

Proactive Model for Handling Conflicts in Sensor Data Fusion Applied to Robotic Systems CS(

Problem statement	
Sensor fusion used in robotics systems and other IT systems to combine data coming from different sensors	
To reduce the uncertainty the information would have, existing solutions try to reduce the noise in the sensor, even the one that is caused by external factors	
Context of the system could be used to identify situations in which some sensors malfunction	
Using this knowledge, our system tries to circumvent failing or malfunctioning sensors and calculate estimates based on other sensors	
Related Work	
IMU enabled GPS ^[1]	
IMU enabled GPS ^[1] Rule-based Proactive engine developed at the University	
IMU enabled GPS ^[1] Rule-based Proactive engine developed at the University of Luxembourg ^[2]	
 IMU enabled GPS^[1] Rule-based Proactive engine developed at the University of Luxembourg^[2] Information fusion under conisderation of conflicting input signals^[3] A Rule-Based Approach for Self-Optimisation in Autonomic EHealth 	
 IMU enabled GPS^[1] Rule-based Proactive engine developed at the University of Luxembourg^[2] Information fusion under conisderation of conflicting input signals^[3] A Rule-Based Approach for Self-Optimisation in Autonomic EHealth 	
 IMU enabled GPS^[1] Rule-based Proactive engine developed at the University of Luxembourg^[2] Information fusion under conisderation of conflicting input signals^[3] A Rule-Based Approach for Self-Optimisation in Autonomic EHealth Systems^[4] 	Cha

Enhancement of final information and attribution of sensor confidence values to ease the decision making process of an external system

Gilles Neyens and Denis Zampunieris {gilles.neyens, denis.zampunieris}@uni.lu University of Luxembourg

14th International Conference on Software Technologies (ICSOFT 2019), 26-28 July 2019

Computer Science and Communications **Research Unit**

Scenario flow

Sensors	
\downarrow	
Classifiers	
•	
Context building scenarios	
↓	
Influencing scenarios	
Conflict-handling scenarios	
↓ ↓	
Transmitting scenarios	
↓ ↓	
Decision making	
Figure 3: Scenario flow	

References

[1] Bommi, R.M., Monika, V., Narmadha, R., Bhuvaneswari, K. and Aswini, L., 2019. IMU-Based Indoor Navigation System for GPS-Restricted Areas. In International Conference on Computer Networks and Communication Technologies (pp. 157-166). Springer, Singapore.

[2] D. Zampunieris, "Implementation of efficient proactive computing using lazy evaluation in a learning management system (extended version)," International Journal of Web-Based Learning and Teaching Technologies, vol. 3,

[3] Mönks, U., 2017. Information Fusion Under Consideration of Conflicting Input Signals. Heidelberg: Springer Berlin Heidelberg.

[4] Neyens, G.I.F. and Zampunieris, D., 2018, April. A Rule-Based Approach for Self-Optimisation in Autonomic EHealth Systems. In ARCS Workshop 2018; 31th International Conference on Architecture of Computing Systems (pp. 1-4). VDE.