ESTIMATING THE INTENSITY OF A RANDOM MEASURE BY
HISTOGRAM TYPE ESTIMATORS
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ABSTRACT. The purpose of this paper is to estimate the intensity of some random
measure N on a set X by a piecewise constant function on a finite partition of X.
Given a (possibly large) family M of candidate partitions, we build a piecewise
constant estimator (histogram) on each of them and then use the data to select
one estimator in the family. Choosing the square of a Hellinger-type distance as
our loss function, we show that each estimator built on a given partition satisfies
an analogue of the classical squared bias plus variance risk bound. Moreover,
the selection procedure leads to a final estimator satisfying some oracle-type in-
equality, with, as usual, a possible loss corresponding to the complexity of the
family M. When this complexity is not too high, the selected estimator has a
risk bounded, up to a universal constant, by the smallest risk bound obtained for
the estimators in the family. For suitable choices of the family of partitions, we
deduce uniform risk bounds over various classes of intensities. Our approach ap-
plies to the estimation of the intensity of an inhomogenous Poisson process, among
other counting processes, or the estimation of the mean of a random vector with
nonnegative components.

1. INTRODUCTION

The aim of the present paper is to design a new model selection procedure in
a statistical framework which is general enough to cope simultaneously with the
following estimation problems.

Problem 1: Estimating the means of nonnegative data. The statistical
problem that initially motivated this research was suggested by Sylvie Huet and
corresponds to the modeling of data coming from some agricultural experiments. In
such an experiment, the observations are independent nonnegative random variables
N; with mean s; where ¢ varies among some finite index set X'. In this framework,
our aim is to estimate the vector (s;);cx.

Problem 2: Estimating the intensity of a Poisson process. We recall that
a Poisson process N on the measurable set (X,.4) with finite mean measure v is a
random measure N on X such that

e for any A € A, N(A) is a Poisson random variable with parameter v(A);
e for any family Ay,..., A, of disjoint elements of A, the corresponding ran-
dom variables N(A4;),..., N(A,;) are independent.

Date: Revised, October 2007.

2000 Mathematics Subject Classification. 62G05.

Key words and phrases. Model selection - Histogram - Discrete data - Poisson process - Intensity
estimation - Adaptive estimation.



2 YANNICK BARAUD AND LUCIEN BIRGE

We can always assume that v is finite by suitably restricting the domain of ob-
servation of the process. When the mean measure v is dominated by some given
measure A on X then the nonnegative function s = dv/dX is called the intensity of
N. A Poisson process can be represented as a point process on the set X. Each
point represents the time (if X = Ry ) or location of some event. For example, the
successive times of failures of some machine can be represented by a Poisson process
on X = R;. The intensity of the process models the behaviour of the machine in
the following way: the intervals of times on which the intensity takes large values
correspond to periods where failures are expected to be frequent and in the opposite,
those on which the intensity is close to 0 are periods on which failures are rare. In
this statistical framework, our aim is to estimate the intensity s on the basis of the
observation of N.

Problem 3: Estimating a hazard rate. We consider an n sample T1,...,7T,
of non-negative real valued random variables with common density p (with respect
to the Lebesgue measure on R ) and assume these to be (possibly) right-censored.
This means that there exists i.i.d. random variables C4,...,C, such that we actu-
ally observe the pairs X; = (Tj,Dj) for j = 1,...,n with TJ = min {7}, C;} and
D;=1 (T,=T5} Such censored data are common in survival analysis. Typically, T;
corresponds to a time of failure or death which cannot be observed if it exceeds time
C;. Our aim, here, is to estimate the hazard rate s of the T; defined for ¢ > 0 by
s(t) = p(t)/P(T1 = t).

Problem 4: Estimating the intensity of the transition of a Markov process.
Let {Xy, t > 0} be a Markov process on R} with cadlag paths and a finite number
of states. We distinguish two particular states, named 0 and 1, and assume that
0 is absorbant and that there is a positive probability to reach 1. Our aim is to
provide an estimation of the intensity of the transition time 77 from state 1 to
0. Typical examples arise when 0 means “death”, “failure”, .... An alternative
example could be the situation where 77 o measures the age at which a drug addict
makes the transition from soft drugs (state 1) to hard drugs (state 0). In this case
we stop the chain at 0 making this state absorbing. For ¢ > 0, we denote by X;_
the left-hand limit of the process X at time ¢ and assume that for some measurable
nonnegative function p, P(71 < t) fo u)du. Note that p is merely the density
of Tho if Thp < 400 a.s. Wthh we shall not assume. Our aim is to estimate the
transition intensity s of T o which is defined for ¢t > 0 by s(t) = p(t)/P (X~ = 1).

For pedagogical reasons mainly, since it has already been extensively studied and
can therefore serve as a reference, it will be interesting to consider also the much
more classical

Problem 0: Density estimation. It is the problem of estimating an unknown
density s from n i.i.d. observations Xy, ..., X,, with this density.

All the problems described in the above examples amount to estimating a function
s mapping X to R,. For this purpose, we choose a family M of partitions of X
and for each m € M we design a non-negative estimator §,, of s which is constant
on the elements of this partition. We shall call such an estimator an histogram-
type estimator. The performance of 3, depends on both s and m. Since s is
unknown, we cannot pick the partition which leads to the best estimator. To select
a partition in M, we shall rather use a method solely based on our data leading to
some random partition m and define our resulting estimator as §,;. Our objective
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is to design the selection procedure in such a way that $; performs almost as well
as the best estimator among the family {s,,,m € M}. Since our estimator is a
piecewise constant function, it is, like all histograms, a rather rough estimator and
not quite suited for estimating smooth functions, but it could at least give a good
idea of the structure of the underlying s in a preliminary analysis, as histograms do,
the main point being here the automatic choice of the partition.

In the sequel, we shall only focus on the theoretical properties of the estimator
Sy Indeed, our selection procedure is based on tests between all pairs ({8}, {5m/})
with m # m’ which means that the computation of §,, requires |[M|(|JM]|—1)/2 tests
(where | M| denotes the cardinality of M). Since we consider collections M which
are allowed to contain a very large number of partitions (possibly a countable number
of these), the procedure may be quite difficult to implement in practice when |M|
is very large. In such a case, our results should mainly be considered as theoretical
ones.

More precisely, the purpose of this paper is to describe some general setup which
allows to deal with all the five problems simultaneously, to explain the construction of
our histogram-type estimators §,,, to design a suitable selection procedure m and to
study the performance of the resulting estimator $;. We shall illustrate our results
by numerous examples of family of partitions and target functions s of interest.
For the problems of estimating the intensity of a Poisson process or a hazard rate
on the line, our method provides estimators than can cope with different families
of functions simultaneously, including monotone, Holderian, or piecewise constant
with a few jumps with unknown locations and sizes. In the multivariate case, we
shall also provide some special method for estimating Poisson intensities with a few
spikes with unknown locations and heights.

The problem of estimating s by model selection in the first four setups described
above did not receive much attention in the literature with a few noticeable excep-
tions. Problem 1 is generally viewed as a regression problem where the mean s; takes
the form f(x;) for some design points z; (typically f is defined on [0, 1] and z; = i/n).
To perform model selection, one introduces a wavelet basis and performs a shrinkage
of the estimated coefficients of f with respect to this basis. This amounts to select-
ing which coefficients will be kept. To this form of selection pertain the papers by
Antoniadis, Besbeas and Sapatinas (2001), Antoniadis and Sapatinas (2001). Closer
to our approach is Kolaczyk and Nowak (2004) based on penalized maximum like-
lihood. Unlike us, their approach requires that the means s; be uniformly bounded
from above and below by known positive constants. For Problem 2, a similar ap-
proach based on wavelet shrinkage is developed in Kolaczyk (1999), but the reference
result is Reynaud-Bouret (2003). Problems 3 and 4 amount to estimating Aalen’s
multiplicative intensity s of some counting process with a bounded number of jumps.
The problem of non-parametric estimation of Aalen’s multiplicative intensities has
been considered by Antoniadis (1989) who uses penalized maximum likelihood esti-
mation with a roughness penalty and gets uniform rates of convergence over Sobolev
balls. Van de Geer (1995) considers the Hellinger loss and establishes uniform esti-
mation rates for the maximum likelihood estimator over classes of intensities with
controlled bracketting entropy. Grégoire and Nembé (2000) extend the results of
Barron and Cover (1991) about density estimation to that of intensities. Wu and
Wells (2003) and Patil and Wood (2004) derive asymptotic results for thresholding
estimators based on wavelet expansions. All these results, apart from those of van
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de Geer, are of an asymptotic nature. Reynaud-Bouret (2002) introduces a model
selection procedure to estimate the intensity. A common feature of these papers lies
in the use of martingales techniques (apart from Grégoire and Nembé, 2000). Unlike
theirs, our approach does not require any martingale argument at all.

On the contrary, Problem 0 has been the subject of a considerable number of pa-
pers and a number of references about histogram density estimation can be found in
Birgé and Rozenholc (2006). It is also closely connected with thresholding methods
based on Haar wavelets. Again there is a huge amount of litterature on this subject
and a list of references can be found in Kerkyacharian and Picard (2000). Never-
theless, we insist that density estimation definitely not be the subject of this paper
which focuses on non i.i.d. observations. We included Problem 0 here to emphasize
the similarity of our results with those one gets for density estimation. Such similar-
ities between different statistical frameworks have been known for a long time and
already mentioned in Birgé (1983). Since then, there has been many results about
the comparison of estimation within different statistical frameworks, in particular
those based on equivalence of experiments, as defined by Le Cam (1972), following
the milestone papers by Nussbaum (1996) and Brown and Low (1996). Among the
subsequent papers of the same authors on the subject, Brown, Carter, Low and
Zhang (2004) deals with the equivalence between Poisson processes and i.i.d. exper-
iments. Asymptotic equivalence of two experiments with the same parameter set is
a very strong property. It says that, asymptotically, all risk functions derived from
bounded losses that can be obtained in one experiment can also be obtained in the
other. Asymptotic equivalence also requires strong assumptions on the parameter
space, typically compactness and a smoothness at least 1/2, and it is purely asymp-
totic. The relation between experiments that we get here is much weaker, only in
terms of rates of convergence for our procedure, but is not asymptotic, valid for the
whole parameter space and does not require any smoothness restriction. Therefore
the two points of view cannot be directly compared.

In Section 2, we present a general statistical framework which allows to handle
simultaneously all the examples we have mentioned. We also make a review of some
special classes of target functions and the various families of models (partitions) to
be used in our estimation procedure. The treatment of our five estimation problems
is provided in Sections 4 and 5. The results presented there derive from a unifying
theorem to be found in Section 6. The remainder of the paper is devoted to the
most technical proofs.

In the sequel, we shall make a systematic use of the following notations: constants
will be denoted by C,(C’,c,... and may change from line to line; we denote by N*
the set of positive integers and we write x Ay for min{z, y}, = Vy for max{z,y} and
|m| for the cardinality of a set m.

2. PRESENTATION OF OUR METHOD

2.1. A general statistical framework. We consider an abstract probability space
(€2, &, P) and a measurable space (X, A) bearing a nonnegative o-finite measure A. In
the sequel E will denote the expectation with respect to P. We then consider on X a
nonnegative bounded random process Y = Y (z,w), i.e. a measurable function from
X x  to RT, and the nonnegative random measure M on X given by dM = Yd.



ESTIMATING THE INTENSITY 5
Besides M, we also observe a nonnegative random measure N on X which satisfies
(1) E[N(A)]=E [/ de] < 400, forall A€ A,
A

for some deterministic nonnegative and measurable function s on X. Note that this
assumption implies that N is a.s. a finite measure. Our aim is to estimate s from the
observations N and M. Hereafter, we shall deal with estimators that belong to the
cone L of nonnegative measurable functions ¢ on X x €2 such that E [ | ytdM ] < +00.
Note that s also belongs to £. To measure the risks of such estimators, we endow £
with the quasi-distance (since we may have H(t,t') = 0 with ¢ # ¢') H between two
elements ¢ and t' of £ by

2
H2(t,t):/x(\/i\/r?) dM,

and set as usual, for t € Land F C £, H(t, F) = inf;cx H(t, f). Given an estimator
§ of s, i.e. a measurable function of N and Y with § € £, we define its risk by
E [H 2(s, s)} In most of our applications, Y is identically equal to 1 in which case
M = ) is deterministic and if t and ¢’ are densities with respect to M, H is merely the
Hellinger distance h between the corresponding probabilities. For a Poisson process,
H? = —log (1 — hz). Only the cases of Problems 3 and 4 require to handle random
measures M. The relevance of the Hellinger distance for density estimation and the
related distance H for Poisson processes and other infinitely divisible experiments
has already been emphasized by Le Cam (1973 and 1986) and further developed in
a series of papers by Donoho and Liu (1987, 1991a and b). The importance of the
distance H in model selection for Poisson processes is explicit in Birgé (2007).

In order to define our estimators we assume that
(2) P[N(A) >0and M(A)=0]=0 forall Aec A,
a property which is automatically fulfilled when M = )\ is deterministic because

of (1).

2.2. Histogram-type estimators. Let us now introduce the histogram-type esti-
mators §,, based on some finite partition m of X'. We consider the subset J = {A €
A|E[M(A)] < +o0} of A and define the model S, as the set of (possibly random)
nonnegative piecewise constant functions on X:

Sm:{t: Z t1;

IemnNJ

tr =tr(w) €R for all I € m,w GQ}ﬂﬁ.

We then define the histogram estimator §,, as the element of S, given (with the

convention 0/0 = 0) by
. N(I)
Sm = E ) 1;.

IemnJ
Note that §,, is a.s. well-defined because of (2). We shall, hereafter, call it the
histogram estimator based on m.

Under suitable assumptions that will be satisfied for Problems 0, 1 and 2 (the
case of hazard rates and Markov processes being more complicated), we shall prove
for §,, a risk bound of the form

(3) E [H?(3m,s)] < Co {E [(H?(s,Sm))] + Cpm|},
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where Cp is a numerical constant and C'p depends on the problem we consider. For
instance, Cp = n~! for density estimation and Cp = 1 for estimating the intensity
of a Poisson process. We recover here the usual decomposition of the risk bounds
into an approximation term which involves the distance of the parameter from the
model and a complexity term proportional to the number |m| of parameters that
describe the model.

2.3. The selection procedure. Given the family of models {Sy,, m € M} corre-
sponding to a finite or countable family M of partitions m, we consider, in order to
define our model selection procedure, the possibly enlarged family

M={mvm formm' e M}; mvm' ={INI'|Iem,I'em, INT # o},
so that m V m/ is again a finite partition of X.
We shall systematically make the following assumption about the family M.
H: There exists some § > 1 such that [mVm/| < § (|m| + |m'|) for all (m,m') € M?2.

We then introduce a penalty function “pen” from M to Ry to be described below
and, for m # m’ € M we consider the test statistic

(4) Tm,m’(N) = H2(§ma gm\/m’) - H2(‘§m’> '§me/) + 16[pen(m) - pen(m/)].

The corresponding test between m and m’ decides m if T <0, m' if Tt >0
and at random if T}, ,,» = 0. Note that the tests corresponding to T}, ,,» and T}, ,
are the same. We then set, for all m € M,

Rm = {m’ € M, m' # m|the test based on T}, rejects m}
and, given some ¢ > 0, we define m to be any point in M such that

(5) D(m)< inf D(m)+¢e/3  with  D(m)= sup {H?(3m,8mw)}.
meM m'€Rm

We use the convention D(m) = 0 when R,, = &. This model selection procedure
results in an estimator § = §y; that we shall call penalized histogram estimator
(in the sequel PHE, for short) based on the family of models {S,,,m € M} and
the penalty function pen(:). As to the penalty, it is the sum of two components:
pen(m) = c1|m| + coA,, with ¢; and ¢g depending on the framework and A,, being
a nonnegative weight associated to the model S,,. We require that those weights
satisfy

(6) Z exp[—Ay] =32 < +o0.
meM

If ¥ = 1, the choice of the A,, can be viewed as the choice of a prior distribution
on the models. For related conditions and their interpretation, see Barron and
Cover (1991), Barron, Birgé and Massart (1999) or Birgé and Massart (2001). The
constant 16 in (4) plays no particular role and has only been chosen in order to
improve the legibility of our main results. Our selection procedure can be viewed
as a mixture between a method due to Birgé (1983 and 2006) based on testing and
an improved version of the original Lepski’s method, as described in Lepski (1991)
and subsequent work of the same author. This improved version was presented by
Lepski in a series of lectures he gave at Garchy in 1998.
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2.4. Risk bounds for the procedure. As we shall see later, with a suitable choice
of e, the performances of this procedure for Problems 0, 1 and 2 are described by
risk bounds of the following form:

(7) E[H*(3,5)] < Cp inf {E[(H*(5,Sm))] + Cplm| [1+|m|™" (Am + £%)]},

where C{, is a numerical constants and Cp as in (3). Comparing (7) with (3), we see
that the estimator § achieves a risk bound comparable, up to a constant factor, with
the best risk bound obtained by the estimators §,, provided that ¥ is not large and
A,, not much larger than |m|. Note that these two restrictions are, to some extent,
contradictory since the smaller A,,, the larger ¥, although it is clearly unnecessary
to choose A,, smaller than |m|. Therefore, if >\, e~ is not large, one can
merely take A,, = |m|. Otherwise, the choice of the A,, will be more delicate but
we should keep in mind that, if 3 is not large, the performance of § will be as good
(up to a constant factor) as the performance of any §,, for which A,, < |m]|.

3. A REVIEW OF THE MODELS WE SHALL USE

3.1. Some classes of functions of special interest. The motivations for the
choice of some family of models {S,,,m € M} are twofold. First, there is the
restriction that M should satisfy Assumption H and there are two main examples
of such families. In the "nested” case, the family is totally ordered for the inclusion
and thus, we either have mVm/ = m or mVm/ = m/ for all m and m’ in M. Then,
M = M and § = 1. Another situation where Assumption H is satisfied with § = 1
occurs when X is either R or some subinterval of R and each m € M is a finite

partition of X’ into intervals.

The second motivation is connected to the approximation properties of the mod-
els. If, for instance, we believe that the true s is smooth or monotone, one should
introduce families of models that approximate reasonably well such functions. In
the sequel, we shall put a special emphasis on the following classes of functions:

o
e Monotone functions. For X an interval of R with interior X and R a positive
number, we denote by S(R) the set of monotone functions ¢ on X' such that
sup o [t(z) —t(y)| < R.
r,YyeX

e Continuous functions. Let w be a modulus of continuity on [0,1), i.e. a
continuous nondecreasing function with w(0) = 0 — see additional details in
DeVore and Lorentz (1993) —. We denote by S?(w) the set of functions * on
[0,1) such that |[t(z +y) — t(x)| < w(y) for all z € [0,1) and 0 <y < 1 — z.
For 0 < o < 1 and R > 0, the Holder class H? is the class S?(w) with
w(y) = Ry®. More generally we say that a function u defined on V C [0,1)*
for some k > 1 belongs to the set HEX(V), a €]0,1), R > 0, if

k

lu(z) —u(y)] < RZ |zj —y;|¢ forall z,y € V.
j=1

o Piecewise constant functions. If the function ¢ defined on [0, 1) is constant
over some intervals and then jumps from time to time, it is a piecewise
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constant function of the form
D
(8) t:ztkﬂ[fﬁk—lyxk) with0=2p<z1<...<zp =1
k=1

We shall denote by S3(D, R) the class of such piecewise functions such that
Supy<p<ptx < R. Note that this would correspond to a parametric model
with D parameters if the locations of the jumps were known. We shall restrict
our attention to D > 2 since S3(1, R) only contains constant functions and
is then a subset of S?(w) with w = 0.

e Besov balls and functions of bounded variation. Here we consider func-
tions ¢ defined on [0,1). Given positive numbers «,p and R, we denote
by By (R), the closed Besov ball of radius R centered at zero of the Besov
space By, ([0,1)), i.e. the set of functions ¢ in this space with Besov semi-
norm [t|ga < R. Analogously, we set Bpy (R) for the set of functions ¢
of bounded variation with Var*(¢t) < R. We refer to Chapter 2 of the book
by DeVore and Lorentz (1993) for details on Besov spaces and the defini-
tion of Besov semi-norms, functions of bounded variation and the variation
semi-norm Var®. Note that S;(R) C Bpy(R). We shall also consider the
multidimensional Besov spaces By ([0, 1)F) for k > 2.

3.2. Some typical models. Let us now describe a few useful families of models
and corresponding choices for the weights A,, that satisfy (6).

3.2.1. Ezample 1: models for functions on [0,1). The following models are suitable
for approximating functions belonging to the classes that we just mentioned. Since
they are based on partitions of [0, 1) into intervals, they satisfy Assumption H with
6 =1. Let J; = {j2*l,j € N} and Js = UjenJ; be the set of all dyadic points
in [0,1). To build M, we consider partitions m = {Iy,...,Ip} of [0,1)) generated
by increasing sequences {0 = z9 < 1 < ... < zp = 1} with I; = [z;_1,2;). We
then define M to be the set of all such partitions with z; € J for 1 <i¢ < D — 1.
Therefore, whatever m € M, the elements of S,,, are piecewise constant functions
with D pieces and jumps located on the grid [J.. The novelty of this particular
family of partitions lies in the fact that there is no lower bound on the length of
the intervals on which the partitions are built. It will be useful to single out the set
Mp = {my, k € N} of regular dyadic partitions where my, is the partition of [0,1)
into 2% intervals of length 27%. In particular, mgy = [0, 1).

One possible way of defining the corresponding weights A,, is as follows. For
I € N*and 2 < D < 2! we define M, p as the set of all partitions m with
m| = D and [ is the smallest integer such that {z1,...,2p_1} C J;. Then,

M= [Ulzl (U%:g MLD)} U{mo}. We choose A,,, =1 and

(9) Ay, = D(llog2+ 2 —log D) 4 2logl if m € M, p.



ESTIMATING THE INTENSITY 9

Since [M; p| < (%j) < (%) < (2'e/D)P, we derive from (9) that

2l
> exp-An] < Y Y IMypliZexp[-D(ilog2 + 2 —log D)]
meM\{mo} I>1 D=2

2
—6
< |20 = T 70 14
< DD U Ge(e — 1) < 0

I>1 D>2

and it follows that (6) is satisfied.

3.2.2. Special partitions derived from adaptive approximation algorithms. It is easily
seen that the family M of partitions we introduced for Example 1 is too rich for
choosing A, = ¢|m| for all m and c a fixed constant since then (6) would not be
satisfied. For partitions in M; p with [ > D, A,, behaves as l|m| and [ can be
arbitrarily large. Fortunately, there exists a subset M% of M, which is of special
interest because of its approximation properties with respect to functions in Besov
spaces, and such as it is possible to choose A,, = 2|m| for m € M%ﬂ This will
definitely improve the performances of the PHE for estimating functions in Besov
spaces. Let us now describe ./\/llT

Among all partitions on [0, 1) with dyadic endpoints, some of them, which are in
one-to-one correspondance with the family of complete binary trees, can be derived
by the following algorithm described in Section 3.3 of DeVore (1998). One starts
with the root of the tree which corresponds to the interval [0, 1) and decides to divide
it into two intervals of length 1/2 or not. We assume here that all intervals contain
their left endpoint but not the right one. If one does not divide, the algorithm
stops and the tree is reduced to its root. If one divides, one gets two intervals
corresponding to adding two sons to the root. Then one repeats the procedure with
each interval and so on.... At each step, the terminal nodes of the tree correspond
to the intervals in the partition and one decides to divide any such interval into two
equal parts or not. Dividing means adding two sons to the corresponding terminal
node. The whole procedure stops at some stage producing a complete binary tree
with D terminal nodes and the corresponding partition of [0,1) into D intervals.
This is the type of tree which comes out of an algorithm like CART, as described by
Breiman et al. (1984). Such constructions and the corresponding selection procedure
resulting from the CART algorithm have been studied by Gey and Nedelec (2005).
We denote by M2 the subset of M of all partitions that can be obtained in this
way. Note here that the set Mp of regular partitions is a subset of M.

It is known that the number of complete binary trees with j 4+ 1 terminal nodes is
2j

given by the so-called Catalan numbers (1 +5)~! ( i > as explained for instance in

Stanley (1999, page 172). As a consequence, we can redefine A,,, = 2|m/| for m € M4
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and, using the fact (which derives from Stirling’s expansion) that (2; > < 49, get

Z exp[—Ap,] < Z Z exp[—2(j + 1)]
meML, 720 {meML | |m|=1+;}
27 .
(%) expl-2i+ 1) —_
Z P41 e Z 1 2,1'
720 I = It
Finally (6) is satisfied with ¥ < 3} + 0.14.

3.2.3. Ezample 2: estimating functions with radial symmetry. There are situations
where one may assume that the value of s(z) only depends on the Euclidean distance
||z|| between this point and some origin in which case one can write s(z) = ®(||z]|).
In such a case, it is natural to estimate s on a ball, which we may assume, without
loss of generality, to be the open unit ball By of R¥. To any partition m of [0, 1)
we can associate a partition of By, with elements J = {z|||z| € I} where I denotes
an element of m. For simplicity, we shall identify the two partitions (the first one
of [0,1) and the new one of By) and denote both of them by m. In the sequel, we
shall focus our attention on the family of partitions of Example 1 with the weights
defined in Section 3.2.2.

3.2.4. Ezample 3: estimating functions on [0, l)k,k: > 2. To deal with the case
X = [0,1)*, let us first introduce some notations. For j € N we consider the set

/\/‘j:{l:(ll,...,lk)GNk‘ 1<, <2 for 1g¢gk;}
and for j € N and I € Nj the cube Kjl given by

Kjl:{a::(xl,...,a:k)e[O,l)k’ (li—1)27j§3?i<lz‘27j for 1§Z§k}

We set K; = {Kj’l,l € N}} and K = J;50 K

Let P be the collection of all finite subsets p of K\ Ky consisting of disjoint cubes.
To each p € P, we associate the positive quantity J(p) = inf{j | pNK; # @} (J(@) =
+00) and the partition m, generated by p, i.e. m, = {I € p} J{[0,1)* \ UsepI}
provided that this last set is not empty and m, = {I € p} otherwise. We finally set
M = {m, Vv K; with p € P and j < J(p)}. Note here that the mapping (j,p) —
my V K is not one to one. For instance mg VK, = K; = K; V Kj_1. We shall prove
in Section 7.1 the following result:

Lemma 1. The family M satisfies Assumption H with § = 2.

In order to define the weights A,,,, we shall distinguish a special subset Ml} of M
which is the k-dimensional analogue of the one we considered in Section 3.2.2. Here
one starts the algorithm with X = [0, 1)* (which corresponds to the root of the tree)
and at each step get a partition of X into a finite family of disjoint cubes of the form
Kj,l‘ One then decides to divide any such cube into the 2* elements of K1 which

are contained in it or not. Again, this corresponds to growing a complete 2*-ary tree,
partioning a cube meaning adding 2* sons to a terminal node and the set lep of
all partitions that can be constructed in this way corresponds to the set of complete
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2F_ary trees. As for k = 1, Ml} contains the set Mpr = {mg V K;, j > 0} of all
regular partitions of X into 2% cubes of equal volume. Working with M instead of
the much simpler family Mg allows to handle less regular functions like those which
have a few spikes or are less smooth on some subset of X.

If m € M5% we take A, = |m| and otherwise we set

A, =j+kY (j+1) [pNKjw| forpePandj<J(p)
i>1

and

10 Ay = inf A for m € M\ ME.
( ) {(j7p)|m=mpvjcj}{ J»p} \ il

Note that the ratio A, /|m| is unbounded for m ¢ M?% as shown by the example of
m = m, V Ko with p reduced to a single element of ICj, j > 0. Then |m| = 2 while
A,, = kj may be arbitrarily large. For the partitions m belonging to M? we use the
fact — see Stanley (1999) — that any complete l-ary tree has a number of terminal
nodes of the form 1+ j(I—1) for some j € N and that the number of such trees with

1+ 5(1 — 1) terminal nodes is [1 + j(I — 1)]7! <lj]> For [ = 2* we derive that the

k- .
number of partitions in M&, with 1+ j(2¥ — 1) elements is [1 + j(2¥ —1)]~* (2].] >
Moreover, since k > 2, we check that

A > j(klog2 +1) +log(j + 1) if [m| =1+ j(2% —1).

Since (?) < (le)’, it follows that

D oexpl-An] < Y 3 exp[—j(klog2 4 1)]

+ 1
meM¥, 320 {meME | |m|=1+;4(2k—1)} It
2kj> kI
. 2
oy L)e
ZGEDL @ 1)
1
< . . = 3.
< LGroneon o

Let us now turn to the partitions of the form m,;,VK;. For such a partition pNKC; = &
for j/ < jand, fori>1, [pNKju| =1 with 0 <; < 2k(7+1)  Moreover, the number
of those p € P such that |[pN ;44| = I; for a given sequence I = (I;);>1 with a finite

9k(j+1)
L > It follows from (10)

number of nonzero coefficients is bounded by [],~; <
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that
Z exp[—A,] < Z Z e—jne—k(j+i)|pm;cj+i|
meM 720 peP | J(p)>s) i1
< D e > ) A
520 Il {p| IpﬂleH\—l- for i>1} =1
< YIS )t
J=20 [ i>1
ok(j+1) ;
< SoTL Y (B o
7>0 i>1 ;=
; ok(j+1)
- Ze_]H<1+€ k(]—l—z))
Jj=0 i>1
= > exp|—j+ Y 20 ]og <1+e—k(j+i)>
j=>0 | i>1
T IS
Jj=0 L i>1

Finally we can conclude that (6) holds with ¥ < X} + X7.

3.2.5. Models for n-dimensional vectors. To handle the problem we started with
in the introduction, we may assume that our finite index set 7 is actually X =
{1,...,n}, the estimation of the function s from X to R; amounting to the estima-
tion of the vector (s1,...,s,)" € R with coordinates s; = s(i).

Ezxzample 4. If one assumes that either s; varies smoothly with ¢ or is monotone or
piecewise constant with a small number of jumps, it is natural to choose for m a
partition of A" into intervals and for M the set of all such partitions. Note that this

family satisfies Assumption H with 6 = 1. Setting here A,, = |m| + log <|:%|__11 >,

we get (6) with ¥ < (e — 1)~! since there are (g__ll) partitions in M with D

elements for 1 < D < n.

Ezxzample 5. An alternative case is the case when s is constant, equal to s on X
except for a few number of locations ¢ where s(i) # 5. Since the number k of such
locations is unknown, it is natural, for each k € {0,...,n — 1} to define My, as the
set of partitions of X with k singletons and the set of the n — & remaining points.
We finally set M = Up<g<p—1M}. Then Assumption H holds with § = 1. For

m € My, |m| =k+1 and we set A, = log <Z> +kzlog<|m’n_ 1) +|m|—1
that (6) holds with ¥ < e/(e —1).
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4. THE CASE OF A DETERMINISTIC MEASURE M

Let us now see how our general framework applies to Problems 1 and 2. Besides
these, our setup also covers the problem of density estimation. Although there is
a huge amount of literature on density estimation, our method brings some im-
provements to known results on partition selection for histograms. Moreover, since
this problem has attracted so much attention, it can serve as pedagogical exam-
ple and reference for the sequel. This is why, before considering more original and
less studied frameworks, we shall start our review by this quite familiar estimation
problem.

4.1. Density estimation. We consider the classical problem of estimating an un-
known density s from a sample of size n, which means that we have at hand an
i.i.d. sample X1,...,X,, from a distribution with unknown density s with respect
to some given measure M = X\ on X. We define N to be the empirical distribution:
N(A) =n"'Y ", Ix,ca. Then, as required, E[N(A)] = [, sd\ for all measurable
subsets A of X. In this case the distance H is merely a version of the Hellinger
distance between densities.

Within this framework, we can prove the following general result.

Theorem 1. Assume that the family M satisfies Assumption H and the weights
{A,,, m € M} are chosen so that (6) holds. Then the penalized histogram estimator
§ = 5y, defined in Section 2.3 with pen(m) > n~1(80|m| + 202A,,) satisfies

E [H?(3,s)] < [390< inf (H?(s, Sp) + pen(m)) + 10122) +€] A2

meM n

The only previous works on partition selection for histograms using squared
Hellinger loss we know about are to be found in Castellan (1999 and 2000) and
Birgé (2006). Castellan’s approach is based on penalized maximum likelihood. This
requires to make specific restrictions on the underlying density s, in particular that
s should be bounded away from 0. For the problem of estimating a density on R, her
conditions on the family of partitions are also more restrictive than ours since we
can handle any countable families of finite partitions into intervals. Nevertheless, in
the multivariate case, our assumptions on the partitions are more stringent. Birgé’s
approach based on aggregation of histograms built on one half of the sample leads
to more abstract but more general results.

Let us now apply the above theorem to various families of models, systematically
setting pen(m) = n~=1(86|m|+202A,,) and ¢ = n~!. We assume in this section that
A is the Lebesgue measure on X.

4.1.1. Ezxample 1, continued. When X = [0,1), we use the family of models and
weights of Section 3.2.1. Our next proposition shows that the PHE based on this
simple family of models and weights has nice properties for estimating various types
of functions. The proof will be given in Section 7.3.

Proposition 1. Let § be the PHE based on the family of models and weights A,
defined in Section 3.2.1, ¢ = n~! and the penalty function pen(m) = n~*(86|m| +
202A,).
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i) If s € S1(R), then
(11) E [H2(§, s)|<cC { [Rn_1 log (1 + nR2)]2/3 v n_l} .

i) If \/s € S?(w) where w is a modulus of continuity on [0,1), we define x,, to
be the unique solution of the equation nzw?(z) = 1 if w(l) > n~Y? and z, = 1
otherwise. Then

(12) E [H?(3,s)] < C(nay)™ .

If, in particular, \/s belongs to the Holder class ’Hf} with R > n~Y2, then E, [H2(§, s)] <
CRQ/(2a+1)n—2a/(2a+1)‘

iii) If s € S*(D, R) with 2 < D <n and R > 2, we get
(13) E, [H?(3,s)] < CDn 'log (nR/D).

It is interesting to see to what extent the previous bounds (together with the
trivial one, E [H 2(3, s)} < 2, which always holds but which we did not include in
(11), (12) and (13) for simplicity) are optimal (up to the universal constants C).
Many lower bounds on the minimax risk over various density classes are known for
classical loss functions. For squared Hellinger loss, some are given in Birgé (1983
and 1986) and Birgé and Massart (1998). Many more are known for the squared
Lo-loss, which can easily be extended to squared Hellinger loss because their proofs
are based on perturbations arguments involving sets of densities for which both
distances are equivalent. It follows from these classical results that the bound we
find for continuous densities are actually optimal (see Birgé, 1983, p.211) while (11)
is suboptimal because of the presence of the log factor. We shall see below that the
more sophisticated penalization strategy introduced in Section 3.2.2 does solve the
problem. The case of piecewise constant functions is more complicated. If D and
the locations of the jumps were known, one could use a single model corresponding
to the relevant partition with D intervals and get a risk bound C'D/n corresponding
to a parametric problem with D parameters. Apart from the constant C, this
bound cannot be improved which shows that the study of uniform risk bounds over
S3(D, R) is only of interest when D < n since otherwise a lower bound for the
risk is of the order of the trivial upper bound 2. When D is smaller than n the
extra log(nR/D) factor in (13) is due to the fact that we have to estimate the
locations of the jumps. The problem has been considered in Birgé and Massart
(1998, Section 4.2 and Proposition 2) where it is shown that a lower bound for
the risk (when n > 5D and D > 9) is cDn~!log (nD_l). Therefore our bound is
optimal for moderate values of R. We do not know whether the log R factor in the
upper bound is necessary or not.

4.1.2. Improved risk bounds with a better weighting strategy. If we use the weights
A, defined in Section 3.2.2 to build §, we can only improve (up to constants) the
risk bounds given in Proposition 1 since the value of X does not change much while
the new weights are not larger than the previous ones. Besides, the values of the
weights have been substatially decreased for the partitions belonging to M%.. It turns
out that piecewise constants functions on the elements of MlT possess quite powerful
approximation properties with respect to functions in Besov spaces By ,([0,1)) with
a < 1 and monotone functions. These properties are given in the following theorem
which also includes the multidimensional case.
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Theorem 2. Let X = [0,1)F, /\/ll} be the set of partitions m of X defined in Sec-
tion 3.2.4 and, for m € M%, let S!, be the cone {t = remtrly,tr > 0}. For any
p>0,cwithl>a>k(1/p—1/2)1 and any function t belonging to the Besov space
B2 . ([0,1)%) with Besov semi-norm |t|pa, one can find somet’ € UmeMl} SI., such
that

(14) It = t'll2 < Cla, k, p) [t g |m| =",

where || - ||l2 denotes the La(dx)-norm on [0, 1)F.

If t is a function of bounded variation on [0,1), there exists t' € UmeM; SI. such
that ||t —t'||o < C'Var*(t)|m| L.

The bound (14) is given in DeVore and Yu (1990). The proof for the bounded
variation case has been kindly communicated to the second author by Ron DeVore.
With the help of this theorem, we can now derive from Theorem 1 the following
improved bounds the proof of which is straightforward.

Proposition 2. Let 5 be the PHE based on the weights A, defined in Section 3.2.2.
If \/s is a function of bounded variation with Var* (/s) < R and in particular if it
belongs to S'(R), then

(15) E [H2(3,5)] < min {C(R/n)2/3, 2} for R>n~1/2,

If /s € By o([0,1)) with 1 > > (1/p —1/2)4 and \\/§|Bgoo < R with R > n~1/2,
then *
E [H2(§, 3)] < min {C(a7p)RQ/(1+2a)nf2a/(1+2a)7 2} .

It follows from classical lower bounds arguments that these bounds are minimax
up to constants.

4.1.3. The multidimensional case. When the density s defined on X = By can be
written s(x) = ®(||z||) for some function ® on [0,1), we use the family of models
introduced in Example 2. We then obtain the risk bounds given in Propositions 1
and 2 if we replace the assumptions on s by the same on ®. We omit the details.

If ¥ =[0,1)*, k£ > 2 and we use the family of models and weights described in
Section 3.2.4, we get the following result.

Proposition 3. Let R > k~'n=1/2. If \/s belong to HE([0,1)%), then
(16) E [H2(3,5)] < min{C(Rk)2k/(k+2a)n—2a/(2a+k)’ 2}.

More generally, if \/s belongs to BS . ([0,1)%) with 1 > o > k(1/p —1/2)4 and
|\/§]ng < R, then

E [H2(§, s)] < min {C(a, k, p) R/ (k+20) =20/ (k+2a) 2} :

Proof: Let m = K; be an element of Mpg. Then A, = |m| = 2" and the maximal

variation of a function of HQR([O, 1)¥) on an element of m is bounded by Rk277% so
that H?(s,Spm) < (Rk)*272%. It then follows from Theorem 1 that E [H?(3, s)] <
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C' [(Rk)?272* 4+ n=12%7] The lower bound on R allows us to choose j € N such
that 27 < (n(Rk)z)l/(kHa) < 2771 which leads to

E [H2(§7 5)] < o4 [(Rk)222a (n(Rk)2)—2a/(k+2a) + n—l (n(Rk)Q)k/(k—l-Qa)} .

The first bound follows since 22* < 4. The second bound can be proved in the same
way from (14). [

4.2. Poisson processes. Let us consider the stochastic framework corresponding
to Problem 2 where v is dominated by some given measure M = A on X with density
s = dv/dX. This implies that (1) holds as required. In this case, the performances
of the PHE 5 are as follows.

Theorem 3. Assume that the family M satisfies Assumption H and the weights
{A,, m € M} are chosen so that (6) holds. Then the estimator § defined in Sec-
tion 2.3 with pen(m) > 36|m| + 62, satisfies

(17) E [H?(3,s)] <390 inf [H?(s, Sp) + pen(m)] +35%| +e.

This theorem should be compared with the results of Reynaud-Bouret (2003) who
uses more general families of projection estimators than just histograms based on
partitions. Nevertheless, for the problem we consider here, her choice of the L?-loss
induces some restrictions on both the intensity and the collection of partitions at
hand. For instance, the intensity has to be bounded and the procedure requires
some suitable estimation of its sup-norm. As Castellan (1999), she cannot deal with
partitions with arbitrary small length.

Let us now apply this theorem to our families of models, systematically setting
pen(m) = 30|m| + 64A,, and € = 1. In view of facilitating the interpretation of the
results to follow, it is convenient to use an analogy with density estimation. This
analogy, based on the following heuristics, allows to extrapolate the bounds from
one framework to the other.

We recall that observing the Poisson process N of intensity s is equivalent to
observing N i.i.d. random variables with density s’, where N = N(X) is a Poisson
variable with parameter n = | ysdXand 5" = n~ls. With this in mind, and even
though n need not be an integer, we can view the estimation of s as an analogue of the
estimation of the density s’ from n i.i.d. observations. Pursuing into this direction,
we may rewrite the risk in the Poisson case as E [H?(S,s)] = nE [H*(n™'3,5)]
and, setting 3, = n~ '3, view E [Hz(én, s/)] =n"E [H2(§, s)] as an analogue of the
risk for estimating s’ from n i.i.d. observations. When /s belongs to S*(R), S?(w)
or S3(D, R), then the square-root of the density s’ = s/n belongs to S'(Rn~1/?),
S?(wn~2) or 83(D, Rn~'/2) respectively (provided that R? > n in the last case,
since otherwise S3(D, Rn~'/2) would not contain any density). From these two
remarks, we may conclude that a risk bound of the form f(R) in the Poisson case
should be interpreted in the density case as n~'f(Rn~1/?).

Ezxample 1, continued. Here we deal with a Poisson process N on a finite interval
of R, which we may assume, without loss of generality, to be [0,1), of intensity
s with respect to the Lebesgue measure v. To estimate s we use the family of
models of Example 1 with the weights A,, defined in Section 3.2.2. The resulting
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PHE s has the following properties which can be proved exactly like those given in
Propositions 1 and 2.

Proposition 4. Let w be a modulus of continuity on [0,1). We define x,, to be the
unique solution of the equation xw?(x) = 1 if w(1) > 1 and z, = 1 otherwise. Then

(18) E[H%(3,5)] < Cx,'  for all s such that \/s € S*(w).
If, in particular, \/s belongs to the Hélder class Hg with R > 1, then
E [H?(3,s)] < ORY(otD),

Given D > 2 and R > 2D, we get
(19) E [H?(3,s)] < CDlog(R/D) for all s € S*(D, R).

If /s belongs to SY(R) with R > 1, then E [H%(3,s)] < CR?/3.
If /s € By o([0,1)) with 1 > a > (1/p —1/2)4 and \\/§|Bgo<> < R with R > 1,
then E [H*(5, s)] < CR?/(1+20)

For the sake of simplicity, let us assume that n = [ y SdX is an integer. The
connection established above between the estimation of a density and that of the
intensity of a Poisson process shows that Proposition 4 is actually a perfect analogue
of Propositions 1 and 2. Namely, when /s belongs to S'(R) or S?(w) or s €
S3(D, R) and s’ = s/n then Vs’ respectively belongs to S*(Rn~1/2) or S%(wn~1/?)
or s € 83(D,Rn~"') and the risk bounds we get for estimating the intensity s
(with respect to the H?/n-loss) are the same as those obtained from a n sample for
estimating the density s’ (with the H>-loss).

Ezample 2, continued. If we observe a Poisson process on X = B with intensity
s(z) = ®(||z||) with respect to the Lebesgue measure for & some function on [0, 1)
and consider the family of models introduced in Example 1 we obtain the risk bounds
given in Proposition 4 if we replace the assumptions on s by the same on ®.

Ezample 3, continued. If X = [0,1)F with k > 2, we use the models and weights
defined in Section 3.2.4. Proceeding as for Proposition 3 we get:

Proposition 5. Let /s belong to HE(]0,1)%), then
E [H?(s,5)] < C(Rk v 1)/ (2],
If /s belongs to B ([0,1)F) with 1 > a > k(1/p — 1/2)1 and |\/§|Bgoo < R, then

E [H?(3,5)] < C(a, k,p)(R Vv 1)/ (E+20),

As shown by the proof of Proposition 3, we only use the partitions in Mg to get
(16) so that it would be of little use to introduce other partitions if we only wanted to
estimate intensities such that /s belong to HZ([0,1)¥). The interest of considering
the larger family M and to have a special definition of A,, when m € M is that it
allows to improve the results when we deal with less regular functions than those for
which /s belong to HZ(]0,1)¥), in particular those functions that belong to Besov
spaces BY . ([0,1)%) with 1 > a > k/p. To illustrate this fact, let us study the
estimation of those intensities s such that /s has the following specific structure.
Given the nonempty set ¥V which is a finite union of elements of K, there is a smallest
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integer J such that V' can be written as the union of N elements of K; with a volume
V = N2 > 0. To avoid trivialities, we assume that 7 > 0, hence V < 1.
Proposition 6. Let s be an intensity on [0,1)* such that \/s1y belongs to HE(V)

with R > 1 while \/slye is constant and let 5§ be the PHE based on the weights A,
defined in Section 3.2.4. Then

(20) E[H3,5)] <C inf B with By = H(s,Sn) + m| + A
and

(21) B, < Cmin {2’“3 + Y/ (k+20) (f 2K/ (k+2a) .

(22) % [kjgkj + (kR)2M/204K) [1og (Rk)]h/(?a-i-k)} :
(23) v [Qkﬁkj + (k,R)Qk/(QoH-k)] } '

Proof: Since (20) is merely a consequence of Theorem 3 with the choice pen(m) =
30|m| + 6A,, and € = 1, we only have to bound B,,. Let us first consider a regular
partition m = K;. If j < 3, the bias H?(s,S,,) may be arbitrarily large since
the intensity s may be arbitrarily large on V while it may be small on V¢. For
J > 7, the argument used for the proof of Proposition 3 shows that on V, /s can be
approximated uniformly by an element of S,,, with a precision at least Rk277% so that
H2(s, Sy) < VR?k227%% and B,, < VR2K22-% 4 okit+1 1t [V R2E2) /M) < o1

we set j = j and otherwise choose j so that 2/ < [VRQkﬂl/(erk) < 2/ This
leads to (21).

If we set m = m, V Ko with p being the set of those N2kG-D) = V2ki > 1 elements
of ICj (j >7 > 1) that exactly cover V, we get, since k > 2

By < VRK227% 4 (kj + 1)V2M +1 < Vi [R%z—?ja + 2j2’ﬂ .

If [kQRQ/log(kR)}l/(QaJrk) < 20 we set j = J and otherwise choose j so that 27 <
[K2R2/log(kR)] /M) < 2741 which finally leads to (22).

To study the approximation properties of the elements of M’% let us consider a
particular cube K’ = Kj 1 € VNK;. Identifying the partitions in M% with the trees

from which they derive, we can design an element mg of M% with 2¥ — 1 terminal
nodes at each level 1 to J and the remaining node K’ at level J. Then we keep only
non-terminal nodes up to level j > J, all nodes at this last level j being terminal,
so that their number is 2507, The total number of terminal nodes of the tree is
therefore j(2F — 1) + 25U=7). We can repeat this operation for each of the N cubes
in ¥V N K5 keeping the value of j fixed. This results in N similar trees. We finally
consider the smallest complete tree m that contains the N previous ones. Its number
of terminal nodes is then bounded by N [j(2”c -1)+ k(i *D] so that

Bp < V(RE)?27%* + 2N |52 — 1) + zkwﬂ <2V [RQkQQ*Qja 4 72R0HD ij] ‘
If (k2R2)1/(2a+k) < 2 we set j = J and otherwise choose j so that 2/ < (k2R2)1/(2a+k)
2971 which leads to (23). ]

A comparison of the three bounds (21), (22) and (23) shows that (23) is always
better if we omit the influence of j and k& but the situation becomes more involved

<
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if we take into account the effect of k and j. Depending on the values of V, R,J,
and k, each type of partition may be the best which justifies to introduce them all.

Remark: An analogue of Proposition 6 holds for density estimation.

4.3. Non-negative random vectors. Let us recall from the introduction that we
observe an n-dimensional random vector with independent nonnegative components
Ny, ..., N, and respective distributions depending on positive parameters si, ..., Sy.
One should think of the IV; as Poisson or binomial random variables with unknown
expectations s;. More generally, we assume that there exist some known constants
k>0 and 7 > 0 such that for all i € X = {1,...,n}

Ni—s. 2%s; 1
(24) log (E [ez( 1_51)]) < /{m for all z € [0, - [,
with the convention 1/7 = 400 if 7 = 0, and

(25) log (IE [e*Z(N"*Si)D < /ﬁisi for all z > 0.

In the case of Poisson or binomial random variables, one can take Kk = 7 = 1 as we
shall see below.

Our aim is to estimate the function s from X to Ry given by s(i) = s;. Here
we denote by A the counting measure on X and set Y = 1. Hence M = X and
N(A) =3",c4 Ni. Then L can be identified with R"}, E [N(A)] = [, sdX as required

and H2(1, 1) = S0, [Vl — EQ)| for 1.0 € £.

Theorem 4. Assume that (24) and (25) hold, that the family M satisfies As-
sumption H and the weights {A,,, m € M} are chosen so that (6) holds. Let
pen(m) > & [0 (1+ K?) |m| + 3K2Ap,| with

2
K=vV2 ift <k; K:£+

1
- if T > K;
K 2

and let 5 be the PHE defined in Section 2.53. Then

E [H2(.§, s)] <390 [ inf [HQ(S, Sm) + pen(m)] + (3/2)/<;K222] +e.

meM

Let us first check that some classical distributions do satisfy Inequalities (24)
and (25). If N; is a binomial random variable with parameters n;, p; then for all
z € R,

(26) log (IE [eZ(N"_S")D <si(ef—z—1) with s =n;p;.

If N; is a Poisson random variable with parameter s;, then equality holds in (26).
Using the bounds e* —z—1 < 22/[2(1—2)] for z € [0, 1] and e* —2z—1 < 22/2 for z < 0
we derive that, in both cases, (24) and (25) hold with x = 7 = 1. If N; has a Gamma
distribution I'(s;, 1), E [N;] = s; and, following the proof of Lemma 1 of Laurent and
Massart (2000), we deduce that (24) and (25) hold again with xk = 7 = 1. More
generally, it follows from some version of Bernstein’s Inequality — see Lemma 8 of
Birgé and Massart (1998) — that (24) holds as soon as

|
E[(N;)P] < /{%31-7'7’_2, forallie X and p>2.
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Inequality (25) is always satisfied if N; < k. Indeed it follows from
e <1 -z + 2%2%/2, Vr,2>0

that all non-negative random variables X bounded by k satisfy
2’E[X?]

E e ] <1-2E[X]+ — < exp (—2E[X] + kz*E[X]/2) .

The results of Kolaczyk and Nowak (2004), which are based on some sort of dis-
cretized penalized maximum likelihood estimator in the spirit of Barron and Cover
(1991), have some similarity with ours but they assume that the components of the
vector s belong to some known interval [¢,C], ¢ > 0 and they explicitely use the
values of ¢ and C in the construction of their estimator. Such an assumption, which
implies, as in the case of density estimation, that squared Hellinger distance and
Kullback divergence are equivalent also greatly simplifies the estimation problem.

FEzxample 4, continued. Setting
(27) pen(m) = [(1 + K?) |m| + 3K>A,] and e=1

and using log (gfl) < (D—-1)(1+log[(n—1)/(D—1)]) with the convention 0log((n—
1)/0) = 0 we get the risk bound

(28) E[H%(3,5)] < C(x,K) inf {HQ(s,SmH m| + (Jm| — 1) log (W)}

me

If, for instance, s itself belongs to some S,, with a small value of |m|, which corre-
sponds to a piecewise stationary process (N;)i1<i<n with a few distribution changes,
the risk is bounded by C(k, K)|m|logn.

Another interesting situation corresponds to the case of a monotone sequence
(Si)i<i<n, i.e. a monotone function s on A that we may assume, without loss of
generality to be nondecreasing.

Proposition 7. Let the sequence s;,1 < i < n be nondecreasing with \/s,—/s1 = R,
then the PHE § based on the models of Example 4 with pen and € given by (27)
satisfies the following risk bounds with a constant C' depending only on k and K :

o if R* <n~llogn, then E [H?(3,s)] < C(k,K) (nR? +1);
e if R>n/V3, then E[H?(3,s)] < C(k, K)n;
e otherwise E [H%(5,s)] < C(k, K) [R\/ﬁlog(n/R)]2/3.

Remark: If we restrict ourselves to the case n = 2, we can turn any function s on
X into a function s’ on [0, 1) by setting s" = > 7" | s(i)1;_1)9—+ jo-ky. This trans-
formation will, in particular, preserve the monotonicity properties of the functions.
One could then estimate s’ using the more sophisticated families of weights that we
introduced in Section 3.2.2. The use of this strategy would improve the estimation
of monotone functions, removing the logarithmic factors.

Ezample 5, continued. Choosing pen and ¢ as in (27) and using the same arguments
as for Example 1, we derive an analogue of (28) with n replacing n — 1 in the
logarithmic factor. If we assume that s; = 5 for i ¢ I with |I| = k, then H?(s, S,,) =
0 for some m € M, and

E [H?(3,5)] < C(k, K)[k+ 1+ klog(n/k)).
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5. SPECIAL COUNTING PROCESSES ON THE LINE

Let X be some interval of R, of the form [0, () where 0 < { < +o0 with its Borel
o-algebra A. We recall that a (univariate) counting process N on X is a cadlag
(right-hand continuous and left-hand limited) process from X to R, vanishing at
time ¢ = 0, with piecewise constant and nondecreasing paths having jumps of size
+1 only. The use of counting processes in statistical modeling is developed in great
details in the book by Andersen et al. (1993) where the interested reader will find
many concrete situations for which these processes naturally arise. Typically, N,
counts the number of occurrences of a certain event from time 0 up to time t.
The jumping times of the process give the dates of occurrence of the event. A
counting process can be associated to a random measure N on X whose cumulative
distribution function is the counting process itself, i.e. N([0,t]) = N; for all t € X.
In the sequel, we shall not distinguish between the counting process N and its
associated measure N.

In this paper, we consider a phenomenon which is described by some bounded
counting process N* on X such that N*(X) < k a.s. for some known integer k.
This means that N* describes an event that occurs at most k£ times during the
period X. We also assume that there exist a deterministic measure A on X, a
deterministic nonnegative function s € L;(X,d\) and a nonnegative observable
process Y* bounded by 1 on X such that

(29) E[N*([0,])] = E [ /0 t sY*d)\} for all ¢ € X.

We actually observe an aggregated counting process N which is the sum of n i.i.d.
processes N7, j = 1,...,n with the same distribution as N*. The fact that the
measure N7 is determined by its cumulative distribution function and (29) imply
that there are i.i.d. observable processes Y7, j € {1,...,n} with the distribution of
Y™ such that

E[Nj(A)]:E[/Sde)\] foralAe A and 1<j<n.
A

Therefore (1) holds with M =YdA and Y = Z;L:1 Y. For such counting processes,
we can prove the following result.

Theorem 5. Assume that there exist a positive integer k and a positive num-
ber k', both known, such that N*(X) < k a.s., (29) holds and Var [ [, sY*d)\] <
k'R U] SY*d)\] for all intervals I C X. Assume moreover that fX sd\ < +oo and
the aggregated process N satisfies (2). Let us choose a family M satisfying Assump-
tion H and weights {A!,, m € M} such that

m)

(30) Z exp[-nAl] =%'(n) < +oo  forn=k (k + /X sd)\> - .

meM
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Then the estimator $;;, defined in Section 2.3 with pen(m) > 166|m|(k+r")+404kA],
satisfies

E [H? (3, 5)]

IN

390 <E [ Jinf (H*(s, Sm) + pen(m))] + 404kn‘1[2’(n)]2> +e
< 390 <mlg£/t {E [H2(S, Sm)] + pen(m)} + 404kn_1[2'(n)]2> +e.

In the last bound, E [HQ(S,Sm)] plays the role of a bias term which can be
bounded in the following way. Let us set

S = {t = > t/l; witht;>0forall ] e m} N,
Iemng

where the t; are now deterministic. Then S/ C S,,, hence H?(s, S,,) < H?(s,S!)

and, for t € S/,

H2(s,t):/X(\/§—\/i>2Yd)\§n/X(f—\/i)sz,

since Y < n. Finally

E [H%(s,Sm)] <n inf /X <\/§— \/%)2 dX = b2,(s)

tes!,

and

404k
E [H? (3, 5)] <390 ( inf {b2,(s) +pen(m)} + n[z’(n)P) +e.
Note that the present framework includes, as a particular case, density estimation, if

we observe an n-sample X7, ..., X,, with density s with respect to A and set N7(A) =
14(X;). Then Y = n and H*(s,t) = n [, (Vs — \/73)2 d)\ which corresponds to
using the distance H of Section 4.1 multiplied by y/n. Up to this scaling factor, the
previous risk bound is analogue to that for estimating densities we get in Theorem 1.

In order to derive risk bounds which are similar to those given in Proposition 1,
we have to distinguish between two situations. The most favorable one occurs when
we know an upper bound I" for fX sdA, in which case, since 0 < Y* <1,

Var {/l sY*d/\} <E (/I sY*d/\>2] < (/){sdk) E {/l sY*d/\}

and we can set k' = I'. Moreover, assuming that (6) holds, we can choose Al =
(1 + kill“) A, without any further restriction on the family of models. Using the
same family of partitions as in the density case, we recover the bounds of Propo-
sitions 1 and 2 up to the factor n corresponding to the rescaling of the distance
H.

Let us now turn to the less favorable situation where no bound for | ySdAis
known, which is the typical case for Problem 4. As we shall see the number ' can
still be computed. As to (30) it will be satisfied with A/, = |m| as soon as the
number of models such that |m| = D is bounded independently of D. Restricting
ourselves to the family Mg of regular partitions, we recover, up to the factor n, the
bounds provided by case ii) of Proposition 1.
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5.1. Survival analysis with right-censored data. Let us now consider the frame-
work of Problem 3, denoting by Pr the common distribution of the T;. We con-
sider the counting process N on Ry defined by N = Z?Zl N7 where NJ(A) =
1 (TheA, D=1} for all measurable subsets A of R, so that we can take £ = 1. Then

the variables N7(A), 1 < j < n are i.i.d. Bernoulli random variables. We define s to
be the hazard rate of the survival times, i.e. s(t) = p(t)/P[T} > t] for ¢t > 0. Since
s is not integrable on R, we shall restrict ourselves to some bounded interval X
of R4, which we can take, without loss of generality, to be [0, 1) if we assume that
P[T} > 1] > 0. We also assume here that the censorship satisfies for all ¢ > 0,

(31) E [N9([0,])] = E [ /O s(w)Y? (u)du] L owith YI(0) = 1,

which means that (29) holds. Equality (31) is clearly satisfied when C; = Tj for
all j, i.e. when the data are uncensored. It is also satisfied when the censorship
is independent of the survival time, i.e. when C; and T} are independent for all j.
Indeed, we then have for all j and ¢t > 0, by Fubini Theorem and independence,

E {/Ots(u)Yj(u)du} - E [/Ot Ip&ﬂcjzuﬂmudu

_ / "p(W)P(T) > w)P(C) > u) Ju
0 P(Tj > u)

= /]1[07,5}(11,)1?)(0]' > u)dPT(u)
= P[T; <t,T; < C;] =E [N/([0,1])] .

Proposition 8. If the processes N7 satisfy (31), the assumptions of Theorem 5 hold
with k=1, k" =2 and [, sd\ = —log(P[T1 > 1]).

From a practical point of view, one can always estimate P[7; > 1] accurately
enough to assume that an upper bound I' for [ v 8d\ is known. We can therefore
apply Theorem 5 to the the family of models of Example 1 with the weights A,
given in Section 4.1, setting Al = (14 T')A,,. We then obtain perfect analogues of
Propositions 1 and 2 with constants C' now depending on I'. To avoid redundancy,
we leave the precise statement of the risk bounds to the reader.

5.2. Transition intensities of Markov processes. Within the framework of
Problem 4, we associate to T1 the counting process N* defined for ¢ > 0 by
N*([0,t]) = Tgp, y<q so that

t

(32) BN (0.1)] = [ plu)du—E [ J A T——

and (29) holds with Y*(u) = lyx, —;3. Our aim here is to estimate s on some
bounded interval X of R, from the observation of the counting process N =
Z?Zl N7 where the N7’s are i.i.d. copies of N* associated to n i.i.d. copies X1,..., X"
of the process X. If X takes only the two values 0 and 1 and a.s. starts from 1 to
reach 0, then the problem reduces to estimating the density p of 17 g; it becomes
novel when we have at least three states. In any case, we get the following result.

Proposition 9. If the weights A}, satisfy >, c v exp[—nA;,] < 400 for alln >0
and [ s(t)dt < o0 then Theorem 5 applies with k =1 and &' = 2.
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6. A UNIFYING RESULT

We want here to analyze our estimation procedure from the general point of view
described in Section 2 and prove a risk bound for the estimator §, from which we shall
be able to derive the previous risk bounds corresponding to all the specific frame-
works that we considered. For this we introduce the following (possibly random)
approximation for s in Syy,:

_ ST .
33 Sm = ——1; with S]:/SdM.
( ) IE;J M(I) I

We need here a bound for H? (3,,,3,,) which holds uniformly for m € M. It takes
the following form:

H’: There exist three positive constants a, b and ¢ such that, for any m € M,

(34) P [H?(3,3m) > c|m| + bz] < aexp[—z] for all z > 0.

We can now derive bounds for the risk of the estimator § defined in Section 2.3.
Theorem 6. Let Assumptions H and H’ hold and the weights A, satisfy (6). Let
the penalty pen(m) be given by

(35) pen(m) > cd|m| + bA,,.

and m be any element of M satisfying (5). Then the estimator § = §y, satisfies

(36) E [H?(3,s)] <390 (IE [ inf (H?(s, Sm) + pen(m))] + ab%? /2) +e.

meM

Note that such a result has been obtained without any assumption on the under-
lying space X and the true value s of the parameter, apart from the fact that it
belongs to £. Note also that in (36), the infimum over m € M occurs inside the
expectation, which makes a difference when M, and therefore H (s, Sy,), is random.

As we have previously seen, § < 2 for all the models we consider. Moreover, we
shall see in Sections 7.3.1, 7.4.1 and 7.5.1 that for Problems 0, 1 and 2, a =1 and b
and c take the form b = b/Cp and ¢ = ¢/Cp where b’ and ¢’ are numerical constants
and Cp depends of the problem we consider (for instance Cp = n~! for density
estimation). If we choose pen(m) = c¢oCp(|m| + A,,) for some suitable numerical
constant c¢g and € < Cp, it follows that (36) becomes

E [H*(3,s)]

< 390 (E [ inf (H?(s, Sm) + coCp(Im| + Am))] + 2b'cp22/2> + Cp,

meM

which gives (7). If there is only one model m in the family M, we can fix A,, =0,
hence ¥ = 1, which leads to (3).

Proof. Let m* be an arbitrary element of M. It follows from the definition of D
that for any m € M, H?(3,,, 3+) < D(m) V D(m*). Therefore,

(37) H (550, 6m+) < D(i) v D(m*) < D(m*) + &3,

by (5). It also follows from (4) that, if T}, p,« < 0, then

(38) H?(3m, 8mvm*) — H2(3m+, mvm+) < 16[pen(m*) — pen(m)].
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Moreover
H2(§ma ém\/m*) - H2(§m*a §m\/m*)

- /émdM—/§m*dM+2/(\/$—\/a) Vo M
= 126 00) 2 [ (Vo = Vo) (Vomome = Vo) M,

hence, by (38) and Cauchy-Schwarz Inequality,
H? (3, 8+ )

< 16[pen(m*) — pen(m)] + 2/ (@— \/ém*> (\/ém\/m* - \/%) dM

16[pen(m™) — pen(m)] + 2H (8, $m+ ) H (Smvm=, Sm*)

IN

< 16[pen(m*) — pen(m)] + %H2(§m, S ) + AH? (3mvme, 8m*).-
Therefore, for any m € M such that T}, ,,,« <0,
H?(3m, 8 ) < SH?(8mvm*» 8m+ ), +32[pen(m*) — pen(m)]
and, since
H?(3mym s 8m=)
< A[H*(Smvmes Smvm*) + H*(Smvm= 8) + H(8,8m+) + H? (S, )]

then
(1/32)H2(§m7 §m*) S H2(§me*a gm\/m*) + H2(§m* 3 gm*) + pen(m*)
(39) — pen(m) + H?(8mym=, $) + H?(5, 5p+).
Let us set, for all z > 0 and (m,m’) € M2,
Q, = ﬂ {wEQ ‘H2(§m\/m’7§m\/m’) Sc]me’\+b[Am+Am/+z]}.
(m,m’)eM?
It follows from (34) that
(40) PO <ae™® ) e fmmAw =¥l
(m,m’)eM?
Let now w belong to €2,. It then follows that
(41) H? (8, 8me) < c|m™| 4+ 2bA x4 bz < 2pen(m*) + bz

and, using Assumption H, that
H(3mvm*» Smvm=) < cd[|m| + |m*|] + b[Am + A + 2].

Therefore we derive from (39), (41) and (35) that, for all m € M such that 5, , <
0,

(1/32)H? (3, 3mx) < H*Buvme, 8) + HA(8,5m0) + (1 + 8)c|m*|
+ 3bA+ + 2bz + pen(m”)
H2(Bym», 8) + H?(8, 5+ ) + 2bz + 4 pen(m*).

IN

In order to control the bias terms H?(s, 5,,/) of the various estimators involved in
the construction of s, we shall use Lemma 2 below. Since Syym+ O Sy for all
m € M, this lemma implies that

HQ(gm’\/m*75) < 2H2(37Sm’\/m*) < 2H2(37Sm*)7
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therefore
H?(8p, 8,2 ) < 128 [H? (8, Sy ) + pen(m*) + bz /2],

for all m € M such that T}, y,+ < 0 and we conclude from (37) and the definition of
D that, if w € Q,,

H? (3, 8m+) < D(m*) +¢/3 < 128 [H*(s, Spp+) + pen(m*) + bz /2] + /3.
Since
H? (35, 8) < 3[H? (3, 8m+) + H? (3, 3 ) + H?(5ime, 8)]
it follows from (41) and Lemma 2 that
H? (8, 5) < 3 [130H?(s, S+ ) + 130 pen(m*) + 65bz + /3] .

Since m™* is arbitrary in M we finally get

H? (5, 5) 1, < 390 < inf [H?(s, Sm) + pen(m)] + bz/2> +e.

meM
An integration with respect to z taking (40) into account leads to (36). O
Lemma 2. Within the framework of Section 2.1, for any f € L, we have

H2(f, ) < 2H2(f,5) with for = 3 ( /I f]\‘%)) 1.

IemnJg

Proof. Let X' = Ureuny I- Note that M is an a.s. finite measure on X’ and that
for all t € Sy,

H2(f,t) = H*(flx,t) + / fdM.

x\x

It is therefore enough to show the result for X’ in place of X and fly/ in place of
f and we can restrict ourselves to the case where M is a finite measure on X. Let
Vf” be the Ly(X,dM) projection of \/f on S,,. Since the value of \/f” on I is given
by [;+/fdM/M(I), it suffices to prove that for each I € mNJ

o (7 frsty) wese [ (7~ [ vy e

By homogeneity, we may assume that M(I) = 1. Expanding the left-hand side
of (42) we get

/1<ﬂ_\/m>2dM:2</ffdM_/l\/}deW)v

which, together with the inequality /[, fdM > [;+/fdM, leads to the desired
result. ]
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7. PROOFS

7.1. Proof of Lemma 1. Let m = m, V K; and m = my V Kj be two elements
of M and I, = ([0, 1)k \ UIEI,I), Iy = ([O, IDLAN UI’Ep/I/)- Assuming, with no loss of
generality, that j > j/, we get

mvVm =myVmy VK VK =m,VmyVEK;=miUmoUmgUma,
P p J J P P J

with
miy = {KNINI'#@|KekK;IepI ep};
me = {KNINly#@|KeK;,Icp};
ms = {KNL,NI'#a|Kek;I'ep};

my = {Kﬁfpﬂjp/#Q‘KEKj}.

Since j < J(p), hence p C Uj5;K;, for K € Kj and I € p, K N1 is either I or @,
so that m = pUp; with p; = {K NI, # @,K € K;} and |m| = |p| + |p;|. It also
follows that [m1| < |p| + |[p/| and |ma| < |p|. Then, given K € K; and I' € p/, KNI
is either K or I’ or & since K, I’ € K, so that |mg| < |pj| + |p/|. Finally |m4| < |pj|
and

im v '] <2 (Ip| + '] + [p;) < 2(Jm| + |m/)).

7.2. Some large deviations inequalities. The proofs of Theorems 1, 3, 4 and 5
require to check (34) for each specific framework. Since

2
(43) H? (3 Sm) = > (\/N(I) - \/5) for all m € M,
IemnJg
this amounts to proving some deviation results for quantities of the form
2
> (VN = vsr) —elm]
IemnJg

which is the purpose of this section. Throughout it, we consider a finite set of
non-negative random variables X; with I € m and the related quantities

(44) ) = Y (VA - VEX])
Iem

the notation suggesting that these variables behave roughly like x? random variables
as we shall see. Our purpose will be to derive deviation bounds for those variables
from their expectation. Our first result is as follows:

Theorem 7. Let (X1)rem be a finite set of independent non-negative random vari-
ables and x*(m) be given by (44). We assume that there exists k > 0 and T > 0
such that

2
(45) log (E [eZ(XI*]E[X’DD < mm for all z € [0,1/7],

and

2
(46) log (E [e_Z(XI_E[XI])D < /{ZE;XI] for all z > 0.
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K:max{\@; 724- <;—;>+}

Then for all x > 0,

Let

(47) P [x3(m) = E [3(m)] + Kk (2/2mlz + )] < e,
and
(48) P [x3(m) < E [x*(m)] - 2K%ky/2]m]z] < e

Proof. Let us first introduce the following large deviation result, the proof of which
follows the lines of the proof of Lemma 8 of Birgé and Massart (1998).

Lemma 3. Let Y7,...,Y, be n independent, centered random variables. If
log (E [e1]) < nﬂ forallz€[0,1/7[ and 1<i<n
— 2(1—27) ’ -

then
n n 1/2
P ZYQZ(?&J}Z@) +rz| <e™* forallx>0.
i=1 i=1

If, for 1 <i <n and all z > 0, log (E [e*ZYiD < Kk220;/2, then
n n 1/2
P ZKS—(QR:BZ&) <e™® forallxz>D0.
i=1 i=1
It follows from (45), (46) and Lemma 3 with n = 1, ¥; = X; — E[X;]| and
01 = E[X/] that, for all x > 0 and I € m,

P [XI > E[X;] + /2kE [X[]x—}—rx} <e®

and
i [X, <E[X] - \/25E [X]] a:} <e o

Setting u = E [X[] /(kx), we deduce that, with probability not smaller than 1—2e™%,
VX - VEX]]
< max{\/E[XI] - \/(E [X7] — V2KE [ X]] 33) ;

_l’_

VEIX/] + V2E X ]z + 72 — \/E [XI]}

- \/@max{\/ﬂ—,/<u—\/ﬁ)+; \/u+\/ﬂ+(7/n)—\/ﬂ}
mig%max{ﬁ_,/(z—@)+; \/z+¢£+(7/n)—¢;}.

IN
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On the one hand, note that z — /z — /(2 — \/22)+ admits a maximum equal to

V2 for z = 2. On the other hand, using the inequality va +b < y/a + Vb which
holds for all positive numbers a, b, we obtain for all z > 0,

() o (1) e

ooV f(r 1

- 2 kK 2/,
and therefore ‘\/XI —vE [XI]‘ < K+/kz with probability not smaller than 1—2e™%,
or equivalently
(19) P[U; 2 K%] <2¢7 foralle>0 with Uy =r" (VX - VE[X]])

Since x2(m) = k> 1em Ur and the random variables Uy, I € m are independent,
(47) will derive from Lemma 3 if we show, setting E; = E [U;], that

4K422

IN

\/z—i-\/i—i—(T/n)—\/Z

2

(50) log (E |:€Z(U17EI):|) S m for all z 6]07 1/K2[
Similarly, (48) will follow from

4K452
(51) log (E [e_Z(UI_EI)D < TZ for all z > 0.

To prove (50), we shall use the following lemma about the centered moments of
positive random variables.

Lemma 4. Let Z be a non-negative random variable. For any positive even integer
k,
E [(Z ~E [Z])ﬂ <E [Z’f} _(E[Z])* <E [Z’“} .

Note that the inequality E [(Z —E[2])" } < E [Z*] also holds true for odd integers

k since E [Z] > 0 and the map z — 2" is then increasing.

Proof. Since the result is trivial for k¥ = 2, we may assume that k£ > 4 and, using
homogeneity, that E [Z] = 1. Consider the function z — Q(z) = 2F—(2—1)F—k(2—1)
on [0, +oo[. Its second derivative is negative for z < 1/2 and positive for z > 1/2,
from which we easily derive that () has a minimum for z = 1. This shows that
Q(z) > 1 for all z > 0 and consequently,

E[Z| -E[(Z-1)] =E[Q(2)] > Q1) =1
which leads to the result. O
The random variable U; is positive and by (49) satisfies P[U; > t] < 2e~t/K”.
Consequently, we deduce from the previous lemma (with Z = Uy) that for all integers

k (odd or even)

52) E [(UI - EI)’“} <E [Uﬂ - /+Oo kR LR (U > ] dt < 2(k) K2,
0
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Hence, for all z €]0,1/K?[,

4422

(Ur—Ej) k -2k kp-2k _
l%@FZIIDSbg1+maZpK <2) K = &)

k>2 E>2
To prove (51), note that, for all z,u > 0, e ** < 1 — zu + 22u?/2. Therefore, by
(52),
4K422
2 b
which completes the proof of Theorem 7. Il

log (IE [e*Z(U’*EI)D = log (IE [efZU’]) +z2E; < fE [Uj] <

A second pair of deviation inequalities for variables of the form x2(m) is as follows.

Theorem 8. Let m be a finite index set and X; = (X7 ;)

random vectors with values in RT'. Assume that there exist positive numbers A and
Kk such that

(53) Z X1 <A as. and  Var(X71) < kE[X71] forall I € m.

Iem

If X; = Z?Zl X1 for all I € m and x*(m) is given by (44), then
(54) P [x*(m) > 8k|m| + 2024z] < e™* for allx > 0.

rems L < J < pbeiid

Proof. Since X1 = 0 a.s. if E[X71] = 0, we may remove all indexes I such that
E[X71] = 0 in the sum and therefore assume that E [X;] = pE[X[;] > 0 for all
I € m. We can then write, for all z > 0,

]P’( X2(m)2,z>
- P ;(F@* V(XI)(W VEIXI]) 2 2 V/A%m) > 2

() ey )

Z JA2m) VX +VEX]
VX - \/]m) (X1 —E[X14])
T VA (VT + VEX))

v (VA - VEIXID) VEXT x,, _E[x,
— P >

jzlm(erf) VEIX]

o X)) >

]>z m>z

- P\ Xt gy 2 E VA )

where

<
ﬂ.
~
m
3

(VX7 - VEIXI]) VE[X]]

tr = for all I € m.

V() (Vi + VE[X))
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Note that > ;.17 < 1 since /E[X;]/(vX: + vE[X;]) < 1 and that [t;] <
z~1\/E[X/] on the set \/X2(m) > z, from which we deduce that

X1 —E[Xr,]
6 (VA ) <P (s Y )
tET] 1Iem XI

where 7 denotes the set of vectors t = (t1);,, € RI™I satisfying

VE[X]] 2
(56) ltr] < — forall I € m and Z t7 < 1.
Iem
In order to bound the right-hand side of (55), we shall use the following result from
Massart (2000, Theorem 2.4).

Theorem 9. Let §y,...,§, be independent random variables with values in some
measurable space H and F be some countable family of real valued measurable func-
tions on H such that || fllec < b < 400 for all f € F. If

p

Z = sup Zf<€]) —E[f(&;)] and o = sup ZVar ,

feF =1 feF =1

then for every positive numbers €, x

P [Z > (14 6)E [Z] + 20v2z + (2.5 4 32e7) bx} <e®.

We want to apply this result to the vectors §; € RI™| with coordinates & 1j =

(X1; —E[X1,])//E[X[] for I € m. Under our assumptions, these random vectors
are independent and satisfy

STVEXEr <3 (Xr; + E[Xr) < 24.

Iem Iem

Consequently, the random vectors &; take their values in the subset H of RI™l given
by

H:{u:(ul, I em)

> VEX JJu < 2A}.

Iem

For w € H and t € 7, we set fp(u) = >/, trur and F = {fg,t € T'} where
7' denotes a countable and dense subset of 7. With no loss of generality we can
assume that 7" is symmetric around 0 (if ¢ € 7’ then —t € 7”’) which implies that
the absolute values can be removed in the definition of Z. Since, for all t € 7 and
1 <j <p, ft(§;) is centered, we can finally write

X1, - E[Xy) "X - KX
7=y Y T sy 3 (3 R

tET] 1Iem teT T 1em 7j=1

Using Cauchy-Schwarz Inequality and (56), we then derive that

E[ | <E Z2 ZE Zw ZZVarXIJ

Iem 7=1 Iem j=1
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Since Var(Xy ;) < #E([X7;] and 37, E[X7;] = E[X/], we conclude that E[Z] <
V k|lm|. To bound || f¢|ls, we use (56) which implies that, for all w € H and t € T,

Z t]”LL]

Iem

filu <3 ) < 37 VERL

z
Iem Iem

Finally, it follows from the equidistribution of the X ;, Cauchy-Schwarz Inequality,
(53) and (56) that, for all t € 7,

2
p ar ; = ar = X“_ X“]
> Var (i) = pVar(fy(€n) = (I%;LI EC ] )

2 2
< 2E (Z[ > +2<Zt1\/ XIl)
L Iem XIl] Iem
< 9E (ZX“) <Zt1E§él ) +23° Y E[X;4]
Iem Ie Il Iem Iem
< ( th X11 +Zt%> <
Iem

In view of all these bounds, we may apply Theorem 9 with 02 = 44, b = 2A/z and
¢ = 1 and obtain that P [\/XQ(m) > z} < e " as soon as z > 2¢/k|m| + 4vV2Ax +

69Axz/z. Solving this quadratic inequation and using (a + b)* < 2 (a* + b?), we can
check that this inequality holds if 22 > 8k|m| + 202Az, hence the result. O

7.3. Density estimation.

7.3.1. Proof of Theorem 1. For two given classes m, m’ € M, we apply Theorem 8
with m” = m VvV m' in place of m, p = n and X7; = ly,er for all I € m” and
j=1,...,n. Then X; = nN(I) and (53) is satisfied with A = x = 1 since X
is a Bernoulli random variable and we derive from (43) that, for all x > 0, with

probability not smaller than 1 — e™%,

H2 m/s Sm") Z <\/N (I)})Q _ XQ(m”) < 8m”| +2021:‘

n n

Iem”

Therefore (34) holds with ¢ = 8/n, a = 1 and b = 202/n. We then conclude from
Theorem 6 and the fact that H?(t,u) is always bounded by 2.

7.3.2. Proof of Proposition 1. By assumption, /s has a variation bounded by R and
we may apply to it Corollary 1 of Barron, Birgé and Massart (1999) with o = 1,
D =27 with j > 2 and N = 2% It follows that one can find m € M3; p such that
H?(s,Sm) < (64/3)(R/D)?. Since pen(m) < CjDn~! for m € Msj p, we derive
from Theorem 1 that

2z < 20-2j 4 sojp—11
Es [H*(3,s)] _CjuzlfQ{R2 +j2n" "}
Then (11) follows if we define j > 2 by

479+ < [nR?/log (1 +nR?)]

<47tz
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which is always possible since nR? > 0, and distinguish between the cases j = 2
(which corresponds to nR? < 26.519) and j > 2.

When /s is continuous with modulus w, there exists an element ¢ € Sy, such
that [lv/s — Vtlleo < w(277), hence H(s,Spm;) < w(277). Since z, > 0, we can
choose j such that 277 < z,, < 27771, Recalling that pen(m;) < C27/n, we deduce
from Theorem 1 that

E, [H2(§, s)| < [w2(2_j) + n_12j] < [wQ(xw) + 2(nmw)_1} < 3C" (nxy) 1,

which proves (12). If y/s belongs to HZ with R > n~'/2 then z,, = (nR)~%/(a+D)
and the risk bound follows.

If s belongs to S3(D, R), we can write s = 2113:1 Skl ) 2p) With 0 =20 < 21 <
... <xp =1 and sup;<;<p sx < R. Fix [ such that 2l > npR > 271 Then 2! > 2D
and for 0 < k < D, set o) =sup{z € Jj|z < 1} and t = 21?:1 sklpy o) so that

t € Sy, with m € M; pr with D" < D since some intervals [z}_,,z}) may be empty.

Then
D-1

H%*(s,t) <R Z(IL‘k — ) < RD27".
k=1
Recalling from (9) that pen(m) < Cn~![D(llog2+2—log D)+2logl] for m € M, p,
we conclude from Theorem 1, (9) and our choice of [ that

E, [H?(3,s)]

IN

c’ [RDQ_Z + [D(llog2 + 2 —log D) + 2log l]n_l]

IN

C'(D/n) [3 +log 2 + log <2l_1/D) + 2D ! log l}
< C'(D/n) [3+1og2+log (nR/D) + 2(D log 2)"Llog log(2nR)]
and (13) follows since nR > 2D.

7.4. Random vectors.

7.4.1. Proof of Theorem /. For two given elements m, m’ € M, we apply Theorem 7
with m” = m Vv m’ in place of m and X; = N(I). We derive from the independence
of the N; that (45) and (46) hold. Therefore, for all x > 0, with probability not

smaller than 1 — e™7,

B2 50) = 3 (VN — VEIND))

]em//

> (VN - VENT)

Iem'

If follows from (45) that Var(N(I)) < kE[N(I)] (expand both side of (45) in a

vicinity of 0) and therefore

E [Z (VN - VE [N<I>1)2] - > E [WN(U - VE W)UQ]

Iem” Tem!

< E + K’k (2 2|m”\x—|—x>.

(N(I) ~E[N(D)])*
E[N(D]

IN

> E

Iem”

] < klm”|.
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Using the inequality 24/2|m/ |z < |m”| + 2z we conclude that, with probability not

smaller than 1 —e™%,

(57) H? (81, 3mr) < (1 + K?) k|m”| + 3K %K.

We derive that (34) is fulfilled with ¢ = (1 + K?) k, b = 3K?k, a = 1 and Theorem 4
follows from Theorem 6.

7.4.2. Proof of Proposition 7. Let us first note that, if |m| = n, then H?(s, S,) = 0,
hence by (28), E [H?(3, s)] < C(k, K)n which proves the bound when R > n/V/3.
For the other cases, we deduce from Lemma 5 below that, for any D € X', one can
find some m € M such that |m| < D and H?(s,Sn) < n(R/D)?. Setting D = 1,
we get the result for the case R? < n~!logn. Finally, when n~!'logn < R? < n?/3
we fix D = inf {j € N|j* > nR?/log(n/R)}. Since the function R+ R?/log(n/R)
is increasing for R < n/ V3,1 < D < n and the corresponding risk bound follows.

Lemma 5. Let f be a nondecreasing function from X = {1,...,n} to R such that

Vf(n)—+/f(1) =R. For D € X, one can find a partition (I1,...,1x) of X into
K < D intervals and a function g from X to R of the form g = Zszl By, such
that

> (VI - Vo) < nrtp=?

i=1

Proof: Let us set jo = 1 and define iteratively for k£ > 1, using the convention
inf @ =n,

(68) o=t {j € G+ Looon} | VFG) - VTG > B/D).

Let K = inf{k >1, jr=n}, Ix = {jk-1,-.-,n} and for k = 1,..., K — 1 (if
K >2), Ity = {jk-1,---,Jk — 1}. This defines a partition of X with K elements and
it follows from (58) that

K-1

R=+/f(n) = f1) > Y Vf(r) = VF(jr-1) > (K = 1)R/D,

k=1
hence K — 1 < D and K < D. Let us now set 8y = f(jr—1) for 1 < k < K. Since
VIGr=1) = VFGr1) < R/D we get for all i € Iy, 0 < \/F(@) — v/9(0) < R/D.

Hence,

n

S (VI - Vi) = 3 (VAT - Vi) < un

i=1 k=14€l}
7.5. Poisson and other counting processes.

7.5.1. Poisson processes. The proof of Theorem 3 follows the same lines as the proof
of Theorem 4. We apply Theorem 7 with m” = mVvm/ in place of m and X; = N(I).
Since {N(I), I € m"} are independent Poisson random variables, the assumptions
of the theorem are fulfilled with Kk = 7 = 1. We then proceed as for Theorem 4 to
get (57) with K? = 2 which provides the relevant values of ¢ and b.
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7.5.2. Proof of Theorem 5. Correction: certains A\ sont des M . Let us fix two
classes m, m' € M. We first apply Theorem 8 with m" = mVvm/ in place of m, p =n
and Xj; = N/(I) for all I € m” and j =1,...,n. Then for all I € m", N(I) = Xj.
Since X, is bounded by k, E [X%’j} < KE[X;,] and (53) holds with A = x = k.

T

This implies that, for all > 0, with probability not smaller than 1 — e™*,

(59) 3 <\/N(I) ~VE [N(I)])2 <k (8m”| + 202z) .

Iem!

Then we apply once again Theorem 8 with m” = m Vv m’ in place of m, p = n and
Xpj = [;sY7dX for all I € m” and j = 1,...,n. Since Y7 is bounded by 1, the
assumptions of Theorem 8 are fulfilled with A = | ¢ 8dX and k = x’. Consequently,

T

with probability not smaller than 1 —e™%,

(60) (\// sdM — \/ [/ deD2 < 8k'Im”| + 202Ax.

Since E [ [; de] = E[N(I)], we derive from (59) and (60) that, with probability
not smaller than 1 — 2e™7,

H2 (§m// , Em// )

2

IA

(]

<
=

v (- )

Iem’ Tem!

16|m"|(k + k") + 404z (k + A).

IN

This means that (34) holds with ¢ = 16(k+£'), a = 2 and b = 404(k+ A). Therefore,
if we set A, = k(k+ A)71A! for all m € M, (6) holds with ¥ = ¥'(k/(k + A))
and pen(m) = 166|m|(k + ") + 404kA!,,. An application of Theorem 6 leads to the
result.

7.5.3. Proof of Proposition 8. The following argument shows that (2) is satisfied:
let A be some measurable subset of X and B be the subset of A given by B =
{te A| X([0,t]n A) =0}. Since, by definition, the sets [0,¢] N B with ¢ € B are
negligible, A(B) = 0 (write B as an at most countable union of those sets). Conse-
quently,

P(N(A) >0, M(A)=0) < gP<Nj(A) /Ilf>tdt:0>
< ;P(Tj:Tj, Ty e A, A(An(o,T]) =0)

< zn:P(TjeB) =0
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since the common distribution of the 7T} is continuous. Moreover

() _
/X sd\ — /0 Bty 5 g = ~los([B(Ty = 1))

since —p(t) is the derivative of P[T} > t]. Finally we can take v’ = 2 since, whatever

IcXx,
(fror)

Var [/Is(t)Yt*dt]
_ /1 s(s@)E Y dra

IN

E _ E[ / s(t)s(t)Y;" ttdtdt’]
IxI

= /IXIs(t)s(t/)IP’ {ﬁ > max{t,t’}} dt dt’
— 2 /1 s(t) < /1 sy () P [ﬁ > t’] dt’> dt
< 2/Is(t)E Utls(t’) ;dt/] dt

- 2/Is(t)E INY([t,1)] dt

Q/Is(t)IP’ [ﬁ > t} dt = 2E [/Is(t)Yt*dt} .

IN

7.5.4. Proof of Proposition 9. Clearly (29) holds true. We now prove that Condition
(2) is also fulfilled. Let A be some measurable subset of R} and for [ > 1 let B; be
the subset of A defined by

Bi={te A|A(t—1""4]nA) =0}.

For each | > 1, note that the sets [t —[~1,#] N B; C [t — 171, #] N A are negligible
for t € B; and hence so is By (write B; as an at most countable union of those).
Denoting, for j = 1,...,n, the time of the jump of X7 from state 1 to 0 by le,m we
have

P(N(A) > 0, M(A) =0)

< Sor(ni =1 [ 1y o)

i=1 a4
Zn:IP’ (M) =1, 3 >0, ([} 2, T,] N 4) =0)
j=1

zn: S P (Tigea A([T, -1 T n4) =0)

j=11>1

S Y e(ten) = S EN(M) = o

Jj=110>1 Jj=11>1

IN

IN

IN
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by (32). We may clearly fix k = 1 and the choice of £’ is justified by the following
argument. First note that whatever I C X and ¢t > 0

P(X\ =1, Tlyel, Ty >1t)
= /Iﬂ{uzt}P (X} =1, u< Ty < u+du)
= /111{@}[@ (X =1, X, =1)Pu<Tiy<utdu| X =1, X;_ =1)
_ /In{m}xp (XL =1, X} =1)P(u< Ty <utdu| X' =1)
since X! is a Markov process. Hence

P(X =1, TIgel, T{y>t) = /111{@}[@ (X =1, Xj_ =1)s(u)du

( /X Ilf(t)s(t)Ytldt> 2]

/ 17 (8) 17 (u)s(t)s(u) YY) dudt}
XxX

= 2/]]E |:/I ]l{uZt}ﬂ{Xg_zl}ﬂ{Xi_zl}s(u)du] S(t)dt

= 2/]P> (X =1, Tgel, Ty =>1t)s(t)dt

2/I]P’(th_ =1)s(t)dt = 2E [/s(t)Ytldt] :

1

It then follows that

Var ( /l s(t)Ytldt>

IN

E

I
=

IN
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