluted problem involving the challenging task

of understanding the cellular dynamics and characterizing the underlying biological principles.

Gaining a systems-level understanding of these intertwined cellular processes and their complex

interconnections may serve as a critical foundation for developing therapeutic fronts where we

anticipate that computational cellular modeling approaches will make a profound impact.

2.3.1 Gene Regulatory Networks

It is increasingly recognized that complex biological systems cannot be described in a reduction-

istic view. To understand the behavior of such a complex system, a deeper understanding of the

different components of this system and their interactions with each other is required. This knowl-

edge can help us in viewing the system under study as a network of components, which has a

certain topology. This topological information is fundamental in constructing a realistic model to

unlock the functions of the network. There are various types of biological networks, which have

been extensively studied by researchers, such as gene regulatory networks (GRNs), protein-protein

interaction (PPI) networks, signal transduction networks, and metabolic networks. In particular,

GRNs are the on-off switches of a cell operating at the transcriptional level where two genes are

connected to each other if the expression of one gene modulates the expression of another one

by either activation or inhibition. A GRN can be represented by a directed graph where nodes

represent the genes and directed edges among these nodes represent gene-gene interactions. As a

simple example of a GRN, Figure 2 depicts the schematic illustration of core pluripotency tran-

scription factors (TFs) that maintain the pluripotency potential of stem cells. POU5F1, SOX2, and

NANOG have a positive self-regulation, while they also positively regulate each other.

Figure 2: Transcriptional core of pluripotency factors. Schematic representation of the tran-
scriptional regulation of core pluripotency factors.
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Genes in a GRN are not independent from each other; rather they regulate each other and act

collectively. This collective behavior can be observed by mRNA quantification obtained from a

microarray or mRNA-Seq experiment where some genes are significantly upregulated, while oth-

ers are downregulated, suggesting that upregulated genes might be the one inhibiting the down-

regulated genes. The connections among all the genes in a GRN cannot be inferred correctly by

just relying on their mRNA levels or simple gene expression correlation-based methods but by

integrating literature-based information stored in relevant repositories. These repositories, such as

the MetaCore database from Clarivate Analytics and gene pathway studio [206], contain experi-

mental evidence of gene-gene interactions where one gene regulates the expression of its target

genes.

The topological analysis of a GRN can help in identifying some important genes in the network,

such as those involved in network motifs. Network motifs are topological patterns that occur in

real networks significantly more often than in randomized networks [192]. These patterns have

been preserved over evolution on the expense of mutations that randomly change edges. Simi-

larly, the detection of elementary circuits, which is the path starting from and ending in the same

gene visiting each intermediate gene only once, has been associated with the stability of GRNs

[262, 227]. These circuits can either have an even number of inhibitions hence called positive cir-

cuits (positive feedback loops) or an odd number of inhibitions, therefore called negative circuits.

Moreover, the genes in the strongly connected components (SCCs) of a network – a subnetwork

in which every gene is reachable from every other genes in that subnetwork through a direct path

– are interconnected positive and negative circuits and usually considered to be the pivotal genes,

maintaining the network phenotype.

GRNs play an important role in unravelling the molecular mechanisms underlying a particular

biological process, such as cell cycle, apoptosis, and cellular differentiation. A paramount prob-

lem in modeling a GRN is to understand the dynamical interactions among the genes in the GRN,

which collectively govern the behavior of the cell. Several methods have been proposed to date to

infer GRNs from gene expression and epigenetic data [58, 211, 314, 175]. Although the goal is

same, i.e. to model biological processes, available methods rely on different modeling formalisms,

for example, logical models have been used to infer Boolean networks, probabilistic Boolean net-

works, and Petri nets. Furthermore, continuous models have also been introduced for the same
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purpose; prominent examples include continuous linear models and models of TF activity [26].

Computational methods for modeling GRNs have proved to be a promising bioinformatics appli-

cation. In this chapter, we tried to explore the applications of GRN models in stem cell research

and disease modeling.

2.4 Systems Biology of Stem Cells

A human body comprises different kinds of cells that are distinct in their structure as well as in

function. These trillions of cells are largely containing the same genomic material and contain

only a limited number of - approximately 400 [288] - distinct cell types. The different types of

cells in the body and their structure perfectly suit the role they perform. For instance, kidney

cells (hepatocytes) are completely different in structure and function from skin cells (fibroblasts).

Interestingly, all these different kind of cell types in an adult organism actually originate from the

same kind of precursor cells, called pluripotent stem cells. Pluripotent stem cells have the potential

to give rise to any kind of fetal or adult cell type. Whereas stem cells have the potential to give rise

to any kind of lineage at the embryonic developmental stage, this plasticity, i.e. pluripotency, is lost

upon differentiation into a certain somatic cell type. Cell identity specification is considered to be

determined by cell-specific gene expression programs, which represent highly complex processes

tightly controlled at the transcriptional and epigenetic regulatory levels. In order for a cell-specific

gene to be expressed during differentiation, the DNA corresponding to this gene and its distal

regulatory elements must be in an accessible and active state. In this context, the cell-specific

epigenetic landscape is hypothesized to account for the differences between heterogeneous cell

fates.

2.4.1 The Generation of iPSCs

Recent advancements in molecular biology have enabled researchers to obtain induced pluripo-

tent stem cells (iPSCs) from somatic cells by following a reliable cell conversion methodology

– usually referred as cellular reprogramming. By following established protocols of applying a

particular recipe of TFs into the medium of an in vitro somatic cells culture, iPSCs can be grown

in culture and will have the same plasticity potential as those of stem cells found in embryos. The
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very first and a well-known example of cellular reprogramming is the conversion of mouse fibrob-

lasts into iPSCs by introducing four TFs (POU5F1, SOX2, MYC, and KLF4) [270]. iPSCs provide

a new framework to obtain a renewable source of healthy cells which can help in treating a wide

spectrum of diseases, such as neurodegenerative and cardiovascular disorders. Nevertheless, a bot-

tleneck in cellular reprogramming is the identification of effective reprogramming determinants,

i.e specific TFs, that can trigger a transition between cellular phenotypes with high conversion

efficiency and fidelity.

2.4.2 Transdifferentiation

Similar to reprogramming, where we want iPSCs to differentiate into a particular lineage and

cell type, another approach to obtain the same cell type of interest without undergoing an inter-

mediate pluripotent state is transdifferentiation. Transdifferentiation is the direct and irreversible

conversion of one somatic cell type to another. Various examples of transdifferentiation have

been reported in the literature where a defined TF recipe or a combination of TFs and microRNA

(miRNA) or other small molecules was introduced in a somatic cell type culture and the desired

mature cell type was obtained within days. For example, the TF MYOD1 has been used to trans-

differentiate mouse embryonic fibroblasts into myoblasts [46]. Since this first case reported in

literature in 1990, there have been numerous examples of successful somatic cell conversions with

defined factors and small molecules [34, 289, 218].

Interestingly, various computational methods have been reported to systematically predict the can-

didate TFs that can help in converting one fully differentiated cell type to another, and their pre-

dictions have been experimentally validated in a laboratory setting [198, 232, 129]. Transdiffer-

entiation is emerging as a promising approach to directly transdifferentiate cells while avoiding

the use of iPSCs to derive patient-specific cells. This remarkable potential of transdifferentia-

tion is proving to be the most promising source of regenerative medicine for tissue regeneration

and disease therapy. Nevertheless, an important roadblock to efficient transdifferentiation is the

limited number of successful cellular conversions obtained so far, with low to intermediate effi-

ciency. Furthermore, the role of changes in the epigenetic landscape for achieving an efficient

transdifferentiation has not yet systematically explored.
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2.5 Modeling Cellular Phenotypes and Conversions

In some modeling approaches, a cellular phenotype is modelled as a network of genes with a par-

ticular gene expression pattern and a unique stable steady state (attractor). Phenotypic transitions

in such models are introduced by identifying the genes in the network that can destabilize this at-

tractor and lead the system into another attractor. This concept has been applied to model diseases

as a transition from a healthy phenotype to a diseased state, caused by a mutation or a chemical

compound [62]. Moreover, it has also been applied in modeling cellular conversion [232] (repro-

gramming, differentiation, and transdifferentiation), where researchers first identify the attractors

of two phenotypes (starting and destination cell types) and then pinpoint a minimal set of genes in

the network’s elementary circuits whose perturbation (up- or downregulation) led the attractor of

the starting cell type to the attractor of the destination cell type [58, 211].

Modeling the cellular phenotype requires the inference of condition-specific GRNs. Literature

suggests a number of different GRN inference methods, which rely on different underlying ra-

tionales, such as modeling formalism (Boolean and Bayesian) and different updating schemes

(synchronous and asynchronous). Furthermore, there have been methods introducing the concept

of contextualization, which is the removal of non-specific edges that are not compatible with the

gene expression program of the cell type under consideration [58, 314]. Most of these methods

rely only on gene expression data, but more recently, approaches using gene expression as well as

epigenetic information have also been introduced [175]. Nevertheless, a bottleneck in the GRN

inference problem is the benchmarking of inferred networks. Most of these methods rely on the

interactions of a set of specific TFs in a particular cell type diagnosed by experimental ChIP-seq

to validate the networks. Unfortunately, this benchmarking approach can only validate a part of

the network as the complete benchmarking information, ChIP-seq for all the TFs in one cell type,

is not available for even a single cell type. Moreover, ChIP-seq cannot be a perfect gold standard

as some TF-DNA interactions might be incorrectly labeled as positives because TF binding does

not necessarily indicate a functional interaction. Besides ChIP-seq, SNP data as well as random

network inference has been used as a reference for the benchmarking of inferred networks [175],

but none of these approaches offer a complete and systematic network inference validation. How-

ever, due to the consistent release of new TF ChIP-seq experiments by collaborating labs in the

ENCODE consortium [52], the amount of available TF binding site profiles is steadily increasing,
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which might eventually mitigate the problem of missing data in the future. Furthermore, increas-

ing number of genes and TFs perturbation experiments in the Gene Expression Omnibus database

[50] may serve as an alternative approach for network validation as the gene expression profiling

after gene over-expression or knock-down can provide authentic information about the functional

gene-gene interactions.

2.6 Computational Disease Modeling

The advances in molecular biology have resulted in the establishment of fast and efficient pro-

tocols for generating iPSCs cells in vitro. This –cells-in-a-petri-dish– approach has allowed for

sophisticated modeling of human disorders and uncovering the molecular basis of disease-related

dysregulation. Moreover, the generation of patient-specific iPSCs-derived cell types possessing

specific disease-related mutations provides an extremely viable in vitro system for the investigation

of disease-associated perturbations and to apply drug screening. However, the complex nature of

various human disorders, which often involve multiple dysregulated genes acting together, hinders

our understanding of disease-specific impairments [205]. As such, dysregulated genes, in conjunc-

tion, initiate a cascade of failures, which causes malfunctioning at the systems level, resulting in

specific disease phenotypes. Therefore, instead of investigating individual genes in a system, we

may rather focus on their interactions as a channel to propagate disease-related perturbations. In

this context, healthy and disease states can be represented as cellular network phenotypes with sta-

ble steady states, where a disease-specific perturbation shifts the steady state of a healthy network

into the steady states of a disease network. Thus, the construction of complex regulatory interac-

tion networks offers a new method for gaining a system-level understanding of disease pathology.

These network-based models have proved to be a promising framework for identifying disease-

related genes based on network topology [143]. For example, disease-gene-drug associations have

already been predicted based on differential network analysis [314]. Furthermore, disease-gene

relationships have also been reported based on the identification of disease-related subnetworks

and prediction of network neighbours of disease-associated genes [83, 13].
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2.6.1 Differential Network Analysis and Disease Models

There has been an increasing number of approaches exploring the associations between genes,

drugs, and diseases. Some of them include the construction of data repositories where different

compounds have been tested experimentally to associate drugs with genes and diseases, including

the connectivity map [144] and gene perturbation atlas [302]. These approaches have provided

immense help in linking drugs to their target genes, which has also benefited in drug repositioning

based on particular gene expression signatures produced after drug perturbation. However, these

approaches neglect the mechanisms underlying gene regulation and avoid the indirect targets of

drugs. Moreover, only a limited set of drugs and cell types have been used to carry out these

experiments, which implicitly means that these approaches cannot cover the entire spectrum of

human diseases. In this regard, approaches relying on network pharmacology have proved to be

promising in identifying candidate genes whose perturbation might lead to a desired therapeutic

phenotype. Recently, there have been few reports relying on unique and differential network

topologies to identify the differential regulatory mechanisms leading to a given pathology [314,

116, 195]. These approaches allow the building of condition-specific networks by collecting gene-

gene interaction information from literature-curated resources and to predict target genes and drugs

that could maximize the reversion from a disease phenotype to a healthy one. For example, by

using the differential network-based approach, cyclosporine was predicted as a candidate drug

to treat systemic lupus and rheumatoid arthritis. Surprisingly, this blindfold prediction was in

agreement with existing literature, as cyclosporine has been successfully applied to treat these

diseases [32, 294].

These findings suggest that network-based approaches hold a great potential to identify new

disease-related genes and biomarkers for complex diseases. These approaches can uncover the

regulatory mechanisms underlying disease pathologies by analysing the differences in gene reg-

ulatory interactions of condition-specific networks. Furthermore, in silico simulations to mimic

the network response upon drug application can boost the quest of identifying a putative drug for

therapeutic intervention. Nevertheless, a prominent limitation of cell reprogramming approaches

is the availability of good-quality interactome maps. For only a limited number of human dis-

eases, we are able to gather enough omics data to construct a reliable interactome, which can

help in exploring the underlying disease mechanisms. In order to overcome this information
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gap, research teams throughout the world are profiling next-generation sequencing experiments

to obtain high-quality interaction maps of specific human disorders [74, 165, 128], while other

consortiums like Roadmap Epigenomics [23] and ENCODE [52] are striving to create reference

human epigenomes and large-scale ChIP-seq profiling for different TFs across different cell types,

respectively. Nonetheless, this information is still far from being complete and will require ex-

tensive future efforts to develop complete, high-quality, and noise-free interaction maps for all

well-studied human diseases. We strongly believe that bridging this information gap will play a

crucial role in the future of biomedical research.
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3.1 Abstract

The design of novel strategies for cellular conversion by using a defined set of transcription fac-

tors (TFs) has shown promising applications in regenerative medicine. Nevertheless, the iden-

tification of TFs that can induce a desired transition with high conversion efficiency remains a

significant challenge. Although computational approaches have been developed to guide cellular

conversion experiments, they do not tackle the problem of conversion efficiency. In particular,

these approaches do not take into account epigenetic regulatory effects when modeling cellular

conversion, which is important for addressing the aforementioned problem. Here, we present IN-

TREGNET, a computational method for systematically identifying minimal sets of TFs that can

induce desired cellular transitions with increased efficiency. This method relies on the integration

of transcriptomic and epigenetic information for reconstructing cell-type-specific core transcrip-

tional regulatory networks (TRNs). Specifically, when applied to the induction of pluripotent stem

cells (PSCs) from different somatic cells, INTREGNET was able to distinguish between more- and

less-efficient TF combinations. Thus, INTREGNET can guide experimental attempts for achiev-

ing effective in vivo cellular transitions, where limited conversion efficiency is a crucial barrier for

its application in regenerative medicine.

3.2 Introduction

Cell identity specification in multi-cellular organisms gives rise to hundreds of different cell types

sharing the same genetic information through a complex process, which is tightly controlled at

different regulatory levels. Established cell-type-specific gene expression programs are orches-

trated by intricate and interconnected regulatory networks at the epigenetic and transcriptional

level controlling homeostasis of differentiated or pluripotent cells [10, 76, 135, 253]. Epigenetic

mechanisms, such as DNA methylation [124, 260] and histone modifications [265, 139], regulate

chromatin accessibility [235] and constitute a epigenetic code that is recognized by transcriptional

and epigenetic regulators, such as transcription factors (TFs), chromatin modifiers and remodelers

[42, 106]. However, in order to specify cell identity, it has been shown that a small set of transcrip-

tion factors, known as core TFs, is sufficient [31, 96, 199, 247]. Following this rationale, current

strategies for inducing desired cellular conversions are based on the over-expression of a combi-
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nation of exogenous TFs and have been used as a qualitative measure for evaluating the ability of

core TFs to induce and enhance cellular transitions.

Over the past years, several computational methods have been developed to guide cellular con-

version experiments. Early approaches relied on the identification of significant differences in

transcriptomic or epigenetic profiles [59, 85, 60, 111], while more recent ones acknowledged the

importance of gene regulatory networks (GRNs) to identify TFs that can induce desired cellu-

lar transitions, termed as instructive factors (IFs) [232, 198]. However, these methods are still

unable to identify optimal combinations of IFs that more efficiently trigger such transitions. Ex-

perimental evidence suggests that gene expression is insufficient for determining efficient IFs, as

it is the interplay of epigenetic and transcriptional regulation that mediates cellular conversions

[191, 137, 244]. As such, cell-type-specificity is determined not only by the transcriptional, but

also epigenetic program, characterized by accessible chromatin regions, active enhancers, and

differential binding of regulators [204, 113, 245], which highlights the epigenetic reorganization

required when converting one cell type into another. Altogether, this demonstrates the need for an

integrative approach to create tailor-made computational models that are essential for predicting

more efficient sets of IFs.

Epigenetic and/or transcriptomic dysregulation that disrupt the normal cellular differentiation pro-

cess lies at the core of many diseases [161, 295], requiring an ex vivo or in vitro cell application

for the development of novel treatment strategies. For example, mesenchymal stem cells (MSCs)

represent a rare stem cell type whose in vitro expansion is vital for obtaining sufficient amounts

of cells for treating various heart [5, 174, 226, 123], brain [122, 178, 162] and wound-healing

[300, 301] related disorders. However, progressive spontaneous differentiation and aging of MSCs

may occur during expansion, which can be modulated by extrinsic epigenetic signals such as hi-

stone H3 acetylation, playing a key role in regulating these intricate processes [161]. Similarly,

an increasing amount of literature suggests epigenetic mechanisms to be crucial for regulating

B-cell maturation and its dysregulation has been associated to the initiation and acceleration of

multiple autoimmune diseases such as systemic lupus erythematosus [296, 298, 297] and rheuma-

toid arthritis [184, 95, 134]. Taken together, this evidence suggests that epigenetic mechanisms,

along with other regulatory layers, play a crucial role in normal cellular differentiation. Therefore,

reconstructing cell-type-specific network models by integrating epigenetic and transcriptomic in-
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formation can provide deeper insights into underlying mechanisms, allowing us to predict specific

external stimuli (e.g. TF over-expression) that can overcome the epigenetic barriers restricting the

differentiation potential of cells in different disorders.

In the present work, we developed a novel computational method to predict efficient IFs for de-

sired cellular conversions by reconstructing INtegrative Transcriptional REGulatory NETworks

(INTREGNET) based on cell-type-specific transcriptomic and epigenetic data sets. We analyzed

more than 7600 publicly available gene expression profiles to identify a set of core TFs across

different human cell types and cell lines. Based on the integration of i) a set of candidate core

TFs, ii) histone modifications, iii) chromatin accessibility, and iv) experimentally validated TF

binding sites, we are able to reconstruct core transcriptional regulatory networks (TRNs) for 48

different human cell types and - lines. Furthermore, molecular interactions between TFs have been

inferred by integrating protein-protein interaction (PPI) data. The reconstructed networks are cell-

type-specific, encompassing interactions that are compatible with the corresponding epigenetic

and transcriptomic state. Benchmarking against experimentally validated gold standard networks

[209, 27, 82] verifies the cell-type-specificity of the reconstructed networks, preserving more than

95% of the gold-standard interactions. Further, these cell-type-specific networks were employed

to build a Boolean-based model for predicting sets of instructive factors that induce desired cel-

lular conversions. Results show that INTREGNET outperforms other state-of-the-art methods by

predicting significantly more experimentally validated IFs. More importantly, INTREGNET is

able to predict specific sets of IFs inducing cellular conversion events with increased efficiency.

Thus, INTREGNET can provide a guidance to stem cell researchers to improve the efficiency

of cellular conversion, which constitutes a long-standing problem in regenerative medicine and

beyond.

3.3 Materials and methods

Cell-type-specific core TRNs were reconstructed by integrating transcriptomic and epigenetic pro-

files. An overview of INTREGNET’s workflow is shown in Figure 3, while each individual step,

i.e. epigenetic and transcriptomic data processing, network reconstruction, validation, and appli-

cation, is described in detail in the remainder of this section.
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Figure 3: Schematic workflow of INTREGNET. INTREGNET utilizes epigenetic and transcrip-
tomic profiles from the initial as well as final cell type. Epigenetic profiles help INTREGNET
to characterize active promoter (H3K4me3) regions, active enhancer (H3K27ac) regions, and ac-
cessible genomic domains (DNase-seq). Transcriptomic profiles are used to identify uniquely and
significantly expressed TFs. To predict a set of instructive factors for a desired cellular transition,
first, the epigenetically active domains are characterized in starting and destination cell types.
Next, the active regulatory domains in the destination cell type are integrated with TF ChIP-seq
data to reconstruct a core regulatory network for the destination cell type. Here, enhancer and pro-
moter regulation (green) is distinguished from enhancer-only (red) and promoter-only regulation
(purple). Lastly, the core TRN of the destination cell type is integrated with gene expression signa-
tures and active cis- and trans-regulatory elements from the starting cell type to predict instructive
factors required for cellular conversion under consideration.

3.3.1 Identification of core TFs

Individual cell types and transcriptomic samples were characterized by a set of core TFs. Each

sample was compared against a background of more than 7600 different samples of various cell

types and cell lines included in Recount2 [51], a database of publicly available, uniformly pro-

cessed RNA-seq data sets. Of note, all samples from The Cancer Genome Atlas (TCGA) and

those containing the terms “cancer”, “disease”, and “single cell” in the title or description of their

Gene Expression Omnibus [50] (GEO) entry were excluded prior to the analysis. GEO acces-

sions of all considered RNA-seq samples can be found in supplementary Table S17. Transcription

factors were then ranked based on the uniqueness of their expression in every individual sample
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using a modified version of the method proposed by D’Alessio et al. [59]. Generally, the approach

consisted of three steps that were repeated for every transcription factor. First, given a single

query sample, all data sets having a Pearson correlation of more than 0.75 with the query were

excluded from the background. For this purpose, 30 ESC samples were randomly chosen from the

Recount2 data set and their correlation with rest of the samples was computed iteratively. Every

unique correlation score obtained was then used as a threshold for creating the confusion matrix,

based on the annotation of all the ESC samples in Recount2 data set. This process was repeated for

every selected ESC sample and F1 scores were computed against every correlation threshold. By

plotting the F1 score against the respective correlation thresholds, we see that highest F1 score is

obtained at a 0.75 correlation threshold (supplementary Figure S19). Subsequently, the uniqueness

of each TF’s expression in the query was assessed by comparing an idealized probability distribu-

tion, which contains 1 in place of the considered query sample and 0 otherwise, to the background

distribution containing the expression of the TF in all samples. Finally, the background distribu-

tion is normalized by the sum of its elements and compared to the idealized distribution by means

of Jensen-Shannon divergence (JSD). The 10 most unique TFs in each sample, i.e. having the

highest JSD value, were selected as core TFs.

3.3.2 Reconstruction of cell-type-specific core TRNs

Based on the identified core TFs, transcriptional regulatory networks were reconstructed for var-

ious human cell types and cell lines, reflecting the coordinated action of transcription factors on

their targets in a cell-specific manner. Regulatory relationships were reconstructed from transcrip-

tion factor ChIP-seq experiments, the active promoter mark H3K4me3, the active enhancer mark

H3K27ac and chromatin accessibility defined by DNase-seq, and are represented in a Boolean

modeling framework. For that purpose, INTREGNET performed three steps. First, transcriptomic

data was made compatible with the Boolean modeling framework. RefBool [127] was elected for

discretizing the expression values in every sample individually, based on a universal transcriptomic

reference for each gene. Unlike the proposed use of RefBool [127], a single p-value threshold was

used for determining active and inactive genes. More specifically, when testing the null hypothesis

that a gene is not expressed, p-values of less than 0.15 are considered to be significant, which leads

to the rejection of the null hypothesis. Second, active proximal and distal regulatory regions were
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identified for every active TF. Promoters were defined based on the Ensembl promoter annotation

file obtained from The Eukaryotic Promoter Database [223] (accessed March 23rd, 2018) and re-

stricted to 1500bp upstream and 500bp downstream of the transcription start site (TSS). In order to

assess whether the promoter region of a TF is active in a given cell type, corresponding H3K4me3

peaks were obtained from ENCODE [54] or Cistrome [186] and projected onto the region. A

promoter region is considered to be active if it overlaps with at least one H3K4me3 peak. For

enhancers, the GeneHancer database [80] (accessed April 6th, 2018) was leveraged to link active

TFs to their known enhancer regions. All regions overlapping a cell-type-specific H3K27ac peak

were considered to be active while inactive enhancer regions were discarded. More precisely, in-

stead of considering the complete enhancer to be active, the region was truncated to the H3K27ac

peak region. Finally, TF binding events were identified in active promoter and enhancer regions.

Publicly available and uniformly processed TF ChIP-seq data sets, i.e. called peaks, were obtained

from Cistrome [186], pooled and projected onto the active regulatory regions. Every binding event

sharing one base pair with an active region constitutes a potential regulatory interaction. These

interactions were further filtered by cell-type-specific accessible chromatin profiles (DNase-seq

peaks) from ENCODE [54] and GEO [50], such that all remaining interactions overlap with at

least one peak.

Following this strategy, a TRN was reconstructed among the set of core and non-core TFs in

every sample. The selection of non-core TFs consisted of three steps. First, only those TFs were

considered that were expressed in the cell type. Next, these expressed TFs were filtered based on

their JSD ranks and only those TFs whose ranks were significantly lower than their average rank

across all samples were selected. Finally, only those non-core TFs that were regulating at least

one core TF and that were simultaneously being regulated by at least one core TF were kept in

the network. The subsequently derived interactome constituted the core TRN of cell type under

consideration.

ENCODE and GEO accessions of considered H3K27ac, H3K4me3, and DNase-seq experiments

for every individual cell type/line are given in supplementary Table S9. All considered data sets

were annotated to genome assembly GRCh38 or converted to GRCh38 by using the CrossMap

tool [311].
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3.3.3 Validation of reconstructed TRNs

To assess the cell-type-specificity of reconstructed core networks, a comparison with manually

curated core networks from the literature, containing TF ChIP-seq validated interactions, was

conducted. Here, the set of gold-standard networks was composed of human hepatocytes [209],

embryonic stem cells (ESCs) [27] and two cancer cell lines (MCF7 and HepG2) [82], and com-

pared at the level of the subset of TFs that were present in the reconstructed core TRNs.

In addition, we leveraged cell-type-specific TF ChIP-seq data to calculate the enrichment of exper-

imentally validated interactions in the reconstructed TRNs. For this purpose, uniformly processed

TF ChIP-seq peaks were gathered from ENCODE [54] and Cistrome [186]. In order to keep the

data consistent between these two resources, all peak files were converted to GRCh38 genome as-

sembly by using the CrossMap tool [311], if they were aligned to a different assembly. ENCODE

and GEO accessions of all the considered TF ChIP-seq experiments are given in supplementary

Table S10. Based on these datasets, two analyses were carried out. First, the fraction of TF in-

teractions in promoter regions that were validated by a peak in the cell-type-specific ChIP-seq

experiments was assessed. For that purpose, only those TFs in the networks were considered for

which ChIP-seq data was available. Second, the number of false-positive interactions were quan-

tified by counting the fraction of interactions in promoter regions that were not validated by a

ChIP-seq peak from an experiment in the same cell type/line, but under different conditions. Of

note, true negative and false-negative interactions cannot be reliably assessed and are therefore

excluded from the assessment.

3.3.4 Inference of Boolean logic rules

The representation of the reconstructed TRNs in a Boolean modeling framework requires the in-

ference of Boolean expressions that describe the relationship between all regulators of a single

TF. Here, TFs can act cooperatively, e.g. by forming a complex, or competitively by sharing parts

of their DNA binding motif. INTREGNET infers these connections by identifying all ChIP-seq

peaks in the TRN that reciprocally overlap more than 62% using the intersectBed program from

bedtools v2.22.1 with parameter -loj -r -f 0.62. As a result, an undirected network among

TF binding sites is obtained in which the strongly connected components (SCCs) are assumed to
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represent the cooperative interactions of TFs. Here, SCCs were detected using the “clusters”-

method of the R “igraph”-package (version 1.2.2). For determining the overlap threshold, a posi-

tive and negative gold-standard dataset of protein-protein interactions (PPIs) was assembled. The

positive set consisted of 33 PPIs included in iRefIndex [237] that fulfill three requirements. First,

ChIP-seq data was available in Cistrome [186]. Second, their interaction type has been classified

as “direct interaction” (MI:0407) and, third, experimental validation had been conducted in hu-

mans. For the negative set, manual annotations in the Negatome 2.0 database [24] were obtained

resulting in 72 true-negative PPIs for which ChIP-seq data was available in Cistrome. The per-

centage of overlap for all peaks of all gold-standard PPIs was assessed to assemble the positive

and negative distributions. Two TFs with overlapping ChIP-seq binding sites are said to form a

complex, if the probability of belonging to the positive distribution is higher than belonging to

the negative distribution. Transcription factors predicted to form a complex were connected by an

AND-gate, which represents the necessity of each individual subunit, while TFs with competing

and non-overlapping binding sites are connected by an OR-gate. Finally, enhancers and the pro-

moter region of a TF were incorporated into a single regulatory rule by forcing the regulation of

the promoter and at least one enhancer, which corresponds to the connection of multiple enhancer

regions by OR-gates and of the enhancers with the promoter by an AND-gate.

3.3.5 Prediction of efficient combinations of instructive factors

An algorithm recently developed in our lab (manuscript under preparation) was used for predicting

optimal combination of instructive factors (IFs) to efficiently induce desired cellular transitions.

In terms of the transcriptional regulatory network of the target cell type, the algorithm searches

for the minimum combination of IFs whose perturbation can efficiently restore the gene expres-

sion program of the target cell. This corresponds to the state of the network in which all Boolean

regulatory rules evaluate to true. By construction, this state is a steady state of the system, regard-

less of the imposed updating scheme. In order to identify the probability of all network states to

reach this desired steady state, the model checker PRISM v4.4 [142] was employed. As PRISM is

unable to handle Boolean logic rules, Boolean rules were transformed to equivalent polynomials

by the following rules [136]: Given two TFs A and B in the Boolean TRN, the following relations

29



CHAPTER 3. INTREGNET: MORE EFFICIENT CELLULAR CONVERSIONS FOR
DISEASE MODELS

hold.

¬A ≡ 1−A (3.1)

A ∨B ≡ A+B −A •B (3.2)

A ∧B ≡ A •B (3.3)

While the second rule states a valid transformation of Boolean rules into polynomials, it is im-

practical in the presence of multiple TFs with competing or non-overlapping binding sites within

regulatory regions. By applying De Morgan’s law (A ∨ B ≡ ¬(¬A ∧ ¬B)), a fourth rule can be

derived that is easily adaptable to multiple TFs:

A ∨B ≡ ¬(¬A ∧ ¬B) ≡ 1− ((1−A) • (1−B)) (3.4)

With these transformations, a PRISM model of a discrete time markov chain (DTMC) is estab-

lished in which each TF is a module that can change its state based on the evaluation of the

polynomial expressions. During each step of the model, a single TF is selected individually and

its state is updated, i.e. the DTMC obeys an asynchronous updating scheme. Finally, the property

that has to be checked by PRISM can be stated as “eventually all TFs in the network are active”. In

PRISM syntax that corresponds to “F (TF1 + TF2 + ...+ TFn = n)”. Invoking PRISM with the

option “-v” returns all states with their corresponding probabilities of fulfilling the property.

Finally, candidate IFs are established by selecting TFs of the core TRN that do not have an active

promoter or any active enhancer in the initial cell type. As a second step, the algorithm searches

for the minimum set of TFs whose perturbation leads to the maximum number of gene expression

changes of differentially expressed genes between initial and final cell types, while minimizing

the number of epigenetic changes during this process. Like in the construction of core TRNs,

promoter regions, defined by The Eukaryotic Promoter Database [223], and enhancer regions,

defined by the GeneHancer database [80], are called active if they overlap with a cell-type-specific
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H3K4me3 or H3K27ac peak, respectively. A score for each combination of candidate factors

is set as the weighted average of all Boolean TRN states able to reach the desired steady state,

i.e. in which all TFs are active. Here, the weight for each TF to be in state 0 or 1 is defined as

the probability of observing a greater or lower expression value in the background distribution

of RefBool [127], respectively. Consequently, the probability of being in a certain network state

is defined as the product of the probabilities of being in the individual TF states. Combinations

having a higher score are more favorable, and thus predicted to be more efficient, than low scoring

combinations.

3.3.6 Validation of cellular conversion algorithm

To assess the predictive power of the proposed method for identifying an efficient combination

of instructive factors, an extensive literature review was conducted to gather information about

the experimentally confirmed cellular conversions where a particular set of instructive factors has

been utilized for achieving a desired cellular transition. Interestingly, for some of the transitions,

existing studies reported the conversion of an identical starting cell type to a similar destination

cell type but utilized different combinations of instructive factors, thus yielding different cellular

conversion efficiencies. For all the cellular transition examples which are in pairs (low and high

efficiency) or only a single perturbation is reported (supplementary Table S10), the core TRNs

representing the destination cell types were reconstructed. In addition to the destination core

TRNs topologies, the epigenetic status of the constituent TFs and their gene expression values in

the starting cell type were employed for predicting the sets of instructive factors.

3.3.7 Nomenclature of TFs

Throughout this study, the official HGNC gene symbols (e.g. MYC and POU5F1) have been used

for representing the TFs and their targets.
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3.4 Results

3.4.1 Reconstruction of cell-type-specific core TRNs

A small group of core TFs has been reported to predominantly control the gene expression program

of embryonic stem cells [27] as well as cell types [209] and cell lines [82]. These sets of core TFs

usually auto-regulate themselves and control the regulation of other TFs by making interconnected

regulatory loops, hence forming a core network that determines cellular identity and function [209,

27, 82]. Experimental studies suggest that there is a complex interplay between transcriptional

and epigenetic landscape that controls cell differentiation and lineage commitment [176]. Thus,

it is important to consider the combined regulatory effect of these different but interconnected

layers, while modeling the cellular phenotypes and their transitions. The approach we present

here, connects both layers of regulation to reconstruct cell-type-specific core TRNs by integrating

high throughput transcriptomic (RNA-seq) and epigenetic (DNase-seq, H3K4me3, and H3K27ac)

data sets in a systematic way.

In order to obtain a core TRN for a cell type of interest, first a set of 10 core TFs are identified by

using a modified version of the statistical measure introduced by D’Alessio et al. [59]. Next, all

the neighboring non-core TFs are identified, which are strongly connected to the core TFs. Fur-

ther, all the candidate TFs are discretized by using a modified version of RefBool [127] and only

those TFs are kept in the network that are expressed according to their measured gene expression

levels. Finally, regulatory interactions among the selected TFs in the network are obtained by inte-

grating experimental TF ChIP-seq data with cell-type-specific active regulatory regions, which are

identified by histone modification marks and chromatin accessibility data sets. Moreover, based

on the regulators of every TF in the network, the joint regulatory effect of TFs is inferred for ev-

ery individual regulatory region and the resulting network is represented in a Boolean modeling

framework. The obtained core TRNs are highly cell-type-specific as they comprise only those

interactions that are compatible with both epigenetic and transcriptomic layers of regulation. We

used INTREGNET to reconstruct directed core TRNs for 48 cell types and cell lines. Every net-

work has up to 33 TFs (on average 18 TFs), while every TF in the network has up to 30 regulators

(on average 11 regulators per TF) and 44 active enhancers (on average 9 enhancers per TF).

32



CHAPTER 3. INTREGNET: MORE EFFICIENT CELLULAR CONVERSIONS FOR
DISEASE MODELS

3.4.2 Validation of the reconstructed core TRNs

A bottleneck in the reconstruction of TRNs is to systematically benchmark them in the presence of

incomplete ground truth data. To this extent, the large-scale generation of high throughput ChIP-

seq data for various TFs across different cell and tissue types has provided a framework for partial

network validation [176]. We have reconstructed cell-type-specific core TRNs for 8 different cell

type/lines and validated them by using 1044 TF ChIP-seq experiments obtained from ENCODE

[54] and Cistrome [186]. Here, only cell types/lines containing more than 10 profiled TFs were

considered for validation in order to cover a significant part of the network.

The proposed networks are benchmarked by assessing the enrichment of cell-type-specific exper-

imentally validated TF ChIP-seq interactions in the core TRNs (see Figure 4). On the one hand,

network interactions that have been validated by cell-type-specific TF ChIP-seq data are consid-

ered as true positives (TP). On the other hand, interactions that have been validated by TF ChIP-seq

data, profiled in cell-types other than the one under consideration, are considered as false positives

(FP). The enrichment of ChIP-seq validated TP interactions was on average four times higher in

comparison to the FP interactions, which shows that interactions in the reconstructed TRNs are

highly cell-type-specific.
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Figure 4: Enrichment of cell-type-specific TF ChIP-seq data in reconstructed core TRNs.
Core transcriptional regulatory networks (TRNs) for different well-studied human cell types/lines
have been benchmarked against cell-type-specific TF ChIP-seq data. True positives (TP) repre-
sent the interactions that are present in the reconstructed core TRNs and have been experimentally
validated by cell-type-specific TF ChIP-seq data. Alternatively, interactions that have been val-
idated by TF ChIP-seq data, profiled in cell-types other than the one under consideration, are
considered as false positives (FP). Benchmarking is carried out for various primary cell types,
e.g. adipocytes (Adipo), embryonic stem cells (ESC), keratinocytes (Keratino), and cancerous cell
lines, e.g. GM12878, HeLaS3, HepG2, K562 and MCF7

.

We also validated the specificity of the reconstructed core TRNs by comparing them against ex-

perimentally verified gold-standard (GS) core networks. For this purpose, core networks of human

embryonic stem cells (ESCs) [27], hepatocytes [209], and HepG2 and MCF7 cell lines [82] were

curated from the literature and compared to the core TRNs reconstructed with INTREGNET (see

Table 1). Here, an intersecting part of the GS and reconstructed core networks has been con-

sidered for the validation. As expected, the reconstructed networks for ESCs, hepatocytes and

MCF7 cells are in complete agreement with respective GS networks, whereas only one interac-

tion was missing in the hepatocytes network. Surprisingly, we inferred four new interactions for

HNF1A and FOXA2 in the hepatocytes reconstructed network that are missing in the respective

GS network. Interestingly, all the newly inferred interactions have been validated by a previous

TF knock-down study conducted in human hepatoma cells [276]. Overall, 95% of the interactions

in the reconstructed networks are also present in the corresponding GS core networks, with all of

the inferred interactions being experimentally validated (Table 1 and supplementary Table S16).
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These results suggest that the reconstructed networks are in a good agreement with experimentally

validated core networks and, therefore, can be considered as a starting point for the identification

of IFs.

Cell type GS int. Infer int. Matching Non-matching GS Unique infer Infer validated Overall validated
ESC[27] 9 9 9 0 0 0 100%

Hepatocytes[209] 13 12 8 2 4 4 85.71%
HepG2[82] 16 16 16 0 0 0 100%
MCF7[82] 13 4 4 0 0 0 100%

Table 1: Benchmarking of reconstructed core TRNs against the experimentally validated core
networks. For the four well-characterized human cell types/lines, the reconstructed core networks
were compared against their experimentally validated gold-standard core networks. Int. represents
interactions (Int.) in gold-standard (GS) networks, whereas Infer Int. represent inferred (Infer.)
interactions in the reconstructed networks.

Next, we assessed whether INTREGNET can distinguish cooperative and competitive regulation

of TFs in the same regulatory region, represented in the form of a Boolean logic rule. As expected,

INTREGNET was able to predict the complexes of TFs that have been experimentally verified in

different human cell types. For examples, a complex of POU5F1 and SOX2, along with NANOG

has been shown to collectively regulate their own expression in ESC [27]. Interestingly, aside from

predicting this complex, INTREGNET was also able to highlight its cooperative role in regulat-

ing many other TFs in the ESC network, as indicated in existing literature [27, 242]. Similarly,

INTREGNET was able to predict a complex of FLI1, TAL1 and GATA2 that has been shown to

regulate the expression of FLI1 in blood stem cells [225], and a part of this complex (TALI1-

GATA2) has also been experimentally verified using two-hybrid yeast assays [215]. Therefore,

these findings suggest that representation of reconstructed TRNs in a Boolean modeling frame-

work and inference of Boolean logic rules can offer a simple, yet powerful, approach to model the

dynamics of regulatory networks.

3.4.3 Prediction of instructive factors for cellular conversions

The integration of epigenetic and transcriptional data enabled the reconstruction of cell-type-

specific core TRNs, which recapitulate the genome-wide connectivity between core TFs and their

cooperative or competitive regulatory effect on the enhancers and promoters of their respective tar-

gets. These reconstructed TRNs are able to provide a mechanistic insight into the global functions

of these key regulators in controlling cell identity. Therefore, the underlying regulatory network
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information enabled us to prioritize an optimal combination of TFs in the core TRN, which are

crucial to establish and maintain its cell-specific gene expression program. Moreover, by consid-

ering the epigenetic state and gene expression levels of those TFs in the starting cell type, we were

able to faithfully predict a particular set of IFs required for any desired cellular transition among

different cell types.

Final cell type Initial cell type Combination of IFs
Hepatocytes Fibroblast HNF1A, HNF4A, ONECUT1, CEBPA, ATF5, PROX1, TP53-siRNA, MYC

HNF1A, HNF4A, FOXA3
FOXA2, HNF4A, CEBPB, MYC

FOXA2, HNF4A, CEBPB
iPSC Hematopoietic stem cell POU5F2, SOX2, KLF4

POU5F2, SOX2
Fibroblast POU5F2, SOX2 KLF4

POU5F1, SOX2
POU5F1, SOX2, LIN28A, NANOG

Keratinocyte POU5F1, SOX2
POU5F1, SOX2 KLF4

POU5F1, SOX2 KLF4, MYC
Neural stem cell POU5F1

POU5F1, KLF4
Neural stem cell Hematopoietic stem cell SOX2

Foreskin fibroblast CBX2, HES1, ID1, TFAP2A, ZFP42, ZNF423
ZNF521

Fibroblast (NHDF) SOX2, PAX6
Neuron Embryonic stem cell NEUROG2

POU3F2, ASCL1, MYT1L
Fibroblast POU3F2, ASCL1, MYT1L

POU3F2, ASCL1, NEUROD1
Myoblast Fibroblast MYOD1

Melanocyte Fibroblast MITF, PAX3, SOX10
Keratinocyte MITF, LEF1, SOX10, SOX9

MITF, LEF1, SOX10, SOX9, PAX3, SOX2
Adipocyte Mesenchymal stem cell CEBPB

PPARG
CEBPB, PPARG

Table 2: Enrichment of predicted instructive factors (IFs) in experimentally validated combi-
nations. Predicted IFs are highlighted in red whereas TFs that were replaced by another validated
IF are highlighted in blue.

Next, we asked whether INTREGNET can distinguish between a more and less efficient set of IFs

required to obtain a desired cellular transition. A thorough comparison against different experi-

mentally tested cellular transitions revealed that INTREGNET was able to successfully predict IFs

in most cases. We examined a total of 32 cellular conversion experiments with defined factors and

compared them with the predictions of INTREGNET and two former approaches, Mogrify [232]

and d’Alessio [59]. In particular, we collected examples of cellular conversions to neural stem cells

(NSC), hepatocytes, iPSCs, neurons, myoblasts, melanocytes and adipocytes from various initial

cell types and assessed the enrichment of predicted IFs in the experimentally validated combina-
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tions. In most cases, i.e. for hepatocytes, myoblasts, NSCs and iPSCs, INTREGNET shows an

increased enrichment compared to previous approaches (Figure 5A, Table 2). In particular, on av-

erage, more than 91% of IFs for inducing pluripotent stem cells were identified by INTREGNET

when compared to 74% and 44% with Mogrify and d’Alessio, respectively. Notably, the predic-

tions for iPSCs did not include KLF4 in most cases but instead contained PRDM14, a TF that

has been shown to replace KLF4 while yielding higher conversion efficiency [45]. Most predicted

combinations of IFs also contained MYC, one of the originally proposed inducers of pluripotency,

while at the same time suggesting the over-expression of MYCN, another TF of the basic helix-

loop-helix family that has been shown to contribute to the induction of pluripotency [202]. This

suggests that INTREGNET not only predicts IFs of cellular conversions, but preferentially selects

TFs yielding higher conversion efficiency. In contrast to INTREGNET’s better performance in

four distinct target cell types, almost no validated TFs have been predicted for adipocytes (0%),

neurons (0%) and melanocytes (17%). Since INTREGNET only reconstructs core TRNs, we in-

vestigated the regulatory relationships of core TFs and known IFs to test the hypothesis that the

predictions constituted upstream regulators of these TFs.
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Figure 5: INTREGNET performance. A) Recovery of experimentally validated instructive fac-
tors (IFs) for seven final cell types. The bar heights corresponds to the average percentage of
recovered factors. Error bars represent the standard deviation. B) Melanocyte core TRN including
all experimentally validated IFs (yellow). Enhancer and promoter regulation (green) is distin-
guished from enhancer-only regulation (blue) and inferred promoter-only regulation for the IFs
that were not in the reconstructed core TRN (black,dashed).

.

Indeed, we found that SOX9, PAX3, SOX10, MITF, SOX2, and LEF1 were actively regulated in

their promoter regions by at least one of the predicted IFs in melanocytes. For the conversion

of fibroblasts, only two TFs, IRF4 and TFAP2A, regulated the promoter regions of all known

instructive factors and have been shown to co-regulate important loci for melanocyte differentia-

tion [252]. In contrast, these factors have not been predicted when the initiating the conversion

from keratinocytes, since they are already expressed. The known instructive factors were, thus,

differentially regulated by predicted IFs. Particularly the TFs SOX9, MITF were regulated by
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at least one predicted IF and are able to propagate their effect to all validated conversion fac-

tors (Figure 5B). Of all known TFs, only PAX3 has been predicted to induce the conversion of

keratinocytes to melanocytes and is assumed to be an important co-factor of MITF, due to their

co-localization [252]. Similarly, in adipocytes, we identified the promoter region of CEBPB to be

actively regulated by the predicted IFs ATF3, SMAD3, KLF11, E2F1 and MITF. In turn, previous

studies already demonstrated that CEBPB, among other TFs, transcriptionally activates PPARG in

adipocytes [153]. Unlike in melanocytes and adipocytes, no direct downstream regulatory effects

could be identified for ASCL1, POU3F2 and MYT1L in neurons. Despite the missing regulatory

links of the predicted instructive factors and ASCL1, POU3F2 and MYT1L, INTREGNET iden-

tifies combinations yielding increased conversion efficiency. Over-expression of NEUROG2 in

embryonic stem cells was reported to produce a nearly pure neuron population [310], while other

combinations resulted in substantially lower conversion efficiency [218].

3.4.4 INTREGNET increases the efficiency of iPSC generation

With regard to our finding that INTREGNET identifies factors yielding increased conversion ef-

ficiencies, we investigated whether the scores assigned to combinations are prognostic for the

efficiency of the cellular transition. Here, especially the ability of TF-based cellular conversions

for reprogramming somatic cells into iPSCs has provided an avenue for obtaining patient-specific

cell types that can help in modeling human diseases [173]. Taking into consideration the impor-

tance of converting somatic cells into iPSCs, and the wealth of data showing different conversion

efficiencies depending on the combination of TFs and the initial cell population [88, 114], this

classical reprogramming system serves as a suitable system to demonstrate the versatility of IN-

TREGNET.

We leveraged a collection of publicly available experimental datasets measuring the efficiency of

iPSC reprogramming with various combinations of factors in four distinct cell types [88, 114,

132, 280] and assessed whether INTREGNET can distinguish more and less efficient combina-

tions, i.e. ranking more efficient conversions higher. For that purpose, a core iPSC network was

reconstructed for computing the scores of perturbations as previously described (Figure 6). Be-

fore investigating the association between scores and cellular conversion efficiency, we inspected

the network more closely to assess its descriptive and dynamic quality. Apparently, apart from
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LIN28A, all known inducers of iPSC induction, i.e. NANOG, MYC, POU5F1, SOX2, KLF4,

PRDM14 and MYCN, are present in the network. Importantly, no perturbation of core TFs can

propagate through the complete network, if it does not contain POU5F1. Therefore, the network

model resembles previous experimental findings emphasizing that POU5F1 is indispensable for

the generation of iPSCs. In addition, the core TRN contains FOXH1, TP53, ZNF423 and MTA3,

which are known to play diverse roles in the conversion to pluripotent stem cells. For example,

a previous study revealed that FOXH1 significantly enhances iPSC conversion efficiency [269],

whereas the roles of ZNF423 and MTA3 as transcriptional regulators are not yet understood. On

the other hand, TP53 is a known repressor of PSC induction [159, 312], but has been shown to

play important roles in the maintenance of embryonic stem cells [159, 277].
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Figure 6: Reconstructed core TRN of induced pluripotent stem cells. Enhancer and promoter
regulation (green) is distinguished from enhancer-only regulation (blue). No regulatory interaction
has been inferred that only regulates the promoter region of a TF.

.

Due to the dual role of TP53, we examined whether the suppression of iPSC conversion is re-

flected in the dynamics of the network model. In particular, we identified that combinations

including TP53 yield lower scores than those not containing it (Wilcoxon-Mann-Whitney test,

p-value <2.2e-16). Of note, this result is valid regardless of the initial phenotype and, thus, re-

sembles the experimental findings. The support for the qualitative and dynamic validity of the

reconstructed iPSC network led us to investigate combinations of IFs yielding high and low con-

version efficiency. We collected four conversion examples from different initial cell types, i.e.

neural stem cells (NSCs) [132], hematopoietic stem cells (HSCs) [187], and newborn and adult
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fibroblasts (Fibroblast, NHDF) [114]. In contrast to the predictions described in the previous sec-

tion, only known combinations were considered and ranked by their score. Strikingly, each dyad

of more efficient combinations was correctly predicted, which provides evidence for INTREG-

NET’s ability to predict more efficient combinations of IFs (Figure 7A). While the differences in

scores appear to be negligible, the average number of steps taken until the effect of the perturbation

propagated to the complete network model is substantially different. Notably, the scores obtained

by INTREGNET are not only consistent within a given initial cell type but also across different

initial conditions. POU5F1, SOX2 and KLF4 have been utilized for inducing PSCs from HSC as

well as newborn and adult fibroblasts. Experimental evidence suggests that the reprogramming

efficiencies, calculated as the percentage of formed iPSC colonies per 105 cells, is rather low for

fibroblasts (newborn: 0.05, adult: 0.045) and is significantly elevated in HSCs (0.2). These results

are confirmed by the ranking based on the scores obtained by INTREGNET (Figure 7A). Thus, the

scores indicate that more plastic cells, such as neural and hematopoietic stem cells, achieve higher

conversion efficiencies even though fewer factors are perturbed. Especially neural stem cells show

higher epigenetic similarity with PSCs, thus requiring less restructuring of the chromatin for acti-

vating the transcriptional core network, which is reflected in a higher overlap of active enhancers

specific to induced pluripotency (Figure 7B).
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Figure 7: Reprogramming efficiency for inducing PSCs. A) Predicted reprogramming effi-
ciency for inducing pluripotent stem cells from different initial cell types using several combina-
tions of IFs (O = POU5F1, S = SOX2, K = KLF4, M = MYC). Two cell lines of adult (NHDF) and
newborn fibroblasts (Fibroblast (BJ)) were included. Combinations with experimentally validated
increased efficiency (red) were compared against low efficiency combinations. B) Distribution
of enhancer landscape changes of HSCs (top-left), Fibroblasts (top-right), NSCs (bottom-left) and
NHDFs (bottom-right) required for compatibility with iPSCs. Enhancer landscapes were restricted
to TFs included in the core TRN and related TFs they regulated by INTREGNET.

.

3.5 Discussion

A major bottleneck in regenerative medicine is the efficiency of induced cellular conversions,

which hampers the translation of therapeutic interventions into clinical applications. While com-
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putational methods have been developed to identify IFs of desired cellular conversions [59, 198,

243, 38], none of them is able to systematically prioritize IFs with increasing conversion efficien-

cies. In view of the interplay between epigenetic and transcriptional regulation to maintain and

switch between cellular phenotypes [157, 150, 81], it is important to consider epigenetic infor-

mation for predicting efficient IFs. Nevertheless, current computational approaches solely rely on

transcriptional regulation, which constitutes an important limitation.

In this study, we developed INTREGNET, a computational framework that predicts efficient com-

binations of IFs for desired cellular conversions. The method is based on the systematic integration

of epigenetic and transcriptomic information to reconstruct core TRNs, offering several advantages

over current approaches. Firstly, it exclusively relies on experimental data for TRN reconstruc-

tion, which increases precision compared to position weight matrix-based methods that are not

cell-type-specific. In particular, INTREGNET introduces cell-type-specificity by integrating in-

formation on TF ChIP-seq experiments, chromatin accessibility and active cis-regulatory elements

to accurately reconstruct networks. Secondly, integration of protein-protein interaction (PPI) data

allows for dissecting region-specific cooperative and competitive TF-binding, i.e. the joint effect

of multiple TFs on the transcription of target genes. Considering these protein-protein interactions

is critical for prioritizing more efficient combinations of IFs, exemplified by the complex forma-

tion of SOX2 and POU5F1 that is necessary for inducing pluripotent stem cells [242, 27]. Finally,

the devised strategy for predicting efficient IFs actively incorporates differences in the epigenetic

landscape between the initial and target cell type. Despite the specific combination of IFs, the

amount of epigenetic restructuring required during reprogramming is a key determinant of cellu-

lar conversion efficiency [219]. INTREGNET accounts for these epigenetic landscape differences

by penalizing the calculated efficiency of IFs with the amount of required restructuring.

Despite the advantages of INTREGNET, we acknowledge that it has certain limitations, suggest-

ing potential future improvements. In this regard, a common problem of gene regulatory network

reconstruction approaches is missing data. In particular, binding site information of certain TFs

is currently unavailable, even though our method leverages a comprehensive compendium of over

11,000 publicly accessible TF ChIP-seq profiles. For example, LIN28A was identified as a core

TF of iPSCs, but its binding sites have not been profiled. As a consequence, it cannot be contained

in the core TRN and predicted as an IF for inducing PSCs. However, the amount of available
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TF binding site profiles is steadily increasing, which eventually will mitigate this problem in the

future. Moreover, the availability of additional epigenetic profiles, such as multiple histone modi-

fications and chromatin conformation, will become greater in the future, opening the possibility of

integrating them into the TRN. Another important limitation is that INTREGNET relies on bulk

datasets. Indeed, transcriptomic and epigenetic heterogeneity in cellular populations can influence

successful conversion due to the existence of different sub-populations exhibiting distinct conver-

sion efficiencies [31]. In this regard, modeling core TRNs using single-cell data could allow the

identification of sub-populations with the highest conversion propensity. Furthermore, single-cell

data can help in devising novel experimental strategies for cellular conversion, such as initially

priming cell populations and subsequently inducing the desired cell type conversion.

In principal, INTREGNET can be customized for applications for human disease modeling, in

view of diseases as network perturbations from healthy to disease phenotype [62]. A core TRN

reconstructed from different epigenetic and transcriptional profiles obtained from pathological

cells might help in identifying causal TFs that establish or maintain the disease phenotype. Finally,

in silico network perturbations can guide experimental efforts in pre-selecting a set of putative

target TFs, whose perturbation induces the conversion into a healthy phenotype, with vast amounts

of potential applications to personalized medicine.

To our knowledge, INTREGNET is one of the first approaches that aims at identifying highly

efficient IFs based on the systematic integration of information linked to multiple regulatory levels,

and is expected to find diverse applications in the field of regenerative medicine. In particular,

considering the success of in vivo reprogramming in preclinical models, we believe INTREGNET

to be a valuable tool for alleviating the impediment of low efficiency by guiding cellular conversion

experiments.
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4.1 Abstract

Recent evidence suggests that changes at multiple levels of genomic regulation, including those

linked to genetic variation, DNA methylation, and gene expression, are involved in the develop-

ment and course of Alzheimer’s disease (AD). While the heterogeneous and multifactorial nature

of AD requires the integration of regulatory information from different -omics levels in order to

accurately capture the mechanisms underlying its pathogenesis, systematic analytical approaches

for identifying multi-omics signatures of AD are still lacking. Here, we applied a novel approach

for systematically integrating genomic (gene variation), epigenomic (DNA methylation) and tran-

scriptomic data obtained from the middle temporal gyrus (MTG) of AD patients and age-matched

controls. This method uses information about AD-associated genetic and epigenetic variation

in upstream regulatory genes affecting intermediate (mediator) genes, which, through gene-gene

interactions, in turn, affect proximal downstream genes evoking expression changes. In depth

analysis of top-ranked genes revealed a strong connectivity between their subnetworks, providing

important insights into interconnected dependence of these genes at different regulatory levels.

Interestingly, some of the top-ranked genes (ETS1, WT1, APP) are well-known for their implica-

tion in the pathogenesis of AD, validating the potential of the proposed approach in recapitulating

existing knowledge as well as in predicting novel candidate genes. Thus, the presented approach

has the capacity to provide more insight in the underlying mechanisms of complex disorders like

AD.

4.2 Introduction

Alzheimer’s disease (AD), the most common form of dementia, affects about 30% of those aged

over 85 years [79]. AD is classified as a neurodegenerative disease, impacting on a patient’s brain

integrity and functioning, eventually resulting in a progressive deterioration of cognitive capabili-

ties [30]. Despite decades of research, an effective treatment for AD is still lacking. In recent years,

numerous major pharmaceutical companies have terminated their drug development programs on

AD, as related clinical drug trials failed, which is primarily attributed to the heterogeneous and yet

unclear pathogenesis of AD [4, 279].
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The remarkable development of high-throughput sequencing technologies has allowed the gen-

eration of great quantities of genomic, epigenomic and transcriptomic data for various human

diseases that has allowed us to dissect the mechanisms behind the onset and progression of mul-

tifactorial diseases. As such, many studies have used information from an individual regulatory

level to identify causal genes and understand the mechanisms underlying the pathophysiology of

AD. For example, genome-wide association studies (GWAS) have successfully identified numer-

ous susceptibility genes for AD [89]. Some prominent examples include SNPs associated to APP

[125], PSEN1 [130], and PSEN2 [33] that have been implicated in early-onset of AD. Similarly,

based on the crucial role of DNA methylation in cellular processes [214], including gene regu-

lation [229], cellular differentiation [131] and genomic imprinting [221], there have been many

studies linking changes in DNA methylation status to the pathogenesis of AD [290, 61]. For

example, epigenetic alterations in the DNA methylation levels of ANK1, BIN1, and RHBDF2

genes have been suggested to play a key role in the onset of AD [61]. Furthermore, analysis

of genome-wide transcriptomic data sets from post-mortem brain tissue has unveiled various key

genes in different biological pathways associated with AD, among which, for example, TYROBP

and SPI1, have been implicated in the brain’s immune response [286]. These findings highlight

that changes associated with AD are not restricted to a particular regulatory layer and can be

observed across genetic, epigenetic and transcriptomic levels in both brain and blood samples

[147, 61, 179, 100, 109, 170].

Although various levels of genomic regulation, including DNA methylation, chromatin modifica-

tions and microRNAs (miRNAs), are known to be highly interconnected at the functional level

[63], commonly used analytical approaches are usually restricted to analysing only one or two

layers of molecular information in association with AD [61, 286, 107], and, moreover, are mostly

restrained to correlations. Therefore, an integrative multi-omics systems biology approach to un-

cover the relative, interdependent contribution of various molecular layers in the development and

course of AD is of utmost importance.

In recent years, several computational tools using network-based approaches have been developed

in order to detect cancer-related genes by integrating information from different regulatory levels,

i.e. genomic (genetic variation), epigenomic (DNA methylation), transcriptomic (gene expres-

sion), and proteomic levels. A few prominent examples include, DriverNet [14], HotNet2 [155],
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TieDIE [220], and NetICS [66] that use network diffusion algorithm to identify causative dis-

ease genes at epigenomic, transcriptomic and proteomic levels. However, so far, these approaches

have not been applied to understand the mechanism underlying AD pathology and prioritize AD-

associated genes.

In the present study, we have conducted a network-based integrative analysis of genetic, epige-

netic and transcriptomic data sets derived from post-mortem middle temporal gyrus (MTG) tis-

sue from AD patients and age-matched elderly controls (Lardenoije et al., Under Review). We

have applied a bidirectional graph diffusion-based technique [66] to prioritize genes based on

known AD-associated genetic variations, differential methylation and differential mRNA expres-

sion. This method uses a rank-aggregation technique for integrating diverse molecular data types

within a directed functional interaction network. Our findings show a strong connection between

sub-networks of top-ranked genes (ETS1, TP63, ZNF217, WT1, IL15 and APP). The conducted

analysis can explain how genetic and epigenetic variation can induce expression changes in other

genes via gene-gene interactions. Furthermore, we used connectivity map database [145] to un-

cover functional connections between predicted top-ranked AD-associated genes and drugs that

may revert their gene expression from AD towards the healthy phenotype. The drug enrichment

analysis suggested a combination of levcycloserine and apramycin to be the most effective thera-

peutic treatment for AD in terms of normalizing AD-associated gene expression patterns.

Taken together, the conducted analyses allows a systematic dissection of mechanisms underlying

the onset and progression of multifactorial diseases like AD at a multi-omics level, suggesting

potential candidate genes and putative drugs that could be employed to target these genes. Thus,

we are providing the scientific community with a novel approach that can pave the way for de-

convoluting complex and multifactorial human diseases, hence fostering the development of novel

treatment strategies.

4.3 Materials and methods

Multi-omics AD signatures within the MTG were identified by the integration of datasets from

three different regulatory levels. Firstly, AD-associated SNPs identified by GWAS were retrieved

from the International Genomics of Alzheimer’s Project (IGAP) [147]. Secondly, methylation
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(5-methyl-cytosine; 5mC) data were obtained from post-mortem MTG tissues of 46 AD patients

and 32 elderly, non-demented controls. Lastly, for the same individuals, gene expression data

within the MTG were obtained using Illumina Beadchip microarrays. An overview of our analysis

pipeline is shown in Figure 8, while each individual step, i.e. the identification and annotation of

SNPs, DNA methylation and gene expression data processing, gene-gene interaction network cu-

ration, and network diffusion analysis is described in detail in the remainder of this section.

Figure 8: Schematic pipeline of the multi-omics approach used for ranking AD-associated
genes. AD-associated SNPs were obtained from a large, two-stage meta-analysis conducted in
IGAP study. The combined analysis of two stages resulted in 11,187 SNPs showing moderate
evidence of association (P-value ¡ 0.05) to AD. Annotating these SNPs to the human genome
(hg19) resulted into 1,514 unique genes. Next, filtering significantly differentially methylated (P-
value ¡ 0.05) probes for these 1,514 SNPs-associated genes resulted into 837 probes, annotated to
461 unique genes. Further filtering these genes for significant differential expression (P-value ¡
0.05) resulted into 210 unique genes. Accordingly, we obtained 293 direct gene-gene interactions
between these genes from the MetaCore database. By using the obtained network, and p-values of
differentially methylated and expressed genes as an input for the network diffusion algorithm, we
ranked these 210 genes based on their mediator effect.

4.3.1 Post-mortem tissue samples

The present study included donors from the Brain and Body Donation Program (BBDP) at the

Banner Sun Health Research Institute (BHSRI), who signed an informed consent form approved

by the institutional review board, including specific consent of using the donated tissue for future

research [17, 18].

51



CHAPTER 4. IDENTIFICATION OF CAUSAL GENES FOR ALZHEIMER’S DISEASE

DNA was obtained from the MTG of 46 AD patients and 32 neurologically normal control BBDP

donors stored at the Brain and Tissue Bank of the BSHRI (Sun City, Arizona, USA) [17, 18]. The

organization of the BBDP allows for fast tissue recovery after death, resulting in an average post-

mortem interval of only 2.8 hours for the included samples. A consensus diagnosis of AD or non-

demented control was reached by following National Institutes of Health (NIH) AD Center criteria

[18]. Comorbidity with any other type of dementia, cerebrovascular disorders, mild cognitive

impairment (MCI), and presence of non-microscopic infarcts were applied as exclusion criteria.

Detailed information about the BBDP has been reported elsewhere [17, 18].

4.3.2 SNP identification and annotation

AD-associated SNPs are identified by IGAP in a large, two-stage meta-analysis of GWAS in

25,580 AD and 48,466 control individuals of European ancestry [147]. According to the com-

bined analysis of two stages, 11,632 SNPs showing moderate evidence of association (P-value

<0.001) in stage 1 were followed up for subsequent association analysis in stage 2. We applied a

P-value threshold of 0.05 to obtain those SNPs that have been found to be statistically significantly

associated with AD in both stages of the IGAP study. Furthermore, we only kept those SNPs for

which the direction of association (positive or negative) was the same and with the same “effect

allele” in stage 1 and 2. Following these filtration criteria, we obtained 11,187 SNPs and anno-

tated them to the hg19 genome by Homer annotatePeaks.pl in order to characterize their

genomic annotation [105]. Annotating these SNPs to the nearest gene resulted into 1,514 unique

genes.

4.3.3 Differential methylation (5mC) analysis

For differential methylation analysis, the 5mC data were obtained from an unpublished study from

our group, where Illumina HM 450K arrays were used for quantifying the methylation status of

485,000 different human CpG sites. In view of the present study, we included those 5mC datasets

for which corresponding gene expression profiles (see below) were also available, resulting in data

derived from 46 AD patients and 32 age-matched controls. Pre-processing and analysis of the raw

data sets was conducted in R (version 3.4.4) [272]. Raw IDAT files corresponding to the selected
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individuals were read into R using the wateRmelon “readEpic” function (version 1.20.3) [224].

The “pfilter” function from the wateRmelon package (version 1.18.0) [224] was used to filter data

sets based on bead count and detection p-values. Background correction and normalization of

the remaining probe data was performed by “preprocessNoob” function of minfi package (version

1.22.1) [9]. We used the MLML function within the MLML2R package [77] for estimating the

proportion of uC, 5mC and 5hmC for each CpG site, based on the combined input signals from

the BS and OxBS arrays. All of the cross-hybridizing probes and the probes that contained a SNP

in the sequence were removed resulting into 407,922 probes to be considered for the differential

methylation analysis [43].

Raw IDAT files corresponding to the selected individuals were loaded into R using minfi “read.

metharray” function (version 1.22.1) [9] to make an RGset for computing the cell type composition

of the samples by “estimateCellCounts” function of the same package. For estimating the cell

composition, we used FlowSorted.DLPFC.450k package (version 1.18.0) [120] as the reference

data for “NeuN pos” cell composition of frontal cortex. The limma package (version 3.32.10)

[241] was used to perform linear regression in order to test the relationship between the beta

values of the probes and the diagnosis of AD. The used regression model considered beta values

as outcome, AD diagnosis as predictor, and age, gender, and neuronal cell proportion as covariates.

In order to identify significantly differentially methylated probes (DMPs), probes with unadjusted

P-value less than 0.05 were considered for further analysis. Resulting probes were annotated using

Illumina human UCSC annotation. We took the most significant probe as a representative of the

methylation status of a gene. Filtering the 1,514 SNPs-associated genes for DMPs resulted in 837

probes, annotated to 461 unique genes.

4.3.4 Differential gene expression analysis

For differential gene expression analysis, Illumina HumanHT-12 v4 beadchip arrays were used.

The brain tissue sample used for RNA extraction was identical as used for the methylation study.

Pre-processing and analysis of the raw data sets was conducted in R (version 3.4.4) [272]. Raw

expression data was log-transformed and quantile-quantile normalized. For computing the cell

composition, the Neun pos cell percentage was calculated from the methylation data. The same

regression model used for assessing methylation was applied to the expression data where the
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effects of age, gender and cell type composition were regressed out using limma. Genes having

nominal P-value less than 0.05 were included for further analysis. Filtering the remaining 461

genes for differential expression resulted in 210 genes for downstream analysis.

4.3.5 Gene-gene interaction network

We used MetaCore (Clarivate Analytics) to obtain directed functional interactions between genes

both known to be genetically associated with AD, and differentially methylated and expressed

according to our differential methylation and expression analyses, respectively. The MetaCore

database contains a collection of manually curated and experimentally validated direct gene-gene

interactions based on existing literature. This high level of manual curation ensures the creation

of highly confident interaction network maps. In order to obtain a set of directed functional

interactions among the selected genes, our analysis was restricted to “Functional interactions”,

“Binding interactions”, and “Low trust interactions”. The interaction network obtained from

MetaCore contains a variety of different interaction types, including (transcriptional) regulation,

(de)phosphorylation, binding, and influence on expression. The obtained interactions are directed,

i.e. the source and target genes are known. Furthermore, the information about the interaction

type (activation or inhibition) is also given where available.

4.3.6 Network-based integration analysis

A network diffusion-based algorithm was employed to understand the functional implications of

genetic variations at both epigenomic and transcriptomic levels [66]. Functional gene-gene in-

teraction network, AD-associated genetic variations, as well as the differentially methylated and

differentially expressed genes with respective p-values, were provided as inputs to the network-

diffusion algorithm. The underlying hypothesis is that genetic variation in upstream genes affect

intermediate (mediator) genes, which in turn affect proximal downstream genes evoking signif-

icant expression changes. The diffusion of information from upstream aberrant genes towards

mediator genes and, eventually, in downstream differentially expressed genes, relies on the direc-

tionality of the provided functional network interactions. Accordingly, network diffusion was used

to obtain a ranked list of AD-associated genes based on their potential being a mediator gene and
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evoke changes in gene expression.

4.3.7 Drug enrichment analysis

Connectivity map [145] was used to check for the enrichment of drug target genes in the subnet-

works of top ten ranked mediator genes identified by the network diffusion. For every subnetwork,

we obtained a signature of up- and downregulated probes based on the fold changes of the respec-

tive genes in the differential expression analysis. The obtained signatures were used as an input for

the connectivity map to identify drugs that are known to induce opposite gene expression profiles.

As such, Connectivity map gives a ranked list of drugs based on their enrichment in the pro-

vided query gene expression signature. The most negatively enriched (correlated) drugs, i.e. those

inversely correlating to the diseased (AD) gene expression signature, were chosen as candidate

drugs.

4.4 Results

4.4.1 Prediction of AD-associated genes by network diffusion

Existing studies relying on single regulatory levels have been able to identify AD-associated ab-

normalities at the genomic [89, 125, 130, 33], epigenomic [290, 61] and transcriptomics level

[286]. However, a thorough understanding of the cross-talk between these interconnected lay-

ers of regulation is still missing which is essential for uncovering the mechanisms underlying the

pathogenesis of AD. Therefore, here we used a network diffusion approach that integrates regu-

latory information from genomic, epigenomic and transcriptomic layers to rank key genes based

on their ability to evoke disease-associated transcriptional changes. Based on the input infor-

mation from different regulatory levels and functional gene-gene interaction networks, the genes

are ranked according to their predicted involvement in AD. The top thirty ranked genes that are

predicted to be associated with AD are shown in the Table 3.
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Rank Genes Rank Genes Rank Genes
1 ETS1 11 MTA3 21 MN1
2 TP63 12 CAV1 22 PLAGL1
3 ZNF217 13 OPRM1 23 SATB2
4 WT1 14 NR1H3 24 CLU
5 IL15 15 PRKD1 25 HLX
6 FHL2 16 ACTB 26 WWOX
7 APP 17 ZFPM2 27 HDAC9
8 EPAS1 18 ARHGEF7 28 RGS4
9 SMARCA2 19 CUX2 29 ETV6

10 RXRA 20 OLIG2 30 ABCA1

Table 3: Top 30 ranked AD-associated genes identified by network diffusion.

4.4.2 Subnetwork of top-ranked AD-associated genes

With regard to our finding that network diffusion identifies key genes associated to AD patho-

genesis, we investigated whether the predicted genes are isolated or densely connected to each

other via regulatory interactions. A graphical illustration of the directed functional interactions

used as an input for the network diffusion showed that all the top-ranked mediator genes either

directly regulate each other or regulate upstream genes that are significantly differentially methy-

lated and regulate other mediator genes. An illustration of gene-gene interactions in the form of a

subnetwork of the top-ranked genes is shown in Figure 9.
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Figure 9: Schematic illustration of top-ranked AD-associated genes subnetwork.

As described earlier, ETS1 is one of the most important mediator genes that has been implicated

in AD [121] and it is ranked first according to our predictions. It is one of the most highly in-

terconnected genes in the network that is regulated by three other top-ranked upstream genes

(TP63, WT1 and IL15), which are significantly differentially methylated. Furthermore, genetic

variation in ETS1 is known to be implicated in various neurodegenerative diseases including AD

[188, 169, 239]. Interestingly, this mediator gene has the highest out-degree of 83, which means

this gene regulates approximately one-third of all significantly differentially expressed down-

stream genes in the network. These results highlight the ability of this mediator gene to evoke

changes in the gene expression program once perturbed by genetic variation and/or differential

methylation. The individual subnetworks of the top-ranked mediator genes are shown in Figure

10 which allow us to take a thorough look into the epigenetic and transcriptional regulation of

these genes.
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Figure 10: Top ranked AD-associated genes subnetwork. a) ETS1, b) TP63, and c) ZNF217
subnetworks.

4.4.3 WT1 as a mediator gene

As a proof of concept, we examined Wilms tumor suppressor (WT1), a top-ranked mediator gene

that is predicted to be implicated in AD pathogenesis, in more detail. WT1 has been known to

be involved in different cellular processes including proliferation, differentiation, and apoptosis.

Laser confocal microscopy and gene expression analysis of cultured hippocampal neurons from a

mouse model for AD revealed a strong correlation between WT1 expression and apoptosis induced

by amyloid beta exposure(Abeta) [169]. In the same study, Lovell and co-workers observed that a

reduction in WT1 expression levels by blocking its transcription using an antisense oligonucleotide

was accompanied by a significant decrease of neuronal apoptosis in Abeta-treated cultures. This

study confirms the key role of WT1 in mediating neuronal degeneration associated with the patho-

genesis of AD. These observations are in line with our differential methylation and expression

analyses where a significant hypomethylation (logFC: -0.006, P-value: 0.022) has been observed

in the gene body, concomitant with significantly increased expression levels of this gene (logFC:

0.026, P-value: 0.033) in AD patients. We further examined this mediator gene in more detail to

analyze upstream and downstream genes within its subnetwork and dissected their involvement

in the pathogenesis of AD. A graphical illustration of the WT1 subnetwork is shown in Figure
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11.

Figure 11: Subnetwork of the AD-associated mediator gene WT1.

The network representation shows that WT1 has two upstream regulators (TP63 and SMARCA2)

known for AD-associated genetic variation and displaying significant differential methylation. In-

terestingly, TP63 is also among the five downstream (significantly differentially expressed) genes

of WT1 (TP63, CLU, GABRB3, and CHRM3). Our differential methylation and expression anal-

ysis of these upstream regulators revealed that SMARCA2 was downregulated (logFC: -0.18, P-

value: 4.73e-005) and hypermethylated (logFC: 0.051, P-value: 0.0002) in AD patients, while

TP63 was upregulated (logFC: 0.035, P-value: 0.015) and hypomethylated (logFC: -0.18, P-value:

0.025). Experimental evidence that revealed the physical interaction of TP63 with WT1 [249] and

positive regulation of TP63 by WT1 [160] suggests that they are linked by means of a positive

feedback loop. Altogether, the activation of WT1 by TP63 overexpression could explain the rela-

tive high expression levels of WT1 in AD patients in comparison to the healthy controls. Of note,

both of these WT1 upstream regulators (TP63 and SMARCA2) have been reported to be crucial for

normal neuronal cellular processes and perturbations in these genes are associated with various

nervous system disorders including AD [36, 188, 156, 250].

Apart from predicting well-studied AD associated genes, network diffusion was able to identify
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more novel genes associated with this disease. For example, variants in clusterin (CLU), a WT1

downstream gene, has been associated with AD [146, 100] and high expression levels of this gene

have recently been observed in brain regions with plaque pathology [194]. These findings are in

line with our analysis, as we observed an increase in expression of this gene (logFC: 0.052, P-

value: 0.020) and a representative hypomethylated probe (logFC: -0.001, P-value: 0.034) within

200 bp of the transcription start site (TSS) region. Similarly, the observed lower expression levels

(logFC: -0.35, P-value: 0.001) of GABA-Alpha receptor subunit beta-3 (GABRB3), concomitant

with hypermethylation in the gene body (logFC: 0.028, P-value: 0.017) are in line with an existing

study that found lower levels of GABRB3 mRNA in the AD hippocampus [240, 196], suggesting

an altered functional profile of this receptor in AD. Furthermore, we noticed downregulation of

the cholinergic receptor CHRM3 (logFC: -0.48, P-value: 0.0009), accompanied by hypermethy-

lation of this gene (logFC: 0.045, P-value: 0.002) positioned downstream from WT1. Although

cholinergic neurotransmitter pathway is well-known for its crucial role in the progression of AD

[40], it was until recently that the involvement of cholinergic receptors muscarinic (CHRM) has

been associated to AD [40]. Altogether, these findings suggest that genomic (genetic variation)

and epigenomic (differential methylation) changes in upstream regulators disrupt WT1 activity

in such a way that it evokes changes in the expression levels of its downstream genes. Series of

synchronized changes at different regulatory levels like these are hypothesized to perturb normal

cellular function during the development and course of AD.

4.4.4 Drug targets in mediator gene subnetwork

Connectivity map [145] was used as a reference database for discovering functional connections

among predicted top-ranked AD-associated mediator genes and drug actions. The subnetworks

of mediator genes were analysed for their enrichment in drug targets based on the similarity of

drug-induced gene expression profiles available in the Connectivity map database. The details of

this drug enrichment analysis are summarized in Table 4.

As we have used the discretized disease gene expression signatures for querying the Connectivity

map, we are interested in drugs that produce the most negative correlated gene expression profile

when compared to our query signature. We assume that drugs that are able to produce the exact

opposite gene expression profile could be the potential candidates for reverting the diseases (AD-
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Gene Upregulated probes Downregulated probes Most enriched drug Enrichment score P-value
ETS1 68 73 levcycloserine -0.894 0.00024
TP63 44 37 isoxicam -0.828 0.00038

ZNF217 34 14 ginkgolide A -0.824 0.00185
WT1 23 21 gentamicin -0.805 0.00280
IL15 3 2 ondansetron -0.957 0.00001

FHL2 8 6 thioguanosine -0.883 0.00046
APP 16 18 cefuroxime -0.934 0.00002

EPAS1 15 13 apramycin -0.861 0.00068
SMARCA2 11 14 CP-944629 -0.851 0.00001

RXRA 12 5 chlorambucil -0.881 0.00001

Table 4: Drug enrichment analysis in mediator gene subnetworks from the connectivity map.

associated) gene expression program towards a healthy phenotype. As such, these compounds

may form targets for drug repurposing. Interestingly, the top-ranked drug for the EPAS1 query

signature named apramycin also turns out to be ranked third for the RXRA signature with an

enrichment score of -0.834 and a P-value of 0.00137. As ETS1 is the top-ranked mediator gene

in our analysis and it also contains one-third of the dysregulated genes in its subnetwork, a drug

that could revert the gene expression profile for genes in the ETS1 subnetwork might be very

effective in obtaining a transition from an AD-associated towards a healthy phenotype. In fact, the

drug enrichment analysis suggests a combination of levcycloserine and apramycin to be the most

effective therapeutic treatment for AD in terms of normalizing AD-associated gene expression

patterns as it holds the potential to revert the maximal gene expression program by a minimal

number of candidate drugs. Notably, cycloserine, which is a partial glycine agonist that exhibits

its activity by binding the N-methyl-d-aspartate (NMDA) receptor, has been found to significantly

improve implicit memory [251] and cognitive function [279] in AD patients.

4.5 Discussion

In view of the interplay between genomic, epigenomic and transcriptomic dysregulation in AD,

in the present study, we applied a novel approach for prioritizing AD-associated genes (i.e. ge-

netic variation) based upon AD-linked variation at the epigenomic and transcriptomic level. To

this end, by making use of an integrative graph-diffusion based method [66], we have integrated

information from different molecular regulatory levels into a directed functional gene-gene in-

teraction network. This method uses information about AD-associated genetic and epigenetic

variation in upstream regulatory genes affecting intermediate (mediator) genes, which, through
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gene-gene interactions, in turn, affect proximal downstream genes evoking expression changes.

As such, this approach ranks genes within such gene-gene interaction networks, based on their

potential to evoke downstream changes. Some of the most prominent candidate genes include

ETS1, WT1 and APP genes, which are all known to be involved in various neuronal cellular

processes, while expression changes of these genes have been implicated in the course of AD

[121, 169, 208, 181].

A thorough review of the existing literature suggests that all the top-ranked genes have been as-

sociated with AD progression. For example, consistent with our differential expression analysis,

ETS1 has been shown to be upregulated in AD brains and has been associated with reactive mi-

croglia and Aβ deposition [121]. Similarly, TP63, a member of p53 family of transcription factors,

has been shown to regulate adult neural precursor and newly born neurons [36], and may have a

neuroprotective role by regulating synaptic gene expression [188]. Although the role of ZNF217

is not yet fully understood in view of neurodegenerative diseases like AD, experimental evidence

suggests that the miR-200/ZNF217 axis may represent a regulatory mechanism mediating the de-

velopment of AD [291]. Moreover, there is compelling evidence suggesting that WT1, IL15, APP,

and EPAS1 play crucial roles in neuronal degeneration and AD [169, 239, 208, 181, 258]. Inter-

estingly, similar evidence is available for the observed changes in the methylation levels [119].

For example, in accordance with our differential methylation analysis, a higher methylation level

of the APP gene has been reported as an AD-specific phenomenon [119].

In addition to the required multi-omics datasets, the gene-gene interaction information used by

network diffusion allows unravelling the dynamics of (dys)regulation in the network. For exam-

ple, WT1 has been ranked fourth as an AD-associated mediator gene, controlled by two upstream

genes and directly regulating four downstream genes. Interactions within the WT1 subnetwork

suggest its upregulation by a positive feedback loop involving TP63, that has been experimen-

tally verified in one direction [249, 160]. This upregulation might be due to genetic variation or

hypomethylation in the gene body of TP63, or both, thereby promoting WT1 expression, and, as

a result, changes in the expression levels of its downstream genes (TP63, CLU, GABRB3, and

CHRM3). Interestingly, experimental evidence has linked the upregulation of WT1 and its down-

stream targets (CLU and TP63) with neurodegeneration in nervous system disorders, including

AD [169, 36, 194]. Similarly, downregulation of its downstream genes (GABRB3 and CHRM3)
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has been implicated in cognitive decline in AD patients [240, 196, 40, 200]. Taken together, this

integrative analysis provides insight on how changes in DNA methylation levels and genetic vari-

ation can lead to transcriptional changes via gene-gene interactions, hence potentially explaining

the diseased state.

We have shown that the conducted analysis not only identifies disease-related multi-omics signa-

tures and key genes, but also has the ability to predict putative drugs that could revert the disease

phenotype. Connectivity map [145] was used as a reference database for linking subnetworks of

mediator genes to drugs that have been shown to produce opposite gene expression profiles. A

systematic drug enrichment analysis led to the prediction of levcycloserine and apramycin as the

most promising existing drugs for reverting the observed AD-associated gene expression profiles.

Interestingly, cycloserine treatment has been found to significantly improve implicit memory [251]

and cognitive function [279] in AD patients, suggesting the potential of the proposed approach in

recapitulating previously-known drugs as well as predicting novel candidates.

Despite being able to prioritize AD-associated causal genes by systematically integrating multi-

omics data onto a functional gene-gene interaction network, we acknowledge that the utilized

approach has certain limitations, providing avenues for future improvements. For example, net-

work diffusion can investigate the mediator effects of only those genes that are present in the gene

interaction network. This highlights the problem of missing data in the literature, as currently, the

well-curated and experimentally proven gene-gene interaction maps are not covering the whole

spectrum of human genes, rather they are more enriched towards well-studied transcription fac-

tors and genes. As such, these results may be biased towards such well-studied, hence highly

connected, genes in the network. This bias might arise due to their high connectivity, which con-

tributes to higher chances of finding various differentially methylated or differentially expressed

gene in their network neighbourhood. Furthermore, as the reference database used for drug en-

richment analysis is comprised of a selected number of drugs profiled on only a few cell lines,

most of which are cancerous, this may limit the possibility of finding an optimal drug for reverting

the disease-related gene expression pattern. However, decreasing expression profiling costs and

an increasing number of such resources [117, 201], will eventually mitigate this problem in the

future.

In conclusion, the conducted analysis offers a novel approach for integrating information from
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different levels of regulation in order to detect and rank AD-associated genetic variation based

on its functional significance and gene-gene interaction capability at the transcriptional regulatory

level. Such analysis will find its applications in predicting potentially causal genes for other human

pathologies where individual datasets are available from different -omics levels. Thus, we are

providing the scientific community with a novel approach that can pave the way for deconvoluting

complex and multifactorial human diseases, hence fostering the development of novel treatment

strategies.
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5.1 Abstract

Sphingolipids (SLs) are bioactive lipids involved in many physiological pathways. They show an

altered metabolism in several central nervous system (CNS) disorders such as Alzheimer’s dis-

ease (AD). The pathophysiology of AD is still not fully understood. Recent evidence suggests

that epigenetic dysregulation plays a crucial role in the disease. In the present study, we exam-

ined if genes associated with SL signaling present transcriptional and epigenetic variation in the

AD brain. Combining transcriptomic and epigenetic data of SL-related genes from 46 AD and

32 healthy individuals, among 252 SL-related genes assessed, we found 103 genes to be signif-

icantly differentially expressed in AD, i.e. indicating a profound enrichment of SL-related gene

expression in AD. Additionally, analysis of methylation data revealed PTGIS, GBA, and ITGB2

to be differentially hydroxymethylated and PLA2G6 to display differential levels of unmodified

cytosine in AD. In order to evaluate how SLs influence the disease, we performed a Gene Regula-

tory Network (GRN) analysis, by reconstructing phenotype-specific, i.e. AD and healthy control,

networks. Subsequently, the reconstructed disease network was employed to identify novel per-

turbation candidates whose alterations hold the potential to revert the gene expression program

from an AD towards a healthy state. In particular, we identified CAV1, TNF and IL4 to be the most

influential gene combination in the AD network, as a perturbation of these three genes has the

potential to revert the expression levels of 41 SL-related genes in the network. This multifactorial

epigenetic-transcriptional approach highlights the importance of changes in SL function and re-

lated molecules in AD. Moreover, although the genes highlighted are not necessarily responsible

for the development and course of the disease, identifying specific dysregulated SL-related genes

and their downstream effects will provide a starting point to characterize possible AD biomarkers

and guiding the development of new therapeutic approaches.

5.2 Introduction

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder represent-

ing one of the main causes of dementia worldwide [133]. Nowadays, the increasing prevalence of

individuals affected by AD and the lack of an effective therapy makes AD to be one of the most

challenging diseases in the world [16]. This progressive disease is characterized, amongst others,
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by initial short-term memory loss and subsequent, language problems, changes in personality, and

apathy [16]. The parthenogenesis of AD is still not fully understood, but likely involves both

genetic and environmental factors [281]. AD is histologically characterized by the progressive

over-production and accumulation of amyloidβ (Aβ) peptide and hyperphosphorylated tau that

lead to the formation of extracellular senile plaques and intracellular neurofibrillary tangles, re-

spectively [65]. The concomitant neurotoxicity causes e.g. activation of inflammatory pathways,

region-specific synaptic and neuronal degeneration, with huge downstream effects on the physiol-

ogy of the central nervous system (CNS). Inflammation, metabolic dysfunction, and dysregulation

in cell cycle control are just a few of the molecular pathophysiological signs of AD that have been

discovered so far and identified as the main etiological causes of neurodegeneration [236].

Increasing evidence suggests that a combination of genetic, epigenetic and environmental factors

is contributing to AD progression and associated cognitive impairment. Recently, the role of sph-

ingolipids (SL) garnered more attention in this respect [110]. A clear link between lipids and AD

was first reported in 1993 when researchers demonstrated the binding between apolipoprotein E

(APOE4) and Aβ, concomitant with the increased frequency of the APOE type 4 allele observed

in AD patients [56, 266]. More recent evidence has further strengthened the notion of altered SL

metabolism in AD [101, 56]. Sphingolipids are complex molecules composed of a backbone of

sphingoid bases and a set of aliphatic amino alcohols. A very common SL with an R group consist-

ing of a hydrogen atom only is a ceramide. Ceramide undergoes post-transcriptional modification

to form more complex SLs highly abundant in the CNS. Besides their role in building up the cell

membrane, they have a variety of bioactive functions regulating different physiological processes

such as the cell cycle, differentiation, and regulating synapse structure and function [285].

Multiple factors such as early development, but also environmental stimuli, including nutritional

factors and drugs are known to affect SL homeostasis through epigenetic mechanisms regulat-

ing the expression levels of SL-associated genes [65]. In the brain, the delicate balance of SL

species is absolutely necessary for normal neuronal function, as several brain disorders are known

to be caused by dysregulation in e.g. SL metabolism [212]. Interestingly, different metabolic

and lipidomic analyses have shown an altered SL metabolism in early AD that contributes to the

progression of pathology, by impacting upon Aβ production and tau phosphorylation [189]. In

particular, there is evidence that gangliosides, a class of glycosylated SLs, contribute to the ini-
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tiation and progression of AD by facilitating plaque formation [66]. These studies underscore

the importance of SLs in AD onset and progression as well as the need to understand their dys-

regulation from an integrative point of view [189, 292]. Therefore, a better understanding of the

relationship between epigenetic and transcriptomic processes in regulating SL function is of ut-

most importance for elucidating the underlying role of SLs in AD pathology and the potential

development of novel SL-targeted AD therapeutics.

In the present study, we examined SL-related genes from an epigenetic-transcriptional point of

view, to further understand the involvement of downstream SL (dys)function in AD. The over-

arching hypothesis was to identify if, and if so, to which extent SL genes are disrupted at the

methylomic and transcriptomic level in AD. To explore this hypothesis, we first identified a set

of 252 SL-associated genes based on manually selected Gene Ontology (GO) terms. Transcrip-

tomic analyses showed a profound enrichment of SL-related differentially expressed genes in AD.

The conducted epigenetic data analyses revealed PTGIS, GBA, and ITGB2 to be differentially

hydroxymethylated and PLA2G6 to display differential levels of unmodified cytosine in AD. Fur-

thermore, to evaluate how SLs influence the disease, we performed a Gene Regulatory Network

(GRN) analysis. The reconstructed networks were employed for in silico perturbation analysis

and identified CAV1, TNF and IL4 to be the most influential gene combination in the AD network.

Taken together, these findings confirmed the initial hypothesis that SL metabolism is significantly

altered in AD. Furthermore, the identification of dysregulated SL-related genes and systematic

dissection of their downstream effects by in silico network perturbation analysis, revealed the po-

tential of this approach to predict diagnostic biomarkers as well as aid in the development of novel

SL-targeted AD therapeutics.

5.3 Materials and methods

5.3.1 Identification of sphingolipid pathway associated genes

A gene set involved in sphingolipid function was created by extracting the genes annotated with

a list of relevant manually selected Gene Ontology (GO) terms (see supplementary Table 12)

[55]. The genes connected to these terms were extracted by using the WikiPathways plugin for
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PathVisio, which allowed to save all elements connected to a GO term of interest in an xml type

file format (gpml format) [257, 141]. This plugin requires the GO ontology file (‘go.obo’ from

geneontology.org; downloaded Nov. 17th, 2018) and a bridgeDb file with gene identifier mappings

(‘Hs Derby Ensembl 91.bridge’ from www.pathvisio.org in this case) [283]. Thereafter, an R

script was used to extract all contributing genes (as identified by their HGNC symbols) from the

gpml files for each term. Subsequently, all information per gene was combined, by merging all GO

terms from the selection by which the gene is annotated. Furthermore, a basic ‘tree-like’ textual

display of the terms in the selection was generated, to support interpretation (Supplementary Table

13, 14, 15). In the end, this procedure resulted in a gene set consisting of 252 SL-related genes

that were assessed in downstream applications.

5.3.2 Post-mortem tissue samples

This study makes use of brain tissue from donors of the Brain and Body Donation Program

(BBDP) at the Banner Sun Health Research Institute (BHSRI), who signed an informed consent

form approved by the institutional review board, including specific consent of using the donated

tissue for future research [17, 18].

DNA was obtained from the middle temporal gyrus (MTG) of 46 AD patients and 32 neurologi-

cally normal control BBDP donors stored at the Brain and Tissue Bank of the BSHRI (Sun City,

Arizona, USA) [17, 18]. The organization of the BBDP allows for fast tissue recovery after death,

resulting in an average post-mortem interval of only 2.8 hours for the included samples. A con-

sensus diagnosis of AD or non-demented control was reached by following National Institutes of

Health (NIH) AD Center criteria [18]. Comorbidity with any other type of dementia, cerebrovas-

cular disorders, mild cognitive impairment (MCI), and presence of non-microscopic infarcts was

applied as exclusion criteria. Detailed information about the BBDP has been reported elsewhere

[17, 18].

5.3.3 Differential (hydroxy)methylation analysis

For differential DNA methylation (5-methylcytosine, 5mC), hydroxymethylation (5-hydroxymethyl

cytocine, 5hmC) and unmethylation (unmethylatedcytosine, uC) analysis, data was obtained from
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an unpublished study from our group, where Illumina HM 450K arrays were used for quantifying

methylation status of 485,000 different human CpG sites. We only considered 5mC, 5hmC, and

uC datasets related to 46 AD patients and 32 controls for which the corresponding gene expression

profiles were also available. Preprocessing and analysis of the raw datasets was conducted in R

(version 3.4.4) [272]. Raw IDAT files corresponding to the selected individuals were read into R

using the wateRmelon “readEpic” function (version 1.20.3) [224]. The “pfilter” function from the

wateRmelon package (version 1.18.0) [224] was used to filter datasets based on bead count and

detection of p-values. Background correction and normalization of the remaining probe data was

performed by using the “preprocessNoob” function of minfi package (version 1.22.1) [9]. Beta

values for the probes were obtained by the “getBeta” function of the minfi package. We used

the MLML function within the MLML2R package [77] for estimating the proportion of uC, 5mC

and 5hmC for each CpG, based on the combined input signals from the bisulfite (BS) and oxida-

tive BS (oxBS) arrays. All of the cross-hybridizing probes and the probes that contained a SNP

in the sequence were removed resulting into 407,922 probes to be considered for the differential

methylation analysis [43].

Raw IDAT files corresponding to the selected individuals were loaded into R using the minfi

“read.metharray” function (version 1.22.1) [9] to generate an RGset for computing the cell type

composition of the samples by using the “estimateCellCounts” function of the same package. For

estimating the cell composition, we used the FlowSorted.DLPFC.450k package (version 1.18.0)

[120] as the reference data for “NeuN pos” cell composition within the frontal cortex. The limma

package (version 3.32.10) [241] was used to perform linear regression in order to test the relation-

ship between the beta values of the probes and the diagnosis of AD. The used regression model

considered beta values as outcome, AD diagnosis as predictor, and age, gender, and neuronal

cell proportion as covariates. In order to identify significantly differentially methylated probes

(DMPs), false discovery rate (FDR) correction for multiple testing was applied where unadjusted

P-values were corrected for those 252 genes belonging to the sphingolipid pathway. Accordingly,

all probes with P-value less than 0.0002 were considered as statistically significant in terms of

displaying differential levels of methylated, hydroxymethylated or non-methylated cytosine, and

considered for further analysis. Resulting probes were annotated using Illumina human UCSC

annotation. In order to identify differentially methylated genes, we took the most significant probe
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as a representative of the methylation status of a gene.

5.3.4 Differential gene expression analysis

For differential gene expression analysis, Illumina HumanHT-12 v4 beadchip expression array

data for the same MTG samples was obtained from another unpublished study. Preprocessing and

analysis of the raw datasets was conducted in R (version 3.4.4) [272]. Raw expression data was

log-transformed and quantile-quantile normalized. For computing the cell type composition, the

Neun pos cell percentage was calculated from the methylation data. The same regression model

used for assessing methylation was applied to the expression data where the effects of age, gender

and cell type composition were regressed out using limma. The unadjusted P-value obtained

from limma were FDR-adjusted for only the set of 252 genes in the sphingolipid pathway and

only the genes with adj.P.value <0.05 were considered as statistically significantly differentially

expressed.

5.3.5 Gene-gene interaction network

We used Pathway Studio [206] to obtain directed functional interactions between the genes be-

longing to sphingolipid associated pathway. The Pathway Studio database contains a collection

of literature-curated and experimentally validated direct gene-gene interactions. The high level

of literature curation ensures the creation of highly confident interaction network maps. In or-

der to obtain a set of directed functional regulatory interactions among the selected genes, our

analysis was restricted to interactions belonging to categories of “Expression”, “Regulation”, “Di-

rect Regulation”, “Promoter Binding”, and “Binding”. The obtained interactions are directed, i.e.

the source and target genes are known. Furthermore, the information about the interaction type

(activation or inhibition) is also given where available.

5.3.6 In silico network simulation analysis for phenotypic reversion

The differential network topology allowed us to identify common and phenotype-specific positive

and negative elementary circuits, i.e. a network path which starts and ends at the same node with

all the intermediate nodes being traversed only once. These circuits have been shown to play a
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significant role in maintaining network stability [94] and the existence of these circuits is consid-

ered to be a necessary condition for having stable steady states [275]. Considering the importance

of these circuits, it has been shown that perturbation of genes in positive circuits induces a phe-

notypic transition [58]. Furthermore, the differential network topology also aids in identifying

differential regulators of the genes common to both phenotype-specific networks. Altogether, the

differential regulators and genes in the elementary circuits constitute an optimal set of candidate

genes for network perturbation as they are able to revert most of the gene expression program upon

perturbation. Identification of network perturbation candidates was carried out by using the Java

implementation proposed by Zickenrott and colleagues [314]. The same Java implementation was

used to perform a network simulation analysis by perturbing multi-target combinations of up to

three network perturbation candidate genes. The used algorithm provided a ranked list of single-

and multi-genes combinations (maximally 3 genes) and their scores, which represent the number

of other genes within the network whose expression is predicted to be reverted upon the chosen

perturbation. Generally, a single- or multi-gene perturbation combination obtaining a high score

is indicative of its ability to regulate the expression of a large subset of downstream genes, hence

playing a crucial role in the maintenance and stability of the phenotype under consideration.

5.4 Results

5.4.1 Transcriptome analysis of sphingolipid genes

In order to identify SL-associated genes, we used the gene ontology (GO) terms and WikiPathways

plugin [257] for PathVisio [141] to convert each GO terms of interest into a tree-like pathway dia-

gram. By removing the genes belonging to irrelevant families and keeping only the ones related to

sphingolipid GO terms, we identified 252 genes to be involved in this pathway. Next, information

on the expression of these 252 genes within the MTG was extracted from available microarray data

performed on brain tissue derived from AD patients and age-match elderly controls. The genome-

wide differential expression analysis (DEA) of the transcriptomic data resulted in 7,776 genes to

be significantly (FDR corrected P-value <0.05) differentially expressed (up- and down-regulated)

when comparing AD patients and age-matched controls. By applying multiple correction for the

number of SL-associated genes, we found 103 out of a total of 252 genes to be significantly dif-
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ferentially expressed (up- and downregulated) (see Table 5 for the top 30 differentially expressed

genes and supplementary Table 11 for a complete overview).

GeneName logFC FDR adj Pval GeneName logFC FDR adj Pval
STS -0.221 0.000001 PPM1L -0.139 0.000538
ARSG -0.148 0.000011 SMO 0.331 0.000538
EZR 0.631 0.000017 VAPA -0.279 0.000538
ALOX12B -0.195 0.000033 ST8SIA2 -0.11 0.000538
ST6GALNAC5 -0.921 0.000033 ELOVL4 -0.633 0.000538
B3GALNT1 -0.387 0.000033 CDH13 -0.654 0.000571
GLTP 0.484 0.000111 RFTN1 -0.382 0.000624
CLN8 0.269 0.000163 EHD2 0.327 0.00075
CD8A -0.122 0.000179 ST8SIA5 -0.319 0.000784
MAL2 -0.994 0.000196 PRKD1 0.301 0.000784
TFPI 0.241 0.000226 AGK -0.43 0.000784
CSNK1G2 0.347 0.000272 ATP1A1 -0.553 0.000932
RFTN2 0.529 0.000333 ANXA2 0.369 0.000932
KDSR 0.372 0.000388 GBA -0.206 0.001177
P2RX7 0.466 0.000528 CLIP3 -0.256 0.001177

Table 5: Differentially expressed genes in sphingolipid metabolism pathway. A list of top
significantly differentially expressed genes (FDR adjusted P-value <0.05) when comparing AD
and control samples.

5.4.2 The SL pathway is significantly dysregulated in AD

At the very outset, we sought to determine whether SL-function-associated genes were differen-

tially expressed in AD patients in comparison to healthy controls. The genome-wide differential

gene expression analysis revealed 24.5% (7,776 out of 31,726 genes) of the genes to be signifi-

cantly differentially expressed (adj.p.val <0.05) between AD and control samples. However, out

of the 252 pre-identified SL pathway-associated genes, 103 were found to be significantly differ-

entially expressed, i.e. 40,87%, indicating a profound enrichment of dysregulated genes linked to

SL. In line with existing literature [103, 172], this confirms our initial hypothesis that dysregulated

SL function represents a key feature affected during the development and course of AD.
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5.4.3 Differentially methylated genes are shared across different methylation lev-

els

Overall, 109, 129, and 170 probes displayed nominally significant (unadjusted P-value <0.05)

levels of 5-mC, 5-hmC, and uC, respectively. These CpG sites were associated to 78, 90, and

112 unique genes, respectively. Interestingly, we see a higher overlap between (h)mC and uC

(a Venn diagram representing the overlap of genes across different level is shown in Figure 12a.

Similarly, the overlap of particular probes across different epigenetic levels is depicted in Figure

12b. Notably, there were 28 genes that were both significantly differentially methylated, hydrox-

ymethylated as well as displaying different levels of unmodified cytosine (Figure 12a), represent-

ing consistent nominal differences observed across all levels of methylation. This highlights the

robust and multifaceted interconnection between AD and SLs.
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(a)

(b)

Figure 12: Venn diagram of differentially (hydroxy)methylated SL genes and probes. a) Over-
lap between genes across different levels (hmC, mC, uC) that are nominally significant (unadjusted
P-value <0.05). b) Overlap between nominally significant probes across all three levels.

In order to highlight the most relevant (hydroxy)methylation changes, we subsequently corrected

the obtained hits for multiple testing. As such, after correction, four CpG sites still displayed

differential levels of methylated or unmodified cytosine (P-value <0.0002) when comparing AD

and control samples. More specifically, three probes, associated to PTGIS, GBA, and ITGB2, were

differentially hydroxymethylated whereas, one probe, associated to PLA2G6, showed different

levels of unmodified cytosine (see Table 6).
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Gene Name Probe Name mC hmC uC P-value logFC
PLA2G6 cg22326681 x 0.000724 -0.027
PTGIS cg07612655 x 0.00008 0.037
GBA cg19257864 x 0.00017 0.036
ITGB2 cg18012089 x 0.000472 0.061

Table 6: Differentially (hydroxy)methylated genes in SL metabolism pathway. Significantly
differentially methylated (mC), hydroxymethylated (hmC) and unmodified cytosine (uC) probes
between AD and controls.

5.4.4 Gene regulatory network analysis

In order to gain a deeper understanding of SL-associated dysregulations at a systems-level, we

conducted a differential gene regulatory network (GRN) based analysis to reconstruct two context-

specific networks, representing the AD and healthy phenotypes. The employed GRN inference

approach [314] relies on Booleanized differential gene expression data and a prior knowledge

network (PKN) of gene-gene interactions to reconstruct context-specific networks. The recon-

structed AD network comprised 110 genes and 307 interactions (Figure 13a), whereas the healthy

phenotype network consisted of 119 genes and 280 interactions (Figure 13b). Although the num-

ber of initially identified SL-associated genes was much higher when compared to the number

of genes present in the networks, the dependence on experimentally validated manually curated

interactions from Pathway Studio [206] suggests that not all of these genes necessarily interact

with each other. Interestingly, the enrichment of significantly differentially expressed genes in

SL-associated genes was even higher for the genes present in the networks, as 59 out of these 124

genes (47.58%) were significantly differentially expressed (adjusted FDR <0.05). This verifies

the reliability of the applied network reconstruction approach such that most of the significantly

differentially expressed genes are kept in the networks during the filtration of interactions that were

not context-specific. The differential network analysis of AD and healthy phenotypes highlighted

important SL-associated genes (e.g. EZR, ITGB2, NOS1, NOS3, SRC, S1PR3, SPHK1, TGFBR2)

that seem to have a prominent role in the development and course of AD [267, 309].
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Figure 13: GRN of SL metabolism diseased and control phenotypes. a) Gene regulatory net-
work representing the diseased phenotype containing 110 nodes (transcription factors and genes)
and 307 interactions; b) network representing the healthy phenotype containing 119 nodes and 280
interactions. Green arrowhead lines in the network represent positive interactions, i.e. activation
(253 and 205 in the disease and control phenotype networks, respectively), while the red ones
represent negative interactions, i.e. inhibition (54 and 75 in the respective phenotypes).
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5.4.5 In silico network perturbation analysis

In light of viewing diseases as network perturbations [62, 3], we performed in silico network per-

turbations to identify the most influential combination of genes in the GRN representing the AD

phenotype. The network perturbation analysis highlighted the governing role of the perturbation

candidates in the GRN and revealed that a three-genes perturbation combination, consisting of

TNF, IL2, and MAPK3, has the potential to revert the expression levels of 41 genes in the network

from a diseased towards a healthy phenotype (see Table 7). Similarly, CAV1, S1PR2, and TNF

represented another strong combination, which comprised of two significantly differentially ex-

pressed genes (CAV1 and S1PR2) and was found to revert the expression level of 38 other genes

in the network, making it an ideal candidate for experimental validation. Importantly, caveolin 1

(CAV1), which seems to be one of the most important perturbation candidates, is found to be up-

regulated in AD patients, consistent with existing studies that associated its elevated expression

level to cerebral amyloid angiopathy in AD [282, 87]. As caveolin is a cholesterol-binding mem-

brane protein, its upregulation in AD patients might cause alterations of cholesterol distribution

in the plasma membrane, in line with existing studies that validated the notion of dysregulated

cholesterol homeostasis in AD [87]. Similarly, S1PR1 and S1PR2, encoding for sphingolipid

receptors, also constitute a potent perturbation combination, as these receptors are known to criti-

cally regulate many physiological and pathophysiological processes [171]. In addition, they have

been reported to modulate the activity of β-site APP cleaving enzyme-1 (BACE1) in neurons [271],

which is known as a rate limiting enzyme for amyloid-β peptide (Aβ) production, suggesting its

therapeutic potential in AD.

Although the genes signatures identified are not necessarily responsible for disease onset and pro-

gression, they are able to revert most of the diseased gene expression program upon perturbation,

suggesting a prominent role of predicted genes in the establishment of the disease phenotype.

Taken together, the in silico network perturbation analysis highlights novel candidates that could

serve as potential targets for therapeutic intervention in AD.
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Rank Pert score Gene combo Signif. Rank Pert score Gene combo Signif.
1 41 TNF,IL2,MAPK3 0 16 36 CAV1,S1PR1,TNF 1
2 39 CAV1,F2R,TNF 1 17 36 CAV1,FLOT1,TNF 1
3 38 F2R,S1PR2,TNF 1 18 35 SPHK1,F2R,TNF 1
4 38 F2R,JAK2,TNF 0 19 35 SPHK1,CAV1,TNF 2
5 38 CAV2,TNF,MAPK3 0 20 35 PRKAR1A,F2R,TNF 1
6 38 CAV1,TNF,MAPK3 1 21 35 PRKAR1A,CAV1,TNF 2
7 38 CAV1,S1PR2,TNF 2 22 35 JAK2,TNF,TNFRSF1A 1
8 38 CAV1,JAK2,TNF 1 23 35 FLOT1,JAK2,TNF 0
9 37 TH,CAV1,TNF 1 24 35 F2R,TNF,TNFRSF1A 1
10 37 JAK2,TNF,MAPK3 0 25 35 CDH2,CAV1,TNF 1
11 37 CAV2,TNF,IL2 0 26 35 CAV1,TNF,TNFRSF1A 2
12 37 CAV1,TNF,IL2 1 27 34 TH,TNF,MAPK3 0
13 36 TH,JAK2,TNF 0 28 34 SPHK2,F2R,TNF 1
14 36 F2R,TNF,MAPK3 0 29 34 SPHK2,CAV1,TNF 2
15 36 F2R,S1PR1,TNF 0 30 34 SPHK1,TNF,MAPK3 1

Table 7: SL metabolism network perturbation analysis. Top 30 key candidate genes combi-
nations identified by in silico network perturbation analysis. Rank represents the importance of a
given combination of genes. Perturbation score (pert score) represents the total number of genes
whose gene expression is reverted upon inducing a perturbation of a given gene combination (gene
combo). The number of perturbation candidates that are significantly differentially expressed in
the gene combinations are represented in the significance (signif.) column.

5.5 Discussion

In-depth integrative analyses of particular pathways, as performed for the SL pathway in the

present study, could aid in obtaining more insight in the yet unclear pathogenesis of AD. Although

developments in high-throughput sequencing technologies and computational analysis of obtained

datasets have enhanced our knowledge about genes causal to AD, the mechanisms underlying dys-

regulation of such specific pathways are yet to be explored. A comprehensive characterization of

these pathways demands the integrative analysis of various interconnected layers of regulation

that have been overlooked and/or understudied so far. Such an explorative study holds the po-

tential to provide more insight into the mechanisms behind dysregulation of specific pathways

as seen in AD, thus providing avenues for e.g. designing more effective therapeutic treatment

strategies.

Our results reveal an alteration of SL gene function at different levels of DNA methylation. Methy-

lation data showing that the integrin subunit beta 2 (ITGB2) gene was significantly hydroxymethy-

lated and upregulated in AD patients are in line with an existing study reporting the high expres-

sion level of this gene in mouse models of AD [53]. Furthermore, PLA2G6, displaying differential
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levels of unmodified cytosine, is well known for its implication in neurodegenerative disorders, in-

cluding AD [55]. Similarly, genetic variation in the gene encoding glucosylceramidase beta (GBA)

has been suggested to influence the risk of dementia in Parkinson’s disease [52]. Interestingly, de

novo genetic variation in the prostaglandin 2 synthase (PTGIS) gene has been suggested to con-

tribute to neurodevelopmental disorders, such as childhood onset schizophrenia [62], whereas

there is no supporting literature on the influence of this gene to neurodegeneration to date.

Owing to the alterations in the levels of expression and methylation of SL-associated genes in AD,

and the possibility of using them as biomarkers for AD [190], we aimed at bridging the gap in the

literature by conducting an integrative analysis of genes involved in SL function. To this end,

by systematically identifying significantly differentially expressed genes in post-mortem MTG

tissue derived from AD patients and age-matched elderly controls, we reconstructed phenotype-

specific, i.e. AD and healthy control, networks. Subsequently, the reconstructed disease network

was employed to identify novel perturbation candidates whose alterations hold the potential to

revert the gene expression program from an AD towards a healthy state. Further, overlaying the

differential methylation data allowed us to explain the observed changes in the expression levels

of these genes during the onset of AD. Some of the most prominent predicted candidate genes

include CAV1, S1PR1/2 and SPHK1, which are all known to be involved in various neuronal

processes, while expression changes of these genes have been implicated in the progression of AD

[282, 87, 171, 267, 154].

Notably, ARSG, coding for arylsulfatase G, is the most significantly differentially expressed SL-

associated gene in AD. ARSG, a member of the family of the sulfatases, is involved in hormone

biosynthesis, in the modulation of different cellular pathways, including the degradation of macro-

molecules. The loss of sulfatase activity has been linked to various pathological conditions such as

lysosomal storage disorders, cancer and neurodevelopmental dysfunction [84]. Here, for the first

time, we are able to link the dysregulation of ARSG to AD. In line with previous analysis, EZR,

which encodes for the membrane protein Ezrin, is profoundly increased in AD [309]. Moreover,

genes like ALOX12B, P2RX7 and ST6GALNAC5 have already been implicated in AD or other

neurodegenerative disorders [180, 177, 284]. Interestingly, other genes, such as CLN8, ARSG, and

B3GALNT1, although associated to neurological dysfunction, had not yet been directly linked to

AD [168].
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Although our analyses identified novel and pre-identified AD candidate genes, the moderate sam-

ple size might have limited the detectable changes in AD samples. This limitation can be seen

as an opportunity for conducting more diverse studies including wide-range of analyses in other

brain regions to further investigate the role of SL function in AD. Nevertheless, our results provide

a clear evidence about the involvement of SLs and related molecules in AD, highlighting the diag-

nostic and SL-targeted drug-development potential of predicted genes. Even though the reported

genes and epigenetic modifications are not predictive signs of the disease progression, our data

can serve as a starting point to fill the wide gap of knowledge concerning the role of SLs in AD.

Thus, SL function and associated molecules dysregulated in AD could aid in the development of

new therapeutic approaches.
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6.1 Abstract

Mutations in the CLN3 gene have been associated with juvenile neuronal ceroid lipofuscinoses

(JNCL), the most prevalent form of Batten disease, a lysosomal disease that causes neurodegener-

ation in children. The early onset of JNCL is characterized by vision loss, followed by progressive

deterioration of motor skills and seizures, eventually leading to death at adult age. The limited

knowledge of CLN3 function and scarcity of an adequate disease model has significantly hampered

our understanding of disease-specific dysregulation at e.g. the gene expression level. In particular,

the reconstruction and analysis of molecular networks that explain transcriptional dysregulation

are yet to be explored. In order to understand the functional consequences of a particular muta-

tion in the CLN3 gene and to identify genes and pathways compromised, we have generated an

early human neurodevelopmental model of Batten disease, using isogenic human induced pluripo-

tent stem cell (iPSC)-derived cerebral organoids. The functional characterization of this in vitro

model showed the presence of disease-specific lipofuscin storage material and lysosomal enzyme

dysregulation, highlighting the potential of iPSC-derived CLN3 mutant organoids to recapitulate

disease-specific features. Moreover, differential gene regulatory network (GRN)-based analysis of

transcriptomic data obtained from control and disease organoids revealed key regulators maintain-

ing the disease phenotype. Furthermore, pathway enrichment analysis conducted on the disease

network showed that genes significantly dysregulated in the network are associated with molec-

ular pathways related to development, validating the potential of this systems-level approach to

identify key genes and associated molecular mechanism implicated in Batten disease.

6.2 Introduction

Juvenile neuronal ceroid lipofuscinoses (JNCL), the most prevalent form of Batten disease, is a

rare and fatal lysosomal storage disorder (LSD), mostly affecting children and young adults [248].

JNCL typically begins with progressive loss of sight between four and eight years of age, due to

retinal degeneration. The clinical course progresses around the age of 10-12 years, with loss of mo-

tor coordination and mental decline, often worsened by seizure episodes. These symptoms might

be accompanied by behavioural abnormalities such as anxiety and aggression [138]. Moreover,

there is also evidence of pathology outside the central nervous system (CNS), more specifically in

84



CHAPTER 6. NETWORK-BASED APPROACH FOR MODELING BATTEN DISEASE

the cardiovascular [216] and immune system [39]. The disease inexorably leads to death during

the second or third decade of life and there are unfortunately no established treatments to date that

can stop, reverse, or prevent this disease.

JNCL is caused by recessively inherited mutations in the CLN3 gene (NG 008654.2), which is

located on chromosome 16p12.1 (NC 000016.10). The CLN3 gene encodes a predicted 438 amino

acid protein with a molecular mass of 48kDa. The CLN3 protein (Q13286) is predicted to be a

transmembrane protein in the lysosome [57]. Low expression levels and the unavailability of

specific antibodies for the CLN3 protein make it difficult to elucidate its precise cellular function.

Over the years, CLN3 has been linked to a vast number of cellular processes, including lysosomal

pH regulation, autophagy, endocytosis, trans-Golgi protein transport, cell migration, morphology,

proliferation, and apoptosis. In neurons, CLN3 seems to reside in synaptic vesicles, suggesting

a role in synaptic transmission [37]. The CLN3 protein does not share fundamental homology

with other proteins and yet it is highly conserved across species. Therefore, animal models have

constituted the first and most important source to gain more insight into the exact function of

this protein. However, the recent advancements in iPSC-based disease modeling, such as in vitro

development of human brain organoids, provide us an opportunity to study neurodevelopmental

and neurodegenerative diseases in more detail.

Organoids are three-dimensional (3D) structures originating from stem cells and relying on their

intrinsic ability to self-organize and form complex structures, when provided with a support matrix

and in the presence of suitable exogenous factors. These structures are capable of forming hetero-

geneous tissue-specific cells, of maintaining gene-gene, cell-cell and cell-matrix interactions, and

of recapitulating a large number of physiological functions of the organ they model [49].

A gene regulatory networks (GRNs)-based approach can be employed to gain a deeper under-

standing of Batten disease-associated dysregulation from a systems point of view. GRNs have

been extensively studied for gaining a systems-level understanding of disease-related dysregula-

tion and its underlying mechanisms. These network-based diseased models have been used to

predict disease-associated genes and sub-networks [35, 231], while different network topological

properties, such as neighbourhood connectivity [234] and Betweenness centrality [126], have been

used to predict gene-disease associations.
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In the present study, we made use of transcriptomic data from an early human neurodevelopmen-

tal model of Batten disease, using isogenic human induced pluripotent stem cell (iPSC)-derived

cerebral organoids, in order to study the contribution of the c.1054C>T mutation in the CLN3

gene to brain formation and to the pathophysiology of Batten disease in general. The functional

characterization of this in vitro disease model [90] showed the presence of disease-specific storage

material in iPSC-derived CLN3 mutant organoids, thus recapitulating disease features by intro-

ducing a disease-causing mutation in the CLN3 gene. In order to gain a deeper understanding

of Batten disease-related dysregulation at a systems-level, we utilized a differential GRN infer-

ence approach presented by Zickenrott et al. [314], to reconstruct phenotype-specific networks

representing the diseased (mutant) and healthy (wild-type) phenotypes. By employing an in sil-

ico network perturbation analysis on the reconstructed phenotype-specific network, we predicted

novel candidate genes that maintain the disease phenotype. Interestingly, pathway enrichment

analysis conducted on the network showed that the genes in the network are significantly dysregu-

lated in molecular pathways related to development, a hallmark of Batten disease. Altogether, our

data suggest that the mutation in the CLN3 gene causes the accumulation of pathological storage

material and lysosomal enzyme dysregulation at the early stages of brain development, reflected

by changes at the transcriptomic level.

6.3 Materials and methods

This chapter is based on a joint work conducted in collaboration with Prof. Schwamborn’s lab

at the University of Luxembourg. The development of in vitro Batten disease model, its func-

tional characterization, and RNA-seq data sampling were done by our collaborators [90] while

computational analyses including in silico disease modeling, network perturbation, and pathway

enrichment were carried out by us.

6.3.1 Insertion of CLN3Q352X mutation in iPSCs

The characterized Gibco (Cat no. A13777) episomal human iPSC line was established as a con-

trol line to conduct the genome editing. By using the CRISPR/Cas9 genome editing technology,

a c.1054C>T genomic mutation was introduced in the CLN3 gene based on an in-house devel-
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oped protocol [8]. As a result, we obtained two lines having the same genetic background, one

representing the control and another the mutant (CLN3Q352X) phenotypes. We created 6 replicates

(samples) per line which were all grown in the same conditions and they were all at the same

time-point of development.

6.3.2 Generation and culture of human cerebral organoids

Human whole brain organoids were derived from hiPSCs following the Lancaster and Knoblich,

2014 protocol [148]. All of the required growth mediums were purchased from Invitrogen, Gent,

Belgium, unless otherwise specified. A total of 9,000 cells per well were seeded into a 96-ultra low

adhesion plate (VWR) in embryoid body (EB) formation medium, combining DMEM-F12 (Invit-

rogen) with 20% KO-Serum Replacement (Invitrogen), 3% FBS (Invitrogen), 1% GlutaMax (Life

Technologies), 1% NEAA (Thermo) and 0.0007% 2-Mercaptoethanol (Merck) and supplemented

with Y-27632 (Merck Millipore) and bFGF(PreproTech) at a final concentration of 4 ng/mL. Em-

bryoid bodies (EBs) were kept in this media for six days, after which the medium was replaced

by Neural induction medium made of DMEM-F12 (Invitrogen) with 1% N2 supplement (Invit-

rogen), 1% GlutaMax (Life Technologies), 1% NEAA (Thermo) and 1% Heparin (Sigma) (final

concentration 1 µg/mL).

EBs were kept in this medium until the eleventh day, after which they were transferred into Ma-

trigel (Corning) droplets and cultured in 24-well-plates under differentiation medium conditions.

Cerebral organoid differentiation medium consisted of DMEM-F12 (Invitrogen) and Neurobasal

(Invitrogen) media in a 1:1 ratio supplemented with N2 (Invitrogen), 1% GlutaMax (Life Tech-

nologies), 0.5% NEAA (Thermo), 1% Penicillin/Streptomycin (Invitrogen) and 0.025% Insulin

(Sigma). The first four days of differentiation, medium was supplemented with B27 without vi-

tamin A (Life Technologies) and organoids were kept in static conditions. Later, organoid plates

were placed on an orbital shaker (IKA), rotating at 80 rpm, and cultured in differentiation media

containing B27 with vitamin A (Life Technologies). Media was exchanged every second or third

day and cerebral organoids were kept in culture for another 55 days after the start of differentiation

(day 11).
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6.3.3 Isolation of RNA samples

Total RNA was isolated from cerebral organoids using the RNeasy Mini Kit (Qiagen) follow-

ing the manufacturer’s instructions. An on-column DNAse digestion step was included in the

protocol and performed with RNase-Free DNase Set (Qiagen). Five samples per condition were

taken as replicates where every sample consisted of a pool of three organoids. RNA concentration

was spectrophotometrically determined using NanoDrop (ND 2000). Library preparation for se-

quencing was done with 1 µg of total RNA using the TruSeq mRNA Stranded Library Prep Kit

(Illumina) according to manufacturer’s protocol. Briefly, the mRNA pull down was done using

magnetic beads with an oligodT primer. To preserve strand information, the second strand syn-

thesis was done with incorporation of dUTP so that during PCR amplification only the first strand

was amplified. The libraries were quantified using the Qubit dsDNA HS assay kit (Thermofisher)

and size distribution was determined using the Agilent 2100 Bioanalyzer. Pooled libraries were

sequenced on NextSeq500 using the manufacturer’s instructions.

6.3.4 RNA-Seq data processing and analysis

Illumina NextSeq single-end reads were filtered by using BBDuk (trimq=10 qtrim=r ktrim=r

k=23 mink=11 hdist=1 tpetbominlen=40; http://jgi.doe.gov/data-and-tools/bb-tools/)

to remove illumina adapters, PhiX library adapters, and to quality trim the reads. FastQC [6] was

used to check the quality of the reads in order to assure that only high-quality reads were kept for

subsequent analysis. Resulting reads were mapped to human GRCh37 genome by using tophat

(version 2.1.1) [278] (library-type=fr-secondstrand) and Bowtie2 (version 2.3.2.0).

Obtained alignment files were sorted by using samtools (version 1.6-5) [158] and the statistics of

the alignment rate were obtained by using samtoolsflagstat. Cufflinks (version 2.2.1) [278] was

used to quantify the transcripts and resulting expression values per gene were obtained in FPKM

(fragments per kb per million reads). Differential expression analysis between the wild-type and

mutant samples was conducted by using the cuffdiff program from the cufflinks tool. Only sig-

nificantly differentially expressed genes with an absolute log2 fold change greater than 1 were

considered for subsequent analysis.
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6.3.5 Gene Regulatory Network (GRN) reconstruction

For the set of significantly differentially expressed genes when comparing mutant and wild-type

samples, experimentally validated direct gene-gene interactions were retrieved from MetaCore

(Clarivate Analytics). The interaction types belonging to categories “Transcription regulation”

and “Binding” were kept in the prior knowledge network (PKN) from MetaCore. The differential

network inference method proposed by Zickenrott et al. [314] was used to prune the network

edges (interactions) which were not compatible with the discretized gene expression program of

the respective phenotype. Briefly, this method uses discretized differential gene expression data

and infers two networks representing the mutant (disease) and wild-type (healthy) phenotypes as

steady states. Some of the interactions derived from MetaCore have an unspecified regulatory

effect, as the exact mechanism of regulation is not known in those cases. The proposed algorithm

infers the regulatory effect (activation or inhibition) for such unspecified interactions based on the

given gene expression pattern.

6.3.6 Identification of network perturbation candidates

The differential network topology allowed us to identify common and phenotype-specific positive

and negative elementary circuits, i.e. a network path which starts and ends at the same node with

all the intermediate nodes being traversed only once. These circuits have been shown to play a

significant role in maintaining network stability [94] and the existence of these circuits is consid-

ered to be a necessary condition for having a stable steady (network) state [275]. Considering the

importance of these circuits, it has been shown that perturbation of genes in the positive circuits

induces a phenotypic transition [58]. Furthermore, the differential network topology also aids in

identifying the differential regulators of the genes, which are common to both phenotype-specific

networks. Altogether, the differential regulators and genes in the elementary circuits constitute

an optimal set of candidate genes for network perturbation as they are able to revert most of the

gene expression program upon perturbation. Identification of network perturbation candidates was

carried out by using the Java implementation proposed by Zickenrott et al. [314].
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6.3.7 In silico network simulation analysis for phenotype reversion

The Java implementation from Zickenrott et al. [314] was used to perform the network simulation

analysis by perturbing multi-target combinations of up to four candidate genes identified in the

previous step. The used algorithm gives a ranked list of single- and multi-gene(s) combinations

(4 genes maximally) and their scores, which represent the number of genes whose expression is

being reverted upon inducing the chosen perturbation. If a single- or multi-gene(s) perturbation

combination obtains a high score, it is indicative of its ability to regulate the expression of a large

number of downstream genes, hence playing a crucial role in the maintenance and stability of the

phenotype under consideration.

6.3.8 Gene and pathway enrichment analysis

MetaCore (Clarivate Analytics) and EnrichNet [91] were used to conduct gene ontology (GO) and

pathway enrichment analysis. The set of upregulated genes in the diseased network were used to

identify the most over-represented biological processes and molecular functions associated with

the genes in the network.

6.4 Results

6.4.1 Whole transcriptome analysis reveals impaired development in CLN3Q352X

cerebral organoids

Although there are a number of studies describing mechanism dysregulated in Batten disease,

they do not provide insight into underlying transcriptional dysregulation in the pathologic brain

compared to the healthy state. Therefore, we performed bulk RNA-seq analysis in our organoid

model system for Batten disease to determine whether developmental differences were reflected

in the gene expression profiles of the organoids. The differential expression analysis (DEA) of the

transcriptomic data resulted in 972 genes to be significantly (Benjamini Hochberg corrected P-

value<0.05 and logFC>1) differentially expressed (up- and downregulated) between the Control

and the CLN3Q352X mutant phenotypes (see Figure 14).

90



CHAPTER 6. NETWORK-BASED APPROACH FOR MODELING BATTEN DISEASE

Figure 14: Heatmap showing the clustering of differentially expressed genes between control
(healthy) and CLN3Q352X (mutant) brain organoids

Gene regulatory network (GRN) analysis

In order to gain a deeper understanding of Batten disease-related dysregulation at a systems-level,

we employed a differential GRN-based approach to reconstruct phenotype-specific networks rep-

resenting the CLN3Q352X-diseased (mutant) and control (healthy) phenotypes. The employed GRN

inference approach by Zickenrott et al. [314] relies on discretized differential gene expression

data and a prior knowledge network (PKN) of interactions to reconstruct phenotype-specific net-

works. The reconstructed CLN3Q352X-diseased network comprised 353 genes and 641 interac-

tions, whereas the control healthy network contained 298 genes and 399 interactions (see Figure

15a,15b).
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Figure 15: GRN representing Batten diseased and control phenotypes. a) Gene regulatory
network representing the healthy phenotype contained 298 nodes (transcription factors and genes)
and 399 interactions; b) GRN representing the diseased phenotype and contains 353 nodes and
641 interactions. Green arrowhead lines in the network represent positive interactions, i.e. acti-
vation (292 for the Control and 520 in the CLN3 mutant), while the red ones represent negative
interactions, i.e. inhibition (107 and 121 respectively in the two phenotypes).
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Interestingly, GO analysis of the CLN3Q352X diseased network revealed that most of the upregu-

lated genes in the network are significantly enriched in cellular processes related to development.

Some prominent examples are PAX5, TBX15, and HAND1 genes, that are well known for their

key roles in B cell [185], skeletal [255], and cardiovascular development [183]. Similarly, the

downregulated genes, such as human leukocyte antigen (HLA) genes, were targeting biological

processes and pathways related to the immune response and antigen processing and presentation

(see Figure 16a). Moreover, pathway enrichment analysis conducted on the network showed that

the genes in the network are significantly dysregulated in molecular pathways related to stem cells

and development (see Figure 16b). Some prominent examples include NOTCH1 [222], WNT3A

[166], and HES4 [72] genes, and they have been shown to play important roles in various devel-

opmental processes.
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Figure 16: Gene and pathway enrichment. a) Gene enrichment analysis of CLN3Q352X network
(top). Genes which were upregulated in the disease phenotype indicated a significant enrichment
of cellular processes highlighted in green, while processes associated with downregulated genes
are depicted in red. b) Pathway enrichment analysis of the CLN3Q352X network (bottom), upreg-
ulated pathways are highlighted in green, while pathways associated to downregulated genes are
marked in red.

Additionally, evaluation of gene expression data outside the disease network indicated expression

changes related to cortical neuron morphogenesis and central nervous system development and

highlighted decreased expression of associated genes, such as FOXG1 [99], FEFZ2 [71], CTIP2

[207], SATB2 [28], TBR1 [69] or NEUROD2 [213] in CLN3Q352X mutant cerebral organoids

(see Figure 17). This suggests that alterations in development and cortical neuronal specifica-

tion may occur during early development in our isogenic CLN3Q352X organoids, compared to the

control.
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Figure 17: Log 2 fold change expression values for genes related to brain development and
cortical morphogenesis showed a downregulation in mutant samples in comparison to con-
trol for most of the genes.

6.4.2 Lysosome enzyme expression is altered in CLN3Q352X cerebral organoids and

lipofuscin storage material is present

Following up on our RNA-seq analysis, we sought out connections between our expression data

and pathways that are especially relevant in JNCL, coupling the findings to molecular and bio-

chemical analyses. Thus, we screened our dataset for genes that were differentially expressed

between our control and CLN3Q352X mutant organoids and were related to lysosomal and vesicle-

mediated transport pathways. The list of genes belonging to these pathways was extracted from

Pathcards [19], an integrated database of human biological pathways and their annotations.

Among the differentially expressed genes related to lysosomal pathways, we found several lyso-

somal enzymes, such as TPP1/CLN2, a soluble serine protease in the lysosome, or cathepsins,

like cysteine proteases CTSC, CTSK and CTSZ (see Figure 18). Increased amounts of TPP1 pro-

tein have been described in various pathological conditions such as neurodegenerative lysosomal

storage disorders, inflammation, cancer and aging [92]. Moreover, TPP1 has been reported to

interact with the CLN3 gene [287]. Consistent with existing reports, we could also find an in-
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creased amount of TPP1 in our CLN3Q352X cerebral organoids, compared to the control brain

organoids.

Figure 18: Lysosome enzyme expression is altered in CLN3Q352X cerebral organoids. Venn di-
agram showing the differentially expressed genes related to lysosomal and vesicle-transport path-
ways that are differentially up- (green) or downregulated (red) in the CLN3Q352X mutant brain
organoids.

Importantly, the functional characterization of cerebral organoids by autofluorescence (confocal

laser excitation) and ultrastructural analysis (transmission electron microscopy) showed that de-

veloped in vitro batten disease model recapitulates important disease hallmarks, such as increased

autophagic vacuoles and presence of intracytoplasmic and electron dense storage material in the

organoid cultures [90] (unpublished work. Data not shown here). The carried out functional char-

acterization also reinforces the idea that the pathogenesis of JNCL is associated with alterations in

lysosomal compartments that might start with dysregulations at the transcriptional level.

6.4.3 In silico network perturbation analysis

In view of diseases as network perturbations [62, 3], we performed in silico network perturbations

to identify the most influential genes in the diseased network. The network perturbation analysis

highlighted the governing role of the perturbation candidates in the GRN. In this regard, simula-

tion of single transcription factor perturbations revealed that FOXA1, TAL1, GATA3, ETS1, and

RUNX1 play an important role in maintaining the diseased phenotype network, i.e. leading to a

significant reversion of the pathological gene expression program upon perturbation. Existing lit-

erature suggests a crucial role of these transcription factors (TFs) in various human developmental

processes. For example, FOXA1 has been widely known to be involved in the development of T-
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cell [151], midbrain dopaminergic neurons [78], and mammary gland and prostate [22]. Similarly,

other TFs such as TAL1, GATA3, ETS1, and RUNX1 have been reported to play important roles in

the development of hematopoietic [230, 308, 115], immune [15], and cardiovascular systems [86].

Furthermore, dysfunction of these genes has been associated with hematological malignancies

[230, 263], congenital heart defects [304] and cancers [124, 47]. Considering their topological

characteristics and key roles in the developmental processes, they constitute ideal candidates for

perturbation. A perturbation combination of TAL1, GATA3, ETS1, and RUNX1 reverted the gene

expression state of 118 other genes in the diseased network. Although the predicted genes are

not necessarily responsible for disease onset and progression, they are able to revert most of the

diseased gene expression program upon perturbation (Table 8). These finding suggests that the

predicted genes might play a crucial role in the establishment of the disease phenotype.

Single-gene perturbation Multi-gene perturbations
Rank Score Gene Rank Score Genes

1 82 FOXA1 1 118 TAL1, GATA3, ETS1, RUNX1
2 69 TAL1 2 116 FOXA1, MYOG, MMP2, GATA3
3 67 LEF1 3 114 FOXA1, MMP2, GATA3, ETS1
4 67 GATA3 4 114 FOXA1, GATA3, ETS1, RUNX1
5 66 MMP2 5 113 FOXA1, MYOG, GATA3, ETS1
6 65 RUNX1 6 111 FOXA1, MYOG, GATA3, RUNX1
7 65 ETS1 7 111 FOXA1, MMP2, GATA3, RUNX1
8 64 GATA6 8 110 MYOG, FOXA1, MMP2, RUNX1
9 63 MYOG 9 110 MYOG, FOXA1, GATA3, GATA2

10 63 IRF4 10 110 FOXA1, MMP2, GATA3, GATA2

Table 8: Top 10 key candidate genes from single- and multi-gene network perturbation sim-
ulation analysis. Genes are ranked based on their score. The score represents the number of
genes whose discretized expression is reverted (shifted from the pathologic towards the healthy
phenotype) upon in silico perturbation. The scores obtained for different candidate genes are a
qualitative measure of their ability to revert the disease phenotype.

6.5 Discussion

The development of an in vitro Batten disease model and associated transcriptomic analyses in the

context of genetic variation in CLN3 are, to our knowledge, non-existent in humans to date. In

order to bridge this knowledge gap, we report a systems-level study utilizing the transcriptomic

data from an in vitro Batten disease model harboring the CLN3Q352X mutation and the phenotypic

hallmarks of this disease. We identified significant changes in the gene expression levels of impor-
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tant genes that are associated with development and differentiation. This highlights the potential

of created isogenic cell line to recapitulate disease features as a consequence of introducing a

disease-causing mutation in the CLN3 gene. To our knowledge, the conducted study constitutes

a first attempt to generate a computational disease model of Batten disease, employed for investi-

gating the contributions of c.1054C>T mutation in the CLN3 gene to brain formation and to the

pathophysiology of Batten disease in general.

Additionally, we were able to describe lysosomal alterations already happening at the transcrip-

tional level, concomitant with the differential expression of genes that govern lysosomal and

vesicle-mediated pathways. To this end, we report a downregulation in TPP1 peptidase in our

CLN3Q352X mutant organoids. Notably, we observed an increase at the protein level. TPP1 has

been shown to be involved in the initial degradation of subunit c when adding both purified TPP1

and soluble lysosomal fractions, containing various proteinases, to mitochondrial fractions, which

normally results in rapid degradation of subunit c, but not in the presence of a TPP1 inhibitor or

when the enzyme is non-functional, as in CLN2 disease [75]. We hypothesize that the sustained

increase in TPP1 levels might be a cellular response to degrade extra subunit c of mitochondrial

ATP synthase (SCMAS) starting to accumulate in the lysosomes due to CLN3 deficiency, while

the expression levels may change rapidly in response to the cellular demands. Another altered

lysosomal enzyme in our CLN3Q352X mutant organoids was CTSD, aspartic protease especially

abundant in neuronal lysosomes. CTSD was also found inducing lysosomal storage material in

mouse CNS neurons that presented a deficiency in this enzyme [72]. We reported a decrease in

protein levels of CTSD, which might be compensated by the cells at the transcriptional level by

upregulating several other cathepsin genes, such as CTSC or CTSZ.

Interestingly, GO analysis of the CLN3Q352X diseased network revealed that most of the upregu-

lated genes in the network are significantly enriched in cellular processes related to development.

Some prominent examples are PAX5, TBX15, and HAND1 genes, that are well known for their

key roles in B cell [185], skeletal [255], and cardiovascular development [183]. Similarly, the

downregulated genes, such as human leukocyte antigen (HLA) genes, were targeting biological

processes and pathways related to the immune response and antigen processing and presenta-

tion

The DEA of the transcriptomic data obtained from control and CLN3Q352X mutant organoids pro-
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vided additional insight into Batten disease-associated dysregulation at the gene-expression level.

The GRN analysis provided a systems-level view of this dysregulation and revealed the underly-

ing key genes maintaining the disease phenotype. The cellular processes and pathway enrichment

analysis of upregulated genes in the disease phenotype network showed a strong association of

these genes with developmental processes and pathways (see supplementary Figure 20). Some

prominent examples are PAX5, TBX15, and HAND1 genes, that are well known for their key roles

in B cell [185], skeletal [255], and cardiovascular development [183]. The enrichment analysis

suggested skeletal system development to be one of the several processes that is significantly dis-

rupted in this disease. The normal outcome of this process is the development of the skeleton

over time, from its formation until becoming a mature structure [21], however, this process is

significantly affected in Batten disease. As evident from existing studies, deposition of lysoso-

mal residual bodies, the end products of prelysosomal and intralysosomal degradation of cellular

constituents, is ubiquitous and affect skeletal muscles in Batten disease [233, 216]. Surprisingly,

the TGF-beta, Wnt and BMP signaling pathways that were found to be significantly associated

with the diseased network are widely known for their fundamental roles in embryonic skeletal de-

velopment and postnatal bone homeostasis [299, 167]. Similarly, other developmental processes

such as tissue development, multicellular organism development and extracellular matrix (ECM)

organization were significantly enriched concomitant with signaling pathways regulating stem

cell differentiation and epithelial-to-mesenchymal transition. Interestingly, there is compelling

evidence suggesting major changes in the expression of numerous ECM molecules in nervous

system-related disorders, such as multiple sclerosis [261], Alzheimer disease, and Parkinson dis-

ease [25, 254]. Furthermore, various disease models of nervous system disorders and LSDs share

common features, such as neuro-inflammation and neuro-degeneration [12, 20]. Taken together,

these results suggest the dysregulation of developmental pathways and processes in the Batten

disease model, consistent with existing literature explaining the phenotypic characteristics of this

disorder throughout its course.

Although the development of in vitro Batten disease model and GRN-based modeling of tran-

scriptomic data provided insights into key developmental pathways affected by the disease, we

acknowledge that the presented approach has some important limitations. Foremost, in vitro cul-

tured cerebral organoids present variable shapes and features, unlike that of a mature human brain.
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Moreover, they lack surrounding tissues that are important for the interplay of neural and non-

neural tissue cross talk, such as meninges, bones and vasculature [149]. Due to these factors,

organoids showed marked variability, particularly between preparations. To account for these

variations, controls as well as mutant organoids were prepared at the same time, grown in the

same medium, and organoids from at least three different independent derivations were taken per

experiment. It is also important to be aware that the transcriptomic data analysed in this study was

profiled by bulk RNA-seq, which has its own limitation due to the heterogeneity caused by diverse

cell types in the brain [217]. To this end, the reliance on literature-derived interaction networks and

further contextualization of these networks with discretized gene expression data maximizes the

perseverance of context-specific interactions in the reconstructed GRN models, while removing

the noise in the data by filtering incompatible interactions. However, a more sophisticated study,

assessing different neural cell types in isolation or performing single-cell RNA-seq profiling would

greatly improve the power of this analysis to detect significant disease-associated changes [246].

Furthermore, as the in silico network perturbation analysis revealed FOXA1, TAL1, GATA3, ETS1,

and RUNX1 to be the key regulators maintaining the Batten diseased phenotype, a complemen-

tary random perturbation analysis could aid in assessing the significance of these predictions. In

addition, an experimental validation of these predictions by TF knock-down or over-expression

would greatly benefit in understanding the specific contributions of these TFs to the disease out-

come.

Altogether, our data suggests that the introduction of the c.1054C>T mutation in the CLN3

gene causes the accumulation of pathological storage material and lysosomal enzyme dysregu-

lation at the early stages of brain development, which can be modelled with cerebral organoids.

Furthermore, gene expression profiling on control and CLN3Q352X mutant organoids allowed us

to characterize transcriptional changes that arise as a consequence of this mutation. We believe

the development of this Batten disease in vitro model system and generation of corresponding

transcriptomic profiles will provide the scientific community with a valuable resource to further

dissect its underlying mechanism, helping in its early diagnosis as well as in designing potential

therapeutic treatments.
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Chapter 7

General Discussion

The large-scale development of high-throughput sequencing technologies has allowed the genera-

tion of reliable omics data at different regulatory levels. Integrative computational models enable

disentangling the complex interplay between these interconnected levels of regulation by assessing

these large quantities of biomedical information in a systematic way. However, modeling human

diseases by computational approaches demands the reconstruction of reliable network models that

are context-specific and encapsulate the regulatory gene expression program. For example, it has

become increasingly clear that it is the cross-talk between epigenetic and transcriptomic layers

that regulates gene expression programs across various human cell types [53, 274, 41]. Although

existing integrative methods for reconstructing network models provide meaningful insights for

understanding the underlying mechanisms of gene regulation, they suffer from some important

limitations. First and foremost, these methodologies usually rely on histone modification marks

for active enhancer identification (H3K27ac) to predict active enhancer regions and associate them

to their target genes based on ad hoc criteria, such as the nearest gene or all genes within a defined

range. Such enhancer annotations might lead to the inference of false-positive (and -negative) in-

teractions as it has been shown that enhancers do not necessarily act on the closest promoter, but

can bypass neighboring genes to act on more distant genes along the same as well as a different

chromosome [100, 109]. Secondly, these approaches rely on position weight matrix (PWM)-

based predictions of transcription factor (TF) binding in regulatory regions to associate regulator

TFs with their respective target genes. Such PWM-based predictions might lead to the infer-

ence of many false-positive interactions due to the detection of false-positive motifs, as indicated
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by existing studies [313, 163]. Lastly, these methods lack systematic benchmarking of predic-

tive network models against experimental cell-type-specific TF chromatin immunoprecipitation-

sequencing (ChIP-seq) data.

These limitations suggest the need for more sophisticated integrative computational methods that

rely only on experimental data from different regulatory levels to reconstruct reliable cell-type-

specific networks. As such, these network models can help us in addressing the fundamental

biological questions related to cell-type-specific and disease-associated transcriptional regulation.

Moreover, the application of such tailor-made integrative network models is yet to be explored

in the context of epigenetic and transcriptomic dysregulation that play a crucial role in normal

cellular differentiation processes and lies at the core of many disorders [161, 295]. Therefore,

reconstructing cell-type-specific network models by integrating epigenetic and transcriptomic in-

formation can provide deeper insights into underlying mechanisms, e.g. allowing us to predict

specific external stimuli (e.g. TF over-expression) that can overcome epigenetic barriers restrict-

ing the differentiation potential of cells.

In order to address the aforementioned limitations, we developed INTREGNET, a computational

framework that reconstruct cell-type-specific core transcriptional regulatory networks (TRNs) for

various human cell types and cell lines. Chapter 3 provides a concise overview of this approach.

The reconstructed networks allowed us to understand cell-specific regulation of TFs at the epi-

genetic and transcriptomic level, thus enabling us to predict efficient combinations of instruc-

tive factors (IFs) for desired cellular conversions between any two cell types of interests. This

method is based on the systematic integration of epigenetic and transcriptomic information to

reconstruct core TRNs, offering several advantages over current approaches. Firstly, it exclu-

sively relies on experimental data for TRN reconstruction, which increases precision compared

to PWM-based methods that are not cell-type-specific. In particular, INTREGNET introduces

cell-type-specificity by integrating information on TF ChIP-seq experiments, chromatin accessi-

bility and active cis-regulatory elements to accurately reconstruct networks. Secondly, integra-

tion of protein-protein interaction (PPI) data allows for dissecting region-specific cooperative and

competitive TF-binding, i.e. the joint effect of multiple TFs on the transcription of target genes.

Considering these protein-protein interactions are critical for prioritizing more efficient combina-

tions of IFs, exemplified by the complex formation of SOX2 and POU5F1 that is necessary for
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inducing pluripotent stem cells [242, 27]. Finally, the devised strategy for predicting efficient IFs

actively incorporates differences in the epigenetic landscape between the initial and target cell

type. Despite the specific combination of IFs, the amount of epigenetic restructuring required

during reprogramming is a key determinant of cellular conversion efficiency [219]. INTREGNET

accounts for these epigenetic landscape differences by penalizing the calculated efficiency of IFs

with the amount of required restructuring.

In principal, INTREGNET can be customized for applications for human disease modeling, in

view of diseases as network perturbations from healthy to disease phenotype [62]. A core TRN

reconstructed from different epigenetic and transcriptional profiles obtained from pathological

cells might help in identifying causal TFs that establish or maintain the disease phenotype. Finally,

in silico network perturbations can guide experimental efforts in pre-selecting a set of putative

target TFs, whose perturbation induces the conversion into a healthy phenotype, with vast amounts

of potential applications to personalized medicine. To our knowledge, INTREGNET is one of the

first approaches that aims at identifying highly efficient IFs based on the systematic integration of

information linked to multiple regulatory levels, and is expected to find diverse applications in the

field of regenerative medicine. In particular, considering the success of in vivo reprogramming in

preclinical models, we believe INTREGNET to be a valuable tool for alleviating the impediment

of low efficiency by guiding cellular conversion experiments.

The remarkable development of high-throughput sequencing technologies has allowed the genera-

tion of great quantities of genomic, epigenomic and transcriptomic data for various human diseases

that has allowed us to dissect the mechanisms behind the onset and progression of multifactorial

diseases. As such, many studies have used information from an individual regulatory level to iden-

tify causal genes and understand the mechanisms underlying the pathophysiology of Alzheimer’s

disease (AD). For example, genome-wide association studies (GWAS) have successfully identified

numerous susceptibility genes for AD [89, 125, 130, 33]. Similarly, based on the crucial role of

DNA methylation in cellular processes [214], including gene regulation [229], cellular differenti-

ation [131] and genomic imprinting [221], there have been many studies linking changes in DNA

methylation status to the pathogenesis of AD [259, 290, 61]. Furthermore, analysis of genome-

wide transcriptomic data sets from post-mortem brain tissue has unveiled various key genes in

different biological pathways associated with AD [286]. These findings highlight that changes
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associated with AD are not restricted to a particular regulatory layer and can be observed across

genetic, epigenetic and transcriptomic levels [147, 61, 179, 100, 109, 170]. Although various

levels of genomic regulation, including DNA methylation, chromatin modifications and microR-

NAs (miRNAs), are known to be highly interconnected at the functional level [63], commonly

used analytical approaches are usually restricted to analyzing only one or two layers of molecular

information in association with AD [61, 286, 107], and, moreover, are mostly restrained to corre-

lations. Therefore, an integrative multi-omics systems biology approach to uncover the relative,

interdependent contribution of various molecular layers in the development and course of AD is

of utmost importance.

In view of the interplay between genomic, epigenomic and transcriptomic dysregulation in AD,

in the study described in Chapter 4, we applied a novel approach for prioritizing AD-associated

genes (i.e. genetic variation) based upon AD-linked variation at the epigenomic and transcriptomic

level. To this end, by making use of an integrative graph-diffusion based method [66], we have

integrated information from different molecular regulatory levels into a directed functional gene-

gene interaction network. The proposed method uses information about AD-associated genetic

and epigenetic variation in upstream regulatory genes affecting intermediate (mediator) genes,

which, through gene-gene interactions, in turn, affect proximal downstream genes evoking ex-

pression changes. As such, this approach ranks genes within such gene-gene interaction networks,

based on their potential to evoke downstream changes. Some of the most prominent candidate

genes include ETS1, WT1 and APP genes, which are all known to be involved in various neuronal

cellular processes, while expression changes of these genes have been implicated in the course of

AD [121, 169, 208, 181].

We have also shown that the approach presented in Chapter 4 not only identifies disease-related

multi-omics signatures and key genes, but also has the ability to predict putative drugs that could

revert the disease phenotype. Connectivity map [145] was used as a reference database for linking

subnetworks of mediator genes to drugs that have been shown to produce opposite gene expres-

sion profiles. A systematic drug enrichment analysis led to the prediction of levcycloserine and

apramycin as the most promising existing drugs for reverting the observed AD-associated gene

expression profiles. Interestingly, cycloserine treatment has been found to significantly improve

implicit memory [251] and cognitive function [279] in AD patients, suggesting the potential of
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the proposed approach in recapitulating previously-known drugs as well as predicting novel can-

didates.

In conclusion, the conducted analysis offers a novel approach for integrating information from

different levels of regulation in order to detect and rank AD-associated genetic variation based

on their functional significance. Such analysis will find its applications in predicting potentially

causal genes for other human pathologies where individual datasets are available from different

-omics levels. Thus, we are providing the scientific community with a novel approach that can

pave the way for deconvoluting complex and multifactorial human diseases, hence fostering the

developmental of novel treatment strategies.

Although developments in high-throughput sequencing technologies and computational analysis

of obtained datasets have enhanced our knowledge about AD causal genes, the mechanisms un-

derlying dysregulation of implicated pathways are yet to be explored. A comprehensive charac-

terization of these pathways demands the integrative analysis of various interconnected layers of

regulation that have been overlooked and/or understudied so far. In-depth integrative analyses of

such pathways, as performed for the sphingolipid (SL) pathway in the Chapter 5, could aid in ob-

taining more insight in the yet unclear pathogenesis of AD, thus providing avenues for designing

more effective therapeutic treatment strategies.

Owing to significant alterations in the expression and methylation levels of SL-associated genes in

AD, and the possibility of using them as a biomarkers [190], we aimed at conducting an integrative

analysis focused only on the genes involved in SL function. Some of the most prominent candidate

genes predicted to underlie SL dysregulation include CAV1, S1PR1/2 and SPHK1, which are all

known to be implicated in the development and course of AD [282, 87, 171, 267, 154].

Of note, a similar analysis (unpublished observations; data not shown) was conducted on genes as-

sociated to tryptophan (TRP), more specifically the TRP-kynurenine (KYN) pathway, implicated

in AD [307, 228, 112]. Unlike in the case of SL, the integrative epigenetic and transcriptomic

analysis found no significant disease-associated changes at the network level. Considering the fact

that the TRP-KYN pathway mainly reflects a metabolic cascade, it is not surprising that a GRN

and associated integrative analyses are not that successful, as genes involved in metabolic cascades

are not expected to highly interact with each other at the epigenetic and transcriptomic level. To
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conclude, this analysis could serve as a negative control and indirectly validate our findings of sig-

nificant changes in SL metabolism in AD, where strong interconnectivity of involved genes was

observed at the epigenetic and transcriptional regulatory levels.

Development of in vitro disease models and analyses of profiled transcriptomic datasets to attain

systems-level understanding of disease-associated dysregulation provide avenues for pre-clinical

validation of potential cell therapy applications. Such analyses are very scarce for rare neurolog-

ical disorders such as Batten disease. In particular, the development of an in vitro Batten disease

model and comparative transcriptomic analyses in the context of genetic variation in CLN3 are

very limited and, to our knowledge, non-existent in humans to date. In order to bridge this gap

in the literature, we report a systems-level study utilizing the transcriptomic data from an in vitro

Batten disease model harboring the CLN3Q352X mutation and the phenotypic hallmarks of this

disease.

The differential expression analysis (DEA) of the transcriptomic data obtained from control and

CLN3Q352X mutant organoids provided additional insight into Batten disease-associated dysreg-

ulation at the gene-expression level. The GRN analysis provided a systems-level view of this

dysregulation and revealed the underlying key genes maintaining the disease phenotype. The cel-

lular processes and pathway enrichment analysis of upregulated genes in the disease phenotype

network showed a strong association of these genes with developmental processes and pathways.

Some prominent examples are PAX5, TBX15, and HAND1 genes, that are well known for their

key roles in B cell [185], skeletal [255], and cardiovascular development [183]. The enrichment

analysis suggested skeletal system development to be one of the several processes that is signif-

icantly disrupted in this disease. The normal outcome of this process is the development of the

skeleton over time, from its formation until becoming a mature structure [21], however, this pro-

cess is significantly affected in Batten disease. As evident from existing studies, deposition of

lysosomal residual bodies, the end products of prelysosomal and intralysosomal degradation of

cellular constituents, is ubiquitous and affect skeletal muscles in Batten disease [233, 216]. Sur-

prisingly, the TGF-beta, Wnt and BMP signaling pathways that were found to be significantly

associated with the diseased network are widely known for their fundamental roles in embryonic

skeletal development and postnatal bone homeostasis [299, 167]. Similarly, other developmen-

tal processes such as tissue development, multicellular organism development and extracellular
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matrix (ECM) organization were significantly enriched concomitant with signaling pathways reg-

ulating stem cell differentiation and epithelial-to-mesenchymal transition. Interestingly, there is

compelling evidence suggesting major changes in the expression of numerous ECM molecules in

nervous system-related disorders, such as multiple sclerosis [261], Alzheimer disease, and Parkin-

son disease [25, 254]. Furthermore, various disease models of nervous system disorders and LSDs

share common features, such as neuro-inflammation and neuro-degeneration [12, 20]. Taken to-

gether, these results suggest the dysregulation of developmental pathways and processes in the

Batten disease model, consistent with existing literature explaining the phenotypic characteristics

of this disorder throughout its course. Altogether, our data suggests that the introduction of the

c.1054C>T mutation in the CLN3 gene causes the accumulation of pathological storage material

and lysosomal enzyme dysregulation at the early stages of brain development, which can be mod-

elled with cerebral organoids. Furthermore, gene expression profiling on control and CLN3Q352X

mutant organoids allowed us to characterize transcriptional changes that arise as a consequence

of this mutation. We believe the development of this Batten disease in vitro model system and

generation of corresponding transcriptomic profiles will provide the scientific community with a

valuable resource to further dissect its underlying mechanism, helping in its early diagnosis as

well as in designing potential therapeutic treatments.

7.1 Current challenges and future perspectives

The most important limitations encountered in computational approaches for disease modeling are

discussed in Chapter 2, and the studies described in this thesis are also subject to some of those

limitations. One of the most important limitation that all computational network-based approaches

suffer from is the validation of reconstructed network models. The currently used gold-standard

for network validation concerns cell-type-specific TF ChIP-seq data, however, due to a large num-

ber of known human TFs and various cell types, ChIP-seq profiling for every TF is far from being

complete. Even though INTREGNET, a method described in Chapter 3, leverages a compre-

hensive compendium of over 11,000 publicly accessible TF ChIP-seq profiles from the Cistrome

database [186], we still run into the problem of missing data. For example, LIN28A was iden-

tified as a core TF of induced pluripotent stem cells (iPSCs), but its binding sites have not been
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profiled by ChIP-seq in any human cell type or cell line. As INTREGNET relies on TF ChIP-seq

data to reconstruct core TRN models, it cannot be contained in the core TRN and predicted as

an IF for inducing PSCs. However, the amount of available TF binding site profiles is steadily

increasing, which eventually will mitigate this problem in the future. Moreover, the availability of

additional epigenetic profiles, such as multiple histone modifications and chromatin conformation,

will become greater in the future, opening the possibility of integrating them into the TRN.

Similarly, another important limitation of INTREGNET is reliance on bulk datasets. Indeed, tran-

scriptomic and epigenetic heterogeneity in cellular populations can influence successful conver-

sion due to the existence of different sub-populations exhibiting distinct conversion efficiencies

[31]. In this regard, modeling core TRNs using single-cell data could allow the identification of

sub-populations with the highest conversion propensity. Furthermore, single-cell data can help

in devising novel experimental strategies for cellular conversion, such as initially priming cell

populations and subsequently inducing the desired cell type conversion.

Another prominent limitation of network-based modeling approaches is their reliance on literature-

derived gene-gene interaction networks. Although these prior knowledge networks (PKN) help us

in understanding the transcriptional regulation of genes, they are far from being complete. As

described in Chapter 4, despite being able to prioritize AD-associated genes by systematically

integrating multi-omics data onto a functional gene-gene interaction network, we acknowledge

that the presented approach has certain limitations, providing avenues for future improvements.

For example, the employed network diffusion approach can investigate the mediator effects of

only those genes that are present in the gene interaction network. This highlights the problem

of missing data in the literature, as currently, the well-curated and experimentally proven gene-

gene interaction maps are not covering the whole spectrum of human genes, rather they are more

enriched towards well-studied TFs and genes. As such, these results may be biased towards such

well-studied, hence highly connected, genes in the network. This bias might arise due to their

high connectivity, which contributes to higher chances of finding various differentially methylated

or differentially expressed gene in their network neighbourhood. However, decreasing expression

profiling costs and an increasing number of gene knock-down and over-expression experiments in

data bases like gene perturbation atlas (GPA) [302] and gene expression omnibus (GEO) [50], will

eventually help towards completing the functional interaction maps.
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The inference of causality is another important limitation inherent to integrative studies consid-

ering the epigenetic and transcriptional data for understanding disease-related dysregulation. It

is impossible to say whether epigenetic and transcriptional differences detected between AD and

control individuals represent a cause or consequence of pathology. However, unraveling the causal

or consequential relationship of these changes is now possible by the help of in vitro (or even in

vivo) studies where epigenetic editing or transcriptional knock-down and over-expression experi-

ments can help us in understanding their contributions to the disease.

One of the most critical limitations confronted in epigenetic studies are small to moderate sample

sizes, limiting their potential to detect significant changes. This is exemplified by some of the

very high p-values reported for differentially methylated genes in Chapter 4. Also the results of

Chapter 5 should be interpreted with caution, as only three probes survived correction for multiple

testing in the differential methylation analysis. Although analyses described in Chapter 5 identified

novel and pre-identified SL-related genes based on their epigenetic and transcriptional changes, the

moderate sample size might have limited detectable changes in AD samples. This limitation can

be seen as an opportunity for conducting more diverse studies including wide-range of analyses in

other brain regions to further investigate the role of SL function in AD. Nevertheless, our results

provide a clear evidence about the involvement of SLs and related molecules in AD, highlighting

the diagnostic and SL-targeted drug-development potential of predicted genes. Even though the

reported genes and epigenetic modifications are not predictive signs of disease progression, our

data can serve as a starting point to further investigate the role of SLs in AD. Thus, exploring

SL function and associated molecules dysregulated in AD could aid in the development of new

therapeutic approaches.

Although the development of in vitro Batten disease model and GRN-based modeling of tran-

scriptomic data provided insights into key developmental pathways affected by the disease, we

acknowledge that the approach presented in Chapter 6 has some important limitations. Foremost,

in vitro cultured cerebral organoids present variable shapes and features, unlike that of a mature

human brain. Moreover, they lack surrounding tissues that are important for the interplay of neu-

ral and non-neural tissue cross talk, such as meninges, bones and vasculature [149]. Due to these

factors, organoids showed marked variability, particularly between preparations. To account for

these variations, controls as well as mutant organoids were prepared at the same time, grown in
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the same medium, and organoids from at least three different independent derivations were taken

per experiment.

It is also important to be aware that the transcriptomic data analysed in this study was profiled by

bulk RNA-seq, which has its own limitation due to the heterogeneity caused by diverse cell types

in the brain [217]. To this end, the reliance on literature-derived interaction networks and further

contextualization of these networks with discretized gene expression data maximizes the persever-

ance of context-specific interactions in the reconstructed GRN models, while removing the noise

in the data by filtering incompatible interactions. However, a more sophisticated study, assessing

different neural cell types in isolation or performing single-cell RNA-seq profiling would greatly

improve the power of this analysis to detect significant disease-associated changes [246].

Furthermore, as the in silico network perturbation analysis conducted in Chapter 6 revealed that

FOXA1, TAL1, GATA3, ETS1, and RUNX1 play a crucial role in maintaining the Batten diseased

phenotype, an experimental validation of these predictions by TF knock-down or over-expression

would greatly benefit in understanding the specific contributions of these TFs to the disease out-

come.

Even though the research conducted in this thesis covers a wide range of cell types, tissues, dis-

eases, and techniques, the current status of our understanding of epigenetics and transcriptomic

cross-talk in regulating normal cellular processes and their dysregulation in various disorders is

far from being complete. Thus, while solutions can be offered to address the specific limitations

described above, a more radical shift in integrative computational approaches is required to truly

mature this emerging field. Although advances in sequencing technologies have made it easier to

generate and share high-quality multi-omics datasets, the field still seems to lag behind in how to

deal with these datasets and interpret the findings of the integrative analyses. By harnessing the

computational power of the present era and advances in integrative modeling and machine learn-

ing, it may be possible to generate predictive models that may aid in the diagnosis and prognosis

of multifactorial human disorders [108], thereby fostering the development of novel therapeutic

strategies that could make personalized medicine a reality.
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Chapter 8

Valorization

The multifactorial nature of neurodevelopmental disorders, like Batten disease, or age-related dis-

orders, such as Alzheimer’s disease (AD), requires the generation and integrative analysis of bi-

ological data from different regulatory levels (genomics, epigenomics, and transcriptomics) to

advance our understanding of the underlying mechanisms. A deep and thorough understand-

ing of these multi-layered mechanisms at systems-level is the key to deconvolute the complexity

of human pathologies, hence fostering the development of novel and effective treatment strate-

gies.

Despite recent advances in next-generation sequencing technologies and the development of novel

computational modeling approaches that shed more light on disease processes, we are still far from

completely characterizing the disease-causative agents and finding a definite cure for most human

pathologies, including AD. This highlights the need for explorative studies that utilize multi-level

regulatory information to decipher the underlying mechanisms controlling normal gene expression

regulation and their dysregulation in human disorders. In order to meet this challenge, the research

presented in this thesis aims to further accelerate research in the field of computational disease

modeling. Though it is unlikely that the work carried out in this thesis will have a direct impact

on society in the short run, the approaches introduced here will definitely guide future studies,

bringing the existing knowledge one step closer to its applications in disease intervention.

All in all, the research presented in this thesis highlights the potential of computational disease

modeling and integrative multi-omics analysis for dissecting human disorders and proposing ra-
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tional therapeutic strategies. For example, the approach presented in chapter 3 may find its ap-

plication in facilitating experimental attempts for treating human developmental disorders, that

arise due to a disruption in the normal cellular differentiation process [161, 295]. To this end, the

proposed method (INTREGNET) is able to predict specific sets of instructive factors (IFs) that

can induce desired cellular conversion events with increased efficiency, hence overcoming a long-

standing problem in regenerative medicine hampering the translation of therapeutic interventions

into clinical applications.

The research work described in chapters 4 and 5, focused on AD, offers novel insights into epi-

genetic and transcriptomic dysregulation by comparing multi-omics datasets from patients and

healthy controls. Different markers identified at the genome-wide level, as well as by zooming

in on sphingolipid metabolism, can be further tested for their potential as diagnostic markers or

as putative drug targets. Furthermore, expanding existing knowledge about the involvement of

different regulatory layers in AD-associated dysregulation is already a merit on itself, as such a

deeper understanding of underlying mechanisms is vital for the development of novel therapeutic

intervention strategies.

The final scientific efforts described in chapter 6 are directed towards generating a computational

model of Batten disease in order to understand the functional consequences of a particular muta-

tion in the CLN3 gene, and to identify genes and pathways compromised in this human neurodevel-

opmental disorder. The conducted gene regulatory network (GRN) and in-silico gene perturbation

analyses revealed key driver genes in maintaining the diseased phenotype network, i.e. leading to a

significant reversion of the pathological gene expression program upon perturbation. The reported

findings not only highlight the potential of employed systems-level approaches to identify relevant

genes and associated molecular mechanisms implicated in Batten disease, but also provide a pre-

diction of putative candidate genes that might be the drivers of disease-related dysregulation. We

believe this study has a direct impact on the society as it provides the scientific community with

a very a first in vitro and in silico CLN3Q352X mutation Batten disease model, as well as the fact

that it identifies key genes to be experimentally validated for their potential as an early diagnostic

marker or target for designing potential therapeutic treatment strategies.

Taken together, the research work conducted in this thesis may have a substantial impact on our so-

ciety, providing the scientific community with novel approaches to develop computational disease
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models and dissect their underlying mechanisms. These computational models can help us unlock

the biological systems [29], as well as devise new intervention strategies to halt the progression

of human disorders or cure them. Finally, after going through four years of extensive training and

hands-on practical experience, I am confident in saying that my efforts have allowed me to explore

the computational disease modeling field in depth, also identify associated gaps and weaknesses in

existing knowledge and approaches. During the last year of my project, I have stretched my skills

beyond the vigorous foundation provided by my supervisors to meet the requirements to advance

in this field. The expertise I have gained throughout my Ph.D. trajectory has enabled me to design

my own studies and write grant proposals, which means I am now ready to make a real impact on

society as an independent researcher.
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Chapter 9

Summary

The remarkable development of high-throughput sequencing technologies has allowed the gen-

eration of great quantities of genomic, epigenomic and transcriptomic data for various human

diseases that has allowed us to dissect the mechanisms behind the onset and progression of mul-

tifactorial diseases. Owing to the multifactorial nature of most human disorders, recent advance-

ments in computational disease modeling, by integrating regulatory information from different

levels, provide a new framework for understanding the complex nature of human health and dis-

ease. For example, modelling of complex gene interaction networks has been very useful for

disease modelling [143, 13, 182] and for disentangling the interplay between different regulatory

layers [193, 93, 195]. However, integrative network modelling approaches –i.e. linking different

regulatory layers– [193, 93, 195, 104] are still scarce, which hampers the possibility of studying

the crosstalk established among regulatory layers for determining a given phenotype or mediating

phenotypic transitions [73]. As such, developing tailor-made computational models is a crucial

step in understanding the contributions of genomic, epigenomic, and transcriptomic landscapes in

cellular circuitry, lineage specification, and the onset and progression of human disease.

In order to bridge the gaps in the literature, we report integrative systems-level approaches to

dissect the underlying disease mechanisms, helping in their early diagnosis as well as in designing

potential therapeutic treatments. The research conducted in this thesis can be divided into five

parts. CHAPTER 2 constitutes a concise overview of existing computational methods in the field

of systems biology. Particular attention is paid to state-of-the-art gene regulatory network (GRN)
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based methods for instructive factors (IFs) determination and human disease modeling. Along

with the strengths, the limitations of these methods are highlighted, thereby providing avenues for

the research conducted and described in the following chapters.

Due to a clear lack of integrative methods for predicting more efficient sets of instructive fac-

tors, CHAPTER 3 describes INTREGNET, an integrative computational method for systemati-

cally identifying reliable minimal sets of IFs that can induce desired cellular conversions with

increased efficiency. The application of this method is demonstrated in an in vitro setting, where

limited conversion efficiency is a crucial barrier for its application in regenerative medicine.

As explained above, the heterogeneous and multifactorial nature of human disorders, such as

Alzheimer’s disease (AD), requires the integration of regulatory information from different -omics

levels in order to capture the underlying mechanisms behind the onset and progression of this

disease. In CHAPTER 4, global multi-omics alterations in AD patients are identified by comparing

genomic (gene aberration), epigenomic (DNA methylation) and transcriptomic data sets of 46

diseased patients with 32 age-matched controls.

CHAPTER 5 features an integrative exploration of specific neurobiological pathways known to

be impaired in AD. A comprehensive analysis of gene expression and DNA methylation levels is

performed for genes known to be associated with sphingolipid function. The identified key genes

and their particular methylation signatures offer mechanistic insights into AD pathology and may

act as potential biomarkers.

In vitro modeling of human diseases allows us to gain crucial insights into mechanisms underlying

disorders, hence devising and optimizing new strategies for therapeutic intervention. CHAPTER

6 features the differential network-based analysis of transcriptomic data sets obtained from brain

organoids that served as an in vitro model of Batten disease. This study focuses on identifying key

genes and pathways that are disrupted during the course of this disease.

In conclusion, we believe that the work conducted in this thesis provides the scientific community

with a valuable resource to understand the underlying mechanism of multifactorial diseases from

an integrative point of view, helping in their early diagnosis as well as in designing potential

therapeutic treatments.
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Curriculum Vitae

Muhammad Ali was born on the 16th of June, 1989 in Gujranwala, Pakistan. He grew up and

went to school in his home town. After finishing his bachelor’s in Bioinformatics from Gov-

ernment College University, Faisalabad, Pakistan in 2011, he joined the University of Saarland,

Germany for a Masters in Bioinformatics. During his master’s degree, the scientific areas which

grabbed his interest were modern methods in drug discovery and gene regulatory network (GRN)

analysis. For his master thesis, he worked in the lab of Prof. Volkhard Helms and characterized the

biochemical and biophysical properties of protein-protein interaction interface residues. As GRN

modeling and analyses were among his favorite areas of interest, after completing his master’s

degree, he applied for a doctoral position in the computational biology group of Prof. Antonio del

Sol at the University of Luxembourg. Luckily, he got this most-awaited opportunity to join Prof.

Antonio del Sol’s research group and excel in this interesting field of science. Fortunately, during

early months of his Ph.D., his supervisor (Prof. Antonio del Sol) got an EU Joint Programme –

Neurodegenerative Disease Research (JPND) grant on Alzheimer’s disease (AD) epigenetic analy-

ses for biomarker identification, originally proposed by Dr. Daniel van den Hove from Maastricht

University. Based on Muhammad’s interests, his supervisor allowed him to work on this grant

together with scientific personnel from Maastricht University. That was the time when the chal-

lenging era of Muhammad’s doctoral degree started. He did multiple projects during the course

of his Ph.D. degree together with very kind and supportive promoters from Maastricht University

(Dr. van den Hove and Dr. Pishva), as well as expert advisers from the University of Luxembourg

(Dr. Angarica and Dr. Jung). Overall, the aim of his doctoral degree was to develop network-
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based approaches for modeling human disease. In addition to conducting his research jointly at

the University of Luxembourg and Maastricht University, he presented his research at numerous

national and international platforms provided by the Epi-AD consortium under the framework of

JPND grant. These opportunities broadened Muhammad’s exposure to the scientific world and

gave him the confidence to be an independent researcher. During his Ph.D., Muhammad has also

been a tutor and practical supervisor in several Bachelor courses at the University of Luxembourg.

Next to teaching others, Muhammad also kept on expanding his own skills by taking courses and

workshops in statistics, team and project management, and scientific writing to evolve his research

and aptitude. After successfully defending his doctoral degree thesis, Muhammad has planned to

join the biomedical data science group of Dr. Enrico Glaab at the University of Luxembourg, to

further expand his work on human disease modeling and integrative GRN analyses through the

implementation of machine learning and systems biology approaches.
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List of Abbreviations

3D Three-dimensional

AD Alzheimer’s disease

APOE4 apolipoprotein E

Aβ Amyloid β

BACE1 β-site APP cleaving enzyme-1

BBDP Brain and Body Donation Program

BHSRI Banner Sun Health Research Institute

CAV1 Caveolin 1

ChIP-Seq Chromatin Immunoprecipitation sequencing

CHRM cholinergic receptors muscarinic

CLU clusterin

CNS central nervous system

CTSD cathepsin D

DEA differential expression analysis

DEGs differentially expressed genes

DMPs differentially methylated probes

DNA deoxyribonucleic acid

DNase-Seq deoxyribonuclease sequencing

DTMC discrete time markov chain

ECM extracellular matrix
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ESC embryonic stem cells

FDR false discovery rate

FP false positives

FPKM fragments per kb per million reads

GABRB3 GABA-Alpha receptor subunit beta-3

GBA glucosylceramidase Beta gene

GEO Gene Expression Omnibus

GO gene ontology

GRNs gene regulatory networks

GS Gold-standard

GWAS genome-wide association studies

hmC hydroxymethylated cytosine

HSCs hematopoietic stem cells

IFs instructive factors

IGAP International Genomics of Alzheimer’s Project

INTREGNET INtegrative Transcriptional REGulatory NETworks

iPSCs induced pluripotent stem cells

ITGB2 Integrin subunit beta 2

JNCL juvenile neuronal ceroid lipofuscinosis

JSD Jensen-Shannon divergence

LSDs lysosomal storage disorders

mC methylated cytosine

MCI mild cognitive impairment

miRNA microRNA

MSCs mesenchymal stem cells

MTG middle temporal gyrus

NCLs neuronal ceroid lipofuscinoses

NIH National Institutes of Health

NMDA N-methyl-d-aspartate

NSCs neural stem cells

PKN prior knowledge network
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PPI protein-protein interaction

PSCs pluripotent stem cells

PTGIS prostaglandin 2 synthase

PWM position weight matrix

RNA ribonucleic acid

RNA-seq ribonucleic acid sequencing

SCMAS subunit c of mitochondrial ATP synthase

Sls Sphingolipids

SNP single nucleotide polymorphisms

SSCs strongly connected components

TCGA The Cancer Genome Atlas

TFs transcription factors

TP true positives

TRNs transcriptional regulatory networks

TSS transcription start site

uC unmethylated cytosine

VPA valproic acid

WT1 Wilms tumor suppressor
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Scientific output

Major parts of this thesis are based upon work that has either been published or is in preparation

for submission with the candidate as first author. In addition, the candidate has co-authored several

publications of which minor parts are incorporated in the thesis. The full list of scientific outputs

is listed below:

B.1 Publications in peer-review journals

• Ali M., del Sol A. (2018) Modeling of Cellular Systems: Application in Stem Cell Re-

search and Computational Disease Modeling. In: Alves Barbosa da Silva F., Carels N., Paes

Silva Junior F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational

Biology, vol 27. Springer, Cham

B.2 Submissions in peer-review journals

• Lardenoije R. et al. (2019) The Alzheimer’s disease DNA (hydroxy)methylome in the brain

and blood. Clinical Epigenetics.

• Jung S., Ali M., and del Sol A. (2019) Methods in Epigenetics-based Systems Biology and

their Applications. Elsevier: Epigenetics Methods.
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B.3 Manuscripts in preparation

• Ali M., et al. (2019) INTREGNET: Integrating epigenetic and transcriptional landscapes in

a network-based model for increasing cellular conversion efficiency. In preparation.

• Ali M., et al. (2019) Identification of causal genes for Alzheimer’s disease using a network-

based integrative analysis of genomic, epigenomic and transcriptomic data. In preparation.

• Ali M., et al. (2019) The role of altered sphingolipid function in Alzheimer’s disease; a

gene regulatory network-based approach. In preparation.

• Giro G. G., et al. (2019) Modeling Juvenile Neuronal Ceroid Lipofuscinosis by genome

editing in human induced pluripotent stem cells and cerebral organoids. In preparation.

• Giesert F., et al. (2019) Unique gene activity changes in ventral midbrain precede dopamin-

ergic neuron degeneration in different PD models. In preparation.

• ENCODE-DREAM Consortium, Ali M., et al. (2019) Systematic evaluation of multimodal

approaches to predict in vivo DNA binding landscapes of regulatory proteins across cell

types. In preparation.

B.4 Oral presentations in scientific conferences, symposia and work-

shops

• An Integrative Approach for Network inference from Epigenetics and Transcriptomics data

(2017). 2nd Annual EPI-AD meeting. London, UK.

• Reconstructing cell-type-specific networks by integrating multi-omics datasets (2018). Dutch

Neuroscience Meeting. Lunteren, Netherlands.

• A computational approach for the identification of highly efficient instructive factors (2018).

3rd Annual EPI-AD meeting. Barcelona, Spain.

• Neuroepigenetic: a life span perspective (2018). EPI-AD/EURON Workshop. Barcelona,

Spain.
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Supplementary figures and tables

Figure 19: Optimal correlation threshold was considered to be 0.75. All samples having corre-
lation higher than this were discarded from the background to compute JSD.

.

125



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

Figure 20: Gene ontology enrichment analysis. A) Gene enrichment analysis of disease network
(top). Genes which are up-regulated in disease phenotype are significantly enriched in cellular pro-
cesses associated to development. B) Pathway enrichment analysis of disease network (bottom).
Genes which are up-regulated in disease phenotype are significantly enriched in developmental
pathways.

.
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Table 9: Accession numbers of RNA-seq, DNase-Seq, H3K27ac and H3K4me3 histone marks
for all sample considered for reconstructing TRNs. The samples are taken from GEO, ENCODE
and IHEC

Cell type/lines RNA-Seq DNase-Seq H3K27ac H3K4e3
A549 GSM1573117 ENCSR000ELW ENCSR000AUI ENCSR000DPD

Adipocytes GSM1543671 GSM1443801 GSM1443807 ENCSR367VRA
BJ Fibroblast GSM1510127 ENCSR000EME GSM2401449 ENCSR000DQH

Cardiomyocytes GSM1925978 GSE85630 GSM2280036 GSM2280016
ESCs GSM1088317 ENCSR794OFW ENCSR880SUY ENCSR019SQX

Foreskin fibroblasts GSM1588051 ENCSR251UPG ENCSR822ZIG ENCSR813CFB
GM12878 GSM754335 ENCSR000EJD ENCSR000AKC ENCSR057BWO
H9 ESCs GSM1552696 ENCSR915BSC ENCSR876RGF ENCSR043VGU
HEK293 GSM1513689 GSM2392668 ENCSR000FCH ENCSR000DTU
HeLaS3 ERR380552 ENCSR959ZXU ENCSR000AOC ENCSR340WQU

Hepatocytes GSM1306654 ENCSR364MFN ENCSR507UDH ENCSR442ZOI
HepG2 GSM984650 ENCSR149XIL ENCSR000AMO ENCSR000AMP

CD34+ CMP GSM976976 ENCSR468ZXN ENCSR891KSP ENCSR681HMF
HUVEC GSM1273487 ENCSR000EOQ ENCSR000ALB ENCSR000AKN

iPSCs GSM1088317 ENCSR261SMF ENCSR875QDS ENCSR263ELQ
K562 GSM1641262 ENCSR921NMD ENCSR000AKP ENCSR668LDD

Keratinocytes GSM869035 ENCSR724CND ENCSR666TFS ENCSR703DFH
MCF7 GSM1817678 ENCSR000EPH ENCSR752UOD ENCSR985MIB

Melanocytes GSM819489 ENCSR434OBM ENCSR693VHX ENCSR350JZR
Myoblasts GSM1412725 ENCSR000EOO ENCSR000ANF ENCSR000ANK

Neuron GSM1422448 ENCSR626RVD ENCSR905TYC ENCSR849YFO
NHDF GSM1194807 ENCSR000EPO ENCSR000APN ENCSR000APR
NSCs GSM1057334 ENCSR278FVO ENCSR799SRL ENCSR956CTX

Osteoblasts GSM1333383 ENCSR000ELJ ENCSR000APH ENCSR000ATH
B cell GSM1576394 ENCSR381PXW ENCSR191ZQT ENCSR939UQD
T cell GSM1447398 ENCSR414IHC ENCSR222QLW ENCSR395YXN

Astrocyte GSM1521786 ENCSR000EPM ENCSR000AOQ ENCSR000AOU
Lung Fibroblasts GSM759890 ENCSR000EPR ENCSR000AMR ENCSR000AMW

HMECs GSM721141 ENCSR000ENV ENCSR000ALW ENCSR000AML
Myotubes GSM1412733 ENCSR000EOP ENCSR000ANV ENCSR000ANZ

SMCs GSM1528677 GSM1024769 ENCSR210ZPC ENCSR515PKY
Myotube ENCFF320IDT ENCFF026BDV ENCFF345MCA ENCFF044SEF
HMECs ENCFF380GBC ENCFF710XFX ENCFF292XKK ENCFF113WKS

Cardiac muscle cells ENCFF888LPS ENCFF054OJL ENCFF214RHU ENCFF190ZIS
Trophoblast ENCFF342LYI ENCFF334BDK ENCFF698NII ENCFF449TRE

Endodermal cells ENCFF237ZQX ENCFF168NOO ENCFF587KQG ENCFF385NQA
Mesendoderm (hESC) ENCFF466QUZ ENCFF993ETK ENCFF318GQT ENCFF293JHB

MSCs ENCFF290OQE ENCFF911JWG ENCFF196AMI ENCFF289UTW
NPCs ENCFF789VZB ENCFF315NGA ENCFF874YBQ ENCFF907ZOS

NPC (from H9) ENCFF672VVX ENCFF699MIZ ENCFF779WYN ENCFF076HNX
Astrocyte ENCFF256APB ENCFF558EUY ENCFF040LCK ENCFF254FYG

Monocyte CD14+ ENCFF299BIL ENCFF581KXE ENCFF039XWV ENCFF640ZHV
Natural killer cell ENCFF036GDL ENCFF628EFJ ENCFF240LSH ENCFF505EGX

Megakaryocyte S004BT S004BT S004BT S004BT
Erythroblast S002S3 S002S3 S002S3 S002S3

Monocyte CD16- C005PS C005PS C005PS C005PS
CD34+ CMPs ENCFF690QPA ENCFF846OZD ENCFF660GJX ENCFF020JLV

OCI-LY7 ENCFF773MOU ENCFF190VGB ENCFF929NXZ ENCFF111JSX
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Table 10: Cellular conversion examples with reported efficiency.

Initial cell type Instructive factors (IFs) Final cell type Efficiency
HSC SOX2 NSC Low

Adult Foreskin HNF1A,HNF4A,ONECUT1,CEBPA,ATF5,PROX1,TP53-siRNA,MYC Hepatocytes High
Fetal Limb Fibro HNF1A,HNF4A,FOXA3 Hepatocytes Low

Forehead Fibro FOXA2,HNF4A,CEBPB,MYC Hepatocytes High
Forehead Fibro FOXA2,HNF4A,CEBPB Hepatocytes Low

HSC (CD33+ cord blood cells) POU5F1,SOX2,KLF4 H1ESC High
HSC (CD33+ cord blood cells) POU5F1,SOX2 H1ESC Low

NHDF (Also in BJ) POU5F1,SOX2,KLF4 H1ESC High
NHDF (Also in BJ) POU5F1,SOX2 H1ESC Low

ForeskinFibro KLF4,SOX2,POU5F1,MYC ESC High
ForeskinFibro KLF4,SOX2,POU5F1 ESC Low

ForeskinFibro (Also IMR90) LIN28A,SOX2,POU5F1,NANOG ESC Low
Keratino POU5F1,SOX2,KLF4 H1ESC High
Keratino POU5F1,SOX2,KLF4,MYC H1ESC Low
Keratino POU5F1,SOX2 H1ESC Low

NSC POU5F1,KLF4 H9ESC High
NSC POU5F1 H9ESC Low

Keratino POU5F1,SOX2,KLF4,MYC H1ESC High
Keratino POU5F1,SOX2,KLF4 H1ESC Low

ForeskinFibro CBX2,HES1,ID1,TFAP2A,ZFP42,ZNF423 NSC Low
Fetal Fibro ZNF521 NSC High

NHDF SOX2,PAX6 NSC Low
H1 ESC (or iPSC) NEUROG2/NEUROD1 Excitatory Neuron High

H9ESC POU3F2,ASCL1,MYT1L Neuronal Cells Low
ForeskinFibro & Fetal Fibro POU3F2,ASCL1,NEUROD1 Neuronal Cells High
ForeskinFibro & Fetal Fibro POU3F2,ASCL1 Neuronal Cells Low
ForeskinFibro & Fetal Fibro POU3F2,ASCL1,MYT1L Neuronal Cells Low

Adult Lung Fibro ASCL1, POU3F2, MYT1L Neuron NA
NHDF MYOD1 Myoblasts Low

Fetal Dermal Fibro MITF,PAX3,SOX10 Melanocytes NA
Keratino (HaCaT & MET-4) MITF,LEF1,SOX10,SOX9 Melanocytes NA
Keratino (HaCaT & MET-4) MITF,PAX3,LEF1,SOX10,SOX9,SOX2 Melanocytes NA

Neonatal ForeskinFibro TP63,KLF4 Keratino NA
HUVEC GFI1,RUNX1,SPI1,FOSB HSC NA

MSCs (derived from iPSC) CEBPB Adipocytes NA
MSCs (derived from iPSC) PPARG Adipocytes NA
MSCs (derived from iPSC) PPARG, CEBPB Adipocytes NA
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Table 11: Differential expression analysis results for SL genes.

GeneName logFC Pval GeneName logFC FDR adj Pval

STS -0.221 0.000001 DAG1 0.12 0.149213

ARSG -0.148 0.000011 SGPL1 0.09 0.15077

EZR 0.631 0.000017 GM2A 0.08 0.163169

ALOX12B -0.195 0.000033 SGPP1 -0.057 0.174859

SIAT7E -0.921 0.000033 CD177 0.02 0.177314

B3GALNT1 -0.387 0.000033 SPNS3 0.026 0.177586

GLTP 0.484 0.000111 FUT3 -0.019 0.183127

CLN8 0.269 0.000163 NEU3 0.022 0.197916

CD8A -0.122 0.000179 LRP8 0.089 0.197916

MAL2 -0.994 0.000196 S1PR5 0.198 0.222959

TFPI 0.241 0.000226 ALDH3B1 0.026 0.226414

CSNK1G2 0.347 0.000272 ARSI -0.015 0.253376

RFTN2 0.529 0.000333 NOS1AP 0.157 0.253376

KDSR 0.372 0.000388 SELP 0.031 0.253376

P2RX7 0.466 0.000528 FLOT1 -0.166 0.253376

PPM1L -0.139 0.000538 ITGAM 0.121 0.253376

SMO 0.331 0.000538 SAMD8 -0.043 0.261887

VAPA -0.279 0.000538 DEGS2 -0.02 0.262364

ST8SIA2 -0.11 0.000538 MYO1A 0.017 0.262364

ELOVL4 -0.633 0.000538 NEU4 0.201 0.262364

CDH13 -0.654 0.000571 ADD2 -0.018 0.262777

RFTN1 -0.382 0.000624 SCN5A 0.01 0.262777

EHD2 0.327 0.00075 NSMAF 0.054 0.262777

ST8SIA5 -0.319 0.000784 ARSF -0.071 0.262777

PRKD1 0.301 0.000784 IL2 0.016 0.262777

AGK -0.43 0.000784 KCNA5 -0.15 0.262777

ATP1A1 -0.553 0.000932 CAV3 0.021 0.262777

ANXA2 0.369 0.000932 IRS1 -0.073 0.262777
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GBA -0.206 0.001177 SPTLC1 -0.107 0.290484

CLIP3 -0.256 0.001177 FXYD1 -0.094 0.305446

PPT1 -0.303 0.001177 BAX 0.041 0.305446

NEU1 -0.237 0.001252 P2RX1 -0.024 0.306597

PPP2R1A -0.416 0.001258 B3GALT2 -0.142 0.306816

BVES 0.127 0.001258 SIAT7A 0.121 0.307224

S1PR3 0.426 0.001297 KIF18A 0.017 0.310944

NOS3 0.428 0.001391 ST8SIA4 -0.037 0.324424

B4GALT6 -0.462 0.001518 GALC -0.041 0.324424

ITGB8 0.196 0.001653 LIPE 0.071 0.324424

AKAP6 -0.322 0.002434 MAG -0.215 0.33563

SRC -0.132 0.002434 CD300LF 0.026 0.33563

TNFRSF1A 0.402 0.002806 RANGRF 0.084 0.340824

DLC1 0.604 0.002806 DEGS1 -0.071 0.357318

KCND2 -0.367 0.002806 FASLG 0.014 0.364778

ATP1B1 -0.768 0.002806 A3GALT2 0.011 0.383884

PPP2CA -0.326 0.002806 PLA2G15 -0.048 0.383884

SERINC3 -0.233 0.002806 PEMT -0.052 0.383884

CLN6 -0.169 0.002806 SGPP2 -0.079 0.383884

FUT7 0.076 0.002839 CHRNA3 0.014 0.383884

ITGB2 0.595 0.003333 ACER3 0.076 0.383884

ARV1 -0.297 0.003869 ALOXE3 -0.021 0.383884

SLC2A1 0.339 0.003895 LCP2 -0.017 0.384951

PRKD2 0.126 0.003925 TH -0.021 0.384951

LRP6 0.108 0.003933 SLC22A6 -0.013 0.387013

LAPTM4B -0.344 0.003933 ALDH3B2 0.01 0.387741

PLA2G6 -0.103 0.004259 CEL 0.099 0.409211

NOS1 -0.114 0.004742 CLIP1 -0.067 0.413476

ATP1B3 0.236 0.00488 KCNMA1 0.063 0.414249

KIT -0.397 0.004889 S1PR1 0.131 0.418623
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PSAPL1 0.054 0.004889 ALDH3A2 0.051 0.428702

ATP2B4 -0.242 0.00542 EFNA5 0.016 0.46573

PRKD3 0.11 0.005787 COL4A3BP -0.055 0.473057

PLEKHA8 0.063 0.007247 FUT5 0.009 0.489551

ST3GAL5 -0.222 0.007779 CERKL -0.01 0.489551

DOCK2 0.307 0.00832 UGT8 0.104 0.490274

MAPK1 -0.185 0.008686 SIAT7A -0.019 0.495334

MYADM -0.22 0.010966 REEP2 0.078 0.495334

ENPP7 0.06 0.011654 TRAF2 0.023 0.507386

SPHK2 0.189 0.012052 SMPD2 0.012 0.524609

TGFBR2 0.408 0.012325 ELOVL2 -0.058 0.536481

ASAH1 -0.049 0.012325 ARSJ 0.015 0.548505

ST8SIA3 -0.427 0.012482 NAGA -0.019 0.549817

HMOX1 0.229 0.012492 P2RY12 -0.108 0.554417

CLN3 0.08 0.013016 SUMF1 0.035 0.560218

TRPC4 0.054 0.013176 JAK2 -0.044 0.577173

DLG1 0.102 0.013176 CYR61 0.107 0.577173

ELOVL6 -0.154 0.0139 PLLP -0.099 0.577173

MYOF 0.301 0.015835 FA2H -0.081 0.595061

CD2 0.052 0.016233 SERINC2 0.011 0.598642

RTN4R -0.19 0.016656 FAM57B 0.016 0.600442

ORMDL2 0.078 0.018476 SERINC5 -0.01 0.61055

ARSA 0.097 0.020241 TEX2 -0.03 0.615876

SIAT7C 0.158 0.020241 ABCB1 0.083 0.619912

ADRA1A 0.022 0.020241 ARSE 0.01 0.626264

S100A10 0.354 0.021262 TNF 0.011 0.626264

SPHK1 0.038 0.021262 CAV2 0.035 0.628475

SMPD1 -0.096 0.022814 ATP1A2 0.069 0.628475

SERINC1 -0.414 0.023649 ABCA12 0.005 0.664369

BMPR2 -0.253 0.023649 HDAC6 -0.042 0.673743
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PACSIN2 0.211 0.026042 S1PR4 0.015 0.673743

PRKACA -0.039 0.026238 SELL 0.018 0.701221

PSAP -0.113 0.026651 PRKCD -0.034 0.708357

RALA 0.125 0.026726 MALL 0.032 0.710837

PRKAR1A -0.353 0.029255 ST8SIA1 0.027 0.710837

ELOVL3 -0.036 0.030793 GBA2 0.017 0.715851

ADRA1B -0.291 0.030962 CDH2 -0.027 0.722193

ARSK -0.134 0.033417 SPTLC3 -0.008 0.765263

SGMS2 0.036 0.035346 PLVAP -0.009 0.775108

CAV1 0.29 0.035346 MLC1 0.018 0.798132

FUT6 0.15 0.036918 HCK 0.025 0.799639

S1PR2 -0.044 0.038326 GAL3ST1 -0.018 0.801166

ORMDL3 0.167 0.046252 ARSB 0.008 0.805402

SELPLG 0.077 0.046424 MAL 0.042 0.805402

NPC1 0.211 0.047133 UGCG -0.027 0.805976

GLA 0.081 0.051585 EMP2 0.005 0.805976

BMPR1A 0.127 0.055808 ACER1 0.003 0.805976

SMPD4 0.091 0.055808 SPRED1 0.027 0.813718

B4GALT3 0.119 0.055808 PTGS2 0.034 0.830598

ASAH2 -0.016 0.064646 HTRA2 0.008 0.865576

SPNS1 0.211 0.064735 F2R 0.013 0.865576

PTGIS -0.043 0.065345 ACER2 0.003 0.878838

ADCYAP1R1 -0.028 0.065596 HEXA -0.003 0.896144

ALDH5A1 -0.173 0.071878 CMTM8 -0.017 0.896144

PRTN3 -0.197 0.071878 FLOT2 0.01 0.896144

B3GALT4 0.079 0.073885 B3GALT1 0.002 0.932972

ELOVL7 0.172 0.087444 ESYT1 -0.005 0.945216

CERK 0.092 0.100127 ARSD -0.005 0.954864

ABCC1 -0.02 0.100127 ARSH -0.001 0.975073

ORMDL1 -0.084 0.100127 B4GALNT1 0.006 0.975637
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GPR6 -0.125 0.106324 ST8SIA6 0.001 0.97661

MAPK3 0.117 0.10701 PLTP -0.009 0.979097

SPTLC2 0.072 0.10886 SGMS1 -0.001 0.990524

SPNS2 0.108 0.122663 SMPDL3B 0 0.992681

MARVELD1 0.044 0.122663 SFTPB 0 0.992681

ELOVL1 0.115 0.122663 NEU2 0 0.996678

GLB1 0.087 0.138449 PRKAA1 0 0.996678

HEXB -0.146 0.140718 PRKAR2A 0 0.996678
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Table 12: List of included manually selected GO terms, ordered by each subtree of the GO
(Biological Process, Cellular Component, and Molecular Function). Two terms were excluded
before proceeding, as they are too generic (Lipid metabolic process, and Membrane raft).

BP (Biological Process) MF (Molecular Function) CC (Cellular Component)
caveola assembly.gpml ceramide binding.gpml caveola.gpml
ceramide biosynthetic process.gpml glycosphingolipid binding.gpml plasma membrane raft.gpml
ceramide catabolic process.gpml sphingolipid binding.gpml SPOTS complex.gpml
ceramide metabolic process.gpml sphingolipid transporter activity.gpml
ceramide transport.gpml sphingosine-1-phosphate receptor activity.gpml
galactosylceramide metabolic process.gpml
ganglioside biosynthetic process.gpml
ganglioside catabolic process.gpml
ganglioside metabolic process.gpml
glucosylceramide metabolic process.gpml
glycosphingolipid biosynthetic process.gpml
glycosphingolipid catabolic process.gpml
glycosphingolipid metabolic process.gpml
glycosylceramide biosynthetic process.gpml
glycosylceramide catabolic process.gpml
glycosylceramide metabolic process.gpml
membrane raft assembly.gpml
membrane raft distribution.gpml
membrane raft localization.gpml
membrane raft organization.gpml
membrane raft polarization.gpml
negative regulation of sphingolipid biosynthetic process.gpml
phytosphingosine metabolic process.gpml
plasma membrane raft assembly.gpml
plasma membrane raft organization.gpml
positive regulation of ceramide biosynthetic process.gpml
positive regulation of sphingolipid biosynthetic process.gpml
protein transport into membrane raft.gpml
protein transport into plasma membrane raft.gpml
regulation of ceramide biosynthetic process.gpml
regulation of sphingolipid biosynthetic process.gpml
sphinganine metabolic process.gpml
sphingoid biosynthetic process.gpml
sphingoid metabolic process.gpml
sphingolipid biosynthetic process.gpml
sphingolipid catabolic process.gpml
sphingolipid mediated signaling pathway.gpml
sphingolipid metabolic process.gpml
sphingomyelin biosynthetic process.gpml
sphingomyelin catabolic process.gpml
sphingomyelin metabolic process.gpml
sphingosine-1-phosphate receptor signaling pathway.gpml
sphingosine biosynthetic process.gpml
sphingosine metabolic process.gpml

134



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

Table 13: Textual representations of the subtree of the Biological Process; GO tree containing
the selected sphingolipid related terms. Parent-child dependency between terms is indicated by
indentation. An asterisk ‘*’ marks each but the first occurrence of a term that is present multiple
times in the subtree.

GO:0006665 sphingolipid metabolic process
GO:0006665 sphingolipid metabolic process
GO:0006672 ceramide metabolic process

GO:0006677 glycosylceramide metabolic process
GO:0006681 galactosylceramide metabolic process
GO:0006678 glucosylceramide metabolic process
GO:0046477 glycosylceramide catabolic process
GO:0046476 glycosylceramide biosynthetic process

GO:0046514 ceramide catabolic process
GO:0006689 ganglioside catabolic process
GO:0046477 glycosylceramide catabolic process *

GO:0046513 ceramide biosynthetic process
GO:0001574 ganglioside biosynthetic process
GO:0046476 glycosylceramide biosynthetic process *

GO:0001573 ganglioside metabolic process
GO:0001574 ganglioside biosynthetic process *
GO:0006689 ganglioside catabolic process *

GO:0006684 sphingomyelin metabolic process
GO:0006685 sphingomyelin catabolic process
GO:0006686 sphingomyelin biosynthetic process

GO:0006687 glycosphingolipid metabolic process
GO:0006677 glycosylceramide metabolic process *

GO:0006681 galactosylceramide metabolic process *
GO:0006678 glucosylceramide metabolic process *
GO:0046477 glycosylceramide catabolic process *
GO:0046476 glycosylceramide biosynthetic process *

GO:0001573 ganglioside metabolic process *
GO:0001574 ganglioside biosynthetic process *
GO:0006689 ganglioside catabolic process *

GO:0046479 glycosphingolipid catabolic process
GO:0006689 ganglioside catabolic process *
GO:0046477 glycosylceramide catabolic process *

GO:0006688 glycosphingolipid biosynthetic process
GO:0001574 ganglioside biosynthetic process *
GO:0046476 glycosylceramide biosynthetic process *

GO:0046519 sphingoid metabolic process
GO:0006667 sphinganine metabolic process
GO:0046520 sphingoid biosynthetic process

GO:0046512 sphingosine biosynthetic process
GO:0006670 sphingosine metabolic process

GO:0046512 sphingosine biosynthetic process *
GO:0030149 sphingolipid catabolic process

GO:0006685 sphingomyelin catabolic process *
GO:0046514 ceramide catabolic process *

GO:0006689 ganglioside catabolic process *
GO:0046477 glycosylceramide catabolic process *

GO:0046479 glycosphingolipid catabolic process *
GO:0006689 ganglioside catabolic process *
GO:0046477 glycosylceramide catabolic process *

GO:0030148 sphingolipid biosynthetic process
GO:0046520 sphingoid biosynthetic process *

GO:0046512 sphingosine biosynthetic process *
GO:0046513 ceramide biosynthetic process *

GO:0001574 ganglioside biosynthetic process *
GO:0046476 glycosylceramide biosynthetic process *

GO:0006686 sphingomyelin biosynthetic process *
GO:0006688 glycosphingolipid biosynthetic process *

GO:0001574 ganglioside biosynthetic process *
GO:0046476 glycosylceramide biosynthetic process *

GO:0090153 regulation of sphingolipid biosynthetic process
GO:2000303 regulation of ceramide biosynthetic process

GO:2000304 positive regulation of ceramide biosynthetic process
GO:0090154 positive regulation of sphingolipid biosynthetic process

GO:2000304 positive regulation of ceramide biosynthetic process *
GO:0090155 negative regulation of sphingolipid biosynthetic process
GO:0090520 sphingolipid mediated signaling pathway
GO:0003376 sphingosine-1-phosphate signaling pathway
GO:0031579 membrane raft organization
GO:0044857 plasma membrane raft organization

GO:0044854 plasma membrane raft assembly
GO:0070836 caveola assembly

GO:0031580 membrane raft distribution
GO:0001766 membrane raft polarization

GO:0001765 membrane raft assembly
GO:0044854 plasma membrane raft assembly

GO:0070836 caveola assembly
GO:0006629 lipid metabolic process
GO:0051665 membrane raft localization
GO:0031580 membrane raft distribution *

GO:0001766 membrane raft polarization *
GO:0032596 protein transport into membrane raft
GO:0044861 protein transport into plasma membrane raft

135



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

Table 14: Textual representations of the subtree of the Cellular Component; GO tree contain-
ing the selected sphingolipid related terms. Parent-child dependency between terms is indicated
by indentation. An asterisk ‘*’ marks each but the first occurrence of a term that is present multiple
times in the subtree.

GO:0035339 SPOTS complex
GO:0045121 membrane raft

GO:0044853 plasma membrane raft
GO:0005901 caveola

Table 15: Textual representations of the subtree of the Molecular Function; GO tree contain-
ing the selected sphingolipid related terms. Parent-child dependency between terms is indicated
by indentation. An asterisk ‘*’ marks each but the first occurrence of a term that is present multiple
times in the subtree.

GO:0046625 sphingolipid binding
GO:0043208 glycosphingolipid binding
GO:0097001 ceramide binding

GO:0046624 sphingolipid transporter activity
GO:0038036 sphingosine-1-phosphate receptor activity
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Table 16: Benchmarking of inferred networks against gold-standard core networks.

Cell type Gold-Standard Network Inferred Network Match

Source Target Source Target

ESC NANOG NANOG NANOG NANOG Yes

ESC NANOG POU5F1 NANOG POU5F1 Yes

ESC NANOG SOX2 NANOG SOX2 Yes

ESC POU5F1 NANOG POU5F1 NANOG Yes

ESC POU5F1 POU5F1 POU5F1 POU5F1 Yes

ESC POU5F1 SOX2 POU5F1 SOX2 Yes

ESC SOX2 NANOG SOX2 NANOG Yes

ESC SOX2 POU5F1 SOX2 POU5F1 Yes

ESC SOX2 SOX2 SOX2 SOX2 Yes

Hepatocyte ONECUT1 HNF4A ONECUT1 HNF4A Yes

Hepatocyte ONECUT1 ONECUT1 ONECUT1 ONECUT1 Yes

Hepatocyte FOXA2 FOXA2 FOXA2 FOXA2 Yes

Hepatocyte HNF4A FOXA2 HNF4A FOXA2 Yes

Hepatocyte HNF4A HNF1A HNF4A HNF1A Yes

Hepatocyte HNF4A HNF4A HNF4A HNF4A Yes

Hepatocyte HNF1A HNF1A HNF1A HNF1A Yes

Hepatocyte HNF1A HNF4A HNF1A HNF4A Yes

Hepatocyte CREB1 CREB1 HNF1A ONECUT1 No

Hepatocyte CREB1 FOXA2 HNF1A FOXA2 No

Hepatocyte USF1 ONECUT1 FOXA2 HNF1A No

Hepatocyte HNF4A USF1 FOXA2 HNF4A No

Hepatocyte ONECUT1 FOXA2 No

HepG2 HNF4A CEBPB HNF4A CEBPB Yes

HepG3 HNF4A FOXA1 HNF4A FOXA1 Yes

HepG4 HNF4A FOXA2 HNF4A FOXA2 Yes

HepG5 HNF4A HNF4A HNF4A HNF4A Yes

HepG6 FOXA2 CEBPB FOXA2 CEBPB Yes

137



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

HepG7 FOXA2 FOXA1 FOXA2 FOXA1 Yes

HepG8 FOXA2 FOXA2 FOXA2 FOXA2 Yes

HepG9 FOXA2 HNF4A FOXA2 HNF4A Yes

HepG10 FOXA1 CEBPB FOXA1 CEBPB Yes

HepG11 FOXA1 FOXA1 FOXA1 FOXA1 Yes

HepG12 FOXA1 FOXA2 FOXA1 FOXA2 Yes

HepG13 FOXA1 HNF4A FOXA1 HNF4A Yes

HepG14 CEBPB CEBPB CEBPB CEBPB Yes

HepG15 CEBPB FOXA1 CEBPB FOXA1 Yes

HepG16 CEBPB FOXA2 CEBPB FOXA2 Yes

HepG17 CEBPB HNF4A CEBPB HNF4A Yes

MCF7 ESR1 ESR1 ESR1 ESR1 Yes

MCF8 ESR1 FOXA1 ESR1 FOXA1 Yes

MCF9 FOXA1 ESR1 FOXA1 ESR1 Yes

MCF10 FOXA1 FOXA1 FOXA1 FOXA1 Yes

MCF11 ESR1 FOSL2 No

MCF12 ESR1 JUND No

MCF13 FOSL2 ESR1 No

MCF14 FOSL2 FOSL2 No

MCF15 FOSL2 FOXA1 No

MCF16 FOSL2 JUND No

MCF17 JUND ESR1 No

MCF18 JUND FOSL2 No

MCF19 JUND FOXA1 No
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Table 17: Accession numbers of RNA-seq sample considered as the background for JSD
computation. The samples are taken from GEO [50], ENCODE [54] and IHEC consortiums.

Accession ID Accession ID Accession ID Accession ID Accession ID Accession ID

GSM417715 GSM1156942 GSM1158474 GSM1519568 GSM1695867 GSM1023079

GSM417716 GSM1156943 GSM1158475 GSM1519569 GSM1695868 GSM1023080

GSM453868 GSM1156944 GSM1158476 GSM1519570 GSM1695869 GSM1023081

GSM453869 GSM1156945 GSM1158477 GSM1519571 GSM1695905 GSM1023082

GSM485364 GSM1156946 GSM1158478 GSM1521768 GSM1695906 GSM1023083

GSM485365 GSM1156947 GSM1158479 GSM1521769 GSM1695907 GSM1023084

GSM485366 GSM1156948 GSM1158480 GSM1521770 GSM1695908 GSM1023085

GSM485367 GSM1156949 GSM1158481 GSM1521771 GSM1695909 GSM1023086

GSM485368 GSM1156950 GSM1158482 GSM1521772 GSM1695910 GSM1023087

GSM485369 GSM1156951 GSM1158483 GSM1521773 GSM1695911 GSM1030556

GSM485370 GSM1156952 GSM1158484 GSM1521774 GSM1695912 GSM1030557

GSM485371 GSM1156953 GSM1158485 GSM1521775 GSM1695913 GSM1033470

GSM485372 GSM1156954 GSM1158486 GSM1521776 GSM1697912 GSM1033471

GSM485373 GSM1156955 GSM1158487 GSM1521777 GSM1697913 GSM1033472

GSM485374 GSM1156956 GSM1158488 GSM1521778 GSM1701465 GSM1033473

GSM485375 GSM1156957 GSM1158489 GSM1521779 GSM1701466 GSM1033474

GSM485376 GSM1156958 GSM1158490 GSM1521780 GSM1701467 GSM1037852

GSM485377 GSM1156959 GSM1158491 GSM1521781 GSM1701468 GSM1037853

GSM485378 GSM1156960 GSM1158492 GSM1521782 GSM1701469 GSM1037854

GSM485379 GSM1156961 GSM1158493 GSM1521783 GSM1701470 GSM1037855

GSM485380 GSM1156962 GSM1158494 GSM1521784 GSM1701471 GSM1037856

GSM485381 GSM1156963 GSM1158495 GSM1521785 GSM1701472 GSM1053748

GSM485382 GSM1156964 GSM1158496 GSM1521786 GSM1701473 GSM1053749

GSM485383 GSM1156965 GSM1158497 GSM1524370 GSM1701474 GSM1053750

GSM485384 GSM1156966 GSM1158498 GSM1524371 GSM1701475 GSM1053751

GSM485385 GSM1156967 GSM1158499 GSM1524869 GSM1701476 GSM1053752

GSM485386 GSM1156968 GSM1158500 GSM1524870 GSM1701478 GSM1053753
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GSM485387 GSM1156969 GSM1158501 GSM1524871 GSM1701479 GSM1053764

GSM485388 GSM1156970 GSM1158502 GSM1524872 GSM1704298 GSM1053765

GSM485389 GSM1156971 GSM1158503 GSM1524873 GSM1704299 GSM1053766

GSM485390 GSM1156972 GSM1158504 GSM1524874 GSM1704300 GSM1053767

GSM485391 GSM1156973 GSM1158505 GSM1524875 GSM1704301 GSM1053768

GSM485392 GSM1156974 GSM1158506 GSM1524876 GSM1704302 GSM1053769

GSM485393 GSM1156975 GSM1158507 GSM1527072 GSM1704303 GSM1053770

GSM485394 GSM1156976 GSM1158508 GSM1527073 GSM1704304 GSM1053771

GSM485395 GSM1156977 GSM1158509 GSM1527074 GSM1704305 GSM1053772

GSM485396 GSM1156978 GSM1158510 GSM1527075 GSM1704839 GSM1053773

GSM485397 GSM1156979 GSM1158511 GSM1527076 GSM1704840 GSM1053774

GSM485398 GSM1156980 GSM1158512 GSM1527077 GSM1704841 GSM1053775

GSM485399 GSM1156981 GSM1158513 GSM1528672 GSM1704842 GSM1053776

GSM485400 GSM1156982 GSM1158514 GSM1528673 GSM1704843 GSM1053777

GSM485401 GSM1156983 GSM1158515 GSM1528674 GSM1704844 GSM1053778

GSM485402 GSM1156984 GSM1158516 GSM1528675 GSM1704845 GSM1053779

GSM485403 GSM1156985 GSM1158517 GSM1528676 GSM1704846 GSM1053780

GSM485404 GSM1156986 GSM1158518 GSM1528677 GSM1704847 GSM1053781

GSM485405 GSM1156987 GSM1158519 GSM1528678 GSM1704848 GSM1053782

GSM485406 GSM1156988 GSM1158520 GSM1528679 GSM1704849 GSM1053783

GSM485407 GSM1156989 GSM1158521 GSM1528680 GSM1704850 GSM1053784

GSM485408 GSM1156990 GSM1158522 GSM1528681 GSM1704851 GSM1053785

GSM485410 GSM1156991 GSM1158523 GSM1528682 GSM1704852 GSM1053786

GSM485411 GSM1156992 GSM1158524 GSM1528683 GSM1704853 GSM1053787

GSM485412 GSM1156993 GSM1158525 GSM1528684 GSM1704854 GSM1053788

GSM485413 GSM1156994 GSM1158526 GSM1528685 GSM1704855 GSM1053789

GSM485414 GSM1156995 GSM1158527 GSM1529688 GSM1704856 GSM1053790

GSM485415 GSM1156996 GSM1158528 GSM1529689 GSM1704857 GSM1053791

GSM485416 GSM1156997 GSM1158529 GSM1529690 GSM1704858 GSM1053792

GSM485417 GSM1156998 GSM1158530 GSM1529691 GSM1707595 GSM1053793
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GSM485418 GSM1156999 GSM1158531 GSM1529692 GSM1707596 GSM1053794

GSM485419 GSM1157000 GSM1158532 GSM1532279 GSM1707597 GSM1053795

GSM485420 GSM1157001 GSM1158533 GSM1532280 GSM1707598 GSM1053796

GSM485421 GSM1157002 GSM1158534 GSM1532281 GSM1712007 GSM1053797

GSM485422 GSM1157003 GSM1158535 GSM1532282 GSM1712008 GSM1053798

GSM485423 GSM1157004 GSM1158536 GSM1532283 GSM1712009 GSM1053799

GSM485424 GSM1157005 GSM1158537 GSM1532284 GSM1712010 GSM1053800

GSM485425 GSM1157006 GSM1158538 GSM1532285 GSM1712011 GSM1057332

GSM485426 GSM1157007 GSM1158539 GSM1532286 GSM1712012 GSM1057333

GSM485427 GSM1157008 GSM1158540 GSM1533239 GSM1712013 GSM1057334

GSM485428 GSM1157009 GSM1158541 GSM1533240 GSM1712014 GSM1207205

GSM485429 GSM1157010 GSM1158542 GSM1533241 GSM1712015 GSM1207206

GSM485430 GSM1157011 GSM1158543 GSM1533242 GSM1712016 GSM1207207

GSM485431 GSM1157012 GSM1158544 GSM1533243 GSM1712017 GSM1060352

GSM485432 GSM1157013 GSM1158545 GSM1533244 GSM1712018 GSM1060353

GSM485433 GSM1157014 GSM1158546 GSM1533245 GSM1712019 GSM1060354

GSM485434 GSM1157015 GSM1158547 GSM1533246 GSM1712020 GSM1060355

GSM485435 GSM1157016 GSM1158548 GSM1533247 GSM1712021 GSM1060356

GSM485436 GSM1157017 GSM1158549 GSM1533248 GSM1712022 GSM1060357

GSM485437 GSM1157018 GSM1158550 GSM1533249 GSM1712023 GSM1060358

GSM485438 GSM1157019 GSM1158551 GSM1533250 GSM1712024 GSM1060359

GSM485439 GSM1157020 GSM1158552 GSM1533257 GSM1714397 GSM1060360

GSM485440 GSM1157021 GSM1158553 GSM1533258 GSM721696 GSM1062234

GSM485441 GSM1157022 GSM1158554 GSM1533259 GSM721697 GSM1062235

GSM485442 GSM1157023 GSM1158555 GSM1533260 GSM721698 GSM1062236

GSM485443 GSM1157024 GSM1158556 GSM1533261 GSM721699 GSM1062237

GSM485444 GSM1157025 GSM1158557 GSM1694954 GSM721700 GSM1062238

GSM485445 GSM1157026 GSM1158558 GSM1694956 GSM721701 GSM1062239

GSM485446 GSM1157027 GSM1158559 GSM1694957 GSM1717523 GSM1062240

GSM485447 GSM1157028 GSM1158560 GSM1694958 GSM1717524 GSM1062241
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GSM485448 GSM1157029 GSM1158561 GSM1694959 GSM1717525 GSM1062242

GSM485449 GSM1157030 GSM1158562 GSM1694960 GSM1717526 GSM1062243

GSM485450 GSM1157031 GSM1158563 GSM1694961 GSM1717527 GSM1062244

GSM485451 GSM1157032 GSM1158564 GSM1694962 GSM1717528 GSM1062245

GSM485452 GSM1157033 GSM1158565 GSM1694963 GSM1717529 GSM1062246

GSM485453 GSM1157034 GSM1158566 GSM1694964 GSM1717530 GSM1062247

GSM485454 GSM1157035 GSM1158567 GSM1694965 GSM1717531 GSM1062248

GSM485455 GSM1157036 GSM1158568 GSM1694966 GSM1717532 GSM1062249

GSM485456 GSM1157037 GSM1158569 GSM1694967 GSM1717533 GSM1062250

GSM485457 GSM1157038 GSM1158570 GSM1694969 GSM1717534 GSM1062251

GSM485458 GSM1157039 GSM1158571 GSM1694968 GSM1717535 GSM1063280

GSM485459 GSM1157040 GSM1158572 GSM1694970 GSM1717536 GSM1063281

GSM485460 GSM1157041 GSM1158573 GSM1694971 GSM1717537 GSM1063282

GSM485461 GSM1157042 GSM1158574 GSM1694972 GSM1717538 GSM1063283

GSM485462 GSM1157043 GSM1158575 GSM1694973 GSM1717539 GSM1063284

GSM485463 GSM1157044 GSM1158576 GSM1694974 GSM1717540 GSM1063285

GSM485464 GSM1157045 GSM1158577 GSM1694975 GSM1717541 GSM1063286

GSM485465 GSM1157046 GSM1158578 GSM1694976 GSM1717542 GSM1063287

GSM485466 GSM1157047 GSM1158579 GSM1694977 GSM1717543 GSM1063288

GSM485467 GSM1157048 GSM1158580 GSM1694978 GSM1717544 GSM1063289

GSM485468 GSM1157049 GSM1158581 GSM1694979 GSM1717545 GSM1063290

GSM485469 GSM1157050 GSM1158582 GSM1694980 GSM1717546 GSM1063291

GSM485470 GSM1157051 GSM1158583 GSM1694981 GSM1717547 GSM1063292

GSM485471 GSM1157052 GSM1158584 GSM1694982 GSM1717548 GSM1063293

GSM485472 GSM1157053 GSM1158585 GSM1694983 GSM1717549 GSM1063294

GSM485473 GSM1157054 GSM1158586 GSM1536176 GSM1717550 GSM1063295

GSM485474 GSM1157055 GSM1158587 GSM1536177 GSM1717551 GSM1063296

GSM485475 GSM1157056 GSM1158588 GSM1536178 GSM1717552 GSM1063297

GSM485476 GSM1157057 GSM1158589 GSM1536179 GSM1717553 GSM1063298

GSM485477 GSM1157058 GSM1158590 GSM1536180 GSM1717554 GSM1063299
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GSM485478 GSM1157059 GSM1158591 GSM1536181 GSM1717555 GSM1063300

GSM485479 GSM1157060 GSM1158592 GSM1536182 GSM1717556 GSM1063301

GSM485480 GSM1157061 GSM1158593 GSM1536183 GSM1717557 GSM1063302

GSM485481 GSM1157062 GSM1158594 GSM1536184 GSM1717558 GSM1063303

GSM485482 GSM1157063 GSM1158595 GSM1536185 GSM1717559 GSM1063304

GSM485483 GSM1157064 GSM1158596 GSM1536186 GSM1717560 GSM1064826

GSM485484 GSM1157065 GSM1158597 GSM1536187 GSM1717561 GSM1064829

GSM485485 GSM1157066 GSM1158598 GSM1536188 GSM1717562 GSM1196045

GSM485486 GSM1157067 GSM1158599 GSM1536189 GSM1717563 GSM1065157

GSM485487 GSM1157068 GSM1158600 GSM1536190 GSM1717564 GSM1065160

GSM485488 GSM1157069 GSM1158601 GSM1536191 GSM1717565 GSM1065161

GSM485489 GSM1157070 GSM1158602 GSM1536192 GSM1717566 GSM1065162

GSM485490 GSM1157071 GSM1158603 GSM1536193 GSM1717567 GSM1065917

GSM485491 GSM1157072 GSM1158604 GSM1536247 GSM1717568 GSM1065918

GSM485492 GSM1157073 GSM1158605 GSM1536248 GSM1717569 GSM1065919

GSM485493 GSM1157074 GSM1158606 GSM1536249 GSM1717570 GSM1065920

GSM485494 GSM1157075 GSM1158607 GSM1536250 GSM1717571 GSM1065921

GSM485495 GSM1157076 GSM1158608 GSM1536429 GSM1717572 GSM1065922

GSM485496 GSM1157077 GSM1158609 GSM1536430 GSM1717573 GSM1065923

GSM485497 GSM1157078 GSM1158610 GSM1536431 GSM1717574 GSM1065924

GSM485498 GSM1157079 GSM1158611 GSM1536432 GSM1717575 GSM1065925

GSM485499 GSM1157080 GSM1158612 GSM1536433 GSM1717576 GSM1065926

GSM485500 GSM1157081 GSM1158613 GSM1536434 GSM1717577 GSM1065927

GSM485501 GSM1157082 GSM1158614 GSM1536435 GSM1717578 GSM1065928

GSM485502 GSM1157083 GSM1158615 GSM1536436 GSM1717579 GSM1065929

GSM485503 GSM1157084 GSM1158616 GSM1536437 GSM1717580 GSM1065930

GSM485504 GSM1157085 GSM1158617 GSM1536438 GSM1717581 GSM1065931

GSM485505 GSM1157086 GSM1158618 GSM1537303 GSM1717582 GSM1065932

GSM485506 GSM1157087 GSM1158619 GSM1537304 GSM1717583 GSM1076106

GSM485507 GSM1157088 GSM1158620 GSM1543665 GSM1717584 GSM1076107
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GSM485508 GSM1157089 GSM1158621 GSM1543667 GSM1717585 GSM1076108

GSM485509 GSM1157090 GSM1158622 GSM1543670 GSM1717586 GSM1088317

GSM485510 GSM1157091 GSM1158623 GSM1543671 GSM1717587 GSM1088318

GSM485511 GSM1157092 GSM1158624 GSM1545029 GSM1717588 GSM1088319

GSM485512 GSM1157093 GSM1158625 GSM1545030 GSM1717589 GSM1088201

GSM485513 GSM1157094 GSM1158626 GSM1545031 GSM1717590 GSM1088202

GSM485514 GSM1157095 GSM1158627 GSM1545032 GSM1717591 GSM1088203

GSM485515 GSM1157096 GSM1158628 GSM1545033 GSM1717592 GSM1088204

GSM485516 GSM1157097 GSM1364030 GSM1545034 GSM1717593 GSM1088205

GSM485517 GSM1157098 GSM1364031 GSM1545035 GSM1717594 GSM1088206

GSM485518 GSM1157099 GSM1364032 GSM1545036 GSM1717595 GSM1088207

GSM485519 GSM1157100 GSM1364033 GSM1546371 GSM1717596 GSM1088208

GSM485520 GSM1157101 GSM1364034 GSM1546372 GSM1717597 GSM1088209

GSM485521 GSM1157102 GSM1364035 GSM1547996 GSM1717598 GSM1088210

GSM485522 GSM1157103 GSM1364036 GSM1547997 GSM1717599 GSM1088211

GSM485523 GSM1157104 GSM1364037 GSM1547998 GSM1717600 GSM1088212

GSM485524 GSM1157105 GSM1364038 GSM1547999 GSM1717601 GSM1088213

GSM432598 GSM1157106 GSM1364039 GSM1548000 GSM1717602 GSM1088214

GSM432600 GSM1157107 GSM1364040 GSM1548001 GSM1717603 GSM1088215

GSM432601 GSM1157108 GSM1364041 GSM1548002 GSM1717604 GSM1088216

GSM432602 GSM1157109 GSM1364042 GSM1548003 GSM1717605 GSM1088217

GSM432603 GSM1157110 GSM1364043 GSM1548004 GSM1717606 GSM1088218

GSM432604 GSM1157111 GSM1364044 GSM1548005 GSM1717607 GSM1088219

GSM432605 GSM1157112 GSM1368999 GSM1548006 GSM1717608 GSM1088220

GSM432606 GSM1157113 GSM1369000 GSM1548007 GSM1717609 GSM1088221

GSM432607 GSM1157114 GSM1369001 GSM1548008 GSM1717610 GSM1088222

GSM432608 GSM1157115 GSM1369002 GSM1548009 GSM1717611 GSM1088223

GSM432609 GSM1157116 GSM1369003 GSM1548010 GSM1717612 GSM1088224

GSM424320 GSM1157181 GSM1369004 GSM1548011 GSM1717613 GSM1088225

GSM424321 GSM1157182 GSM1369005 GSM1548012 GSM1717614 GSM1088226

144



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

GSM424322 GSM1157183 GSM1369006 GSM1548013 GSM1717615 GSM1088227

GSM424323 GSM1157184 GSM1369007 GSM1548014 GSM1717616 GSM1088228

GSM424324 GSM1157185 GSM1369008 GSM1550090 GSM1717617 GSM1088229

GSM424325 GSM1157186 GSM1369009 GSM1550091 GSM1717618 GSM1088230

GSM424326 GSM1157187 GSM1369010 GSM1550092 GSM1717619 GSM1088231

GSM424327 GSM1157188 GSM1369011 GSM1550093 GSM1717620 GSM1088232

GSM424328 GSM1157189 GSM1369012 GSM1550094 GSM1717621 GSM1088233

GSM424329 GSM1157190 GSM1369013 GSM1550095 GSM1717622 GSM1088234

GSM424330 GSM1157191 GSM1369014 GSM1550096 GSM1717623 GSM1088235

GSM424331 GSM1157192 GSM1369015 GSM1550097 GSM1717624 GSM1088236

GSM424332 GSM1157193 GSM1369016 GSM1550098 GSM1717625 GSM1088237

GSM424333 GSM1157194 GSM1369017 GSM1550099 GSM1717626 GSM1088238

GSM424334 GSM1157195 GSM1369018 GSM1550100 GSM1717627 GSM1088239

GSM424335 GSM1157196 GSM1369182 GSM1550101 GSM1717628 GSM1088241

GSM424336 GSM1157197 GSM1369183 GSM1550102 GSM1717629 GSM1088242

GSM424337 GSM1157198 GSM1369184 GSM1550103 GSM1717630 GSM1088243

GSM424338 GSM1157199 GSM1369185 GSM1550104 GSM1717631 GSM1088244

GSM424339 GSM1157200 GSM1369187 GSM1550105 GSM1717632 GSM1088245

GSM424340 GSM1157201 GSM1369188 GSM1550106 GSM1717633 GSM1088246

GSM424341 GSM1157202 GSM1369189 GSM1550107 GSM1717634 GSM1088247

GSM424342 GSM1157203 GSM1369190 GSM1550108 GSM1717635 GSM1088248

GSM424343 GSM1157204 GSM1369191 GSM1550109 GSM1717636 GSM1088249

GSM424344 GSM1157205 GSM1369192 GSM1550110 GSM1717637 GSM1088250

GSM424345 GSM1157206 GSM1369193 GSM1550111 GSM1717638 GSM1088251

GSM424346 GSM1157207 GSM1369194 GSM1550112 GSM1717639 GSM1088252

GSM424347 GSM1157208 GSM1369195 GSM1550113 GSM1717640 GSM1088253

GSM424348 GSM1157209 GSM1369196 GSM1550114 GSM1717641 GSM1088254

GSM424349 GSM1157210 GSM1369197 GSM1415906 GSM1717642 GSM1088255

GSM424350 GSM1157211 GSM1369198 GSM1415907 GSM1717643 GSM1088256

GSM424351 GSM1157212 GSM1369199 GSM1415908 GSM1717644 GSM1088257
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GSM424352 GSM1157213 GSM1369200 GSM1415909 GSM1717645 GSM1088258

GSM424353 GSM1157214 GSM1369201 GSM1415910 GSM1717646 GSM1088259

GSM424354 GSM1157215 GSM1369202 GSM1415911 GSM1717647 GSM1088260

GSM424355 GSM1157216 GSM1369203 GSM1551308 GSM1717648 GSM1088261

GSM424356 GSM1157217 GSM1369204 GSM1551309 GSM1717649 GSM1088262

GSM424357 GSM1157218 GSM1369205 GSM1551310 GSM1717650 GSM1088263

GSM424358 GSM1157219 GSM1369206 GSM1552693 GSM1717651 GSM1088264

GSM424359 GSM1157220 GSM1369207 GSM1552694 GSM1717652 GSM1088265

GSM424360 GSM1157221 GSM1369208 GSM1552695 GSM1717653 GSM1088266

GSM480870 GSM1157222 GSM1369209 GSM1552696 GSM1717654 GSM1088267

GSM480871 GSM1157223 GSM1369210 GSM1552807 GSM1717655 GSM1088268

GSM480872 GSM1157224 GSM1369211 GSM1552808 GSM1717656 GSM1088269

GSM480873 GSM1157225 GSM1369212 GSM1552809 GSM1717657 GSM1088270

GSM517435 GSM1157226 GSM1369213 GSM1552810 GSM1717658 GSM1088271

GSM517437 GSM1157227 GSM1369214 GSM1552811 GSM1717659 GSM1088272

GSM517438 GSM1157228 GSM1369215 GSM1552812 GSM1717660 GSM1088273

GSM517439 GSM1157229 GSM1369216 GSM1592570 GSM1717661 GSM1088274

GSM517441 GSM1157230 GSM1369217 GSM1592571 GSM1717662 GSM1088275

GSM517442 GSM1157231 GSM1369218 GSM1592572 GSM1717663 GSM1088276

GSM501716 GSM1157232 GSM1369219 GSM1592573 GSM1717664 GSM1088277

GSM484893 GSM1157233 GSM1369220 GSM1553085 GSM1717665 GSM1088278

GSM484894 GSM1157234 GSM1369221 GSM1553086 GSM1717666 GSM1088279

GSM484895 GSM1157235 GSM1369222 GSM1553087 GSM1717667 GSM1091810

GSM484896 GSM1157236 GSM1369223 GSM1553088 GSM1717668 GSM1091811

GSM484897 GSM1157237 GSM1369224 GSM1553089 GSM1717669 GSM1093060

GSM484898 GSM1157238 GSM1369225 GSM1553090 GSM1717670 GSM1093061

GSM484899 GSM1157239 GSM1370364 GSM1553091 GSM1717671 GSM1095135

GSM484900 GSM1157240 GSM1372330 GSM1553092 GSM1717672 GSM1095139

GSM484901 GSM1157241 GSM1372331 GSM1553093 GSM1717673 GSM1095140

GSM484902 GSM1157242 GSM1372332 GSM1553094 GSM1717674 GSM1095141
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GSM484903 GSM1157243 GSM1372333 GSM1553095 GSM1717675 GSM1097887

GSM484904 GSM1157244 GSM1372334 GSM1553096 GSM1717676 GSM1097888

GSM484905 GSM1157245 GSM1372335 GSM1553097 GSM1717677 GSM1098196

GSM484906 GSM1157246 GSM1372336 GSM1553098 GSM1717678 GSM1098197

GSM494809 GSM1157247 GSM1372337 GSM1553099 GSM1717679 GSM1098198

GSM494810 GSM1157248 GSM1372338 GSM1553100 GSM1717680 GSM1098199

GSM530678 GSM1157249 GSM1372339 GSM1553101 GSM1717681 GSM1098200

GSM475204 GSM1157250 GSM1372340 GSM1553102 GSM1717682 GSM1098201

GSM475205 GSM1157251 GSM1372341 GSM1553103 GSM1717683 GSM1098202

GSM475206 GSM1157252 GSM1372342 GSM1553104 GSM1717684 GSM1098203

GSM475207 GSM1157253 GSM1372343 GSM1553105 GSM1717685 GSM1098204

GSM475208 GSM1157254 GSM1372344 GSM1553106 GSM1717686 GSM1098205

GSM475209 GSM1157255 GSM1372345 GSM1553107 GSM1717687 GSM1098206

GSM546438 GSM1157256 GSM1372346 GSM1553108 GSM1717688 GSM1098207

GSM546439 GSM1157257 GSM1371574 GSM1553109 GSM1717689 GSM1098208

GSM546440 GSM1157258 GSM1371576 GSM1553110 GSM1717690 GSM1098209

GSM546441 GSM1157259 GSM1371577 GSM1553111 GSM1717691 GSM1098210

GSM546442 GSM1157260 GSM1371580 GSM1915560 GSM1717692 GSM1098211

GSM546443 GSM1157261 GSM1371583 GSM1915561 GSM1717693 GSM1098212

GSM546444 GSM1157262 GSM1371584 GSM1915562 GSM1717694 GSM1098213

GSM563061 GSM1157263 GSM1375212 GSM1915563 GSM1717695 GSM1098214

GSM574244 GSM1157264 GSM1375213 GSM1915564 GSM1717696 GSM1098215

GSM597207 GSM1157265 GSM1376804 GSM1915565 GSM1717697 GSM1098216

GSM597208 GSM1157266 GSM1376805 GSM1915566 GSM1717698 GSM1098217

GSM597209 GSM1157267 GSM1376806 GSM1915567 GSM1717699 GSM1098218

GSM597210 GSM1157268 GSM1376807 GSM1915568 GSM1717700 GSM1098219

GSM597211 GSM1157269 GSM1376808 GSM1915569 GSM1717701 GSM1098220

GSM601403 GSM1157270 GSM1376809 GSM1915570 GSM1717702 GSM1098221

GSM601404 GSM1157271 GSM1376810 GSM1915571 GSM1717703 GSM1098222

GSM601405 GSM1157272 GSM1376811 GSM1915572 GSM1717704 GSM1098223
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GSM601406 GSM1157273 GSM1377536 GSM1915573 GSM1717705 GSM1098224

GSM601407 GSM1157274 GSM1377537 GSM1915574 GSM1717706 GSM1098225

GSM601408 GSM1157275 GSM1378372 GSM1915575 GSM1717707 GSM1098226

GSM602557 GSM1157276 GSM1378373 GSM1915576 GSM1717708 GSM1098227

GSM602559 GSM1157277 GSM1380867 GSM1915577 GSM1717709 GSM1098228

GSM602561 GSM1157278 GSM1380868 GSM1553412 GSM1717710 GSM1098229

GSM602563 GSM1157279 GSM1381226 GSM1553413 GSM1717711 GSM1098230

GSM602565 GSM1157280 GSM1381227 GSM1553414 GSM1717712 GSM1098231

GSM602567 GSM1157281 GSM1381228 GSM1553415 GSM1717713 GSM1098232

GSM602569 GSM1157282 GSM1381229 GSM1554463 GSM1717714 GSM1098233

GSM602571 GSM1157283 GSM1381230 GSM1554464 GSM1724087 GSM1098234

GSM602573 GSM1157284 GSM1381231 GSM1554465 GSM1724088 GSM1098235

GSM602575 GSM1157285 GSM1381984 GSM1554466 GSM1724089 GSM1098236

GSM602577 GSM1157286 GSM1381985 GSM1554467 GSM1724090 GSM1098237

GSM602579 GSM1157287 GSM1381986 GSM1554468 GSM1724091 GSM1098238

GSM602581 GSM1157288 GSM1381987 GSM1556288 GSM1724092 GSM1098239

GSM602583 GSM1157289 GSM1381988 GSM1556289 GSM1726439 GSM1098240

GSM602585 GSM1157290 GSM1381989 GSM1556290 GSM1726440 GSM1098241

GSM602587 GSM1157291 GSM1381990 GSM1556291 GSM1726441 GSM1098242

GSM602589 GSM1157292 GSM1381991 GSM1556292 GSM1726442 GSM1098243

GSM602591 GSM1157293 GSM1381992 GSM1556293 GSM1726443 GSM1098244

GSM602593 GSM1157294 GSM1381993 GSM1556294 GSM1726444 GSM1098245

GSM602595 GSM1157295 GSM1381994 GSM1556295 GSM1726445 GSM1098246

GSM614544 GSM1157296 GSM1381995 GSM1556296 GSM1726446 GSM1098247

GSM614545 GSM1157297 GSM1381996 GSM1556297 GSM1726447 GSM1098248

GSM651905 GSM1157298 GSM1381997 GSM1556298 GSM1726448 GSM1098249

GSM651906 GSM1157299 GSM1381998 GSM1556299 GSM1726449 GSM1098250

GSM651907 GSM1157300 GSM1381999 GSM1558381 GSM1726450 GSM1098251

GSM651908 GSM1157301 GSM1382000 GSM1558415 GSM1726451 GSM1098252

GSM1241350 GSM1157302 GSM1382001 GSM1558416 GSM1726452 GSM1098253
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GSM1241351 GSM1157303 GSM1382002 GSM1559439 GSM1726453 GSM1098254

GSM1241352 GSM1157304 GSM1382003 GSM1559440 GSM1726454 GSM1098255

GSM1241353 GSM1157305 GSM1382004 GSM1559441 GSM1726455 GSM1098256

GSM1241354 GSM1157306 GSM1382005 GSM1559442 GSM1726456 GSM1098257

GSM1241355 GSM1157307 GSM1382006 GSM1559443 GSM1726457 GSM1098258

GSM1241356 GSM1157308 GSM1382007 GSM1559444 GSM1726458 GSM1098259

GSM1241357 GSM1157309 GSM1382008 GSM1560720 GSM1726459 GSM1098260

GSM1241358 GSM1157310 GSM1382009 GSM1560721 GSM1726460 GSM1098261

GSM1241359 GSM1157311 GSM1382010 GSM1560722 GSM1726461 GSM1098262

GSM1241360 GSM1157312 GSM1382011 GSM1560723 GSM1726462 GSM1098263

GSM1241361 GSM1157313 GSM1382012 GSM1560866 GSM1726463 GSM1098264

GSM1241362 GSM1157314 GSM1382013 GSM1560867 GSM1726464 GSM1098265

GSM1241363 GSM1157315 GSM1382014 GSM1560868 GSM1726465 GSM1098266

GSM1241364 GSM1157316 GSM1382015 GSM1560869 GSM1726466 GSM1098267

GSM1241365 GSM1157317 GSM1382016 GSM1561610 GSM1726467 GSM1098268

GSM1241366 GSM1157319 GSM1382017 GSM1561611 GSM1726468 GSM1098269

GSM1241367 GSM1157320 GSM1382018 GSM1561612 GSM1726469 GSM1098270

GSM1241368 GSM1157321 GSM1382019 GSM1561613 GSM1726470 GSM1098271

GSM1241369 GSM1157322 GSM1382020 GSM1561617 GSM1726471 GSM1098272

GSM1241370 GSM1157323 GSM1382021 GSM1561619 GSM1726472 GSM1098273

GSM1241371 GSM1157324 GSM1382022 GSM1561620 GSM1726473 GSM1098274

GSM1241372 GSM1157325 GSM1382023 GSM1561621 GSM1726474 GSM1098275

GSM1241373 GSM1157326 GSM1382024 GSM1561622 GSM1726475 GSM1098276

GSM1241374 GSM1157327 GSM1382025 GSM1561623 GSM1726476 GSM1098277

GSM1241375 GSM1157328 GSM1382026 GSM1561624 GSM1807973 GSM1098278

GSM1241376 GSM1157329 GSM1382027 GSM1561625 GSM1807984 GSM1098279

GSM1241377 GSM1157330 GSM1382028 GSM1561626 GSM1807985 GSM1098280

GSM1241378 GSM1157331 GSM1382029 GSM1561627 GSM1807986 GSM1098281

GSM1241379 GSM1157332 GSM1382030 GSM1561628 GSM1807987 GSM1098282

GSM1241380 GSM1157333 GSM1382031 GSM1561629 GSM1807974 GSM1098283
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GSM1241381 GSM1157334 GSM1382032 GSM1561630 GSM1807975 GSM1098284

GSM1241382 GSM1157335 GSM1382033 GSM1561631 GSM1807976 GSM1098285

GSM1241383 GSM1157336 GSM1382034 GSM1561632 GSM1807977 GSM1098286

GSM1241384 GSM1157337 GSM1382035 GSM1561633 GSM1807978 GSM1098287

GSM1241385 GSM1157338 GSM1382036 GSM1561634 GSM1807979 GSM1098288

GSM1241386 GSM1157339 GSM1382037 GSM1561635 GSM1807980 GSM1098289

GSM1241387 GSM1157340 GSM1382453 GSM1561636 GSM1807981 GSM1098290

GSM1243306 GSM1157341 GSM1383903 GSM1561637 GSM1807982 GSM1098291

GSM1243307 GSM1157342 GSM1383904 GSM1561638 GSM1807983 GSM1098292

GSM1243308 GSM1157343 GSM1383905 GSM1561639 GSM1807988 GSM1098293

GSM1243309 GSM1157344 GSM1383906 GSM1561640 GSM1807989 GSM1098294

GSM1242494 GSM1157345 GSM1383907 GSM1561642 GSM1807990 GSM1098295

GSM1242495 GSM1157346 GSM1383908 GSM1561643 GSM1807991 GSM1098296

GSM1242496 GSM1157347 GSM1383909 GSM1561644 GSM1807992 GSM1098297

GSM1242497 GSM1157348 GSM1383910 GSM1561645 GSM1807993 GSM1098298

GSM1242498 GSM1157349 GSM1383911 GSM1561646 GSM1807994 GSM1098299

GSM1242499 GSM1157350 GSM1383912 GSM1561647 GSM1807995 GSM1098300

GSM1242500 GSM1157351 GSM1383913 GSM1561648 GSM1807996 GSM1098301

GSM1242501 GSM1157352 GSM1383914 GSM1561649 GSM1807997 GSM1098302

GSM1242502 GSM1157353 GSM1383915 GSM1560004 GSM1807998 GSM1098303

GSM1242503 GSM1157354 GSM1383916 GSM1560005 GSM1807999 GSM1098304

GSM1242510 GSM1157355 GSM1383917 GSM1560006 GSM1808000 GSM1098305

GSM1245898 GSM1157356 GSM1383918 GSM1560010 GSM1808001 GSM1098306

GSM1245899 GSM1157357 GSM1386272 GSM1560011 GSM1808002 GSM1098307

GSM1245900 GSM1157358 GSM1386273 GSM1560012 GSM1808003 GSM1098308

GSM1245901 GSM1157359 GSM1386274 GSM1560019 GSM1808004 GSM1098309

GSM1246806 GSM1157360 GSM1386275 GSM1560020 GSM1808005 GSM1098310

GSM1246807 GSM1157361 GSM1386276 GSM1560021 GSM1808006 GSM1098311

GSM1246808 GSM1157362 GSM1386277 GSM1566740 GSM1808007 GSM1098312

GSM1246809 GSM1157363 GSM1386278 GSM1566741 GSM1808008 GSM1098313
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GSM1246810 GSM1157364 GSM1386279 GSM1566742 GSM1808009 GSM1098314

GSM1246811 GSM1157365 GSM1386280 GSM1566743 GSM1808010 GSM1098315

GSM1246812 GSM1157366 GSM1386281 GSM1566744 GSM1808011 GSM1098316

GSM1246813 GSM1157367 GSM1386282 GSM1566745 GSM1808012 GSM1098317

GSM1246814 GSM1157368 GSM1386283 GSM1566746 GSM1808013 GSM1098318

GSM1246815 GSM1157369 GSM1386284 GSM1566747 GSM1808014 GSM1098319

GSM1246816 GSM1157370 GSM1386285 GSM1566748 GSM1808015 GSM1098320

GSM1246817 GSM1157371 GSM1386286 GSM1566749 GSM1808016 GSM1098321

GSM1246818 GSM1157372 GSM1386287 GSM1566750 GSM1808017 GSM1098322

GSM1246819 GSM1157373 GSM1394656 GSM1566751 GSM1808018 GSM1098323

GSM1246820 GSM1157374 GSM1394657 GSM1566752 GSM1808019 GSM1098324

GSM1246821 GSM1157375 GSM1395289 GSM1566753 GSM1808020 GSM1098325

GSM1246822 GSM1157376 GSM1395290 GSM1709930 GSM1808021 GSM1098326

GSM1246823 GSM1157377 GSM1395291 GSM1709931 GSM1808022 GSM1098327

GSM1246824 GSM1157378 GSM1395292 GSM1709932 GSM1808023 GSM1098328

GSM1246825 GSM1157379 GSM1395293 GSM1709933 GSM1808024 GSM1098329

GSM1254205 GSM1157380 GSM1395294 GSM1709934 GSM1808025 GSM1098330

GSM1259263 GSM1157381 GSM1395295 GSM1709935 GSM1808026 GSM1098331

GSM1259264 GSM1157382 GSM1395296 GSM1709936 GSM1808027 GSM1098332

GSM1260479 GSM1157383 GSM1395297 GSM1709937 GSM1808028 GSM1098333

GSM1260481 GSM1157384 GSM1395298 GSM1567911 GSM1808029 GSM1098334

GSM1260483 GSM1157385 GSM1395299 GSM1567912 GSM1808030 GSM1098335

GSM1260485 GSM1157386 GSM1395300 GSM1567913 GSM1808031 GSM1098336

GSM1260487 GSM1157387 GSM1395301 GSM1567914 GSM1808032 GSM1098337

GSM1260489 GSM1157388 GSM1395302 GSM1567915 GSM1808033 GSM1098338

GSM1260491 GSM1157389 GSM1395303 GSM1567916 GSM1808034 GSM1098339

GSM1260493 GSM1157390 GSM1395304 GSM1567917 GSM1808035 GSM1098340

GSM1260495 GSM1157391 GSM1395305 GSM1567918 GSM1808036 GSM1098341

GSM1260497 GSM1157392 GSM1395306 GSM1567919 GSM1808037 GSM1098342

GSM1260499 GSM1157393 GSM1395307 GSM1567920 GSM1808038 GSM1098343
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GSM1260501 GSM1157394 GSM1395308 GSM1567921 GSM1808039 GSM1098344

GSM1260503 GSM1157395 GSM1395309 GSM1567922 GSM1808040 GSM1098345

GSM1260505 GSM1157396 GSM1395311 GSM1567923 GSM1808041 GSM1098346

GSM1260507 GSM1157397 GSM1395312 GSM1567924 GSM1808042 GSM1098347

GSM1260509 GSM1157398 GSM1395313 GSM1567925 GSM1808043 GSM1098348

GSM1260511 GSM1157399 GSM1395314 GSM1567926 GSM1808044 GSM1098349

GSM1260513 GSM1157400 GSM1395315 GSM1567927 GSM1808045 GSM1098350

GSM1260515 GSM1157401 GSM1395316 GSM1567928 GSM1808046 GSM1098351

GSM1260517 GSM1157402 GSM1396537 GSM1567929 GSM1808047 GSM1098352

GSM1260519 GSM1157403 GSM1396538 GSM1567930 GSM1808048 GSM1098353

GSM1260521 GSM1157404 GSM1396539 GSM1567931 GSM1808049 GSM1098354

GSM1260523 GSM1157405 GSM1396585 GSM1567932 GSM1808050 GSM1098355

GSM1260525 GSM1157406 GSM1396586 GSM1567933 GSM1808051 GSM1098356

GSM1260527 GSM1157407 GSM1396587 GSM1567934 GSM1808052 GSM1098357

GSM1260529 GSM1157408 GSM1396590 GSM1567935 GSM1808053 GSM1098358

GSM1260531 GSM1157409 GSM1396591 GSM1567936 GSM1808054 GSM1098359

GSM1260533 GSM1157410 GSM1396593 GSM1567937 GSM1808055 GSM1098360

GSM1260535 GSM1157411 GSM1396595 GSM1567938 GSM1808056 GSM1098361

GSM1260537 GSM1157412 GSM1396598 GSM1567939 GSM1808057 GSM1098362

GSM1260539 GSM1157413 GSM1396600 GSM1567940 GSM1808058 GSM1098363

GSM1260541 GSM1157414 GSM1396601 GSM1567941 GSM1808059 GSM1098364

GSM1260543 GSM1157415 GSM1396602 GSM1567942 GSM1808060 GSM1098365

GSM1260545 GSM1157416 GSM1396603 GSM1567943 GSM1808061 GSM1098366

GSM1260547 GSM1157417 GSM1396604 GSM1567944 GSM1808062 GSM1098367

GSM1260549 GSM1157418 GSM1396605 GSM1567945 GSM1808063 GSM1098368

GSM1260551 GSM1157419 GSM1396606 GSM1568709 GSM1808064 GSM1098369

GSM1260553 GSM1157420 GSM1396607 GSM1568710 GSM1808065 GSM1098370

GSM1260555 GSM1157421 GSM1396608 GSM1568711 GSM1808066 GSM1098371

GSM1260557 GSM1157422 GSM1396609 GSM1568712 GSM1808718 GSM1098372

GSM1260559 GSM1157423 GSM1397514 GSM1571055 GSM1808719 GSM1098373
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GSM1260561 GSM1157424 GSM1397515 GSM1571056 GSM1816172 GSM1098374

GSM1260563 GSM1157425 GSM1397516 GSM1571057 GSM1816174 GSM1098375

GSM1260565 GSM1157426 GSM1397742 GSM1571058 GSM1816175 GSM1098376

GSM1260567 GSM1157427 GSM1399180 GSM1571059 GSM1816176 GSM1098377

GSM1260569 GSM1157428 GSM1399181 GSM1571060 GSM1816177 GSM1098378

GSM1260571 GSM1157429 GSM1399182 GSM1571061 GSM1817212 GSM1098379

GSM1260573 GSM1157430 GSM1399183 GSM1571062 GSM1817213 GSM1098380

GSM1260575 GSM1157431 GSM1399184 GSM1571063 GSM1817214 GSM1098381

GSM1260577 GSM1157432 GSM1399185 GSM1571064 GSM1817215 GSM1098382

GSM1260579 GSM1157433 GSM1399186 GSM1571065 GSM1817216 GSM1098383

GSM1260581 GSM1157434 GSM1399187 GSM1571066 GSM1817217 GSM1098384

GSM1260583 GSM1157435 GSM1399188 GSM1571067 GSM1817678 GSM1098385

GSM1260585 GSM1157436 GSM1399189 GSM1571068 GSM1829628 GSM1098386

GSM1335668 GSM1157437 GSM1399190 GSM1571069 GSM1830134 GSM1098387

GSM1335670 GSM1157438 GSM1399191 GSM1571070 GSM1830135 GSM1098388

GSM1335672 GSM1157439 GSM1399192 GSM1571071 GSM1830136 GSM1098389

GSM1335674 GSM1157440 GSM1399193 GSM1571072 GSM1830137 GSM1098390

GSM1335676 GSM1157441 GSM1399196 GSM1571073 GSM1830782 GSM1098391

GSM1335678 GSM1157442 GSM1399197 GSM1571074 GSM1830783 GSM1098392

GSM1335680 GSM1157443 GSM1399198 GSM1571075 GSM1830784 GSM1098393

GSM1335682 GSM1157444 GSM1399199 GSM1571076 GSM1830785 GSM1098394

GSM1335684 GSM1157445 GSM1399200 GSM1571077 GSM1830786 GSM1098395

GSM1335686 GSM1157446 GSM1399201 GSM1571078 GSM1830787 GSM1098572

GSM1335688 GSM1157447 GSM1399202 GSM1571079 GSM1830788 GSM1098573

GSM1335690 GSM1157448 GSM1399203 GSM1571080 GSM1830789 GSM1098574

GSM1335692 GSM1157449 GSM1399204 GSM1571081 GSM1836551 GSM1098575

GSM1335694 GSM1157450 GSM1399205 GSM1571082 GSM1836552 GSM1100205

GSM1335696 GSM1157451 GSM1399206 GSM1571083 GSM1836553 GSM1100206

GSM1335698 GSM1157452 GSM1399207 GSM1571084 GSM1836554 GSM1100295

GSM1335702 GSM1157453 GSM1399208 GSM1571085 GSM1836555 GSM1100296
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GSM1335704 GSM1157454 GSM1399209 GSM1571086 GSM1836556 GSM1100297

GSM1335706 GSM1157455 GSM1399210 GSM1571087 GSM1836573 GSM1100298

GSM1335708 GSM1157456 GSM1400982 GSM1571088 GSM1836574 GSM1100299

GSM1335710 GSM1157457 GSM1400983 GSM1571089 GSM1836575 GSM1100300

GSM1335712 GSM1157458 GSM1401303 GSM1571090 GSM1836576 GSM1100301

GSM1335714 GSM1157459 GSM1401320 GSM1571091 GSM1836577 GSM1100302

GSM1335716 GSM1157460 GSM1401321 GSM1571092 GSM1836578 GSM1100303

GSM1335718 GSM1157461 GSM1401324 GSM1571093 GSM1836579 GSM1100304

GSM1335720 GSM1157462 GSM1401325 GSM1571094 GSM1836580 GSM1100305

GSM1335722 GSM1157463 GSM1401326 GSM1571095 GSM1836581 GSM1100306

GSM1335724 GSM1157464 GSM1401327 GSM1571096 GSM1836582 GSM1100307

GSM1335726 GSM1157465 GSM1401328 GSM1571097 GSM1836583 GSM1100308

GSM1335728 GSM1157466 GSM1401329 GSM1571098 GSM1836584 GSM1101966

GSM1335730 GSM1157467 GSM1401330 GSM1571099 GSM1836622 GSM1101967

GSM1335732 GSM1157468 GSM1401331 GSM1571100 GSM1836623 GSM1101968

GSM1335734 GSM1157469 GSM1401332 GSM1571101 GSM1836624 GSM1101969

GSM1335736 GSM1157470 GSM1401333 GSM1571102 GSM1836625 GSM1101970

GSM1335738 GSM1157471 GSM1401334 GSM1571103 GSM1836626 GSM1101971

GSM1335740 GSM1157472 GSM1401335 GSM1571104 GSM1836627 GSM1101972

GSM1335742 GSM1157473 GSM1401336 GSM1571105 GSM1836628 GSM1101973

GSM1335744 GSM1157474 GSM1401337 GSM1571106 GSM1836629 GSM1101974

GSM1335746 GSM1157475 GSM1401338 GSM1571107 GSM1836630 GSM1101975

GSM1335748 GSM1157476 GSM1401339 GSM1571108 GSM1836631 GSM1101976

GSM1335750 GSM1157477 GSM1401340 GSM1571109 GSM1836632 GSM1101977

GSM1335752 GSM1157478 GSM1401341 GSM1571110 GSM1836633 GSM1104010

GSM1335754 GSM1157479 GSM1401342 GSM1571111 GSM1836634 GSM1104011

GSM1335756 GSM1157480 GSM1401343 GSM1571112 GSM1836635 GSM1104012

GSM1261033 GSM1157541 GSM1401344 GSM1571113 GSM1836636 GSM1104013

GSM1261034 GSM1157542 GSM1401345 GSM1571114 GSM1842233 GSM1104014

GSM1261035 GSM1157543 GSM1401346 GSM1571115 GSM1842234 GSM1104015
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GSM1261651 GSM1157544 GSM1401347 GSM1571116 GSM1842235 GSM1104016

GSM1261652 GSM1157545 GSM1401348 GSM1571117 GSM1842236 GSM1104017

GSM1261653 GSM1157546 GSM1401349 GSM1571118 GSM1842237 GSM1104129

GSM1261654 GSM1157547 GSM1401350 GSM1571119 GSM1842238 GSM1104130

GSM1266739 GSM1157548 GSM1401351 GSM1571120 GSM1842239 GSM1104131

GSM1266740 GSM1157549 GSM1401352 GSM1571121 GSM1842240 GSM1105766

GSM1266741 GSM1157550 GSM1401353 GSM1571122 GSM1842241 GSM1105767

GSM1266742 GSM1157551 GSM1401354 GSM1571123 GSM1842242 GSM1105768

GSM1266743 GSM1157552 GSM1401355 GSM1571124 GSM1842243 GSM1105769

GSM1266744 GSM1157553 GSM1401356 GSM1571125 GSM1842244 GSM1105770

GSM1266745 GSM1157554 GSM1401357 GSM1576159 GSM1843468 GSM1105771

GSM1266746 GSM1157555 GSM1401358 GSM1576391 GSM1843469 GSM1105772

GSM1255335 GSM1157556 GSM1401359 GSM1576392 GSM1843471 GSM1105773

GSM1255336 GSM1157557 GSM1401360 GSM1576393 GSM1843472 GSM1105774

GSM1273487 GSM1157558 GSM1401361 GSM1576394 GSM1403191 GSM1105775

GSM1273488 GSM1157559 GSM1401362 GSM1576395 GSM1847138 GSM1105776

GSM1273672 GSM1157560 GSM1401363 GSM1576396 GSM1847139 GSM1105777

GSM1273673 GSM1157561 GSM1401364 GSM1576397 GSM1847140 GSM1105778

GSM1273674 GSM1157562 GSM1401365 GSM1576398 GSM1847141 GSM1105779

GSM1273675 GSM1157563 GSM1401366 GSM1576399 GSM1847142 GSM1105780

GSM1273676 GSM1157564 GSM1401367 GSM1576400 GSM1847143 GSM1105781

GSM1273677 GSM1157565 GSM1401368 GSM1576401 GSM1857483 GSM1105782

GSM1277968 GSM1157566 GSM1401377 GSM1576402 GSM1857484 GSM1105783

GSM1277969 GSM1157567 GSM1401378 GSM1576403 GSM1857485 GSM1105784

GSM1277970 GSM1157568 GSM1401379 GSM1576404 GSM1865616 GSM1105785

GSM1277971 GSM1157569 GSM1401380 GSM1576405 GSM1865617 GSM1105786

GSM1277972 GSM1157570 GSM1402482 GSM1576406 GSM1865618 GSM1105787

GSM1277973 GSM1157571 GSM1402483 GSM1576407 GSM1865619 GSM1105788

GSM1277974 GSM1157572 GSM1402484 GSM1576408 GSM1865620 GSM1105789

GSM1277975 GSM1157573 GSM1402485 GSM1576409 GSM1865621 GSM1105790
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GSM1277976 GSM1157574 GSM1402486 GSM1576410 GSM1865622 GSM1105791

GSM1278007 GSM1157575 GSM1402487 GSM1576411 GSM1865623 GSM1105792

GSM1278330 GSM1157576 GSM1402488 GSM1576412 GSM1865624 GSM1105793

GSM1278331 GSM1157577 GSM1402489 GSM1576413 GSM1865625 GSM1105794

GSM1279702 GSM1157578 GSM1402490 GSM1576414 GSM1865626 GSM1105795

GSM1279703 GSM1157579 GSM1402491 GSM1576415 GSM1865627 GSM1105796

GSM1279746 GSM1157580 GSM1402492 GSM1576416 GSM1865628 GSM1105797

GSM1279747 GSM1157581 GSM1402493 GSM1576417 GSM1865629 GSM1105798

GSM1279748 GSM1157582 GSM1402494 GSM1576418 GSM735419 GSM1105799

GSM1282320 GSM1157584 GSM1402495 GSM1576419 GSM735420 GSM1105800

GSM1282321 GSM1157585 GSM1402496 GSM1576420 GSM735421 GSM1105801

GSM1282322 GSM1157586 GSM1402497 GSM1576421 GSM735422 GSM1105802

GSM1282323 GSM1157587 GSM1402579 GSM1576422 GSM735423 GSM1105803

GSM1282324 GSM1157588 GSM1406028 GSM1576423 GSM1872828 GSM1105804

GSM1282325 GSM1157589 GSM1406029 GSM1576424 GSM1872829 GSM1105805

GSM1282326 GSM1157590 GSM1406030 GSM1576425 GSM1872830 GSM1105806

GSM1282327 GSM1157591 GSM1406031 GSM1576426 GSM1872831 GSM1105807

GSM1282328 GSM1157592 GSM1406032 GSM1576427 GSM1872833 GSM1105808

GSM1282329 GSM1157593 GSM1406318 GSM1576428 GSM1872834 GSM1105809

GSM1282330 GSM1157594 GSM1406320 GSM1576429 GSM1872836 GSM1105810

GSM1378014 GSM1157595 GSM1406321 GSM1576430 GSM1872837 GSM1105811

GSM1378015 GSM1157596 GSM1406322 GSM1576431 GSM1872838 GSM1105812

GSM1378016 GSM1157597 GSM1406323 GSM1576432 GSM1872839 GSM1105813

GSM1378017 GSM1157598 GSM1406324 GSM1576433 GSM1872840 GSM1105814

GSM1378018 GSM1157599 GSM1406325 GSM1576434 GSM1872841 GSM1105815

GSM1378019 GSM1157600 GSM1406326 GSM1576435 GSM1872842 GSM1105816

GSM1378021 GSM1157601 GSM1406327 GSM1576436 GSM1872843 GSM1105817

GSM1378022 GSM1157602 GSM1406328 GSM1576437 GSM1872844 GSM1105818

GSM1378023 GSM1157603 GSM1406329 GSM1576438 GSM1872845 GSM1105819

GSM1378024 GSM1157604 GSM1406330 GSM1576439 GSM1872846 GSM1105820
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GSM1378025 GSM1157605 GSM1406331 GSM1576440 GSM1872847 GSM1105821

GSM1378026 GSM1157606 GSM1406332 GSM1576441 GSM1872848 GSM1105822

GSM1282850 GSM1157607 GSM1406333 GSM1576442 GSM1872849 GSM1105823

GSM1289096 GSM1157608 GSM1406334 GSM1576443 GSM1872851 GSM1105824

GSM1289414 GSM1157609 GSM1406335 GSM1576444 GSM1872852 GSM1105825

GSM1289415 GSM1157610 GSM1406337 GSM1576445 GSM1872853 GSM1105826

GSM1290216 GSM1157611 GSM1409687 GSM1576446 GSM1872854 GSM1105827

GSM1290218 GSM1157612 GSM1409688 GSM1577755 GSM1872856 GSM1105828

GSM1290015 GSM1157613 GSM1409689 GSM1577756 GSM1872857 GSM1105829

GSM1290016 GSM1157614 GSM1409690 GSM1577757 GSM1872858 GSM1105830

GSM1290017 GSM1157615 GSM1409691 GSM1577758 GSM1872859 GSM1105831

GSM1290018 GSM1157616 GSM1409692 GSM1577759 GSM1872860 GSM1105832

GSM1293558 GSM1157617 GSM1409693 GSM1577760 GSM1872861 GSM1105833

GSM1293559 GSM1157618 GSM1409694 GSM1577761 GSM1872862 GSM1105834

GSM1293560 GSM1157619 GSM1409695 GSM1577762 GSM1872863 GSM1105835

GSM1293561 GSM1157620 GSM1409696 GSM1577763 GSM1872864 GSM1105836

GSM1293562 GSM1157621 GSM1409697 GSM1577764 GSM1872865 GSM1105837

GSM1293563 GSM1157622 GSM1409698 GSM1577738 GSM1872866 GSM1105838

GSM1293564 GSM1157623 GSM1409699 GSM1577739 GSM1872867 GSM1105839

GSM1293565 GSM1157624 GSM1409700 GSM1577740 GSM1872869 GSM1105840

GSM1293566 GSM1157625 GSM1409701 GSM1577741 GSM1872870 GSM1105841

GSM1293567 GSM1157626 GSM1409702 GSM1577742 GSM1872872 GSM1105842

GSM1293568 GSM1157627 GSM1409703 GSM1577743 GSM1872873 GSM1105843

GSM1293569 GSM1157628 GSM1409704 GSM1577744 GSM1872874 GSM1105844

GSM1293570 GSM1157629 GSM1409705 GSM1414746 GSM1872876 GSM1105845

GSM1293571 GSM1157630 GSM1409706 GSM1414747 GSM1872877 GSM1105846

GSM1293572 GSM1157631 GSM1409707 GSM1414748 GSM1872878 GSM1105847

GSM1293573 GSM1157632 GSM1409708 GSM1414749 GSM1872879 GSM1105848

GSM1293574 GSM1157633 GSM1409709 GSM1414750 GSM1872880 GSM1105849

GSM1293575 GSM1157634 GSM1412698 GSM1414751 GSM1872881 GSM1105850
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GSM1293576 GSM1157635 GSM1412699 GSM1581661 GSM1872882 GSM1105851

GSM1293577 GSM1157636 GSM1412700 GSM1581662 GSM1872883 GSM1105852

GSM1293578 GSM1157637 GSM1412701 GSM1581663 GSM1872885 GSM1105853

GSM1293579 GSM1157638 GSM1412702 GSM1581664 GSM1872992 GSM1105854

GSM1293580 GSM1157639 GSM1412703 GSM1581665 GSM1872993 GSM1105855

GSM1293581 GSM1157641 GSM1412704 GSM1581666 GSM1872994 GSM1105856

GSM1293741 GSM1157642 GSM1412705 GSM1585606 GSM1872995 GSM1105857

GSM1293742 GSM1157643 GSM1412706 GSM1585607 GSM1872996 GSM1105858

GSM1293743 GSM1157644 GSM1412707 GSM1585608 GSM1872997 GSM1105859

GSM1293744 GSM1157645 GSM1412708 GSM1585609 GSM1872998 GSM1105860

GSM1293745 GSM1157646 GSM1412709 GSM1585610 GSM1872999 GSM1105861

GSM1293746 GSM1157647 GSM1412710 GSM1585611 GSM1873000 GSM1105862

GSM1293747 GSM1157648 GSM1412711 GSM1585612 GSM1874590 GSM1105863

GSM1293748 GSM1157649 GSM1412712 GSM1585613 GSM1874591 GSM1105864

GSM1293749 GSM1157650 GSM1412713 GSM1585614 GSM1874592 GSM1111646

GSM1293750 GSM1157651 GSM1412714 GSM1585615 GSM1876343 GSM1111647

GSM1294387 GSM1157652 GSM1412715 GSM1587421 GSM1876344 GSM1111648

GSM1294388 GSM1157653 GSM1412716 GSM1587422 GSM1886913 GSM1111649

GSM1294389 GSM1157654 GSM1412717 GSM1587423 GSM1886914 GSM1111650

GSM1294390 GSM1157655 GSM1412718 GSM1587424 GSM1886915 GSM1111651

GSM1294391 GSM1157656 GSM1412719 GSM1587425 GSM1886916 GSM1111652

GSM1294392 GSM1157657 GSM1412720 GSM1587426 GSM1886917 GSM1111653

GSM1294393 GSM1157658 GSM1412721 GSM1587427 GSM1886918 GSM1111654

GSM1294394 GSM1157659 GSM1412722 GSM1587428 GSM1886923 GSM1111655

GSM1294395 GSM1157660 GSM1412723 GSM1588051 GSM1886924 GSM1111656

GSM1294396 GSM1157661 GSM1412724 GSM1588052 GSM1886925 GSM1111657

GSM1294397 GSM1157662 GSM1412725 GSM1588053 GSM1886926 GSM1111658

GSM1294398 GSM1157663 GSM1412726 GSM1588054 GSM1886927 GSM1111659

GSM1295103 GSM1157664 GSM1412727 GSM1588055 GSM1886928 GSM1111660

GSM1295104 GSM1157665 GSM1412728 GSM1588056 GSM1888331 GSM1111661
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GSM1295105 GSM1157666 GSM1412729 GSM1598127 GSM1888332 GSM1113312

GSM1296624 GSM1157667 GSM1412730 GSM1598128 GSM1888333 GSM1113313

GSM1296629 GSM1157668 GSM1412731 GSM1598129 GSM1888652 GSM1113314

GSM1297576 GSM1157669 GSM1412732 GSM1598130 GSM1888653 GSM1113315

GSM1297577 GSM1157670 GSM1412733 GSM1598131 GSM1888654 GSM1113316

GSM1297578 GSM1157671 GSM1412734 GSM1598132 GSM1888655 GSM1113317

GSM1297579 GSM1157672 GSM1412735 GSM1598133 GSM1888656 GSM1113318

GSM1297580 GSM1157673 GSM1414929 GSM1598134 GSM1888657 GSM1113319

GSM1297581 GSM1157674 GSM1414930 GSM1599009 GSM1888658 GSM1113320

GSM1297582 GSM1157675 GSM1414931 GSM1599010 GSM1888659 GSM1113322

GSM1297583 GSM1157676 GSM1414932 GSM1599120 GSM1888660 GSM1113323

GSM1297584 GSM1157677 GSM1414933 GSM1599121 GSM1888661 GSM1113324

GSM1297585 GSM1157678 GSM1414934 GSM1599122 GSM1888662 GSM1113325

GSM1297586 GSM1157679 GSM1414935 GSM1599123 GSM1888663 GSM1113326

GSM1297587 GSM1157680 GSM1414936 GSM1599124 GSM1888664 GSM1113327

GSM1297588 GSM1157681 GSM1414937 GSM1599125 GSM1888665 GSM1113328

GSM1297589 GSM1157682 GSM1414938 GSM1599126 GSM1888666 GSM1113329

GSM1297590 GSM1157683 GSM1414939 GSM1599127 GSM1888667 GSM1113330

GSM1297506 GSM1157684 GSM1414940 GSM1599128 GSM1888668 GSM1113331

GSM1297507 GSM1157685 GSM1414941 GSM1602977 GSM1888669 GSM1113332

GSM1297508 GSM1157686 GSM1414942 GSM1602978 GSM1888670 GSM1113333

GSM1298379 GSM1157687 GSM1414943 GSM1602979 GSM1888671 GSM1113334

GSM1298380 GSM1157688 GSM1414944 GSM1602980 GSM1888672 GSM1113335

GSM1298381 GSM1157689 GSM1414945 GSM1602981 GSM1888673 GSM1113336

GSM1302027 GSM1157690 GSM1414946 GSM1602982 GSM1888674 GSM1113337

GSM1302028 GSM1157691 GSM1414947 GSM1602983 GSM1888675 GSM1113338

GSM1302029 GSM1157692 GSM1414948 GSM1602984 GSM1888676 GSM1113339

GSM1302030 GSM1157693 GSM1414949 GSM1602985 GSM1888677 GSM1113340

GSM1302031 GSM1157694 GSM1414950 GSM1602986 GSM1888678 GSM1113341

GSM1302032 GSM1157695 GSM1414951 GSM1602987 GSM1888679 GSM1113342
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GSM1304777 GSM1157696 GSM1414952 GSM1602988 GSM1888680 GSM1113343

GSM1304778 GSM1157697 GSM1414953 GSM1602989 GSM1888681 GSM1113344

GSM1304779 GSM1157698 GSM1414954 GSM1602990 GSM1890005 GSM1113345

GSM1304780 GSM1157699 GSM1414955 GSM1602991 GSM1900662 GSM1113346

GSM1304781 GSM1157700 GSM1414956 GSM1602992 GSM1900663 GSM1113347

GSM1304782 GSM1157701 GSM1414957 GSM1602993 GSM1900664 GSM1113348

GSM1304783 GSM1157702 GSM1414958 GSM1602994 GSM1900665 GSM1113349

GSM1304784 GSM1157703 GSM1414959 GSM1602995 GSM1900666 GSM1113350

GSM1304785 GSM1157704 GSM1414960 GSM1602996 GSM1900667 GSM1113351

GSM1304786 GSM1157705 GSM1414961 GSM1602997 GSM1900668 GSM1113352

GSM1304787 GSM1157706 GSM1414962 GSM1602998 GSM1900669 GSM1113353

GSM1304788 GSM1157707 GSM1414963 GSM1602999 GSM1900670 GSM1113354

GSM1304789 GSM1157708 GSM1414964 GSM1603000 GSM1900671 GSM1113355

GSM1304790 GSM1157709 GSM1414965 GSM1603001 GSM1901303 GSM1113356

GSM1304791 GSM1157710 GSM1414966 GSM1603002 GSM1901304 GSM1113357

GSM1306652 GSM1157711 GSM1414967 GSM1603003 GSM1901305 GSM1113358

GSM1306653 GSM1157712 GSM1414968 GSM1603004 GSM1901306 GSM1113359

GSM1306654 GSM1157713 GSM1414969 GSM1603005 GSM1901307 GSM1113360

GSM1306655 GSM1157714 GSM1414970 GSM1603006 GSM1901308 GSM1113361

GSM1306656 GSM1157715 GSM1414971 GSM1603007 GSM1901309 GSM1113362

GSM1306657 GSM1157716 GSM1414972 GSM1603008 GSM1901310 GSM1113363

GSM1306659 GSM1157717 GSM1414973 GSM1603009 GSM1901311 GSM1113364

GSM1306651 GSM1157718 GSM1414974 GSM1603010 GSM1901312 GSM1113365

GSM1093229 GSM1157719 GSM1414975 GSM1603011 GSM1901313 GSM1113366

GSM1093230 GSM1157720 GSM1414976 GSM1603012 GSM1901314 GSM1113367

GSM1093231 GSM1157721 GSM1414977 GSM1603013 GSM1901315 GSM1113368

GSM1093232 GSM1157722 GSM1414979 GSM1603014 GSM1901316 GSM1113369

GSM1093233 GSM1157723 GSM1414980 GSM1603015 GSM1901317 GSM1113371

GSM1093234 GSM1157724 GSM1415126 GSM1603016 GSM1901318 GSM1113372

GSM1093235 GSM1157725 GSM1415127 GSM1603017 GSM1901319 GSM1113373
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GSM1093236 GSM1157726 GSM1415128 GSM1603018 GSM1901320 GSM1113374

GSM1093237 GSM1157727 GSM1415129 GSM1603019 GSM1901325 GSM1113375

GSM1093238 GSM1157728 GSM1415130 GSM1603020 GSM1901326 GSM1113376

GSM1312705 GSM1157729 GSM1415131 GSM1603021 GSM1901327 GSM1113377

GSM1312706 GSM1157730 GSM1415132 GSM1603022 GSM1901328 GSM1113378

GSM1312707 GSM1157731 GSM1415133 GSM1603023 GSM1901333 GSM1113379

GSM1312708 GSM1157732 GSM1415134 GSM1603024 GSM1901334 GSM1113380

GSM1312709 GSM1157733 GSM1415135 GSM1603025 GSM1901335 GSM1113381

GSM1312710 GSM1157734 GSM1415136 GSM1603026 GSM1901336 GSM1113382

GSM1312711 GSM1157735 GSM1415137 GSM1603027 GSM1901337 GSM1113383

GSM1312712 GSM1157736 GSM1415138 GSM1603028 GSM1901338 GSM1113384

GSM1312713 GSM1157737 GSM1415139 GSM1603029 GSM1901339 GSM1113385

GSM1312714 GSM1157738 GSM1415140 GSM1603030 GSM1901340 GSM1113386

GSM1312715 GSM1157739 GSM1415141 GSM1603031 GSM1901341 GSM1113387

GSM1312716 GSM1157740 GSM1415142 GSM1603032 GSM1901342 GSM1113388

GSM1312717 GSM1157741 GSM1415143 GSM1603033 GSM1901343 GSM1113389

GSM1312718 GSM1157742 GSM1415144 GSM1603034 GSM1901344 GSM1113390

GSM1312719 GSM1157743 GSM1415145 GSM1603035 GSM1901345 GSM1113391

GSM1312720 GSM1157744 GSM1415146 GSM1603036 GSM1901346 GSM1113392

GSM1312721 GSM1157745 GSM1415147 GSM1603037 GSM1901347 GSM1113393

GSM1312722 GSM1157746 GSM1415148 GSM1603038 GSM1906585 GSM1113394

GSM1312723 GSM1157747 GSM1415149 GSM1603039 GSM1906586 GSM1113395

GSM1312724 GSM1157748 GSM1416801 GSM1603040 GSM1908039 GSM1113396

GSM1312725 GSM1157749 GSM1416804 GSM1603041 GSM1908040 GSM1113397

GSM1312726 GSM1157750 GSM1420579 GSM1603042 GSM1908041 GSM1113398

GSM1312727 GSM1157751 GSM1422445 GSM1603043 GSM1908042 GSM1113399

GSM1312728 GSM1157752 GSM1422446 GSM1603044 GSM1908043 GSM1113400

GSM1312729 GSM1157753 GSM1422447 GSM1603045 GSM1908044 GSM1113401

GSM1312730 GSM1157754 GSM1422448 GSM1603046 GSM1908045 GSM1113402

GSM1312731 GSM1157755 GSM1857097 GSM1603047 GSM1908046 GSM1113403
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GSM1312732 GSM1157756 GSM1857098 GSM1603048 GSM1908047 GSM1113404

GSM1312733 GSM1157757 GSM1425760 GSM1604265 GSM1915044 GSM1113405

GSM1312734 GSM1157758 GSM1425761 GSM1604266 GSM1915045 GSM1113406

GSM1312735 GSM1157759 GSM1425762 GSM1604267 GSM1915046 GSM1113407

GSM1312736 GSM1157760 GSM1425763 GSM1608261 GSM1915050 GSM1113408

GSM1312737 GSM1157761 GSM1425764 GSM1608262 GSM1915051 GSM1113409

GSM1312738 GSM1157762 GSM1425765 GSM1608263 GSM1915052 GSM1113410

GSM1312739 GSM1157763 GSM1425766 GSM1608264 GSM1917073 GSM1113411

GSM1312740 GSM1157764 GSM1425767 GSM1608265 GSM1917074 GSM1113412

GSM1312741 GSM1157765 GSM1425771 GSM1608266 GSM1917075 GSM1113413

GSM1312742 GSM1157766 GSM1425772 GSM1608267 GSM1917076 GSM1113415

GSM1312743 GSM1157767 GSM1425773 GSM1608282 GSM1917077 GSM1113416

GSM1312744 GSM1157768 GSM1425774 GSM1608283 GSM1917078 GSM1113417

GSM1312745 GSM1157769 GSM1425775 GSM1608284 GSM1918964 GSM1113418

GSM1312746 GSM1157770 GSM1425776 GSM1609427 GSM1918965 GSM1113419

GSM1312747 GSM1157771 GSM1425777 GSM1609428 GSM1918966 GSM1113420

GSM1312748 GSM1157772 GSM1425778 GSM1609429 GSM1918967 GSM1113421

GSM1312749 GSM1157773 GSM1425779 GSM1609430 GSM1918968 GSM1119582

GSM1313402 GSM1157774 GSM1425780 GSM1609431 GSM1918969 GSM1119581

GSM1313403 GSM1157775 GSM1425781 GSM1609432 GSM1925959 GSM1119583

GSM1314181 GSM1157776 GSM1425782 GSM1609433 GSM1925960 GSM1126516

GSM1314182 GSM1157777 GSM1425783 GSM1609434 GSM1925961 GSM1126517

GSM1314482 GSM1157778 GSM1432452 GSM1609435 GSM1925962 GSM1126518

GSM1314483 GSM1157779 GSM1432453 GSM1609436 GSM1925963 GSM1126519

GSM1314708 GSM1157780 GSM1432454 GSM1609437 GSM1925964 GSM1126520

GSM1314709 GSM1157781 GSM1432455 GSM1609438 GSM1925965 GSM1129239

GSM1314710 GSM1157782 GSM1432456 GSM1609439 GSM1925966 GSM1129240

GSM1314711 GSM1157783 GSM1432457 GSM1609440 GSM1925967 GSM1129241

GSM1314712 GSM1157784 GSM1432458 GSM1609441 GSM1925968 GSM1129242

GSM1314713 GSM1157785 GSM1432459 GSM1609442 GSM1925969 GSM1129243

162



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES

GSM1314714 GSM1157786 GSM1432460 GSM1609443 GSM1338794 GSM1129244

GSM1314715 GSM1157787 GSM1432461 GSM1609444 GSM1338795 GSM1129245

GSM1314716 GSM1157788 GSM1432462 GSM1612313 GSM1338796 GSM1131155

GSM1314717 GSM1157789 GSM1432463 GSM1612314 GSM1338797 GSM1131156

GSM1314718 GSM1157790 GSM1432464 GSM1612315 GSM1338798 GSM1131186

GSM1314719 GSM1157791 GSM1432465 GSM1612316 GSM1338799 GSM1131187

GSM1315608 GSM1157792 GSM1434984 GSM1612317 GSM1338800 GSM1131188

GSM1315621 GSM1157793 GSM1434985 GSM1612318 GSM1338801 GSM1131189

GSM1315625 GSM1157794 GSM1435495 GSM1614703 GSM1338802 GSM1131190

GSM1315635 GSM1157795 GSM1435496 GSM1614705 GSM1338803 GSM1131191

GSM1315639 GSM1157796 GSM1435497 GSM1614706 GSM1338804 GSM1131192

GSM1315644 GSM1157797 GSM1435498 GSM1614707 GSM1338805 GSM1131193

GSM1315645 GSM1157798 GSM1435499 GSM1618311 GSM1338806 GSM1131194

GSM1315646 GSM1157799 GSM1435500 GSM1618312 GSM1338807 GSM1131195

GSM1315647 GSM1157800 GSM1435501 GSM1618313 GSM1338808 GSM1131196

GSM1315649 GSM1157801 GSM1435502 GSM1618314 GSM1338809 GSM1131197

GSM1315651 GSM1157802 GSM1435504 GSM1618315 GSM1338810 GSM1131743

GSM1315652 GSM1157803 GSM1435506 GSM1618316 GSM1338811 GSM1131744

GSM1315653 GSM1157804 GSM1435507 GSM1618317 GSM1338812 GSM1131745

GSM1315654 GSM1157805 GSM1435508 GSM1618318 GSM1338813 GSM1131746

GSM1315655 GSM1157806 GSM1435509 GSM1618319 GSM1338814 GSM1131747

GSM1315656 GSM1157807 GSM1435510 GSM1618320 GSM1338815 GSM1132418

GSM1315658 GSM1157808 GSM1435511 GSM1618321 GSM1943688 GSM1132419

GSM1315659 GSM1157809 GSM1435512 GSM1618322 GSM1943689 GSM1132420

GSM1315660 GSM1157810 GSM1435513 GSM1619134 GSM1943690 GSM1132421

GSM1315663 GSM1157811 GSM1435813 GSM1619135 GSM1943691 GSM1132422

GSM1315664 GSM1157812 GSM1435814 GSM1619136 GSM1943692 GSM1132423

GSM1315665 GSM1157813 GSM1435815 GSM1619137 GSM1943693 GSM1132424

GSM1315668 GSM1157814 GSM1435816 GSM1619138 GSM1943694 GSM1132425

GSM1315669 GSM1157815 GSM1435817 GSM1619139 GSM1939326 GSM1132426
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GSM1315675 GSM1157817 GSM1435818 GSM1619140 GSM1939327 GSM1132427

GSM1315676 GSM1157818 GSM1435819 GSM1619141 GSM1939328 GSM1132428

GSM1315677 GSM1157819 GSM1435820 GSM1619142 GSM1939329 GSM1133247

GSM1315680 GSM1157820 GSM1435821 GSM1619143 GSM1939330 GSM1133248

GSM1315681 GSM1157821 GSM1435822 GSM1619144 GSM1939331 GSM1133249

GSM1315682 GSM1157822 GSM1435823 GSM1619145 GSM1939332 GSM1133250

GSM1315683 GSM1157823 GSM1435824 GSM1619146 GSM1939333 GSM1133251

GSM1315684 GSM1157824 GSM1435825 GSM1619147 GSM1939334 GSM1133660

GSM1315691 GSM1157825 GSM1435826 GSM1619148 GSM1925973 GSM1133661

GSM1315704 GSM1157826 GSM1436135 GSM1619149 GSM1925974 GSM1133662

GSM1315705 GSM1157827 GSM1436136 GSM1619150 GSM1925975 GSM1133663

GSM1315707 GSM1157828 GSM1436137 GSM1619151 GSM1925976 GSM1133664

GSM1315708 GSM1157829 GSM1436138 GSM1619152 GSM1925977 GSM1133665

GSM1315709 GSM1157830 GSM1436351 GSM1619153 GSM1925978 GSM1133666

GSM1315710 GSM1157831 GSM1436352 GSM1619154 GSM1925979 GSM1133667

GSM1315711 GSM1157832 GSM1436353 GSM1619155 GSM1955072 GSM1133668

GSM1315712 GSM1157833 GSM1436354 GSM1619156 GSM1955073 GSM1133669

GSM1315713 GSM1157834 GSM1438894 GSM1619157 GSM1955074 GSM1133670

GSM1315714 GSM1157835 GSM1438895 GSM1619158 GSM1955075 GSM1133671

GSM1315715 GSM1157836 GSM1438896 GSM1619159 GSM1955076 GSM1133672

GSM1315716 GSM1157837 GSM1438897 GSM1619160 GSM1955077 GSM1133673

GSM1315717 GSM1157838 GSM1440487 GSM1619161 GSM1955078 GSM1133674

GSM1315718 GSM1157839 GSM1440488 GSM1619162 GSM1955079 GSM1133675

GSM1315719 GSM1157840 GSM1440489 GSM1619163 GSM1955080 GSM1133676

GSM1315720 GSM1157841 GSM1440490 GSM1619164 GSM1955081 GSM1133677

GSM1315721 GSM1157842 GSM1440491 GSM1619165 GSM1955082 GSM1133678

GSM1315722 GSM1157843 GSM1440492 GSM1619166 GSM1955083 GSM1133679

GSM1315723 GSM1157844 GSM1440493 GSM1619167 GSM1955084 GSM1133680

GSM1315724 GSM1157845 GSM1440494 GSM1619168 GSM1955085 GSM1133681

GSM1315725 GSM1157846 GSM1440495 GSM1619169 GSM1955086 GSM1133682
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GSM1315726 GSM1157848 GSM1440496 GSM1619170 GSM1955087 GSM1133683

GSM1315727 GSM1157849 GSM1440497 GSM1619171 GSM1955088 GSM1133684

GSM1315728 GSM1157850 GSM1440498 GSM1619172 GSM1955089 GSM1142684

GSM1315729 GSM1157851 GSM1440499 GSM1619173 GSM1955090 GSM1142685

GSM1315730 GSM1157852 GSM1440500 GSM1619174 GSM1955091 GSM1142686

GSM1315731 GSM1157853 GSM1440501 GSM1619175 GSM1960355 GSM1142687

GSM1315732 GSM1157854 GSM1440502 GSM1619176 GSM1960356 GSM1153501

GSM1315733 GSM1157855 GSM1440503 GSM1619177 GSM1960357 GSM1153507

GSM1315734 GSM1157856 GSM1440610 GSM1619178 GSM1960706 GSM1153509

GSM1315735 GSM1157857 GSM1440611 GSM1619179 GSM1960707 GSM1153510

GSM1315736 GSM1157858 GSM1443819 GSM1619180 GSM742937 GSM1153512

GSM1315738 GSM1157859 GSM1443820 GSM1619181 GSM742938 GSM1153513

GSM1315739 GSM1157860 GSM1443821 GSM1619182 GSM742939 GSM1153528

GSM1315745 GSM1157925 GSM1443822 GSM1619183 GSM742940 GSM1153529

GSM1315751 GSM1157926 GSM1443823 GSM1619184 GSM742941 GSM1228810

GSM1315767 GSM1157927 GSM1443824 GSM1619185 GSM742942 GSM1228811

GSM1315768 GSM1157928 GSM1443825 GSM1619186 GSM742943 GSM1153916

GSM1315772 GSM1157929 GSM1443826 GSM1619187 GSM742944 GSM1153917

GSM1315774 GSM1157930 GSM1443827 GSM1619188 GSM742945 GSM1155149

GSM1315779 GSM1157931 GSM1443829 GSM1619189 GSM742946 GSM1155150

GSM1315780 GSM1157932 GSM1444166 GSM1619190 GSM742947 GSM1155151

GSM1315781 GSM1157933 GSM1444171 GSM1619191 GSM742948 GSM1155152

GSM1315782 GSM1157934 GSM1444180 GSM1619192 GSM742949 GSM1155153

GSM1315783 GSM1157935 GSM1444185 GSM1619193 GSM742950 GSM1155154

GSM1315784 GSM1157936 GSM1446338 GSM1619194 GSM742952 GSM1155155

GSM1315785 GSM1157937 GSM1446339 GSM1619195 GSM749465 GSM1155156

GSM1315786 GSM1157938 GSM1446340 GSM1619196 GSM749466 GSM1155157

GSM1317868 GSM1157939 GSM1446341 GSM1619197 GSM749467 GSM1155158

GSM1317869 GSM1157940 GSM1446342 GSM1619198 GSM749468 GSM1155159

GSM1317870 GSM1157941 GSM1446343 GSM1619199 GSM747470 GSM1155160
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GSM1317871 GSM1157942 GSM1446344 GSM1619200 GSM747471 GSM1155161

GSM1317872 GSM1157943 GSM1446345 GSM1619201 GSM747472 GSM1155162

GSM1317873 GSM1157944 GSM1446880 GSM1619202 GSM747473 GSM1155163

GSM1317874 GSM1157945 GSM1446881 GSM1619203 GSM747474 GSM1155164

GSM1317875 GSM1157946 GSM1446882 GSM1619204 GSM747475 GSM1155165

GSM1317876 GSM1157947 GSM1446883 GSM1619205 GSM747476 GSM1155166

GSM1317877 GSM1157948 GSM1446884 GSM1619206 GSM747477 GSM1155167

GSM1319846 GSM1157949 GSM1446885 GSM1619207 GSM747478 GSM1155168

GSM1319847 GSM1157950 GSM1446886 GSM1619208 GSM747479 GSM1155370

GSM1319848 GSM1157951 GSM1446887 GSM1619209 GSM747480 GSM1155371

GSM1319849 GSM1157952 GSM1447395 GSM1619210 GSM1973958 GSM1155372

GSM1319850 GSM1157953 GSM1447396 GSM1619211 GSM1973959 GSM1155373

GSM1319851 GSM1157954 GSM1447397 GSM1619212 GSM1973960 GSM1155374

GSM1319852 GSM1157955 GSM1447398 GSM1619213 GSM1973961 GSM1155375

GSM1319853 GSM1157956 GSM1447399 GSM1619214 GSM1973962 GSM1155376

GSM1323528 GSM1157957 GSM1447400 GSM1619215 GSM1973963 GSM1155377

GSM1323529 GSM1157958 GSM1447401 GSM1619216 GSM1974764 GSM1155378

GSM1323530 GSM1157959 GSM1447402 GSM1619217 GSM1974765 GSM1155379

GSM1323531 GSM1157960 GSM1447403 GSM1619218 GSM1974766 GSM1155380

GSM1325496 GSM1157961 GSM1447404 GSM1619219 GSM1977027 GSM1155381

GSM1325497 GSM1157962 GSM1447405 GSM1619220 GSM1977028 GSM1155382

GSM1326407 GSM1157963 GSM1447406 GSM1619221 GSM1977029 GSM1155383

GSM1326408 GSM1157964 GSM1462858 GSM1619222 GSM1977030 GSM1155384

GSM1326409 GSM1157965 GSM1462859 GSM1619223 GSM1977031 GSM1155385

GSM1326410 GSM1157966 GSM1462860 GSM1619224 GSM1977032 GSM1155386

GSM1326411 GSM1157967 GSM1462861 GSM1619225 GSM1977033 GSM1162717

GSM1326412 GSM1157968 GSM1462862 GSM1619226 GSM1977034 GSM1162718

GSM1326569 GSM1157969 GSM1462863 GSM1619227 GSM1977035 GSM1162719

GSM1326570 GSM1157970 GSM1464095 GSM1619228 GSM1977036 GSM1162720

GSM1326571 GSM1157971 GSM1464101 GSM1619229 GSM1977037 GSM1162721
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GSM1326572 GSM1157972 GSM1466233 GSM1619230 GSM1977038 GSM1162722

GSM1326573 GSM1157973 GSM1466234 GSM1619231 GSM1977039 GSM1162723

GSM1326574 GSM1157974 GSM1466235 GSM1619232 GSM1977040 GSM1162724

GSM1326575 GSM1157975 GSM1466236 GSM1619233 GSM1977041 GSM1162725

GSM1326576 GSM1157976 GSM1466237 GSM1619234 GSM1977042 GSM1162726

GSM1326577 GSM1157977 GSM1466238 GSM1619235 GSM1977043 GSM1162727

GSM1326578 GSM1157978 GSM1466239 GSM1619236 GSM1977044 GSM1162728

GSM1326579 GSM1157979 GSM1466240 GSM1619237 GSM1977045 GSM1162729

GSM1326580 GSM1157980 GSM1466241 GSM1619238 GSM1977046 GSM1162730

GSM1327170 GSM1157981 GSM1466242 GSM1619239 GSM1977047 GSM1162731

GSM1327171 GSM1157982 GSM1574593 GSM1619240 GSM1977399 GSM1162732

GSM1327339 GSM1157983 GSM1574594 GSM1619241 GSM1977400 GSM1163070

GSM1327340 GSM1157984 GSM1574595 GSM1619242 GSM1977401 GSM1163071

GSM1327341 GSM1157985 GSM1574596 GSM1619243 GSM1977402 GSM1163072

GSM1327342 GSM1157986 GSM1466905 GSM1619244 GSM1977403 GSM1166072

GSM1327343 GSM1157987 GSM1466906 GSM1623140 GSM1977404 GSM1166073

GSM1327344 GSM1157988 GSM1466907 GSM1623141 GSM1977406 GSM1166074

GSM1327874 GSM1157989 GSM1479433 GSM1623142 GSM1977407 GSM1166084

GSM1327875 GSM1157990 GSM1479438 GSM1623143 GSM1977410 GSM1166085

GSM1327876 GSM1157991 GSM1479439 GSM1623144 GSM1977411 GSM1166086

GSM1327877 GSM1157992 GSM1479440 GSM1623145 GSM1977412 GSM1166090

GSM1322274 GSM1157993 GSM1479441 GSM1623146 GSM1977413 GSM1166091

GSM1328790 GSM1157994 GSM1479442 GSM1623147 GSM1977414 GSM1166092

GSM1328792 GSM1157995 GSM1479499 GSM1623148 GSM1977415 GSM1166097

GSM1328794 GSM1157996 GSM1479500 GSM1623149 GSM1977416 GSM1166098

GSM1328796 GSM1157997 GSM1479501 GSM1625957 GSM1977417 GSM1166099

GSM1332750 GSM1157998 GSM1479502 GSM1625958 GSM1977418 GSM1166100

GSM1332751 GSM1157999 GSM1479503 GSM1625959 GSM1977420 GSM1166105

GSM1333067 GSM1158000 GSM1479505 GSM1625960 GSM1977421 GSM1166106

GSM1333068 GSM1158001 GSM1479506 GSM1625961 GSM1977422 GSM1166107
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GSM1333069 GSM1158002 GSM1479507 GSM1625962 GSM1978251 GSM1166108

GSM1333110 GSM1158003 GSM1479508 GSM1625963 GSM1978252 GSM1166113

GSM1333111 GSM1158004 GSM1479509 GSM1625964 GSM1978253 GSM1166114

GSM1333112 GSM1158005 GSM1479510 GSM1625965 GSM1978254 GSM1166115

GSM1333113 GSM1158006 GSM1479512 GSM1625966 GSM1978255 GSM1166116

GSM1333378 GSM1158007 GSM1479520 GSM1626439 GSM1978256 GSM1166121

GSM1333379 GSM1158008 GSM1479521 GSM1626440 GSM1978257 GSM1166122

GSM1333380 GSM1158009 GSM1479522 GSM1626441 GSM752696 GSM1166123

GSM1333381 GSM1158010 GSM1479523 GSM1626442 GSM752697 GSM1166124

GSM1333382 GSM1158011 GSM1479524 GSM1626443 GSM752698 GSM1166128

GSM1333383 GSM1158012 GSM1479526 GSM1626444 GSM752702 GSM1166129

GSM1333384 GSM1158013 GSM1481718 GSM1626445 GSM752703 GSM1166130

GSM1333385 GSM1158014 GSM1482932 GSM1626446 GSM752704 GSM1173802

GSM1333386 GSM1158015 GSM1482933 GSM1626447 GSM752705 GSM1173803

GSM1333387 GSM1158016 GSM1482934 GSM1626448 GSM752706 GSM1173804

GSM1333388 GSM1158017 GSM1482935 GSM1626449 GSM752707 GSM1173805

GSM1333389 GSM1158018 GSM1482936 GSM1626450 GSM752708 GSM1173806

GSM1333390 GSM1158019 GSM1482937 GSM1626451 GSM754335 GSM1173807

GSM1333391 GSM1158020 GSM1482938 GSM1626452 GSM2027504 GSM1173808

GSM1333392 GSM1158021 GSM1482939 GSM1626453 GSM2027505 GSM1174472

GSM1333393 GSM1158022 GSM1482940 GSM1626454 GSM2027506 GSM1184591

GSM1333394 GSM1158023 GSM1482941 GSM1626455 GSM2027507 GSM1184593

GSM1333395 GSM1158024 GSM1482942 GSM1626456 GSM2027508 GSM1184595

GSM1333396 GSM1158025 GSM1482943 GSM1626457 GSM2027509 GSM1184597

GSM1333397 GSM1158026 GSM1482944 GSM1626458 GSM2027510 GSM1184599

GSM1333398 GSM1158027 GSM1482945 GSM1626459 GSM2027511 GSM1184601

GSM1333399 GSM1158028 GSM1482946 GSM1626460 GSM2027512 GSM1185603

GSM1333400 GSM1158029 GSM1482947 GSM1626461 GSM2027513 GSM1185604

GSM1333401 GSM1158030 GSM1482948 GSM1626462 GSM2027514 GSM1185605

GSM1333402 GSM1158031 GSM1482949 GSM1626463 GSM2027515 GSM1185606
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GSM1333403 GSM1158032 GSM1482950 GSM1626464 GSM2027516 GSM1185607

GSM1333404 GSM1158033 GSM1482951 GSM1626465 GSM2027517 GSM1185608

GSM1333405 GSM1158034 GSM1482952 GSM1626466 GSM2027518 GSM1185609

GSM1333406 GSM1158035 GSM1482953 GSM1626467 GSM2027519 GSM1185610

GSM1333407 GSM1158036 GSM1482954 GSM1626468 GSM2027520 GSM1185611

GSM1333408 GSM1158037 GSM1482955 GSM1626469 GSM2027521 GSM1185612

GSM1334287 GSM1158038 GSM1482956 GSM1626470 GSM2027522 GSM1185613

GSM1334288 GSM1158039 GSM1482957 GSM1626471 GSM2027523 GSM1185614

GSM1334289 GSM1158040 GSM1482958 GSM1626472 GSM2027524 GSM1185615

GSM1334293 GSM1158041 GSM1482959 GSM1626473 GSM2027525 GSM1185616

GSM1334294 GSM1158042 GSM1482960 GSM1626474 GSM2027526 GSM1185617

GSM1334295 GSM1158043 GSM1482961 GSM1626475 GSM2027527 GSM1185618

GSM1334330 GSM1158044 GSM1482962 GSM1626476 GSM2027528 GSM1185619

GSM1334331 GSM1158045 GSM1482963 GSM1626477 GSM2027529 GSM1187136

GSM1308994 GSM1158046 GSM1482964 GSM1626478 GSM2027530 GSM1187137

GSM1338133 GSM1158047 GSM1489558 GSM1626479 GSM2027531 GSM1187142

GSM1338134 GSM1158048 GSM1489559 GSM1626480 GSM2027532 GSM1193393

GSM1338135 GSM1158049 GSM1489560 GSM1626481 GSM2027533 GSM1193394

GSM1338136 GSM1158050 GSM1489561 GSM1626482 GSM2028114 GSM1193395

GSM1338137 GSM1158051 GSM1489562 GSM1626483 GSM2028115 GSM1193396

GSM1338138 GSM1158052 GSM1489563 GSM1626484 GSM2028120 GSM1193397

GSM1338139 GSM1158053 GSM1489564 GSM1626485 GSM2028121 GSM1194676

GSM1338140 GSM1158054 GSM1489565 GSM1626486 GSM2028122 GSM1194677

GSM1338141 GSM1158055 GSM1489566 GSM1626487 GSM2028123 GSM1194678

GSM1338142 GSM1158056 GSM1489567 GSM1626488 GSM2029382 GSM1194682

GSM1338759 GSM1158057 GSM1489568 GSM1626489 GSM2029383 GSM1194687

GSM1338760 GSM1158058 GSM1489569 GSM1626490 GSM2029384 GSM1194693

GSM1338764 GSM1158059 GSM1489570 GSM1626491 GSM2029385 GSM1194694

GSM1338768 GSM1158060 GSM1489571 GSM1626492 GSM2029386 GSM1194804

GSM1345809 GSM1158061 GSM1489572 GSM1626493 GSM2029387 GSM1194805
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GSM1345810 GSM1158062 GSM1489573 GSM1626494 GSM2029388 GSM1194806

GSM1345811 GSM1158063 GSM1489574 GSM1626495 GSM761684 GSM1194807

GSM1345812 GSM1158064 GSM1489575 GSM1626496 GSM761685 GSM1194808

GSM1345813 GSM1158065 GSM1489576 GSM1626497 GSM758634 GSM1194809

GSM1345814 GSM1158066 GSM1489577 GSM1626498 GSM758635 GSM1194810

GSM1345815 GSM1158067 GSM1489578 GSM1626499 GSM758636 GSM1194811

GSM1345816 GSM1158068 GSM1489579 GSM1626500 GSM759885 GSM1194812

GSM1345817 GSM1158069 GSM1489580 GSM1626501 GSM759886 GSM1194813

GSM1345818 GSM1158070 GSM1489581 GSM1626502 GSM759887 GSM1194814

GSM1345819 GSM1158071 GSM1489582 GSM1626503 GSM759889 GSM1196950

GSM1345820 GSM1158072 GSM1489583 GSM1626504 GSM759890 GSM1196951

GSM1345821 GSM1158073 GSM1489584 GSM1626505 GSM759891 GSM1196952

GSM1345822 GSM1158074 GSM1489585 GSM1626506 GSM759892 GSM1196953

GSM1345823 GSM1158075 GSM1489586 GSM1626507 GSM759893 GSM1196954

GSM1345824 GSM1158076 GSM1489587 GSM1626508 GSM2046873 GSM1196955

GSM1345826 GSM1158077 GSM1489588 GSM1626509 GSM2046874 GSM1196956

GSM1348980 GSM1158078 GSM1489589 GSM1626510 GSM2046875 GSM1196957

GSM1348981 GSM1158079 GSM1489590 GSM1626511 GSM2046876 GSM1196958

GSM1348982 GSM1158080 GSM1489591 GSM1626512 GSM2046877 GSM1196959

GSM1348983 GSM1158081 GSM1489592 GSM1626513 GSM2046878 GSM1196575

GSM1354448 GSM1158082 GSM1489593 GSM1626514 GSM764210 GSM1196578

GSM1354449 GSM1158083 GSM1489594 GSM1626515 GSM764211 GSM1196584

GSM1354450 GSM1158084 GSM1489595 GSM1626516 GSM764212 GSM1202460

GSM1354451 GSM1158085 GSM1489596 GSM1626517 GSM793363 GSM1202461

GSM1354452 GSM1158086 GSM1489597 GSM1626518 GSM793364 GSM1202462

GSM1354453 GSM1158087 GSM1489598 GSM1631719 GSM793365 GSM1202463

GSM1354454 GSM1158088 GSM1489599 GSM1631720 GSM793366 GSM1202464

GSM1354455 GSM1158089 GSM1489600 GSM1631721 GSM793367 GSM1202465

GSM1354456 GSM1158090 GSM1489601 GSM1631881 GSM793368 GSM1202466

GSM1354457 GSM1158091 GSM1489602 GSM1631882 GSM793369 GSM1202467
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GSM1354458 GSM1158092 GSM1489603 GSM1631883 GSM793370 GSM1202468

GSM1354459 GSM1158093 GSM1489604 GSM1631884 GSM793371 GSM1202469

GSM1354460 GSM1158094 GSM1489605 GSM1631885 GSM793372 GSM1202470

GSM1354461 GSM1158095 GSM1489606 GSM1631490 GSM793373 GSM1202471

GSM1354462 GSM1158096 GSM1489607 GSM1631491 GSM793374 GSM1202569

GSM1354463 GSM1158097 GSM1489608 GSM1631492 GSM793375 GSM1202570

GSM1354464 GSM1158098 GSM1489609 GSM1631493 GSM793376 GSM1202571

GSM1354465 GSM1158099 GSM1489610 GSM1631494 GSM1115019 GSM1202572

GSM1354466 GSM1158100 GSM1489611 GSM1631495 GSM1115020 GSM1202573

GSM1354841 GSM1158101 GSM1489612 GSM1631496 GSM1115021 GSM1202574

GSM1354843 GSM1158102 GSM1489613 GSM1631497 GSM1115022 GSM1202575

GSM1354845 GSM1158103 GSM1489614 GSM1631498 GSM1115023 GSM1202576

GSM1354847 GSM1158104 GSM1489615 GSM1631499 GSM1115024 GSM1202577

GSM1354849 GSM1158105 GSM1489616 GSM714814 GSM767949 GSM1202578

GSM1354852 GSM1158106 GSM1489617 GSM1633701 GSM767950 GSM1202579

GSM1354853 GSM1158107 GSM1489618 GSM1633702 GSM767951 GSM1202580

GSM1354855 GSM1158108 GSM1489619 GSM1641319 GSM800443 GSM1202581

GSM1354857 GSM1158109 GSM1489620 GSM1641320 GSM800445 GSM1202582

GSM1357994 GSM1158110 GSM1489621 GSM1641321 GSM799164 GSM1202583

GSM1357995 GSM1158111 GSM1489622 GSM1641322 GSM799165 GSM1202584

GSM1357996 GSM1158112 GSM1489623 GSM1641323 GSM799166 GSM1203305

GSM1357997 GSM1158113 GSM1489624 GSM1641324 GSM799167 GSM1203306

GSM1357998 GSM1158114 GSM1489625 GSM1641325 GSM804340 GSM1203307

GSM1358004 GSM1158115 GSM1492937 GSM1641326 GSM804341 GSM1203308

GSM1359512 GSM1158116 GSM1492939 GSM1641327 GSM804342 GSM1203309

GSM1359514 GSM1158117 GSM1492941 GSM1641328 GSM804343 GSM1203310

GSM1361091 GSM1158118 GSM1495400 GSM1641329 GSM804345 GSM1203311

GSM1361093 GSM1158119 GSM1495401 GSM1641330 GSM808734 GSM1203312

GSM1361095 GSM1158120 GSM1495402 GSM1641331 GSM808735 GSM1203313

GSM1361097 GSM1158121 GSM1495403 GSM1641332 GSM811624 GSM1203314
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GSM1361099 GSM1158122 GSM1495404 GSM1641333 GSM811625 GSM1203315

GSM1361101 GSM1158123 GSM1495405 GSM1641334 GSM811626 GSM1203316

GSM1361974 GSM1158124 GSM1495406 GSM1641335 GSM811627 GSM1203317

GSM1361975 GSM1158125 GSM1495414 GSM1641336 GSM811628 GSM1203318

GSM1361976 GSM1158126 GSM1495415 GSM1641337 GSM811629 GSM1203319

GSM1361977 GSM1158127 GSM1308998 GSM1641338 GSM811630 GSM1203320

GSM1361978 GSM1158128 GSM1498119 GSM1641339 GSM811631 GSM1203321

GSM1361979 GSM1158129 GSM1498120 GSM1641340 GSM819489 GSM1203322

GSM1361980 GSM1158130 GSM1498121 GSM1641341 GSM819490 GSM1203323

GSM1361981 GSM1158131 GSM1498122 GSM1641342 GSM821030 GSM1203324

GSM1361982 GSM1158132 GSM1498123 GSM1645000 GSM821031 GSM1203325

GSM1361983 GSM1158133 GSM1498124 GSM1645001 GSM821032 GSM1203326

GSM1361984 GSM1158134 GSM1498125 GSM1645002 GSM821033 GSM1203327

GSM1361985 GSM1158135 GSM1498126 GSM1645003 GSM821034 GSM1203328

GSM1361986 GSM1158136 GSM1498127 GSM1647922 GSM821035 GSM1203329

GSM1361987 GSM1158137 GSM1498128 GSM1647923 GSM821036 GSM1203330

GSM1361988 GSM1158138 GSM1498129 GSM1647924 GSM821037 GSM1203331

GSM1361989 GSM1158139 GSM1498130 GSM1647925 GSM821038 GSM1203332

GSM1361990 GSM1158140 GSM1499784 GSM1647926 GSM821039 GSM1203333

GSM1361991 GSM1158141 GSM1499785 GSM1647927 GSM821040 GSM1203334

GSM1361992 GSM1158142 GSM1499786 GSM1647928 GSM821041 GSM1203335

GSM1361993 GSM1158143 GSM1501174 GSM1647929 GSM823383 GSM1203336

GSM1361994 GSM1158144 GSM1503677 GSM1647930 GSM830389 GSM1203337

GSM1361995 GSM1158145 GSM1503678 GSM1647931 GSM830390 GSM1203338

GSM1361996 GSM1158146 GSM1503679 GSM1647932 GSM830391 GSM1203339

GSM1361997 GSM1158147 GSM1503680 GSM1647933 GSM830392 GSM1203340

GSM1361998 GSM1158148 GSM1503681 GSM1647934 GSM830393 GSM1203341

GSM1361999 GSM1158149 GSM1503682 GSM1647935 GSM830394 GSM1203342

GSM1362000 GSM1158150 GSM1503683 GSM1647936 GSM830395 GSM1203343

GSM1362001 GSM1158151 GSM1503684 GSM1647937 GSM830396 GSM1203344
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GSM1362002 GSM1158152 GSM1503685 GSM1647938 GSM830397 GSM1203345

GSM1362003 GSM1158153 GSM1503686 GSM1647939 GSM830398 GSM1203346

GSM1362004 GSM1158154 GSM1503687 GSM1647940 GSM830399 GSM1203347

GSM1362005 GSM1158156 GSM1503688 GSM1647941 GSM830400 GSM1204876

GSM1362006 GSM1158157 GSM1503689 GSM1647942 GSM830401 GSM1204877

GSM1362007 GSM1158158 GSM1503690 GSM1647943 GSM830402 GSM1204878

GSM1362008 GSM1158159 GSM1503691 GSM1647944 GSM830403 GSM1204879

GSM1362009 GSM1158160 GSM1503692 GSM1647945 GSM830404 GSM1204880

GSM1362010 GSM1158162 GSM1503693 GSM1647946 GSM830405 GSM1204881

GSM1362011 GSM1158163 GSM1503694 GSM1647947 GSM830448 GSM1206234

GSM1362012 GSM1158164 GSM1503695 GSM1647948 GSM830449 GSM1206235

GSM1362013 GSM1158165 GSM1503696 GSM1647949 GSM830450 GSM1206236

GSM1362014 GSM1158166 GSM1503697 GSM1647952 GSM830451 GSM1206237

GSM1362015 GSM1158167 GSM1503698 GSM1647954 GSM830452 GSM1206238

GSM1362016 GSM1158168 GSM1503699 GSM1647956 GSM830453 GSM1206239

GSM1362017 GSM1158169 GSM1608005 GSM1647959 GSM830454 GSM1206240

GSM1362018 GSM1158170 GSM1608006 GSM1647962 GSM830455 GSM1206242

GSM1362019 GSM1158171 GSM1608007 GSM1647964 GSM830456 GSM1206243

GSM1362020 GSM1158172 GSM1608008 GSM1647966 GSM830457 GSM1207643

GSM1362021 GSM1158173 GSM1608009 GSM1649191 GSM835231 GSM1207644

GSM1362022 GSM1158174 GSM1608010 GSM1649192 GSM835232 GSM1207645

GSM1362023 GSM1158175 GSM1608011 GSM1649193 GSM835233 GSM1207646

GSM1362024 GSM1158176 GSM1608012 GSM1649194 GSM838064 GSM1207647

GSM1362025 GSM1158177 GSM1608013 GSM1649195 GSM838066 GSM1207648

GSM1362026 GSM1158178 GSM1608014 GSM1649196 GSM838068 GSM1207649

GSM1362027 GSM1158179 GSM1608015 GSM1649197 GSM838070 GSM1207650

GSM1362028 GSM1158180 GSM1608016 GSM1649198 GSM838072 GSM1207651

GSM1362029 GSM1158245 GSM1608017 GSM1649199 GSM838074 GSM1207652

GSM1362030 GSM1158246 GSM1608018 GSM1649200 GSM838076 GSM1207653

GSM1362031 GSM1158247 GSM1608019 GSM1649201 GSM838078 GSM1207654
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GSM1362032 GSM1158248 GSM1608020 GSM1649202 GSM838080 GSM1207659

GSM1362033 GSM1158249 GSM1608063 GSM1649203 GSM838082 GSM1207660

GSM1362034 GSM1158250 GSM1608064 GSM1649204 GSM838084 GSM1207661

GSM1362035 GSM1158251 GSM1608065 GSM1649205 GSM838086 GSM1207662

GSM1362036 GSM1158252 GSM1608066 GSM1649206 GSM838088 GSM1208968

GSM1362037 GSM1158253 GSM1504073 GSM1649207 GSM838090 GSM1208969

GSM1362038 GSM1158254 GSM1504074 GSM1649208 GSM838092 GSM1208970

GSM1362039 GSM1158255 GSM1504075 GSM1649209 GSM838094 GSM1208971

GSM1362040 GSM1158256 GSM1504076 GSM1649210 GSM838096 GSM1208972

GSM1362041 GSM1158257 GSM1505565 GSM1649211 GSM838098 GSM1215102

GSM1362042 GSM1158258 GSM1505566 GSM1649212 GSM838100 GSM1215103

GSM1362043 GSM1158259 GSM1505567 GSM1649213 GSM838102 GSM1215104

GSM1362044 GSM1158260 GSM1505568 GSM1649214 GSM838104 GSM1215105

GSM1362045 GSM1158261 GSM1505569 GSM1657075 GSM838106 GSM1215106

GSM1362046 GSM1158262 GSM1505570 GSM1657076 GSM838108 GSM1215136

GSM1362047 GSM1158263 GSM1505571 GSM1657077 GSM838109 GSM1215137

GSM1362048 GSM1158264 GSM1505572 GSM1658371 GSM838112 GSM1216753

GSM1362049 GSM1158265 GSM1505573 GSM1658372 GSM838114 GSM1216754

GSM1362050 GSM1158266 GSM1505574 GSM1658373 GSM838116 GSM1216755

GSM1362051 GSM1158267 GSM1505575 GSM1658374 GSM838118 GSM1216756

GSM1362052 GSM1158268 GSM1505576 GSM1658375 GSM838120 GSM1216757

GSM1362053 GSM1158269 GSM1505577 GSM1658376 GSM838122 GSM1216758

GSM1362054 GSM1158270 GSM1505578 GSM1658378 GSM838124 GSM1216759

GSM1362055 GSM1158271 GSM1505579 GSM1658379 GSM839747 GSM1216760

GSM1362056 GSM1158272 GSM1505580 GSM1658380 GSM841726 GSM1216761

GSM1362057 GSM1158273 GSM1505581 GSM1658381 GSM841727 GSM1216762

GSM1362058 GSM1158274 GSM1505582 GSM1658382 GSM841728 GSM1216763

GSM1362059 GSM1158275 GSM1505583 GSM1658383 GSM841729 GSM1216764

GSM1362060 GSM1158276 GSM1505584 GSM1658384 GSM856868 GSM1216765

GSM1362061 GSM1158277 GSM1505585 GSM1658385 GSM856869 GSM1216766
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GSM1362062 GSM1158278 GSM1505586 GSM1658386 GSM856870 GSM1216767

GSM1362063 GSM1158279 GSM1505587 GSM1658387 GSM856871 GSM1216768

GSM1362064 GSM1158280 GSM1505588 GSM1658388 GSM856880 GSM1216769

GSM1362065 GSM1158281 GSM1505589 GSM1658389 GSM856881 GSM1216770

GSM1362066 GSM1158282 GSM1505594 GSM1658390 GSM864320 GSM1216771

GSM1362067 GSM1158283 GSM1505595 GSM1658391 GSM865291 GSM1216772

GSM1362068 GSM1158284 GSM1505596 GSM1658392 GSM865292 GSM1216773

GSM1362069 GSM1158285 GSM1505597 GSM1658393 GSM865293 GSM1216774

GSM1362070 GSM1158286 GSM1505598 GSM1658394 GSM865294 GSM1216775

GSM1362071 GSM1158287 GSM1505599 GSM1658395 GSM865295 GSM1216776

GSM1362072 GSM1158288 GSM1505600 GSM1658396 GSM865296 GSM1216777

GSM1362073 GSM1158289 GSM1505601 GSM1658397 GSM865297 GSM1216778

GSM1362074 GSM1158290 GSM1505602 GSM1658398 GSM865298 GSM1216779

GSM1362075 GSM1158291 GSM1505603 GSM1658399 GSM865299 GSM1216780

GSM1362076 GSM1158292 GSM1505604 GSM1658400 GSM865300 GSM1216781

GSM1362077 GSM1158293 GSM1505605 GSM1659004 GSM869033 GSM1216782

GSM1362078 GSM1158294 GSM1505606 GSM1659005 GSM869034 GSM1216783

GSM1362079 GSM1158295 GSM1505607 GSM1659006 GSM869035 GSM1216784

GSM1362080 GSM1158296 GSM1505608 GSM1659010 GSM883916 GSM1216785

GSM1362081 GSM1158297 GSM1505609 GSM1659543 GSM883917 GSM1216786

GSM1362082 GSM1158298 GSM1505610 GSM1659544 GSM883918 GSM1216787

GSM1362083 GSM1158299 GSM1505611 GSM1659545 GSM883919 GSM1216788

GSM1362084 GSM1158300 GSM1505612 GSM1659549 GSM898966 GSM1216789

GSM1362085 GSM1158301 GSM1505613 GSM1659550 GSM898967 GSM1216790

GSM1362086 GSM1158302 GSM1505614 GSM1659551 GSM898968 GSM1216791

GSM1362087 GSM1158303 GSM1641262 GSM1659552 GSM898969 GSM1216792

GSM1362088 GSM1158304 GSM1641263 GSM1659553 GSM898970 GSM1216793

GSM1362089 GSM1158305 GSM1641264 GSM1659554 GSM898971 GSM1216794

GSM1362090 GSM1158306 GSM1641271 GSM1665183 GSM898972 GSM1216795

GSM1362091 GSM1158307 GSM1641274 GSM1665184 GSM898973 GSM1216796
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GSM1362092 GSM1158308 GSM1641275 GSM1665185 GSM1099813 GSM1216797

GSM1362093 GSM1158309 GSM1641276 GSM1665186 GSM1099814 GSM1216798

GSM1362094 GSM1158310 GSM1641277 GSM1665187 GSM1099815 GSM1216799

GSM1362095 GSM1158311 GSM1641278 GSM1665188 GSM1099816 GSM1216800

GSM1362096 GSM1158312 GSM1641279 GSM1665189 GSM907013 GSM1216801

GSM1362097 GSM1158313 GSM1505821 GSM1665190 GSM907014 GSM1216802

GSM1362098 GSM1158314 GSM1505822 GSM1665191 GSM907015 GSM1216803

GSM1362099 GSM1158315 GSM1505823 GSM1665192 GSM907016 GSM1216804

GSM1362100 GSM1158316 GSM1505825 GSM1665193 GSM907017 GSM1216805

GSM1362101 GSM1158317 GSM1505826 GSM1665194 GSM907018 GSM1216806

GSM1362102 GSM1158318 GSM1505828 GSM1665195 GSM916961 GSM1216807

GSM1362103 GSM1158319 GSM1505831 GSM1665196 GSM916962 GSM1216808

GSM1362104 GSM1158320 GSM1505834 GSM1665197 GSM916963 GSM1216809

GSM1362105 GSM1158321 GSM1505835 GSM1665198 GSM925605 GSM1216810

GSM1362106 GSM1158322 GSM1505837 GSM1665910 GSM925606 GSM1216811

GSM1362107 GSM1158323 GSM1505839 GSM1665911 GSM925607 GSM1216812

GSM1362108 GSM1158324 GSM1505840 GSM1665912 GSM925608 GSM1216813

GSM1362109 GSM1158325 GSM1505841 GSM1665913 GSM925613 GSM1216814

GSM1362110 GSM1158326 GSM1505842 GSM1665914 GSM925614 GSM1216815

GSM1362111 GSM1158327 GSM1505843 GSM1665915 GSM927073 GSM1216816

GSM1362112 GSM1158328 GSM1505846 GSM719425 GSM927074 GSM1216817

GSM1362113 GSM1158329 GSM1505847 GSM719427 GSM937708 GSM1216818

GSM1156797 GSM1158330 GSM1505848 GSM1677846 GSM937709 GSM1216819

GSM1156798 GSM1158331 GSM1505849 GSM1677847 GSM937710 GSM1216820

GSM1156799 GSM1158332 GSM1505850 GSM1677848 GSM937711 GSM1216821

GSM1156800 GSM1158333 GSM1505851 GSM1677849 GSM937712 GSM1216822

GSM1156801 GSM1158334 GSM1505854 GSM1678785 GSM937713 GSM1216823

GSM1156802 GSM1158335 GSM1505855 GSM1678786 GSM947444 GSM1216825

GSM1156803 GSM1158336 GSM1505856 GSM1678787 GSM947446 GSM1216826

GSM1156804 GSM1158337 GSM1505857 GSM1678788 GSM949822 GSM1216827
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GSM1156805 GSM1158338 GSM1505860 GSM1678789 GSM949823 GSM1216828

GSM1156806 GSM1158339 GSM1505861 GSM1678790 GSM949825 GSM1216829

GSM1156807 GSM1158340 GSM1508256 GSM1678797 GSM949826 GSM1216830

GSM1156808 GSM1158341 GSM1508257 GSM1678798 GSM949827 GSM1216831

GSM1156809 GSM1158342 GSM1508258 GSM1678799 GSM949828 GSM1216832

GSM1156810 GSM1158343 GSM1508259 GSM1678800 GSM949829 GSM1216833

GSM1156811 GSM1158344 GSM1508260 GSM1678801 GSM949830 GSM1216834

GSM1156812 GSM1158345 GSM1508261 GSM1678802 GSM949831 GSM1216835

GSM1156813 GSM1158346 GSM1508262 GSM1679648 GSM949832 GSM1216836

GSM1156814 GSM1158347 GSM1508263 GSM1679649 GSM949833 GSM1216837

GSM1156815 GSM1158348 GSM1508264 GSM1679650 GSM949834 GSM1216838

GSM1156816 GSM1158349 GSM1508948 GSM1679651 GSM949835 GSM1216839

GSM1156817 GSM1158350 GSM1508949 GSM1679652 GSM949836 GSM1216840

GSM1156818 GSM1158351 GSM1508950 GSM1679653 GSM949837 GSM1216841

GSM1156819 GSM1158352 GSM1508951 GSM1679654 GSM949838 GSM1217954

GSM1156820 GSM1158353 GSM1508952 GSM1679655 GSM949839 GSM1217956

GSM1156821 GSM1158354 GSM1508953 GSM1679656 GSM949840 GSM1217958

GSM1156822 GSM1158355 GSM1509262 GSM1679657 GSM949841 GSM1217960

GSM1156823 GSM1158356 GSM1509265 GSM1679658 GSM949842 GSM1217961

GSM1156824 GSM1158357 GSM1509511 GSM1679659 GSM949843 GSM1219135

GSM1156825 GSM1158358 GSM1509512 GSM1679660 GSM949844 GSM1219136

GSM1156826 GSM1158359 GSM1509513 GSM1679661 GSM949845 GSM1224490

GSM1156827 GSM1158360 GSM1509514 GSM1679662 GSM955424 GSM1224491

GSM1156828 GSM1158361 GSM1510127 GSM1679663 GSM955160 GSM1224492

GSM1156829 GSM1158362 GSM1510128 GSM1679664 GSM955161 GSM1224493

GSM1156830 GSM1158363 GSM1510129 GSM1679665 GSM953381 GSM1224494

GSM1156831 GSM1158364 GSM1510130 GSM1679666 GSM953382 GSM1224495

GSM1156832 GSM1158365 GSM1510131 GSM1679667 GSM953383 GSM1224496

GSM1156834 GSM1158366 GSM1510132 GSM1679668 GSM953384 GSM1224497

GSM1156835 GSM1158367 GSM1510133 GSM1679669 GSM957471 GSM1224498
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GSM1156836 GSM1158368 GSM1510134 GSM1679670 GSM957472 GSM1224499

GSM1156837 GSM1158369 GSM1510136 GSM1679671 GSM957473 GSM1226157

GSM1156838 GSM1158370 GSM1510137 GSM1679672 GSM957474 GSM1226158

GSM1156839 GSM1158371 GSM1510138 GSM1679673 GSM957475 GSM1226159

GSM1156840 GSM1158372 GSM1510139 GSM1679674 GSM970928 GSM1226160

GSM1156841 GSM1158373 GSM1510140 GSM1679675 GSM970929 GSM1226161

GSM1156842 GSM1158374 GSM1510141 GSM1679676 GSM970930 GSM1226162

GSM1156843 GSM1158375 GSM1511115 GSM1679677 GSM976973 GSM1226163

GSM1156844 GSM1158376 GSM1511116 GSM1679678 GSM976974 GSM1226164

GSM1156845 GSM1158377 GSM1511117 GSM1679679 GSM976975 GSM1226165

GSM1156846 GSM1158378 GSM1511118 GSM1679680 GSM976976 GSM1226166

GSM1156847 GSM1158379 GSM1511119 GSM1679681 GSM976977 GSM1226167

GSM1156848 GSM1158380 GSM1511120 GSM1679682 GSM976978 GSM1226168

GSM1156849 GSM1158381 GSM1511873 GSM1679683 GSM976979 GSM1228034

GSM1156850 GSM1158382 GSM1511874 GSM1679684 GSM976980 GSM1228035

GSM1156851 GSM1158383 GSM1511875 GSM1679685 GSM976981 GSM1228036

GSM1156852 GSM1158384 GSM1511876 GSM1679686 GSM976982 GSM1228037

GSM1156853 GSM1158385 GSM1511877 GSM1679687 GSM976983 GSM1228038

GSM1156854 GSM1158386 GSM1511878 GSM1679688 GSM976984 GSM1228039

GSM1156855 GSM1158387 GSM1511879 GSM1679689 GSM976985 GSM1228202

GSM1156856 GSM1158388 GSM1511880 GSM1679690 GSM976986 GSM1228203

GSM1156857 GSM1158389 GSM1513187 GSM1679691 GSM976987 GSM1228204

GSM1156858 GSM1158390 GSM1513188 GSM1679692 GSM976988 GSM1228205

GSM1156859 GSM1158391 GSM1513189 GSM1679693 GSM976989 GSM1228206

GSM1156860 GSM1158392 GSM1513190 GSM1679694 GSM978969 GSM1228207

GSM1156861 GSM1158393 GSM1513191 GSM1679695 GSM978970 GSM1228208

GSM1156862 GSM1158394 GSM1513192 GSM1679696 GSM992931 GSM1228209

GSM1156863 GSM1158395 GSM1513193 GSM1679697 GSM992932 GSM1228210

GSM1156864 GSM1158396 GSM1513194 GSM1679698 GSM992933 GSM1228211

GSM1156865 GSM1158397 GSM1513195 GSM1679699 GSM992934 GSM1228212
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GSM1156866 GSM1158398 GSM1513196 GSM1679700 GSM997544 GSM1228213

GSM1156867 GSM1158399 GSM1513197 GSM1679701 GSM997545 GSM1228214

GSM1156868 GSM1158400 GSM1513198 GSM1679702 GSM997546 GSM1228215

GSM1156869 GSM1158401 GSM1513199 GSM1679703 GSM995300 GSM1228216

GSM1156870 GSM1158402 GSM1513200 GSM1679704 GSM995301 GSM1228217

GSM1156871 GSM1158403 GSM1513201 GSM1679705 GSM995302 GSM1228218

GSM1156872 GSM1158404 GSM1513202 GSM1679706 GSM995303 GSM1228219

GSM1156873 GSM1158405 GSM1513203 GSM1679707 GSM995304 GSM1229066

GSM1156874 GSM1158406 GSM1513204 GSM1679708 GSM990765 GSM1229067

GSM1156875 GSM1158407 GSM1513205 GSM1679709 GSM990766 GSM1229068

GSM1156876 GSM1158408 GSM1513206 GSM1679710 GSM990768 GSM1229069

GSM1156877 GSM1158409 GSM1513207 GSM1679711 GSM990769 GSM1229070

GSM1156878 GSM1158410 GSM1513208 GSM1679712 GSM990770 GSM1229071

GSM1156879 GSM1158411 GSM1513209 GSM1679713 GSM990771 GSM1229072

GSM1156880 GSM1158412 GSM1513210 GSM1679714 GSM990772 GSM1229103

GSM1156881 GSM1158413 GSM1513211 GSM1679715 GSM990773 GSM1229104

GSM1156882 GSM1158414 GSM1513212 GSM1679716 GSM990774 GSM1229105

GSM1156883 GSM1158415 GSM1513213 GSM1679717 GSM990775 GSM1229106

GSM1156884 GSM1158416 GSM1513214 GSM1679718 GSM990767 GSM1229107

GSM1156885 GSM1158417 GSM1513215 GSM1679719 GSM1002540 GSM1229108

GSM1156886 GSM1158418 GSM1513216 GSM1679720 GSM1002541 GSM1229109

GSM1156887 GSM1158419 GSM1513217 GSM1681901 GSM1002542 GSM1229110

GSM1156888 GSM1158420 GSM1513218 GSM1681902 GSM1002543 GSM1229111

GSM1156889 GSM1158421 GSM1513219 GSM1681903 GSM1002544 GSM1229112

GSM1156890 GSM1158422 GSM1513220 GSM1681904 GSM1002545 GSM1229113

GSM1156891 GSM1158423 GSM1513221 GSM1681905 GSM1002546 GSM1229114

GSM1156892 GSM1158424 GSM1513222 GSM1681906 GSM1002547 GSM1229116

GSM1156893 GSM1158425 GSM1513223 GSM1681907 GSM1002548 GSM1229117

GSM1156894 GSM1158426 GSM1513224 GSM1681908 GSM1002549 GSM1229118

GSM1156895 GSM1158427 GSM1513225 GSM1681909 GSM1002550 GSM1229119
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GSM1156896 GSM1158428 GSM1513226 GSM1681910 GSM1002551 GSM1229120

GSM1156897 GSM1158429 GSM1513227 GSM1682266 GSM1002552 GSM1229121

GSM1156898 GSM1158430 GSM1513228 GSM1682267 GSM1002553 GSM1229123

GSM1156899 GSM1158431 GSM1513229 GSM721141 GSM1005575 GSM1229124

GSM1156900 GSM1158432 GSM1513230 GSM721123 GSM1006724 GSM1229125

GSM1156901 GSM1158433 GSM1513231 GSM721124 GSM1006725 GSM1229126

GSM1156902 GSM1158434 GSM1513232 GSM721125 GSM1005513 GSM1229127

GSM1156903 GSM1158435 GSM1513233 GSM721126 GSM1011896 GSM1233280

GSM1156904 GSM1158436 GSM1513234 GSM1686546 GSM1011897 GSM1233281

GSM1156905 GSM1158437 GSM1513235 GSM1686547 GSM1011898 GSM1233282

GSM1156906 GSM1158438 GSM1513236 GSM1686548 GSM1013679 GSM1233283

GSM1156907 GSM1158439 GSM1513237 GSM1687384 GSM1013682 GSM1233284

GSM1156908 GSM1158440 GSM1513238 GSM1687385 GSM1013684 GSM1233285

GSM1156909 GSM1158441 GSM1513239 GSM1687386 GSM1013686 GSM1233286

GSM1156910 GSM1158442 GSM1513240 GSM1687387 GSM1013688 GSM1233287

GSM1156911 GSM1158443 GSM1513241 GSM1693049 GSM1013692 GSM1233288

GSM1156912 GSM1158444 GSM1513242 GSM1693051 GSM1013693 GSM1233289

GSM1156913 GSM1158445 GSM1513243 GSM1693052 GSM1013695 GSM1233290

GSM1156914 GSM1158446 GSM1513244 GSM1693053 GSM1013697 GSM1233291

GSM1156915 GSM1158447 GSM1513245 GSM1693054 GSM1018004 ERR169802

GSM1156916 GSM1158448 GSM1513246 GSM1693055 GSM1018005 ERR169803

GSM1156917 GSM1158449 GSM1513247 GSM1694663 GSM1020212 ERR358486

GSM1156918 GSM1158450 GSM1513248 GSM1694664 GSM1020213 ERR380549

GSM1156919 GSM1158451 GSM1513249 GSM1694665 GSM1020214 ERR380552

GSM1156920 GSM1158452 GSM1513250 GSM1694666 GSM1020215 GSM1563053

GSM1156921 GSM1158453 GSM1513251 GSM1695162 GSM1020216 GSM1563054

GSM1156922 GSM1158454 GSM1513252 GSM1695197 GSM1023059 GSM1573117

GSM1156923 GSM1158455 GSM1513253 GSM1695198 GSM1023060 GSM984650

GSM1156924 GSM1158456 GSM1513254 GSM1695199 GSM1023061 ENCFF320IDT

GSM1156925 GSM1158457 GSM1513255 GSM1695850 GSM1023062 ENCFF380GBC
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GSM1156926 GSM1158458 GSM1513256 GSM1695851 GSM1023063 ENCFF888LPS

GSM1156927 GSM1158459 GSM1513257 GSM1695852 GSM1023064 ENCFF342LYI

GSM1156928 GSM1158460 GSM1513258 GSM1695853 GSM1023065 ENCFF237ZQX

GSM1156929 GSM1158461 GSM1513689 GSM1695854 GSM1023066 ENCFF466QUZ

GSM1156930 GSM1158462 GSM1517598 GSM1695855 GSM1023067 ENCFF290OQE

GSM1156931 GSM1158463 GSM1517599 GSM1695856 GSM1023068 ENCFF789VZB

GSM1156932 GSM1158464 GSM1517600 GSM1695857 GSM1023069 ENCFF672VVX

GSM1156933 GSM1158465 GSM1517601 GSM1695858 GSM1023070 ENCFF256APB

GSM1156934 GSM1158466 GSM1519560 GSM1695859 GSM1023071 ENCFF299BIL

GSM1156935 GSM1158467 GSM1519561 GSM1695860 GSM1023072 ENCFF036GDL

GSM1156936 GSM1158468 GSM1519562 GSM1695861 GSM1023073 S004BT

GSM1156937 GSM1158469 GSM1519563 GSM1695862 GSM1023074 S002S3

GSM1156938 GSM1158470 GSM1519564 GSM1695863 GSM1023075 C005PS

GSM1156939 GSM1158471 GSM1519565 GSM1695864 GSM1023076 ENCFF690QPA

GSM1156940 GSM1158472 GSM1519566 GSM1695865 GSM1023077 ENCFF773MOU

GSM1156941 GSM1158473 GSM1519567 GSM1695866 GSM1023078
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[37] J. Carcel-Trullols, A. D. Kovács, and D. A. Pearce. Cell biology of the ncl proteins: What

they do and don’t do. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease,

1852(10, Part B):2242 – 2255, 2015.

[38] R. Chang, R. Shoemaker, and W. Wang. Systematic search for recipes to generate induced

pluripotent stem cells. PLOS Computational Biology, 7(12):1–13, 12 2011.

[39] S. Chattopadhyay, M. Ito, J. D. Cooper, A. I. Brooks, T. M. Curran, J. M. Powers, and D. A.

Pearce. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative

disorder batten disease. Human molecular genetics, 11 12:1421–31, 2002.

[40] L. Y. Chee and A. Cumming. Polymorphisms in the cholinergic receptors muscarinic

(chrm2 and chrm3) genes and alzheimer’s disease. Avicenna J Med Biotechnol, 10(3):196–

199, 2018.

[41] L. Chen, B. Ge, F. P. Casale, L. Vasquez, T. Kwan, D. Garrido-Martı́n, S. Watt, Y. Yan,

K. Kundu, S. Ecker, A. Datta, D. Richardson, F. Burden, D. Mead, A. L. Mann, J. M. Fer-

nandez, S. Rowlston, S. P. Wilder, S. Farrow, X. Shao, J. J. Lambourne, A. Redensek, C. A.

Albers, V. Amstislavskiy, S. Ashford, K. Berentsen, L. Bomba, G. Bourque, D. Bujold,

S. Busche, M. Caron, S.-H. Chen, W. Cheung, O. Delaneau, E. T. Dermitzakis, H. Elding,

I. Colgiu, F. O. Bagger, P. Flicek, E. Habibi, V. Iotchkova, E. Janssen-Megens, B. Kim,

H. Lehrach, E. Lowy, A. Mandoli, F. Matarese, M. T. Maurano, J. A. Morris, V. Pancaldi,

F. Pourfarzad, K. Rehnstrom, A. Rendon, T. Risch, N. Sharifi, M.-M. Simon, M. Sultan,

A. Valencia, K. Walter, S.-Y. Wang, M. Frontini, S. E. Antonarakis, L. Clarke, M.-L. Yaspo,

187



REFERENCES

S. Beck, R. Guigo, D. Rico, J. H. A. Martens, W. H. Ouwehand, T. W. Kuijpers, D. S. Paul,

H. G. Stunnenberg, O. Stegle, K. Downes, T. Pastinen, and N. Soranzo. Genetic drivers

of epigenetic and transcriptional variation in human immune cells. Cell, 167(5):1398–

1414.e24, Nov 2016.

[42] T. Chen and S. Y. R. Dent. Chromatin modifiers and remodellers: regulators of cellular

differentiation. Nat Rev Genet, 15(2):93–106, Feb 2014.

[43] Y.-a. Chen, M. Lemire, S. Choufani, D. T. Butcher, D. Grafodatskaya, B. W. Zanke,

S. Gallinger, T. J. Hudson, and R. Weksberg. Discovery of cross-reactive probes and

polymorphic cpgs in the illumina infinium humanmethylation450 microarray. Epigenet-

ics, 8(2):203–209, Feb 2013.

[44] X. Cheng. Structural and functional coordination of dna and histone methylation. Cold

Spring Harb Perspect Biol, 6(8):10.1101/cshperspect.a018747 a018747, Aug 2014.

[45] N.-Y. Chia, Y.-S. Chan, B. Feng, X. Lu, Y. L. Orlov, D. Moreau, P. Kumar, L. Yang, J. Jiang,

M.-S. Lau, M. Huss, B.-S. Soh, P. Kraus, P. Li, T. Lufkin, B. Lim, N. D. Clarke, F. Bard,

and H.-H. Ng. A genome-wide rnai screen reveals determinants of human embryonic stem

cell identity. Nature, 468:316 EP –, Oct 2010.

[46] J. Choi, M. L. Costa, C. S. Mermelstein, C. Chagas, S. Holtzer, and H. Holtzer. Myod

converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented

epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc

Natl Acad Sci U S A, 87(20):7988–7992, 1990.

[47] J. Chou, S. Provot, and Z. Werb. Gata3 in development and cancer differentiation: cells

gata have it! J Cell Physiol, 222(1):42–49, Jan 2010.

[48] Y. S. Chun, K. Byun, and B. Lee. Induced pluripotent stem cells and personalized medicine:

current progress and future perspectives. Anat Cell Biol, 44(4):245–255, Dec 2011.

[49] H. Clevers. Modeling development and disease with organoids. Cell, 165(7):1586–1597,

Jun 2016.

[50] E. Clough and T. Barrett. The gene expression omnibus database. Methods Mol Biol,

1418:93–110, 2016.

188



REFERENCES

[51] L. Collado-Torres, A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D. Hansen, A. E.

Jaffe, B. Langmead, and J. T. Leek. Reproducible rna-seq analysis using recount2. Nature

Biotechnology, 35:319 EP –, Apr 2017.

[52] E. P. Consortium. The encode (encyclopedia of dna elements) project. Science,

306(5696):636–640, 2004.

[53] R. E. Consortium, A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen, A. Heravi-

Moussavi, P. Kheradpour, Z. Zhang, J. Wang, M. J. Ziller, V. Amin, J. W. Whitaker, M. D.

Schultz, L. D. Ward, A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton, Y.-C. Wu, A. R.

Pfenning, X. Wang, M. Claussnitzer, Y. Liu, C. Coarfa, R. A. Harris, N. Shoresh, C. B.

Epstein, E. Gjoneska, D. Leung, W. Xie, R. D. Hawkins, R. Lister, C. Hong, P. Gascard,

A. J. Mungall, R. Moore, E. Chuah, A. Tam, T. K. Canfield, R. S. Hansen, R. Kaul, P. J.

Sabo, M. S. Bansal, A. Carles, J. R. Dixon, K.-H. Farh, S. Feizi, R. Karlic, A.-R. Kim,

A. Kulkarni, D. Li, R. Lowdon, G. Elliott, T. R. Mercer, S. J. Neph, V. Onuchic, P. Polak,

N. Rajagopal, P. Ray, R. C. Sallari, K. T. Siebenthall, N. A. Sinnott-Armstrong, M. Stevens,

R. E. Thurman, J. Wu, B. Zhang, X. Zhou, A. E. Beaudet, L. A. Boyer, P. L. De Jager, P. J.

Farnham, S. J. Fisher, D. Haussler, S. J. M. Jones, W. Li, M. A. Marra, M. T. McManus,

S. Sunyaev, J. A. Thomson, T. D. Tlsty, L.-H. Tsai, W. Wang, R. A. Waterland, M. Q.

Zhang, L. H. Chadwick, B. E. Bernstein, J. F. Costello, J. R. Ecker, M. Hirst, A. Meissner,

A. Milosavljevic, B. Ren, J. A. Stamatoyannopoulos, T. Wang, and M. Kellis. Integrative

analysis of 111 reference human epigenomes. Nature, 518(7539):317–330, Feb 2015.

[54] T. E. P. Consortium. A user’s guide to the encyclopedia of dna elements (encode). PLOS

Biology, 9(4):1–21, 04 2011.

[55] T. G. O. Consortium. The gene ontology resource: 20 years and still going strong. Nucleic

Acids Res, 47(D1):D330–D338, Jan 2019.

[56] E. Corder, A. Saunders, W. Strittmatter, D. Schmechel, P. Gaskell, G. Small, A. Roses,

J. Haines, and M. Pericak-Vance. Gene dose of apolipoprotein e type 4 allele and the risk

of alzheimer’s disease in late onset families. Science, 261(5123):921–923, 1993.

[57] S. L. Cotman and J. F. Staropoli. The juvenile batten disease protein, cln3, and its role in

189



REFERENCES

regulating anterograde and retrograde post-golgi trafficking. Clin Lipidol, 7(1):79–91, Feb

2012.

[58] I. Crespo, T. M. Perumal, W. Jurkowski, and A. del Sol. Detecting cellular reprogramming

determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol,

7:140–140, 2013.

[59] A. C. D’Alessio, Z. P. Fan, K. J. Wert, P. Baranov, M. A. Cohen, J. S. Saini, E. Cohick,

C. Charniga, D. Dadon, N. M. Hannett, M. J. Young, S. Temple, R. Jaenisch, T. I. Lee, and

R. A. Young. A systematic approach to identify candidate transcription factors that control

cell identity. Stem Cell Reports, 5(5):763–775, Nov 2015.

[60] F. P. Davis and S. R. Eddy. Transcription factors that convert adult cell identity are differ-

entially polycomb repressed. PLOS ONE, 8(5):1–8, 05 2013.

[61] P. L. De Jager, G. Srivastava, K. Lunnon, J. Burgess, L. C. Schalkwyk, L. Yu, M. L. Eaton,

B. T. Keenan, J. Ernst, C. McCabe, A. Tang, T. Raj, J. Replogle, W. Brodeur, S. Gabriel,

H. S. Chai, C. Younkin, S. G. Younkin, F. Zou, M. Szyf, C. B. Epstein, J. A. Schneider,

B. E. Bernstein, A. Meissner, N. Ertekin-Taner, L. B. Chibnik, M. Kellis, J. Mill, and D. A.

Bennett. Alzheimer’s disease: early alterations in brain dna methylation at ank1, bin1,

rhbdf2 and other loci. Nature Neuroscience, 17:1156 EP –, Aug 2014.

[62] A. del Sol, R. Balling, L. Hood, and D. Galas. Diseases as network perturbations. Current

Opinion in Biotechnology, 21(4):566 – 571, 2010.

[63] D. L. V. den Hove, K. Kompotis, R. Lardenoije, G. Kenis, J. Mill, H. W. Steinbusch, K.-

P. Lesch, C. P. Fitzsimons, B. D. Strooper, and B. P. Rutten. Epigenetically regulated

micrornas in alzheimer’s disease. Neurobiology of Aging, 35(4):731 – 745, 2014.

[64] P. Dhingra, A. Martinez-Fundichely, A. Berger, F. W. Huang, A. N. Forbes, E. M. Liu,

D. Liu, A. Sboner, P. Tamayo, D. S. Rickman, M. A. Rubin, and E. Khurana. Identifi-

cation of novel prostate cancer drivers using regnetdriver: a framework for integration of

genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biology,

18(1):141, Jul 2017.

190



REFERENCES

[65] G. Di Fede, M. Catania, E. Maderna, R. Ghidoni, L. Benussi, E. Tonoli, G. Giaccone,

F. Moda, A. Paterlini, I. Campagnani, S. Sorrentino, L. Colombo, A. Kubis, E. Bistaffa,

B. Ghetti, and F. Tagliavini. Molecular subtypes of alzheimer’s disease. Sci Rep, 8(1):3269–

3269, Feb 2018.

[66] C. Dimitrakopoulos, S. K. Hindupur, L. Häfliger, J. Behr, H. Montazeri, M. N. Hall, and
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I. Giegling, A. M. Goate, J. S. K. Kauwe, C. Cruchaga, P. Nowotny, J. C. Morris, K. Mayo,

K. Sleegers, K. Bettens, S. Engelborghs, P. P. De Deyn, C. Van Broeckhoven, G. Livingston,

N. J. Bass, H. Gurling, A. McQuillin, R. Gwilliam, P. Deloukas, A. Al-Chalabi, C. E.

Shaw, M. Tsolaki, A. B. Singleton, R. Guerreiro, T. W. Mühleisen, M. M. Nöthen, S. Moe-
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[307] D. Zádori, P. Klivényi, I. Plangár, J. Toldi, and L. Vécsei. Endogenous neuroprotection in

chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol

Med, 15(4):701–717, Apr 2011.

[308] N. Zaidan and K. Ottersbach. The multi-faceted role of gata3 in developmental

haematopoiesis. Open Biology, 8(11):180152, 2018.

[309] Q. Zhang, C. Ma, M. Gearing, P. G. Wang, L.-S. Chin, and L. Li. Integrated proteomics

and network analysis identifies protein hubs and network alterations in alzheimer’s disease.

Acta Neuropathol Commun, 6(1):19–19, Mar 2018.

[310] Y. Zhang, C. Pak, Y. Han, H. Ahlenius, Z. Zhang, S. Chanda, S. Marro, C. Patzke, C. Acuna,

J. Covy, W. Xu, N. Yang, T. Danko, L. Chen, M. Wernig, and T. C. Sudhof. Rapid single-

step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5):785

– 798, 2013.

[311] H. Zhao, Z. Sun, J. Wang, H. Huang, J.-P. Kocher, and L. Wang. Crossmap: a versatile tool

for coordinate conversion between genome assemblies. Bioinformatics, 30(7):1006–1007,

2014.

[312] Y. Zhao, X. Yin, H. Qin, F. Zhu, H. Liu, W. Yang, Q. Zhang, C. Xiang, P. Hou, Z. Song,

Y. Liu, J. Yong, P. Zhang, J. Cai, M. Liu, H. Li, Y. Li, X. Qu, K. Cui, W. Zhang, T. Xiang,

Y. Wu, Y. Zhao, C. Liu, C. Yu, K. Yuan, J. Lou, M. Ding, and H. Deng. Two supporting

factors greatly improve the efficiency of human ipsc generation. Cell Stem Cell, 3(5):475 –

479, 2008.

[313] A. Zia and A. M. Moses. Towards a theoretical understanding of false positives in dna motif

finding. BMC Bioinformatics, 13:151–151, Jun 2012.

219



REFERENCES

[314] S. Zickenrott, V. E. Angarica, B. B. Upadhyaya, and A. del Sol. Prediction of disease-

gene-drug relationships following a differential network analysis. Cell Death Dis, 7:e2040,

2016.

220


	Declaration
	Acknowledgements
	Preface
	Abstract
	General Introduction
	In vitro applications of computational disease modeling
	Reconstruction of integrative cell-type-specific network models
	Network-based modeling in Alzheimer’s disease 
	Thesis outline

	Modeling of Cellular Systems
	Abstract
	Introduction to Systems Biology
	Computational Modeling of Cellular Systems
	Gene Regulatory Networks

	Systems Biology of Stem Cells
	The Generation of iPSCs
	Transdifferentiation

	Modeling Cellular Phenotypes and Conversions
	Computational Disease Modeling
	Differential Network Analysis and Disease Models


	INTREGNET: More efficient cellular conversions for disease models
	Abstract
	Introduction
	Materials and methods
	Identification of core TFs
	Reconstruction of cell-type-specific core TRNs
	Validation of reconstructed TRNs
	Inference of Boolean logic rules
	Prediction of efficient combinations of instructive factors
	Validation of cellular conversion algorithm
	Nomenclature of TFs

	Results
	Reconstruction of cell-type-specific core TRNs
	Validation of the reconstructed core TRNs
	Prediction of instructive factors for cellular conversions
	INTREGNET increases the efficiency of iPSC generation

	Discussion

	Identification of causal genes for Alzheimer’s disease
	Abstract
	Introduction
	Materials and methods
	Post-mortem tissue samples
	SNP identification and annotation
	Differential methylation (5mC) analysis
	Differential gene expression analysis
	Gene-gene interaction network
	Network-based integration analysis
	Drug enrichment analysis

	Results
	Prediction of AD-associated genes by network diffusion
	Subnetwork of top-ranked AD-associated genes
	WT1 as a mediator gene
	Drug targets in mediator gene subnetwork

	Discussion

	GRN-based analysis of sphingolipid dysfunction in AD
	Abstract
	Introduction
	Materials and methods
	Identification of sphingolipid pathway associated genes
	Post-mortem tissue samples
	Differential (hydroxy)methylation analysis
	Differential gene expression analysis
	Gene-gene interaction network
	In silico network simulation analysis for phenotypic reversion

	Results
	Transcriptome analysis of sphingolipid genes
	The SL pathway is significantly dysregulated in AD
	Differentially methylated genes are shared across different methylation levels
	Gene regulatory network analysis
	In silico network perturbation analysis

	Discussion

	Network-based approach for modeling Batten disease
	Abstract
	Introduction
	Materials and methods
	Insertion of CLN3Q352X mutation in iPSCs
	Generation and culture of human cerebral organoids
	Isolation of RNA samples
	RNA-Seq data processing and analysis
	Gene Regulatory Network (GRN) reconstruction
	Identification of network perturbation candidates
	In silico network simulation analysis for phenotype reversion
	Gene and pathway enrichment analysis

	Results
	Whole transcriptome analysis reveals impaired development in CLN3Q352X cerebral organoids
	Lysosome enzyme expression is altered in CLN3Q352X cerebral organoids and lipofuscin storage material is present
	In silico network perturbation analysis

	Discussion

	General Discussion
	Current challenges and future perspectives

	Valorization
	Summary
	Curriculum Vitae
	Appendix List of Abbreviations
	Appendix Scientific output
	Publications in peer-review journals
	Submissions in peer-review journals
	Manuscripts in preparation
	Oral presentations in scientific conferences, symposia and workshops

	Appendix Supplementary figures and tables
	References

