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Abstract—Multi-access Edge Computing (MEC) brings storage
and computational capabilities at the edge of the network
into so-called Edge Data Centers (EDCs) to better low-latency
applications. To this end, effective placement of EDCs in urban
environments is key for proper load balance and to minimize
outages. In this paper, we specifically tackle this problem. To
fully understand how the computational demand of EDCs varies,
it is fundamental to analyze the complex dynamics of cities. Our
work takes into account the mobility of citizens and their spatial
patterns to estimate the optimal placement of MEC EDCs in
urban environments in order to minimize outages. To this end, we
propose and compare two heuristics. In particular, we present the
mobility-aware deployment algorithm (MDA) that outperforms
approaches that do not consider citizens mobility. Simulations are
conducted in Luxembourg City by extending the CrowdSenSim
simulator and show that efficient EDCs placement significantly
reduces outages.

I. INTRODUCTION

The fifth generation (5G) mobile networks relies on

Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) to support next-generation services. Ra-

dio access and core functions are virtualized and executed in

edge data centers (EDCs) according to the Multi-access Edge

Computing (MEC) principle. MEC was standardized by the

European Telecommunications Standards Institute (ETSI) [1]

and brings applications and computing services closer to the

end user, or citizen [2]. Thus, it finds applicability in scenarios

where locality and low-latency are essential [3]. MEC is

agnostic to the evolution of the mobile network itself and can

operate with LTE, 4G, or 5G mobile networks.

The edge, also known as MEC host, is a data center

or nano data center deployed in close proximity of base

stations, i.e., inside an operator-owned infrastructure. The edge

provides computing functionalities for applications and can

aggregate virtualized core and radio network functions of

the mobile network [3]. Offloading code execution to EDCs

allows resource-constrained mobile devices to prolong battery

lifetime [4] while enhancing and augmenting the performance

of mobile applications [5]. Emulation platforms for research

in the area have only started to appear recently [6] and little

attention has been paid to the problem of EDC deployment.

EDC deployment is particularly interesting in the context

of smart cities. To the best of our knowledge, only a vision

paper [7] has explored such area by assessing the feasibility of

leveraging three different infrastructures to deploy computing

capacity, i.e., cellular base stations (BSs), routers and street

lamps. The article analyzed the potential city coverage if

only a subset of these elements is upgraded to furnish EDC

capabilities. This study is an important step forward to solve

the problems of coverage, EDC selection, and user-to-EDC

assignment. However, it fails to capture the mobility dynam-

ics of a city fully. To jointly characterize urban dynamics

(temporal behaviors and spatial patterns of citizens) and the

traffic dynamics is crucial to estimate computational demands

and, in turns, to devise effective EDC deployments. A recent

study unveils a consistent influence of urbanization level in the

average traffic volume per-user. In addition, different mobile

services exhibit different temporal behaviors, although spatial

patterns remain uniform [8].

In this paper, we bring the research in edge computing one

step forward. Specifically, we tackle the problem of EDCs

deployment in a smart city context by considering two factors.

First, we consider cellular connectivity for network access and

assume that EDCs should only be deployed at current Base

Stations (BSs) sites to re-use already deployed infrastructure

(e.g., power supply, cabinets on roofs). Thus, our solution is

capital-expenditure free for mobile network operators. Second,

we focus on human mobility. Within a city, complex dynamics

regulate the inter-dependency of land use and citizens move-

ments [9], i.e., the spatial distribution of citizens and locations

they visit that determine mobility patterns. Similarly to [10],

we make use of crowdsensed data to infer and predict human

mobility with the goal of determining estimates of computing

demand and the optimal EDC deployment that minimizes

outages. Specifically, we leverage Google Popular Times to

estimate citizens mobility that reflects daily urban patterns. For

these reasons, we focus on citizens mobility during a day and

consider LTE traffic generated from mobile users. Fig. 1 shows

the heatmaps of the potential computing demand of the BSs in

Luxembourg City according to the citizens mobility based on

Google Popular Times1 in a weekday. BSs under heavy loads

are around the railway stations when citizens commute (i.e.,

H: 8:00 and H: 17:00) in the city center at lunch and dinner

times, in the university area during the day. By considering

different hours of a day, loads of BSs vary and, in turns, the

potential computational demand at EDCs, which motivates our

research in EDC deployment.

1https://support.google.com/business/answer/2721884



(a) H: 8:00 (b) H: 12:00 (c) H: 15:00 (d) H: 17:00 (e) H: 20:00

Fig. 1. Traffic generation in Luxembourg City at different hours of a working day

II. RELATED WORKS

MEC allows resource-constrained mobile devices to offload

computational workload to nearby EDCs. How to enable flex-

ible MEC platform service consumption at different localities

is studied in [11]. The paper presents a stochastic model to

determine the total processing time. Through control plane

traffic, the solution allows for signaling between the MEC

entities so that applications instances always remain within

a certain zone with tolerable latency. In [12], the authors

propose a resource scheduling management and use machine

learning to predict offloading costs, focusing on a protest

crowd incident case study. Paradrop provides computing and

storage capabilities and allows third parties to develop new

types of services [13]. It includes a flexible hosting substrate

in the WiFi APs that supports multi-tenancy, a cloud-based

backend, and an API for third-party developers. The integra-

tion of lightweight virtualization (LV) with edge networks is

discussed in [14]. The authors show how LV solutions can

bring flexibility and highlight the benefits for three different

use cases, i.e., autonomous vehicles, smart city, and augmented

reality.

The human-driven edge computing (HEC) is a paradigm

that leverages the mutual benefits of MEC and mobile crowd-

sensing (MCS) [15]. The authors show the advantages of this

approach by integrating the MEC platform Elijah2 and the

MCS platform ParticipAct Living Lab [16]. Some approaches

propose a resource allocation model at the edge [17] and

a multi-cloudlet infrastructure in the context of smart city

scenarios [7]. The closest work to ours is [18], where the

authors present an optimal cloudlet placement and allocation

of users to cloudlets in Wireless Metropolitan Area Networks

(WMANs). Although this work assumes a paramount im-

portance for cloudlets placement, it does not capture user

movements within the network and user scalability in large

urban environments, which are fundamental factors in nowa-

days smart cities characterized by the increasing mobility of

citizens that influence the workload and computational demand

of edge resources. This paper aims to fill this gap as our

focus is to quantify the importance of user mobility at the

city scale to estimate the computational demand and deploy

EDC accordingly.

III. MODELS FOR EDGE DATA CENTER DEPLOYMENT AND

URBAN ENVIRONMENTS’ DYNAMICS

This Section formulates the problem of EDC distribution

over urban environments and presents the system model that

2http://elijah. cs.cmu.edu/

captures MEC dynamics (both at computing and networking

level) and citizens mobility.

A. Problem Formulation

Let B = {b1, ..., bNB
} be the set of BSs, each characterized

by latitude and longitude that define the location of bi in the

city and E = {e1, ..., eNE
} the set of EDCs to be deployed,

where NE < NB and E ⊂ B. EDCs are deployed at BS sites

to re-use already deployed infrastructure (e.g., power supply,

cabinets on roofs). This provides full spatial coverage and is

more cost-effective than creating new EDC sites [7]. Similarly

to [19], we consider as Key Performance Indicator (KPI) the

latency outage probability of the system O, defined as:

O = Pr{L ≥ Dmax}, (1)

where L is the latency the user observes and Dmax is the

maximum acceptable delay bound defined in the form of SLA

agreement for the current application. While in [19] the delay

outage probability indicates the one-way latency, we need for

the latency outage probability of the system to measure the

Round-Trip-Time (RTT) to capture the fact that if a user does

not receive a reply from the EDC, the task is not accomplished

and O increases. This can happen for two reasons:

• the EDC rejects the incoming task because it is over-

loaded;

• the user does not receive the reply in due time because

of either processing or networking delays.

Given a fixed number of EDCs Ne to deploy, our problem

consists in finding a match with the location of existing BSs to

minimize the average latency outage probability of the entire

system (e.g., to maximize the computational capacity of the

system):

min
E

O. (2)

where E is the set of BSs that are chosen to place the EDCs.

B. MEC Model

To assign EDCs to BSs, the city environment is divided into

a set of R = {r1, ..., rl} regions. The EDC of each region is

connected to all BSs within the region and responsible for

both applications and baseband processing (e.g., according to

the cloud-RAN paradigm and the chosen functional split [20]).

Each EDC has a fixed number of Ns servers with an equal

service rate µ. When the service rate is not sufficient to fulfill

a task in due time, it is rejected by the system. We assume

no service migration across different EDCs when the users

move within the same region. Otherwise, the service is simply

detached from a EDC and attached to another according to,

e.g., a micro-services stateless paradigm. Finally, we assume

the mobile users are always connected to the closest BS.



Users generate heterogeneous application-dependent types

of tasks [18]. The task arrival is modeled with a Poisson

process with arrival rate λi for each user ui.

To access the EDC processing, a user sends a message

which is acknowledged if EDC resources permit its execution.

The latency L of the request/reply exchange includes both

network and processing delays [11]. The network delay Dp

consists of different components, such as transmission, propa-

gation, queuing, and routing. The processing delay Dc depends

on application processing and packet processing at the network

level. They will be discussed in Sec. V-A. For our purposes,

L is given by:

Li = Di,k
p +Dk

c +Dk,i
p , (3)

where Di,k
p is the network delay from user i to EDC k, Dk

c is

the processing delay at EDC k, and Dk,i
p is the network delay

from EDC k to user i.

Each EDC is modeled as a M/M/Ns queue with Ns

servers. The processing delay, which represents the task ex-

ecution time in a EDC, is calculated as follows [18]:

Dk
c = fQ



φk ·
∑

ui∈U|

λi



+ 1/µ, (4)

where φk is the fraction of accepted tasks in the EDC, and

fQ(λ) determines the average queueing time. φk is given by:

φk =

{

1, if λmax > λ(k);
λmax

λ(k) , otherwise.
(5)

fQ(λ) takes in input the task arrival rate λ(k) =
∑

ui
λi at

EDC ek and returns the average queuing time:

fQ(λ) =
C
(

Ns,
λ
µ

)

Nsµ− λ
. (6)

C is given by the Erlang’s Formula [21]:

C(Ns, ρ) =

(

(Nsρ)
Ns

Ns!

)(

1
1−ρ

)

∑Ns−1
k=0

(Nsρ)k

k! +
(

(Nsρ)Ns

Ns!

)(

1
1−ρ

) , (7)

where ρ is the ratio of arrival rate to service rate (λ/µ).

C. Citizens Mobility Model

Users mobility defines spatial patterns of citizens move-

ments and their social interactions, influencing the demand

for computing resources. In this work, to characterize urban

mobility, we exploit the popularity of Local Businesses (LB)

taken from Google Popular Times, given in per-hour values

normalized between the weekly maximum and minimum num-

ber of customers of each LB. Note that the real number of

customers remains unknown. Hence, one of our contributions

explained hereafter, is a new approach to estimate the number

of customers from the coarse measurements available. The

popularity metric is then used to approximate users temporal

distribution among different LBs.

For each type of LB t, we consider a random value between

0 and N t
max, where N t

max is the maximum value of customers.

This value and the average waiting time of staying in a LB

permits to compute the number of people who remained at

that LB. The aggregation of different LBs in a region defines

how crowded a district is. In summary:

• For each local business L of typology t we draw the

maximum number of people N t
L visiting that specific LB

from the uniform distribution [0;N t
max].

• The time-dependent demand for a certain L is obtained

by combining the number of visits with the popular times:

DL,h = Ph,L ·N t
L, (8)

where DL,h is the number of users visiting location L
during time interval h and Ph,L is the popularity index

according to our data.

• Finally, for a certain geographical area d, the overall

demand is obtained as the combination of all LB located

in that specific area as:

Ad,h =
∑

l∈Ld

Dl,h, (9)

where Ad,h is the demand of a certain geographical area

d at time h and Ld is the sub set of LB located in d.

IV. EDCS DEPLOYMENT POLICIES

The placement policy and BSs assignment to EDCs are

keys for effective EDCs deployment. This work proposes

and compares two placement policies. The first one is called

distributed deployment algorithm (DDA) and deploys EDCs

so that they are the centroids of a cluster composed of a set

of base stations that all share a similar distance. The second

policy, called mobility-aware deployment algorithm (MDA),

considers the mobility of citizens and their social interactions

in urban environments to calculate the expected computational

demand and distribute edge resources by exploiting them as

weights. In the following, we explain in details both policies.

A. Distributed Deployment Algorithm (DDA)

The Distributed Deployment Algorithm (DDA) distributes

EDCs according to the k-medoids clustering algorithm. DDA

places EDCs and assigns BSs to them by exploiting the

k-medoids clustering algorithm, which is similar to the more

famous k-means. While in the k-means algorithm the centers

of clusters are not necessarily input data points, the k-medoids

method chooses the centroids between the input data. In other

words, it clusters BSs and chooses EDCs as centers of the

clusters between the BSs within a cluster, which fits our pur-

pose perfectly. More specifically, DDA assigns EDCs among

BSs by computing a cost based on the distances between BSs

candidates as EDCs and all other BSs assigned to it. The main

shortcomings of this approach consist in some under-utilized

EDCs and others that suffer of big delays due to overloads

of computational demand leading to high values of outage

probability, as discussed more in details in V-B. To overcome

these issues, two possible directions can be investigated. First,

to propose a more effective placement of EDCs among the

BSs, which is discussed in IV-B. Second, to allocate servers

among EDCs proportionally with the computational demand,

which is presented in IV-C.



Algorithm 1 MDA

1: Input: B, R, n ⊲ BSs, requests at BSs, number of EDCs
2: Output: E, C ⊲ Set of BSs chosen as EDCs, Set of BSs-EDCs

connections
3: AVG_reqs = sum(R)/n ⊲ Average num. of requests per EDC
4: E ← Random(B,n) ⊲ Randomly select n BSs as EDC
5: Cost← getCost(E,AV G_reqs,B,R) ⊲ Compute cost
6: while Swaped do
7: Swaped← False
8: for b ∈ B do
9: for i = 1→ n do

10: E_dup = E ⊲ Copy of E
11: E_dupi ← b
12: Cost_dup = getCost(E_dup,AV G_reqs,B,R)
13: if Cost_dup < Cost then
14: E ← E_dup
15: Swaped← True
16: end if
17: end for
18: end for
19: end while
20: procedure GETCOST(E,AV G_reqs,B,R)
21: R_tot = ∅
22: Cost = 0
23: for b ∈ B do
24: e = ClosestEDC(b, E) ⊲ Find EDC in E at minimum

distance from b
25: Cb ← e ⊲ Connect BS b to the nearest EDC e
26: R_tote ← R_tote +Rb ⊲ Sum requests at EDC
27: end for
28: for e ∈ E do
29: Cost← Cost+ |R_tote−AVG_reqs| ⊲ Compute cost
30: end for
31: return Cost
32: end procedure

B. Mobility-aware Deployment Algorithm (MDA)

MDA aims to decrease the overall outage probability of

the system by considering where the computational demand

is higher according to the spatial patterns of citizens. In other

words, the MDA solution is based on the idea to consider the

complex dynamics of a city (e.g., user mobility and social

interactions) to propose a more effective placement of edge

resources. As DDA, MDA places EDCs among BSs by exploit-

ing the k-medoids algorithm. Differently from DDA, it assigns

EDCs among BSs by computing a cost based on the number

of requests received by BSs and corresponding computational

demand for EDCs. MDA is based on an iterative approach

(see the MDA pseudocode in Algo 1) that computes how far

the total number of requests for each EDC is from the average

number of requested each EDC should have. Specifically, note

that line 29 calculates the previously explained cost.

C. Allocation of Servers among EDCs

Another fundamental aspect to investigate is how to choose

the number of servers to allocate among EDCs. We focus

on this issue by formulating the following problem: given a

certain fixed total amount of servers, how can we allocate

them among EDCs? To this end, we compare a fixed number

of servers (FNS) approach and a proportional number of server

(PNS) approach. The former simply allocates the same number

of servers for each EDC. The latter distributes the total number

of servers proportionally with the computational demand of

each EDC (taking into account its temporal evolution).

V. PERFORMANCE EVALUATION

A. Simulation Set-up

Next, we expose assumptions, parameters related to the

computational demand and the urban scenario, which includes

the city layout and user mobility (summarized in Table I).

TABLE I
SETUP PARAMETERS

SYMBOL VALUE DESCRIPTION

Nu 100 000 Number of users
Nb 141 Number of BSs
Ne 8 Number of edge data centers
Nl 1083 Number of total LBs
Nt 13 Number of LBs typologies
Ns 10 Number of servers in each EDC
λi 0 < λi < 2.99 Task arrival rate for user i
µ 100 Server service rate

MEC set-up: The 141 considered BSs represent the real

infrastructure of Luxembourg City of BSs for public mobile

communication network over 50 W3, which are imported as

a layer on a map to extract their coordinates (latitude and

longitude)4. Each user generates traffic with an arrival rate of

λi set in the range [0 − 2.99] [18]. The service rate of each

server is µ = 100.

City layout and user mobility: To simulate user mobility in

realistic urban environments, we extend CrowdSenSim [22]

originally developed for mobile crowdsensing [23]. Specifi-

cally, we consider a street network graph based on Open Street

Maps and augment its precision with an algorithm [24] to

determine user trajectories accurately. We operate in Luxem-

bourg City and consider 1 083 LBs belonging to 13 different

categories (e.g., restaurants, pubs, public offices, etc.) from

Google Popular Times. 100 000 pedestrian walk on the city

street network. They are distributed over the city according

to the mobility weighted through the popularity of local

businesses for a simulation period of 24 hours of a working

day given by the average of days between Monday and Friday.

B. Simulation Results

Fig. 2 presents the deployment of 8 EDCs with DDA

(§ IV-A) and MDA (§ IV-B) approaches in Luxembourg

City. Circles and stars represent BSs and EDCs respectively.

BSs are assigned to an EDC of the same color. This result

unveils that considering the mobility of citizens leads to a

significantly different EDC deployment. On the one hand,

DDA (see Fig. 2(a)) deploys EDCs so that all the controlled

BSs experience a similar distance. On the other side, the

MDA approach deploys EDCs among BSs that experience

higher computational demands (see Fig. 2(a)). Specifically,

with MDA most of the EDCs tend to be deployed closer to

3https://data.public.lu/fr/datasets/cadastre-gsm/
4https://map.geoportail.lu/



(a) DDA

(b) MDA

Fig. 2. Distributed (DDA) and Mobility-aware (MDA) Deployment Algo-
rithms

the city center and two of them in the north-eastern district

of the city (Kirchberg area), which are the most important

working and business districts of Luxembourg City and are

very crowded during working days, especially at lunchtimes.

Fig. 3 shows the per-hour outage probability in a working

day for the proposed approaches with a fixed number of

servers per EDC (Ns = 10) and varying the number of EDCs.

Fig. 3(a) illustrates the outage probability for the DDA ap-

proach. MDA clearly outperforms DDA, as shown in Fig. 3(b).

Interestingly, the results show that the variation of the number

of EDCs shows a different behavior of the two approaches. By

increasing the number of EDCs in the city makes the outage

probability of decreasing proportionally for DDA. This is not

true in MDA as having 9 or 10 EDCs makes little difference.

We now fix the number of deployed EDCs in the city

(Ne = 8) and investigate in Fig. 4 the per-hour outage proba-

bility by varying the number of servers for each EDC. Fig. 4(a)

illustrates the DDA approach. The increase of the number

of servers per EDC does not decrease the outage probability

as it does the deployment of additional EDCs (see result

discussed in Fig. 3(a)). With a fixed number of EDCs, MDA

still outperforms DDA, as Fig. 4(b) shows.

We now analyze the impact of server allocation in the EDCs

(see Subsection IV-C). Fig. 5 compares DDA and MDA with

the two allocation policies FNS and PNS. The number of

EDCs is set to 8 and the number of servers per EDC is set

to 10 for FNS. Fig. 5(a) compares FNS and PNS for DDA.

As expected, PNS outperforms FNS for most of the time,

especially during busy hours. Surprisingly, the PNS approach

at 8:00 and 18:00 performs worse than PNS. The reason is

that few servers are assigned to EDCs with low computational

demand and it leads to outage when other EDCs around the

city do not have requests to satisfy. Thus, to reach a low

level of outage probability without wasting resources, it is

fundamental to plan an effective deployment of EDCs around

the city before planning how to set the number of servers

per EDC. To this end, Fig. 5(b) shows that under the MDA

approach, i) the outage probability is significantly lower than

any DDA strategy and, ii) that the previous insight is not any

longer valid as with MDA, PNS is always lower or equal FNS.

VI. CONCLUDING REMARKS

This paper tackles the problem of EDCs deployment in

urban environments. By considering citizens mobility and their

social interactions, we show that overall performance can

improve. We model the computational demand and citizens

mobility and formulate a problem to minimize the outage

probability. Then, we propose two heuristic algorithms. The

first one (DDA) deploys EDCs on the sole basis of the spatial

distances EDCs-BSs, while the second (MDA) is aware of

citizens mobility and the expected computational demand. We

further consider two different approaches for server allocation

within EDCs. FNS deploys a fixed number of servers per EDC,

while PNS deploys servers proportionally to the computational

demand. The results show that the policy MDA with PNS

makes lower the outages, thereby proving that considering

citizens mobility for EDCs deployment in urban environments

is effective.
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