NON ASYMPTOTIC MINIMAX RATES OF TESTING
IN SIGNAL DETECTION

YANNICK BARAUD

ABSTRACT. Let Y = (Y;)ier be a finite or countable sequence of
independent Gaussian random variables of mean f = (f;);e; and
common variance o2. For various sets F C f5(I), the aim of this
paper is to describe the minimal fo-distance between f and O for
the problem of testing “f = 0”7 against “f # 0, f € F”7 to be
possible with prescribed probabilities of error. To do so, we start
with the set F which collects the sequences f such that f; = 0 for
j >nand |[{j, f; # 0}| < k where the numbers k and n are integers
satisfying 1 < k < n. Then we show how such a result allows to
handle the cases where F is an ellipsoid and more generally an
¢y-body with p €]0,2]. Our results are not asymptotic in the sense
that we do not assume that o tends to 0. Finally, we consider the
problem of adaptive testing.

1. INTRODUCTION

We consider the following statistical model
}/z:f@‘i‘()'&"z, 1€l (1)

where f = (f;)ier is an unknown sequence of real numbers (called the
signal), o a positive number and the ¢;’s a sequence of i.i.d. standard
Gaussian random variables. Throughout this paper, I either denotes
the set {1, ..., N} (for some integer N > 1) or N* = N\ {0}, the notation
I being useful to handle both the Gaussian regression model and the
Gaussian sequence model simultaneously. The observations are given
by the sequence of Gaussian random variables Y = (Y;);e;, their joint
law is denoted by P;.
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Let F be some subset of the Hilbert space

0(1) = {f R, 2= 2 < +oo} .
iel
The aim of the paper is to describe the minimal radius p for which
the problem of testing “f = 0”7 against the alternative “f € F and
Ilf]| > p” with prescribed probabilities of errors is possible .

More precisely, let us fix some level a €]0, 1] and consider some level-«
test ¢, with values in {0, 1} to test “f = 07 against “f € F\ {0}” (we
decide to reject the null hypothesis when ¢,(Y) = 1). The test ¢, is
powerful if it rejects the null hypothesis for all f € F lying outside a
small ball (the smaller the better) around 0 with probability close to
1. Then, given some ¢ €]0, 1] (typically small) it is natural to measure
the performance of the test via the quantity p(¢., F,d, o) defined by

W F.8,0) = infdp>0, inf Prlog=1>1-35
HonF0) = i {p>0. it Prlon=121-0)

= inf{p>0, sup Pf[¢a:0]§(5}.

feF|IflIzp

The aim of this paper is to describe the quantity
id{lf,o(gba,}", d,0) = p(F,a,d,0), (2)

the infimum being taken over all the level-a tests. In the sequel we
shall call this quantity the («,d)-minimax rate of testing over F (or
the minimax separation rate), the word “rate” referring to the scale
parameter o which is meant to decrease towards 0 when one considers
the asymptotic point of view.

It is beyond the scope of this paper to give an exhaustive review of the
literature on the problem of hypothesis testing. We refer for further
details to the series of papers due to Ingster (1993a,b,c) which repre-
sent a landmark in the problem of finding minimax rates of testing over
non parametric alternatives. In the Gaussian white noise model, the
case of ellipsoids was first considered in Ermakov (1991) where exact
minimax rates of testing is stated under assumptions on the semi-axes
of the ellipsoids. Other kinds of alternatives are considered in Ing-
ster (1993a,b,c) including Hélderian functional spaces, ellipsoids in L
and other function spaces... . Lepski & Spokoiny (1999) obtain mini-
max rates of testing over Besov bodies B, ,(R) with p €]0, 2] (see also
Ingster & Suslina (1998)) and show an unexpected dependence (with
regard to the case p = 2) of the minimax rate of testing with respect
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to s. Spokoiny (1996) considers the problem of finding adaptive tests
and shows that adaptation is impossible without some loss of efficiency
(see also Ingster (1998)). In other words, it is not possible to find a test
which achieves the minimax rate of testing (up to a universal constant)
simultaneously over non trivial collections of Besov bodies.

A common feature of those results is their asymptotic character. In this
paper we give non asymptotic results, mainly focusing on the problem
of finding sharp lower bounds for the minimax rate of testing. However,
asymptotic (upper) and lower bounds for the quantity p(F, a, d, o) can
be deduced from our result by making o tend to 0. In the regression
framework, it is convenient to set o = 1/ V/N in order to obtain sepa-
ration rate with respect to || ||y = || ||/V'N. The asymptotics are then
obtained by letting N grow towards infinity as usual.

This paper was originally motivated by the following question: in the
regression framework, what is the minimax rate for testing 0 against
the class of signals which have their components equal to 0, except
at most D of them? This situation corresponds to the reception of a
sparse signal (at least N — D components of the signal are 0 with D/N
small), the problem being to determine some lower bound on the signal
energy, || f||?, for the detection to be possible with probability close to
1 and the probability of false alarm close to 0.

In Section 2, we give a partial answer to this question (a lower bound
and an upper bound on the minimax rate of testing which are equal up
to a possible In(NV) factor). An interesting feature of the result is that,
for suitable values of D, the minimax rate of testing and the minimax
rate of estimation are of the same order which is, as far as we know,
seldom the case.

Another particular feature of this result is that it allows to derive non
asymptotic lower bounds for the minimax rates of testing over ellip-
soids and more generally over ¢,-bodies (also called ellipsoids in ¢,). A
similar approach was adopted by Birgé & Massart (1999) for the re-
lated problem of estimation. To our knowledge the statement of lower
bounds for the minimax rate of testing over general ¢,-bodies (that is
under no assumption on the decay of the semi-axes) is new.

These results allow to recover those first established by Ermakov for
ellipsoids (relaxing thus the assumptions on the semi-axes) and by Lep-
ski & Spokoiny for some Besov bodies B, ,(R) with s > 0, R > 0,
p €]0,2], ¢ > p, this set being related to ¢,-bodies with semi-axes of
the form £7°.



4 YANNICK BARAUD

The paper is organized as follows. As already mentioned, Section 2
is devoted to the problem of the detection of a sparse signal. Non
asymptotic upper and lower bounds for the minimax rates of testing
over ellipsoids are given in Section 3, the more general case of /,-bodies
(with p €]0,2]) being treated in Section 4. The case of Besov bodies is
considered in Section 5. The problem of adaptive testing is considered
in Section 6 and the proofs are postponed to the last sections.

To end this section we introduce some notations that will be repeatedly
used along the paper.

For any F C {5(I) and « €]0, 1], we denote by 5(F) the quantity

B(F) = inf sup Py [ = 0],
ba feF

the infimum being taken over all tests ¢, with values in {0, 1} satisfying
Pol¢a = 1] < a. By convention S(F) =0 if F = (. For z,y € R, we
set

Ay =inf{z,y}, =Vy=sup{z,y}, [z]=inf{n €N, n>z},
and for all integers n, k such that 0 < k < n,

kL n!
Cn = Kl(n— k)

Throughout this paper the numbers a and § €]0,1 — a] are fixed and
in order to keep our formulas as short as possible, we set

n=2(1-a—46) and L(n)=In(l+7n* <Inb.

Lastly, C,C",C"... denote constants that may vary from line to line.

2. DETECTING NON ZERO COORDINATES

2.1. The problem at hand. Let I be either {1,..., N} or N* and let
(€j);>1 be the orthonormal family of vectors of ¢5(1) defined by
(ej)i = 11if i = j and (e;); = 0 otherwise. (3)

When [ is finite the space ¢5(I) is merely RY and the e;’s the canonical
basis. For each pair of integers (n, k) with & € {1,...,n} (n < N when
I={1,...,N}), let M(k,n) be the class of all the subsets of {1,...,n}
of cardinality k. Now for all m € M(k,n) and D > 1, let us set

Sm =span{e;, j € m} and Sp =span{e;, j € {1,...,D}},

where span(A) denotes the linear space generated by A C ¢5(1).
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In this section we study the case where F is given by

- U Sm; (4)

2.2. Lower bounds. To start with, let us consider the elementary
case where n = k = D > 1, that is when F = Sp.

Proposition 1. Let us set
pb = V2L(n)D o?, (5)
then for all p < pp,

BHSf € Sp, Ifll=r}) =9

Comments: The result can be described in words in the following way:
whatever the level-a test ¢, there exists some signal f € Sp satisfying
|| fll > pp for which the error of second kind, Pf[¢, = 0], is at least o.
This implies the lower bound

,O(SD,Oé,é, 0) Z PD,

the left-hand side of this inequality being defined by (2).

The Gaussian distribution being invariant under orthogonal transfor-
mations, the same result holds for F being any linear space of dimen-
sion D.

Let us now turn to the general case.

Theorem 1. Let F be given by (4) and let us set

n

PR = kln (1 + L)+ \/25(77)% + (c(n)%f) 0% (6)

Then for all p < pj.n,

BHSf e Ffll=p}) =6
If a+ 6 < 59% then one has

n n
Prem = kIn <1 +13 v ﬁ) o’ (7)
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2.3. Upper bounds. Let us now discuss the sharpness of the results
stated in the previous section. For this aim we introduce some addi-
tional notations and define some special tests based on y?-statistics.
For each finite subset m of N* we set

Gma =1 {Z Y;Z > t|m|,a0'2} (8)
ieEm
where for each d € N*, t,, satisfies
P[Z3 > tga) = aif Z3 ~ x*(d). (9)
Lastly, we denote by ¢p . the test defined by

The following result holds.
Proposition 2. Let F be defined by (4). The test ¢%, defined by

¢Z = [ sup gbm,a/(QC’ﬁ)] N ¢n,a/27

meM(k,n)

satisfies
Pyl¢r =1 <a and Pylg., =0] <4,
for all f € F such that

171 = ¢ [ (kI (eF)) A v o®

One can take C1 = 2(\/5 + 4)In(2¢/(ad)).

Comments: The results of Theorem 1 and Proposition 2 show that (for
reasonable values of o and ¢§) the quantity p* = p? (F,a, d, o) satisfies

kIn (1+%v \/g) <2< O [(kln (e%)) /\\/ﬁ] o2,

To analyze further these inequalities, we take 02 = 1 and distinguish
between the values of k.

e When k =n =D,

we see that the lower and the upper bound are both of order v/D, which
shows that the result of Proposition 1 is sharp and that an optimal test
is merely obtained by rejecting the null hypothesis when Z]D:l Yj2 is
large enough.
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e When k£ < n” for some v < 1/2,

the lower and the upper bound are both of order kln(n) (up to a
constant depending on v for the lower bound). This shows that the
lower bound given in Theorem 1 is sharp and that the test ¢, is rate
optimal. Since the minimax rate of estimation with respect to the
quadratic loss function || ||* over F is of order kln(en/k) (see Birgé
& Massart (1999), Theorem 3) we note that in this case the squared
minimax separation rate and the minimax estimation rate over F are
both of the same order.

e When /n <k < n,

the lower and the upper bound do not depend on k any longer and are
both of order y/n. Here again, the lower bound stated in Theorem 1
is sharp and the test ¢, rate optimal. The fact that the separation
rate stabilizes around +/n for k > \/n contrasts with the estimation
problem for which the estimation rate keeps growing almost linearly
with respect to k as k becomes large.This phenomenon is due to the
fact that for the problem of hypothesis testing we benefit from the
prior assumption that f belongs to S, the squared rate of testing over
S, being of order y/n. Consequently, in the regression framework (by
taking Sy = RY) rates of testing are always better than VN (up to a
constant). We shall meet this phenomenon again but not mention it
any more.

e When k < /n and k is close to v/n,

the lower and the upper bound differ from at most a In(n) factor. For
example when k is of order y/n/In(n), the lower bound presented in
Theorem 1 is of order \/nInln(n)/In(n), the upper bound being of
order y/n. We conjecture that the lower bound is sharp and do not
know whether the preceding testing procedure is suboptimal or not.

Finally, let us emphasize the gap (in terms of rates of testing) between
the situation where the location of the non zero components of the sig-
nal is known (the squared rate is of order /D) and where the location
is unknown (then the squared rate is at least D). This difference is
worth mentioning since for the estimation problem the corresponding
minimax rates differ only from (at most) a In(n) factor.
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3. MINIMAX RATE OF TESTING OVER AN ELLIPSOID

In this section we assume that F is an ellipsoid, that is of the form

Ean(R) = {f € ly(I), Zi:_'g < 32}7

kel

where R denotes a positive number and the a;’s a non increasing se-
quence of positive numbers such that a; = 1 and limy_,, . a, = 0 when
I = N*. The case of £,-bodies, which is an extension to the case p # 2,
will be considered in the next section.

3.1. Lower bounds. The following holds
Proposition 3. Let us set

Pasr = sup [ph A (R*ap)] (11)
Del

where pp 1is defined by (5). Then we have
BUS € &aa(R), Il = pa2.r}) = 0.
If a+ 6 < 59% then
/)Z,Q,R > sup [(\/502) A (Rza%)] :

Del

Proof. We use the notations introduced at the beginning of Section 2.
We set F = &,2(R) and for each D € I, r% = p% A (R*a%). Let us
fix some D € I. Since the a;’s are non increasing and 7% < R?a3,
Z]D:l f7/a3 < R? for all f € Sp such that ||f|| = rp. This shows the

inclusion

{f€Sp, Ifll=rpy c{f e F, [Ifll = rp}.

Now, since rp < pp we deduce from Proposition 1 that

ﬂ({f S Sa,Q(R)7 Hf” > TD}) > 57

and the result of Proposition 3 follows since D is arbitrary in /. U

3.2. Optimality of the lower bounds. In this section we show that
the result of Proposition 3 is sharp. To this aim let us introduce the
quantity D* defined by

D* — inf {D c 1, R% < \/502},

with the convention that inf () = N. The following result holds
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Proposition 4. If 0 < R, the test ¢, defined by ¢}, = ¢p~ where
D+ is giwven by (10), satisfies

Polgy, =1 <a and Pylg, =0] <4,
for all f € E,2(R) such that

If1I*> > C sup [(\/50'2) A (RQa%)] :
One can take Cy = v/2[1 4+ 2(+v/5 + 4)] In(1/(a?)).

Comment: This result and Proposition 3 show that the quantity p,2 r
is of the same order as the minimax rate of testing over &, (R). Note
that the quantity p, 2 r is obtained by finding the best trade-oft over /
between the two terms R%a? and p? (which is of order v/Do?). The
quantity Rap represents the maximal ¢5-distance of a point of &, 2(R)
to Sp. It is non increasing with respect to D. In contrast, the quantity
pp which is (up to a constant) the minimax rate of testing over Sp, is
non decreasing with respect to D. The situation is very similar to the
situation encountered in the estimation problem. Let us explain why.
For the sake of simplicity let us assume that [ = {1,..., N}. For each
f € &.2(R), one can estimate f from the data (Y;);e; thanks to the
projection estimator onto Sp given by fp = (Y1,...,Yp,0,...,0)". Since
this estimator satisfies
s E||f = fol?] < B2, + Do?,
FEE€a(R)

one gets that for some value of D = D, suitably chosen to balance the
bias term R2a% and the variance term Do?, the minimax risk on &, o(R)
is bounded from above, up to an universal constant, by (actually some
additional minor conditions should be added),

%lé[; (Do) A (R?a3,)] -

This quantity turns out to be the minimax rate of estimation over the
ellipsoid in various cases (see Birgé & Massart (1999)). Then, the anal-
ogy with the problem of testing becomes clear. It is worth mentioning
that just as the estimator fp. is minimax (up to a constant) for the

problem of estimation, the test based on the test statistic ||fp-||? is
rate optimal for the problem of hypothesis testing. Yet, in general
D* #£ D,, the choice of D* being similar to that prescribed for the qua-
dratic functional estimation problem by model selection (see Laurent
& Massart (1998)).
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Instead of considering the ellipsoid &,2(R) we could also have dealt
with the larger set &, ,(R) defined by

5(/172(R> = {f € 62(1)7 VD € [7 d(f: SD) S RG/D}7

where d(f,Sp) denotes the ¢y-distance between f and Sp. Then the
lower and the upper bound for the separation rate would have been
the same (it is enough to see that the proof of Proposition 4 remains
unchanged when replacing &, 2(R) by &, 5(R)). Of course in the regres-
sion framework, via some orthogonal transformation the same result
holds when replacing the nested collection of linear spaces (Sp)p=1,..n
by any other. Lastly, let us mention that the result easily extends to
sets of the form

{f et(I), VD e I', d(f,5p) < Rap},
with I’ C I, by noticing that
[ € 6(I), YD € I', d(f, Sp) < Rap} = EL4(R)
when one defines the ap’s for D € I'\ I’ by the formula
ap = inf {ag, k € I'N{1,...,D}}.
Moreover, it is easy to check that one has

paar = sup [ph A (R*ap)] .
Del’

The proof of Proposition 4 is deferred to Section 8.

4. MINIMAX RATES OF TESTING OVER AN {,-BODY WITH 0 < p < 2

In this section we consider the case where F is an {,-body, that is of

the form
P
< RPS,

where R and p denote some positive numbers and a = (ay)ge; some
non increasing sequence such that a; = 1 and limy_, o ax = 0 when
I = N*. The case p = 2 has already been considered in the previous
section.

Jr

Qg

Eap(R) = {f € lo(I), Z

kel
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4.1. Lower bounds. The following result holds.

Proposition 5. Let us set
o = S |25 A (B2 [VDT )],
Der
where pz(\/ELD is defined by (6). Then we have that

BUS € Eap(R), [If| = papr}) = 0.
If a+ 6 < 29% then

Papr = SUD [((\/5102> A <R2af>f\/511_2/ p)} :

Del

Comment: As for the case p = 2, we see that the lower bound de-
rives from some best trade-off between two terms, this trade-off being
realized for some D* satisfying (roughly speaking)

vV D* = RPal,. [o?.

For the sake of the simplicity of the forthcoming comment, we assume
that D* € I. As v Do? and R%a},0% P are also of the same order for
the same value of D*, we also have that p? VD1 is of order

sup [(\/502> A (Rpa%ag_p)} .

Del

In the light of the related result obtained for p = 2, the last lower
bound turns out to be more tractable to comment. Indeed on the one
hand we recognize the quantity v Do? which is of the same order as
the minimax rate of testing over Sp. On the other hand, the quantity
RPa¥,0?7P can be interpreted as a “bias” term since it is the maximal
distance to Sp of a point belonging to the set

Eupl(R) 1 {f € 1,(1). max || < a}.

In other words, we use the linear space Sp to approximate the signals
of the /,-body belonging to some hypercube.

Proof. We use the notations introduced in Section 2, set F = &, ,(R)
and for each D € I, r%, = p?\/ﬁkD A <R2a2D VD] 172/”). Let us now
fix D € I. For all m € M([VD],D) and f € S,, C Sp such that
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| f|l = rp, we have by Hélder’s inequality

p/2
fil” fil” - fi
E L = E < p/2 § :_J
- a; 5 a;| |m| 5 a?
jeI jEM jem J
VD"

< RP

< < R?, (12)

p
ap

using that 1% < R%a%[vD]' " */?. We deduce from (12) the inclusion

fe U Sw lfll=rpgc{feFIfll=rn},
meM([VD],D)

and as rp < PrvB),p: Ve derive from Theorem 1 that

6 ({f € ga,p(R)7 Hf” 2 TD}) Z J.

The result follows since D is arbitrary in /. To finish the proof of
Proposition 5, it remains to check that p? VDLD [vVD] when a4 6 <

29%. Since for D > 1, D/[v/D]* > 1/2, we deduce from (6) that

P ypp = (L + L(0)/2+ VL) + L(n)?/4) [VD],
and the result follows since for o + 0 < 29%),

In(1+ L(n)/2 + VL(n) + L(n)*/4)) = 1.

4.2. Upper bounds. Let us define D* by
D* = inf {D eI, R*a3[VD]"? < (\/5102} ,
with the convention, inf ) = N and
Dloc,a/2 = S P(i}.20/(2(j—D*)2)s

where the tests ¢y} 2a/(x2(j—p+)2) are given by (8). Let us now set

Q?L,pﬁ = SDLg; [((\/ﬁ] 02> A (RQa% VD] 172/10)} .

The first result considers the case of the regression framework.

Proposition 6. Assume that I = {1,..., N} and that 0 < R. Let us
define the test ¢}, by

sz = ¢loc7a/2 \% ¢D*7a/2- (13)
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The test ¢}, satisfies
Po[pr, = 1] < a and Prlg;, = 0] <, (14)
for all f € &, ,(R) such that
1A = C 2+ N) 722, (15)

One can take C = 8(v/5 + 4) In(er/(ad)).

Comment: This result shows that in the regression framework the rate
pz’p’ r is optimal up to a possible In(N) factor. Note that the test
presented above actually mixes several tests. The presence of local
tests, namely the ¢y 20/(x2(j—D*)2)’s, allows to reject the null hypothesis
when one value of the |Yj| is large enough.

The next Proposition shows that the rate p , » is optimal under the
following (restrictive) condition:

(H) The sequence (0;);e; defined by

Ajyqr
_ j+i
0= sup ——
j'elj+jel Ay

satisfies
=) 60"In(2+ ;)" < +oo.

jeI

Proposition 7. Assume o < R and that (H) holds. The test ¢}, defined
by (13) satisfies

Pl =1] < a and Prl¢), = 0] <,
for all f € & ,(R) such that
IF1I* > €'z - (16)

One can take C' = (X Vv 1)8(v/5 + 4) In(enr/(ad)).

Comment: Condition (H) is fulfilled when, for example, the a;’s are
of the form #e=™ for some A, 6 > 0. Unfortunately, when the a;’s are
of the form k=% for some s > 0, Condition (H) is not fulfilled. Yet,
in this case the lower bound obtained in Proposition 5 is known to be
sharp as we shall see in the next section.

The proofs of Proposition 6 and 7 are deferred to Section 8.
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5. BESOV BODIES

This section is devoted to the statement of lower bounds for the mini-
max rate of testing over Besov bodies. Let us first recall what a Besov
body is (as introduced by Donoho & Johnstone (1998)). In the sequel
I =N Let R>0,p>0,q¢€]0,400] and s > (1/p — 1/2),. Setting
s =58 —(1/p—1/2); we define the Besov body By ,,(R) by

it 1/p 4
Bupg(R) =S feb(I), D |27 D Ifl” <RI},
Jj=0 k=27
when ¢ < +00 and
9i+1_1 1/p
Bupeel(R) = § J € ta(D), sup2” ; hP] <R

Clearly, when p < ¢ the inclusion By ,,(R) C By ,4(R) holds.

5.1. From Besov to /,-bodies. Originally the Gaussian white noise
model was the statistical framework chosen to study the problem of
minimax hypothesis testing (we have already mentioned the work of
Ingster, Lepski & Spokoiny ...). The use of a suitable wavelet basis
allows to translate both the problem at hand, from the Gaussian white
noise model to the Gaussian sequence model, and the property that
the function belongs to some usual functional space (such as a Besov
space) to the property that the sequence of its coefficients onto the
wavelet basis belongs to some related sequence space (namely, a Besov
body). This translation is described in Spokoiny (1996). In order to
make further connections of our results with previous works, we now
establish some connections between Besov and /,-bodies.

Proposition 8. For all s,p > 0, let us denote by & ,(R) the £,-body
defined by

Eupl(R) = {f € (D), Y KIAI < Rp} .

kel
We have
BS’,p,p(zisR) C gs,p(R) - BS’,p,p(R)a
where ' = s+ (1/p—1/2),.
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This proposition shows that from the minimax point of view, the /,-
body &;,(R) and the Besov body By ,,(R) behave essentially in the
same way. In the next section we shall restrict our study to those /-
bodies. To keep our notation coherent we write ps2 g for p, 2 g when
the a;’s are of the form k3.

Proof. We have that

2i+1_1 2i+1_1

S SR < DTN REAP <R AP,

J=0 k=27 J20 k=27 k>1
which shows that & ,(R) C By ,,(R). Conversely,

2i+1_1 2J+1_1

DRI = D0 D RISty 2y AP

k>1 Jj>0 k=27 j=>0 k=27
which shows that By ,,,(27°R) C & ,(R). O
5.2. The result for p = 2. The asymptotic version of this result is
known from Ermakov (1991).

Corollary 1. Let s > 0. Assume that 0* < R? and that o+ 6 < 59%,
then we have for I = N*,

pg o R > 2—28R2/(1+45)088/(1+45)’ (17)
and for I ={1,...,N},
p§,2,R > 92 |:(R2/(1+4s)0,85/(1+43)) A (m(jz)] _ (18)

Comment: From an asymptotic point of view, by taking ¢? = 1/N in
the Gaussian regression model we obtain that the right-hand side of
(18) is of order N~*/(1445) if 5 > 1/4 and of order 1/v/N otherwise.

Proof. Applying Proposition 3 we get
piQ’R > sup [(\/502) A (R*D™2%)] .
Del

For all z > 0, \/zo? > R%x~2%* if and only if
> (R2/02)2/(1+48) — > 1.

If D* = [2*] belongs to I, then z* < D* < z* +1 < 22* and we get
that

pizR > RZ(D*)—2S > 2_2SR2(.T*)_2S _ 2—23R2/(1+4s)0_83/(1+4s)'
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If D* ¢ I, then I ={1,...,N} and N < z* which implies that

03,2,1% > VNo®.
O

5.3. The result for p < 2. The rates given below are optimal accord-
ing to the results by Spokoiny (1996) on the related Besov bodies.

Corollary 2. Let s > 0 and set s" = s —1/4+1/(2p). Assume that
0% < R? and that o + 6 < 29%, then we have for I = N*,

pg,p,R > 945" R2/(1447) 857 /(14457) (19)
and for I ={1,...,N},
pg,p,R > 94s” |:(RQ/(1+45”)O_85”/(l+4s”)) A (\/Naz)} ‘ (20)

Comment: From an asymptotic point of view, by taking o> = 1/N we
obtain that the right-hand side of (20) is of order N—4"/(+45") when

s>1/2—1/(2p).
Proof. Applying Proposition 5 we get that

pip,R > [Sup (RZD_QS [\/51 172/‘”) A\ <(\/5—|o'2>}

Del

v

[Sup GRS 0—2)} .

Del
For x > 0, zo? > R?2~*" if and only if
x> <R2/0_2)1/(1+4s”) = ¥ > 1.

Let D* be the smallest integer such that (\/E} > z*. One has D* > 1
since z* > 1 and [vD*| < z* 4+ 1 < 22" since

[VD*] —1=[VD—1] < [VD*—1] < a*.
If D* € I, then
pip,R > R? (\/ﬁw A7 5 94" p2/(14457) 857 /(1+457)
Otherwise, I = {1, ..., N} and [v/N| < z* which implies that
Pz,p,R > (\/NW 027
which completes the proof of Corollary 2. 0
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6. SIMULTANEOUS RATES OF TESTING

6.1. Coming back to the problem of detecting non zero coordi-
nates. In this section we come back, for a short time, to the problem
of detecting non zero coordinates. In order to explain the problem let
us introduce some notations. Let (1;);es be some finite or countable
family of finite disjoint subsets of I. For each j € J let n(j) = |/;| and
k(7) € {1,....,n(5)}. Now we set

M ={m I, Im| = k()}, Fi= {J Sn

mGMj

and

~ | pn@y defined by (5) when k(j) = n(j);
Pi= Pr()n() defined by (6) otherwise.

We have seen in Section 2 that for each j, the quantity p;, = 5;(n)
is of the same order as the minimax separation rate over F; (up to a
possible In(n(j)) factor for some cases). From now on, the dependency
of p; = pj(n) with respect to 7 is emphasized.

The following result holds.

Proposition 9. For any sequence of positive weights p; such that

ij <1

jeT

we have

ﬁ(U{fGFj and ||f||=7“j}) > 4,

JjeT
as soon as for all j € J, v; < pi(n//D;)-

The proof is postponed to Section 7.4.

Comment: Since the quantity p;(n/,/p;) is of order p; times a power
of In(1/p;), the result of Proposition 9 means that in the problem of
testing 0 against this multiple alternative, a loss of efficiency over at
least one of the alternatives is unavoidable. For example, when |7|
is finite, by taking p; = 1/|J| for all j € J one derives that a loss
of efficiency by a factor (a power of) In(|J|) over one of the F;’s is
unavoidable. From an asymptotic point of view this phenomenon is
worth mentioning when the cardinality of J depends upon o (or N
in the regression framework). Let us also mention that the loss of
efficiency may not affect all the the alternatives (this fact is seldom
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emphasized in the literature), we refer for further details to the work
of Baraud, Huet, Laurent (1999) in the regression framework.

In the sequel we derive some lower bounds for the problem testing
“f = 0" against a multiple alternative such as a collection of nested
linear spaces or a collection of nested ellipsoids. Extensions to more
geneneral £,-bodies possible to the price of more technicalities.

6.2. The case of nested linear spaces. We shall restrict our study
to the case of the linear spaces Sp’s defined at the beginning of Sec-
tion 2. However, when I = {1,..., N} this result holds true for any
(substantial) nested collection of linear subspaces of RY.

Corollary 3. Let us set

= Cy/Inln(D + 1)V Do, (21)

with C = /2 [(nm/V/6) A1]. We have that

ﬁ(U {f€Sp, [Ifll :TD}> >0,

Del
if forall D eI, rp < pp.

Proof. We take 02 = 1. For all j > 0 such that 277! —1 € I (i.e. for all
j<Jwith J =400 if  =N* J=J(N) = ln(N+1)/1n(2) — 1 when
I =1{1,...,N}),let S; be the linear span of the e;’s for k € {27, ..., 20+ —
1}. Note that dlm(S ) = 27 and that S; C Sp for D = D(j) = 2971 —1.
Setting for F C ¢5(I) and r > 0,

Flrl=A{feF lIfl=r},

we get that
J

J
U Slrom) € U Soilrow] € | Solrol-

§=0 Del

We now use Proposition 9 with p; = 6/[r?(j + 1)?] for j € N and we
get

8 (U {f € Sp. £l = rD}) >,

Del
as soon as for those D = D(j),

% < \/2(1 + 72/p)VD = 2In(1 + 222 + 2/6)27%.  (22)
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Thus, it remains to check (22). Using that
j+1=In(D+1)/In(2) > In(D + 1),
27/2 > /D/2 and the convexity inequality
In(1 + uz) > uln(l + x), (23)
which holds for all > 0 and u € [0, 1], we obtain that
V(L + P2+ 12/6)20"
> [ /v6) A1) VIn(1 + (D + 1)VD
> V2 |(ym/V6) A 1| Vinn(D + D)VD
= 2.

Since by assumption p2, > 1%, (22) is proved and the result follows. [

6.3. Collection of nested ellipsoids. In this section we consider the
case of a collection of ellipsoids of the form {€,2(R), R € R, }.

Corollary 4. For each R > 0, let us set
Paor =sup [ A (R%ah)],
Del

where pp 1is given by (21). Then we have that

B (U {f €&an(R), [IfIl = pa,g,R}> > 4.

R>0

Comment: The problem of finding a test that achieves (up) to a con-
stant the minimax separation rate simultaneously over a family of al-
ternatives is usually called the problem of adaptation. In contrast with
the problem of estimation, in the problem of hypothesis testing adapta-
tion is in general impossible. This result was proved by Spokoiny (1996)
for the case of a family of Besov bodies. In the case considered here
we deal with the family of nested ellipsoids {&,2(R), R € Ry}. This
amounts to adapting over the radius R in R%. In the literature, one
usually tries to adapt over both R € R’ and a among some non trivial
class of sequences of positive numbers, but since we are interested in
lower bounds, the problem of adaptation over R only is enough. As
Spokoiny, by this result we obtain that the problem of finding adaptive
tests is possible only if one tolerates a loss a efficiency (which is of order
a Inln(NV) factor in the regression framework).
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Proof. We use the same notations as in the proof of Proposition 3. Let
D(R) € I which achieves the supremum of p%, A (R%a%) = 7%, over [
(the existence of D(R) is obvious when [ is finite and is a consequence
of the monotonicity of pp and RZ%a?% otherwise). Arguing as in the
proof of Proposition 3 we have for each R,

{f € Sow), Ifll=rpm} C{f€&p2R), |fll=rpm},
and as D(R) describes I when R varies, we obtain that

U eso, Ifl=m} = (UJ{f €Som. IIFIl = rom}

Del R>0
c J{re&®), Ifl=rom}-
R>0
Then the result follows from Corollary 3. U

7. PROOF OF THEOREM 1 AND PROPOSITIONS 1 AND 9

7.1. A general method to obtain lower bounds. The proof is
based on a Bayesian approach which is classical (see Lehmann (1997)
Chapter 6 for example ). The starting point of the proof is similar
to that described in Ingster (1993a,b,c) and borrows some classical
inequalities on the norm in total variation that can be found in Le
Cam (1986) (Chapter 4). . For the sake of completeness, let us describe
the main ideas of the approach.

Let F be some subset f5(]) and p some positive number. Let p, be
some probability measure on

Flo)={feF. Ilfll=r}
Setting P,, = [ Py du,(f) and @, the set of level-a tests, we have

> i =
BFlD) z it P, [¢a=0]
> 1—a— sup |P,(A)— R(A)|
A/ Py(A)<a
> 1—a—sup|P,,(A) — Py(A)
AeA
1
— 1-a B, - Al (21)

where || P, — F| denotes the total variation norm between the prob-
abilities P,, and Fy.
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Whenever P, is absolutely continuous with respect to Py, the norm
in total variation between these two probabilities is easy to compute.
Setting

dP,

—=2(y),

L,Up (y) - dPO

we get

\P,, — By = / 1L, (9) — 1] dPo(y)

= Eo [|L,, () -1]],
1/2

< (B[5m]-)"

and we deduce from (24) that

B = 10— (B [22,00] —1) "

Thus, it remains to find some p* = p*(n) such that

In (B, |22 .(1)]) < £0n), (25)
to ensure that for all p < p*,
B(Flp)) 21 —a—n=4

7.2. Proof of Theorem 1. By homogeneity, we assume that o = 1.
Let 7 be some random variable uniformly distributed over M(k,n) and
for each m € M(k,n) let €™ = (¢7')jem be a sequence of Rademacher
random variable (i.e. for each m, the ¢7*’s are i.i.d. random variables
taking the values +1 with probability 1/2). We assume that for all
m € M(k,n), €™ and m are independent. Let p be given and p, the
distribution of the random variable }7._. Ae'e;/ where A = p/ VE.
Clearly p, is supported by F|p]. To prove the result, we apply the
method described in the previous section with

Ly m
exp <—§p —i-)\Zsj Y})
jeEmM
1
= o Z E. exp(——p —|—)\ZsmY>
nmEMkn

jeEmM
= ep/2 Z Hcosh (AY;)

n meM(k,n) jeEm

L, Y) = E.s
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Let us now compute Eg [Lip(Y)]. Introducing the notation

mAm’ = (mUm')\ (mnm')

for m, m’ belonging to M(k,n) and we obtain that

B [L2,(V)]

e [
= GAE Z Eo Hcosh(/\Y})Hcosh()\Yj)
" mam/ e M(k,n) Ljem jem’
e P’ [
= > Eo| [ cosh’(AY)) J] cosh(AY;)
Y mom!eM(k,n) Ljemnm/ jeEMAmM’
67p2 mnm’ mAm/
= oy 2 (o food® QY] (Eg lcosh (7)),
Y mom!eM(k,n)

by independence between the Y;’s. Using the fact that
(Eo [cosh(AY})]) = /2, Eq [cosh®(AY7)] = e’ cosh()\?),
and noting that |m Nm/| + |mAm’|/2 = k, we derive
1 [mNm/|
Eo [Lip(yﬂ - (CF)? Z (COSh ()‘2))

" mum!/eM(k,n)

(cosh ()\2))3‘ Djens

k
=1

J

where
Pikn = (C3) 2 [{(m,m') € M(k,n)*/ Imnm/| = j}].

If j < 2k — n then obviously p;r, = 0 and pjx, = CF 7C*7/C*
otherwise. Hence, p; s, = P[X = j] where X is a random variable dis-
tributed according to a Hypergeometric distribution with parameters
n,k and k/n. Thus, we derive that

E, [LiP(Y)] —E [(cosh(/\Q))X] . (26)

We know from Aldous (1985, p.173) that X has the same distribution
as the random variable E[Z/B,,] where Z is a binomial random vari-
able of parameters k, k/n and B,, some suitable o-algebra. Thus, by a
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convexity argument we infer from (26) that
Eo [L2,(V)] < E[(cosh(32)”]
1 k
= 1+ — (cosh(\?) —1
( +- (cosh(\?) ))
k 2
= exp [kln {1+ = (cosh(A\*) —1))]|. (27)
n
For p < pg.n, one has
A2 < )\i,n =In <1+u+\/2u+u2> ,

where u = L(n)n/k* We deduce from (27) that for all p < pg,

o [1,00] < e [fn (14 £ oz, - )]

= exp |[kIn (1—|— Su)]

r7.2
< exp %u} =exp[L(n)] =1+n%.

To complete the proof of Theorem 1, it remains to check (7). Clearly
we have that

oz ot (14 £ n VG [ v [2]).

and thanks to the convexity inequality (23) we get that

P> (L) A1) kIn (1 + 5V %) .

The result follows since for a + § < 59%, 2L(n) > 1.

7.3. Proof of Proposition 1. We argue as previously taking n =

k = D. Then the right-hand side of (27) merely becomes (cosh(A2))".
Since for all x € R,

cosh(x) < exp(z?/2)

(compare the series) the result follows easily.
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7.4. Proof of Proposition 9. It is enough to show the result under
the assumption that jesPj = 1. Arguing as in the proof of Theo-
rem 1 we know that for each r; < p;(n/,/p;) there exists some measure
[tj over

Filrl ={f € F, Ifl =r;}
such that such that

Eo |L2,(Y)] < 1+0%/p; (28)

Let us now set p = > jes Pji; which is a probability measure over
, ;[r;]. Denoting e density o = wi(f) with re-
ieq Fijlrjl. Denoting Ly, the density of P, = | Prdp; ith

spect to P, we have that

L#(Y) dPO JGZJ p;L u]

and thus
"] =" pipyEo [Luj(Y)Lujl(Y)} :
G €T
Since for j # j', F; and F: are orthogonal the random variables L, (Y)
and L, ,(Y) are independent and thus,

Eo [L2(V)] = 143 9% (B0 [L2,()] —1) <1477
JET
thanks to (28). This leads to the announced result via (25).

8. PROOF OF PROPOSITIONS 2, 4, 6 AND 7

8.1. Some preliminary result. The next result describes the per-
formance of tests based on y2-statistics. It is a slight modification

(the constants are sharper) of Theorem 1 and Proposition 1 in Baraud,
Huet, Laurent (1999).

Theorem 2. Let o, 0 € [0,1] and F C lo(I). Let M be a class of finite
subsets of I and & = () mer @ sSequence of non negative numbers such
that ZmeM am < a. For each f € F, let us set

Pimas(f)
= nig/f\/l {;ﬂff +2v51n'/2 <$) V/|mlo? +81n (0%5) 02}
< %g&{ZFH\FMln( )\/ 0} (29)
jgm
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Then, the test ppa defined by

dma = SUD @ma,, where ¢, ,,. is given by (8),
meM

satisfies
Poloma =1 <a and Prlppma = 0] <0,
for all f € F such that || f]| > pm.as(f)-

Comment: Thanks to Theorem 2 the proofs of Propositions 2, 4, 6 and 7
reduce to obtaining some adequate upper bound on sup ¢z pat,a,s(f)-

Proof. Inequality (29) is clear and the fact that the test ¢4 is of level
a merely derives from the following:

PO[(bM,d = 1] S Z PO[(bm,am = 1] == Z (07%% S .
meM meM

Let us now show the result on the power of the test. Without loss
of generality we can take 0> = 1. For each m € M we set Zg%f =
> jem Yiand E2 =37, f7. On the one hand we have that

Pilppma =01 = PilVme M, Z2 ; < timjan
< inf P 7%, < .
< nf Pl Zo ¢ <t ] (30)

On the other hand, some deviation inequality on non central x? random
variables due to Birgé (1999) (Lemma 1) tells us that

Py |2 s < |m|+ E2 — 2+/(Im| + 2E2) In(1/5)| < 6.
Thus, the result is proved if we show that for some m in M,
o < Il + B% —2/(ml + 2E5) (1), (31)
We now prove that (31) holds if m satisfies

B2 = fIF = 30 2 > 2/t (ﬁ) ]+ 81n (L) 3

igm 'm0

We start with an inequality due to Laurent & Massart (1998) on central
x? random variables: we have

timlam < [m| + 2/ |m|In(1/0,) + 2In(1/0yy,).
Setting z = In(1/6) and y,, = In(1/a,,), we need to check that
1

S B 2 /(I + 2B2)e + /[l + . (3)
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Solving inequation (33) with respect to E2, we obtain that (33) holds
true as soon as

S > /Tl + VY 4 4 i+ 43/l + [l 22+ g (34)

Hence it remains to obtain a suitable upper bound for the right-hand
side of (34). Using the inequalities vu + v < y/u + /v, 2uv < u? + v?
and /u + 2y/v < v/5y/u + v which holds for all u,v > 0, we obtain
that

\/|m|ym+\/5\/4a7+4ym+4\/|m|ym+ |m| + 22 + Y,
< VIl (VE+ vim) + 2V 5+ Y+ /Tl + 25+ Y

< VIm| (\/E—I—Z\/y_,,J + 4z + 2y,

< VBVZF ym/m| + 4z + ym),
the last expression being smaller than E? /2 by (32). This ends the
proof of (31). O

8.2. Proof of Proposition 2. We set M = M(k,n) and for each
m e M,

U = e = o/ (2CF) > a/(2(en/k)").
We deduce from Theorem 2 that the test ¢}, is of level a. Concerning
the power of the test, we have that

In <a%5> In (j5> +hin () < [m (%) + 1} kln ()
— In (2‘;) kln ().

thus by setting
L=t (%) >1
n
ad) =7

and choosing m among Mk, n) such that f; =0 for j ¢ m we deduce
that for each f,

Puaslf) < 2V5VIkIn 1/2(k>a +8Lk1n(:> o?
< 2(v5+4)LkIn (%) o2, (35)

IN

Now, by choosing m = {1, ...,n} and arguing in the same way we get
that
Pinas(f) < 2(V5 +4)Ly/no”. (36)

Inequalities (35), (36) and Theorem 2 lead to the desired result.
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8.3. Proof of Proposition 4. It is straightforward to see that the
test ¢, is of level a. In the sequel, we set

Agpn={D el Ra} <VDo*}, L=In(1/(ad)) >1,

F =E&u2(R), M ={{1,...,D*}} and @ = «. For the power of the test,
we use Theorem 2 with some suitable upper bound for the quantity
/33\47&,5(f) with f € F. To do so, we distinguish between two cases.
Firstly, if A, r = 0 then D* = N (note that the condition is possible
only in the case of a finite I since the a;’s converge towards 0) and for

all D € T R?a% > v/Do?. This implies that

VfeF, Z sz =0 and sup [(\/502> A (RQa%)] = V/No?

SDe Del

and thus for all f € F,

Pas(f) < 2(v5+4)LVNo?
= 2(\/54—4)1} sup [(\/502> A (R%%)} :

Del
which proves the result in this case.

Secondly, if A, p # () then there exists some D* € I such that R?a%. <

v D*c? and by assumption we know that D* > 2. For such a D*, we
have that

VieF, Y f} <R,

j>D*
and that
V' D*o? < V2vD* =16 =2 [(\/D* — 102) A (RZaD*,l)]

< \/isup [(\/502> A (RzaQD)} .

Del

Thus for all f € F,
153\/1,07,5(]0) < RQG%* + 2(\/5 +4)L D*c?
< [1 +2(\/3+4)L] vV D*o?

< V2 [1 +2(v5+ 4)L] sup [(\/502) A (RQa%)] :

Del

which concludes the proof.
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8.4. Proof of Propositions 6 and 7. Let us set,

M:{l,...,D*}U( U {j}),

j>D* jel

Vi€, j> D" ay =a; =2a/(7*(j — D*)?).
Thanks to Theorem 2, we obtain that the test ¢}, = ¢ is clearly of
level a.. It remains to prove the result concerning the power of the test.

In the sequel, we set

k= 2(V5+4)In(2/(ad)) and F =&, ,(R).

8.4.1. Reduction of the problem. Let us define the set flam,R by
Aupn={D €1, B [VD]"™" < [VD]o*}.
Note that this set is non void when [ is infinite since the ap’s converge

towards 0.

We first prove Propositions 6 and 7 under one of the following condi-
tions

(i) Aypr =0 and (15) holds true.
(ii) f belongs to the space
Froe = {f € €2(1)7 Elj > D*7 |fj‘2 > b?—D*Uz}
— 2 2 2 2
— {f e liL(I), |f]IF > j1>an* { Z fe +0;_p-o }} .
kELk#]
where for j € N*, the b;’s are defined by
2 2 :2
b7 = 2(v/5 + 4) In(7%5%/(2a9)).
Let us now assume (i). Then I = {1,..., N}, D* = N and
QZ,p,R = (\/N—‘ 02'

By applying Theorem 2 with ¢y .2 = ¢p
the proof of Proposition 4 we obtain that

Pt [¢5 = 0] < Py [¢nap =0] <0

N},a/2 and arguing as in

.....
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for all f € F such that [|f|| > prt,a/2,6, Where we have taken M =
{{1,..., N}}. Since now,

Pras(f) < KVNo®
< C(n2+N)' "2 g2 n
the result follows under (15).
Let us now assume (ii). By setting
M ={{j}/ jel. j>D"} andd = (o)jem,
we have that ¢iocq = ¢rrar. We derive from (29) that for all f € F,

712 = inf { > s+ bimﬂ} > sl

kel k#j
which leads to the result, i.e.
Py [¢a = 0] < Pr [Proca = 0] <6,
by applying Theorem 2.

Leaving out the cases (i) and (ii), we now assume that A, , r # 0 and
that f belongs to the set

H=Fn{febl),Vj>D" |fi]?<bti_po’}.
Thus, it remains to get some suitable upper bound on p3, 5 s5(f) for

feH.

8.4.2. End of the proof of Proposition 6. For all f € ‘H, we bound the
bias term in the following way:

2 2p 2 plfilf
YIS D dnThet g (37)
7>D* j>D* J
< by PRPAR.oPP. (38)

Since A, , g # 0, we have that
D* = inf{Del, R%3[VD]'"*" <[VD]o*}
— inf{D eI, RPa’o*? <[VD]o?},
and by (38) we obtain that for all f € H,
Prtas(f) < Z £+ kVD*o?
j>D*

< (/{ + b?v_p) (\/51 a2
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By assumption D* > 2 which implies that [ D*] < 2[v/D* — 1] and
thus by definition of D* we get
Pinas(f)
< 2 (/<J+b2_p) [V D* —1]0?
= 2(n+057) [(IVD =T10*) A (R2a_ VD= 11'77)]
< 2(k+by")sup [(f@}eﬂ) A (R%%f@]l_z/”ﬂ .
Der

To end the proof it remains to show that

2(k+b57) < 8(\/_+4)1n< )1111 P23 4 N).

ad

This inequality is a straightforward consequence of the following ones:

for all j > 1,
b A(V5+4) <1n (\/%) + ln(j)>

2 2

(\/_+4)1n<2 5)1n(2+j). (39)

IN

8.4.3. End of the proof of Proposition 7. Using the Assumption (H) on
the a;’s we infer from (37) that

- 2—
ORI s S
J>Dx j=1
< RPab.o®P) 600
j>1
Using now (39) we obtain that
2 2

2 en 2
Z f; §22(£+4)ln(2a5)Rpa%*o P,

j>D*

and the result follows by arguing as previously.
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