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Abstract. We attempt to calculate the mod 2 cohomology of GL2

(

Z[
√

−2 ]
[

1
2

])

from the

mod 2 cohomology of SL2

(

Z[
√

−2 ]
[

1
2

])

, following the method in Nicolas Weiss’ PhD thesis.
In degree 1, we show that it is 2-dimensional, but in higher degrees, we can only provide
non-coinciding lower and upper bounds.

Introduction

In the authors’ paper submitted to a journal, the following ring structure on
H∗(SL2

(

Z[
√
−2 ]

[

1
2

])

; F2) has been calculated.

Theorem 1. The cohomology ring H∗(SL2

(

Z[
√
−2 ]

[

1
2

])

; F2) is isomorphic to the free mod-
ule

F2[e4](x2, x3, y3, z3, s3, x4, s4, s5, s6)

over F2[e4] (the image of H∗
cts(SL2(C);F2)), where the subscript of the classes specifies their

degree, e4 is the image of the second Chern class of the natural representation of SL2(C),
and all other classes are exterior classes.

In the present report that is not intended for journal publication, we attempt to deduce
the mod 2 cohomology of GL2

(

Z[
√
−2 ]

[

1
2

])

from it, following the method in Nicolas Weiss’
PhD thesis [4].

The Lyndon–Hochschild–Serre spectral sequence of the extension

1 → SL2

(

Z[
√
−2 ]

[

1

2

])

→ GL2

(

Z[
√
−2 ]

[

1

2

])

→det

(

Z[
√
−2 ]

[

1

2

])×

→ 1

yields upper bounds for Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2), in terms of the sums
q
⊕

k=0

Ek,q−k
2 over its

E2 terms. However, in the degrees q−k where the dimension of Hq−k(SL2

(

Z[
√
−2 ]

[

1
2

])

; F2)

is greater than one, we can compute the action of
(

Z[
√
−2 ]

[

1
2

])×
on it only indirectly, and

this is why we have just an upper bound for the dimension of

Ek,q−k
2 = Hk

(

(

Z[
√
−2 ]

[

1

2

])×

; Hq−k(SL2

(

Z[
√
−2 ]

[

1

2

])

; F2)

)

.

We make the upper bound precise in Proposition 5, the lower bound in Proposition 2; we
combine them to a frame in Corollary 7; and we conclude in Corollary 8 that
dimF2 H

1(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) = 2.

1. Lower bounds

In Nicolas Weiss’ PhD thesis, lower bounds for Hq(GL2 (O) ; F2), in his caseO = Z[
√
−1 ]

[

1
2

]

,

in our case O = Z[
√
−2 ]

[

1
2

]

, are obtained via the commutative diagram
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(1)

Hq(D2

(

Z[
√
−2 ]

[

1
2

])

; F2) Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2)

⊗

2H
q(D2(Fℓ); F2)

⊗

2 H
q(GL2(Fℓ); F2)

Res

⊗

2Res
GL2(Fℓ)
D2(Fℓ)

π∗

D π∗

where D2 stands for taking the subgroup of diagonal 2 × 2 matrices, and the maps π∗

and π∗
D are constructed as follows. We start with two non-trivial ring homomorphisms

π1, π2 : Z[
√
−2 ]

[

1
2

]

→ Fℓ, which exist as soon as 2 is invertible in Fℓ and −2 is a square

r2 ∈ Fℓ. In that case, we get π1 by sending
√
−2 to r and π2 by sending

√
−2 to −r ∈ Fℓ.

Proposition 2. We get lower bounds

dimF2 H
q(GL2

(

Z[
√
−2 ]

[

1

2

])

; F2) ≥



















6, q = 4,

4, q = 3,

1, q = 2,

2, q = 1.

For 1 ≤ k ∈ N, the highest lower bounds bq ≥ dimF2(image(Res ◦ π∗)q) that we can possibly
get for the dimension over F2 of Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) using diagram 1, are

bq =



















12k + 13, q = 4 + 4k,

12k + 10, q = 3 + 4k,

12k + 7, q = 2 + 4k,

12k + 4, q = 1 + 4k.

Proof. First, we note that 2 does not have a multiplicative inverse in F2, so for mapping the
element 1

2 , ℓ must be odd.
On the other hand,

D2

(

Z[
√
−2 ]

[

1

2

])

∼=
(

Z[
√
−2 ]

[

1

2

])×

×
(

Z[
√
−2 ]

[

1

2

])×

and
(

Z[
√
−2 ]

[

1
2

])× ∼= Z× Z/2Z, so we have

H∗(D2

(

Z[
√
−2 ]

[

1

2

])

; F2) ∼=
⊗

2

(F2[γ1]⊗ Λ(z1)) ∼= F2[γ1, γ
′
1]⊗ Λ(z1, z

′
1),

where γ1, γ
′
1 are polynomial classes and z1, z

′
1 are exterior classes, all of degree 1.

Then, the codomain of (Res◦π∗)q, namely Hq(D2

(

Z[
√
−2 ]

[

1
2

])

; F2), considered as an F2-
vector space, has dimensions 6m+ 1 for q = 2m and 6m+ 4 for q = 2m+ 1. From this, we
read off the highest possible bounds bq of the proposition.

Now we establish the specific bound in dimensions 1 ≤ q ≤ 4 at the specific prime ℓ = 11.
By Quillen’s result [3], for all odd prime numbers ℓ ≡ 3 mod 4 (the “exceptional case” in
Quillen’s paper), we have an isomorphism of algebras

H∗(GL2(Fℓ); F2) ∼= F2[e1, e3, c2]/(c2e
2
1 = e23),

where e1, e3 and c2 are polynomial classes of degrees 1, 3 and 4 respectively, modulo the
relation c2e

2
1 = e23.

For ℓ = 11, the two reduction homomorphisms π1, π2 : Z[
√
−2, 12 ] → F11 given by

π1(
√
−2) = 3, π2(

√
−2) = −3, induce on mod 2 cohomology the following homomorphisms.

On
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(

Z[
√
−2 ]

[

1
2

])

3

F2[ζ1] ∼= H∗(F×
11;F2) → H∗((Z[

√
−2, 12 ])

×;F2) ∼= F2[γ1]⊗ Λ(z1),

where ζ1 and γ1 are polynomial classes of degree 1, and z1 is an exterior class of degree 1,
Hans-Werner Henn has determined that π∗

1(ζ1) = γ1 and π∗
2(ζ1) = γ1+ z1, because −1 is not

a square in F11 and −3 neither, but 3 is a square. Then at ℓ = 11, Diagram 1 becomes:

(2)

F2[γ1, γ
′
1]⊗ Λ(z1, z

′
1) Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2)

⊗

2 F2[ζ1, ζ
′
1]

⊗

2 F2[e1, e3, c2]/(c2e
2
1 = e23)

Res

⊗

2Res
GL2(Fℓ)
D2(Fℓ)

π∗

1 ⊗ π∗

2 π∗

with π∗
1 ⊗ π∗

2 being a surjection. The analogue of [4, Théorème 116] tells us that

Res
GL2(Fℓ)
D2(Fℓ)

(e1) = ζ1 + ζ ′1, Res
GL2(Fℓ)
D2(Fℓ)

(e3) = ζ1(ζ
′
1)

2 + ζ ′1ζ
2
1 and Res

GL2(Fℓ)
D2(Fℓ)

(c2) = ζ21 · (ζ ′1)2.

This entails

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e1) = γ1 + γ′1, π∗
2Res

GL2(Fℓ)
D2(Fℓ)

(e1) = γ1 + z1 + γ′1 + z′1,

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e3) = γ1(γ
′
1)

2 + γ21γ
′
1, π∗

2Res
GL2(Fℓ)
D2(Fℓ)

(e3) = (γ1 + z1)(γ
′
1)

2 + (γ′1 + z′1)γ
2
1 ,

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(c2) = γ21 · (γ′1)2, π∗
2Res

GL2(Fℓ)
D2(Fℓ)

(c2) = (γ1 + z1)
2 · (γ′1 + z′1)

2.

As (γ1 + z1)
2 = γ21 and (γ′1 + z′1)

2 = (γ′1)
2 in F2[γ1, γ

′
1]⊗Λ(z1, z

′
1), we get π

∗
1Res

GL2(Fℓ)
D2(Fℓ)

(c2) =

π∗
2Res

GL2(Fℓ)
D2(Fℓ)

(c2); and as

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e1e3) = (γ1 + γ′1)(γ1(γ
′
1)

2 + γ21γ
′
1) = γ1(γ

′
1)

3 + γ31γ
′
1,

π∗
2Res

GL2(Fℓ)
D2(Fℓ)

(e1e3) = (γ1 + z1 + γ′1 + z′1)
(

(γ1 + z1)(γ
′
1)

2 + (γ′1 + z′1)γ
2
1

)

=

(γ1 + z1)(γ
′
1)

3 + (γ1z
′ + zz′)(γ′1)

2 + (γ31 + γ21z)γ
′
1 + γ31z + γ21zz

′

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e1)π
∗
2Res

GL2(Fℓ)
D2(Fℓ)

(e3) = (γ1 + γ′1)
(

(γ1 + z1)(γ
′
1)

2 + (γ′1 + z′1)γ
2
1

)

=

(γ1 + z1)(γ
′
1)

3 + γ1z1(γ
′
1)

2 + (γ31 + γ21z
′)γ′1 + γ31z

′,

π∗
2Res

GL2(Fℓ)
D2(Fℓ)

(e1)π
∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e3) = (γ1 + z1 + γ′1 + z′1)(γ1(γ
′
1)

2 + γ21γ
′
1) =

γ1(γ
′
1)

3 + (z1 + z′1)γ1(γ
′
1)

2 + (γ1 + z1 + z′1)γ
2
1γ

′
1,

we conclude that the image of (Res◦π∗)q is spanned by the following vectors over F2.

q in image of (Res ◦ π∗)q in cokernel of (Res ◦ π∗)q b

1 γ1 + γ′

1, γ1 + z1 + γ′

1 + z′1, z1, γ1 2
2 γ2

1 + (γ′

1)
2 γ2

1 , γ1γ
′

1, γ1z1, γ1z
′

1, γ
′

1z1, γ
′

1z
′

1 1
3 γ3

1 + (γ′

1)
3, (γ2

1 + (γ′

1)
2)(γ1 + z1 + γ′

1 + z′1),
γ1(γ′

1)
2 + γ2

1γ
′

1, (γ1 + z1)(γ′

1)
2 + (γ′

1 + z′1)γ
2
1 six classes 4

4 γ4
1 + (γ′

1)
4, γ2

1 · (γ′

1)
2, γ1(γ′

1)
3 + γ3

1γ
′

1
(γ1 + z1)(γ′

1)
3 + (γ1z′ + zz′)(γ′

1)
2 + (γ3

1 + γ2
1z)γ

′

1 + γ3
1z + γ2

1zz
′,

(γ1 + z1)(γ′

1)
3 + γ1z1(γ′

1)
2 + (γ3

1 + γ2
1z

′)γ′

1 + γ3
1z

′

γ1(γ′

1)
3 + (z1 + z′1)γ1(γ

′

1)
2 + (γ1 + z1 + z′1)γ

2
1γ

′

1 seven classes 6

�

Remark 3. If we use primes of a different shape, this makes us end up with π∗
1 = π∗

2 . In
fact, numerical evidence (for all primes 3 ≤ ℓ < 2millions) suggests that

If ℓ ≥ 3 prime, −2 a square in Fℓ and −1 not a square in Fℓ, then ℓ = 8m+ 3.
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Example 4. By Quillen’s result [3] (as recalled in [2, p. 5]), for all odd prime numbers ℓ ≡ 1
mod 4 (the “typical case” in Quillen’s paper), we have an isomorphism of algebras

H∗(GL2(Fℓ); F2) ∼= F2[c1, c2]⊗ Λ(e1, e3),

where the degree of the Chern class cm is 2m and the degrees of the exterior classes
are deg(e1) = 1, deg(e3) = 3. For ℓ = 17, the two reduction homomorphisms π1, π2 :
Z[
√
−2, 12 ] → F17 given by π1(

√
−2) = 7, π2(

√
−2) = −7, induce the same homomorphism

on mod 2 cohomology. On

F2[y]⊗ Λ(x) ∼= H∗ ((F17)
×;F2) → H∗((Z[

√
−2, 12 ])

×;F2) ∼= F2[γ1]⊗ Λ(z1),

with y a polynomial class of degree 2, γ1 are polynomial classes of degree 1, while x and z1
are exterior classes of degree 1, the converse of Hans-Werner Henn’s argument (−1 is a square
in F2n+1, n even, but 7 and −7 are not squares in F17) should imply π∗

1(y) = π∗
2(y) = γ21 and

π∗
1(x) = π∗

2(x) = z1. Then at ℓ = 17, we can simplify Diagram 1, replacing π∗
1 ⊗ π∗

2 by π∗
1 :

(3)

F2[γ1, γ
′
1]⊗ Λ(z1, z

′
1) Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2)

F2[y, y
′]⊗ Λ(x, x′) F2[c1, c2]⊗ Λ(e1, e3)

Res

Res
GL2(Fℓ)
D2(Fℓ)

π∗

1 π∗

1

with y′ a copy of y and x′ a copy of x, supported at the other corner of the diagonal matrices.
The analogue of [4, Théorème 116] tells us that

Res
GL2(Fℓ)
D2(Fℓ)

(e1) = x+ x′, Res
GL2(Fℓ)
D2(Fℓ)

(c1) = y + y′,

Res
GL2(Fℓ)
D2(Fℓ)

(e3) = x · y′ + x′ · y and Res
GL2(Fℓ)
D2(Fℓ)

(c2) = y · y′.

This entails

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e1) = z1 + z′1, π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(c1) = γ21 + (γ′1)
2,

π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(e3) = z1 · (γ′1)2 + z′1 · γ21 and π∗
1Res

GL2(Fℓ)
D2(Fℓ)

(c2) = γ21 · (γ′1)2.

We conclude that the image of (Res◦π∗)q is spanned by the following basis vectors over F2.

q in image of (Res ◦ π∗)q in cokernel of (Res ◦ π∗)q b

1 z1 + z′1 z1, γ1, γ
′

1 1
2 γ2

1 + (γ′

1)
2 γ2

1 , γ1γ
′

1, γ1z1, γ1z
′

1, γ
′

1z1, γ
′

1z
′

1 1
3 (γ2

1 + (γ′

1)
2)(z1 + z′1), z1 · (γ′

1)
2 + z′1 · γ2

1 eight classes 2

4m (γ4
1 + (γ′

1)
4)m,

(

γ4
1 + (γ′

1)
4
)m−1 · γ2

1 · (γ′

1)
2, . . . , γ2m

1 · (γ′

1)
2m,

(z1z′1 · (γ′

1)
2 + z1z

′

1 · γ2
1 )

(

γ4
1 + (γ′

1)
4
)m−1

, . . . ,

(z1z′1 · (γ′

1)
2 + z1z

′

1 · γ2
1 )(γ

2(m−1)
1 · (γ′

1)
2(m−1)) 10m classes 2m+ 1

4m+ 1 (z1 + z′1)
(

γ4
1 + (γ′

1)
4
)m

, . . . ,

(z1 + z′1)(γ
2m
1 · (γ′

1)
2m) 11m + 3 classes m+ 1

4m+ 2 The above degree 4m classes times (γ2
1 + (γ′

1)
2) 10m + 6 classes 2m+ 1

4m+ 3 The above degree 4m+ 1 classes times (γ2
1 + (γ′

1)
2) and

(z1 · (γ′

1)
2 + z′1 · γ2

1 )(γ
4
1 + (γ′

1)
4)m, . . . ,

(z1 · (γ′

1)
2 + z′1 · γ2

1 )(γ
2m
1 · (γ′

1)
2m) 10m + 8 classes 2m+ 2
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√
−2 ]

[

1
2

])
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2. Upper bounds

Proposition 5. We compute the following upper bounds for the dimensions of Ep,q
2 =

Hp
(

(

Z[
√
−2 ]

[

1
2

])×
; Hq(SL2

(

Z[
√
−2 ]

[

1
2

])

; F2)
)

over F2.

q ≡ 6 mod 4 2 4 4 4 4 4 4 . . .
q ≡ 5 mod 4 1 2 2 2 2 2 2 . . .
q ≡ 4 mod 4 3 6 6 6 6 6 6 . . .
q ≡ 3 mod 4 4 8 8 8 8 8 8 . . .
q = 2 1 2 2 2 2 2 2 . . .
q = 1 0 0 0 0 0 0 0 . . .
q = 0 1 2 2 2 2 2 2 . . .

p 0 1 2 3 4 5 6 . . .

Proof. From Theorem 1, we read off the dimensions

dimF2 H
q(SL2

(

Z[
√
−2 ]

[

1

2

])

; F2) =







































2, q ≡ 6 mod 4,

1, q ≡ 5 mod 4,

3, q ≡ 4 mod 4,

4, q ≡ 3 mod 4,

1, q = 2,

0, q = 1.

The units group
(

Z[
√
−2 ]

[

1
2

])×
has generators

√
−2 (of infinite order) and −1 (of order

2), so its structure is
(

Z[
√
−2 ]

[

1
2

])× ∼= Z × Z/2Z, and its mod 2 cohomology ring is

H∗
(

(

Z[
√
−2 ]

[

1
2

])×
;F2

)

∼= F2[γ1] ⊗ Λ(z1), where γ1 is a polynomial class and z1 is an

exterior class, both of degree 1. Hence

dimF2 H
p
(

(

Z[
√
−2 ]

[

1
2

])×
;F2

)

= 2 for all p ≥ 1.

Using these two dimension formulas, we can set up the table of the proposition. For those
entries in the table of the proposition which do not follow immediately from the two dimension
formulas, we specialize the Universal Coefficient Theorem to

Hp (Z× Z/2Z; Fn
2 ))

∼= Hom (Hp (Z× Z/2Z; Z) ,Fn
2 )⊕ Ext1Z (Hp−1 (Z× Z/2Z; Z) ,Fn

2 ) .

Using the action of Z on R by translations and the trivial action of Z/2Z on R, we get an
equivariant spectral sequence that converges to

Hp (Z× Z/2Z; Z) ∼=











Z/2Z, p ≥ 2,

Z⊕ Z/2Z, p = 1,

Z, p = 0.

Using Hom (Z× Z/2Z,Fn
2 )

∼= F
2n
2 , Ext1

Z
(Z/2Z,Fn

2 )
∼= F

n
2/2F

n
2
∼= F

n
2 and

Ext1Z (Z,F
n
2 ) = 0, we obtain that for trivial Fn

2 coefficients,

Hp (Z× Z/2Z; Fn
2 ))

∼= F
2n
2 for all p ≥ 1.

�
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Corollary 6. We get upper bounds for dimF2 H
q(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) by summing over
the E2 terms, namely, letting k ∈ N ∪ {0}:

dimF2 H
q(GL2

(

Z[
√
−2 ]

[

1

2

])

; F2) ≤







































20k + 22, q = 6 + 4k,

20k + 19, q = 5 + 4k,

20k + 15, q = 4 + 4k,

20k + 8, q = 3 + 4k,

3, q = 2,

2, q = 1.

3. Conclusion

Combining with the lower bound of Proposition 2, we arrive to the following conclusion.

Corollary 7. The dimension dq = dimF2 H
q(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) is framed as follows for
1 ≤ q ≤ 4, and in the case that we arrive at the highest possible lower bounds in Proposition 2,
it is framed as follows for 1 ≤ k ∈ N:



























































12k + 13 ≤ dq ≤ 20k + 15, q = 4 + 4k,

12k + 10 ≤ dq ≤ 20k + 8, q = 3 + 4k,

12k + 7 ≤ dq ≤ 20k + 2, q = 2 + 4k,

12k + 4 ≤ dq ≤ 20k − 1, q = 1 + 4k,

6 ≤ d4 ≤ 15, q = 4,

4 ≤ d3 ≤ 8, q = 3,

1 ≤ d2 ≤ 3, q = 2,

2 ≤ d1 ≤ 2, q = 1.

Corollary 8. In degree 1, we obtain dimF2 H
1(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) = 2.

Proof. Use the lower bound produced by the prime ℓ = 11 in Proposition 2. �

This final result implies that the action of
(

Z[
√
−2 ]

[

1
2

])×
on Hq−k(SL2

(

Z[
√
−2 ]

[

1
2

])

; F2)
is trivial in the involved degrees q−k ∈ {0, 1}, but this was clear already from the dimensions
of the module. Hence we do not gain any information here that would be useful for computing
dimF2 H

q(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2) precisely in higher degrees.
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