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Abstract. Let Y = (Yi)i∈I be a finite or countable sequence of
independent Gaussian random variables of mean f = (fi)i∈I and
common variance σ2. For various sets F ⊂ `2(I), the aim of this
paper is to describe the minimal `2-distance between f and 0 for
the problem of testing “f = 0” against “f 6= 0, f ∈ F” to be
possible with prescribed probabilities of error. To do so, we start
with the set F which collects the sequences f such that fj = 0 for
j > n and |{j, fj 6= 0}| ≤ k where the numbers k and n are integers
satisfying 1 ≤ k ≤ n. Then we show how such a result allows to
handle the cases where F is an ellipsoid and more generally an
`p-body with p ∈]0, 2]. Our results are not asymptotic in the sense
that we do not assume that σ tends to 0. Finally, we consider the
problem of adaptive testing.

1. Introduction

We consider the following statistical model

Yi = fi + σεi, i ∈ I (1)

where f = (fi)i∈I is an unknown sequence of real numbers (called the
signal), σ a positive number and the εi’s a sequence of i.i.d. standard
Gaussian random variables. Throughout this paper, I either denotes
the set {1, ..., N} (for some integer N ≥ 1) or N∗ = N\{0}, the notation
I being useful to handle both the Gaussian regression model and the
Gaussian sequence model simultaneously. The observations are given
by the sequence of Gaussian random variables Y = (Yi)i∈I , their joint
law is denoted by Pf .
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Let F be some subset of the Hilbert space

`2(I) =

{
f ∈ RI , ‖f‖2 =

∑
i∈I

f 2
i < +∞

}
.

The aim of the paper is to describe the minimal radius ρ for which
the problem of testing “f = 0” against the alternative “f ∈ F and
‖f‖ ≥ ρ” with prescribed probabilities of errors is possible .

More precisely, let us fix some level α ∈]0, 1[ and consider some level-α
test φα with values in {0, 1} to test “f = 0” against “f ∈ F \ {0}” (we
decide to reject the null hypothesis when φα(Y ) = 1). The test φα is
powerful if it rejects the null hypothesis for all f ∈ F lying outside a
small ball (the smaller the better) around 0 with probability close to
1. Then, given some δ ∈]0, 1[ (typically small) it is natural to measure
the performance of the test via the quantity ρ(φα,F , δ, σ) defined by

ρ(φα,F , δ, σ) = inf

{
ρ > 0, inf

f∈F ,‖f‖≥ρ
Pf [φα = 1] ≥ 1− δ

}
= inf

{
ρ > 0, sup

f∈F ,‖f‖≥ρ

Pf [φα = 0] ≤ δ

}
.

The aim of this paper is to describe the quantity

inf
φα

ρ(φα,F , δ, σ) = ρ(F , α, δ, σ), (2)

the infimum being taken over all the level-α tests. In the sequel we
shall call this quantity the (α, δ)-minimax rate of testing over F (or
the minimax separation rate), the word “rate” referring to the scale
parameter σ which is meant to decrease towards 0 when one considers
the asymptotic point of view.

It is beyond the scope of this paper to give an exhaustive review of the
literature on the problem of hypothesis testing. We refer for further
details to the series of papers due to Ingster (1993a,b,c) which repre-
sent a landmark in the problem of finding minimax rates of testing over
non parametric alternatives. In the Gaussian white noise model, the
case of ellipsoids was first considered in Ermakov (1991) where exact
minimax rates of testing is stated under assumptions on the semi-axes
of the ellipsoids. Other kinds of alternatives are considered in Ing-
ster (1993a,b,c) including Hölderian functional spaces, ellipsoids in L2

and other function spaces... . Lepski & Spokoiny (1999) obtain mini-
max rates of testing over Besov bodies Bs,p,q(R) with p ∈]0, 2[ (see also
Ingster & Suslina (1998)) and show an unexpected dependence (with
regard to the case p = 2) of the minimax rate of testing with respect
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to s. Spokoiny (1996) considers the problem of finding adaptive tests
and shows that adaptation is impossible without some loss of efficiency
(see also Ingster (1998)). In other words, it is not possible to find a test
which achieves the minimax rate of testing (up to a universal constant)
simultaneously over non trivial collections of Besov bodies.

A common feature of those results is their asymptotic character. In this
paper we give non asymptotic results, mainly focusing on the problem
of finding sharp lower bounds for the minimax rate of testing. However,
asymptotic (upper) and lower bounds for the quantity ρ(F , α, δ, σ) can
be deduced from our result by making σ tend to 0. In the regression
framework, it is convenient to set σ = 1/

√
N in order to obtain sepa-

ration rate with respect to ‖ ‖N = ‖ ‖/
√

N . The asymptotics are then
obtained by letting N grow towards infinity as usual.

This paper was originally motivated by the following question: in the
regression framework, what is the minimax rate for testing 0 against
the class of signals which have their components equal to 0, except
at most D of them? This situation corresponds to the reception of a
sparse signal (at least N −D components of the signal are 0 with D/N
small), the problem being to determine some lower bound on the signal
energy, ‖f‖2, for the detection to be possible with probability close to
1 and the probability of false alarm close to 0.

In Section 2, we give a partial answer to this question (a lower bound
and an upper bound on the minimax rate of testing which are equal up
to a possible ln(N) factor). An interesting feature of the result is that,
for suitable values of D, the minimax rate of testing and the minimax
rate of estimation are of the same order which is, as far as we know,
seldom the case.

Another particular feature of this result is that it allows to derive non
asymptotic lower bounds for the minimax rates of testing over ellip-
soids and more generally over `p-bodies (also called ellipsoids in `p). A
similar approach was adopted by Birgé & Massart (1999) for the re-
lated problem of estimation. To our knowledge the statement of lower
bounds for the minimax rate of testing over general `p-bodies (that is
under no assumption on the decay of the semi-axes) is new.

These results allow to recover those first established by Ermakov for
ellipsoids (relaxing thus the assumptions on the semi-axes) and by Lep-
ski & Spokoiny for some Besov bodies Bs,p,q(R) with s > 0, R > 0,
p ∈]0, 2], q ≥ p, this set being related to `p-bodies with semi-axes of
the form k−s.
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The paper is organized as follows. As already mentioned, Section 2
is devoted to the problem of the detection of a sparse signal. Non
asymptotic upper and lower bounds for the minimax rates of testing
over ellipsoids are given in Section 3, the more general case of `p-bodies
(with p ∈]0, 2]) being treated in Section 4. The case of Besov bodies is
considered in Section 5. The problem of adaptive testing is considered
in Section 6 and the proofs are postponed to the last sections.

To end this section we introduce some notations that will be repeatedly
used along the paper.

For any F ⊂ `2(I) and α ∈]0, 1[, we denote by β(F) the quantity

β(F) = inf
φα

sup
f∈F

Pf [φα = 0] ,

the infimum being taken over all tests φα with values in {0, 1} satisfying
P0[φα = 1] ≤ α. By convention β(F) = 0 if F = ∅. For x, y ∈ R, we
set

x ∧ y = inf{x, y}, x ∨ y = sup{x, y}, dxe = inf{n ∈ N, n ≥ x},

and for all integers n, k such that 0 ≤ k ≤ n,

Ck
n =

n!

k!(n− k)!
.

Throughout this paper the numbers α and δ ∈]0, 1 − α] are fixed and
in order to keep our formulas as short as possible, we set

η = 2(1− α− δ) and L(η) = ln(1 + η2) < ln 5.

Lastly, C, C ′, C ′′... denote constants that may vary from line to line.

2. Detecting non zero coordinates

2.1. The problem at hand. Let I be either {1, ..., N} or N∗ and let
(ej)j≥1 be the orthonormal family of vectors of `2(I) defined by

(ej)i = 1 if i = j and (ej)i = 0 otherwise. (3)

When I is finite the space `2(I) is merely RN and the ej’s the canonical
basis. For each pair of integers (n, k) with k ∈ {1, ..., n} (n ≤ N when
I = {1, ..., N}), let M(k, n) be the class of all the subsets of {1, ..., n}
of cardinality k. Now for all m ∈M(k, n) and D ≥ 1, let us set

Sm = span {ej, j ∈ m} and SD = span {ej, j ∈ {1, ..., D}} ,

where span(A) denotes the linear space generated by A ⊂ `2(I).
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In this section we study the case where F is given by

F =
⋃

m∈M(k,n)

Sm, (4)

2.2. Lower bounds. To start with, let us consider the elementary
case where n = k = D ≥ 1, that is when F = SD.

Proposition 1. Let us set

ρ2
D =

√
2L(η)D σ2, (5)

then for all ρ ≤ ρD,

β ({f ∈ SD, ‖f‖ = ρ}) ≥ δ.

Comments: The result can be described in words in the following way:
whatever the level-α test φα, there exists some signal f ∈ SD satisfying
‖f‖ ≥ ρD for which the error of second kind, Pf [φα = 0], is at least δ.
This implies the lower bound

ρ (SD, α, δ, σ) ≥ ρD,

the left-hand side of this inequality being defined by (2).

The Gaussian distribution being invariant under orthogonal transfor-
mations, the same result holds for F being any linear space of dimen-
sion D.

Let us now turn to the general case.

Theorem 1. Let F be given by (4) and let us set

ρ2
k,n = k ln

(
1 + L(η)

n

k2
+

√
2L(η)

n

k2
+
(
L(η)

n

k2

)2
)

σ2. (6)

Then for all ρ ≤ ρk,n,

β ({f ∈ F , ‖f‖ = ρ}) ≥ δ.

If α + δ ≤ 59% then one has

ρ2
k,n ≥ k ln

(
1 +

n

k2
∨
√

n

k2

)
σ2. (7)
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2.3. Upper bounds. Let us now discuss the sharpness of the results
stated in the previous section. For this aim we introduce some addi-
tional notations and define some special tests based on χ2-statistics.
For each finite subset m of N∗ we set

φm,α = 1I

{∑
i∈m

Y 2
i > t|m|,ασ2

}
(8)

where for each d ∈ N∗, td,α satisfies

P [Z2
d > td,α] = α if Z2

d ∼ χ2(d). (9)

Lastly, we denote by φD,α the test defined by

φD,α = φ{1,...,D},α = 1I

{
D∑

i=1

Y 2
j ≥ tD,ασ2

}
. (10)

The following result holds.

Proposition 2. Let F be defined by (4). The test φ∗α defined by

φ∗α =

[
sup

m∈M(k,n)

φm,α/(2Ck
n)

]
∨ φn,α/2,

satisfies

P0 [φ∗α = 1] ≤ α and Pf [φ∗α = 0] ≤ δ,

for all f ∈ F such that

‖f‖2 ≥ C1

[(
k ln

(
e
n

k

))
∧
√

n
]
σ2.

One can take C1 = 2(
√

5 + 4) ln(2e/(αδ)).

Comments: The results of Theorem 1 and Proposition 2 show that (for
reasonable values of α and δ) the quantity ρ2 = ρ2 (F , α, δ, σ) satisfies

k ln

(
1 +

n

k2
∨
√

n

k2

)
σ2 ≤ ρ2 ≤ C1

[(
k ln

(
e
n

k

))
∧
√

n
]
σ2.

To analyze further these inequalities, we take σ2 = 1 and distinguish
between the values of k.

• When k = n = D,

we see that the lower and the upper bound are both of order
√

D, which
shows that the result of Proposition 1 is sharp and that an optimal test
is merely obtained by rejecting the null hypothesis when

∑D
j=1 Y 2

j is
large enough.
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• When k ≤ nγ for some γ < 1/2,

the lower and the upper bound are both of order k ln(n) (up to a
constant depending on γ for the lower bound). This shows that the
lower bound given in Theorem 1 is sharp and that the test φα is rate
optimal. Since the minimax rate of estimation with respect to the
quadratic loss function ‖ ‖2 over F is of order k ln(en/k) (see Birgé
& Massart (1999), Theorem 3) we note that in this case the squared
minimax separation rate and the minimax estimation rate over F are
both of the same order.

• When
√

n ≤ k < n,

the lower and the upper bound do not depend on k any longer and are
both of order

√
n. Here again, the lower bound stated in Theorem 1

is sharp and the test φα rate optimal. The fact that the separation
rate stabilizes around

√
n for k >

√
n contrasts with the estimation

problem for which the estimation rate keeps growing almost linearly
with respect to k as k becomes large.This phenomenon is due to the
fact that for the problem of hypothesis testing we benefit from the
prior assumption that f belongs to Sn, the squared rate of testing over
Sn being of order

√
n. Consequently, in the regression framework (by

taking SN = RN) rates of testing are always better than
√

N (up to a
constant). We shall meet this phenomenon again but not mention it
any more.

• When k <
√

n and k is close to
√

n,

the lower and the upper bound differ from at most a ln(n) factor. For
example when k is of order

√
n/ ln(n), the lower bound presented in

Theorem 1 is of order
√

n ln ln(n)/ ln(n), the upper bound being of
order

√
n. We conjecture that the lower bound is sharp and do not

know whether the preceding testing procedure is suboptimal or not.

Finally, let us emphasize the gap (in terms of rates of testing) between
the situation where the location of the non zero components of the sig-
nal is known (the squared rate is of order

√
D) and where the location

is unknown (then the squared rate is at least D). This difference is
worth mentioning since for the estimation problem the corresponding
minimax rates differ only from (at most) a ln(n) factor.
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3. Minimax rate of testing over an ellipsoid

In this section we assume that F is an ellipsoid, that is of the form

Ea,2(R) =

{
f ∈ `2(I),

∑
k∈I

f 2
k

a2
k

≤ R2

}
,

where R denotes a positive number and the aj’s a non increasing se-
quence of positive numbers such that a1 = 1 and limk→+∞ ak = 0 when
I = N∗. The case of `p-bodies, which is an extension to the case p 6= 2,
will be considered in the next section.

3.1. Lower bounds. The following holds

Proposition 3. Let us set

ρ2
a,2,R = sup

D∈I

[
ρ2

D ∧ (R2a2
D)
]
, (11)

where ρD is defined by (5). Then we have

β ({f ∈ Ea,2(R), ‖f‖ ≥ ρa,2,R}) ≥ δ.

If α + δ ≤ 59% then

ρ2
a,2,R ≥ sup

D∈I

[
(
√

Dσ2) ∧ (R2a2
D)
]
.

Proof. We use the notations introduced at the beginning of Section 2.
We set F = Ea,2(R) and for each D ∈ I, r2

D = ρ2
D ∧ (R2a2

D). Let us
fix some D ∈ I. Since the aj’s are non increasing and r2

D ≤ R2a2
D,∑D

j=1 f 2
j /a2

j ≤ R2 for all f ∈ SD such that ‖f‖ = rD. This shows the
inclusion

{f ∈ SD, ‖f‖ = rD} ⊂ {f ∈ F , ‖f‖ ≥ rD}.
Now, since rD ≤ ρD we deduce from Proposition 1 that

β ({f ∈ Ea,2(R), ‖f‖ ≥ rD}) ≥ δ,

and the result of Proposition 3 follows since D is arbitrary in I. �

3.2. Optimality of the lower bounds. In this section we show that
the result of Proposition 3 is sharp. To this aim let us introduce the
quantity D∗ defined by

D∗ = inf
{

D ∈ I, R2a2
D ≤

√
Dσ2

}
,

with the convention that inf ∅ = N . The following result holds
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Proposition 4. If σ < R, the test φ∗α defined by φ∗α = φD∗,α where
φD∗,α is given by (10), satisfies

P0[φ
∗
α = 1] ≤ α and Pf [φ

∗
α = 0] ≤ δ,

for all f ∈ Ea,2(R) such that

‖f‖2 ≥ C1 sup
D∈I

[
(
√

Dσ2) ∧ (R2a2
D)
]
.

One can take C1 =
√

2[1 + 2(
√

5 + 4)] ln(1/(αδ)).

Comment: This result and Proposition 3 show that the quantity ρa,2,R

is of the same order as the minimax rate of testing over Ea,2(R). Note
that the quantity ρa,2,R is obtained by finding the best trade-off over I

between the two terms R2a2
D and ρ2

D (which is of order
√

Dσ2). The
quantity RaD represents the maximal `2-distance of a point of Ea,2(R)
to SD. It is non increasing with respect to D. In contrast, the quantity
ρD which is (up to a constant) the minimax rate of testing over SD, is
non decreasing with respect to D. The situation is very similar to the
situation encountered in the estimation problem. Let us explain why.
For the sake of simplicity let us assume that I = {1, ..., N}. For each
f ∈ Ea,2(R), one can estimate f from the data (Yi)i∈I thanks to the

projection estimator onto SD given by f̂D = (Y1, ..., YD, 0, ..., 0)′. Since
this estimator satisfies

sup
f∈Ea,2(R)

E
[
‖f − f̂D‖2

]
≤ R2a2

D + Dσ2,

one gets that for some value of D = D∗ suitably chosen to balance the
bias term R2a2

D and the variance term Dσ2, the minimax risk on Ea,2(R)
is bounded from above, up to an universal constant, by (actually some
additional minor conditions should be added),

sup
D∈I

[
(Dσ2) ∧ (R2a2

D)
]
.

This quantity turns out to be the minimax rate of estimation over the
ellipsoid in various cases (see Birgé & Massart (1999)). Then, the anal-
ogy with the problem of testing becomes clear. It is worth mentioning
that just as the estimator f̂D∗ is minimax (up to a constant) for the

problem of estimation, the test based on the test statistic ‖f̂D∗‖2 is
rate optimal for the problem of hypothesis testing. Yet, in general
D∗ 6= D∗, the choice of D∗ being similar to that prescribed for the qua-
dratic functional estimation problem by model selection (see Laurent
& Massart (1998)).
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Instead of considering the ellipsoid Ea,2(R) we could also have dealt
with the larger set E ′a,2(R) defined by

E ′a,2(R) = {f ∈ `2(I), ∀D ∈ I, d(f, SD) ≤ RaD} ,

where d(f, SD) denotes the `2-distance between f and SD. Then the
lower and the upper bound for the separation rate would have been
the same (it is enough to see that the proof of Proposition 4 remains
unchanged when replacing Ea,2(R) by E ′a,2(R)). Of course in the regres-
sion framework, via some orthogonal transformation the same result
holds when replacing the nested collection of linear spaces (SD)D=1,...,N

by any other. Lastly, let us mention that the result easily extends to
sets of the form

{f ∈ `2(I), ∀D ∈ I ′, d(f, SD) ≤ RaD} ,

with I ′ ⊂ I, by noticing that

{f ∈ `2(I), ∀D ∈ I ′, d(f, SD) ≤ RaD} = E ′a,2(R)

when one defines the aD’s for D ∈ I \ I ′ by the formula

aD = inf {ak, k ∈ I ′ ∩ {1, ..., D}} .

Moreover, it is easy to check that one has

ρ2
a,2,R = sup

D∈I′

[
ρ2

D ∧ (R2a2
D)
]
.

The proof of Proposition 4 is deferred to Section 8.

4. Minimax rates of testing over an `p-body with 0 < p < 2

In this section we consider the case where F is an `p-body, that is of
the form

Ea,p(R) =

{
f ∈ `2(I),

∑
k∈I

∣∣∣∣fk

ak

∣∣∣∣p ≤ Rp

}
,

where R and p denote some positive numbers and a = (ak)k∈I some
non increasing sequence such that a1 = 1 and limk→+∞ ak = 0 when
I = N∗. The case p = 2 has already been considered in the previous
section.
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4.1. Lower bounds. The following result holds.

Proposition 5. Let us set

ρ2
a,p,R = sup

D∈I

[
ρ2
d
√

De,D ∧
(
R2a2

Dd
√

De1−2/p
)]

,

where ρ2
d
√

De,D is defined by (6). Then we have that

β ({f ∈ Ea,p(R), ‖f‖ ≥ ρa,p,R}) ≥ δ.

If α + δ ≤ 29% then

ρ2
a,p,R ≥ sup

D∈I

[(
d
√

Deσ2
)
∧
(
R2a2

Dd
√

De1−2/p
)]

.

Comment: As for the case p = 2, we see that the lower bound de-
rives from some best trade-off between two terms, this trade-off being
realized for some D∗ satisfying (roughly speaking)

√
D∗ = Rpap

D∗/σp.

For the sake of the simplicity of the forthcoming comment, we assume
that D∗ ∈ I. As

√
Dσ2 and R2a2

Dσ2−p are also of the same order for
the same value of D∗, we also have that ρ2

d
√

De,D is of order

sup
D∈I

[(√
Dσ2

)
∧
(
Rpap

Dσ2−p
)]

.

In the light of the related result obtained for p = 2, the last lower
bound turns out to be more tractable to comment. Indeed on the one
hand we recognize the quantity

√
Dσ2 which is of the same order as

the minimax rate of testing over SD. On the other hand, the quantity
Rpap

Dσ2−p can be interpreted as a “bias” term since it is the maximal
distance to SD of a point belonging to the set

Ea,p(R) ∩
{

f ∈ `2(I), max
i∈I

|fi| ≤ σ

}
.

In other words, we use the linear space SD to approximate the signals
of the `p-body belonging to some hypercube.

Proof. We use the notations introduced in Section 2, set F = Ea,p(R)

and for each D ∈ I, r2
D = ρ2

d
√

De,D ∧
(
R2a2

Dd
√

De1−2/p
)
. Let us now

fix D ∈ I. For all m ∈ M(d
√

De, D) and f ∈ Sm ⊂ SD such that
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‖f‖ = rD, we have by Hölder’s inequality

∑
j∈I

∣∣∣∣fj

aj

∣∣∣∣p =
∑
j∈m

∣∣∣∣fj

aj

∣∣∣∣p ≤ |m|1−p/2

(∑
j∈m

f 2
j

a2
j

)p/2

≤ rp
Dd
√

De1−p/2

ap
D

≤ Rp, (12)

using that r2
D ≤ R2a2

Dd
√

De1−2/p. We deduce from (12) the inclusionf ∈
⋃

m∈M(d
√

De,D)

Sm, ‖f‖ = rD

 ⊂ {f ∈ F , ‖f‖ = rD} ,

and as rD ≤ ρd
√

De,D, we derive from Theorem 1 that

β ({f ∈ Ea,p(R), ‖f‖ ≥ rD}) ≥ δ.

The result follows since D is arbitrary in I. To finish the proof of
Proposition 5, it remains to check that ρ2

d
√

De,D ≥ d
√

De when α + δ ≤
29%. Since for D ≥ 1, D/d

√
De2 ≥ 1/2, we deduce from (6) that

ρ2
d
√

De,D ≥ ln(1 + L(η)/2 +
√
L(η) + L(η)2/4))d

√
De,

and the result follows since for α + δ ≤ 29%,

ln(1 + L(η)/2 +
√
L(η) + L(η)2/4)) ≥ 1.

�

4.2. Upper bounds. Let us define D∗ by

D∗ = inf
{

D ∈ I, R2a2
Dd
√

De1−2/p ≤ d
√

Deσ2
}

,

with the convention, inf ∅ = N and

φloc,α/2 = sup
j>D∗,j∈I

φ{j},2α/(π2(j−D∗)2),

where the tests φ{j},2α/(π2(j−D∗)2) are given by (8). Let us now set

%2
a,p,R = sup

D∈I

[(
d
√

Deσ2
)
∧
(
R2a2

Dd
√

De1−2/p
)]

.

The first result considers the case of the regression framework.

Proposition 6. Assume that I = {1, ..., N} and that σ < R. Let us
define the test φ∗α by

φ∗α = φloc,α/2 ∨ φD∗,α/2. (13)
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The test φ∗α satisfies

P0[φ
∗
α = 1] ≤ α and Pf [φ

∗
α = 0] ≤ δ, (14)

for all f ∈ Ea,p(R) such that

‖f‖2 ≥ C (ln(2 + N))1−p/2 %2
a,p,R. (15)

One can take C = 8(
√

5 + 4) ln(eπ/(αδ)).

Comment: This result shows that in the regression framework the rate
ρ2

a,p,R is optimal up to a possible ln(N) factor. Note that the test
presented above actually mixes several tests. The presence of local
tests, namely the φ{j},2α/(π2(j−D∗)2)’s, allows to reject the null hypothesis
when one value of the |Yj| is large enough.

The next Proposition shows that the rate ρ2
a,p,R is optimal under the

following (restrictive) condition:

(H) The sequence (θj)j∈I defined by

θj = sup
j′∈I,j+j′∈I

aj+j′

aj′

satisfies

Σ =
∑
j∈I

θp
j ln(2 + j)1−p/2 < +∞.

Proposition 7. Assume σ < R and that (H) holds. The test φ∗α defined
by (13) satisfies

P0[φ
∗
α = 1] ≤ α and Pf [φ

∗
α = 0] ≤ δ,

for all f ∈ Ea,p(R) such that

‖f‖2 ≥ C ′%2
a,p,R. (16)

One can take C ′ = (Σ ∨ 1)8(
√

5 + 4) ln(eπ/(αδ)).

Comment: Condition (H) is fulfilled when, for example, the aj’s are
of the form θe−λj for some λ, θ > 0. Unfortunately, when the ak’s are
of the form k−s for some s > 0, Condition (H) is not fulfilled. Yet,
in this case the lower bound obtained in Proposition 5 is known to be
sharp as we shall see in the next section.

The proofs of Proposition 6 and 7 are deferred to Section 8.
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5. Besov bodies

This section is devoted to the statement of lower bounds for the mini-
max rate of testing over Besov bodies. Let us first recall what a Besov
body is (as introduced by Donoho & Johnstone (1998)). In the sequel
I = N∗. Let R > 0, p > 0, q ∈]0, +∞] and s′ > (1/p− 1/2)+. Setting
s = s′ − (1/p− 1/2)+ we define the Besov body Bs′,p,q(R) by

Bs′,p,q(R) =

f ∈ `2(I),
∑
j≥0

2js

2j+1−1∑
k=2j

|fk|p
1/p


q

≤ Rq

 ,

when q < +∞ and

Bs′,p,∞(R) =

f ∈ `2(I), sup
j≥0

2js

2j+1−1∑
k=2j

|fk|p
1/p

≤ R

 .

Clearly, when p ≤ q the inclusion Bs′,p,p(R) ⊂ Bs′,p,q(R) holds.

5.1. From Besov to `p-bodies. Originally the Gaussian white noise
model was the statistical framework chosen to study the problem of
minimax hypothesis testing (we have already mentioned the work of
Ingster, Lepski & Spokoiny ...). The use of a suitable wavelet basis
allows to translate both the problem at hand, from the Gaussian white
noise model to the Gaussian sequence model, and the property that
the function belongs to some usual functional space (such as a Besov
space) to the property that the sequence of its coefficients onto the
wavelet basis belongs to some related sequence space (namely, a Besov
body). This translation is described in Spokoiny (1996). In order to
make further connections of our results with previous works, we now
establish some connections between Besov and `p-bodies.

Proposition 8. For all s, p > 0, let us denote by Es,p(R) the `p-body
defined by

Es,p(R) =

{
f ∈ `2(I),

∑
k∈I

kps|fk|p ≤ Rp

}
.

We have

Bs′,p,p(2
−sR) ⊂ Es,p(R) ⊂ Bs′,p,p(R),

where s′ = s + (1/p− 1/2)+.
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This proposition shows that from the minimax point of view, the `p-
body Es,p(R) and the Besov body Bs′,p,p(R) behave essentially in the
same way. In the next section we shall restrict our study to those `p-
bodies. To keep our notation coherent we write ρs,2,R for ρa,2,R when
the ak’s are of the form k−s.

Proof. We have that∑
j≥0

2jps

2j+1−1∑
k=2j

|fk|p ≤
∑
j≥0

2j+1−1∑
k=2j

kps|fk|p ≤
∑
k≥1

kps|fk|p,

which shows that Es,p(R) ⊂ Bs′,p,p(R). Conversely,∑
k≥1

kps|fk|p =
∑
j≥0

2j+1−1∑
k=2j

kps|fk|p ≤ 2ps
∑
j≥0

2jps

2j+1−1∑
k=2j

|fk|p

which shows that Bs′,p,p(2
−sR) ⊂ Es,p(R). �

5.2. The result for p = 2. The asymptotic version of this result is
known from Ermakov (1991).

Corollary 1. Let s > 0. Assume that σ2 < R2 and that α + δ ≤ 59%,
then we have for I = N∗,

ρ2
s,2,R ≥ 2−2sR2/(1+4s)σ8s/(1+4s), (17)

and for I = {1, ..., N},

ρ2
s,2,R ≥ 2−2s

[(
R2/(1+4s)σ8s/(1+4s)

)
∧
(√

Nσ2
)]

. (18)

Comment: From an asymptotic point of view, by taking σ2 = 1/N in
the Gaussian regression model we obtain that the right-hand side of
(18) is of order N−4s/(1+4s) if s > 1/4 and of order 1/

√
N otherwise.

Proof. Applying Proposition 3 we get

ρ2
s,2,R ≥ sup

D∈I

[
(
√

Dσ2) ∧ (R2D−2s)
]
.

For all x > 0,
√

xσ2 ≥ R2x−2s if and only if

x ≥
(
R2/σ2

)2/(1+4s)
= x∗ ≥ 1.

If D∗ = dx∗e belongs to I, then x∗ ≤ D∗ ≤ x∗ + 1 ≤ 2x∗ and we get
that

ρ2
s,2,R ≥ R2(D∗)−2s ≥ 2−2sR2(x∗)−2s = 2−2sR2/(1+4s)σ8s/(1+4s).
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If D∗ 6∈ I, then I = {1, ..., N} and N < x∗ which implies that

ρ2
s,2,R ≥

√
Nσ2.

�

5.3. The result for p < 2. The rates given below are optimal accord-
ing to the results by Spokoiny (1996) on the related Besov bodies.

Corollary 2. Let s > 0 and set s′′ = s − 1/4 + 1/(2p). Assume that
σ2 < R2 and that α + δ ≤ 29%, then we have for I = N∗,

ρ2
s,p,R ≥ 2−4s”R2/(1+4s”)σ8s”/(1+4s”), (19)

and for I = {1, ..., N},

ρ2
s,p,R ≥ 2−4s”

[(
R2/(1+4s”)σ8s”/(1+4s”)

)
∧
(√

Nσ2
)]

. (20)

Comment: From an asymptotic point of view, by taking σ2 = 1/N we
obtain that the right-hand side of (20) is of order N−4s”/(1+4s”) when
s ≥ 1/2− 1/(2p).

Proof. Applying Proposition 5 we get that

ρ2
s,p,R ≥

[
sup
D∈I

(
R2D−2sd

√
De1−2/p

)
∧
(
d
√

Deσ2
)]

≥
[
sup
D∈I

(
R2d

√
De−4s”

)
∧
(
d
√

Deσ2
)]

.

For x > 0, xσ2 ≥ R2x−4s” if and only if

x ≥ (R2/σ2)1/(1+4s”) = x∗ ≥ 1.

Let D∗ be the smallest integer such that d
√

De ≥ x∗. One has D∗ ≥ 1

since x∗ ≥ 1 and d
√

D∗e ≤ x∗ + 1 ≤ 2x∗ since

d
√

D∗e − 1 = d
√

D∗ − 1e ≤ d
√

D∗ − 1e ≤ x∗.

If D∗ ∈ I, then

ρ2
s,p,R ≥ R2d

√
D∗e−4s” ≥ 2−4s”R2/(1+4s”)σ8s”/(1+4s”)

Otherwise, I = {1, ..., N} and d
√

Ne < x∗ which implies that

ρ2
s,p,R ≥ d

√
Neσ2,

which completes the proof of Corollary 2. �
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6. Simultaneous rates of testing

6.1. Coming back to the problem of detecting non zero coordi-
nates. In this section we come back, for a short time, to the problem
of detecting non zero coordinates. In order to explain the problem let
us introduce some notations. Let (Ij)j∈J be some finite or countable
family of finite disjoint subsets of I. For each j ∈ J let n(j) = |Ij| and
k(j) ∈ {1, ..., n(j)}. Now we set

Mj = {m ⊂ Ij, |m| = k(j)} , Fj =
⋃

m∈Mj

Sm

and

ρ̃j =

{
ρn(j) defined by (5) when k(j) = n(j);
ρk(j),n(j) defined by (6) otherwise.

We have seen in Section 2 that for each j, the quantity ρ̃j = ρ̃j(η)
is of the same order as the minimax separation rate over Fj (up to a
possible ln(n(j)) factor for some cases). From now on, the dependency
of ρ̃j = ρ̃j(η) with respect to η is emphasized.

The following result holds.

Proposition 9. For any sequence of positive weights pj such that∑
j∈J

pj ≤ 1,

we have

β

(⋃
j∈J

{f ∈ Fj and ‖f‖ = rj}

)
≥ δ,

as soon as for all j ∈ J , rj ≤ ρ̃j(η/
√

pj).

The proof is postponed to Section 7.4.

Comment: Since the quantity ρ̃j(η/
√

pj) is of order ρ̃j times a power
of ln(1/pj), the result of Proposition 9 means that in the problem of
testing 0 against this multiple alternative, a loss of efficiency over at
least one of the alternatives is unavoidable. For example, when |J |
is finite, by taking pj = 1/|J | for all j ∈ J one derives that a loss
of efficiency by a factor (a power of) ln(|J |) over one of the Fj’s is
unavoidable. From an asymptotic point of view this phenomenon is
worth mentioning when the cardinality of J depends upon σ (or N
in the regression framework). Let us also mention that the loss of
efficiency may not affect all the the alternatives (this fact is seldom
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emphasized in the literature), we refer for further details to the work
of Baraud, Huet, Laurent (1999) in the regression framework.

In the sequel we derive some lower bounds for the problem testing
“f = 0′′ against a multiple alternative such as a collection of nested
linear spaces or a collection of nested ellipsoids. Extensions to more
geneneral `p-bodies possible to the price of more technicalities.

6.2. The case of nested linear spaces. We shall restrict our study
to the case of the linear spaces SD’s defined at the beginning of Sec-
tion 2. However, when I = {1, ..., N} this result holds true for any
(substantial) nested collection of linear subspaces of RN .

Corollary 3. Let us set

ρ̄2
D = C

√
ln ln(D + 1)

√
Dσ2. (21)

with C =
√

2
[
(ηπ/

√
6) ∧ 1

]
. We have that

β

(⋃
D∈I

{f ∈ SD, ‖f‖ = rD}

)
≥ δ,

if for all D ∈ I, rD ≤ ρ̄D.

Proof. We take σ2 = 1. For all j ≥ 0 such that 2j+1− 1 ∈ I (i.e. for all
j ≤ J with J = +∞ if I = N∗, J = J(N) = ln(N + 1)/ ln(2)− 1 when
I = {1, ..., N}), let S̄j be the linear span of the ek’s for k ∈ {2j, ..., 2j+1−
1}. Note that dim(S̄j) = 2j and that S̄j ⊂ SD for D = D(j) = 2j+1−1.
Setting for F ⊂ `2(I) and r > 0,

F [r] = {f ∈ F , ‖f‖ = r} ,

we get that

J⋃
j=0

S̄j[rD(j)] ⊂
J⋃

j=0

SD(j)[rD(j)] ⊂
⋃
D∈I

SD[rD].

We now use Proposition 9 with pj = 6/[π2(j + 1)2] for j ∈ N and we
get

β

(⋃
D∈I

{f ∈ SD, ‖f‖ = rD}

)
≥ δ,

as soon as for those D = D(j),

r2
D ≤

√
2 ln(1 + η2/pj)

√
D =

√
2 ln(1 + η2π2(j + 1)2/6)2j/2. (22)



NON ASYMPTOTIC MINIMAX RATES OF TESTING 19

Thus, it remains to check (22). Using that

j + 1 = ln(D + 1)/ ln(2) ≥ ln(D + 1),

2j/2 ≥
√

D/2 and the convexity inequality

ln(1 + ux) ≥ u ln(1 + x), (23)

which holds for all x > 0 and u ∈ [0, 1], we obtain that√
2 ln(1 + η2π2(j + 1)2/6)2j/2

≥
[
(ηπ/

√
6) ∧ 1

]√
ln(1 + ln2(D + 1))

√
D

≥
√

2
[
(ηπ/

√
6) ∧ 1

]√
ln ln(D + 1))

√
D

= ρ̄2
D.

Since by assumption ρ̄2
D ≥ r2

D, (22) is proved and the result follows. �

6.3. Collection of nested ellipsoids. In this section we consider the
case of a collection of ellipsoids of the form {Ea,2(R), R ∈ R+}.

Corollary 4. For each R > 0, let us set

ρ̄2
a,2,R = sup

D∈I

[
ρ̄2

D ∧
(
R2a2

D

)]
,

where ρ̄D is given by (21). Then we have that

β

(⋃
R>0

{f ∈ Ea,2(R), ‖f‖ ≥ ρ̄a,2,R}

)
≥ δ.

Comment: The problem of finding a test that achieves (up) to a con-
stant the minimax separation rate simultaneously over a family of al-
ternatives is usually called the problem of adaptation. In contrast with
the problem of estimation, in the problem of hypothesis testing adapta-
tion is in general impossible. This result was proved by Spokoiny (1996)
for the case of a family of Besov bodies. In the case considered here
we deal with the family of nested ellipsoids {Ea,2(R), R ∈ R+}. This
amounts to adapting over the radius R in R∗

+. In the literature, one
usually tries to adapt over both R ∈ R∗

+ and a among some non trivial
class of sequences of positive numbers, but since we are interested in
lower bounds, the problem of adaptation over R only is enough. As
Spokoiny, by this result we obtain that the problem of finding adaptive
tests is possible only if one tolerates a loss a efficiency (which is of order
a ln ln(N) factor in the regression framework).
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Proof. We use the same notations as in the proof of Proposition 3. Let
D(R) ∈ I which achieves the supremum of ρ̄2

D ∧ (R2a2
D) = r̄2

D over I
(the existence of D(R) is obvious when I is finite and is a consequence
of the monotonicity of ρ̄D and R2a2

D otherwise). Arguing as in the
proof of Proposition 3 we have for each R,

{f ∈ SD(R), ‖f‖ = rD(R)} ⊂
{
f ∈ Ea,2(R), ‖f‖ ≥ rD(R)

}
,

and as D(R) describes I when R varies, we obtain that⋃
D∈I

{f ∈ SD, ‖f‖ = rD} =
⋃
R>0

{f ∈ SD(R), ‖f‖ = rD(R)}

⊂
⋃
R>0

{
f ∈ Ea,2(R), ‖f‖ ≥ rD(R)

}
.

Then the result follows from Corollary 3. �

7. Proof of Theorem 1 and Propositions 1 and 9

7.1. A general method to obtain lower bounds. The proof is
based on a Bayesian approach which is classical (see Lehmann (1997)
Chapter 6 for example ). The starting point of the proof is similar
to that described in Ingster (1993a,b,c) and borrows some classical
inequalities on the norm in total variation that can be found in Le
Cam (1986) (Chapter 4). . For the sake of completeness, let us describe
the main ideas of the approach.

Let F be some subset `2(I) and ρ some positive number. Let µρ be
some probability measure on

F [ρ] = {f ∈ F , ‖f‖ = ρ}.

Setting Pµρ =
∫

Pf dµρ(f) and Φα the set of level-α tests, we have

β(F [ρ]) ≥ inf
φα∈Φα

Pµρ [φα = 0]

≥ 1− α− sup
A/ P0(A)≤α

∣∣Pµρ(A)− P0(A)
∣∣

≥ 1− α− sup
A∈A

∣∣Pµρ(A)− P0(A)
∣∣

= 1− α− 1

2
‖Pµρ − P0‖, (24)

where ‖Pµρ − P0‖ denotes the total variation norm between the prob-
abilities Pµρ and P0.
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Whenever Pµρ is absolutely continuous with respect to P0, the norm
in total variation between these two probabilities is easy to compute.
Setting

Lµρ(y) =
dPµρ

dP0

(y),

we get

‖Pµρ − P0‖ =

∫ ∣∣Lµρ(y)− 1
∣∣ dP0(y),

= E0

[∣∣Lµρ(Y )− 1
∣∣] ,

≤
(
E0

[
L2

µρ
(Y )
]
− 1
)1/2

,

and we deduce from (24) that

β(F [ρ]) ≥ 1− α− 1

2

(
E0

[
L2

µρ
(Y )
]
− 1
)1/2

.

Thus, it remains to find some ρ∗ = ρ∗(η) such that

ln
(
E0

[
L2

µρ∗
(Y )
])

≤ L(η), (25)

to ensure that for all ρ ≤ ρ∗,

β(F [ρ]) ≥ 1− α− η = δ.

7.2. Proof of Theorem 1. By homogeneity, we assume that σ2 = 1.
Let m̂ be some random variable uniformly distributed overM(k, n) and
for each m ∈ M(k, n) let εm = (εm

j )j∈m be a sequence of Rademacher
random variable (i.e. for each m, the εm

j ’s are i.i.d. random variables
taking the values ±1 with probability 1/2). We assume that for all
m ∈ M(k, n), εm and m̂ are independent. Let ρ be given and µρ the

distribution of the random variable
∑

j∈m̂ λεm̂
j ej/ where λ = ρ/

√
k.

Clearly µρ is supported by F [ρ]. To prove the result, we apply the
method described in the previous section with

Lµρ(Y ) = Eε,m̂

[
exp

(
−1

2
ρ2 + λ

∑
j∈m̂

εm̂
j Yj

)]

=
1

Ck
n

∑
m∈M(k,n)

Eε

[
exp

(
−1

2
ρ2 + λ

∑
j∈m

εm
j Yj

)]

= e−ρ2/2 1

Ck
n

∑
m∈M(k,n)

∏
j∈m

cosh (λYj) .
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Let us now compute E0

[
L2

µρ
(Y )
]
. Introducing the notation

m∆m′ = (m ∪m′) \ (m ∩m′)

for m, m′ belonging to M(k, n) and we obtain that

E0

[
L2

µρ
(Y )
]

=
e−ρ2

(Ck
n)2

∑
m,m′∈M(k,n)

E0

[∏
j∈m

cosh (λYj)
∏
j∈m′

cosh (λYj)

]

=
e−ρ2

(Ck
n)2

∑
m,m′∈M(k,n)

E0

[ ∏
j∈m∩m′

cosh2 (λYj)
∏

j∈m∆m′

cosh (λYj)

]

=
e−ρ2

(Ck
n)2

∑
m,m′∈M(k,n)

(
E0

[
cosh2 (λY1)

])|m∩m′|
(E0 [cosh (λY1)])

|m∆m′| ,

by independence between the Yj’s. Using the fact that

(E0 [cosh(λY1)]) = eλ2/2, E0

[
cosh2(λY1)

]
= eλ2

cosh(λ2),

and noting that |m ∩m′|+ |m∆m′|/2 = k, we derive

E0

[
L2

µρ
(Y )
]

=
1

(Ck
n)2

∑
m,m′∈M(k,n)

(
cosh

(
λ2
))|m∩m′|

=
k∑

j=1

(
cosh

(
λ2
))j

pj,k,n,

where

pj,k,n = (Ck
n)−2

∣∣{(m,m′) ∈M(k, n)2/ |m ∩m′| = j
}∣∣ .

If j < 2k − n then obviously pj,k,n = 0 and pj,k,n = Ck−j
k Ck−j

n−k/C
k
n

otherwise. Hence, pj,k,n = P [X = j] where X is a random variable dis-
tributed according to a Hypergeometric distribution with parameters
n, k and k/n. Thus, we derive that

E0

[
L2

µρ
(Y )
]

= E
[(

cosh(λ2)
)X]

. (26)

We know from Aldous (1985, p.173) that X has the same distribution
as the random variable E[Z/Bn] where Z is a binomial random vari-
able of parameters k, k/n and Bn some suitable σ-algebra. Thus, by a
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convexity argument we infer from (26) that

E0

[
L2

µρ
(Y )
]
≤ E

[(
cosh(λ2)

)Z]
=

(
1 +

k

n

(
cosh(λ2)− 1

))k

= exp

[
k ln

(
1 +

k

n

(
cosh(λ2)− 1

))]
. (27)

For ρ ≤ ρk,n, one has

λ2 ≤ λ2
k,n = ln

(
1 + u +

√
2u + u2

)
,

where u = L(η)n/k2. We deduce from (27) that for all ρ ≤ ρk,n

E0

[
L2

µρ
(Y )
]
≤ exp

[
k ln

(
1 +

k

n

(
cosh(λ2

k,n)− 1
))]

= exp

[
k ln

(
1 +

k

n
u

)]
≤ exp

[
k2

n
u

]
= exp [L(η)] = 1 + η2.

To complete the proof of Theorem 1, it remains to check (7). Clearly
we have that

ρ2
k,n ≥ k ln

(
1 +

[
(2L(η)) ∧

√
2L(η)

] [ n

k2
∨
√

n

k2

])
,

and thanks to the convexity inequality (23) we get that

ρ2
k,n ≥ ((2L(η)) ∧ 1) k ln

(
1 +

n

k2
∨
√

n

k2

)
.

The result follows since for α + δ ≤ 59%, 2L(η) ≥ 1.

7.3. Proof of Proposition 1. We argue as previously taking n =

k = D. Then the right-hand side of (27) merely becomes (cosh(λ2))
D
.

Since for all x ∈ R,

cosh(x) ≤ exp(x2/2)

(compare the series) the result follows easily.
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7.4. Proof of Proposition 9. It is enough to show the result under
the assumption that

∑
j∈J pj = 1. Arguing as in the proof of Theo-

rem 1 we know that for each rj ≤ ρ̃j(η/
√

pj) there exists some measure
µj over

Fj[rj] = {f ∈ Fj, ‖f‖ = rj}
such that such that

E0

[
L2

µj
(Y )
]
≤ 1 + η2/pj. (28)

Let us now set µ =
∑

j∈J pjµj which is a probability measure over⋃
j∈J Fj[rj]. Denoting Lµj

the density of Pµj
=
∫

Pfdµj(f) with re-
spect to P0 we have that

Lµ(Y ) =
dPµ

dP0

(Y ) =
∑
j∈J

pjLµj
(Y ),

and thus

E0

[
L2

µ(Y )
]

=
∑

j,j′∈J

pjpj′E0

[
Lµj

(Y )Lµj′
(Y )
]
.

Since for j 6= j′, Fj and Fj′ are orthogonal the random variables Lµj
(Y )

and Lµj′
(Y ) are independent and thus,

E0

[
L2

µ(Y )
]

= 1 +
∑
j∈J

p2
j

(
E0

[
L2

µj
(Y )
]
− 1
)
≤ 1 + η2

thanks to (28). This leads to the announced result via (25).

8. Proof of Propositions 2, 4, 6 and 7

8.1. Some preliminary result. The next result describes the per-
formance of tests based on χ2-statistics. It is a slight modification
(the constants are sharper) of Theorem 1 and Proposition 1 in Baraud,
Huet, Laurent (1999).

Theorem 2. Let α, δ ∈ [0, 1] and F ⊂ `2(I). Let M be a class of finite
subsets of I and ᾱ = (αm)m∈M a sequence of non negative numbers such
that

∑
m∈M αm ≤ α. For each f ∈ F , let us set

ρ̃2
M,ᾱ,δ(f)

= inf
m∈M

{∑
j 6∈m

f 2
j + 2

√
5 ln1/2

(
1

αmδ

)√
|m|σ2 + 8 ln

(
1

αmδ

)
σ2

}

≤ inf
m∈M

{∑
j 6∈m

f 2
j + 2(

√
5 + 4) ln

(
1

αmδ

)√
|m|σ2

}
(29)
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Then, the test φM,ᾱ defined by

φM,ᾱ = sup
m∈M

φm,αm where φm,αm is given by (8),

satisfies

P0[φM,ᾱ = 1] ≤ α and Pf [φM,ᾱ = 0] ≤ δ,

for all f ∈ F such that ‖f‖ ≥ ρ̃M,ᾱ,δ(f).

Comment: Thanks to Theorem 2 the proofs of Propositions 2, 4, 6 and 7
reduce to obtaining some adequate upper bound on supf∈F ρ̃M,ᾱ,δ(f).

Proof. Inequality (29) is clear and the fact that the test φM,ᾱ is of level
α merely derives from the following:

P0[φM,ᾱ = 1] ≤
∑

m∈M

P0[φm,αm = 1] =
∑

m∈M

αm ≤ α.

Let us now show the result on the power of the test. Without loss
of generality we can take σ2 = 1. For each m ∈ M we set Z2

m,f =∑
j∈m Y 2

j and E2
m =

∑
j∈m f 2

j . On the one hand we have that

Pf [φM,ᾱ = 0] = Pf [∀m ∈M, Z2
m,f ≤ t|m|,αm ]

≤ inf
m∈M

Pf [ Z2
m,f ≤ t|m|,αm ]. (30)

On the other hand, some deviation inequality on non central χ2 random
variables due to Birgé (1999) (Lemma 1) tells us that

Pf

[
Z2

m,f ≤ |m|+ E2
m − 2

√
(|m|+ 2E2

m) ln(1/δ)
]
≤ δ.

Thus, the result is proved if we show that for some m in M,

t|m|,αm ≤ |m|+ E2
m − 2

√
(|m|+ 2E2

m) ln(1/δ). (31)

We now prove that (31) holds if m satisfies

E2
m = ‖f‖2 −

∑
j 6∈m

f 2
j > 2

√
5 ln1/2

(
1

αmδ

)√
|m|+ 8 ln

(
1

αmδ

)
. (32)

We start with an inequality due to Laurent & Massart (1998) on central
χ2 random variables: we have

t|m|,αm ≤ |m|+ 2
√
|m| ln(1/αm) + 2 ln(1/αm).

Setting x = ln(1/δ) and ym = ln(1/αm), we need to check that

1

2
E2

m ≥
√

(|m|+ 2E2
m)x +

√
|m|ym + ym. (33)
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Solving inequation (33) with respect to E2
m we obtain that (33) holds

true as soon as
1

2
E2

m ≥
√
|m|ym +

√
x

√
4x + 4ym + 4

√
|m|ym + |m|+ 2x + ym. (34)

Hence it remains to obtain a suitable upper bound for the right-hand
side of (34). Using the inequalities

√
u + v ≤

√
u +

√
v, 2uv ≤ u2 + v2

and
√

u + 2
√

v ≤
√

5
√

u + v which holds for all u, v > 0, we obtain
that√

|m|ym +
√

x

√
4x + 4ym + 4

√
|m|ym + |m|+ 2x + ym

≤
√
|m|
(√

x +
√

ym

)
+ 2

√
x

√
x + ym +

√
|m|ym + 2x + ym

≤
√
|m|
(√

x + 2
√

ym

)
+ 4x + 2ym

≤
√

5
√

x + ym

√
|m|+ 4(x + ym),

the last expression being smaller than E2
m/2 by (32). This ends the

proof of (31). �

8.2. Proof of Proposition 2. We set M = M(k, n) and for each
m ∈M,

αm = αk,n = α/(2Ck
n) ≥ α/(2(en/k)k).

We deduce from Theorem 2 that the test φ∗α is of level α. Concerning
the power of the test, we have that

ln

(
1

αmδ

)
≤ ln

(
2

αδ

)
+ k ln

(en

k

)
≤
[
ln

(
2

αδ

)
+ 1

]
k ln

(en

k

)
= ln

(
2e

αδ

)
k ln

(en

k

)
,

thus by setting

L = ln

(
2e

αδ

)
≥ 1,

and choosing m among M(k, n) such that fj = 0 for j 6∈ m we deduce
that for each f ,

ρ̃2
M,ᾱ,δ(f) ≤ 2

√
5
√

Lk ln1/2
(en

k

)
σ2 + 8Lk ln

(en

k

)
σ2

≤ 2(
√

5 + 4)Lk ln
(en

k

)
σ2. (35)

Now, by choosing m = {1, ..., n} and arguing in the same way we get
that

ρ̃2
M,ᾱ,δ(f) ≤ 2(

√
5 + 4)L

√
nσ2. (36)

Inequalities (35), (36) and Theorem 2 lead to the desired result.
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8.3. Proof of Proposition 4. It is straightforward to see that the
test φ∗α is of level α. In the sequel, we set

Aa,2,R =
{

D ∈ I, R2a2
D ≤

√
Dσ2

}
, L = ln(1/(αδ)) ≥ 1,

F = Ea,2(R), M = {{1, ..., D∗}} and ᾱ = α. For the power of the test,
we use Theorem 2 with some suitable upper bound for the quantity
ρ̃2
M,ᾱ,δ(f) with f ∈ F . To do so, we distinguish between two cases.

Firstly, if Aa,2,R = ∅ then D∗ = N (note that the condition is possible
only in the case of a finite I since the aj’s converge towards 0) and for

all D ∈ I R2a2
D >

√
Dσ2. This implies that

∀f ∈ F ,
∑
j>D∗

f 2
j = 0 and sup

D∈I

[(√
Dσ2

)
∧
(
R2a2

D

)]
=
√

Nσ2

and thus for all f ∈ F ,

ρ̃2
M,ᾱ,δ(f) ≤ 2(

√
5 + 4)L

√
Nσ2

= 2(
√

5 + 4)L sup
D∈I

[(√
Dσ2

)
∧
(
R2a2

D

)]
,

which proves the result in this case.

Secondly, if Aa,2,R 6= ∅ then there exists some D∗ ∈ I such that R2a2
D∗ ≤√

D∗σ2 and by assumption we know that D∗ ≥ 2. For such a D∗, we
have that

∀f ∈ F ,
∑
j>D∗

f 2
j ≤ R2a2

D∗ ,

and that
√

D∗σ2 ≤
√

2
√

D∗ − 1σ2 =
√

2
[(√

D∗ − 1σ2
)
∧
(
R2aD∗−1

)]
≤

√
2 sup

D∈I

[(√
Dσ2

)
∧
(
R2a2

D

)]
.

Thus for all f ∈ F ,

ρ̃2
M,ᾱ,δ(f) ≤ R2a2

D∗ + 2(
√

5 + 4)L
√

D∗σ2

≤
[
1 + 2(

√
5 + 4)L

]√
D∗σ2

≤
√

2
[
1 + 2(

√
5 + 4)L

]
sup
D∈I

[(√
Dσ2

)
∧
(
R2a2

D

)]
,

which concludes the proof.
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8.4. Proof of Propositions 6 and 7. Let us set,

M = {1, ..., D∗} ∪

( ⋃
j>D∗,j∈I

{j}

)
,

α{1,...,D} = αD∗ = α/2 and

∀j ∈ I, j > D∗ α{j} = αj = 2α/(π2(j −D∗)2).

Thanks to Theorem 2, we obtain that the test φ∗α = φM,ᾱ is clearly of
level α. It remains to prove the result concerning the power of the test.

In the sequel, we set

κ = 2(
√

5 + 4) ln(2/(αδ)) and F = Ea,p(R).

8.4.1. Reduction of the problem. Let us define the set Ãa,p,R by

Ãa,p,R =
{

D ∈ I, R2a2
Dd
√

De1−2/p ≤ d
√

Deσ2
}

.

Note that this set is non void when I is infinite since the aD’s converge
towards 0.

We first prove Propositions 6 and 7 under one of the following condi-
tions

(i) Ãa,p,R = ∅ and (15) holds true.
(ii) f belongs to the space

Floc =
{
f ∈ `2(I), ∃j > D∗, |fj|2 ≥ b2

j−D∗σ2
}

=

{
f ∈ `2(I), ‖f‖2 ≥ inf

j>D∗

{ ∑
k∈I,k 6=j

f 2
k + b2

j−D∗σ2

}}
.

where for j ∈ N∗, the bj’s are defined by

b2
j = 2(

√
5 + 4) ln(π2j2/(2αδ)).

Let us now assume (i). Then I = {1, ..., N}, D∗ = N and

%2
a,p,R = d

√
Neσ2.

By applying Theorem 2 with φN,α/2 = φ{1,...,N},α/2 and arguing as in
the proof of Proposition 4 we obtain that

Pf [φ∗α = 0] ≤ Pf

[
φN,α/2 = 0

]
≤ δ
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for all f ∈ F such that ‖f‖ ≥ ρ̃M,α/2,δ, where we have taken M =
{{1, ..., N}}. Since now,

ρ̃2
M,ᾱ,δ(f) ≤ κ

√
Nσ2

≤ C (ln(2 + N))1−p/2 %2
a,p,R,

the result follows under (15).

Let us now assume (ii). By setting

M′ = {{j}/ j ∈ I, j > D∗} and ᾱ′ = (αj)j∈M′ ,

we have that φloc,α = φM′,ᾱ′ . We derive from (29) that for all f ∈ Floc,

‖f‖2 ≥ inf
j>D∗

{ ∑
k∈I,k 6=j

f 2
k + b2

j−D∗σ2

}
≥ ρ̃2

M′,ᾱ′,δ(f),

which leads to the result, i.e.

Pf [φ∗α = 0] ≤ Pf [φloc,α = 0] ≤ δ,

by applying Theorem 2.

Leaving out the cases (i) and (ii), we now assume that Ãa,p,R 6= ∅ and
that f belongs to the set

H = F ∩
{
f ∈ `2(I), ∀j > D∗, |fj|2 ≤ b2

j−D∗σ2
}

.

Thus, it remains to get some suitable upper bound on ρ̃2
M,ᾱ,δ(f) for

f ∈ H.

8.4.2. End of the proof of Proposition 6. For all f ∈ H, we bound the
bias term in the following way:∑

j>D∗

f 2
j ≤

∑
j>D∗

ap
jb

2−p
j−D∗σ2−p |fj|p

ap
j

(37)

≤ b2−p
N Rpap

D∗σ2−p. (38)

Since Ãa,p,R 6= ∅, we have that

D∗ = inf{D ∈ I, R2a2
Dd
√

De1−2/p ≤ d
√

Deσ2}
= inf{D ∈ I, Rpap

Dσ2−p ≤ d
√

Deσ2},
and by (38) we obtain that for all f ∈ H,

ρ̃2
M,ᾱ,δ(f) ≤

∑
j>D∗

f 2
j + κ

√
D∗σ2

≤
(
κ + b2−p

N

)
d
√

D∗eσ2.
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By assumption D∗ ≥ 2 which implies that d
√

D∗e ≤ 2d
√

D∗ − 1e and
thus by definition of D∗ we get

ρ̃2
M,ᾱ,δ(f)

≤ 2
(
κ + b2−p

N

)
d
√

D∗ − 1eσ2

= 2
(
κ + b2−p

N

) [(
d
√

D∗ − 1eσ2
)
∧
(
R2a2

D∗−1d
√

D∗ − 1e1−2/p
)]

≤ 2
(
κ + b2−p

N

)
sup
D∈I

[(
d
√

Deσ2
)
∧
(
R2a2

Dd
√

De1−2/p
)]

.

To end the proof it remains to show that

2
(
κ + b2−p

N

)
≤ 8(

√
5 + 4) ln

(eπ

αδ

)
ln1−p/2(2 + N).

This inequality is a straightforward consequence of the following ones:
for all j ≥ 1,

b2
j = 4(

√
5 + 4)

(
ln

(
π√
2αδ

)
+ ln(j)

)
≤ 2(

√
5 + 4) ln

(
e2π2

2αδ

)
ln(2 + j). (39)

8.4.3. End of the proof of Proposition 7. Using the Assumption (H) on
the aj’s we infer from (37) that∑

j>D∗

f 2
j ≤ Rpσ2−p

∑
j≥1

ap
j+D∗b

2−p
j

≤ Rpap
D∗σ2−p

∑
j≥1

θp
j b

2−p
j .

Using now (39) we obtain that∑
j>D∗

f 2
j ≤ 2Σ(

√
5 + 4) ln

(
e2π2

2αδ

)
Rpap

D∗σ2−p,

and the result follows by arguing as previously.
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probabilités de Saint-Flour XIII, Lect. Notes Math. 1117, 1-198.

Baraud, Y., Huet, S., and Laurent, B. (1999). Adaptive tests of lin-
ear hypotheses by model selection. Tech. rept. 2000-69 Université
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