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Abstract

In this paper we introduce and investigate a very
basic semantics for conditionals that can be used to
define a broad class of conditional reasoning sys-
tems. We show that it encompasses the most pop-
ular kinds of conditional reasoning developed in
logic-based KR. It turns out that the semantics we
propose is appropriate for a structural analysis of
those conditionals that do not satisfy the property
of Right Weakening. We show that it can be used
for the further development of an analysis of the
notion of relevance in conditional reasoning.

1 Introduction

The structure “if C, then D” is omnipresent in communica-
tion and cognition. It is generally considered as one of the
building blocks of reasoning and its formalisation in logics.
An if-then connection can be of many different types: “For
every triple of natural numbers x,y, z, if x > y and y > z,
then z > 27, “Birds usually fly”, “If you have had alcohol,
you should not drive”, “If you throw a stone against that win-
dow, then you will break it”, “If you go out in this weather,
you will probably get a cold”, “If I were you, I wouldn’t do
that”. From these examples it is clear that a conditional con-
nection between propositions can be associated with differ-
ent modalities. This includes necessity, presumption, deontic,
causal, probabilistic, and counterfactual.

In this paper we investigate a semantic characterisation of
a basic and general class of conditionals. For such a class to
be viewed as sufficiently general, it needs to include the exist-
ing popular classes of conditionals that have been proposed.
We use choice functions ranging over possible worlds, a very
general formal tool that has been used for characterising con-
ditional reasoning [Rott, 2001]. It turns out that the frame-
work we propose is also appropriate for modelling some con-
straints related to the problem of relevance. More specifically,
it provides the basis for a structural analysis of conditionals
that do not satisfy the property of Right Weakening.

The basic idea of a conditional is very simple: C' = D
is read as “if the condition C holds, then the effect D holds
with a certain modality”. An important question in the area
of Knowledge Representation (and the related field of Philo-
sophical Logic) is the study of appropriate formalisations of

the different kinds of modality necessary for the characterisa-
tion of important reasoning behaviours.

In order to model conditional reasoning, there is usually a
focus on two main aspects that need to be formalised:

1. The existence (or non-existence) of a connection be-
tween a specific type of condition and a specific type
of effect (both represented by propositions).

2. The modality of such a connection (necessity, presump-
tion, probability, preference, .. .).

But there is also a third aspect that is frequently neglected
in this context:

3. The relevance of such a connection.

The importance of relevance in conditional reasoning has
not gone unnoticed [Delgrande, 2011]. However what ‘rele-
vance’ means in the context of conditional reasoning remains
vague. Before proceeding with the technical aspects of our
contribution, we first provide an intuitive sense of our use of
the term ‘relevance’ in the present context.

Most of the formalisations of conditional reasoning have
been built using a possible-worlds semantics, referring more
or less directly to classical modal operators. This approach
has made it possible to define logical systems accounting for
various kinds of non-classical reasoning in surprisingly effi-
cient ways. On the other hand, relying on possible worlds,
and consequently on closed logical theories, enforces some
properties (e.g. logical omniscience) that can be in conflict
with some modelling goals. One limit is that the possible-
worlds approach to the formalisation of conditionals (“if a
condition C holds, then an effect D holds with a certain
modality”) tries to account for the degree of (epistemic or fac-
tual) necessity which is associated with the truth of D given
the truth of C, but it does not account for whether the truth
of D given the truth of C has any relevance for the kind of rea-
soning we are considering. Examples from deontic or causal
reasoning can illustrate the point.

e “If you are involved in a car accident, you should remain
on the spot” is an acceptable norm, but “If you are involved in
a car accident, you should remain on the spot or paint yourself
in blue” is not as acceptable as the former.

e “If you turn the wheel of a moving car, the car will move
in a circle” is meaningful, while “If you turn the wheel of a
moving car, the car will move” is not really that meaningful.



e Similarly, “If you throw a stone against the window, it
will break” is meaningful, but “If you throw a stone against
the window, it will break or Ann will drink tea” is not.

For all these examples, if we use a possible-worlds seman-
tics to model the conditionals, the truth of the first conditional
implies the truth of the second one (see the following section).
But, even though this can be reasonable from a purely truth-
theoretical point of view, if we want to determine what our
obligations are in case of car accidents, or what the effects
of turning the car wheel are, or those of throwing a stone,
the second conditional in each example has to be considered
irrelevant, if not misleading.

The semantics we propose still uses possible worlds, but
allows us to define reasoning patterns that do not enforce the
kind of problematic derivations indicated above.

The paper is organised as follows. In Section 2 we inves-
tigate the problem more formally and propose a first seman-
tic construction. Section 3 shows how to take back popu-
lar properties of conditional reasoning, while Section 4 intro-
duces an even more basic form of conditional reasoning. In
Section 5 we investigate different forms of closures of condi-
tional bases. Related Work and Conclusions follow.

2 The Formal Framework

We use a simple conditional language, containing only condi-
tionals of the form C' = D without the possibility of nesting
the conditionals or combining them via propositional opera-
tors. This is in line with the so-called KLM approach [Kraus
et al., 1990] or the I/O logics [Makinson and van der Torre,
2000]. This choice of language provides for a framework that
combines simplicity and generality, and allows for extending
the work presented here to richer conditional languages. We
use a finitely generated propositional language £, with the
operators —, V, A, —, =, L having their usual meaning. Cap-
ital letters C, D, . .. will be used to refer to the propositions.
Cn indicates classical propositional consequence, with - be-
ing the corresponding consequence relation. WV will be used
to denote the set of valuations (possible worlds) generated by
L, while [C]yy is the set of valuations in W satisfying a for-
mula C' (we omit the subscript whenever the context allows
for it). V indicates a (canonical) formula characterising a set
of valuations V. W.lo.g., W could be a subset of the propo-
sitional valuations generated by £, and C'n and - the supra-
classical monotonic consequence operation and relation gen-
erated by W. Our language will be £, the conditional lan-
guage built on top of £: Lo, =4t {C = D | C,D € L}.

As indicated in Section 1 we define a possible-worlds se-
mantics, using choice functions as the constructions within
the framework. The essential information conveyed by a con-
ditional “If C, then D” is “if the condition C holds, then the
effect D holds (with a certain modality)”. Hence, the basic
construction of a conditional system will simply associate to
each condition the set of its effects.

Definition 1 An effect function is a function
Fioo2W — 2@,
A standard conditional interpretation is a pair
T= (Wa f +)'

T +-satisfies a conditional C = D (Z I C = D) if
thereisaV € fL([C]) s.t. V C [D].

This function associates with each condition (a proposi-
tional theory, that is, a set of valuations) a set of effects (a set
of propositional theories, that is, a set of sets of valuations).
For example, a set of conditionals {C' = D,C = E,F =
G} would be +-satisfied by an interpretation Z = (W, f4)
st. £+([C]) = {[D]. [E)}. £+ ([F]) = {[G]} and f..([H]) =
() forevery H s.t.tf (H=C)V (H=F).

This brings us to our first representation result. It is easy to
prove that the class of the standard conditional interpretations
can be used to characterise the set of conditionals closed un-
der two basic structural properties, Left Logical Equivalence
and Right Weakening:

FC=D, C=F
D=E

C=D, FD—E

LBy C=Rs

(RW)

Theorem 1 A set of conditionals C is closed under (LLE) and
(RW) iff there is a standard interpretation T = (W, f) s.t.
C={C=D|TILC= D}.

Sketch of proof. We omit the proof from right to left. From
left to right: let C be a set of conditionals closed under (LLE)
and (RW). We need to define an interpretation Z = (W, f)
st.Z Ik C = Diff C = D € C. Let Ae =q4er {C |
thereisa D s.t. C' = D € C} (the set of all conditions ap-
pearing in C) and €¢(C) =q4e¢ {D | C = D € C} (the effects
of a condition C according to C). For every propositional for-
mula C' do the following:

oIf C ¢ A, set f+(C) = 0.

o If C' € ¢, then set the functions as follows:

Let > be the partial order on £ determined by logical
strength, that is, C' > D iff C' + D, while Mg =g
maxs, (€E¢(C)) (the set of the logically strongest formulas
in €c(C)). Set f([C]) ={[D] | D € Mc}.

Next easy steps: prove that for every conditional £ = F,
7+ F = Fiff E = F can be derived from (LLE) and (RW)
from some C' = D s.t. C' € A and D € M. Then prove
that the same holds for all the £ = F' € C. O

This class of conditionals is quite broad, and imposes a
minimal number of constraints. It represents the idea that a
conditional simply associates a condition with a set of effects,
and we check what holds in the valuations satisfying such ef-
fects. By using this as a starting point, and then adding con-
straints to the choice functions, we get semantic characteri-
sations of many interesting classes of conditionals that have
been studied in the literature (see Section 3). But (RW) holds
even in this broad, basic, class of conditionals.

The counter-intuitive nature of the conditionals in the ex-
amples in Section 1 are due precisely to the validity of (RW).
The statement ‘remain on the spot or paint yourself in blue’
is a logical consequence of ‘remain on the spot’. Similarly,
‘moving’ is a consequence of ‘moving in circle’, while ‘the
window will break or Ann will drink a tea’ is a consequence
of ‘the window will break’. The satisfaction of (RW) is di-
rectly connected to the use of a possible-worlds framework.
Because of this, some researchers advocating for alternative
kinds of semantics have suggested that the possible-worlds



approach is inherently problematic since it contains the as-
sumption that all conditionals bear a truth value [Parent and
van der Torre, 2014, p.1]. On the other hand, the core idea
underlying the possible-worlds approach (modelling our rea-
soning referring to what holds in specific sets of conceivable
situations) has some important advantages: it appears intu-
itive, it is general and powerful, and it is a well-developed
field of investigation that offers to the user a full set of axiom
schemas that can be modified and extended easily. That is,
it provides simple and useful investigative tools. So, should
we abandon the possible-worlds paradigm when it comes to
conditional reasoning? Our response to this question is that
the better course of action is to investigate ways of fitting
very basic forms of conditional reasoning, possibly not sat-
isfying (RW), into the formal possible-worlds framework.

Interestingly enough, constraining (RW) is analogous to
the placing of constraints on the property of Monotonicity. In
both cases we are dealing with constraints on the transitivity
of the if-then connections:

+C—D, D=E C=D, +D—E
C=FE C=E

When constraining (Mon), we deal with conditional tran-
sitivity on the condition (on the left). In contrast, when con-
straining (RW) we deal with conditional transitivity on the
effect (on the right). In non-monotonic reasoning the most in-
teresting systems do not aim at arbitrarily invalidating Mono-
tonicity. Instead, a rational agent should reason assuming
that Monotonicity holds, and only the explicit knowledge that
some situation is exceptional should prevent it from reason-
ing monotonically. For example, if I know that birds typically
fly I conclude that robins, seagulls, and eagles fly, since I am
not informed of anything to the contrary. Moreover, only the
explicit knowledge that penguins do not fly prevents me from
reasoning monotonically about the flying abilities of this sub-
class of birds [Lehmann and Magidor, 1992; Lehmann, 1995;
Pearl, 1990]. The same principle can be applied to Right
Weakening. (RW) is a natural reasoning pattern, and an agent
should persistently apply it unless it is explicitly aware of the
fact that the derived conditional would be not relevant. In
order to model irrelevance we introduce a second function.

(Mon); (RW)

Definition 2 A relevance function is a function

fooW o)
A conditional interpretation is a triple

I= (W7f+;f—)'
T +-satisfies a conditional C = D (ZI-+ C = D) if

o thereisaV € f(C)s.t. V C [D]w;
o foreveryV' € f_(C), V' Z [D]w.

The relevance function f_ associates with a condition C'
a set of formulas that is considered to be irrelevant w.r.t. C.
Informally, this new notion expresses the intuition that we
apply (RW) if we are not explicitly aware that it is irrelevant.
For example, if £ ([C]) = {[D]} and f_([C]) = {[(D V
E V F)|}, then the interpretation +-satisfies C = D, C' =
(DVE),andC = (DVF),butnotC = (DVEVF)orC =
(DVEVFVQ@),since (DVEVF) is an irrelevant formula and
(DV EV FVG) is the consequence of an irrelevant formula.

As shown in Figure 1, the set of £-satisfied conditionals is
{C=H|HeCn(D)\Cn(DVEVF)}.

f., i ‘
G| -
f
Figure 1: A conditional interpretation Z = (W, f4, f-) st

f+(C) ={[D]} and f—([C]) = {[(D VvV E V F)]}. It -satisfies
all the conditionals C' = H s.t. H is in the grey area on the right.

Clearly the satisfaction relation I does not satisfy (RW),
but the property of Right Logical Equivalence continues to
hold, though.

C=D, FD=F
o  (RLE)

Important, (RW) is not abandoned completely: it is re-
placed with the weaker property of Anti Right Weakening:
C=D, FDﬁg;é);E%F, C#AFE (AntiRW)
or, equivalently:

C=D, I—DHCEV,igE%F, C=F  (AntiRW*)

(AntiRW) states that, once (RW) is blocked for a formula,
it is blocked for all the implied formulas. For example, sup-
pose that “If you throw a stone at the window, it will break”
is satisfied by an interpretation while “If you throw a stone at
the window, it will break or Ann will drink a tea” is not. Then
“If you throw a stone at the window, it will break or Ann will
drink a tea or the sun will rise tomorrow” cannot be satisfied
either.

(AntiRW) implies (RLE): just set " as D in the (AntiRW™)
schema. Hence every set of conditionals closed under (An-
tiRW) is closed also under (RLE). We now obtain our second
representation result: using the satisfaction relation |-, the
class of conditional interpretations characterises the class of
sets of conditionals closed under (LLE) and (AntiRW).

Theorem 2 A set of conditionals C is closed under (LLE)
and (AntiRW) iff there is a conditional interpretation T =
W, fr,fo)st. C={C=D|ZIyL C= D}

Sketch of proof. From right to left, we need to prove that
(AntiRW) holds. Assume+ D — E, - FE — F,TI-y C =
DandZ IfL C = E. ThenthereisaV € f ([C])s.t. V C
[D] C [E] C [F]. This, together with Z | C = E, implies
that thereisa V' € f_([C]) s.t. V/ C [E], that in turn implies
VI CIF.VC[F]land V! C [F]imply Z I+ C = F.

From left to right: let C be closed under (LLE) and (An-
tiRW). We define Z = (W, f., f—) as follows.

Let ¢, €c(C), >1, and M be defined as for Theorem 1.
For every propositional formula C' do the following:

o If C ¢ Ac , let £ ([C]) = 0.
o If C' € 2., then set the functions as follows. Let Rg =
{Cn(D) | D € Mc} and fi([C]) = {[D] | D € Mc}




(R¢ is the smallest set of theories containing €¢(C')). Let
Se = URc \ €c(C) (Se¢ is the set of all formulas that
are satisfied by the theories in f;(C) but are not relevant).
Let max>, (Sc) be the set of the strongest logical formulas
in Sc, and set f_(C) = {[D]w | D € max>, (S)}.

Next easy step to prove: since C is closed under (AntiRW),
Z = (W, f4+, f-) is a characteristic model of the set of con-
ditionals C. ad

3 Richer Conditionals

The satisfaction relation |- over conditional interpretations
is general enough to be able to accommodate many well-
known forms of conditional reasoning. In fact, many such
forms of conditional reasoning can be characterised by im-
posing further constraints on the functions f; and f_. Here
we examine the introduction of a few important properties.

First, in order to characterise the closure under (LLE) and
(RW), it is sufficient to set that for every formula C,

(e =0 (D

Theorem 3 A set of conditionals C is closed under (LLE)
and (RW) iff there is a conditional interpretation T =
W, f+, f—) satisfying Constraint (1) s.t. C = {C = D |
Ty C= D}.

We omit the proof, since it is immediate to see that there is
a full correspondence between the class of conditional inter-
pretations satisfying Constraint (1) and the class of standard
interpretations. Hence Theorem 1 applies.

Next, the property of Conjunction on the Right,

D E
% (And),

can be obtained by imposing that we have at most one the-
ory describing the effects of a condition. That is, for every
formula C,

#(f+(C]) <1 2

Theorem 4 A set of conditionals C is closed under (LLE),
(AntiRW) and (And) iff there is a conditional interpretation
Z =W, f+, f-) satisfying Constraint (2) s.t. C = {C =
D|ZTIFL C = D}.

Sketch of proof. From right to left. If Z -1 C' = D and
Z IFx C = E, then the only set V € f,([C]) is such that
V C [D], V C [E] and there is no theory V' € f_([C]) s.t.
V' C [D] or V! C [E]. That implies that V' C [D] N [E] and
there is no theory V' € f_([C]) s.t. V' C [D] N [E], that is,
Ik C= (DAE).

From left to right. Let C be closed under (LLE), (AntiRW)
and (And), and let ¢, €¢(C), and M¢ be defined as for
Theorem 1. Due to (And), for every C' € 2 there is only
one formula D in M¢ (modulo logical equivalence.). Using
the same construction used for Theorem 2 we can build the
characteristic model. ]

Next, we observe that for consistency preservation,

g;i (Cons)

it is sufficient to impose that

If [C] # 0, then § ¢ £ ([C]). 3)

Continuing, we observe that for Reflexivity (C' = C') to be
satisfied, we simply need to impose that for every C,

thereisaV € f([C]) s.t. V C [CT;
thereisno V € f_([C]) s.t. V C [C].

And for Monotonicity (Mon) to hold, it is sufficient to im-
pose that for every C, D s.t. - C' — D,

“4)

forevery V € f1([D]) thereisa V' € f([C]) s.t. V' C V; -
forevery V € f_([C]) thereisa V' € f_([D])s.t. V' C V.

Theorem 5 A set of conditionals C is closed under (LLE),
(AntiRW) and (Mon) iff there is a conditional interpretation
T =W, f4,f-) satisfying Constraint (5) s.t. C = {C =
D|ZIy C= D}

Sketch of proof. From right to left the proof is straightfor-
ward. From left to right, let C be closed under (LLE), (An-
tiRW) and (Mon), and let ¢, €¢(C), and M¢ and S¢ be
defined as for Theorems 1 and 2. Let Z be defined as in the
proof of Theorem 2. Z is a characteristic model of C. We
need to prove that Z satisfies Constraint 5. Let = C' — D. To
have (Mon) it is necessary that for every formula F in Mp
there is a formula F' in Mg s.t. = F' — FE, and this enforces
the first part of Constraint (5). For the second part of the con-
straint, assume it is not satisfied, that is, assume that for some
V e f_(C) thereisno V' € f_(D) s.t. V/ C V. Accord-
ing to the construction of Z, this implies that there is a for-
mula H in max>(S¢) that is not implied by any formula [
in max> (Sp) which, in turn, implies that Z |- D = H
while Z If . C' = H, contradicting (Mon). O

If the properties (And) and (RW) are satisfied, then to add
(Mon) we just require that if - C' — D, then V' C V', with
f+(C)={V}and f. (D) = {V'}. Finally, assuming (And)
and (RW), the question of how to impose the satisfaction of
relevant properties has already been thoroughly investigated
by Rott [2001, Chapter 7], and we will investigate in future
work how to enforce such properties in our framework.

4 Dropping Anti Right Weakening

Is (AntiRW) a reasonable property? It certainly makes sense
for some versions of conditional reasoning. A good ex-
ample is a basic commonsense notion of causality. Given
some context, C' causes D (C = D) iff D would be
true in case C' were true, but it would not necessarily
hold in the absence of C. This could be modelled in
the present framework as follows: fi ([C]) corresponds to
the set of situations associated with the occurrence of C,
while f_([C]) corresponds to the set of situations associ-
ated with the non-occurrence of C. For example, assume
that our background theory contains some basic astronomi-
cal notions, such as that we consider it impossible that the
sun will not rise tomorrow (- sun_tomorrow). Also we
know that the passage of the moon in front of the sun will
cause an eclipse phenomenon. That is, passage_moon =
eclipse. We can define, for example, a conditional inter-
pretation Z = W, f4,f-) st. W C [sun_tomorrow]
(since F sun_tomorrow), fi([passage-moon]) = {V}
s.t. V C [eclipse] and f_([passage_moon]) = {V'} s.t.



V' C [—eclipse], with both V and V' nonempty. By Defini-
tion 2, we have 7 IF1 passage_moon = eclipse. However,
since in every valuation the sun will rise tomorrow (W C
[sun_tomorrow]), we have V,V' C [sun_tomorrow], and
consequently V, V" C [eclipse V sun_tomorrow]. Given Z,
despite V C [eclipse V sun_tomorrow], by Definition 2 we
have Z If+ passage_moon = eclipse V sun_tomorrow,
because V' C [eclipse V sun_tomorrow] too, that is, de-
spite we believe that the passage of the moon in front of
the sun causes an eclipse (passage-moon = eclipse), we
do not believe that the passage of the moon in front of the
sun causes an eclipse or that the sun will rise tomorrow
(passage_moon = eclipseV sun_tomorrow). Furthermore,
the same will hold for all the formulas implied by (eclipse V
sun_tomorrow). If (eclipse V sun_tomorrow) holds in-
dependently from passage_moon, then so does (eclipse V
sun_tomorrow V Ann_has_tea), and passage_moon =
(eclipse V sun_tomorrow V Ann_has_tea) should not hold.
This is exactly what (AntiRW) imposes.

On the other hand, (AntiRW) seems to be too strong a con-
straint in other contexts. To see, consider conditional desires
as an example. After her high-school diploma (hsd), Ann
would like to get a college degree (cd), that is, hsd = cd.
To get a college degree it is necessary to go to a college (gc),
have enough money (m) to pay the tuition fees, and study
hard (sh), that is, - cd — gc A m A sh. Ann would like to
have money and to go to college (hsd = m A gc), but she
does not like the idea of studying hard, even if associated to
having money (hsd # m A sh). But for sure Ann would
like to have money (hsd = m). This set of conditionals is
not compatible with (AntiRW): if hsd = gc is satisfied, but
hsd = m A sh is not (where - ¢d — gc A m A sh), then
(AntiRW) imposes that also hsd = m cannot be satisfied.

(AntiRW) holds because the relation |- allows for the
blocking of the weakening of the formulas associated with
the sets of valuations in f ([C]) using the formulas associ-
ated with the sets of valuations in f_([C]). However, the
same does not hold in the other direction. Once a theory is
indicated as irrelevant by f_([C]), the definition of I-1 does
not allow us to conclude that information implied by some
theory in f_([C]) is relevant. One way of resolving this is-
sue is to refine the satisfaction mechanism in IF_, allowing
for a richer interaction between the theories in f, (-) and the
ones in f_(-). In order to do that, we introduce a notion of
inferential closeness between formulas based on their logi-
cal strength. Given C, D, E, we say that D is inferentially at
leastas closeas Eto C' (D >¢ E)if E+ Dand D+ C. For
the strict relation, D is said to be inferentially closer than
toC (D >¢c E)it EF- D, Dt/ E,and D F C, that is, to
infer C from E it is necessary to “pass by” the information
represented by D. Semantically, D > E corresponds to
saying that [E] C [D] C [C], as shown in Figure 2.

Using this notion of inferential closeness, we refine the in-
teraction between f, () and f_(-) by requiring that (RW) on
a formula D is blocked only in case for every formula rep-
resented in f ([C]) and implying D there is a formula rep-
resented in f_ ([C]) that is inferentially closer to D. That is,
if we can derive C' = D from C' = FE by (RW), such a
derivation is blocked only in case we know that C' = F'is

Figure 2: Both D and E imply C, but D is inferentially closer to C.

irrelevant, and F' is inferentially closer to D than E.
Definition 3 Let Z = (W, f4, f—) be a conditional interpre-
tation. Z @-satisfies a conditional C = D (Z kg C = D) if
thereisaV € fL([C]) s.t.

e V C [Dl]w, and
o foreveryV' € f_([C]) s.t. V' C [Dlw, V' #¢ V (that is,
Vs V).

Observe that g allows to use conditional interpretations
to model (and characterise) an elementary form of conditional
reasoning. This brings us to our next representation result.
Theorem 6 A set of conditionals C is closed under (LLE)
and (RLE) iff there is a conditional interpretation T =
(W,f+7f_) s.t.C = {C =D | 7 H‘@ C= D}

Sketch of proof. We only consider from left to right, since
the other direction is immediate. Let C be a set of conditionals
closed under (LLE) and (RLE). Let ¢ and €. (C) be defined
as for Theorem 1.

For every propositional formula C' do the following:

o IfC ¢ e, set f([C]) = 0.

o If C € ¢, then set the functions as follows: A

f+(C)={V| thereisa D € &:(C)s.t. - D=V}, and

f-(C)={V | thereisno D € €:(C)st. - D=V},

It is easy to prove that Z = (W, f4, f_) is a characteristic
model of C. O

Observe further that, in order to recover (AntiRW), it is
sufficient to impose the condition that for every formula C,

for every V € f_([C]) thereisno V' € f([C]) s.t. V' DV (6)

Constraint (6) unlocks the next representation result.
Theorem 7 A set of conditionals C is closed under (LLE)
and (AntiRW) iff there is a conditional interpretation T =
(W, f+, [=) satisfying Constraint (6) s.t. C = {C = D |
Tlte C = D}.

Sketch of proof. From right to left, we need to prove that
(AntiRW) holds. Let [D] € f4([C]),and [DV E] € f_([C]);
by Constraint (6) for every F, Z |fg C = (DV EV F).
From left to right, the interpretation defined in the proof of
Theorem 2 does the job. o

5 Reasoning with Conditional Bases

The next important issue is an investigation of entailment for
conditional bases (any finite set B = {C; = D,...,C,, =
D,,}). Given a conditional base and the representation results
we obtained, what forms of entailment are appropriate?



The obvious starting point for this investigation, and the
only one we consider in this paper, is a classical Tarskian ap-
proach to entailment: B k¢ C = D if C = D is satisfied by
every model of 5. Let us first consider the case of I,

Definition 4 Let B be a conditional base. B g C = D if
for every conditional interpretation Z,

IfTlvg E = Fforevery E = F € B, thenT IFg C = D.

Cng is the corresponding entailment operation:

What kind of reasoning is sanctioned by this form of entail-
ment? Note first that Lemma 1 shows that the properties we
are considering are closed under intersection (proof omitted).

Lemma 1 Let C and C' be sets of conditionals closed under
(%), with (x) € {(LLE), (RLE),(RW), (AntiRW)}. Also
CNC'is closed under (x).

Cne(-) does a very simple thing: Cng(B) is the closure
of B under (LLE) and (RLE).

Theorem 8 Let B be a conditional base and C = D be any
conditional. C = D € Cng(B) iff C = D can be derived
from some E = F € B using (RLE) and (LLE).

Sketch of proof. By Lemma 1, Cng () must be closed un-
der (LLE) and (RLE). We use a procedure analogous to the
one used for Theorem 6 to build a model of B: it is sufficient
to consider the set 2 and the set €5(C) for every C' € AUp,
and treat the formulas modulo -equivalence. Such a model
is the closure under (LLE) and (RLE) of B, hence it is the
smallest model of B (in terms of the set of satisfied condi-
tionals), and characterises C'ng (B). a

Next we consider what happens if we add (AntiRW). That
is, if we refer to the satisfaction relation |- .

Definition 5 Let B be a conditional base. B =y C = D if
for every conditional interpretation Z,

IfTW-L E= FforeveryE = F € B, thenT - C = D.
Cn is the corresponding entailment operation:

Cni(B)Z{C$D|B"&1iC:>D}

Given Lemma 1, Cny (B) must be closed under (LLE) and
(AntiRW). (AntiRW™) can be used as a derivation rule.

Theorem 9 Let B be a conditional base and C = D be any
conditional. C = D € Cny(B) iff C = D can be derived
from B using (AntiRW*) and (LLE).

Sketch of proof. By Lemma 1, Cng(B) must be closed
under (LLE) and (AntiRW). We build a model Z of B us-
ing the following procedure: Let 2z = {C |F C =
C' forsome C'st. ¢’ = D € Bforsome D} and let
¢g(C)={D|C= D e B}

For every propositional formula C' do the following:

o IfC ¢ Ac,set f(C) = 0.

o If C' € ¢, then set the functions as follows:

Let > be defined as in Theorem 1, and let m¢o =
mins, (E¢(C)). ~ Set f([C]) = {[D] | €(C)} and
f-([C]) ={[E] | D > E for some D € m¢}.

We need to prove three more easy things:

e that 7 is a model of BB closed under (LLE) and (AntiRW);

e that 7 is the smallest (w.r.t. the set of satisfied condition-
als) such model of B;

e that Z -4 C = D iff C = D can be derived from B
using (LLE) and (AntiRW™). O

We shall leave the investigation of more refined, non-
Tarskian forms of entailment as future work.

6 Related Work and Conclusions

There have been many attempts to formalise the notion of
relevance, but the version of relevance we consider here is
quite different from that usually found in the literature. For
example, there is a whole family of Relevant Logics [Re-
stall, 20061, but their investigation of the notion of relevance
departs from a more proof-theoretical perspective, aimed at
modelling forms of entailment in which the antecedents play
an active role in the derivation of the conclusion. In the area
of conditional reasoning, Delgrande [2011] has stressed the
importance of analysing relevance, and with Pelletier [1998]
they investigated the notion of relevance. However, their fo-
cus is on the constraints on (Mon), rather than on (RW).

Regarding logics that do not satify (RW), an interesting ex-
ample by Parent and van der Torre [2014] proposes a deontic
system satisfying only (RLE), based on the semantics of I/O
logics. More in line with our semantic approach is the pro-
posal by Britz et al. [2011], but they weaken (RW) with an
approach that is different from the present one, and their sys-
tem satisfies different properties.

In this paper we have presented a possible-worlds seman-
tics that allows us to avoid properties like (RW) or (And),
classically associated with the possible-worlds approach. We
have introduced (AntiRW), a constrained form of (RW), and
we have initiated an investigation into basic forms of entail-
ment in this framework. These are only first steps into this
area, though, and much more work still needs to be done. To
start off with, it is necessary to consider constrained versions
of (RW) other than (AntiRW). It is also necessary to develop
the investigation in Section 3 further. That is, to consider
the interaction between IF+ and IFg with the other structural
properties. Similarly, we have only touched the surface when
it comes to the investigation into entailment in Section 5. Fi-
nally, an interesting option would be the use of negated con-
ditionals into the language, in which we explicitly represent
the case where an agent considers some conditionals as not
holding. This additional expressivity would allow us to define
more interesting constrained versions of (RW). It could also
be combined with forms of entailment that use negated con-
ditionals to constrain monotonicity [Booth and Paris, 1998].
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