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Abstract. We observe a random measure N and aim at estimating
its intensity s. This statistical framework allows to deal simultaneously
with the problems of estimating a density, the marginals of a multivari-
ate distribution, the mean of a random vector with nonnegative compo-
nents and the intensity of a Poisson process. Our estimation strategy
is based on estimator selection. Given a family of estimators of s based
on the observation of N , we propose a selection rule, based on N as
well, in view of selecting among these. Little assumption is made on the
collection of estimators. The procedure offers the possibility to perform
model selection and also to select among estimators associated to differ-
ent model selection strategies. Besides, it provides an alternative to the
T -estimators as studied recently in Birgé (2006). For illustration, we
consider the problems of estimation and (complete) variable selection in
various regression settings.

1. Introduction

We consider k independent random measures N1, . . . , Nk where the Ni are
defined on an abstract probability space (Ω, T ,P) with values in the class of
positive measures on measured spaces (Xi,Ai, µi). We assume that

(1) E[Ni(A)] =
∫
A
sidµi < +∞, for all A ∈ Ai and all i = 1, . . . , k

where each si is a nonnegative and measurable function on Xi that we shall
call the intensity of Ni. Equality (1) implies that the Ni are a.s. finite
measures and that for all measurable and nonnegative functions fi on Xi,

(2) E
[∫
Xi
fidNi

]
=
∫
Xi
fisidµi.

Our aim is to estimate s = (s1, . . . , sk) from the observation ofN = (N1, . . . , Nk).
We shall set X = (X1, . . . ,Xk), A = (A1, . . . ,Ak), µ = (µ1, . . . , µk) and de-
note by L the cone of nonnegative and measurable functions t of the form
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(t1, . . . , tk) where the ti are positive and integrable functions on (Xi,Ai, µi).
For f = (f1, . . . , fk) ∈ L, we use the notations∫

X
fdN =

k∑
i=1

∫
Xi
fidNi and

∫
X
fdµ =

k∑
i=1

∫
Xi
fidµi.

Throughout, L0 denotes a known subset of L which we assume to contain s.
This statistical framework we have described allows to deal simultaneously
with the more classical ones given below:

Example 1 (Density Estimation). Consider the problem of estimating a
density s on (X ,A, µ) from the observation of an n-sample X1, . . . , Xn with
distribution Ps = sdµ. In order to handle this problem, we shall take k = 1,
L0 the set of densities on (X ,A) with respect to µ and N = n−1

∑n
i=1 δXi.

Example 2 (Estimation of marginals). Let X1, . . . , Xn be independent ran-
dom variables with values in the measured spaces (X1,A1, µ1), . . . , (Xn,An, µn)
respectively. We assume that for all i, Xi admits a density si with respect
to µi and our aim is to estimate s = (s1, . . . , sn) from the observation of
of X = (X1, . . . , Xn). We shall deal with this problem by taking k = n and
Ni = δXi for i = 1, . . . , n. Note that this setting includes as a particular
case that of the regression framework

Xi = fi + εi, i = 1, . . . , n

where the εi are i.i.d. random variables with a known distribution. The
problem of estimating the densities of the Xi then amounts to estimating
the shift parameter f = (f1, . . . , fn).

Example 3 (Estimating the intensity of a Poisson process). Consider the
problem of estimating the intensity s of a possibly inhomogeneous Poisson
process N on a measurable space (X ,A). We shall assume that s is in-
tegrable. This statistical setting is a particular case of our general one by
taking k = 1 and L0 = L.

Other examples will be introduced later on.

Throughout, we shall deal with estimators with values in L0 and to measure
their risks, endow L0 with the distance H defined for t, t′ in L0 by

H2(t, t′) =
1
2

∫
X

(√
t−
√
t′
)2
dµ =

1
2

k∑
i=1

∫
Xi

(√
ti −

√
t′i

)2

dµi.

When k = 1 and t, t′ are densities with respect to µ, H is merely the Hellinger
distance between the corresponding probabilities. Given an estimator ŝ of s,
i.e. a measurable function ofN with ŝ ∈ L0, we define its risk by E

[
H2(s, ŝ)

]
.

Let us now give an account of our estimation strategy. We consider an at
most countable family {Sm, m ∈M} of subsets of L0, that we shall call
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models, and a family of positive weights {∆m,m ∈M} on these satisfying

Σ =
∑
m∈M

e−∆m < +∞.

When Σ = 1, the ∆m define a prior distribution on the family of models
and give thus a Bayesian flavor to the procedure. Then, we assume that
we have at disposal a collection {ŝλ, λ ∈ Λ} of estimators of s based on N
with values in S =

⋃
m∈M Sm. We mean that each estimator ŝλ belongs

to some Sm among the family, the index m = m̂(λ) being possibly random
depending on the observation N . The index set Λ need not be countable
even though we shall assume so in order to avoid measurability problems.
However, the reader can check that the cardinality of Λ will play no role in
our results. Our aim is to select some λ̂ among Λ, on the basis of the same
observation N , in such a way that the risk of estimator s̃ = ŝλ̂ is as close as
possible to infλ∈Λ E

[
H2 (s, ŝλ)

]
. More precisely, the results we get have the

following form

(3) CE
[
H2(s, s̃)

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ τE

[
Dm̂(λ) ∨∆m̂(λ)

]}
+ τΣ2,

where

• the number C is a positive universal constant;
• the number τ is a scaling parameter depending on the statistical

framework (τ = 1/n in the density case and τ = 1 in the case of
Example 2);
• the numbers Dm measure the massiveness (in some suitable sense)

of the models Sm (typically, Dm corresponds to its metric dimension
to be defined later on).

In Inequality (3), the element m̂(λ) corresponds to an arbitrary element
(chosen by the statistician) among the random subset M(ŝλ) defined by

M(ŝλ) = {m ∈M, ŝλ ∈ Sm} .

Of course, a minimizer of Dm ∨ ∆m among those m in M(ŝλ) provides a
natural choice for m̂(λ) since it minimizes the right-hand side of (3). Other
choices are possible. For example if for some deterministic m ∈ M, ŝλ
belongs to some Sm with probability one, it is convenient to take m̂(λ) = m.
This is in general the case in the context of model selection for which one
associates to each model Sm a single estimator, denoted ŝm rather than ŝλ,
with values in Sm. Then, by taking Λ =M, Inequality (3) takes the more
usual form

(4) CE
[
H2(s, s̃)

]
≤ inf

m∈M

{
E
[
H2 (s, ŝm)

]
+ τ (Dm ∨∆m ∨ 1)

}
where C depends on Σ only.

In the present paper, our purpose is to go beyond the classical model selec-
tion scheme by allowing the family of estimators to take their values in a



4 YANNICK BARAUD

random model, depending on N , among the collection {Sm, m ∈M}. Using
the same observation N , our selection procedure is based on a comparison
pair by pair of the estimators ŝλ. We do so by mean of a penalized criterion
based on an estimation of the distance H of each estimator to the true s.
From these pairwise comparisons, we use the selection device inspired from
Birgé (2006) and Baraud and Birgé (2009) to select our estimator s̃ among
the family {ŝλ, λ ∈ Λ}.
Because of these comparisons pair by pair, our procedure is all the more
difficult to implement that the cardinality of Λ is large. For example, if one
tries to estimate a density by an histogram and aims at finding a “good”
partition among a family Λ of candidate ones, these comparisons will be time
consuming and practically almost useless if |Λ| is too large. Nevertheless, one
can take advantage that our procedure allows to deal with random partitions
m in view of reducing the family Λ to those m selected from the data by
an appropriate algorithm such as CART for example. From this point of
view, our approach can be seen (at least theoretically) as an alternative to
resampling procedures (such as V-fold cross-validation, bootstrap,...).

The starting point of this paper originates from a series of papers by Lucien
Birgé (Birgé (2006), Birgé (2007) and Birgé (2008)) providing a new per-
spective on estimation theory. His approach relies on ideas borrowed from
old papers by Le Cam (1973), Le Cam (1975), Birgé (1983), Birgé (1984b),
Birgé (1984a), showing how to derive good estimators from families of robust
tests between simple hypotheses, and also more recent ones about complexity
and model selection such as Barron and Cover (1991) and Barron, Birgé and
Massart (1999). The resulting estimator is called a T -estimator (T for test)
and its construction, detailed in Birgé (2006), relies on a good discretization
of the models. A nice feature of those T -estimators lies in the fact that they
require very few assumptions on the collections of models and the param-
eter set. Our general approach is inspired by this paper even though the
procedure we propose is different and allows to consider estimators instead
of only discretization points.

The problem of designing a selection rule solely based on the data in order
to choose a “good” model among a collection of candidate ones is the art
of model selection. This approach has been intensively studied in the re-
cent years. For example, Castellan (2000a), Castellan (2000b), Birgé (2008),
Massart (2007) (Chapter 7) considered the problem of estimating a density,
Reynaud-Bouret (2003) and Birgé (2007) that of estimating the intensity
of a Poisson process, and the regression setting has been studied in Ba-
raud (2000), Birgé and Massart (2001) and Yang (1999) among other ref-
erences. Performing model selection for the problem of selecting among
histogram-type estimators in the statistical frameworks described in Exam-
ples 1 and 3 (among others) has been considered in Baraud and Birgé (2009).
A common feature of all these results on model selection lies in the fact that
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they hold for specific estimators built on a given model. In the present paper,
we shall not specify the estimators ŝm which can therefore be arbitrary.

An alternative to model selection is aggregation (or mixing). The basic idea
is to design a suitable combination of given estimators in order to outper-
form each of these separately. This approach can be found in Juditsky and
Nemirovski (2000), Nemirovski (2000), Yang (2000a), (2000b), (2001), Tsy-
bakov (2003), Wegkamp (2003), Bunea, Tsybakov and Wegkamp (2007) and
Catoni (2004) (we refer to his course of Saint Flour which takes back some
mixing technics he introduced earlier). When the data are not i.i.d., some
nice results of aggregation can be also be found in Leung and Barron (2006)
for the problem of mixing least-squares estimators of a mean of a Gaussian
vector Y . In their paper, they assume the components of Y to be indepen-
dent with a known common variance. Giraud (2009) extended their results
to the case where it is unknown.

The paper is organized as follows. The basic ideas underlying our approach
will be described in Section 2 and the main results are presented in Section 3.
In Sections 4 and 5, we show how our procedure provides an alternative to
these T -estimators and histogram-type estimators respectively studied in
Birgé (2006) and Baraud and Birgé (2009) under the same assumptions.
Moreover, we shall also consider in Section 4 the case of histogram-type
estimators based on random partitions (obtained by an algorithm such as
CART for example). In Section 6, we consider the problem of estimating
the mean s of a random vector with nonnegative and independent compo-
nents (typically the distributions we have in mind are Binomial, Poisson or
Gamma). We consider two cases. One corresponds to the situation where√
s = (

√
s1, . . . ,

√
sn) is of the form (F (x1), . . . , F (xn)) for some nonnegative

function F and points x1, . . . , xn in [0, 1]. For this problem, we show that
the resulting estimator achieves the usual rate of convergence over classes
of Besov balls. Alternatively, we consider the situation where

√
s is a linear

combination of predictors v1, . . . , vp the number p being allowed to be larger
than n. The problem we consider is that of variable selection and we aim
at selecting a “best” subset of predictors in view of minimizing the estima-
tion risk. Section 7 is devoted to the regression framework as described in
Example 2. We consider there the problem of complete variable selection
when the errors are not Gaussian nor sub-Gaussian which, to our knowledge,
is new. In the opposite, the Gaussian case has been intensively studied in
the recent years. It has been the usual statistical setting for justifying the
use of numerous procedures among which Birgé and Massart (2001), Tib-
shirani (1996) with the Lasso, Efron et al (2004) for LARS, Candes and
Tao (2007) for the Dantzig selector and Baraud, Giraud and Huet (2009)
when the variance of the errors is unknown. As we shall see, our selection
procedure requires very mild assumptions on the distribution of the errors
(provided that it is known). In particular, we need not assume that the
errors admit any finite moment. Finally, Section 8 is devoted to the proofs.
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Throughout, we shall use the following notations. The quantity |E| denotes
the cardinal of a finite set E. The Euclidean norm of Rn is denoted ‖ ‖. We
set R∗+ = R+ \ {0} and for t ∈ R∗n+ , denote by

√
t the vector

(√
t1, . . . ,

√
tn
)
.

Given a closed convex subset A of Rn, ΠA is the projection operator onto
A. We set for t ∈ L0 and F ⊂ L0, H(t,F) = inff∈F H(t, f) and for y > 0,

B(t, y) =
{
t′ ∈ L0, H(t, t′) ≤ y

}
.

Throughout z denotes some number in the interval (0, 1−1/
√

2) to be chosen
arbitrarily by the statistician and C,C ′, C ′′, ... constants that may vary from
line to line.

2. Basic formulas and basic ideas

The aim of this section is to present the basic formulas and ideas underlying
our approach. For the sake of simplicity, we shall assume k = 1 until further
notice. For t ∈ L0, we define

ρ(s, t) =
∫
X

√
st dµ.

This quantity corresponds to the Hellinger affinity whenever s and t are
densities. Note that H2(s, t) is related to ρ(s, t) by the formula

2H2(s, t) =
∫
X
sdµ+

∫
X
tdµ− 2ρ(s, t).

Throughout, t, t′ will denote two elements of L0 one should think of as
estimators of s. One would prefer t′ to t if H2(s, t′) is smaller than H2(s, t)
or equivalently if[

ρ(s, t′)− 1
2

∫
X
t′dµ

]
−
[
ρ(s, t)− 1

2

∫
X
tdµ

]
≥ 0.

Since
∫
X tdµ and

∫
X t
′dµ are both known, deciding whether t′ is preferable

to t amounts to estimating ρ(s, t) and ρ(s, t′) in a suitable way. In the
following sections, we present the material that will enable us to estimate
these quantities on the basis of the observation N .

2.1. An approximation of ρ(., .). We start with the following variational
formula.

Proposition 1. Let S be a subset of L0 containing s. For all t ∈ L0, we
have

ρ(s, t) = inf
r∈S

ρr(sdµ, t)

where, for a measure ν on (X ,A),

(5) ρr(ν, t) =
1
2

[
ρ(t, r) +

∫
X

√
t

r
dν

]
≤ +∞
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(using the conventions 0/0 = 0 and a/0 = +∞ for all a > 0). Besides, the
infimum is achieved for r = s.

Proof. With the above conventions, note that for all nonnegative numbers
x, y, 2

√
x ≤ √y + x/

√
y. By applying this inequality with x = st, y = rt,

the result follows by integration with respect to µ. Besides, equality holds
for r = s. �

It follows from the above proposition that, for a given r ∈ L0, ρr(sdµ, t)
approximates ρ(s, t) from above. In fact, we can make this statement a
little bit more precise.

Proposition 2. Let s, t, r ∈ L0. We have,

ρr (sdµ, t)− ρ(s, t) =
1
2

∫
X

√
t

r

(√
s−
√
r
)2
dµ.

If r = (t+ t′)/2 with t′ ∈ L0, then

(6) 0 ≤ ρr (sdµ, t)− ρ(s, t) ≤ 1√
2

[
H2(s, t) +H2(s, t′)

]
.

Proof. It follows from the definition of ρr that

2 [ρr(sdµ, t)− ρ(s, t)] =
∫
X

√
tr dµ+

∫
X

√
t

r
sdµ− 2

∫
X

√
st dµ

=
∫
X

√
t

r

(√
s−
√
r
)2
dµ.

For the second part, note that (t/r)(x) ≤ 2 for all x ∈ X and therefore
ρr(sdµ, t)−ρ(s, t) ≤

√
2 H2(s, r). It remains to bound H2(s, r) from above.

The concavity of the map t 7→
√
t implies that ρ(s, r) ≥ [ρ(s, t) + ρ(s, t′)] /2

and therefore 2H2(s, r) ≤ H2(s, t) +H2(s, t′), which leads to the result. �

The important point about Proposition 2 (more precisely Inequality (6)) lies
in the fact that the constant 1/

√
2 is smaller than 1. This makes it possible

to use the (sign of the) difference

T (sdµ, t, t′) =
[
ρr(sdµ, t′)−

1
2

∫
X
t′dµ

]
−
[
ρr(sdµ, t)−

1
2

∫
X
tdµ

]
with r = (t + t′)/2 as an alternative benchmark to find the closest element
to s (up to a multiplicative constant) among the pair (t, t′). More precisely,
we can deduce from Proposition 2 the following corollary.

Corollary 1. If T (sdµ, t, t′) ≥ 0, then

H2(s, t′) ≤
√

2 + 1√
2− 1

H2(s, t).
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Proof. Using Inequality (6) and the assumption, we have

H2
(
s, t′
)
−H2 (s, t) =

[
ρ(s, t)− 1

2

∫
X
tdµ

]
−
[
ρ(s, t′)− 1

2

∫
X
t′dµ

]
=

[
ρr(sdµ, t)−

1
2

∫
X
tdµ

]
−
[
ρr(sdµ, t′)−

1
2

∫
X
t′dµ

]
+ ρ (s, t)− ρr (sdµ, t) + ρr

(
sdµ, t′

)
− ρ

(
s, t′
)

≤ 1√
2

[
H2 (s, t) +H2

(
s, t′
)]

which leads to the result. �

2.2. An estimator of ρr(., .). Throughout, given t, t′ ∈ L0, we set

r =
t+ t′

2
∈ L0.

The superiority of the quantity ρr (sdµ, t) over ρ (s, t) lies in the fact that
the former can easily be estimated by its empirical counterpart, namely

(7) ρr (N, t) =
1
2

[
ρ(t, r) +

∫ √
t

r
dN

]
.

Note that ρr (N, t) is an unbiased estimator of ρr (sdµ, t) because of (2).
Consequently, a natural way of deciding which between t and t′ is the closest
to s is to consider the test statistics

T (N, t, t′) =
[
ρr(N, t′)−

1
2

∫
X
t′dµ

]
−
[
ρr(N, t)−

1
2

∫
X
tdµ

]
.

Replacing the “ideal” test statistic T (sdµ, t, t′) by its empirical counterpart
leads to an estimation error given by the process Z(N, ., .) defined on L2

0 by

Z(N, t, t′) = T (N, t, t′)− T (sdµ, t, t′)
=

[
ρr
(
N, t′

)
− ρr

(
sdµ, t′

)]
− [ρr (N, t)− ρr (sdµ, t)]

=
∫
X
ψ(t, t′, x)dN −

∫
X
ψ(t, t′, x)sdµ

where ψ(t, t′, x) is the function on L2
0 × X with values in [−1/

√
2, 1/
√

2]
given by

(8) ψ(t, t′, x) =
1√
2

[ √
1

1 + t(x)/t′(x)
−

√
1

1 + t′(x)/t(x)

]
.

The study of the empirical process Z(N, ., .) over the product space S × S′
is at the heart of our technics.
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2.3. The multidimensional case k > 1. In the multidimensional case, the
same results can be obtained by reasoning component by component. More
precisely, the formulas of the above sections extend by using the convention
that for all k-uplets ν = (ν1, . . . , νk) of measures on (X1,A1), . . . , (Xk,Ak)
respectively, ∫

X
φ(s, t, t′, r)dν =

k∑
i=1

∫
Xi
φ(si, ti, t′i, ri)dνi,

whatever the functions s, t, t′, r ∈ L0 and mappings φ from R4
+ into R.

3. The main results

Throughout this section, we consider an at most countable index set M
and a family {Sm, m ∈M} of nonvoid subsets of L0, we shall refer to as
models. Besides, we assume we have at disposal an at most countable family
{ŝλ, λ ∈ Λ} of estimators of s based on N with values in S =

⋃
m∈M Sm.

In particular, to each λ ∈ Λ corresponds an estimator ŝλ together with a
(possibly random) index m̂(λ) ∈M such that ŝλ ∈ Sm̂(λ). Setting for t ∈ S,

M (t) = {m ∈M, t ∈ Sm}

we therefore have m̂(λ) ∈ M(ŝλ). We associate a nonnegative weight ∆m

to each m ∈M and assume that

(9) Σ =
∑
m∈M

e−∆m < +∞ and ∆m ≥ 1 for all m ∈M.

The condition ∆m ≥ 1 for all m ∈ M is only required to simplify the
presentation of our results.

As already mentioned in the introduction, our aim is to select some estimator
among the family {ŝλ, λ ∈ Λ} in order to achieve the smallest possible risk.
We shall distinguish between two situations.

3.1. Direct selection. Let τ, γ be positive numbers. We consider the fol-
lowing selection procedure

Procedure 1. Let pen be some penalty function mapping S into R+. Given
a pair (ŝλ, ŝλ′) such that ŝλ 6= ŝλ′, we consider the test statistic

T(N, ŝλ, ŝλ′) =
[
ρr(N, ŝλ′)−

1
2

∫
X
ŝλ′dµ− pen(ŝλ′)

]
(10)

−
[
ρr(N, ŝλ)− 1

2

∫
X
ŝλdµ− pen(ŝλ)

]
where r = (ŝλ + ŝλ′)/2 and ρr(N, .) is given by (7). We set

E(ŝλ) = {ŝλ′ , T(N, ŝλ, ŝλ′) ≥ 0}
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and note that either ŝλ ∈ E(ŝλ′) or ŝλ′ ∈ E(ŝλ) since T(N, ŝλ, ŝλ′) =
−T(N, ŝλ′ , ŝλ). Then, we define

D(ŝλ) = sup
{
H2 (ŝλ, ŝλ′)

∣∣ ŝλ′ ∈ E(ŝλ)
}

if E(ŝλ) 6= ∅

and D(ŝλ) = 0 otherwise. Finally, we select λ̂ among Λ as any element
satisfying

D(ŝλ̂) ≤ D(ŝλ) + τ, ∀λ ∈ Λ.

For (t, t′) ∈ L2
0 and y > 0, let us set

w2(t, t′, y) =
[
H2 (s, t) +H2

(
s, t′
)]
∨ y2.

We assume the following.

Assumption 1 (τ, γ). For all pairs (m,m′) ∈ M2, there exist positive
numbers dm, dm′ such that for all ξ > 0 and y2 ≥ τ (dm ∨ dm′ + ξ),

P

[
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≥ z

]
≤ γe−ξ.

This assumption means that for ξ large enough the error process Z(N, t, t′)
is uniformly controlled by w2(t, t′, y) over Sm×Sm′ with probability close to
1. Under suitable assumptions, the quantities dm measure in some sense the
massiveness of the Sm. For example, if Sm is the linear span of piecewise
constant function on each element of a partition m of X , then dm is merely
proportional to the cardinality of m. If Sm is a discrete subset L0, dm is
related to its metric dimension (in a sense to be specified later on).

We obtain the following result.

Theorem 1. Let τ, γ be numbers and {∆m, m ∈M} a family of nonnega-
tive numbers satisfying (9). Under Assumption 1, choose s̃ = ŝλ̂ among the
family {ŝλ, λ ∈ Λ} according to Procedure 1 with pen satisfying

(11) pen(t) ≥ zτ inf {dm + ∆m, m ∈M (t)} ∀t ∈ S.

Then, for all ξ > 0,

P
[
H2 (s, s̃) ≥ C1

[
inf
λ∈Λ

[
H2 (s, ŝλ) + pen (ŝλ)

]]
+ C2τξ

]
≤
(
γΣ2e−ξ

)
∧ 1.

where C1 = C1(z) and C2 = C2(z) are positive numbers given by (36)
and (37) respectively, depending on the choice of z only.

The proof is delayed to Section 8.1.

By integration with respect to ξ we deduce the following risk bound.
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Corollary 2. Under the assumptions of Theorem 1, there exists a constant
C depending on z only such that

CE
[
H2 (s, s̃)

]
≤ E

[
inf
λ∈Λ

{
H2 (s, ŝλ) + pen(ŝλ)

}]
+ τ

[
(γΣ2) ∨ 1

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ) + pen(ŝλ)

]}
+ τ

[
(γΣ2) ∨ 1

]
.

In particular, if equality holds in (11),

E
[
H2 (s, s̃)

]
≤ C ′ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ E

[
v2(ŝλ)

]}
(12)

where, for all λ ∈ Λ,

(13) v2(ŝλ) = τ

[
inf

m∈M(ŝλ)
dm ∨∆m

]
≤ τ

(
dm̂(λ) ∨∆m̂(λ)

)
and C ′ is a constant depending on z, γ and Σ.

Inequality (12) compares the risk of the resulting estimator s̃ to those of the
ŝλ plus an additional term E

[
v2(ŝλ)

]
. If ŝλ belongs to Sm with probability

1,

(14) v2(ŝλ) ≤ τ (dm ∨∆m) .

We emphasize that (14) does not take into account the complexity of the
collection of estimators {ŝλ, λ ∈ Λ} itself. In particular, if for all λ ∈ Λ, ŝλ
belongs to a same model Sm with probability 1, then by taking M = {m}
and ∆m = 1, we obtain for s̃ the following risk bound

E
[
H2(s, s̃)

]
≤ C ′

{
inf
λ∈Λ

E
[
H2 (s, ŝλ)

]
+ τ (dm ∨ 1)

}
no matter how large the collection of ŝλ is.

3.2. Indirect selection. Let τ,M be some positive numbers. Through-
out this section, we assume that for some nonnegative numbers a, b, c, the
measure N satisfies the following.

Assumption 2 (a, b, c). For all y, ξ > 0

sup
t,t′∈B(s,y)

P
[
Z(N, t, t′) > ξ

]
≤ b exp

[
− aξ2

y2 + cξ

]
.

This assumption is satisfied in the following cases.

Proposition 3. Assumption 2 holds with a = n2/6, b = 1 and c = n
√

2/6
for Example 1, with a = 1/6, b = 1 and c =

√
2/6 for Example 2 and with

a = 1/12, b = 1 and c =
√

2/36 for Example 3.
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The proof of the proposition is delayed to Section 8.4.

In order to select among the family of estimators {ŝλ, λ ∈ Λ}, we introduce
an auxiliary family {Sm, m ∈M} of discrete subsets of L0 satisfying the
following assumption.

Assumption 3 (τ,M). For all m ∈ M and s ∈ L0, there exists ηm ≥ 1/2
such that ∣∣Sm ∩ B(s, r

√
τ)
∣∣ ≤M exp

(
r2

2

)
, ∀r ≥ 2ηm.

As we shall see, the parameter η2
m is convenient to measure the massiveness

of the discrete set Sm. It is related to a metric dimension (in a sense to be
specified later on).

Assumptions 2 and 3 are related to our former Assumption 1 by the following
result.

Lemma 1. If Assumptions 2 and 3 hold with τ = 4(2 + cz)/(az2) then the
collection of models {Sm,m ∈M} satisfy Assumption 1 with γ = bM2 and
dm = 4η2

m for all m ∈M.

Consider now the following selection procedure.

Procedure 2. Let pen be some penalty function from S =
⋃
m∈M Sm into

R+. To each λ ∈ Λ, associate the auxiliary estimator s̃λ as any element of
S satisfying

H2 (ŝλ, s̃λ) + pen(s̃λ) ≤ A(ŝλ,S) + τ

where
A(ŝλ,S) = inf

t∈S

[
H2 (ŝλ, t) + pen(t)

]
Select λ̃ among Λ by using Procedure 1 with the family of estimators {s̃λ, λ ∈ Λ}.
Finally, select λ̂ as any element of Λ such that

H2(ŝλ̂, s̃λ̃) ≤ inf
λ∈Λ

H2(ŝλ, s̃λ̃) + τ.

The following holds.

Theorem 2. Let M be a positive number and {∆m, m ∈M} a family of
numbers satisfying (9). Assume that Assumption 2 and 3 hold with τ =
4(2+cz)/(az2). Let s̃ = ŝλ̂ be the estimator obtained by selecting λ̂ according
to Procedure 2 with

(15) pen(t) ≥ zτ inf
m∈M(t)

(
4η2
m + ∆m

)
∀t ∈ S.

Then, for all ξ > 0,

P
[
H2 (s, s̃) ≥ C

[
inf
λ∈Λ

(
H2 (s, ŝλ) +A(ŝλ,S)

)
+ τξ

]]
≤
(
bM2Σ2e−ξ

)
∧ 1,
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and

C ′E
[
H2 (s, s̃)

]
≤ E

[
inf
λ∈Λ

{
H2 (s, ŝλ) +A(ŝλ,S)

}]
+ τ

[
(bM2Σ2) ∨ 1

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ) +A(ŝλ,S)

]}
+ τ

[
(bM2Σ2) ∨ 1

]
.

where C,C ′ are positive numbers depending on z only.

The risk bound we get involves the quantity A(ŝλ,S) which depends on the
approximation property of S with respect to the (random) family {ŝλ, λ ∈ Λ} ⊂
S. In the favorable situation where the ŝλ take their values in S and if equal-
ity holds in (15), then

A(ŝλ,S) ≤ pen(ŝλ) ≤ zτ
(

4η2
m̂(λ) + ∆m̂(λ)

)
.

In a more general case, one needs to choose S to possess good approximation
properties with respect to the elements of S in order to keep the quantity
A(ŝλ,S) as small as possible for all λ ∈ Λ. To ensure such a property, it is
convenient to choose Sm as a suitable discretization of Sm for all m ∈M.

Definition 1. Let S be a subset of (L0, H) and ε some positive number.
We shall say that S is an ε-net for S if S ⊂ S and if for all t ∈ S, there
exists t′ ∈ S such that H(t, t′) ≤ ε. For nonnegative numbers M,D, we shall
specify that S is an (M, ε,D)-net for S if for all s ∈ L0 and r ≥ 2ε,

(16) |{t ∈ S, H(s, t) ≤ r}| ≤M exp
[
D
(r
ε

)2
]
.

The parameter D corresponds to an upper bound to what is usually called
the metric dimension of S (we refer to Birgé (2006), Definition 6). Under
suitable assumptions and provided that the ε-net has been suitably chosen,
the metric dimension D of S provides an upper bound (up to a suitable
renormalisation) for the minimax estimation rate over S. In many cases
of interest, it turns that D actually provides the right order of magnitude
but, unfortunately, not always. For a complete discussion with examples
and counter-examples on the connection between metric dimensions and
minimax estimation rates we refer the reader to Birgé (1983) and Yang and
Barron (1999).

We deduce from Theorem 2 the following corollary.

Corollary 3. Let M be a positive number and {∆m, m ∈M} a family of
nonnegative numbers satisfying (9). Assume that Assumption 2 holds and
that for m ∈M, Sm is a (M,ηm

√
τ ,Dm)-net for Sm with τ = 4(2+cz)/(az2)

and η2
m = 2(Dm ∨ 1/8). If equality holds in (15), the estimator s̃ defined in

Theorem 2 satisfies

E
[
H2 (s, s̃)

]
≤ C inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ τE

[
Dm̂(λ) ∨∆m̂(λ)

]}
(17)

where C is a constant depending on z,M and Σ only.
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Since the statistician is free to choose m̂(λ) any element among M(ŝλ), a
natural choice in view of minimizing (17) is to take it as (any) minimizer of
Dm ∨∆m among those m ∈M(ŝλ).

If one considers a family of estimators {ŝm, m ∈M} (here Λ = M) such
that ŝm belongs to Sm with probability one, we deduce from Corollary 3
that the estimator s̃ = ŝm̂ satisfies,

(18) E
[
H2 (s, s̃)

]
≤ C inf

m∈M

{
E
[
H2 (s, ŝm)

]
+ τ (Dm ∨∆m)

}
.

Moreover, if for some universal constant c > 0 the estimators ŝm satisfy

E
[
H2 (s, ŝm)

]
≥ cτDm, ∀s ∈ L0 ∀m ∈M,

then (18) shows that s̃ satisfies the oracle-type inequality

E
[
H2 (s, s̃)

]
≤ C ′ inf

m∈M

{
E
[
H2 (s, ŝm)

]
∨ (τ∆m)

}
.

4. Selecting among histogram-type estimators

In this section we assume thatM is a family of partitions of X and for m ∈
M, Sm the set gathering the elements of L0 which are piecewise constant
on each element of the partition m, that is

Sm =

{∑
I∈m

aI1lI
∣∣ (aI)I∈m ∈ R|m|

}⋂
L0.

We shall therefore consider a family {Sm, m ∈M} of such models and
{ŝλ, λ ∈ Λ} a family of estimators of the form

∑
I∈m̂ âI1lI , the values âI

and the partition m̂ ∈ M being allowed to be random depending on the
observation N .

Throughout this section, we assume that k = 1. The applications we have
in mind include Examples 1 and 3 and also the following statistical setting.

Example 4. We observe a vector X = (X1, . . . , Xn) the components of
which are independent and nonnegative with respective means si. Our aim
is to estimate s = (s1, . . . , sn) on the basis of the observation of X. This
statistical setting is a particular case of our general one described in Section 1
by taking k = 1, X = {1, . . . , n}, A = P(X ), µ the counting measure on
(X ,A), L0 = L and N the measure defined for A ⊂ X by

N(A) =
∑
i∈A

Xi.

Among the distributions we have in mind for the Xi, we mention the Bino-
mial or Gamma.

For partitions m,m′ of X , we set

X 2(m) =
∑
I∈m

(√
N(I)−

√
E(N(I))

)2
.
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and
m ∨m′ =

{
I ∩ I ′, (I, I ′) ∈ m×m′

}
.

4.1. The assumptions. We assume that N satisfies

Assumption 4. There exists a positive number τ such that for all ξ > 0
and all partition m of X

(19) P
[
X 2(m) ≥ a (|m|+ ξ)

]
≤ e−ξ.

Besides, we assume that the family of partitions M satisfies the following

Assumption 5. There exists δ ≥ 1 such that |m ∨m′| ≤ δ (|m| ∨ |m′|) for
all m,m′ ∈M.

These two assumptions also appeared in Baraud et Birgé (2009) as Assump-
tions H and H’ in their Theorem 6. In particular, the following result is
proven there

Proposition 4. Assumption 4 holds with a = 200/n in the case of Exam-
ple 1, with a = 6 in the case of Example 3 and, in the case of Example 4,
with

a = 3κ

(
1/
√

2 +

√(
β

κ
− 1

2

)
+

)
provided that for some β ≥ 0 and κ > 0, the Xi satisfy for i = 1, . . . , n

E
[
eu(Xi−si)

]
≤ exp

[
κ

u2si
2(1− uβ)

]
for all u ∈

[
0,

1
β

[
,

with the (convention 1/β = +∞ if β = 0), and

E
[
e−u(Xi−si)

]
≤ exp

[
κ
u2si

2

]
for all u ≥ 0.

Throughout this section, we set τ = 20az−2.

4.2. The main result.

Theorem 3. Assume that Assumptions 4 and 5 hold and that {∆m, m ∈M}
satisfies (9). Consider a family {ŝλ, λ ∈ Λ} of estimators of s with values
in S. If pen is such that

pen(t) ≥ zτ inf
m∈M(t)

(δ|m|+ ∆m) ∀t ∈ S

the estimator s̃ = ŝλ̂ selected by Procedure 1 satisfies for some constant C
depending on z only,

CE
[
H2 (s, s̃)

]
≤ E

[
inf
λ∈Λ

[
H2 (s, ŝλ) + pen (ŝλ)

]]
+ τ(Σ2 ∨ 1).
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The above result holds for any choices of estimators {ŝλ, λ ∈ Λ} with values
in S. Of special interest are the estimators ŝm associated to a partition m
of X by the formula

(20) ŝm =
∑
I∈m

N(I)
µ(I)

1lI .

Since when µ(I) = 0, E(N(I)) =
∫
I sdµ = 0 and N(I) = 0 a.s., the estimator

ŝm is well-defined with the conventions 0/0 = 0 and c/∞ = 0 for all c > 0.
One can prove (we refer to Baraud and Birgé (2009)) that for all m ∈M,

E
[
H2(s, ŝm)

]
≤ 4

(
H2(s, Sm) + τ |m|

)
.

In the following sections, we shall apply Theorem 3 in order to choose among
a family of such estimators.

4.3. Model selection. LetM be a family partitions of X and associate to
each m ∈M, the estimator ŝm defined by (20). We deduce from Theorem 3
the following corollary.

Corollary 4. Assume that Assumptions 4 and 5 hold and that {∆m, m ∈M}
satisfies (9). Choose s̃ = ŝm̂ among {ŝm, m ∈M} by using Procedure 1 and

pen(ŝm) = zτ (δ|m|+ ∆m) ∀m ∈M.

Then there exists a constant C depending on z, δ and Σ only such that

CE
[
H2 (s, s̃)

]
≤ inf

m∈M

{
E
[
H2(s, ŝm)

]
+ τ (|m| ∨∆m)

}
≤ inf

m∈M

[
H2 (s, Sm) + τ(|m| ∨∆m)

]
.

This corollary recovers the results of Theorem 6 in Baraud and Birgé (2009)
even though the selection procedure is different. The choice of a suitable
family M of partitions is of course a crucial point. It should be chosen in
such a way that the family {Sm, m ∈M} possesses good approximation
properties with respect to classes of functions s of interest. This point has
been discussed in Baraud and Birgé (2009) (see their Section 3). Another
concern is the computational cost. In the case of density estimation, alterna-
tive selection procedures based on the minimization of a penalized criterion
over families M generated by an algorithm such as CART (or some related
version) can be less time consuming. We refer for example to Blanchard et
al (2004) which considers families of partitions associated to some dyadic
decision trees. Their algorithm is inspired from that of Donoho (1997) in
the context of regression in 2D.

In view of reducing the computation cost of our selection procedure, we
extend Corollary 4 to the case where the partitions m are possibly random,
generated from the data themselves.
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4.4. Selecting among model selection strategies. Assume now that
each λ ∈ Λ is a model selection strategy allowing to choose a partition m̂(λ)
among a collection of candidate partitions M. Besides, to each λ ∈ Λ,
associate the estimator ŝλ = ŝm̂(λ) with ŝm defined by (20) for all m ∈M.

By applying Theorem 3 to the collection {ŝλ, λ ∈ Λ} we get the following
result.

Corollary 5. Assume that Assumptions 4, 5 hold and that {∆m, m ∈M}
satisfies (9). Choose s̃ = ŝλ̂ among {ŝλ, λ ∈ Λ} by using Procedure 1 and

pen(ŝλ) = zτ
(
δ|m̂(λ)|+ ∆m̂(λ)

)
∀λ ∈ Λ.

Then, for some constant C depending on z, δ and Σ only,

CE
[
H2 (s, s̃)

]
≤ inf

λ∈Λ
E
[
H2 (s, ŝλ) + τ

(
|m̂(λ)| ∨∆m̂(λ)

)]
.

Note that Corollary 5 shows that the risk of s̃ can be related to those of
the ŝλ but gives no hint on the orders of magnitude of the latters. Such
a study is beyond the scope of this paper. In density estimation, Lugosi
and Nobel (1996) tackled this problem by giving sufficient condition on the
random partition m̂(λ) to ensure the L1-consistency of the estimator ŝλ,
that is, under suitable conditions, they show that∫

X
|s− ŝλ| dµ→ 0 a.s.

as the sample size tends to infinity. Since

H2(s, ŝλ) ≤
∫
X
|s− ŝλ| dµ,

the same holds for distance H and by dominated convergence, we deduce
that E

[
H2(s, ŝλ)

]
also tends to 0 as the sample size tends to infinity.

We end this section by giving a simple way of choosing a family of parti-
tions from the data by mean of a contrast. We shall assume for simplicity
that X = [0, 1) and consider the family M of partitions of [0, 1) into in-
tervals of the form [a, b) the endpoints of which belong to the regular grid
{k/N, k = 0, . . . , N} with N ≥ 2. For such a family, it is easy to check that
the choice ∆m = |m| log(N − 1) ensures that (9) holds with Σ ≤ e. In what
follows, the notation m � m′ for m,m′ ∈M means that the partition m′ is
thinner than m or equivalently that Sm ⊂ Sm′ . Let us now introduce the
criterion crit(N, t) defined for t ∈ S by

crit(N, t) = −2
∫
X
tdN +

∫
X
t2dµ.

It is well-known that crit(N, .) is a contrast on S and that if s belongs to
L2([0, 1), µ), for all t, t′ ∈ S

(21) E
[
crit(N, t)− crit(N, t′)

]
=
∫
X

(s− t)2 dµ−
∫
X

(
s− t′

)2
dµ.
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Then, given a partition m ∈ M it is natural to associate to Sm the esti-
mator obtained by minimizing crit(N, t) among those t in Sm. It turns out
that such a minimizer is actually given by ŝm. Since |M| = 2N−1 is large
for large values of N , we shall not consider the whole family of estimators
{ŝm, m ∈M} over which our selection procedure could be practically use-
less and rather focus on the (random) subfamily defined as follows. Let
Λ = {1, . . . , N} and define m̂(1) the partition of [0, 1) reduced to {[0, 1)}.
Then for λ ≥ 2, define by induction m̂(λ) as the random partition mini-
mizing crit(N, ŝm) among those m ∈ M satisfying both m̂(λ− 1) � m and
|m| = λ (in case of equality take one at random among the minimizers).
Since for all λ ∈ Λ, Sm̂(λ−1) ⊂ Sm̂(λ), note that the map λ 7→ crit(N, ŝm̂(λ))
is decreasing with λ and that m̂(N) corresponds to the regular partition
based on the grid {k/N, k = 0, . . . , N}. Finally, set for λ ∈ Λ, ŝλ = ŝm̂(λ).
For such a family, our procedure requires at most N2 steps to obtain the
family of partitions (for each value λ, finding m̂(λ) requires at most N com-
putations) and at most N2 additional steps are required to proceed at the
comparison pair by pair of the estimators ŝλ to finally get s̃ = ŝλ̂. Conse-
quently, the whole procedure requires of order N2 steps and it follows from
Corollary 5 that s̃ satisfies

CE
[
H2 (s, s̃)

]
≤ inf

λ∈{1,...,N}

{
E
[
H2 (s, ŝλ)

]
+ τλ log(N − 1)

}
.

5. Selecting among points

We assume here that the estimators ŝλ are deterministic. In order to em-
phasize the fact that they do not depend on N , these will be denoted sλ
hereafter. The aim of this section is to show that our selection procedure
allows to select among arbitrary points in L0 and also provides an alter-
native to the procedure based on testing proposed in Birgé (2006) for the
construction of T -estimators. The proofs of the following Propositions are
delayed to Section 8.6.

5.1. Aggregation of arbitrary points. Let {sλ, λ ∈ Λ} be a countable
family of arbitrary points of L0. Typically, one should think of the sλ as
estimators of s based on an independent copy N ′ of N . In this case, with
no loss of generality we may assume that Λ = M and Sm = {sm} for all
m ∈ M. Then, the following result should be understood as conditional to
N ′.

Proposition 5. Assume that Assumption 2 holds, set τ = 4(2 + cz)/(az2),
and take {∆m, m ∈M} satisfying (9). Choose s̃ = sm̂ among {sm, m ∈M}
according to Procedure 1 with

pen(sm) = zτ∆m, ∀m ∈M.
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Then,
E
[
H2 (s, s̃)

]
≤ C inf

m∈M

[
H2 (s, sm) + τ∆m

]
where C depends on z, b,M and Σ only.

Our procedure also allows to handle the problem of convex aggregation from
i.i.d. observations in the same way as Birgé did in Section 9 of Birgé (2006).
We shall not detail this in the present paper and rather refer to the paper
by Birgé for examples and references.

5.2. Selecting among discretized subsets of L0. For each m ∈ M, let
Sm = {sλ, λ ∈ Λ(m)} be a discrete subset of L0. Taking Λ =

⋃
m∈M Λ(m),

we consider the family {sλ, λ ∈ Λ} obtained by gathering all these dis-
cretization points. The following holds.

Proposition 6. Let M be a positive number and {∆m, m ∈M} a family
of nonnegative numbers satisfying (9). Assume that Assumptions 2 and 3
hold with τ = 4(2 + cz)/(az2). By applying Procedure 1 with the family of
estimators {sλ, λ ∈ Λ} and

pen(t) = zτ inf
{

4η2
m + ∆m, m ∈M(t)

}
, ∀t ∈ S

the estimator s̃ satisfies

(22) E
[
H2 (s, s̃)

]
≤ C inf

m∈M

[
H2 (s,Sm) + τ

(
η2
m ∨∆m

)]
,

where C depends on z, b,M and Σ only.

If moreover Sm is a (M,ηm
√
τ ,Dm)-net for Sm with η2

m = 2(Dm ∨ 1/8) for
all m ∈M, then,

(23) E
[
H2 (s, s̃)

]
≤ C ′ inf

m∈M

[
H2 (s, Sm) + τ (Dm ∨∆m)

]
,

where C ′ depends on z, b,M and Σ only.

In density estimation, an inequality such as (23) also holds for T -estimators
as proven in Birgé (2006) (see his Theorem 5). For suitable choices of collec-
tions {Sm, m ∈M}, an estimator s̃ satisfying (23) possesses nice optimal
properties (in the minimax sense) and outperforms in some situations the
classical maximum likelihood estimator. For more details, we refer the reader
to the paper of Birgé mentioned above.

Assume now that for all (deterministic) m ∈ M, one is able to build an
estimator ŝm (depending on N) with values in Sm with a risk satisfying for
some universal constant C,

(24) E
[
H2 (s, ŝm)

]
≤ C

(
H2(s, Sm) +Dm

)
, ∀s ∈ L0.

By selecting among the family {ŝm, m ∈M} with Procedure 2, one obtains
an estimator s̃′ = ŝm̂ which also satisfies an inequality such as (23) (this
easily derives from (18)). Consequently, from a theoretical point of view
both estimators s̃ and s̃′ possess similar properties. If the estimators ŝm can
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be built in a simple way, the advantage of s̃′ compared to s̃ is rather practical
since the former requires the comparison pair by pair of the estimators ŝm
only although the latter requires that of all the pairs of sλ. This shows the
use of the discretization device is actually useful only when no estimator
ŝm satisfying (24) is available. This seems to be often the case when the
models Sm are not linear spaces or when the maximum likelihood estimator
performs poorly.

Finally, we mention that a careful look at the proof of Theorem 5 in Birgé (2006)
shows that the selection rule described there could also be used to select
among the estimators ŝm in the sense that the resulting estimator would
also satisfy an analogue of (23).

6. Estimating the means of nonnegative random variables

In this section, we consider the statistical setting described in Example 4.
Hereafter, we shall assume that

√
s belongs to some closed convex subset C of

Rn
+. Since the distance H between two elements t, t′ ∈ Rn

+ corresponds to the
Euclidean distance between

√
t and

√
t′, it seems natural to approximate the

parameter
√
s with respect to the Euclidean norm. To do so, we introduce a

family of linear subspaces
{
V m, m ∈M

}
of Rn with respective dimensions

denoted Dm that correspond to approximation spaces for
√
s. We associate

to each of these the sets Vm for m ∈ M which are either given by Vm =
V m ∩ C or Vm = ΠCV m. Finally, we consider the models Sm defined for
m ∈M by

Sm = φ−1 (Vm) =
{

(u2
1, . . . , u

2
n), u ∈ Vm

}
where φ(t) =

√
t for t ∈ Rn

+.

Two examples of collections {Vm, m ∈M} are given below.

Problem 1 (The regression problem). Assume that
√
s = (F (x1), . . . , F (xn))

where the xi are deterministic points on [0, 1] and F is a function from [0, 1]
into R+. Note that the problem we deal with can be written in a regression
setting as follows

Xi = F 2(xi) + εi, i = 1, . . . , n

where the εi = Xi − F 2(xi) are independent and centered random variables.
The problem is to estimate s = (F 2(x1), . . . , F 2(xn)).

In order to approximate
√
s = (F (x1), . . . , F (xn)), it is natural to introduce

linear spaces {Vm, m ∈M} having good approximation properties with re-
spect to usual classes of functions F such as Besov spaces. For α > 0
and p ∈ [1,+∞], Bα

p,∞(R) denotes the ball of radius R > 0 of the Besov
space Bα

p,∞. For a precise definition of these spaces, we refer to DeVore and
Lorentz (1993). The following result derives from Theorem 1 and Proposi-
tion 1 in Birgé & Massart (2000).
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Proposition 7. For all r ∈ N \ {0} and J ∈ N, there exists a family{
V(m,r), m ∈Mr(J)

}
of linear subspaces of L2([0, 1], dx) and positive num-

bers C(r), C ′(r), C ′′(r) such that D(m,r) = dim(V(m,r)) ≤ C(r)2J , log |Mr(J)| ≤
C ′(r)2J and for all α ∈ (1/p, r) and all f ∈ Bαp,∞(R),

inf

 sup
x∈[0,1]

|f(x)− g(x)| , g ∈
⋃

(m,r)∈Mr(J)

V(m,r)

 ≤ C ′′(r)R2−Jα.

Thus, for handling Problem 1 we shall consider M =
⋃
r≥1

⋃
J≥0Mr(J),

and for all m = (m, r) ∈M, take

V m = {(g(x1), . . . , g(xn)), g ∈ Vm} , Vm = ΠCV m and Sm = φ−1(Vm).

Besides, by taking for m = (m, r) ∈ Mr(J), ∆m = (C ′(r) + 1)2J + r note
that so that (9) holds since∑
m∈M

e−∆m ≤
∑
r≥1

∑
J≥0

|Mr(J)| e−(C′(r)+1)2J−r ≤
∑
r≥1

e−r
∑
J≥0

e−C
′(r)2J < +∞.

Let us now turn to another problem.

Problem 2 (The variable selection problem). We assume that
√
s is of the

form
√
s =

p∑
j=1

βjv
(j)

where β = (β1, . . . , βp) is an unknown vector of Rp and v(1), . . . , v(p) are
p ≥ 2 known vectors in Rn. This means that the (squared) mean of each Xi

is a linear combination of the values v(j)
i of the predictor v(j) for j = 1, . . . , p

at experiment i. Since, the number of predictors p may be large and possibly
larger than the number n of data, we shall assume that the vector β is sparse
which means that

|{j, βj 6= 0}| ≤ Dmax

for a known integer Dmax ≤ n. Our aim is to estimate
√
s and the set

{j, βj 6= 0}.

For this problem, we consider any class M of subsets m of {1, . . . , p} with
cardinality not larger than Dmax, and define for m ∈M, Vm = V m∩C where
V m is the linear span of the v(j) for j ∈ m (with the convention V ∅ = {0}).

6.1. Assumption on the Xi. We assume the following

Assumption 6. The random variables Xi are independent nonnegative ran-
dom variable with respective means si satisfying for some nonnegative num-
bers σ and β

(25) max
i=1,...,n

E
[
eu(Xi−si)

]
≤ exp

[
u2σsi

2(1− |u|β)

]
∀u ∈ (−1/β, 1/β).
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This assumption holds for a large class of distributions including, any ran-
dom variables with values in [0, β] (then σ = β), the Binomial distribution
(then σ = 1 = β), the Poisson distribution (for the same choice of parame-
ters), or the Gamma distribution γ(p, q) (with mean p/q and β = 1/q = σ).
By expanding (25) in a vicinity of 0, it is easy to see that Assumption 6
implies that Var(Xi) ≤ σE(Xi) for all i = 1, . . . , n.

In the remaining part of this section, under Assumption 6, we shall set

(26) τ =
96(σ + β)

z2
.

6.2. Discretizing the Sm. To each m ∈M such that Sm 6= {0}, we apply
with V = Vm, V = V m and S = Sm one of the two discretization procedures
described below (accordingly to the form of Vm). These procedures lead to
a discretized subset Sm of Sm associated to a parameter η = ηm depending
on the dimension of V m.

The first procedure below is abstract and is based on a discretization argu-
ment introduced in Birgé (2006). The resulting set S, though difficult to
build in practice, possesses nice properties with respect to the original set
S. We shall not detail the construction of S here and rather refer the reader
to the proof in Section 8.8. We only present its properties. We shall use
them in order to obtain new results on the estimation of the parameter s.

Discretization P1. We assume here that S = φ−1(V ) where V is of the form
ΠCV for some linear subspace V of Rn with dimension D ≥ 1. We associate
to S the parameter

(27) η2 = 2× 4.2D

together with a discretized subset S with the following properties.

Proposition 8. There exists a discretized subset S of S which satisfies
Assumption 3 with M = 1 and τ and η given by (26) and (27) respectively.
Moreover, H(t,S) ≤ 4H(t, S) for all t ∈ C.

The procedure below is much simpler than the one above but unfortunately
not as powerful. Yet, it turns to be enough to handle Problem 2.

Discretization P2. We assume here that S = φ−1(V ) with V is of the form
V ∩C where V is a linear subspace of Rn with dimension D ≥ 1. Let ΠV be
the projector onto the closed convex set V and T the subset of V given by

(28) T =

2η
√
τ√

D

D∑
j=1

kjuj , (kj)j=1,...,D ∈ ZD


where
{
u1, . . . , uD

}
is an orthonormal basis of V and

(29) η2 = 2× 1.031D.
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Keep only the elements of T which are at distance not larger than η
√
τ of

V , that is, those of

T (η) =
{
t ∈ T , inf

v∈V
‖t− v‖ ≤ η

√
τ

}
and define finally

S = φ−1(T ′) where T ′ = {ΠV t, t ∈ T (η)} .

The subset S ⊂ S satisfies the following.

Proposition 9. The subset S is an (1, η
√
τ , 1.031Dm)-net of S with τ and

η given by (26) and (29) respectively.

The proof is delayed to Section 8.9.

6.3. The results. We have at disposal the family of discretized subsets Sm
of Sm which have been built in the previous section. We recall that each
of these Sm are associated to a parameter ηm > 0. We consider here the
discretization points {sλ, λ ∈ Λ(m)} = Sm for m ∈ M and the family of
estimators

{
sλ, λ ∈ Λ =

⋃
m∈M Λ(m)

}
obtained by gathering those. For

such a family, the following holds:

Theorem 4. Assume that Assumption 6 holds and let {∆m, m ∈M} be a
family of weights satisfying (9). Choose s̃ = sλ̂ among the family {sλ, λ ∈ Λ}
according to Procedure 1 with pen satisfying

(30) pen(t) = zτ inf
m∈M(t)

(
4η2
m + ∆m

)
∀t ∈ S.

Then,
CE

[
H2 (s, s̃)

]
≤ inf

m∈M

{
H2(s, Sm) + τ

(
Dm ∨∆m

)}
where τ is defined by (26) and C depends on z and Σ only.

We deduce from Theorem 4 the following risk bounds:

Corollary 6. Assume Assumption 6 holds. Then,

(i) for any m ∈M, there exists an estimator s̃m satisfying

(31) sup
s∈Sm

E
[
H2 (s, s̃m)

]
≤ C

(
Dm ∨ 1

)
,

where C depends on z, σ and β only;
(ii) for Problem 1, there exists an estimator F̃ such that for all p ∈

[1,+∞], α > 1/p and R ≥ 1/n

sup
F∈Bαp,∞(R)

E

[
1
n

n∑
i=1

(
F (xi)− F̃ (xi)

)2
]
≤ CR2/(1+2α)n−2α/(1+2α),

where C depends on R,α, p, σ, z and β;
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(iii) for Problem 2, by applying Procedure 1 with weights ∆m satisfy-
ing (9), one selects a family of predictors

{
v(j), j ∈ m̂

}
and builds

an estimator s̃ ∈ Sm̂ such that,

E
[
H2 (s, s̃)

]
≤ C inf

m∈M

[
H2(s, Sm) + |m| ∨∆m

]
,

where C depends on z, σ, β only.

To our knowledge, Example 4 has received little attention in the literature,
especially from a non-asymptotic point of view. The only exceptions we are
aware of are Antoniadis, Besbeas and Sapatinas (2001) (see also Antoniadis
and Sapatinas (2001)) and Kolaczyk and Nowak (2004). These papers con-
sider the case where s is of the form (F (x1), . . . , F (xn)) for some function F
on [0, 1]. In Antoniadis, Besbeas and Sapatinas (2001), the authors estimate
F by a wavelet shrinkage procedure and show that the resulting estimator
achieves the usual estimation rate of convergence over Sobolev classes with
smoothness indexes larger than 1/2. Kolaczyk and Nowak (2004) study the
risk properties of some thresholding and partitioning estimators. There ap-
proach requires that the si be bounded from above and below by positive
numbers. Finally, Baraud and Birgé (2009) tackle this problem but their
approach restricts to the case of histogram-type estimators. In particular,
the estimation rates they get hold for α ≤ 1 only.

6.4. Lower bounds. The aim of this section is to show that the upper
bound (31) gives the right order of magnitude for the minimax rate over
Sm, at least under the following assumptions.

Assumption 7. The distribution of the random vector X = (X1, . . . , Xn)
belongs to an exponential family of the form

(32) dPθ = exp

[
n∑
i=1

(θiT (xi)−A(θi))

]
n⊗
i=1

dν(xi) with θ ∈ Θn

where ν denotes some measure on R+, T is a map from R+ to R, θi are
parameters belonging to an open interval Θ such that

Θ ⊂
{
a ∈ R,

∫
exp [aT (x)] dν(x) < +∞

}
and A denotes a smooth function from Θ into R satisfying A′′(a) 6= 0 for all
a ∈ Θ.

These families include Poisson, Binomial and Gamma distributions (among
others). Besides, it is well known that A is infinitely differentiable on Θ and
under Pθ, the Xi satisfy

E [Xi] = A′(θi) = si and Var(Xi) = A′′(θi) > 0, ∀i = 1, . . . , n.

Therefore, the unknown parameter
√
s necessarily belongs to the open cube

C = In where I denotes the interval φ (A′(Θ)).
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We shall also assume that the parameter space Θ is such that the following
holds.

Assumption 8. There exists some κ > 0 such that for all θ ∈ Θn, under
Pθ

(33) 0 < E(Xi) ≤ κVar (Xi) ∀i = 1, . . . , n.

Since A′, A′′ are continuous and positive functions, such an assumption is
automatically fulfilled by choosing Θ such that Θ is compact and A′ and A′′

positive on Θ.

Theorem 5. Let V be a linear subspace of Rn with dimension D ≥ 1 and
S = φ−1(V ∩ C). Define

R =
{
r ∈ (0, (2

√
κ)−1), ∃u0 ∈ V ∩ C,

{
u ∈ V , ‖u− u0‖ ≤ r

}
⊂ C

}
.

Under Assumptions 7 and 8,

inf
ŝ

sup
s∈S

Es
[
H2(s, ŝ)

]
≥ D

30
sup
r∈R

r2,

with the convention sup∅ = 0.

7. Estimation and variable selection in non-Gaussian
regression

In this section, we use the notations of Example 2 and assume that we
observe the random variables X1, . . . , Xn satisfying

Xi = fi + εi, i = 1, . . . , n

where f = (f1, . . . , fn) is an unknown vector of Rn and the εi i.i.d. random
variables with known density q on R. Hereafter, we consider a family of
linear subspaces

{
V m, m ∈M

}
of Rn with respective dimensions denoted

Dm and
{
f̂λ, λ ∈ Λ

}
a family of estimators of f with values in

⋃
m∈M V m

based on the observation of X = (X1, . . . , Xn).

For example, when f is assumed to be of the form (F (x1), . . . , F (xn)) for
some function F and points x1, . . . , xn in [0, 1] one can use the collection of
linear spaces introduced to takle Problem 1. Alternatively, if one assumes
that f is of the form f =

∑p
j=1 βjv

(j) as in Problem 2, one can use the
collection of V m defined there to perform variable selection.

As possible estimators, one can associate to each V m the least-squares es-
timator of f in V m defined as f̂m = ΠmX where Πm is the orthogonal
projector onto V m. It is well-known that

(34) E
[∥∥∥f − f̂m∥∥∥2

]
= ‖f −Πmf‖2 +Dmσ

2,
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where σ2 denotes the variance of the ε1 (provided that it is finite). In the
context of variable selection, many efforts have been done to design (practi-
cal) selection rules among the predictors. Among the most popular proce-
dures, we mention the Lasso and the Dantzig selector described respectively
in Tibshirani (1996) and Candès and Tao (2007). Given a family Λ of such
procedures, an alternative family of estimators for f could be that given by{
f̂m̂(λ), λ ∈ Λ

}
where m̂(λ) corresponds to the family of predictors selected

by the procedure λ in Λ.

We shall assume the following

Assumption 9. There exists some known positive numbers R, R,R such
that maxi=1,...,n |fi| ≤ R and for all r, r′ ∈ [−R,R],

(35) R
∣∣r − r′∣∣ ≤ h (qr, qr′) ≤ R

∣∣r − r′∣∣
where qr(x) = q(x − r) for all x, r ∈ R and h is the Hellinger distance
between the densities qr and qr′.

Throughout, we denote by C the cube [−R,R]n, qg = (qg1 , . . . , qgn) for g ∈
Rn and L0 =

{
qg, g ∈ C

}
. Assumption 9 implies that (L0, H) is almost

isometric to
(
C, ‖ ‖

)
.

Assumption 9 holds if
√
q is regular enough (see Theorem 3A page 183

in Borovkov (1998)). The quantities R and R then depend on the Fisher
information. Let us now turn to some examples.

If for some known θ > 0

q(x) =
θ

2
e−θ|x|, x ∈ R

then, h2 (qr, qr′) = 1−e−θ|r−r′|/2 (1 + θ |r − r′| /2) and (35) holds with R2 =
1/2 and R2 = (1 − e−θR(1 + θR))/(θ2R2). Assumption 9 can also be met
even though the εi have no finite moments. For example, this is the case for

q(x) =
1

2(1 + |x|)2
, x ∈ R.

Indeed,

h2(qr, qr′) = ψ(|r − r′|) with ψ(x) = 1− 2(1 + x) log(1 + x)
x(2 + x)

and since ψ(x)/x2 is decreasing on R+ and tends to 1/2 when x tends to
0+, Inequality (35) holds with R

2 = 1/2 and R2 = ψ(2R)/(2R2).

7.1. The procedure and the results. Throughout this section, τ =
50z−2. To each estimator f̂λ with λ ∈ Λ, we associate the estimator of
qf given by ŝλ = qf̂λ . Our selection procedure is based on a suitable family
of discretized subsets of L0. Let us introduce two of these.
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Collection (C1). For all m ∈M, let us set

Sm =
{
qg, g ∈ ΠCV m

}
and Sm =

{
qg, g ∈ T ′m

}
where T ′m is the discretized set T ′ obtained by applying Discretization P1
with V = V m and

η2 = η2
m = 2× 16Dm

3R2 .

Collection (C2). For all m ∈M, let us set Cm = C ∩ V m

Sm =
{
qg, g ∈ Cm

}
and Sm =

{
qg, g ∈ T ′m

}
T ′m is the discretized set T ′ obtained by Discretization P2 with V = V m

and

η2 = η2
m = 2× 1.031Dm

R2 .

We obtain the following result.

Theorem 6. Let
{
f̂λ, λ ∈ Λ

}
be an arbitrary (countable) family of esti-

mators with values in
⋃
m∈M V m and {∆m, m ∈M} a family of weights

fulfilling (9). Assume that Assumption 9 holds.

By applying Procedure 2 with the family of estimators {ŝλ, λ ∈ Λ}, the fam-
ily {Sm, m ∈M} given by Collection C1, and

pen(t) = zτ inf
{

4× 2Dm

3
+ ∆m, m ∈M (t)

}
∀t ∈ S,

one selects from the data some λ̂ ∈ Λ for which the estimator f̃ = f̂λ̂ satisfies
for some constant C depending on z,R,R and Σ

CE
[∥∥∥f − f̃∥∥∥2

]
≤ inf

λ∈Λ

{
E
[∥∥∥f − f̂λ∥∥∥2

]
+ E

[
Dm̂(λ) ∨∆m̂(λ)

]}
.

By applying Procedure 2 with the family of estimators {ŝλ, λ ∈ Λ}, the fam-
ily {Sm, m ∈M} given by Collection C2, and

pen(t) = zτ inf
{

4× 2.1Dm + ∆m, m ∈M (t)
}
∀t ∈ S,

one selects from the data some λ̂ ∈ Λ for which the estimator f̃ = f̂λ̂ satisfies
for some constant C depending on z,R,R and Σ

CE
[∥∥∥f − f̃∥∥∥2

]
≤ inf

λ∈Λ

{
E
[∥∥∥f − f̂λ∥∥∥2

+ E
[
B(f̂λ)

]
+ E

[
Dm̂(λ) ∨∆m̂(λ)

]]}
where

B(f̂λ) = inf
{∥∥∥f̂λ − t∥∥∥2

, t ∈ Cm̂(λ)

}
.
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If the family of estimators f̂λ take their values in
(⋃

m∈M V m

)
∩ C then

B(f̂λ) = 0 and the same risk bound for f̃ is achievable with both Collections
C2 and C1.

The proof of Theorem 6 is postponed to Section 8.13.

For illustration, we deduce the following corollaries in the context of variable
selection. Hereafter, we consider the family of linear spaces

{
V m, m ∈M

}
given in Problem 2.

Corollary 7. For m ∈M, let {fλ, λ ∈ Λ(m)} be any countable and dense
subset of V m. Define m̂(λ) = m if λ ∈ Λ(m) and apply the procedure de-
scribed in Theorem 6 with the collection C1 and the family of estimators{
fλ, λ ∈

⋃
m∈M Λ(m)

}
. Under Assumption 9, one selects a subset of pre-

dictors
{
v(j), j ∈ m̂(λ̂)

}
for which the estimator f̃ = f̂λ̂ ∈ V m̂(λ̂) satisfies

E
[∥∥∥f − f̃∥∥∥2

]
≤ C inf

m∈M

{
‖f −Πmf‖2 +Dm ∨∆m

}
where C depends on z,R,R and Σ.

Provided that the distribution of the errors is known and the mean f
bounded by some known constant, this result shows that complete vari-
able selection is possible even though the errors may not admit any finite
moments.

Let us now turn to some result showing how to select among families of least-
squares estimators

{
f̂m, m ∈M

}
as those introduced at the beginning of

the section. Hereafter we take, Λ =M, choose m̂(λ) = m for all λ ∈ Λ and
define m∗ as any minimizer of |m| ∨∆m among those m ∈M such f ∈ Cm.

Corollary 8. Assume that σ < +∞ and that Assumption 9 holds true. Let
{∆m, m ∈M} be a family of weights satisfying (9). Consider the family
of least-squares estimators

{
f̂m = ΠmX, m ∈M

}
and apply the selection

procedure described in Theorem 6 with the collection (C2). The resulting
estimator f̃ ∈ Vm̂ satisfies,

CE
[∥∥∥f − f̃∥∥∥2

]
≤ E

[∥∥∥f − f̂m∗∥∥∥2
]
∨∆m∗

where C depends on z,R,R,Σ and σ.

Proof. Note that B(f̂m∗) ≤
∥∥∥f̂m∗ − f∥∥∥2

since f ∈ Cm∗ . The result follows
by applying Theorem 6 and choosing λ = m∗ to bound the infimum from
above. �
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8. Proofs

8.1. Proof of Theorem 1. Throughout, κ = z + 1/
√

2. Hereafter, we fix
some estimator ŝλ and assume first that E(ŝλ) 6= ∅. Therefore, there exists
ŝλ′ ∈ E(ŝλ) with ŝλ′ 6= ŝλ. By using Proposition 2 with r = (ŝλ + ŝλ′)/2 and
the fact that T(N, ŝλ, ŝλ′) ≥ 0, we get

H2(s, ŝλ′)−H2(s, ŝλ) =
[
ρ (s, ŝλ)− 1

2

∫
X
ŝλdµ

]
−
[
ρ (s, ŝλ′)−

1
2

∫
X
ŝλ′dµ

]
= −T(N, ŝλ, ŝλ′) + pen(ŝλ)− pen(ŝλ′)

+ [ρ (s, ŝλ)− ρr (sdµ, ŝλ)]− [ρ (s, ŝλ′)− ρr (sdµ, ŝλ′)]
+ [ρr (sdµ, ŝλ)− ρr (sdµ, ŝλ)]− [ρr (sdµ, ŝλ′)− ρr (sdµ, ŝλ′)]

≤ 1√
2

[
H2 (s, ŝλ) +H2 (s, ŝλ′)

]
+Z(N, ŝλ, ŝλ′) + pen(ŝλ)− pen(ŝλ′)

and therefore,(
1− 1√

2

)
H2 (s, ŝλ′) ≤

(
1 +

1√
2

)
H2 (s, ŝλ)+Z(N, ŝλ, ŝλ′)+pen(ŝλ)−pen(ŝλ′).

For ξ > 0, let us set

y2(m,m′, ξ) = τ (dm ∨ dm′ + ∆m + ∆m′ + ξ) ,

and

Ωξ =
⋂

(m,m′)∈M2

{
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y(m,m′, ξ))

≤ z

}
.

Note that under Assumption 1, P (Ωξ) ≥ 1− γΣ2e−ξ. On Ωξ,

Z(N, ŝλ, ŝλ′) ≤ zH2(s, ŝλ) + zH2(s, ŝλ′)
+z inf

{
y2(m,m′, ξ), (m,m′) ∈M(ŝλ)×M(ŝλ′)

}
≤ zH2(s, ŝλ) + zH2(s, ŝλ′)

+zτ inf
(m,m′)∈M(ŝλ)×M(ŝλ′ )

(dm + dm′ + ∆m + ∆m′ + ξ)

and since for all λ ∈ Λ,

pen(ŝλ) ≥ zτ inf
m∈M(ŝλ)

(dm + ∆m) ,

we have

(1− κ)H2 (s, ŝλ′) ≤ (1 + κ)H2 (s, ŝλ) + 2 pen(ŝλ) + zτξ.
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Let us set α = (1+κ)/(1−κ). Since ŝλ′ is arbitrary among E(ŝλ), we deduce
that on Ωξ,

D(ŝλ) = sup
ŝλ′∈E(ŝλ)

H2 (ŝλ, ŝλ′)

≤
(
1 +
√
α
)
H2 (s, ŝλ) +

(
1 +

1√
α

)
sup

λ′∈E(ŝλ)
H2 (s, ŝλ′)

≤
(
1 +
√
α
)2
H2 (s, ŝλ) +

2(1 +
√
α)√

1− κ2
pen(ŝλ) +

z(1 +
√
α)√

1− κ2
τξ.

Note that this bounds is obviously true if E(ŝλ) = 0 since then D(ŝλ) = 0.
Now by using that D(ŝλ̂) ≤ D(ŝλ) + τ , we obtain

H2
(
s, ŝλ̂

)
≤

(
2 +
√
α
)
H2 (s, ŝλ) +

(
1 +

1
1 +
√
α

)
H2
(
ŝλ, ŝλ̂

)
≤

(
2 +
√
α
)
H2 (s, ŝλ) +

(
1 +

1
1 +
√
α

)(
D(ŝλ̂) ∨ D(ŝλ)

)
≤

(
2 +
√
α
)
H2 (s, ŝλ) +

(
1 +

1
1 +
√
α

)
D(ŝλ) +

(
1 +

1
1 +
√
α

)
τ

≤
(
2 +
√
α
) [(

2 +
√
α
)
H2 (s, ŝλ) +

2√
1− κ2

pen(ŝλ) +
zτ

z(1 +
√
α)

]
+
z (2 +

√
α)√

1− κ2
τξ

≤ C1(z)
[
H2 (s, ŝλ) + pen(ŝλ)

]
+ C2(z)τξ

with κ = z + 1/
√

2, α = (1 + κ)/(1− κ) and

C1(z) =
(
2 +
√
α
)

max
{(

2 +
√
α
)
,

2√
1− κ2

+
1

z(1 +
√
α)

}
(36)

C2(z) =
z (2 +

√
α)√

1− κ2
.(37)

Finally, we conclude by using that P (Ωξ) ≥ 1 − γΣ2e−ξ and the fact that
ŝλ is arbitrary.

8.2. Proof of Lemma 1. Let ξ > 0 and

y2 ≥ τ
[
4
(
η2
m ∨ η2

m′
)

+ ξ
]
≥ 4τ

(
η2
m ∨ η2

m′
)
.

We set C0 = (Sm ∩ B(s, y))× (Sm′ ∩ B(s, y)) and for j ≥ 1,

Cj =
{

(t, t′) ∈ Sm × Sm′ , 2j−1y2 < H2 (s, t) +H2
(
s, t′
)
≤ 2jy2

}
.

Note that for all j ≥ 0, Cj ⊂
(
Sm ∩ B(s, 2j/2y)

)
×
(
Sm ∩ B(s, 2j/2y)

)
and

that for (t, t′) ∈ Cj , w2(t, t′, y) =
(
H2(s, t) +H2(s, t′)

)
∨ y2 ≥ (2j−1 ∨ 1)y2.
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By using Assumptions 2 and 3, we get

P

[
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≥ z

]
≤

∑
(t,t′)∈C0

P
[
Z(N, t, t′) ≥ zy2

]
+
∑
j≥1

∑
(t,t′)∈Cj

P
[
Z(N, t, t′) ≥ z2j−1y2

]
≤ b |Sm ∩ B(s, y)| |Sm′ ∩ B(s, y)| exp

[
− az2y4

y2 + czy2

]
+b
∑
j≥1

|Sm ∩ B(s, 2j/2y)||Sm′ ∩ B(s, 2j/2y)| exp

[
− az222(j−1)y4

2jy2 + cz2j−1y2

]

≤ bM2 exp
[(

1
τ
− az2

1 + cz

)
y2

]
+ bM2

∑
j≥1

exp
[(

1
τ
− az2

2(2 + cz)

)
2jy2

]

≤ bM2
∑
j≥0

exp
[

2jy2

τ

]
recalling that τ = 4(2 + cz)/(az2). By using that

τ−1y2 ≥ 4(η2
m ∨ η2

m′) + ξ ≥ 1 + ξ

and the inequality 2j ≥ j + 1 which holds for all j ≥ 0, we finally obtain

P

[
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≥ z

]
≤ bM2

∑
j≥0

exp [−(j + 1)(1 + ξ)]

≤ bM2e−ξ.

8.3. The proof of Theorem 2. The proof relies on Theorem 1 and Lemma 1.

By definition of s̃, for all λ ∈ Λ

H2 (s, s̃) ≤ 2H2
(
s, s̃λ̃

)
+ 2H2

(
s̃λ̃, ŝλ̂

)
≤ 2H2

(
s, s̃λ̃

)
+ 2H2

(
s̃λ̃, ŝλ

)
+ 2τ.(38)

By Lemma 1, the collection of models {Sm, m ∈M} satisfies Assumption 1,
we can therefore apply Theorem 1 with the family of estimators {s̃λ, λ ∈ Λ}
and get that with probability at least 1− γΣ2e−ξ (with γ = bM2),

H2
(
s, s̃λ̃

)
≤ C(z)

[
H2 (s, s̃λ) + pen(s̃λ) + τ(ξ + 1)

]
≤ C(z)

[
2H2 (s, ŝλ) + 2H2 (ŝλ, s̃λ) + pen(s̃λ) + τ(ξ + 1)

]
which with (38) and the fact that pen(s̃λ) ≥ τz (∆m ≥ 1 for all m) leads to

H2 (s, s̃) ≤ C ′(z)
[
H2 (s, ŝλ) +A(ŝλ,S) + τ(ξ + 1)

]
and conclude the proof of the first part of Theorem 2. The second part
follows by integration with respect to ξ.
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8.4. Proof of Proposition 3.

Case of Examples 1 and 2. It suffices to prove the result in the case of
Example 2, the result for Example 1 being obtained similarly by changing
Z(N, t, t′) into Z(N, t, t′)/n.

Note that for all t, t′ ∈ L0,

Z(N, t, t′) =
n∑
i=1

(
ψ(ti, t′i, Xi)− E

[
ψ(ti, t′i, Xi)

])
is a sum of independent and centered random variables bounded by

√
2.

Besides, by setting ri = (ti + t′i)/2 for i = 1, . . . , n and using that for all
xi ∈ Xi, (t(xi) ∨ t′i(xi)/ri(xi) ≤ 2 we have

4E
[
Z2(t, t′, N)

]
≤

n∑
i=1

∫
Xi

(√
ti −

√
t′i

)2 si
ri
dµi

=
n∑
i=1

∫
Xi

(√
ti −

√
t′i

)2(√si
ri
− 1 + 1

)2

dµi

≤ 2
n∑
i=1

∫
Xi

(√
ti −

√
t′i

)2(√si
ri
− 1
)2

dµi

+2
n∑
i=1

∫
Xi

(√
ti −

√
t′i

)2

dµi

= 2
n∑
i=1

∫
Xi

(√
ti −

√
t′i
)2

ri
(
√
si −

√
ri)

2 dµi + 4H2
(
t, t′
)

≤ 8
(
H2 (s, r) +H2 (s, t) +H2

(
s, t′
))
.

Since the concavity of u 7→
√
u implies 2H2 (s, r) ≤ H2 (s, t) +H2 (s, t′), we

have obtain that t, t′ ∈ B(s, y)

Var
(
Z(t, t′, N)

)
≤ E

[
Z2(t, t′, N)

]
≤ 3

[
H2 (s, t) +H2

(
s, t′
)]
≤ 6y2.

By applying Bernstein’s inequality, we obtain that Assumption 2 is fulfilled
with b = 1, a = 1/6 and c =

√
2/6.

Case of Example 3. In this case,

Z(t, t′, N) =
∫
X
ψ
(
t, t′, x

)
(dN(x)− s(x)dµ)

where ψ is bounded with values in [−1/
√

2, 1/
√

2] and, by arguing as in
Section 8.4, it satisfies∫

X
ψ2
(
t, t′, x

)
s(x)dµ ≤ 3

(
H2(s, t) +H2(s, t′)

)
≤ 6y2

for all t, t′ ∈ B(s, y). By applying Proposition 7 in Reynaud-Bouret (2003)
we obtain that Z(N, t, t′) satisfies (2) with a = 1/12, b = 1 and c =

√
2/36.
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8.5. Proof of Corollary 3. Since for all m ∈ M, η2
m = 2(Dm ∨ 1/8),

Assumption 3 holds. We can therefore apply Theorem 2. Since for all
λ ∈ Λ, Sm is a ηm̂(λ)

√
τ -net for Sm and since equality holds in (15),

A(ŝλ,S) ≤ τ
(

(1 + 4z)η2
m̂(λ) + z∆m̂(λ)

)
≤ τ

(
2(1 + 4z)(Dm̂(λ) ∨ (1/8)) + z∆m̂(λ)

)
≤ τ

(
2(1 + 4z)(Dm̂(λ)) + (1/4 + 2z) ∆m̂(λ)

)
, ∀λ ∈ Λ,

which leads to the result.

8.6. Proofs of Propositions 5 and 6.

Proof of Proposition 5. Take for m ∈ M = Λ, Sm = Sm = {sm} and
note that Assumption 3 holds with M = 1 and ηm = 0. By Lemma 1,
Assumption 3 with dm = 0 and γ = b and the result follows by applying
Corollary 2.

Proof of Proposition 6. Inequality (23) follows from (22) and the fact that
since Sm is a (M,ηm

√
τ ,Dm)-net for Sm

H2(s,Sm) ≤ 2H2(s, Sm) + 2τη2
m ≤ 2H2(s, Sm) + 4τ(Dm ∨∆m).

Since Assumption 1 holds from Lemma 1, we obtain (22) by applying Corol-
lary 2 with ŝλ = sλ, noting that

inf
λ∈Λ

[
H2(s, sλ) + pen(sλ)

]
≤ inf

m∈M

[
H2(s,Sm) + zt

(
4η2
m + ∆m

)]
.

8.7. Proof of Theorem 3. It suffices to prove that Assumption 1 holds
with dm = δ|m| and then to apply Corollary 2.

Let ξ > 0 and y such that

y2 ≥ τ (dm ∨ dm′ + ξ) .

For m,m′ ∈ M, t ∈ Sm and t′ ∈ Sm′ , t and t′ are constant on each element
I ∈ m ∨m′ with value tI , t′I respectively and therefore so is ψ(t, t′, .):

ψ(t, t′, x) = ψ(tI , t′I) =
1√
2

[ √
1

1 + tI/t′I
−

√
1

1 + t′I/tI

]
, ∀x ∈ I.
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Consequently, by using that |ψ(tI , t′I)| ≤ 1/
√

2 for all I and Cauchy-Schwarz
inequality

Z(N, t, t′) =
∑

I∈m∨m′
ψ(tI , t′I) (N(I)− E [N(I)])

=
∑

I∈m∨m′
ψ(tI , t′I)

(√
N(I)−

√
E [N(I)]

)(√
N(I) +

√
E [N(I)]

)
=

∑
I∈m∨m′

ψ(tI , t′I)
(√

N(I)−
√

E [N(I)]
)2

+2
∑

I∈m∨m′
ψ(tI , t′I)

√
E(N(I))

(√
N(I)−

√
E [N(I)]

)

≤ X 2(m ∨m′)√
2

+ 2

[ ∑
I∈m∨m′

ψ2(tI , t′I)E(N(I))

]1/2

X (m ∨m′)

=
X 2(m ∨m′)√

2
+ 2

[∫
ψ2(t, t′, x)sdµ

]1/2

X (m ∨m′)

By arguing as in Section 8.4, we have that∫
X
ψ2(t, t′, x)sdµ ≤ 3

(
H2(s, t) +H2(s, t′)

)
and thus, by using that w2(t, t′, y) ≥ y2 and w2(t, t′, y) ≥

(
H2(s, t) +H2(s, t′)

)1/2
y,

we derive

sup
(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≤ X 2(m ∨m′)√
2y2

+ 2
√

3
X (m ∨m′)

y

≤ 2
√

6 + 1√
2

(
X 2(m ∨m′)

y2
∨ X (m ∨m′)

y

)
.

Since z ∈ (0, 1),{
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≥ z

}
⊂

{
X 2(m ∨m′)

y2
∨ X (m ∨m′)

y
≥ z

√
2

2
√

6 + 1

}

⊂

{
X 2(m ∨m′)

y2
≥ 2z2(

2
√

6 + 1
)2
}

and therefore

P

[
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)
w2(t, t′, y)

≥ z

]
≤ P

[
X 2(m ∨m′) ≥ 2z2y2(

2
√

6 + 1
)2
]
.

We conclude by using Assumption 4 with the fact that under Assumption 5,

y2 ≥ τ (dm ∨ dm′ + ξ) ≥
(
2
√

6 + 1
)2

2z2
× a

(
|m ∨m′|+ ξ

)
.
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8.8. Proof of Proposition 8. Given an orthonormal basis
{
uj , j = 1, . . . , D

}
,

consider the η
√
τ -net of V given by (28). Then, use Propositions 9 and 12

in Birgé (2006) (with π = ΠC , (M ′, d) = (Rn
+, ‖ ‖), M0 = C, T = T and

λ = 1 = ε) in order to build a subset T ′ of ΠCT with the properties (8.15)
and (8.16) given there. Finally, set S = φ−1 (T ′). The properties of S
derives from those of T ′ given in this Proposition 12.

8.9. Proof of Proposition 9. In the sequel, d(., .) denotes the Euclidean
distance. By using Proposition 9 in Birgé (2006), T is a η-net for V satisfying
for all s ∈ Rn and r ≥ 2η,

(39) |{t ∈ T , d(s, t) ≤ r}| ≤ exp

[
0.458D

(
r

η

)2
]
.

Since V ⊂ V , for all v ∈ V there exists t ∈ T (η) such that d(v, t) ≤ η and

d(v, T ′) ≤ d(v,ΠV t) ≤ d(v, t) ≤ η

and T ′ is therefore an η-net for V .

Let s ∈ Rn
+. Assume that {t′ ∈ T ′, d(s, t′) ≤ r} 6= ∅. There exists t in T (η)

such that t′ = πV t and d(ΠV t, s) ≤ r. For such a t,

d(s, t) ≤ d(s,ΠV t) + d(ΠV t, t) ≤ r + η

and therefore∣∣{t′ ∈ T ′, d(s, t′) ≤ r
}∣∣ ≤ |{t ∈ T (η), d(s, t) ≤ r + η}|
≤ |{t ∈ T , d(s, t) ≤ r + η}| .

Of course the above inequality also holds if {t′ ∈ T ′, d(s, t′) ≤ r} = ∅. By
using (39) and the fact that r + η ≤ 1.5r, we get

(40)
∣∣{t′ ∈ T ′, d(s, t′) ≤ r

}∣∣ ≤ exp

[
1.031D

(
r

η

)2
]

and conclude since φ is is an isometry from (Rn
+, H) into (Rn

+, d).

8.10. Proof of Theorem 4. The proof is based on Proposition 6. Let
us first check that the assumptions of this proposition are fulfilled. We
already know from Propositions 8 and 9 that Assumption 3 holds. It
remains to check Assumption 2. Under Assumption 6, we have for all
u = (u1, . . . , un) ∈ Rn such that

∑n
i=1 u

2
i si ≤ v2 and maxni=1 |ui| ≤ γ,
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and all λ ∈ (−1/(βγ), 1/(βγ)),

E
[
eλ

P
i=1 ui(Xi−si)

]
=

n∏
i=1

E
[
eλui(Xi−si)

]
≤

n∏
i=1

exp
[

λ2σu2
i si

2(1− |λ|γβ)

]
≤ exp

[
λ2σv2

2(1− |λ|γβ)

]
In particular, for all λ ∈ (0, 1/(βγ)),

(41) E
[
eλ

P
i=1 ui(Xi−si)

]
≤ exp

[
λ2σv2

2(1− λγβ)

]
.

Under (41), we derive from Bernstein’s inequality (see Massart (2007), Corol-
lary 2.10),

(42) P

[
n∑
i=1

ui (Xi − si) ≥ ξ

]
≤ exp

[
− ξ2

2(σv2 + γβξ)

]
.

For t, t′ ∈ B(s, y) ⊂ Rn
+, let us now take u = (ψ(t, t′, 1), . . . , ψ(t, t′, n)) (where

ψ is defined by (8) on X = {1, . . . , n}) and note that
n∑
i=1

ψ(t, t′, i) (Xi − si) = Z(N, t, t′)

max
i=1,...,n

∣∣ψ(t, t′, i)
∣∣ ≤ 1√

2
= γ.

Besides, by arguing as in Section 8.4,
n∑
i=1

ψ2(t, t′, i)si =
1
4

n∑
i=1

(√
ti −

√
t′i
)2
si

(ti + t′i)/2

≤ 3H2(s, t) + 3H2(s, t′) ≤ 6y2 = v2.

Consequently, we deduce from (42) that Assumption 2 is satisfied with a =
1/(12σ), b = 1 and c = β

√
2/(24σ) (then τ ≤ 96z−2(σ + β)). By applying

the Proposition 6, we obtain (22) from which we deduce Theorem 4 since
for the Discretizations P1 and P2, the Sm satisfy

H2(s,Sm) ≤ 16H2(s, Sm) + 2τη2
m, ∀m ∈M.

8.11. Proof of Corollary 6. Result (iii) is direct from Theorem (4). For
(i), take with M = {m}, ∆m = 1 and Sm a discretization of Sm obtained
by P1 or P2. Then, the result follows by applying Theorem 4 denoting s̃
by s̃m. For (iii), consider the collection of models Sm described to handle
Problem 1 and discretized them by applying P1. Apply Theorem 4 and take
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F̃ as any element of Vm̂ such that
√
s̃ = (F̃ (x1), . . . , F̃ (xn)). We obtain that

for all F ∈ Bα
p,∞

E
[
n−1H2 (s, s̃)

]
= E

[
1
n

n∑
i=1

(
F (xi)− F̃ (xi)

)2
]
≤ C inf

J≥0

{
R22−2Jα +

2J

n

}
and the result follows by optimizing with respect to J .

8.12. Proof of Theorem 5. In the sequel, ρ(P,Q) and h(P,Q) denote the
Hellinger affinity and the Hellinger distance between the probabilities P,Q.
For θ ∈ Θn, A′(θ) corresponds to the vector t = (A′(θ1), . . . , A′(θn)). We
start with the following lemma.

Lemma 2. Assume that Assumptions 7 and 8 hold. For all θ, θ′ ∈ Θn,
t = A′(θ) and t′ = A′(θ′), we have,

h2 (Pθ, Pθ′) ≤ −
n∑
i=1

log ρ
(
Pθi , Pθ′i

)
≤ 4κH2(t, t′).

Proof. Since

h2 (Pθ, Pθ′) = 1− ρ (Pθ, Pθ′) = 1− exp

[
n∑
i=1

log ρ
(
Pθi , Pθ′i

)]

≤ −
n∑
i=1

log ρ
(
Pθi , Pθ′i

)
,

it suffices to show that

−
n∑
i=1

log ρ
(
Pθi , Pθ′i

)
≤ 4κH2(t, t′) = 4κ

n∑
i=1

H2(ti, t′i).

By summing over i, it is enough to show the inequality for n = 1, what we
shall do. Let θ, θ′ in Θ such that t = A′(θ) and t′ = A′(θ′). With no loss of
generality, we may assume that θ′ < θ and set δ = (θ− θ′)/2. The Hellinger
affinity between Pθ and Pθ′ is given by

ρ(Pθ, Pθ′) = exp
[
−
(
A(θ) +A(θ′)

2
−A

(
θ + θ′

2

))]
and therefore

− log ρ (Pθ, Pθ′) =
A(θ) +A(θ′)

2
−A

(
θ + θ′

2

)
=

1
2

[A(θ) +A(θ − 2δ)− 2A (θ − δ)]

=
1
2

∫ θ

θ−δ

(
A′(u)−A′(u− δ)

)
du

=
1
2

∫ θ

θ−δ

[∫ u

u−δ
A′′(v)dv

]
du.
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Since t, t′ ∈ R+ \ {0} and since under Assumption 8, A′, A′′ do not vanish
on [θ′, θ], for all u ∈ [θ − δ, θ] and v ∈ [u− δ, u]

A′′(v) =
A′′(v)

2
√
A′(v)

A′′(u)
2
√
A′(u)

4
√
A′(v)A′(u)
A′′(u)

≤ A′′(v)
2
√
A′(v)

A′′(u)
2
√
A′(u)

4A′(u)
A′′(u)

≤ 4κ
A′′(v)

2
√
A′(v)

A′′(u)
2
√
A′(u)

.

giving thus,

− log ρ (Pθ, Pθ′) ≤ 2κ
∫ θ

θ−δ

[∫ u

u−δ

A′′(v)
2
√
A′(v)

A′′(u)
2
√
A′(u)

dv

]
du

≤ 2κ
∫ θ

θ′

[∫ θ

θ′

A′′(v)
2
√
A′(v)

A′′(u)
2
√
A′(u)

dv

]
du

= 2κ

(∫ θ

θ′

A′′(v)
2
√
A′(v)

dv

)2

= 2κ
(√

A′(θ)−
√
A′(θ′)

)2

= 2κ
(√

t−
√
t′
)2

�

The proof of Theorem 5 is based on Assouad’s Lemma (see Assouad (1983)),
more precisely on the version given by Theorem 2.10 in Tsybakov (2004).
In the sequel, u1, . . . , uD denote an orthonormal basis of V and d(ε, ε′) the

Hamming distance between two elements ε and ε′ of {0, 1}D, that is

d(ε, ε′) =
D∑
j=1

1lεj 6=ε′j .

Let r ∈ R. There exists t0 ∈ S such that the Euclidean ball (of V ) centered
at u0 =

√
t0 with radius r is contained in C. Consequently, there exists

β1, . . . , βD such that
√
t0 =

∑D
j=1 βjuj and that for all ε ∈ {0, 1}D one can

find tε ∈ S such that
√
tε =

D∑
j=1

(βj + rεj)uj .

Note that the for all ε, ε′ ∈ {0, 1}D,

2H2(tε, tε
′
) =

∥∥∥√tε −√tε′∥∥∥2
= r2d(ε, ε′).
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Besides,

inf
ŝ

sup
s∈S

Es
[
H2 (s, ŝ)

]
≥ inf

ŝ
sup

ε∈{0,1}D
Etε
[
H2 (tε, ŝ)

]
≥ inf

ε̂
sup

ε∈{0,1}D
Etε
[
H2
(
tε, tε̂

)]
=

r2

2
inf
ε̂

sup
ε∈{0,1}D

Etε
[
d2 (ε, ε̂)

]
,

where the two last infimum run among all estimators ε̂ based on the observa-
tions (X1, . . . , Xn) with values in {0, 1}D. Theorem 2.10 in Tsybakov (2004)
asserts that

inf
ε̂

sup
ε∈{0,1}D

Etε
[
d2 (ε, ε̂)

]
≥ D

2

(
1−

√
α(2− α)

)
provided that for all ε, ε′ such that d(ε, ε′) = 1,

h2
(
Pθε , Pθε′

)
≤ α < 1,

where θε and θε
′

corresponds to the parameters in Θ associated to tε ad tε
′

respectively. By taking α = 1/2 and using Lemma 2, for all ε, ε′ such that
d(ε, ε′) = 1

h2
(
Pθε , Pθε′

)
≤ 4κH2(tε, tε

′
) ≤ 2κr2 ≤ 1

2
= α.

Therefore,

inf
ŝ

sup
s∈S

Es
[
H2 (s, ŝ)

]
≥ 1−

√
3/2

4
Dr2,

which concludes the proof since r is arbitrary in R.

8.13. Proof of Theorem 6. The proof is based on Theorem 2. Let us first
check that the assumptions of this theorem hold. The marginal of X being
given by s = qf , we already know from Proposition 3 that Assumption 2
holds true for Example 2 with a = 1/6, b = 1 and c =

√
2/36 (which leads

to the value τ = 50z−2). In order to check Assumption 3, we distinguish
between Collections (C1) and (C2).

Case of Collection (C1). For any m ∈ M, by using Propositions 9 and 12
in Birgé (2006) with π = ΠC , (M ′, d) = (Rn, ‖ ‖), M0 = C, λ = 1 = ε and
T = Tm where Tm = T is given by (28) as a discretization of the linear space
V m, we obtain from the Discretization P1 a discretized subset T ′m of ΠCV m

satisfying the properties (8.15) and (8.16) given Birgé (2006), that is for all
g ∈ Rn and r ≥ ηm/2∣∣{t ∈ T ′m, ‖g − t‖ ≤ r√τ}∣∣ ≤ exp

[
4.2Dm

(
r

ηm

)2
]
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and d(g, T ′m) ≤ 4d(g, Tm) (where d(., .) denotes the Euclidean distance).
Since for all g, g′ ∈ C, H2(qg, qg′) ≥ R2 ‖g − g′‖2, for all g ∈ C and x ≥
2ηm = Rηm/2

∣∣Sm ∩ B(qg, x
√
τ)
∣∣ ≤ ∣∣{g ∈ T ′m, ‖g − g′‖ ≤ R−1x

√
τ
}∣∣

≤ exp

[
4.2R−2Dm

(
x

ηm

)2
]

≤ exp

[
Dm

3

(
x

ηm

)2
]
.

Consequently, since ηm = 2Dm/3 for all m, the family {Sm, m ∈M} satis-
fies Assumption 3 with M = 1.

Case of Collection (C2). By using (40) and arguing as in the previous case,
for all g ∈ Rn and x ≥ 2ηm = 2Rηm,

∣∣Sm ∩ B(qg, x
√
τ)
∣∣ ≤ ∣∣{g′ ∈ T ′m, ∥∥g − g′∥∥ ≤ R−1x

√
τ
}∣∣

≤ exp

[
1.031R−2Dm

(
x

ηm

)2
]

≤ exp

[
1.031Dm

(
x

ηm

)2
]

and we deduce similarly that the family {Sm, m ∈M} satisfies Assump-
tion 3 with M = 1.

Let us now finish the proof of Theorem 6. Since in both cases, Assumption 3
holds, we can apply Theorem 2 and get that

E
[
H2
(
qf , qf̃

)]
≤ C inf

λ∈Λ

{
E
[
H2
(
qf , qf̂λ

)
+A(qf̂λ ,S)

]}

for some C depending on Σ, z only. Under Assumption 9, we derive that

E
[∥∥∥f − f̃∥∥∥2

]
≤ C

R
2

R2 inf
λ∈Λ

{
E
[∥∥∥f − f̂λ∥∥∥2

+ inf
m∈M

(
inf
t∈T ′m

∥∥∥f̂λ − t∥∥∥2
+ τR

−2 (
Dm ∨∆m

))]}
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In the case of Collection C1, we conclude by using that for m = m̂(λ)

inf
m∈M

(
inf
t∈T ′m

∥∥∥f̂λ − t∥∥∥2
+ τR

−2 (
Dm ∨∆m

))
≤ 2

∥∥∥f − f̂λ∥∥∥2
+ 2 inf

t∈T ′m
‖f − t‖2 + τR

−2 (
Dm ∨∆m

)
≤ 2

∥∥∥f − f̂λ∥∥∥2
+ 32 inf

t∈Tm
‖f − t‖2 + τR

−2 (
Dm ∨∆m

)
≤ 2

∥∥∥f − f̂λ∥∥∥2
+ 64 inf

t∈Vm
‖f − t‖2 + 64τη2

m + τR
−2 (

Dm ∨∆m

)
≤ 66

∥∥∥f − f̂λ∥∥∥2
+ τ

(
64× 11R−2 +R

−2
) (
Dm ∨∆m

)
.

For collection C2, we conclude by using that T ′m is a ηm
√
τ -net for Cm and

that for m = m̂(λ),

inf
m∈M

(
inf
t∈T ′m

∥∥∥f̂λ − t∥∥∥2
+ τR

−2 (
Dm ∨∆m

))
≤ 2

∥∥∥f̂λ −ΠCm f̂λ
∥∥∥2

+ 2τη2
m + τR

−2 (
Dm ∨∆m

)
.
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