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Abstract of the dissertation

Life is based on energy conversion by which cells and organisms can adapt to the
environment. The involved biological processes are intrinsically multiscale phenomena
since they are based on molecular interactions on a small scale leading to the emerg-
ing behavior of cells, organs and organisms. To understand the underlying regulation
and to dissect the mechanisms that control system behavior, appropriate mathematical
multiscale models are needed. Such models do not only offer the opportunity to test
different hypothesized mechanisms but can also address current experimental technol-
ogy gaps by zooming in and out of the dynamics, changing scales, coarse-graining the
dynamics and giving us distinct views of the phenomena. In this dissertation substan-
tial efforts were done to combine different computational modeling strategies based on
different assumptions and implications to model an essential system of eukaryotic life
– the energy providing mitochondria – where the spatiotemporal domain is suspected
to have a substantial influence on its function.

Mitochondria are highly dynamic organelles that fuse, divide, and are transported
along the cytoskeleton to ensure cellular energy homeostasis. These processes cover
different scales, in space and time, where on the more global scale mitochondria exhibit
changes in their molecular content in response to their physiological context including
circadian modulation. On the smaller scales, mitochondria show also faster adaptation
by changing their morphology within minutes. For both processes, the relation between
the underlying structure of either their regulating network or the spatial morphology
and the functional consequences are essential to understand principles of energy home-
ostasis and their link to health and disease conditions.

This thesis focuses on different scales of mitochondrial adaptation. On the small
scales, fission and fusion of mitochondria are rather well established but substantial
evidence indicates that the internal structure is also highly variable in dependence on
metabolic condition. However, a quantitative mechanistic understanding how mito-
chondrial morphology affects energetic states is still elusive. In the first part of this
dissertation I address this question by developing an agent-based dynamic model based
on three-dimensional morphologies from electron microscopy tomography, which con-
siders the molecular dynamics of the main ATP production components. This multi-
scale approach allows for investigating the emergent behavior of the energy generating



mechanism in dependence on spatial properties and molecular orchestration. Interest-
ingly, comparing spatiotemporal simulations with a corresponding space-independent
approach, I found only minor space dependence in equilibrium conditions but qualitative
difference in fluctuating environments and in particular indicate that the morphology
provides a mechanism to buffer energy at synapses.

On the more global scale of the regulation of mitochondrial protein composition, I
applied a data driven approach to explore how mitochondrial activity is changing during
the day and how food intake restrictions can effect the structure of the underlying
adaptation process. To address the question if at different times of the day, the
mitochondrial composition might adapt and have potential implications for function,
I analyzed temporal patterns of hepatic transcripts of mice that had either unlimited
access to food or were hold under temporal food restrictions. My analysis showed
that mitochondrial activity exhibits a temporal activity modulation where different
subgroups of elements are active at different time points and that food restriction
increases temporal regulation.

Overall, this thesis provides new insights into mitochondrial biology at different
scales by providing an innovative computational modeling framework to investigate
the relation between morphology and energy production as well as by characterizing
temporal modulation of the regulatory network structure under different conditions.
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Chapter 1

Introduction

1.1 Motivations

Life is intrinsically dynamic across all scales ranging from molecular interactions to
organisms and population behavior. At any scale, the incessant change can be observed
in dependence of the environment and is essential for adaptation and development.
In particular the essential units of life – the cells – are in constant transformations:
dividing, growing, moving, communicating with each other, sensing and reacting with
the environment. These processes are empowered by the constant movement and
interactions of ions, metabolites and proteins within and across cells.

Life spans across a wide range of temporal and spatial scales. The spatial domain
range from nanometers of molecules, to micrometers of cells, to millimeters of organs,
to meters of organisms and further beyond. In a similar way, the temporal scales of
biological processes extend broadly from the nanoseconds of enzyme activity, to the
milliseconds of ion channels gating, to the hours that take human cells to divide (Milo
and Phillips, 2015; Phillips et al., 2012). One of the current challenges in biology is to
understand how system behavior emerges as an integrated phenomenon from smaller
and faster scales.

Cells come in a variety of sizes and shapes (Alberts et al., 2015), but they certainly
extend in space and within their membranes hold the subunits of life: ions, metabolites,
enzymes, proteins, organelles. In this crowded environment filled with water, particles
move and interact to generate cellular behavior. Hence, cells are reaction-diffusion sys-
tems in complex geometries. The thermodynamic forces that spatial gradients generate
make particles move and when they encounter in space they can interact chemically.
Diverse chemical gradients drive cellular behavior. For example, morphogen gradi-
ents determine tissue patterning and morphogenesis (Heller and Fuchs, 2015), ionic
gradients across plasma membranes control cellular excitable behavior, and through
chemotaxis they drive cellular movement.
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Chapter 1 Introduction

The overwhelming complexity of this plethora of interactions of diverse constitutes
renders the identification of underlying principles in life problematic. How can we get
a mechanistic understanding at a system-level? Can we integrate experimental data
to explain system behavior by sketches and cartoons? To address these challenges,
we undoubtedly need the integration of these components by mathematical models
and tools (Gunawardena, 2014). Due to the dynamic nature of biological processes
on different scales in space and time, appropriate mathematical models are required
for the development of mechanistic insights in the evolution and regulation of these
processes. In a similar manner as Kepler’s laws help us to mechanistically understand
and predict the movement of planets, in biology mathematics can help us to dissect
the mechanisms that control cellular behavior, and in a similar way to make concrete
predictions (Phillips, 2015).

The field of molecular biology has recurrently witnessed how functional properties
can be encoded in the structure such as the three-dimensional structure of proteins has
been systematically connected to their physiological properties (Alberts et al., 2015).
Each unique amino acid sequence determines its conformation and therefore its biolog-
ical activity. This link between structure and function has inspired the field of system
biology (Kitano, 2002) to search for such causal relation also at the system level where
network structures are explored and linked to sytem-level function of the cell.
Also spatial interactions can have a huge impact on the dynamics of a system. A
number of phenomena are exclusively observed in spatially extended systems like Tur-
ing patterns, spiral and rotating waves or gradients. The advancements in spatial
and temporal resolution of experimental techniques as well as the progress in simu-
lation methods allow now the extension of system biology to spatial system biology
approaches.

Life is inevitable based on non-equilibrium processes and therefore energy is ubiq-
uitously required to maintain life with all its dynamic aspects. Hence, the essential
task of cells is to extract energy from their environment and use it for growth and
adaptation. For this purpose, the energy e.g. stored in nutrient molecules is converted
to energy stored in chemical bonds of adenosine triphosphate (ATP), the main energy
substrate of life (Alberts et al., 2015). There exist two main ATP producing pathways:
(i) glycolysis, which generates ATP due to the breakdown of glucose, and (ii) oxidative
phosphorylation in which electron transport generates an electrical potential that is
eventually used to generate ATP.

In most eukaryotic cells, oxidative phosphorylation takes place in mitochondria
which are membrane bound organelles. The place where the enzymes of the tricar-
boxylic acid (TCA) cycle reside and where the major synthesis of ATP occurs due to
the higher efficiency of oxidative phosphorylation compared to glycolysis. Besides this
essential energy supply, many additional functions have been associated with mitochon-
dria including cell signaling by reactive oxygen species or Ca2+ and apoptosis (Duchen,

2
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1999) expanding its relevance in cell life and death. A well accepted theory sets the
origin of mitochondria to the symbiosis of a prokaryotic cell engulfed by a nucleated
cell (Scheffler, 2009). Mitochondria still preserve a prokaryotic-like circular genome
that encodes a number of proteins, and the machinery necessary to decode this infor-
mation. However, the vast majority of mitochondrial proteins are encoded by nuclear
genes. In recent years, ∼ 1500 nuclear genes have been associated with mitochondrial-
localized proteins (Calvo et al., 2015).
As detailed later in Chapter 2, mitochondria exhibit a diverse spectrum of pheno-
types in respect to their size, structure and function and their dysfunction is related
to different diseases. Mitochondria are, such as life in general, very dynamic. On the
slower time scale of hours, mitochondria adapt their molecular content in relation to
the cellular context including circadian modulation. On the faster time scale of sec-
onds and minutes, they can fuse and divide also in response to environmental changes.
Furthermore, their rather peculiar structure with a number of subcompartments gen-
erated by the folding of its own membranes has been shown to adapt to metabolic
conditions. Perturbations of these adaptive processes can have substantial impact on
energy production and therefore on cells and life. A compelling open question from the
spatial systems biology perspective is therefore how mitochondrial structures affect its
function on the different scales. On the slower time scale, the adaptation of protein
content may effect the energetic machinery by changing the overall molecular interac-
tions. On the faster time scale, the formed subcompartments are speculated to provide
an advantage for ATP production but a mechanistic and quantitative framework is still
lacking.

1.2 Aims

The presented work investigates these two separate time scales of mitochondrial dy-
namics. The first part focuses on the faster time scale by studying the functional
implications of the intrigued mitochondrial structure on its ATP generating function.
For this purpose, high-resolution imaging data and high-performance computation were
combined to investigate the relation between the spatial structure and physiological
function. To cover the relevant scales, three-dimensional morphologies from electron
microscopy tomography were integrated by agent-based modelling which considers the
molecular dynamics of the main ATP production components. For this part the main
goals were:

I. to generate an in silico representation of mitochondria from electron tomograms,

II. to develop and implement kinetic models of the main components of ATP pro-
duction in mitochondria, including ATP synthase and adenine nucleotide translo-

3
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cator (ANT),

III. to explore the impact of mitochondrial morphology on diffusion,

IV. to investigate the formation of suborganelle concentration gradients,

V. to investigate how the interplay between diffusion and spatial localization of
ANTs and ATP synthases affect mitochondrial ATP production,

VI. to analyze potential energetic consequences for synaptic signal transmission.

The second part focuses on the slower time scale by investigating temporal patterns
of mitochondrial gene expression under different feeding conditions. For this part the
main goals were:

I. to identify distinct temporal patterns of mitochondrial genes expression under
different feeding conditions,

II. to associate the temporal patterns to functional relation.

1.3 Overview of the thesis

This dissertation is organized as follows: the first part entitled ‘Mitochondrial morphol-
ogy: a buffering mechanism’ focuses on the spatial mitochondrial model, its simulations
and results. The more explorative second part entitled ‘Mitochondrial genes and its
temporal organization’ focuses on the analysis of the temporal expression pattern of
mitochondrial genes under different feeding conditions

The first part starts in Chapter 2 by providing the biological background to antici-
pate the hypothesis of the project in more detail and relate it to the available literature.
Chapters 3, 4 and 5 describe the material and methods employed where Chapter 3 pro-
vides a description of the mitochondria reconstruction from serial electron tomogram,
Chapter 4 introduces the kinetic models, and Chapter 5 details the simulation methods
used and the in silico experiments performed. In Chapter 6 the results are presented,
and Chapter 7 gives the conclusions of this part.

The second part is described in Chapter 8, and it is divided into four sections.
Section 8.1 provides the biological background needed to understand the content of the
chapter. Section 8.2 presents the material and methods employed and the explorative
results are introduced in Section 8.3. Finally, in Section 8.4 conclusions are drawn and
critically discussed.
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Mitochondrial morphology: a
buffering mechanism





Chapter 2

Background

Mitochondria are essential for eukaryotic life by generating the majority of ATP and
their involvement in diverse signaling mechanisms. Dependent on their physiological
context, mitochondria exhibit diverse phenotypes and their dysfunction is linked to var-
ious diseases, including cancer (Wallace, 2012), diabetes (Lowell and Shulman, 2005)
and neurodegeneration (Knott et al., 2008). The specific energetic needs of the brain
and in particular of synaptic transmission is accompanied with a distinct mitochondrial
phenotype on the molecular as well as on the morphological level (Devine and Kittler,
2018). Hence, understanding the interplay between molecular and morphological fea-
tures of mitochondria may provide new insights into brain energy homeostasis and its
mechanisms.

This chapter gives a brief introduction to the ATP producing mechanism in mito-
chondria. For this purpose, Section 2.1 details the complex mitochondrial morphology
and Section 2.2 focuses on the molecular key components. In Section 2.3, the relation
between morphology and metabolic states is described. Finally, Section 2.4 gives a
rough overview and a brief description of computational mitochondria models in the
literature.

2.1 Structure and Morphology

The mitochondrial structure is characterized by two membranes with the external one,
called outer membrane (OM), surrounding the internal membrane (Figure 2.1). The
inner membrane (IM) presents a number of invaginations and infoldings called cristae.
This complex structure forms specific compartments: the intracristal space (ICS), the
narrower intermembrane space (IMS), and the matrix describing the internal compart-
ment (Figure 2.1), each of them with specific protein content. Cristae are attached to
the inner boundary membrane (IBM) through narrow tubular openings called cristae
junctions (CJs) (Perkins et al., 1997), having relative uniform size and shape of ∼
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15 nm in diameter in brain tissue (Perkins et al., 2001). In particular, the fact that
these spaces communicate through narrow openings raises the possibility that they
operate as functionally separate compartments.
Within the brain, mitochondria typically exhibit a composition of lamellar and tubular
cristae (Perkins et al., 2001), with lamellar cristae more at the center and tubular cristae
in the periphery. In particular, synaptic mitochondria are further specialized to their
physiological context by their smaller volume (Perkins et al., 2001), increased motility,
higher ratio of cristae to OM surface (Perkins et al., 2010) and distinct metabolic
profiles (Devine and Kittler, 2018).

Outer 

membrane (OM)

Inter membrane 

space(IMS)

Inner 

membrane (IM)

Cristae 

junction

 (CJ)

Inner boundary 

membrane 

(IBM)

Intracristal 

space (ICS)

Figure 2.1: Functional annotations of mitochondrial morphology. The outer membrane (OM) and
the inner membrane (IM) are separated by the intermembrane space (IMS). IM separates the interior
matrix of the mitochondrion from the IMS and can be topologically divided into the inner boundary
membrane (IBM) and the cristal membrane (CM) connected by tubular cristal junctions (CJs).
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2.2 Molecular key components of ATP production

2.2 Molecular key components of ATP production

Energy is essential for life. Cells need it to grow, move and divide. Cells convert the
energy stored in chemical bonds in organic molecules into energy stored in chemical
bonds in ATP, through a number of chemical reactions happening in mitochondria.
Pyruvate and fatty acids can be used as fuel molecules, converted to acetyl CoA
in the mitochondrial matrix where afterwards acetyl CoA is further oxidized via the
TCA cycle. The oxidation of acetyl CoA generates high-energy electrons carried by
NADH or FADH2. Subsequent oxidation of these substrates transfer electrons to the
electron-transport chain (ETC), a series of protein complexes in the inner mitochondria
membrane. The movement of electrons through the ETC liberates energy that can
be used to pump protons (hydrogen ions) across the membrane. The resulting proton
gradient generated across the IM is used to drive the synthesis of ATP from ADP and
inorganic phosphate in the matrix. The molecular machine in charge of this energy
conversion step is the ATP synthase (see next section for more details). To be further
employed in cellular processes, the generated ATP in the matrix needs to be exported to
the cytosol by ANTs. ANTs translocate ATP into the IMS from where it is subsequently
transported into the cytosol by voltage dependent anion channels (VDACs) across the
OM. Figure 2.2 is a schematic representation of the processes described above.
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Figure 2.2: Schematic representation of the processes happening in mitochondria for ATP produc-
tion. Pyruvate and fatty acids are imported into the mitochondrial matrix for conversion in acetyl
CoA. Enzymes of the TCA cycle metabolized acetyl CoA, through a number of chemical reactions,
generate high-energy electrons carried by NADH or FADH2 (not shown). Subsequently, NADH is
oxidized, passing electrons to the electron-transport chain, where they are transported along the
complexes to finally produce water molecules. The transport of electrons is coupled to the transfer
of protons across the membrane, generating a chemical and voltage gradient. This electrochemical
gradient is further used to drive the synthesis of ATP, phosphorylating ADP in the mitochondrial
matrix through ATP synthase. To be further employed in cellular processes ATP has to be actively
exported from the matrix by ANT.
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2.2 Molecular key components of ATP production

2.2.1 ATP synthase

The ATP synthase or FoF1 ATPase is a multiprotein complex (∼ 500kDa) embedded
in the IM that synthesizes cellular ATP from ADP and inorganic phosphate (Pi).
By a marvellous mechanism (Yoshida et al., 2001), it uses the energy stored in the
electrochemical gradient to rotate its own subunits to catalyze this reaction. This
is one of the most conserved enzymes during evolution and is present in bacteria,
mitochondria and chloroplast (Yoshida et al., 2001). The multisubunit complex has
two functional domains known as Fo and F1. The membrane intrinsic F0 is linked by
stalks to the membrane extrinsic F1 domain (Alberts et al., 2015) (Figure 2.3). The
approximately spheric F1 domain contains the catalytic sites for the substrates, whereas
the Fo domain contains a motor that rotates when protons flow through the carrier.
As the stalk rotates and alters the protein conformation to produce ATP. The reverse
reaction can also occur using the energy of ATP hydrolysis to induce the rotation of
Fo in reverse direction and drive a transfer of protons ‘uphill’.

Experimental findings on mammalian mitochondria report that ATP synthases are
typically arranged in rows of dimeric supercomplexes at the apex of lammellar cristae
and along the length of tubular cristae, at the most tightly curved membrane re-
gions (Strauss et al., 2008).
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Chapter 2 Background

Matrix

IM

F1

F0

Figure 2.3: Schematic representation of mitochondrial ATP synthase showing two of the functional
domains of the complex F0 and F1, figure reproduced from RCSB PDB (Goodsell et al., 2015).
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2.3 Metabolic States

2.2.2 ATP/ADP translocator

The vital process of import and export of ADP and ATP from the IMS to the ma-
trix and vice versa is carried out by the ATP/ADP translocator or ANT (Klingenberg,
2008). The antiporter operates with a 1:1 stoichiometry exchanging either one ADP
or ATP with one endogenous ADP or ATP from the matrix. The exchange of nu-
cleotides is highly specific and electrogenic; the ionized form of the nucleotides is
translocated (ADP3− and ATP4−), being the membrane potential the driving force of
the asymmetric exchange. The location of ANTs in mitochondria has not yet been
definitively determined. Experimental evidence shows on the one hand that they may
form complexes with ATP synthases and phosphate carrier (Ko et al., 2003) located
in the CM (Wittig and Schägger, 2009; Vogel et al., 2006) and on the other hand
studies report an association with VDAC located in the IBM (Vyssokikh et al., 2001).
Two isoforms have been identified with apparent different location in the mitochondrial
membrane (Vyssokikh et al., 2001).

2.2.3 VDAC

The OM is a lipid bilayer membrane of ∼ 7 nm thick (Perkins et al., 1997) that sepa-
rates the IMS from the cytosol, it has the critical role to control the flow of molecules
from and to the mitochondrial interior. The most abundant protein in the OM is
VDAC (Szabo and Zoratti, 2014), at a mean density of 1 · 104 per µm2 (De Pinto
et al., 1987). These proteins form large pores that are the main mechanism for metabo-
lites and ions (including Ca2+ ) to cross the OM. The pores have greater permeability
to anions and are voltage-dependent. They close partially at voltages higher than ∼
20 mV of either polarities and open at low potential (Colombini, 1989). Three isoforms
exist, VDAC1, VDAC1 and VDAC3, which exhibit a distinct distribution between cell
types and distinct electro-physiological properties.

2.3 Metabolic States

The internal morphology of isolated mitochondria exhibit a large heterogeneity depen-
dent on metabolic conditions, different metabolic states have been characterized and
tied to their respiratory rates (Hackenbrock, 1966, 1968). Reversible ultrastructure
transitions between two metabolic states known as orthodox or state IV and con-
densed or state III were analyzed (Hackenbrock, 1966), showing distinct features in
electron tomograms such as an enlarged matrix, close opposition of the outer and
IBM, and small intracristal volume observed in state IV. These states are assumed
to be a charged resting state (state IV) and a fully active state (state III) (Perkins
and Ellisman, 2011), and the predominant ones observed in situ, dependent on the
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Chapter 2 Background

energetic demand (Perkins and Ellisman, 2011).
While extended literature (Scalettar et al., 1991; Mannella, 2006; Perkins and Ellis-

man, 2011) suggests a link between the inner membrane morphology and mitochondrial
function, a mechanistic understanding is still lacking. This gap is mainly caused by the
static data generated by electron tomography needed to reveal the internal structure.
Dynamic effects caused by changing morphologies rely therefore on computational
modeling.

2.4 Mathematical models

Several mitochondria models have already been proposed (Magnus and Keizer, 1997;
Cortassa et al., 2003; Beard, 2005). Many of them were developed from the pioneer
work of Magnus and Keizer (Magnus and Keizer, 1997). These models are rather
complex and include a number of processes occurring in mitochondria like the elec-
tron transport system, calcium dynamics, the TCA cycle, etc. However, none of them
include the spatial architecture of the organelle. Attempts to develop a spatial mito-
chondria model were made but lack consistent foundation (Mannella et al., 2013).

Effects on diffusion due to the internal structure were studied based on simplified
geometries (Partikian et al., 1998; Dieteren et al., 2011) and indicated anomalous
diffusion in some cases (Ölveczky and Verkman, 1998), but disagreed on the impact
of the internal structure (Dieteren et al., 2011; Partikian et al., 1998).

Electro-diffusion simulations were performed to analyze the interplay between mor-
phology and the electrochemical potential, and predicted an increased in proton con-
centration in the cristae membrane (CM) compared to the IBM (Song et al., 2013).

14



Chapter 3

Generating model geometries for
numerical simulations

This chapter describes the steps required to generate realistic three-dimensional (3D)
reconstructions of mitochondria from electron tomograms. In Section 3.1 a brief de-
scription of the data acquisition process is given. This is followed by Section 3.2
devoted to explain how the membranes were segmented and surfaces generated. Fi-
nally in Section 3.3, I describe the process and tools needed to obtain watertight
triangulated meshes for computer simulations.

3.1 Data Acquisition

Electron microscopy has been an invaluable tool to resolve the substructures of cells,
and in particular of mitochondria (Scheffler, 2009). In the last decades, more ad-
vanced experimental techniques, such as electron tomography (ET), have enabled the
generation of 3D reconstructions of cells and organelles (Frey et al., 2006) with image
resolution in the range of ∼ 3 to 20 nm. In ET thick sections of a sample are used (∼
200-3000 nm), and through a process of tilting the sample, a tilt series is obtained by
rotating the sample holder in the transmission electron microscope and collecting the
corresponding images. The volume is subsequently reconstructed by computational
algorithms which generate digital slices of only a few nanometers of thickness. With
this method, a significant fraction of an organelle can be imaged but due to sample
preparation it is rather unlikely to cover a full organelle. One challenge of this project
was the need of a complete mitochondrion reconstruction since the physiological com-
puter simulations do not only require high quality meshes but also closed structures.
As for electron microscopy, ET samples have to be plastic embedded and frozen-
hydrated (Perkins et al., 2015). Frozen-hydrated samples are frozen very quickly and
result in a vitreous (glass-like) ice specimen. By this method, samples are conserved
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Chapter 3 Generating model geometries for numerical simulations

in close-to-physiological conditions but are not suitable for sectioning due to the sub-
stantial material lost between cuts. A method combining chemical fixation with high
pressure freezing and freeze substitution was developed (Sosinsky et al., 2008) to obtain
large volumes of well-preserved tissue.

The mitochondrial reconstruction was performed from 3 sections of a multi-tilt se-
rial electron tomogram (Phan et al., 2016) of a cryo-fixated high pressure frozen (Sosin-
sky et al., 2008) mouse cerebellum sample which contained the complete organelle.
Images were realigned using the software package TxBR (Lawrence et al., 2006) and
down-sampled by a factor of 4 for processing, yielding a final voxel resolution of
1.64 nm. The mitochondrion was embedded into a stack of 360 images. The to-
mogram is visualized in Figure 3.1 and a movie of the full tomogram used for the
reconstruction can be found online Multi-tilt serial electron-tomogram of a presynaptic
mitochondrion1 .

Figure 3.1: Multi-tilt serial electron tomogram of a presynaptic mitochondrion in a cerebellum mouse
neuron. For the representation of the tomogram, ten digital slices with simulated thickness are shown.

3.2 Segmentation and Surface Generation

The first step to generate a 3D reconstruction of a mitochondrion is to manually trace
the membranes of the mitochondrion. The outer, closed IM and CM were separately
traced using RECONSTRUCT. Subsequently, contours were imported into Blender2 for

1http://r3lab.uni.lu/frozen/mitochondrial-morphology-provides-a-mechanism-

for-energy-buffering-at-synapses/
2Blender is a free and open source software that supports 3D modeling, animation, rendering,

video editing and more.
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3.3 Surface Improvements

realignment and manually correction (due to the loss of tissue during the sectioning
of the sample). Afterwards, contours were converted into three-dimensional surfaces
using VolRover. In this way, the outer membrane, closed inner membrane3 and the
cristae membrane triangulated meshes have been generated. Subsequently, the meshes
were re-imported into Blender, to generate the CJs by intersecting the mesh of the
cristae membrane with the closed inner membrane. This step was performed by ap-
plying a boolean difference operation in Blender. The synaptic membrane surrounding
the mitochondrion was also traced using the software IMOD to generate contours and
finally the 3D structure.

3.3 Surface Improvements

The resulting meshes had to be further improved for computer simulations since they
have to be watertight, triangulated, manifold, and with outward facing normals. Fig-
ure 3.2A exhibits the cristae membrane before improvement processing. The quality of
the generated 3D reconstruction also depends on the software employed to generate
the meshes from contours. First, meshes were treated in Blender by the CellBlender’s4

Mesh Analysis tool (a tutorial can be found here5). Mesh improvement in general is
far from being a standardized process and requires a lot of manual curation including
mesh editing, validation and solving specific problems that might arise.

Further optimization was performed with the mesh improvement library and Cell-
Blender add-on GAMer. With GAMer, the surfaces can be smoothed while features
like the total volume or surface are preserved. Additional steps described in the tuto-
rial6 were used for final surface improvements. Figure 3.2 exemplifies this optimization
where the initially segmented cristae membrane surface (Figure 3.2A) is improved by
GAMer as shown in Figure 3.2B where the inner boundary membrane is also included
as almost transparent surface. An analogous process was applied to generate and im-
prove the synaptic membrane surface. To consider possible compression effects, 10
vesicles were traced, and its shape was set to spheres with a diameter of 40 nm. We
observed shrinkage in Z direction of around 20% and for compensation we rescaled the
reconstructed meshes by a factor of 1.239 in the Z direction. To summarize, we show
in Figure 3.3 our final result – the 3D reconstruction of the mitochondrion and the
surrounding presynaptic terminal embedded in a digital slice of the electron tomogram
used for segmentation.

3We refer to the closed inner membrane to the inner boundary membrane without the cristae
membrane, as a closed surface.

4Cellblender, is a plug-in of MCell in Blender
5 http://mcell.org/tutorials/mesh_repair.html
6https://mcell.org/tutorials/gamer.html#gamer
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Chapter 3 Generating model geometries for numerical simulations

A) B)

Figure 3.2: Mitochondrial morphology reconstruction first leads to mesh generation (A) and after
optimization to waterproofed in silico representation (B) where green corresponds to the cristae
membrane and semi-transparent blue surfaces to inner and outer membranes, respectively.

Figure 3.3: A presynaptic mitochondrion embedded in a digital slice of the electron tomogram use
for segmentation.
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Chapter 4

Kinetic Models

The investigation of the spatiotemporal dynamics within mitochondria relies on com-
putational modeling because the internal structure can be only resolved by electron
microscopy which generates static images. For making these data dynamic, I devel-
oped a mitochondria model from first principles by adapting molecular models from
literature for the key molecules involved in ATP production and incorporate them into
a spatial framework. For this purpose, I first decided on a mathematical model avail-
able in the literature. Afterwards, I derived a system of ordinary differential equations
(ODEs) for each them and finally the validated MCell implementations were incorpo-
rated into the reconstructed mitochondrial mesh. Overall, the concrete dynamic ODEs
and MCell implementations needed more parameters than in the original publications
due to the considered non-equilibrium scenarios.

This chapter focuses on the kinetic models used, it begins with a description of the
ATP synthase implementation. Followed by Section 4.2 devoted to describe the ANT
model by pointing to the modifications carried out and summarizing all experimental
results used for paramterization. In Section 4.3, I continue with the VDAC model
before the implementation of ATP-consuming reactions is outlined. Finally, Section 4.5
characterizes a model for the mitochondrial calcium uniporter (MCU) which has not
been incorporated in the final version of the mitochondria model.

4.1 ATP synthase

ATP synthase (also named as FOF1 or Complex V) is the ADP phosphorylating nano-
machinery which generates the majority of ATP in eukaryotic cells. Given its central
importance for life it has been intensively studied under a large variety of conditions and
from different perspectives. The implemented model for the ATP synthase is based
on a six states model of a proton pump by Pietrobon and Caplan (1985) shown in
Figure 4.1A where each state has been mapped to a number in Figure 4.1B following
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Chapter 4 Kinetic Models

the original notation. States toward the matrix are on the left and those oriented
toward the ICS are on the right. A clockwise cycle starting in E−3 (state 6) represents
the binding of n protons from the ICS (state 5), transport of the protons (state 4),
binding of adenine diphosphate (ADP) and phosphate (Pi) (state 3) and the subsequent
synthesis of ATP (state 2) which is followed by unbinding of the protons in the matrix
(state 1). Note that proton translocation without ATP synthesis might also occur
(transition from state 5 to 2). The original model used the Hill diagram to write down
the relation between the fluxes and the thermodynamic forces for any given cycle (Hill,
1989) and explored the region of linearity close to the inflexion points (in the framework
of non-equilibrium thermodynamics).

The unoccupied proton binding site (state 1 and 6) is considered to be negatively
charged and hence the rate constants of the transitions depend on the membrane po-
tential. The original work used thermodynamic considerations to calculate this depen-
dence by assuming a symmetric barrier Pietrobon and Caplan (1985). Three protons
are translocated per ATP molecule synthesized accordingly to experimental findings
[BNID 101774, 101775] (Milo et al., 2009). Transitions from state 1 to 2 or 6 to 5
imply the binding of three protons to the empty binding sites of the protein. Therefore,
these are reduced transitions that involve a number of transient states. These imposed
constrains to the reaction constants were taken into account to set the parameter val-
ues Pietrobon and Caplan (1985). For the implemented ATP synthase model, I started
with the originally determined parameter values (Pietrobon and Caplan, 1985) which
were modified in analogy to other work (Magnus and Keizer, 1997) as explained below.

Transitions from state 4 to 3 imply binding of ADP and phosphate simultaneously
and are reduced transitions as well with a pseudo second order rate constant k43 =
k∗43 [P]i [ADP]i. If we consider the phosphate concentration constant, this expression
can be written as k∗∗43 [ADP]i where k∗∗43 is a pseudo first order rate constant. In the
original paper, the value of k43 is 102 s−1 and if we assume an [ADP]i concentration
of 125 µM and a constant [P]i of 20 mM, the value of k∗∗43 can be determined as
8·105M−1s−1. I used ADP and ATP concentrations in the matrix and the IMS as input
variables and therefore this parameter sets the rate constant (k∗∗43) of the transition from
state 4 to 3. I further considered the proton concentration inside the ICS as well as in
the matrix to be constant with a ∆pH = - 0.4 to reflect the higher concentration in
the ICS than in the matrix. The original work Pietrobon and Caplan (1985) considered
the concentration of pH being equal in the matrix and the ICS. Therefore I modified
the rate constant k12 in analogy as before leading to the rate constant k12 = k∗12 [H]3

with which we determined k∗12 by assuming a pH in the matrix of 7.8 resulting the rate
constants given in Table 4.1.

In my model, ATP synthases are localized at the apex of the CM in lamellar
cristae and along the length of tubular cristae at the most tightly curved membrane
regions. This positioning is in accordance with experimental findings on mammalian
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4.1 ATP synthase

mitochondria reporting that ATP synthases are typically arranged there in rows of
dimeric supercomplexes (Strauss et al., 2008). The density of proteins, pH and all
kinetic rate constants are given in Table 4.1. The number of proteins was determined
using the density estimated previously Song et al. (2013) to be 2500 molecules/µm2

which is in good agreement with independent estimations Schwerzmann et al. (1986).
Using the volume enclosed by the inner membrane of my reconstructed mitochondrion,
I eventually determined the number of ATP synthases in the model as 3800.

H3E

E-3-3E

EH3

Figure 4.1: Markov chain model of ATP synthase describing the molecular kinetics. A) Markov
chain model of ATP synthase describing the molecular kinetics. It is composed of six states. States
toward the matrix are on the left and states oriented toward the outside are on the right. A clockwise
cycle starting from E−n corresponds to the binding of n protons from the outside and transport to
the matrix follow by the binding of ADP and Pi to further synthesis of ATP, and unbound the n
protons in the matrix. B) The states are assigned to numbers and the first order or pseudo first order
rate constants kij are labeled accordingly to the transition they drive from state i to state j.
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Parameter Value Units Reference
pHmatrix 7.8 (Magnus and Keizer, 1997)
pHcristae 7.4 (Magnus and Keizer, 1997)
[Pi] 20 mM (Magnus and Keizer, 1997)
∆φ -180 mV
Density 2500 µm−2 (Song et al., 2013; Schwerzmann et al., 1986)
# ATP synthase 3800
Temperature 310 K
k16 452457 s−1 (Pietrobon and Caplan, 1985)
k65 1·103 s−1 (Pietrobon and Caplan, 1985)
k54 100 s−1 (Pietrobon and Caplan, 1985)
k43 8·105 M−1s−1 (Magnus and Keizer, 1997)
k32 5·103 s−1 (Pietrobon and Caplan, 1985)
k21 40 s−1 (Pietrobon and Caplan, 1985)
k61 11006 s−1 (Pietrobon and Caplan, 1985)
k12 24 s−1 (Pietrobon and Caplan, 1985)
k23 4 µM−1s−1 (Magnus and Keizer, 1997)
k34 100 s−1 (Pietrobon and Caplan, 1985)
k45 100 s−1 (Pietrobon and Caplan, 1985)
k56 1000 s−1 (Pietrobon and Caplan, 1985)
k25 1.17·10−12 s−1 (Magnus and Keizer, 1997)
k52 2 s−1 (Magnus and Keizer, 1997)
n 3 (Pietrobon and Caplan, 1985)

Table 4.1: Chemical kinetic rate constants and parameters for the ATP synthase model.
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4.2 ATP/ADP translocator

4.2 ATP/ADP translocator

As described in Section 2.2.2, the ANT is the adenosine transporter in mitochondria,
which mediates transport of ADP and ATP between the matrix and the intermem-
brane space. Due to its importance, it has been intensively investigated and two
different kinetics mechanisms were proposed with one binding site, known as ping-
pong mechanism (Kraemer and Klingenberg, 1982), and with dual sites binding known
as the sequential mechanism (Duyckaerts et al., 1980) accordingly with Cleland’s def-
inition (Cleland, 1963). One can discriminate between the two mechanisms by their
contrasting properties in Lineweaver-Burk plots (v−1 vs [nucleotide]−1) (Voet and Voet,
2011). From such experiments the sequential mechanism could be confirmed (Duyck-
aerts et al., 1980; Barbour and P, 1981). Moreover, the dimeric organization of the
carrier supports the hypothesis of two transport pathways (Nury et al., 2006). In this
case, two molecules bind to the protein from different sides of the membrane forming
a ternary complex.
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DLLD
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TL LT

TLT

To Ti

TLT'

DLD'
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TiTo

Di Do
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To

To
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Figure 4.2: Markov chain model of the ANT describing the molecular kinetics. ATP and ADP are
represented by the letter T and D, with the subindex i referring to the matrix side and o to IMS and
ICS (called outside). L represents the free protein and YLX represent a three molecular state with
one X molecule bound from the matrix side and one Y molecule from the outside.

The ANT model developed by Metelkin et al. (2006) takes into account the above
mentioned considerations and furhter important properties of the carrier such as the
dependence of the exchange rate on the membrane potential. They applied quasi-
steady state and quasi equilibrium approximations to the kinetic scheme and derived
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equations for the total turnover rate of ATP and ADP. The kinetic parameters were
fitted using experimental data by Kraemer and Klingenberg (1982).
The here developed model is based on this previous work but due to the considered
non-steady state and non-equilibrium conditions more parameters had to be estimated
leading to a slightly modified parameter set 4.2. The first step in model adaptation was
to reproduce the results presented in Metelkin et al. (2006) to ensure model validity
(Appendix, Section 8.6). Careful analysis has revealed typos in the original publications
but eventually the results were reproduced successfully.
As a first modification to the model, two additional states were introduced to monitor
futile translocations in MCell (e.g. TLT TLT’. This did not have any implications
in terms of the dynamics and the given rate constants led to equivalent model out-
comes. The resulting kinetic ANT model shown in Figure 4.2 is composed of 11 states
and 19 bidirectional transitions between them resembling the binding and unbinding
of ATP and ADP from different sides of the IM. ATP and ADP are represented by the
letter T and D, with the subindex i referring to the matrix side and o to IMS and ICS
(called outside). L represents the free protein, and YLX represent a three molecular
state with one X molecule bound from the matrix side and one Y molecule from the
outside. The essential ADP to ATP exchanging step is indicated by a dash arrow in
Figure 4.2 indicating the reaction DLT TLD.

Starting from fitted flux parameters from Metelkin et al. (2006) for ANTs ex-
tracted from heart mitochondria (Kraemer and Klingenberg, 1982), we first estimated
parameters for the implementation in MCell and the corresponding ODE model (see
Chapter 5). To adapt the model to the non-steady state condition, the backward and
forward rate constants were estimated from the dissociation constants. The forward
rate constants were set as smaller than the diffusion limited rate (see Section Rates
and Duration in Milo and Phillips (2015)) and the backward rate constants were set
to satisfy the dissociation constant ratio. For instance, the dissociation constants for
a membrane potential of 180 mV is KTo ∼ 400 µM in the original paper, and in our
simulations 500 µM was chosen. Analogously, KDo was modified from ∼ 51 µM in
the original paper to 25 µM in our simulations. In (Metelkin et al., 2006) only the
ratio of the internal dissociation constants is given (∼ 10 for ∆ψ = 180 mV). I esti-
mated the dissociation constants from the matrix side KTi

and KDi
as 6.25 mM and

10 mM, respectively (the ratio is ∼ 1.5) from fitting procedures to the experimental
data. Interestingly, these values are in the mM range, in contrast to the external rates
that are in the µM rang. This indicates a lower affinity of substrates from the matrix
side. Values in the same range have been observed for the Michaelis-Menten constant
Km for other mitochondrial carriers (Klingenberg, 2008). The rate constants for the
kinetic model are given in Table 4.2 and Table 4.3 for 180 and 0 mV, respectively.

These set of parameters were chosen to qualitatively reproduce the independent
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data of Kraemer and Klingenberg (1982) from isolated translocators in liposomes1 as
well as data of Duyckaerts et al. (1980) for heart mitochondria. The experimental
data of Kraemer and Klingenberg (1982) is presented and discussed in section 8.6 in
the Appendix. The experimental results of Duyckaerts et al. (1980) are duplicated in
Figure 4.3. With the developed model, I numerically reproduced these experimental
results figures 4.4,4.5,4.6 and 4.7 respectively.

From the data Duyckaerts et al. (1980) proposed a mechanism for the ANT translo-
cator which implies the formation of a ternary complex and proposed the explicit form
for the flux as

v−1
o =

KAB

V

1

[A][B]
+

1

V
. (4.1)

From this relation it follows that the reciprocal of the initial rate of exchange as a func-
tion of the concentrations of ADP in the matrix and outside should be linear as shown
by the straight line in Figure 4.3C. From this relation, they also estimated the param-
eters from their data 4.3C and obtained a value for KAB of (26.5 ± 4.6)·10−3 mM2.
This value is in good agreement with our simulations leading to 27.84·10−3 mM2

(Figure 4.7C).
Although the data was reproduced satisfactorily, the turnover rate of 0.1 sec−1 is

two order of magnitude smaller than the rate measured in heart mitochondria (Duyck-
aerts et al., 1980; Chinopoulos et al., 2009). The experimental data of Kraemer and
Klingenberg (1982) has two limitations: first, the experiments were done in liposomes
and it is known that the lipid composition can affect the velocity of the translocator,
and secondly only steady state transport can be measured. For improved model cali-
bration, we therefore included a third experiment (Chinopoulos et al., 2009) in which
the transient appearance of ATP within the medium was measured for isolated synaptic
mitochondria. This allowed us to adjusted the rate of ATP translocation (kp) in a way
that the turnover rate is ∼ 23 sec−1 as measured for synaptic mitochondria (Chinopou-
los et al., 2009). For this purpose, I sought to reproduce the experimental conditions
of Chinopoulos et al. (2009) where the concentration of ADP in the medium was
2 mM and of ATP 0.01 mM. The internal concentrations were set to 2.98 mM and
7.11 mM for ADP and ATP, respectively, based on estimations by Metelkin et al.
(2009) while the effective concentrations used for the simulations were reduced as ex-
plained at the end of this section. For the simulations the number of ANTs present
in the mitochondrion was set to 1000 and is smaller than the total number of ANTs
estimated in a synaptic mitochondrion (also explained at the end of this section), but
since the turnover rate per molecule was the relevant outcome, the smaller value was
sufficient. To obtain a turnover rate of 23 sec−1, the rate constant of the reaction

DLT
kp

TLD representing the productive cycle that exports ATP had to be in-

1I assumed liposomes are spheres of radius 100 nm with a volume of 0.004 µm3, and estimated
the number of ANTs on them as 100.
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A B

C

Figure 4.3: Experimental data reproduced from Duyckaerts et al. (1980), Fig. 3, 4 and 5. A)
Reciprocal of the initial rate of ADP exchange as a function of the reciprocal of the external-ADP
concentration. The initial rate were measured for three external ADP concentrations and eleven in-
ternal ADP concentrations. The lines were calculated by the method of least squares. B) Reciprocal
of the initial rate of ADP exchange as a function of the reciprocal of the internal-ADP concentra-
tion. The initial rate were measured for three external ADP concentrations and eleven internal-ADP
concentrations. C) Reciprocal of the initial rate of ADP exchange as a function of the reciprocal of
[ADP]in[ADP]out. The values of vo are from A. The parameter KAB (equation 4.1) was fitted to
(26.5 ± 4.6)·10−3 mM2.

creased to 800 s−1. Values in this order of magnitude have been also measured in
transient experiments in liposomes (Gropp et al., 1999).

Final simulations

ADP and ATP can react with different cations, be bound or ionized. Therefore,
the total concentration of ATP can be distributed in different compounds or states
like ATP4− or ATPMg2−. These distributions can be estimated by coefficients rep-
resenting the fraction of unbound ATP in the matrix of mitochondria or the external
compartments. For our model, mitochondrial ADP3− and ATP4− concentrations were
estimated analogously to the mitochondrial model of beta cells Magnus and Keizer
(1997) as [ADP]m,free = 0.8 [ADP]m, [ATP]m,free=[ATP]m, [ATP4−] = 0.05 [ATP]
and [ADP−3] = 0.45 [ADP]free. For the final simulations presented in Chapter 6, the
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Figure 4.4: Reproduced experiments for the ANT I. ADP uptake rate vs external ADP concentration
for a membrane potential (∆ψ) of 180 mV and ATP concentrations outside the liposomes of 0, 100,
400 µM shown by black, light grey and yellow points, respectively. Green, grey and red points describe
the dependency for for membrane potential ∆ψ) of 0 mV and concentrations of To of 0, 20, 100 µM,
respectively. The concentrations of ADP and ATP inside the liposomes were 5 mM.

concentrations of ATP and ADP in the matrix were set to 2 mM and 10 mM, respec-
tively, for an active mitochondrion, and to 0.01 mM and 2 mM in the cytosol based
on previous estimations (Metelkin et al., 2009). The total number of ANTs in a mito-
chondrion can be estimated assuming a density of ANTs of 1.37 nmol/mg protein per
dry mass (Chinopoulos et al., 2009) and 1 nmol/mg ≈ 1.25 mM (Magnus and Keizer,
1997). This translates into ∼ 2.104 ANTs per mitochondrion given the volume of the
here reconstructed mitochondrion.

The location of ANTs in mitochondria has not yet been definitively determined.
Experimental evidence shows that they might form complexes with ATP synthases and
phosphate carriers (Ko et al., 2003) on the CM (Wittig and Schägger, 2009; Vogel
et al., 2006) but could also be associated with VDACs located in the IBM (Vyssokikh
et al., 2001). In my simulations I explored the functional implications of these different
locations by placing them (i) homogeneously distributed in the IBM (Figure 4.8A), (ii)
colocalized with ATP synthase in the CM (Figure 4.8B), and (iii) in both locations.
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Parameter Value Unit
kb

Ti
4·104 s−1

kf
Ti

6.4·106 M−1s−1

kb
To

200 s−1

kf
To

4·105 M−1s−1

kb
Di

4·104 s−1

kf
Di

4·106 M−1s−1

kb
Do

100 s−1

kf
Do

4·106 M−1s−1

kp 4 s−1

kcp 0.75 s−1

kd 0.48 s−1

kt 0.58 s−1

# ANTs 100
∆φ -180 mV

Table 4.2: Chemical kinetic rate constants for the ATP/ADP translocator model for a membrane
potential of 180 mV used to reproduce published data (Kraemer and Klingenberg, 1982; Duyckaerts
et al., 1980).

Parameter Value Unit
kb

Ti
4·104 s−1

kf
Ti

6.4·106 M−1s−1

kb
To

200 s−1

kf
To

4·105 M−1s−1

kb
Di

4·104 s−1

kf
Di

4·106 M−1s−1

kb
Do

100 s−1

kf
Do

4·106 M−1s−1

kp 0.7 s−1

kcp 0.75 s−1

kd 0.48 s−1

kt 0.58 s−1

# ANTs 100
∆φ -180 mV

Table 4.3: Chemical kinetic rate constants for the ATP/ADP translocator model for a membrane
potential of 0 mV used to reproduce published data (Kraemer and Klingenberg, 1982).
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Figure 4.5: Reproduced experiments for the ANT II. ATP uptake rate vs external ATP concentration
for a membrane potential (∆ψ) of 0 and 180 mV and no ADP are shown by yellow and green points,
respectively. Black and grey points describe ADP uptake rate vs external ADP concentration for a
membrane potential of 0 and 180 mV with a vanishing ATP concentration.

0 20 40 60 80 100 120 140 160 180

ANP(µM)

0

5

10

15

20

25

30

A
N

P
 f

lu
x
 (

re
a
c/

m
in

)

T, ∆ψ = 180

D, ∆ψ = 180

T, ∆ψ = 0

D, ∆ψ = 0

Figure 4.6: Reproduced experiments for the ANT III. ATP uptake rate vs ATP concentration,
yellow and green points for a membrane potential (∆ψ) of 0 and 180 mV respectively, and ADP
concentration equal to the ATP concentration. ADP uptake rate vs ADP concentration, black and
grey points for a membrane potential of 0 and 180 mV respectively, and ATP concentration equal to
the ADP concentration.
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Figure 4.7: Reproduced experiments for the ANT IV. Qualitative reproduction of the experimental
results of Duyckaerts et al. (1980). A) Reciprocal of the initial rate of ADP exchange as a function of
the reciprocal of the external-ADP concentration. The initial rate were measured for three external
ADP concentrations and eleven internal-ADP concentrations. The lines were calculated by the method
of least squares. B) Reciprocal of the initial rate of ADP exchange as a function of the reciprocal of the
internal-ADP concentration. The initial rate were measured for three external ADP concentrations
and eleven internal-ADP concentrations. C) Reciprocal of the initial rate of ADP exchange as a
function of the reciprocal of [ADP]in[ADP]out. The values of vo are from A. The value for the
parameter KAB from our simulations is 27.84·10−3 mM2.

A B

Figure 4.8: The location of ANTs in mitochondria has not yet been definitively determined. There-
fore we explored the functional implications of different locations: (A) ANTs were either homoge-
neously distributed on the IBM, (B) co-localized with ATP synthases at the curvatures of tubular
cristae and at the apex of lamellar cristae, or in both locations (not shown).
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4.2 ATP/ADP translocator

Parameter Value Unit
kb

Ti
4·104 s−1

kf
Ti

6.4·106 M−1s−1

kb
To

200 s−1

kf
To

4·105 M−1s−1

kb
Di

4·104 s−1

kf
Di

4·106 M−1s−1

kb
Do

100 s−1

kf
Do

4·106 M−1s−1

kp 800 s−1

kcp 0.75 s−1

kd 0.48 s−1

kt 0.58 s−1

# ANTs 2.104

∆φ -180 mV

Table 4.4: Final chemical kinetic rate constants for the ATP/ADP translocator model for a membrane
potential of 180 mV.
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4.3 VDAC

In order to incorporate a process that exports ATP from the mitochondrion into the
cytosol in my model, I include voltage dependent anion channels (VDACs), the main
mechanism for metabolites to cross the OM (Mannella, 1998). As briefly explained in
the introduction, the dynamics of this channel is rather complex including several close
states and a peculiar dependence on the membrane potential. Unfortunately, I could not
find models for the VDAC at the required level for the intended simulations since they
were representing different scales such as all-atom molecular dynamics or free energy
simulations (Noskov et al., 2016). Efforts to bridge from molecular dynamics to Markov
state models seem to be underway (Noskov et al., 2014) but are not yet applicable. A
realistic model would include another layer of complexity to the dynamics potentially
delaying the exit of ATP, blocking the exit altogether in specific configurations or
effect also the entrance of ADP. For this first version of my model, the aim was not
to reproduce the complex dynamics of the channel but rather allow ATP molecules to
exit the mitochondria. Therefore, I implemented a rather simple model of the VDAC
assuming that the proteins interact with ATP and translocate it to the cytosol by the
following reaction equation: VDAC + ATPmito 
 VDAC + ATPcyto.

In my simulations VDAC proteins were homogeneously distributed within the OM
with a density of 104µm−2 based on experimental estimations (De Pinto et al., 1987).
I set the rate constant of the reaction such that ATP molecules are not substantially
delayed by the interaction with porin. I did simulations with ATP molecules diffusing
from a spherical region in the interior of the IM to the cytosol with and without
VDACs on the OM. Within 10 ms, almost all molecules reached the cytosol without
the consideration of VDACs, but with VDACs and my given parameters only ∼ 75 %
were entering the cytosol within the same period.

Parameter Value Unit
k 1·106 M−1s−1

Density 1·104 µm−2

nVDAC 7100

Table 4.5: Chemical kinetic rate constants for the VDAC model.
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4.4 ATP-consuming reactions

4.4 ATP-consuming reactions

To reflect physiological conditions, I emulated the arrival of an action potential at the
terminal by varying the rate constant k of ATP-consuming reactions located at the
synaptic membrane. I simulated the energetic response during a 5 ms lasting recovery
phase between 2 spikes by modulating kcha as step functions between the basal and
active ATP consumption rates (Figure 4.9).

To set the parameter values of the ATP consuming reactions, I used the calculations
by Attwell and Laughlin (2001) for the energy demand of glutamatergic signaling.
From these considerations, they estimated a demand of 11,000 ATP molecules per
released vesicle, 12,000 ATP molecules for related Ca2+ removal and ∼ 821 ATP
molecules for endocytosis and exocytosis of vesicles. From the 11,000 ATP molecules
needed for glutamate recycling, I only considered 1,333 (for the packing of glutamate
in vesicles) since this is actually happening at the presynaptic terminal whereas the
other processes are located within astrocytes. Thus, ∼ 14,000 ATP molecules are
needed per vesicle released. For a firing frequency of 200 Hz and a release probability
of 0.25, the total number of ATP molecules needed at the synapse equals 7 · 105

ATPs/s (0.25× 200Hz× 1.4 · 104).

To consider ATP consumption within the synapse, I placed channel molecules at

the synaptic membrane which consume ATP by the reaction ATP + channels
kcha

channels. For mimicking the action potential dependent ATP consumption, the re-
action rate exhibits the form of two square pulses with a minimal and maximal value
kbasal and kmax, respectively. The values of kmax and the number of channels ncha

were set to match an ATP consumption rate of 7 · 105 ATPs/s. The basal level of
ATP consumption reflects additional housekeeping processes and is given in Table 4.6.
For the synaptic simulations, I assumed a spontaneous firing rate of 5Hz and vesicle
release probability of 0.25 leading to a number of ∼ 1.8 ·104 ATP molecules per second
needed at the synapse. The values of the rate constants were selected to not limit the
reaction by diffusion.

k
ch
a
(1

/M
s)

0 2 4 6 8 10
Time (msec)

0

1
×106

Figure 4.9: Rate constant of the ATP-consuming reactions. The initial value is kbasal, and at
1 ms the action potential arrives at the synapse when the rate constant is increased to kmax =
1·106 M−1s−1.
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Parameter Value Unit
ncha 7·105

kbasal 2.5·104 M−1s−1

kmax 1·106 M−1s−1

t1
on 1 ms

t1
off 5 ms

t2
on 6 ms

t2
off 10 ms

Table 4.6: Chemical kinetic rate constants for the ATP-consuming reactions.

4.5 Mitochondrial Calcium Uniporter

Dash and colleagues (Dash et al., 2009; Pradhan et al., 2010) proposed a six-state
kinetic mechanism for Ca2+ transport into the mitochondria via the MCU. The pro-
posed model is schematized in Figure 4.10. Free Ca2+ from the cytoplasmic (Ca2+

o )
or matrix (Ca2+

i ) side can bind to the protein complex L, to form either the Ca2+L
or LCa2+ intermediate state. Another Ca2+ can bind to any of the aforementioned
intermediate states forming a ternary complex with two Ca2+ bound. If they are both
bound from the cytoplasmic side, the ternary complex is represented by Ca2+Ca2+L
whereas if they are both bound from the matrix side, the ternary complex formed
is LCa2+Ca2+. The remaining case is Ca2+LCa2+ with one Ca2+ from each side.
Transport occurs when a molecule in state LCa2+Ca2+ translates to Ca2+Ca2+L that
afterwards dissociates in two steps and liberates two Ca2+ ions and the protein complex
L.

With a similar approach as in (Metelkin et al., 2006), Dash et al. (2009) assumed
quasi-steady state, rapid equilibrium binding of Ca2+ to the membrane protein and
derived a flux expression for Ca2+ in mitochondria with six unknown parameters. I
used the revised version of the model presented in (Pradhan et al., 2010) and the
corresponding fitted parameters. In particular, I useed this set of parameters from
the paper: k0 = 1.42 nmol/mgprot sec, K0 = 37.9 µM , α = 0, nH = 2.65, and
from which I estimated some of the parameters needed for the simulations (Table 4.7).
(Pradhan et al., 2010) set the parameter value of the rate constant of the reaction that

brings calcium inside of the mitochondria Ca2+Ca2+L
kin

LCa2+Ca2+ as k
′
in =

kin [L] where [L] is the concentration of the uniporter. This value has been measured as
∼ 0.001 nmol/mgprot, ∼ 0.08 nmol/mgprot depending on the inhibitor used Reed and
Bygrave (1974). Therefore the values of kin (k

′
in/[L]) are between 9537 s−1 to 763000

s−1. A similar criteria was used to determined the value of kout. The values chosen
in our simulations were between these limits. The number of MCUs in the membrane
was estimated using the density of channels per µm2 estimated by (Kirichok et al.,
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L

Ca2+L

LCa2+

Ca2+LCa2+

Ca2+Ca2+L

LCa2+Ca2+

Figure 4.10: Markov chain model of the mitochondrial calcium uniporter. Kinetic model of calcium
transport in mitochondria by a six-state mechanism. Free Ca2+ from the cytoplasmatic (Ca2+o ) or
matrix (Ca2+i ) side can bind to the free protein complex L, forming the intermediate state Ca2+L
or LCa2+, respectively. Another Ca2+ ion can bind cooperatively forming a ternary complex of the
form Ca2+Ca2+L, LCa2+Ca2+ or Ca2+LCa2+. Transport of calcium to the matrix side occurs when
the ternary complex Ca2+Ca2+L transitions to LCa2+Ca2+.

2004). I reproduced the experimental results of (Vinogradov and Scarpa, 1973) for
liver mitochondria. To subsequently transform the units of the fluxes, we adopted the
conversion employed by (Williams et al., 2013) and estimated the flux on whole cell
recordings. From the numerical simulations in MCell, this flux was calculated as Juni

= iuniNmcuNmitos / NaVcyto where iuni is the average number of net translocations per
uniporter, Nmcu is the number of MCUs in the mitochondrion, Nmitos the number of
mitochondria in a liver cell, Vcyto is the volume of the cytosol, and Na the Avogadro’s
number.

As before we had to estimate the value of the forward (kf) and backward (kb)
rate constant for Ca2+ binding from the equilibrium constant (K = kb/kf). I did
a parameter search changing the value of kf from 1·106 M−1s−1 to 1·109 M−1s−1,
increasing by one order of magnitude, and kb from 37.6 s−1 to 37600 s−1 increasing
also by one order of magnitude to keep the ratio constant. The simulations with
a forward rate of 1·108 M−1s−1, and a backward rate of 3760 s−1 reproduced the
results at best. Interestingly, Williams et al. (2013) showed that several datasets from
different groups give a similar flux as from (Vinogradov and Scarpa, 1973) with the
proper conversion of units.
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Parameter Value Unit
kf 1·108 M−1s−1

kb 3790 s−1

kin 38162 s−1

kout 1.74 10−8 s−1

∆φ -190 mV
# MCUs 188
# Mitos per cell 2·104

Vcyto 18 pL

Table 4.7: Chemical kinetic rate constants and parameters for the MCU model.

Figure 4.11: Experimental data reproduced from Vinogradov and Scarpa (1973), Fig.2. The units
were transformed to represent whole cell recordings in liver cells, using the same conversion proposed
by Williams et al. (2013).

Despite the successful reproduction of the experimental results, recent findings
indicate that the MCU is not a transporter but obeys channel properties (Kirichok
et al., 2004). To not introduce artifacts in our model, I decided to not incorporate
the MCU implementation in the mitochondrion model but first to clarify the molecular
mechanism and add the MCU at a future version of the model.
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Figure 4.12: Reproduced experiments for the MCU. Qualitative reproduction of the experimental
results of Vinogradov and Scarpa (1973) with a parameter search for the forward and backward
rate constant for Ca2+ binding. The values are incremented one order of magnitude starting from
1·106 M−1s−1 and 37.6 s−1 respectively in yellow.
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Chapter 5

Simulation Methods

As introduced in Chapter 1, life emerges across all different scales as a multiscale
phenomenon. The embedding in space and time renders cells as complex reaction
diffusion systems also at the subcellular level. The complex morphology of mitochon-
dria reconstructed in Chapter 3 is pointing to potential spatiotemporal effect where
the interplay of diffusion with active molecules like transporters, proton pumps and
syntheses may have strong implications for the emergent dynamics in dependence on
their spatial arrangement and the interaction with the environment. To address this
open scientific question, I developed a realistic spatiotemporal mitochondrial model
and a corresponding space independent approach to dissect the contribution of the
different elements to the emergent dynamics. For this purpose, two different model
formalisms were used to simulate the dynamics of the mitochondrion. One approach
is based on stochastic spatial modeling using the particle-based simulator MCell, and
the other model implementation is based on ODEs, i.e. essentially a deterministic and
non-spatial approach. The deterministic formalism was mainly used to test the molec-
ular implementation in MCell and to dissect the spatial effects. In Section 5.1 a brief
summary of the MCell implementation is given, followed by a description of the space
independent implementation in Section 5.2. Lastly, an overview of the three main in
silico experiments performed is outlined.

5.1 Monte Carlo simulations

A number of formalisms can be use for biochemical simulations with different spatial
and molecular resolution (see (Gupta et al., 2018) for an overview). Since we are
dealing with a complex 3D geometry with small volume, we decided to implement the
model using a particle-based simulator which, on the one hand, can consider the com-
plex boundary conditions and on the other hand reflect the discrete nature of molecules
for typical concentrations in such small volumes. Following these arguments, the com-
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plex geometry can induce compartmentalization of molecules, confining molecules to
smaller subvolumes, bringing the dynamics away of a well-stirred condition1, and indi-
cate that even stochastic effects might be relevant due to low molecule number in the
confined spaces.
The software employed is MCell (Stiles et al., 1996; Stiles and Bartol, 2001; Kerr et al.,
2008), a particle-based reaction-diffusion simulator that allows the specification of de-
tailed cellular and subcellular structures. In MCell simulations, particles can diffuse in
two and three dimensions, collide, and interact through bimolecular or unimolecular re-
actions. There are four basic elements of a simulation: movement, collision detection,
bimolecular and unimolecular reactions each of which are briefly described below.

The individual trajectory of each molecule is generated by a Monte Carlo random
walk. This movement is induced by translating the particles in discrete spatial steps by
sampling the solution of the diffusion equation in radial coordinates for a point source
of molecules defined by

ρ(r, t) =
1

(4πDt)
d
2

exp
−r2

4Dt , (5.1)

where D is the diffusion coefficient, t denotes time and d the dimension in which
diffusion is embedded. The corresponding azimuthal angle ψ is determined by sampling
from a uniform distribution between 0 an 2π while the polar angle θ is sampled from
a sinusoidal probability distribution (see (Kerr et al., 2008) for more details).

Particles can also collide and if the distance between the molecules is smaller than
a predefined collision radius they react. Collisions are detected by ray-tracing algo-
rithms (Kerr et al., 2008). Bimolecular reactions occur stochastically accordingly to
probabilities that depend on the reaction rate, the diffusion coefficient and the time
step. For reaction between a surface and a volume molecule the probability takes the
form

ρ =
k

A
(
π∆t

D
)1/2, (5.2)

where k denotes the reaction rate and A the interface. The probability of reactions
per collision should be chosen to be smaller than 1 to get accurate results (not greater
than 0.5 to obtain errors less than 1-2% (Stiles and Bartol, 2001)). Unimolecular re-
actions can also occur where transitions are scheduled accordingly to the distribution
of expected lifetimes (Equation 5.3), using Gillespie’s stochastic simulation algorithm

ρ(t) =
1

k
exp−kt . (5.3)

MCell uses Model description language (MDL) to define simulation inputs and outputs.
MDL are text files with keywords, commands and parameters defined by the user.
They have a modular structure with a section for model parameters such as geometry,

1This assumption implies that molecules are homogeneously distributed through space.
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molecules and reactions that can be split in different MDL files. MCell also has a
graphical user interface through its plug-in for Blender, called CellBlender. When a
project is created using CellBlender the MDL files are generated automatically. This
option was used for this project but after setting up the project all simulations and
further modifications where done directly to the MDL files (in the Appendix B a brief
description of these files is given). Moreover, a Python script was implemented to
perform parameter sweeps by first modifying the MDL files with the parameter values
and subsequently running the simulations from the command line.

The global time step for the simulations was set to 1 ns to have all reaction
probabilities lower than 0.2 and to have the average diffusion length step at least half
the minimal distance to resolve in the structure. I used the diameter of the cristae
of ∼ 20 nm as the smallest distance to be resolved and the average diffusion length
was with ∼ 0.3 nm way smaller than the minimal distance to resolve. The spatial
granularity decreases while decreasing the temporal granularity because the average
diffusion step depends on the time step (Stiles and Bartol, 2001).

The space is partitioned by a grid of 0.01 µm step to speed up the simulation time
and the output data is saved every 100 ns. In order to obtain 10 ms of a simulation
approximately 5 days of computing power were needed using an Intel Xeon processor
CPU X5680 3.33GHz with 59G of memory. This could be reduced to 2.5 days with a
Intel Xeon Gold 6146 processor 3.20GHz with 377G of memory.
MCell simulations can be stopped and restarted at any time through the use of check-
pointing. Simulations can also be interrupted after a specific time, and then restarted
from the same configuration. This has been widely used during these simulations to
share resources and avoid premature terminations of the simulations with the conse-
quent loss of results.

5.2 Ordinary differential equations

The simplest approach to model biochemical reaction dynamics is by ODEs. This level
of description would treat the mitochondrion as a non-spatial object, where molecules
are described as continuous populations under well-mixed assumption with no compart-
mentalization or spatial gradients. Cellular compartments can be included artificially
by introducing distinct chemical species.

For each of the modules of the model, I derived a system of ODEs assuming
mass action kinetics (Keener and Sneyd, 1998). I considered three compartments:
the matrix, IMS and ICS (called outside), and the cytosol. The rate equations were
integrated with the software package PyDSTool (Clewley, 2012; Clewley et al., 2007),
an integrated simulation and analysis package for dynamical systems implemented in
Python using a Radau integrator.
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ATP synthase

The ODEs system for the ATP synthase model is given by

dE−3

dt
= −k65E

−3 + k56EH3 + k16
−3E − k61E

−3

d −3E

dt
= −k16

−3E + k61E
−3 − k12

−3E + k21H3E

dH3E
∗

dt
= −k45H3E

∗ + k54EH3 + k34H3ES − k43H3E
∗Di

dH3ES

dt
= k43DiH3E

∗ − k34H3ES + k23H3E Ti − k32H3ES

dH3E

dt
= −k23H3E Ti + k32H3ES − k25H3E + k52EH3 + k12

−3E − k21H3E.

(5.4)
where the variables E−3,−3E,H3E

∗,etc. describe the number of molecules in each
state. The model has six states represented in the diagram of Figure 4.1. The total
number of proteins Etot is a conserved quantity, i.e. E−3 + EH3 + H3E + H3ES +
H3E∗ + −3E = Etot. Thus, I derived 5 ODEs, one for each variable and the remaining
one can be deduced from them. All parameters values are in Table 4.1.
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ADP/ATP translocator

The ODEs system for the ADP/ATP translocator is given by

dL

dt
= −(kfTo To + kfTi Ti + kfDo

Do + kfDi
Di)L+ kbTo TL+ kbTi LT + kbDo

DL+ kbDi
LD

dTL

dt
= kfTo To L− (kbTo + kfDi

Di + 2kfTi Ti)TL+ kbTi TLT + kbTi TLT
′
+ kbDi

TLD

dLT

dt
= kfTi Ti L− (kbTi + kfDo

Do + 2kfTo To)LT + kbTo TLT + kbTo TLT
′
+ kbDo

DLT

dDL

dt
= kfDo

Do L− (kbDo
+ kfTi Ti + kfDi

Di)DL+ kbDi
DLD + kbDi

DLD
′
+ kbTi DLT

dLD

dt
= kfDi

Di L− (kbDi
+ kfTo To + kfDo

Do)LD + kbDo
DLD + kbDo

DLD
′
+ kbTo TLD

dTLD

dt
= kfDi

Di TL+ kfTo To LD − (kbDi
+ kcp)TLD + kpDLT − kbTo TLD

dDLD

dt
= kfDo

0.5Do LD + kfDi
0.5DiDL− (kbDo

+ kbDi
+ kd)DLD + kdDLD

′

dDLD
′

dt
= kfDo

0.5Do LD + kfDi
0.5DiDL− (kbDo

+ kbDi
+ kd)DLD

′
+ kdDLD

dTLT

dt
= kfTo 0.5To LT + kfTi 0.5Ti TL− (kbTo + kbTi + kt)TLT + kt TLT

′

dTLT
′

dt
= kfTo 0.5To LT + kfTi 0.5Ti TL− (kbTo + kbTi + kt)TLT

′
+ kt TLT.

(5.5)
where the variables L, TL, LT describe the number of molecules in each state. One
ANT can be found in one of the 11 states described in the diagram in Figure 4.2. I
wrote 10 differential equations for the system, and used one conservation law for the
total number of proteins (Ltot), L + DL + DLD + DLD + TL + LT + TLT + TLT′+
DLT + TLD = Ltot from which I deduced the number of molecules in the state DLT.
Di and Ti stand for the number of molecules of ADP and ATP in the matrix, Do and To

for the number of molecules outside, and Tcyto denotes the number of ATP molecules
in the cytosol. The rate constants are labeled accordingly by the reactions they drive,
e.g. for To + L → TL the rate constant is kf

To
and for the reverse reaction kb

To
. The

reactions that translocate metabolites are: DLT
kp

TLD that brings ATP outside,

TLD
kcp

DLT that brings ATP inside (and ADP outside), TLT
kt

TLT’ that
exports ATP from the inside to the outside, and vice versa. The latter reaction matters
for example when ATP from the media is labeled and I used this flux to determine the
parameter kt using data from (Kraemer and Klingenberg, 1982). Something similar
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occurs with the reaction DLD
kd

DLD’ which is only useful when ADP is labeled
outside or inside. Since I wanted the system to be equivalent with one state DLD, or
two DLD and DLD’, the rate constants of the forward reaction is half the values of
the rate when one specie was considered. All the parameters of the ANT model are
summarized in Table 4.2.

The rate constant of the bimolecular reactions have been normalized to have proper
units to compute the number of particles, i.e. k = k′

NaVol
, where Na is the Avogadro’s

number, and Vol represents the volume. Therefore, Vol is either the matrix volume or
the volume of the outside space (ICS together with IMS).

ADP and ATP concentrations

I also derived equations for the number of ATP and ADP in the different compartments
based on the ANT and ATP synthase dynamics resulting in

dDi

dt
= −(kfDi

L+ kfDi
TL+ kfDi

DL+ k43H3Eo)Di + kbDi
LD + kbDi

TLD + kbDi
DLD

+ kbDi
DLD

′
+ k34H3ES

dTi
dt

= −(kfTi L+ kfTi TL+ kfTi DL+ k23H3E)Ti + kbTi LT + kbTi DLT + kbTi TLT

+ kbTi TLT
′
+ k32H3ES

dTo
dt

= −(kfTo L+ kfTo LT + kfTo LD + kp nvdac)To + kbTo TL+ kbTo TLD + kbTo TLT

+ kbTo TLT
′
+ kp Tcyto nvdac

dTcyto
dt

= nvdac k To − nvdac k Tcyto.
(5.6)

Since I kept the concentration of ADP in the IMS constant, I did not considered an
equation for the concentration of ADP there, neither for the concentration of ADP in
the cytosol.

Calcium Uniporter

The MCU model has six states shown in the diagram of Figure 4.10. Here L denotes
the free protein and again the total number of proteins Ltot is a conserved quantity,
i.e. L + LCa + LCaCa + CaL + CaCaL + CaLCa = Ltot. Therefore, I integrated five
equations and LCaCa was derived from the conservation law. The ODEs system for
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the kinetic diagram of the MCU reads

dL

dt
= −(kf Cao + kf Cai)L+ kbCaT + kb LCa

dCaL

dt
= kf Cao L− (kb + kf Cao + kf Cai)CaL+ kbCaLCa+ kbCaCaL

dLCa

dt
= kf Cai L− (kb + kb + kf Cao)LCa+ kb LCaCa

dCaLCa

dt
= kf CaiCaL+ kf Cao LCa− 2kbCaTCa

dCaCaL

dt
= kf CaoCaL+ kout LCaCa− (kb + kin)CaCaL

(5.7)
with parameters values given in Table 4.7.

5.3 In silico experiments

For the model establishment, I performed 3 distinct in silico experiments to disentangle
the contribution of the different molecular components to the dynamics, presented in
the next Chapter 6. In a first set of simulations, I started with a fixed number of ADP
molecules and let them phosphorylate to ATP without any export or consumption of
ATP. Hence, in this isolated scenario, ATP molecules accumulate in the mitochondrion.
In a second configuration, I considered the mitochondrion to be embedded in a cube
of dimension 0.45 µm3 representing the cytosol with unlimited resources of ADP by
clamping the concentration of ADP at the OM and included VDAC channels in the
OM for mitochondrial export. The more physiological scenario of a fluctuating energy
demand at a synapse is similar to the scenario of unlimited resources but with the mito-
chondrion located in the reconstructed synapse. ATP consuming reactions are included
at the synaptic membrane representing ion channels activity, exocytosis and endocyto-
sis of vesicles and glutamate recycling. To reflect the activation of the reactions due
to action potential arrivals, I increased the reaction rate constant. The time trace of
the rate constant is set by two square pulses with a basal value of 2·5104M−1s−1 and
a maximum of 1·106M−1s−1 (see Section 4.4 for details of the parameters estimation).
For each configuration, I ran 10 individual simulations with different random seeds.
Averaged trajectories were compared between configurations and compared with the
spatially independent scenario described by the corresponding rate equations (ODEs).
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Chapter 6

Results and discussion

To investigate the effect of mitochondrial morphology on the ATP production capacity,
I systematically simulated different scenarios particularly for a synaptic mitochondrion.
For this purpose, I reconstructed the morphology of an entire mitochondrion with
unmatched precision and used this static geometry for dynamic simulations of the
molecular interplay with spatially distinct molecular arrangements. I will start this
chapter with a summary of results obtained from the reconstructed mitochondrion.
This is followed by three sections where I describe three in silico experiments of in-
creasing complexity designed to disentangle the contribution of the different molecular
components to the dynamics. The first one, in Section 6.2, is an isolated scenario of
equilibration, where an initial number of ADP molecules are imported to the matrix to
be further subsequently phosphorylated to ATP, without any export or consumption
of ATP. Next, in Section 6.3, the results of a more physiological conditions are pre-
sented, here I included VDAC channels and maintained the concentration of ADP in
the OM. In the last experiment presented in Section 6.4, the mitochondrion is placed
in the reconstructed synapse, and ATP consuming channels are added. In Section 6.5 I
repeated the aforementioned experiments with a reduced diffusion coefficient. Finally,
in Section 6.6, I analyzed how diffusive properties of molecules are affected by the
morphology.

6.1 Mitochondrial morphology reconstruction

Due to technical reasons, detailed three-dimensional reconstructions of whole mito-
chondria are rare and accurate volume and surface measurements of mitochondria are
lacking. I therefore initially focused on the comprehensive reconstruction of a synaptic
mitochondrion from a serial electron tomogram volume. The resulting reconstruction
was subsequently optimized to enable dynamic simulations and detailed morphological
characterization (Table 6.1) including the volume of 0.04 µm3 with a maximal length
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Chapter 6 Results and discussion

of 0.8 µm and width of 0.29 µm and 45 cristae junctions. Based on the physiologi-
cal classification of mitochondria (Figure 2.1), I determined the size of the different
compartments where the IMS occupies approximately a relative volume to the outer
membrane of 0.27, the matrix 0.52 and the ICS 0.21.
As it has been mentioned in the past (Perkins et al., 2001), I found a mixture of
lamellar and tubular cristae in synaptic mitochondria, with tubular cristae located in
the periphery and lamellar cristae in the central region of the mitochondria. This can
also be appreciated in the distribution of CJs in three-dimensions, Figure 6.1.

The resulted reconstruction is shown in a Movie to appreciate the complex internal
structure of synaptic mitochondria. In this movie, the OM is shown in white and after
few seconds disappear, the IM is transparent blue and the CM is colored in green.

OM volume 0.039 µm3

OM surface 0.651 µm2

IM volume (matrix) 0.021 µm3

IM surface 1.493 µm2

IMS volume 0.011 µm3

ICS volume 0.008 µm3

IBM surface 0.54 µm2

CM surface 0.953 µm2

Number of CJs 45
Synapse volume 0.13 µm3

Synapse surface 1.5 µm2

Table 6.1: Properties measured on the reconstructed mitochondrion.

To get a better understanding of the small spaces generated by the cristae mem-
brane, two figures were produced using CellBlender. In the first one the matrix of the
mitochondria is filled with grey color, and the cristae are left emptied, to appreciate
the interior a cross section of the mitochondrion is shown Figure 6.1B. In the second
figure, the opposite is done, the cristae membrane is filled in grey and the matrix of
the mitochondrion is left emptied, Figure 6.1C.
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6.1 Mitochondrial morphology reconstruction

A B C

Figure 6.1: A) Distribution of cristae junctions on the mitochondrial IM. All the membranes were
removed and only the cristae junctions are visible. An heterogeneous distribution is observed, with
the cristae junctions located more in the periphery of the mitochondrion (also where the tubules
are observed). B) Cross section of the mitochondrion with the matrix filled. The matrix of the
mitochondrion is filled in grey color, and the cristae membrane is left empty. In order to make the
interior visible a cross section of the mitochondrion is shown. C) Cross section of the mitochondrion
with the cristae filled. The cristae are filled in grey color, and the matrix is left empty. A cross section
of the mitochondrion is shown to make the interior visible.
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6.2 Isolated Scenario of Equilibration

To investigate the effect of the morphology on the mitochondrial dynamics, I first
considered a minimal configuration and simulated only the interplay between ANT
and ATP synthase in dependence on their spatial arrangements (Figure 4.8). In this
scenario, an initial number of 28,715 ADP molecules corresponding to a free ADP
concentration of 900 µM in the IMS and ICS (referred together as outside) are im-
ported into the matrix (Figure 6.2B,C) by 20,000 ANT molecules and subsequently
phosphorylated to ATP by 3,800 ATP synthase according to the molecular reaction
schemes (Figure 4.1). The generated ATP can be eventually exported into cristae and
the IMS by ANTs (Figure 6.2D,E).

While the entire dynamical system obeys 21 variables (6 for ATP synthase, 11 for
ANT and 4 for ADP and ATP concentrations within the 2 compartments), I focus
here on the main readout of ATP and ADP molecules in the matrix and the outside
space and give the remaining variables in Figure 8.7. During the equilibration process,
I only observe minor differences between the different spatial arrangements within
the first millisecond caused by diffusion induced delays (Figure 6.2B-E). Interestingly,
differences to the spatially independent ODE system (black lines) are more pronounced
when ANTs are co-localized with ATP synthase at the apex of the cristae (blue) because
ADP molecules in the outside have first to diffuse within the cristae to be imported into
the matrix by ANTs located in the CM (Figure 6.2B). Nevertheless, these differences
are rather small and specifically the exported ATP does neither exhibit a significant
dependence on morphology nor on the molecular spatial arrangement.

6.3 Non-equilibrium Induced Gradients

To investigate the mitochondrial dynamics under a more physiological non-equilibrium
condition, I clamped the concentration of ADP at the surface of the OM to 900 µM ,
mimicking unlimited ADP resources in the cytosol. I next included VDAC channels
in the OM (Figure 6.3A) to export ATP into the cytosol. For this extended model,
I monitored again the main variables of the system including the amount of exported
ATP in dependence on the different spatial arrangements and compared averaged
trajectories with the corresponding ODE system (Figures 6.3B-F).

In this driven system, different ANT configurations obey distinct dynamics. When
ANTs are distributed in the IBM (red), the ADP concentration outside is almost con-
stant but for ANTs located in the CM (blue) an initial drop in the ADP concentration is
caused due to a local depletion of ADP in the ICS (Figure 6.3B). Initially, all molecules
of ADP are homogeneously distributed in the outside space consisting of IMS (the space
between the OM and the IBM) and ICS. If ANTs are located in the IBM (red), ADP
molecules are quickly bound to free ANT proteins but ADP molecules are immediately
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B

A

C

D
E

cristae

membrane

(CM)

ATP synthase

outer membrane (OM)

inner

 boundary

 membrane

(IBM)

ANT

ANT

Figure 6.2: Isolated scenario of dynamic equilibration does not exhibit a strong dependence on
the spatial arrangement. (A) Schematic representation of the considered components and their
arrangement with ANTs either co-localized with ATP synthases in the cristae (blue), placed exclusively
at the IBM (red) or in both locations (magenta). All trajectories are averaged over 10 different initial
conditions and compared with the ODE system (black). (B) Simulations start with saturated ADP
outside (900 µM ) which is subsequently imported into the matrix (C) and phosphorylated to ATP
(D). (E) After export of ATP from the matrix, it accumulates outside of the matrix. The different
arrangements of ANTs do not exhibit significant differences with the corresponding ODE system.
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replenished from the clamped membrane concentration. Hence no local gradients are
formed. If ANTs are located in the CM exclusively (blue), ADP molecules in the ICS
are quickly bound to free ANTs proteins and decrease the ADP concentration in the
cristae volume. Thereby transitorily attracting more molecules from the IMS due to a
concentration gradient. Since this replenishment relies on slow diffusion through tubu-
lar junctions (CJ) with small diameters (∼ 25.5 nm in our reconstruction) connecting
the cristae with the peripheral volume, the drop in the outside ADP is enhanced in
amplitude as well as duration. To further characterize this scenario, I estimate the
concentration traces in the IMS and the ICS (Figures 6.4B,C) indicating that the ini-
tially induced ADP gradient is reducing over time and represents the driving force
for the persistent differences in the outside ADP between the different configurations
(Figure 6.3B).

These differences in the outside ADP concentrations are accompanied with differ-
ences in the outside ATP concentration (Figure 6.3E) where more ATP is present in the
outside if ANTs are distributed in the CM (blue). In this configuration, ATP molecules
are exported into the cristae volume from where they first have to diffuse into the
IMS to react with VDAC proteins in the OM to exit the mitochondrion. This diffusive
transport takes longer compared to the scenario when ATP is directly exported to the
peripheral volume (e.g. when ANTs are located in the IBM, red). Therefore, when
ANTs are in the CM, there are more ATP in the outside space because they are held in
the ICS for a longer period. To understand this interplay in more detail, I estimated the
trajectories of ATP concentrations in the IMS and ICS (Figure 6.4F,G) and quantified
the resulting gradients Figure 6.3G,H. The larger and negative ATP gradients between
the OM and IBM when ANTs are located in the IBM (red) facilitate ATP transport
towards the cytosol (Figure 6.3F) and deliver approximately double the energy amount
compared to ANTs located in the CM. Remarkably, in this non-equilibrium scenario,
the setup with ANTs in the IBM does not exhibit any major differences to the space
independent ODE model whereas localization of ANTs in the cristae induce a diffusion
limitation for cytosolic ATP export.

I estimated local ADP and ATP concentrations in the ICS, the inner boundary
(IBM) and outer membrane space for the 3 different spatial arrangements (Figure 6.4).
For this purpose, I counted with MCell the numbers of hits in an open region from which
the concentrations can be estimated by assigning a small volume to this surface. In all
configurations, the concentration of ADP is kept constant at the OM, Figure 6.4A.

An initial drop in the ADP concentration is observed within the ICS when ANTs
are located in the CM as shown by the blue line in Figure 6.4C. The opposite holds
for the ATP concentration which is persistently higher in the ICS due to the constant
transport of ATP from the matrix to the cristae space (blue line in Figure 6.4G). I com-
puted local concentration gradients between the inner boundary and outer membrane
as well as between the cristae and the outer membrane (Figure 6.5). To calculate
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BA

D

Figure 6.3: Non-equilibrium dynamics of the synaptic mitochondrion driven by clamped ADP con-
centration and ATP export. (A) Schematic representation of the components included in these
simulations. (B-H) Comparison of averaged molecule trajectories for the distinct ANT localizations
(ANTs homogeneously distributed in the IBM in red; ANTs colocalized with ATP synthase at the
most curved region of the CM in blue; ANTs in both locations in magenta) with results of the ODE
system (in black) exhibits most significant spatial effects for colocalization (blue) which are induced
by sub-organelle ATP gradients (G,H).
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these gradients, I measured the distance between the outer and inner membrane (≤
0.02 µm1) and between the middle of the mitochondrion to the outer membrane (∼
0.15 µm), respectively, by the Blender add-onMeasureit.

From the resulting data, I identified a strong gradient formed between the IBM and
OM if ANTs are located in the IBM (grey line in Figure 6.5C) driving ATP export from
the mitochondrion. In contrast, ATP import is observed in case ANTs are localized in
the CM by an on average positive gradient (blue line in Figure 6.5C). In this case with
ANTs localized in the CM, the gradient between the CM and the OM points to the
exterior but is one order of magnitude smaller than the gradient between the IBM and
OM. These observations underlay the results obtained in all different configurations.

6.4 Energy Production at a Presynaptic Terminal

After model establishment and finding significant differences in the cytosolic ATP
production in dependence on the spatial arrangement, I was interested in potential
physiological consequences of morphology on the synaptic dynamics. For this purpose,
I investigated the ATP production rate of the mitochondrion in its physiological context,
the presynaptic terminal (Figure 6.6A), and included ATP consuming reactions in the
cytosol. To reflect physiological conditions, I considered ADP saturation within the
cytosol and mimicked the arrival of an action potential at the terminal by varying the
rate constant k of the ATP consuming reactions located at the synaptic membrane.
Based on estimations of the energetic costs of a glutamatergic synapse, I set the basal
ATP consumption rate to kcha = 2.5 · 104 (Ms)−1 and the energy demand during an
action potential to kcha = 1·106 (Ms)−1 (see Section 4.4 for parameter estimation). To
study how synaptic activation induces a transient transition between the approximated
steady states for the different scenarios (Figure 6.6B-F), I simulated the energetic
response during a 5 ms lasting recovery phase between 2 spikes by modulating kcha as
step functions between the basal and active ATP consumption rates (Figure 6.6G).

In contrast to the previous non-equilibrium scenario, the physiological simulation of
the energetically dynamic presynapse started close to steady state condition determined
by the ODE system. Therefore, I did not observe an initial dip in the outside ADP
concentration (Figure 6.6B) but the formation of a stable gradient that drives the
differences among the distinct configurations. Due to ADP clamping, the outside
ADP concentration stays constant for the ODE approach and similarly for the scenario
where ANTs are localized in the IBM (black and red in Figure 6.6B, respectively),
whereas for ANTs exclusively or partly localized in the cristae, a slight drop is observed
(blue and magenta in Figure 6.6C, respectively). Interestingly, ADP as well as ATP

1The maximal distance between the IBM and the OM is 0.02 µm but membranes also get closer
to each other. Hence, estimated values of gradients represent lower bounds.
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Figure 6.4: Non-equilibrium dynamics of the synaptic mitochondrion driven by clamped ADP con-
centration and ATP export - Local concentrations. I estimate the concentration of ADP (A-D) and
ATP (E-H) in the cristae, inner boundary and outer membrane. Counting the number of hits the
surface suffers and approximating a small volume close the it. As before, ANT molecules were placed
in three different locations: in red, ANTs homogeneously distributed in the IBM; in blue, ANTs
colocalized with ATP synthase at the most curved region of the CM; and in magenta, ANTs in both
locations.
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Figure 6.5: Non-equilibrium dynamics of the synaptic mitochondrion driven by clamped ADP con-
centration and ATP export - Local gradients. I estimate the concentration gradients of ADP (A-B)
and ATP (C-D) form between the inner boundary and outer membrane (A and C), and between the
cristae and outer membrane (B and D). To calculate the gradients the distance used and measured
between the inner boundary and outer membrane is ∼0.02 µm, and the distance from the middle of
the mitochondrion to the outer membrane ∼0.15 µm is used to compute the other gradient. ANT
molecules were placed in three different locations: in red, ANTs homogeneously distributed in the
IBM; in blue, ANTs colocalized with ATP synthase at the most curved region of the CM; and in
magenta, ANTs in both locations.
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concentration in the matrix are slightly increased consistently for all spatial simulation
compared to the ODE approach (Figure 6.6C-E).

The most predominant difference is subsequently observed in the outside ATP con-
centration where localization of ANTs in the IBM again exhibit similar concentrations
as the ODE system whereas localization of ANTs in the cristae lead to substantially in-
creased ATP levels (red and blue in Figure 6.6E, respectively). As in the non-equilibrium
scenario, this increase is caused by ATP within the ICS from where it first has to diffuse
to the IMS for subsequent export into the cytosol. Hence, the cytosolic ATP is slightly
lower for ANTs located in the cristae compared to ANTs in the IBM (blue and red in
Figure 6.6F). Despite this difference, all spatiotemporal scenarios exhibited consistently
smaller ATP amounts within the synapse during the recovery period with low energy
demand compared to the ODE simulations (24% less for co-localization vs 10% less for
IBM localization). After synaptic activation, the spatiotemporal simulations displayed
a slower decrease in synaptic ATP and reduced differences in the ATP concentration
between base level and activation conditions (relative change of 0.87 for co-localization
vs 0.88 for IBM localization vs 0.97 for ODE). These results together indicate that
ATP molecules can be buffered by the complex morphology and support adaptation to
variable conditions.

The presynaptic model was used to calculate net ATP production rates from the
second peak in Figure 6.6F. For ANTs located in the IBM I calculate a rate of ∼31
molecules/ms slightly reduced compared to the ODE system (∼38 molecules/ms). The
model with ANTs exclusively in the CM exhibits a rate of ∼ 26 molecules/ms. Com-
parison with theoretical estimations (see Appendix A, Table 7.1) and approximations
in the literature exhibit good agreement.

Finally in this movie, we also show the reconstructed synapse, and an artificial digital
slice of the tomogram (the thickness is artificial), we also included ATP molecules and
ANTs in the cristae membrane. This movie corresponds to a real simulation, with the
same conditions as in this experiment, it corresponds to the first millisecond of the
simulations (the time step of the visual representation is 5 µs).

6.5 Reduced diffusion

ATP and ADP molecules are present in an ionized form in neutral solutions what may
induce an additional reduction of diffusion. Here, I explore the effect of a smaller
diffusion coefficient on the dynamics. I performed analogous simulations for the 3 dif-
ferent scenarios described before but with a diffusion coefficient one order of magnitude
smaller D = 1.5 · 10−8 cm2s−1. For this diffusion coefficient, substantial differences
are observed in almost all cases (Figures 6.7, 6.8 and 6.9). Remarkably, significant
less ATP molecules (only ∼ 47) reached the cytosol after 10 ms when ANTs were
located in the CM (blue line in Figures 6.8E). When ANTs were located in the IBM,
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Figure 6.6: The energy source of a presynaptic terminal. Comparison of averaged trajectories of the
number of molecules in different compartments with the results obtained with the ODE system. In
this configuration, the mitochondrion is placed in the synapse where it was found (A) and I consider
ATP consuming reactions. They are activated recreating the arrival of an action potential to the
presynaptic terminal, emulated by the increase of the rate constant of the ATP consuming reactions
(G). As before, the concentration of ADP in the OM is clamped and I include VDAC channels in the
OM. ANT molecules were placed in three different locations: in red, ANTs homogeneously distributed
in the IBM, in blue, ANTs colocalized with ATP synthase at the most curved region of the CM, and
in magenta, ANTs in both locations. In black are the results of the ODE system.
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6.5 Reduced diffusion

∼ 354 ATP molecules reached the exterior during the same period of time (grey line in
Figures 6.8E). This diffusion limitation based effect was also found for faster diffusion
but reduced diffusion is amplifying the differences between configurations.

Based on these simulations, I could estimate the rate at which ATP becomes
available within the cytosol what is severely delayed under diffusion limitation conditions
(Figure 6.9). For ANTs placed in the IBM, the ATP rate is 38 molecules per millisecond,
and for ANTs in the CM the rate reduces to 11 molecules per millisecond whereas the
rate for the spatially independent ODE yields 62 molecules per millisecond. If diffusion
is reduced, the location of ANTs have a tremendous impact on the rate at which ATP
can reach the cytosol and thus on the rate of energy supply at the synapse.
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Figure 6.7: Concentration dynamics and variables for the isolated scenario of dynamic equilibration
with reduced diffusion. ANTs molecules were again placed in three different locations: ANTs ho-
mogeneously distributed in the IBM (red), ANTs colocalized with ATP synthase at the most curved
region of the CM (blue) and ANTs in both locations (magenta). Panels A-L show variables of the
ANT model and panels M-R the variables of the ATP synthase model.
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Figure 6.8: Concentration dynamics and variables for the non-equilibrium dynamics of the synap-
tic mitochondrion driven by clamped ADP concentration and ATP export with reduced diffusion.
Comparison of averaged molecule number trajectories for the distinct ANT localizations (ANTs ho-
mogeneously distributed in the IBM (red), ANTs colocalized with ATP synthase at the most curved
region of the CM (blue) and ANTs in both locations (magenta)) with results of the ODE system
(black) exhibits a most significant spatial effects for colocalization (blue). Panels (A-L) show variables
of the ANT model and panels M-R variables of the ATP synthase model.
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Figure 6.9: The energy dynamics of a presynaptic terminal with reduced diffusion. Comparison of
averaged trajectories of the number of molecules in different compartments with the results obtained
by the ODE system. In this configuration, the mitochondrion is placed in its physiological context,
the presynaptic terminal, and ATP consuming reactions were considered to mimic the arrival of an
action potential at the terminal. For this purpose, I emulated the increase of the rate constant of
the ATP consuming reactions (F). As before, the concentration of ADP in the OM was clamped and
VDACs were included in the OM. ANT molecules were placed in three different locations: ANTs
homogeneously distributed in the IBM (in red), ANTs colocalized with ATP synthase at the most
curved region of the CM (blue) and ANTs in both locations (magenta). The results of the ODE
system are shown in black.
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6.6 Anomalous diffusion

The extreme mitochondrial morphology has evoked a scientific discussion on diffu-
sion properties within the organelle. Combining mathematical models and experimen-
tal data, the diffusive properties of proteins in the mitochondrial matrix have been
measured (Partikian et al., 1998; Dieteren et al., 2011) and simulations of diffusion
in obstructed objects suggested anomalous diffusion within organelles (Ölveczky and
Verkman, 1998). To test this hypothesis, I used here our physiologically realistic re-
construction and simulated particle diffusion within the interior of the mitochondrion
with and without the consideration of the internal structure (cristae membrane). From
the resulting particle trajectories, I computed the mean-square displacement (MSD) of
the molecules in both configurations. For normal diffusion, the MSD obeys Fick’s law
and equals 6 D t where D is the diffusion coefficient (set to D = 1.5 · 10−7 cm2s−1)
and t represents time. In particular, this relation predicts a linear dependence of the
MSD on time t.

I compared this theoretical prediction with the MSD measured in simulations with
and without internal structure (Figure 6.10). For the comparison, I calculated the linear
regressions of the measured MSD in both configurations and determined the slopes.
The slope of the theoretical prediction for Fick’s law in an open space is 9·10−7 cm2s−1

whereas I measured 4.65 · 10−7 cm2s−1 and 4.07 · 10−7 cm2s−1 for simulations without
and with considering the internal structure, respectively. While the deviation on the
large time scale is caused by the closed space of the mitochondrion, the deviation
on the shorter time scale is influenced by the internal structure. To quantify the
anomalous diffusion, we considered the non-linear growth of the MSD in time (6 Dγ tγ)
and fitted the γ exponents and amplitudes in both configurations (Figure 6.10). We
obtained a value 0.85 in case of considering the internal structure and 0.84 without
this consideration. The values were obtained for simulations run for 0.5 milliseconds
(the coefficients and amplitudes depend on the length of the simulations).
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Figure 6.10: Time courses of the mean square displacement (MSD) for particles diffusing in the
matrix, in blue without considering the internal structure and in red with the internal structure.
Initially, 2500 particles were distributed homogeneously in the matrix, and their position was tracked
to afterwards compute the MSD for both configurations. The dash lines represent a power law fitting
of the data. The black line is the theoretical prediction of the MSD for normal or Fickian diffusion.
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Chapter 7

Conclusions and perspectives

Mitochondrial morphology is thought to be context dependent and a mechanism to
adapt to specific energetic requirements (Scalettar et al., 1991; Mannella, 2006). Mi-
tochondria in the brain and specifically at synapses exhibit rather unique and complex
morphologies (Perkins et al., 2001, 2010) that may reflect the high energy demand
for neuronal information transmission (Attwell and Laughlin, 2001). Since the inter-
nal structure of mitochondria can be only resolved by EM tomography, a mechanistic
understanding of how morphology is affecting mitochondrial dynamics relies on math-
ematical modeling to simulate dynamic consequences from the static images.

While modeling approaches have estimated the morphological effect on the mito-
chondrial membrane potential (Song et al., 2013) and diffusion properties based on
simplified geometries (Dieteren et al., 2011; Ölveczky and Verkman, 1998), the con-
sequences for the main function of ATP production of a real physiological morphology
is only vaguely understood. Here, I used an electron tomogram of a presynaptic ter-
minal in mouse cerebellum to (i) comprehensively reconstruct and analyze in detail
the morphology of an entire mitochondrion (Chapter6, Table 6.1) and to (ii) subse-
quently investigate the dynamic consequences of the interplay between the complex
morphology the spatial molecular orchestration by my developed computational model
based on the mitochondrial morphology and molecular properties of the main adenosine
phosphate processing molecules.

Surprisingly, simulations of the isolated scenario without any ADP import from
and ATP export into the cytosol do not exhibit a strong dependence on the spatial
arrangement (Figure 6.2) indicating that the assumed diffusion properties do not lead to
a diffusion limiting condition. In accordance with theoretical considerations, comparing
the timescales of diffusion and reactions indicated only a slight overlap for this scenario
(Appendix A, Section 8.8). A morphological effect on ATP production could only
be found for diffusion coefficients decreased by two orders of magnitude. Although
some studies (Scalettar et al., 1991; López-Beltrán et al., 1996; Dieteren et al., 2011)
showed evidence of severe hindrance of diffusion in the matrix, more recent experiments
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estimated that diffusion is only three to four fold smaller than in water (Partikian
et al., 1998). I reduced the diffusion coefficient of ATP and ADP, in my model, by
one order of magnitude to reflect their ionized form and related interactions with other
charged particles. The potential interaction of the ions with the membrane potential
leading to electro-diffusion are not included in the current model but could actually
decrease diffusion further and induce a regime of diffusion limitation. Independent of
the diffusion limitation, my simulations indicated anomalous diffusion in agreement
with previous evidences (Ölveczky and Verkman, 1998).

Although diffusion had only a minor effect in the isolated system, spatial aspects
became significant when bringing the mitochondrion in contact with the cytosol under
unlimited access to ADP and ATP export through VDAC (Figure 6.3). Under these
more physiological conditions, the spatial organization of ANTs had a significant effect
on ATP gain within the cytosol. While the spatiotemporal simulations did not exhibit
significantly strong deviations from the spatially independent ODE system when ANTs
were exclusively located at the IBM, the co-localization of ANTs with ATP synthases
at the apex of cristae led to an approximately halved ATP export into the cytosol.
Careful analysis of the dynamics revealed that this effect is driven by smaller concen-
tration gradients between the ICS and the OM for ANT localization in the cristae,
which led to ATP buffering within the cristae. This scenario is in contrast with the
greater concentration gradient formed between the IBM and the OM when ANTs are
located in the IBM what is facilitating ATP transport into the cytosol. These find-
ings quantitatively support the importance of sub-organelle gradients suggested in the
literature (Mannella, 2000).

To test whether this buffering mechanism might have an effect on synaptic phys-
iology and explain the distinct morphology of brain and specifically of synaptic mi-
tochondria, I subsequently simulated the mitochondrion in its synaptic environment
with a variable cytosolic ATP consumption reflecting changes during synaptic trans-
mission. These simulations have shown that ATP buffering in cristae caused by the
non-equilibrium induced gradients is a mechanism to buffer large energy demand peaks.

I finally used my detailed model to calculate the ATP production rate of the consid-
ered mitochondrion for the different scenarios. The resulting rates of ∼105 molecules
of ATP per second are in agreement with my theoretical estimation based on the ANT
translocation rate and the ANT density in mitochondria (See Appendix A, Section 8.7).
These values are further supported by independent approximations found in the litera-
ture (Babu et al., 2017; Attwell and Laughlin, 2001) as summarized in Table 7.1 where
minor deviations to the calculations by Attwell and Laughlin (2001) would rematch for
firing rates of 30 Hz. The main mechanism how mitochondria decode the firing rate
is probably Ca2+ influx through the mitochondrial calcium uniporter (MCU) (Kirichok
et al., 2004). Incorporating the MCU and the effect of Ca2+ on the membrane po-
tential in a future version of the model will allow for more detailed predictions of ATP
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production rates in dependence on neuronal activity.

#ATPs/sec Reference
0.56 · 105 MCell simulations (ANTs in the CM)
0.72 · 105 MCell simulations (ANTs in the IBM)
0.95 · 105 ODE simulations
4.60 · 105 theoretical estimation
7.00 · 105 Attwell and Laughlin (2001)
6.02 · 105 Babu et al. (2017)

Table 7.1: Estimation of ATP production in synaptic mitochondria.

Overall, my systematic approach with the detailed mitochondrial model has shown
that the concrete morphology of the presynaptic mitochondrion induces anomalous
diffusion but has not per se an impact on ATP production when the system relaxes
towards an equilibrium steady state (Figure 6.2). In contrast, the spatial arrangement
of ANTs under non-equilibrium conditions induce sub-organelle gradients that led to
a significant effect on the cytosolic ATP concentration (Figure 6.3F). Physiological
simulations of the synaptic dynamics suggest that this buffering effect might be a
mechanism to smear out the variable energy demands (Figure 6.6) and may therefore
increase robustness and adaptability of synapses and explain the distinct morphology
of brain mitochondria.
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Mitochondrial genes and its
temporal organization





Chapter 8

Mitochondrial gene expression

In the following explorative approach, I investigated the mitochondrial dynamics on
the more global scale by analyzing the regulation of mitochondrial gene expression
during the circadian cycle. Hence, on this slower time scale of hours, the resulting
adaptation is on the network structure level. In particular, the question of metabolic
adaptation was addressed by investigating these structural changes in dependence on
feeding conditions and their relation to cellular functionality.

8.1 Introduction

After years of evolution, mammals and other organisms have adapted their behavior and
physiology to the light and dark cycles (Gerhart-Hines and Lazar, 2015). This temporal
adaptation of behavioral and physiological processes might provide advantages to better
adjust to the foreseen daily changes of the environment (Gerhart-Hines and Lazar,
2015). Through a molecular mechanism based on a transcription/translation feedback
loop present in all cells of our body, the pace is maintained and e.g. in rodents up to
10% of genes exhibit daily rhythms in expression (Panda et al., 2002a).

The master circadian clock in mammals is the suprachiasmatic nucleus (SCN) of
the hypothalamus. It regulates behavioral and physiological circadian activity and also
orchestrates the activity of peripheral tissue. Projections of melanopsin retinal gan-
glion cells to the SCN translate light information and can photo-entrain the master
clock (Panda et al., 2002b). Large fractions of the hypothalamic SCN and liver tran-
scriptome exhibit daily rhythms in a tissue specific manner (Panda et al., 2002a). While
the SCN is rather insensitive to perturbations of the feeding pattern, the rhythms in the
liver are determined by the interplay of the cell-autonomous molecular clock and the
feeding pattern (Vollmers et al., 2009). Moreover, a compromised circadian phenotype
can be rescued by a time-restricted diet (Vollmers et al., 2009). Thus, metabolism is
believed to be temporally coordinated to maintain metabolic homeostasis (Zarrinpar
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et al., 2016), its disregulation is associated with a number of metabolic diseases (Zarrin-
par et al., 2016).

To understand in more detail how the temporal organization of metabolism is
fulfilled, I analyzed gene expression dynamics of liver cells in mice under ad libitum
and time-restricted feeding conditions with a particular focus on mitochondria related
genes. For this purpose, I filtered the transcriptome data sets for genes listed in
MitoCarta – a repository of genes encoding for mitochondria localized proteins (Calvo
et al., 2015). For functional analysis, I generated co-expression networks and genes
with similar co-expression pattern were grouped by a hierarchical clustering algorithms.
Finally, I studied the temporal organization of these genes and mapped it to their
associated role using the functional annotations provided in MitoCarta.

8.2 Material and Methods

In the past, patterns of hepatic gene expression of mice under different feeding con-
ditions were analyzed as described previously (see (Vollmers et al., 2009) for more
details). In brief, animals were first entrained under light-dark conditions for 14 days,
and subsequently released in darkness for 15 days. Sample collection started at day
16 and was taken every hour for 24 hours. The animals were either fed ad libitum
(with permanent food availability) or during a restricted time of 8 hours during the
light phase. Total RNA was pooled form at least three livers and transcript levels
were quantified by qPCR (Vollmers et al., 2009). From the whole transcriptome, I
selected those genes encoding for mitochondrial proteins (Calvo et al., 2015) ∼ 1000
transcripts.

For further investigation, I normalized the transcripts by first taking the logarithm
of base 2 of the expression and afterwards median-normalizing to 1. To identify similar
gene expression profiles, I computed gene-gene correlation matrices using Pearson’s
correlation coefficient. These correlations were subsequently used as a distance matrix
to cluster genes with similar expression profile by a hierarchical clustering algorithm
implemented in the Python library Scipy. Similar tools known in the literature as co-
expression matrices (Zhang and Horvath, 2005; Horvath et al., 2006) have been used
in the past to analyze system-level functionality of genes.

From the gene-gene correlation matrix, I generated weighted networks where nodes
are represent by genes and weighted connections are described by correlations between
genes. A variable correlation threshold was used to analyze the main connected compo-
nent of the network. All network analysis was done using Networkx, a Python package
to create, adapt and study complex networks.

The phases of gene expression were determined by the cosine-wave fitting algorithm
COSOPT which also calculate parameters characterizing the goodness of the fit to a
circadian pattern of expression (Panda et al., 2002a; Straume, 2004).
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8.2 Material and Methods

Several functional labels can be associated with mitochondrial proteins such as
proteins associated to membrane transport, to structure, to the electron transport
chain, to apoptosis, to the TCA cycle, to ROS metabolism, to fatty acids and ketone
metabolism, to mobility, to iron metabolism, to CoQ synthesis, to ribosomes or to tRNA
synthetase. An attempt to label theses ∼ 1000 genes was made using the annotations
found in MitoCarta, together with a number of different literature sources (Pfanner
et al., 2014; Zick et al., 2009; Nilsson et al., 2009; Lill et al., 2012; MacAskill and
Kittler, 2010; Hoppins et al., 2011; Arroyo et al., 2016; Scarpulla, 2011; Johnson
et al., 2007; Scheffler, 2009) and the PDmap.
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8.3 Explorative results

To investigate whether mitochondrial metabolism exhibits a coordinated order in re-
lation to circadian control, the normalized expression data for the different feeding
conditions were first visualized. The resulting heatmaps of the temporal hepatic gene
expression are displayed in Figure 8.1 for ad libitum feeding (A) and time-restricted
feeding (B). The white and black bars at the bottom represent the time of the day and
red bars indicate food availability. The order of the genes is different for each represen-
tation due to the independent hierarchical clustering using the gene-gene correlation
matrix as distance measure.
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Figure 8.1: Dynamics of hepatic gene expression in mice under different feeding conditions. A) Ad
libitum feeding (ad lib) and B) daytime-restricted feeding (trf). Expression is shown over time where
white bars indicate daytime, black bars indicate nighttime and red bars indicate food availability. The
order of the genes is different for each representation due to the independent hierarchical clustering.

By a first visual inspection, the temporal organization of the transcripts under time-
restricted feeding conditions seems to exhibit a stronger co-regulation (Figure 8.1,B).
To quantify this observation, thresholded gene-gene correlation matrices were plotted
(Figure 8.2) with ordering accordingly to the indexes given by the hierarchical clustering
(same order as Figure 8.1). Here, only the values of the co-expression matrices larger
than 0.5 or smaller than -0.5 were plotted.

To continue with the analysis of the co-expression matrices, corresponding net-
works were generated with genes representing nodes and links connecting them if the
corresponding correlation is higher than a threshold (Figure 8.3). There are several
ways to characterize these networks. A very simple approach is to count the total
number of connections present in the network. For instance, for a threshold of 0.8, the
total number of connections is 10990 under time-restricted feeding and 7872 for ad
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Figure 8.2: Thresholded gene-gene correlation matrices for animals under different feeding condi-
tions. A) for ad libitum feeding (ad lib) and B) daytime-restricted feeding. As before the order is
different for each network due to the independent hierarchical clustering of the corresponding matrices.
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Figure 8.3: Network representation for the thresholded (higher than 0.9) co-expression matrices for
ad libitum feeding (A) and for day-time restricted feeding (B).
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libitum feeding (∼ 30% less connections). Another approach is to quantify the size of
the main connected component. In particular, I analyzed the size (number of nodes)
of this network for different values of the threshold (Figure 8.4). As the threshold is
increased the network starts to fall apart, groups of nodes get disconnected because
links are removed. The main connected component is the larger cluster of nodes that
remain linked. Since these are co-expression matrices the size of this main component
speaks about the global organization of the expression. Under time-restricted feeding
conditions, mitochondrial genes show consistently stronger temporal organization.
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Figure 8.4: Relative number of nodes in the main component as a function of the correlation
threshold for ad libitum feeding conditions (in blue) and for time-restricted feeding conditions (in
red).

To investigate the crosstalk between circadian regulation and metabolic activity,
the expression was classified with respect to its specific dynamics. From Figure 8.2B it
becomes apparent that five gene clusters obey a similar expression dynamics. For these
groups of genes, I analyzed the phase distribution for the different feeding conditions.
This analysis exhibited that food can have a significant impact on the phase of some
genes (Figure 8.5) and shift the phase of several transcripts (Figure 8.5, upper panels)
while others were unaltered (Figure 8.5, lower panels).

A naturally following question was then to analyze the functional annotations of
genes in each of these groups. In Figure 8.6 the different resulting functional groups
are shown in rows and columns give the percentage of labeled genes in each dynamical
group (obtained from the clustering). For instance, by looking at the first row, the red
and green cluster together consists of 60% of the membrane transport proteins which
were identified to be the most sensitive to food conditions. In the third row, the red
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Figure 8.5: Phase distribution of genes separated accordingly to the clusters obtained in Figure 8.2B
for both feeding conditions.

and green cluster have 80 % of genes in the ribosomal group.

8.4 Discussion and Conclusions

In this explorative analysis, I found distinct temporal patterns of expression for many
genes under different feeding patterns. Mitochondrial genes exhibited the tendency
of stronger coregulation under time-restricted feeding condition what is accompanied
with a more robust global organization.

Furthermore, the explorative analysis indicates some functional relation in depen-
dence to the temporal organization. Transcripts which were more responsive to feeding
conditions seem to be related to membrane transport (60%), encoding for mitochon-
drial ribosomes (80%), related to mitochondrial structure and apoptosis (40%) or
encoding for components of the ETC (50%).

In the future the robustness of these results will be tested against different distance
measures and clustering algorithms.
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Figure 8.6: Functional annotations of genes organized in the five dynamical clusters obtained in
Figure 8.2B.
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General conclusions

Energy is ubiquitously required to maintain life. Cells extract energy from their envi-
ronment and make it available for physiologically relevant processes in form of ATP by
glycolysis and oxidative phosphorylation. As such, mitochondria play an essential role
in metabolism and cell signaling in health and disease.

A compelling open question from the spatial systems biology perspective is how
mitochondria related structures affect the function on different scales. On the slower
time scale, the adaptation of protein content may influence the energetic machinery
by changing the overall molecular interactions. On the faster time scale, the formed
subcompartments are speculated to provide an advantage for ATP production but a
mechanistic and quantitative framework is still lacking.

The complexity of the underlying regulatory processes leads to the need for math-
ematical analysis and modeling to obtain mechanistic insights. In general, mathemati-
cal models can serve as tools to test suspected mechanisms that might control cellular
behavior. Moreover, mathematical models can fill gaps that current experimental tech-
nologies cannot investigate. These approaches are the essence of this work. Electron
tomography can resolve the internal structure of mitochondria at high resolution and
proteins can be tagged and localized with high precision (Shu et al., 2011; Perkins,
2014), but it only generates static images that cannot give dynamic information. To fill
this gap, I built an in silico representation of a mitochondrion using three-dimensional
morphologies from electron tomography combined with molecular dynamic models of
the main ATP producing components and integrated these in the agent-based reaction
diffussion simulator MCell. With this mechanistic approach, I found that under phys-
iological conditions, the spatial organization of ANTs has a significant effect on ATP
availability within the cytosol. Careful analysis of the dynamics revealed that this effect
is mainly driven by small concentration gradients within the mitochondrion, which led
to ATP buffering in the cristae structure and may contribute to cellular robustness.
The details of these findings are found in Chapter 7.

The effect of the mitochondrial membrane potential has been neglected in this first
version of the model. This simplification is not due to the disregard of its importance
but based on general technical challenges of electro-diffusion which are just now ad-
dressed in the research field. To properly include the effect of electro-diffusion, the
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Nernst-Planck equation has to be solved in the specified geometry. This would bring
us to solve partial differential equations in the complex mitochondrial morphology with
finite methods – a rather challenging scenario. Furthermore, this approach would imply
the assumption of continuous concentrations of molecules in the finite geometry which
is a very doubtful scenario due to low number of molecules. These issues point to the
general challenges in the field of spatial systems biology on the subcellular level where
in future such issues should be tackled for instance by hybrid models. But currently
there is not yet an established theoretical foundation for these approaches available.
As an intermediate step, ignoring the spatial resolution of mitochondria to calculate
the membrane potential by employing an ODE formalism could give at least a first
estimation for the movement of ions across the mitochondrial membrane.

Two major players of mitochondrial dynamics were left out in this version of model:
the electron transport chain (ETC) and the mitochondrial calcium uniporter (MCU). In
principle, the elements of the ETC could be included following the modeling approach
of Magnus and Keizer (1997), and the dynamic of the MCU could be also captured
as described in Section 4.5. However, without explicit consideration of the membrane
potential these processes cannot be coupled meaningfully and mechanistically to the
dynamics. Furthermore, the available model of the MCU does not capture the much
faster ion channel mechanism of the recently characterized dynamics (Kirichok et al.,
2004) and may therefore introduce artifacts. Therefore, a next step is to develop an
appropriate MCU model and to include this together with an ODE based estimation
of the mitochondrial membrane potential in a next version of the model.

In the second part of this dissertation, I explored changes of the underlying reg-
ulatory network of mitochondrial protein content on the slower time scale of hours.
This data-driven approach revealed distinct temporal patterns of mitochondrial gene
expression under different feeding conditions. The analysis indicated a link between
these structural network modifications and physiological functionality in dependence of
the temporal regulation of subgroup of genes. Interestingly, a more robust organization
was found when animals were fed in a time-restricted manner. Further validation and
testing of the robustneess of these preliminary results are required. In particular, the
reproducibility of the results with other distance measures besides Pearson’s correla-
tion. In addition the effect of genetic interactions (epistasis) within and between these
groups should be investigated, also in context of not mitochondrial related genes.

For a more complete understanding of mitochondrial dynamics, the embedding
of these investigations into further integrative multiscale perspectives would be com-
pelling to understand organism regulation. In particular, next steps should study if
the temporal patterns are conserved for mitochondria in different tissues or if these
patterns are tissue specific? Time restricted feeding has been shown to have a sig-
nificant impact on health (Zarrinpar et al., 2016) but the underlying mechanisms are
not well characterized. Answering the above questions could significantly contribute to
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the identification of principles in metabolism on temporally at locally organized scales.
This will be of further relevant since in recent years significant evidence has shown the
importance of circadian rhythms for health (Panda, 2019).

Multiscale models are needed to integrate experimental results at different temporal
and spatial scales and to dissect the mechanisms that control system behavior. Such
models can produce in silico scenarios to test different hypothesized mechanisms, but
most importantly they should fill the gap current experimental technology leaves, by
zooming in and out of the dynamics, changing scales, coarse-graining the dynamics
and giving distinct views of a dynamical phenomena. In the modeling field, no such
an approach is currently available. We can model different scales with different com-
putational strategies but there is no tool that combines these scales based on general
principles and would allow us to have different representations in the same in silico
experiment. Efforts are directed to this goal from the theoretical and computational
perspective to bridge –for instance– molecular dynamics simulations to Markov state
models. The development of these simulation tools and theory would allow us to
merge the two parts of this dissertation by including the slower scale of a variable
protein content into intra-mitochondrial dynamics. Therefore, the here investigated
scales and developed tools will further trigger new scientific approaches towards this
active research direction.
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Appendix A

8.5 Additional figures for part I

Here, we include all variables of the model that are not shown in the main section,
for both averaged traces of MCell simulations and the corresponding solution of the
system of ODE. Figure 8.7 A-H exhibits all the variables of the ANT model for the
isolated scenarion of equilibration and panels I-N show all the variables of the ATP
synthase model.

Analogously, Figure 8.8 exhibits the variables for the non-equilibrium condition
induced by a clamped ADP concentration at the surface of the OM where Figs. 8.8 A-
H shows variables for the ANT model and panels I-N of the ATP synthase model.
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Figure 8.7: Isolated scenario of dynamic equilibration does not exhibit a strong dependence on the
spatial arrangement. Comparison of molecule numbers between averaged trajectories of 10 different
initial conditions in MCell and the results obtained with the ODE system. Simulations started with
a a large number of ADP molecules outside (IMS and ICS) that were subsequently phosphorylated.
ATP molecules accumulate outside due to the lack of VDACs. ANT molecules were placed in three
different locations: ANTs homogeneously distributed in the IBM (in red), ANTs colocalized with
ATP synthase at the most curved region of the CM (blue) and ANTs in both locations (magenta).
The results of the ODE system is shown in black. Panel A-H show the variables of the ANT model
and panels I-N the variables of the ATP synthase model. The different arrangements of ANTs do not
exhibit significant differences with the corresponding ODE system.
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Figure 8.8: Non-equilibrium dynamics of the synaptic mitochondrion driven by clamped ADP con-
centration and ATP export. Averaged molecule number trajectories for the distinct ANT localizations
with ANTs homogeneously distributed in the IBM (red), colocalized with ATP synthase at the most
curved region of the CM (blue) or in both locations (magenta) were compared with results of the
ODE system. This comparison exhibits most significant spatial effects for colocalization (blue). In
panel A-H, we show variables of the ANT model, and in panels I-N variables of the ATP synthase
model.
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8.6 Experimental data-Reproducing results

Metelkin et al. (2006) developed a model of the ANT based on the data from Kraemer
and Klingenberg (1982). In this publication exchange of adenine nucleotides were
measured on reconstituted carriers from heart mitochondria on liposomes. The data
need to be modified to get turnover rate vs concentration, Figures 8.9,8.10,8.11A (in
the original paper flux vs rate/concentration is plotted), and the units need also to be
modified. A number of typos were suspected in Metelkin et al. (2006); therefore, a
script was written to extract the experiemental data points systematically from Kraemer
and Klingenberg (1982), Figure 8.9,8.10,8.11B. Afterwards, the data is plotted as
turnover rate vs concentration, doing the inverse of the x coordinate and mutliplying
by the rate, the y coordinate is modified by multiplying by 0.06 (dividing by 2 times
the molecular weight of the ANT). After these modifications, the turnover rate vs
concentration is obtained in units of min−1, Figure 8.9,8.10,8.11C. A typo was found in
the respective figures in Metelkin et al. (2006), reproduced here Figure 8.9,8.10,8.11D,
the units of the turnover rate were written as sec−1 but are min−1. Another typo was
found in Figure 8.10C, line 1, corresponds to a membrane potential of 0 mV, and is
labelled as 180 mV in Metelkin et al. (2006). Similarly with line 2, it corresponds to a
membrane potential of 180 mV, but is labelled as 0 mV in Metelkin et al. (2006).

The next step was to reproduce the results using the model and parameter values
from Metelkin et al. (2006)
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A B

C D

Figure 8.9: Experimental data. A) ADP uptake rate vs rate/[ADP], figure taken from Kraemer and
Klingenberg (1982) (Figure1). ADP uptake rate was measured for different concentrations of ATP
outside (To) and different values of the membrane potential ∆ψ = 180, 0 mV. B) Extracted data
point from A), black, light grey and yellow points, ADP uptake rate for a membrane potential of ∆ψ
180 mV, and ATP concentrations outside the liposomes of 0, 100, 400 µM respectivelly. Green, grey
and red points ADP uptake rate for membrane potential of ∆ψ 0 mV, and concentrations of To of
0, 20, 100 µM respectivelly. For a concentration of ADP and ATP inside the liposomes of 5 mM. C)
The data is transformed to obtain turnover rate vs concentration, and the units modified, dividing by
2 times the molecular weight, the obtained turnover rate is in units of min−1. D) Reproduction of
Figure 5b from Metelkin et al. (2006). A typo was found in the units of the turnover rate in Metelkin
et al. (2006).
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∆ ψ = 180 mv

∆ ψ = 0 mv

A B

C D

Figure 8.10: Experimental data. A) Adenine nucleotide (ANP) uptake rate vs rate/[ANP], figure
taken from Kraemer and Klingenberg (1982) (Figure 2A). ADP uptake was measured for membrane
potentials of ∆ψ = 180 and 0 mV, and for no ATP inside and outside the liposomes. ATP uptake rate
was also measured for the same membrane potential, with no ADP present. B) Extracted data points
from A), yellow and green points, ATP uptake rate vs rate/[ATP] for a membrane potential of ∆ψ 0
and 180 mV, and no ADP concentration. Black and grey points, ADP uptake rate vs rate/[ADP], for
a membrane potential of ∆ψ 0 and 180 mV, and no ATP concentration. C) The data is transformed
to obtain turnover rate vs concentration, and the units modified, dividing by 2 times the molecular
weight, the obtained turnover rate is in units of min−1. D) Reproduction of Figure 5a from Metelkin
et al. (2006). Two typos were found here, one is, as before, the units of the turnover rate that are
in min−1 not sec−1, and the other is related with the values of the membrane potential. Line 1,
corresponds to a membrane potential of 0 mV, and is labelled as 180 mV in Metelkin et al. (2006).
Similarly with line 2, it corresponds to a membrane potential of 180 mV, but is labelled as 0 mV in
Metelkin et al. (2006).
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A B

C D

Figure 8.11: Experimental results. A) Adenine nucleotide (ANP) uptake rate vs rate/[ANP], fig-
ure taken from Kraemer and Klingenberg (1982) (Figure 2B). ADP uptake rate was measured for
membrane potentials of ∆ψ = 180 and 0 mV, and for a concentrations of ATP outside equal to the
ADP concentration, and ADP and ATP concentrations inside the liposomes of 5 mM. ATP uptake
rate was also measured for the same conditions. B) Extracted data points from A), yellow and green
points, ATP uptake rate vs rate/[ATP] for a membrane potential of ∆ψ 0 and 180 mV respectivelly,
and ADP concentration equal to the ATP concentration. Black and grey points, ADP uptake rate
vs rate/[ADP], for a membrane potential of ∆ψ 0 and 180 mV, and ATP concentration equal to the
ADP concentration. C) The data is transformed to obtain turnover rate vs concentration, and the
units modified, dividing by 2 times the molecular weight, the obtained turnover rate is in units of
min−1. D) Reproduction of Figure 5c from Metelkin et al. (2006).
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8.7 Estimation ATP production in synapses

Based on the turnover rate of ANTs and the number of translocators in the synaptic
mitochondrion, we estimated the number of ATP molecules that can be exported to
the cytosol per second (Table 8.1). The product of the turnover rate times the number
of ANTs gives the maximum number of ATP molecules that can reach the cytosol per
second if the ANTs are not the limiting step. The total amount of ANT proteins in
synaptic mitochondria has been estimated to 1.37 nmol/mg protein (Chinopoulos et al.,
2009) assuming 1 nmol/mg protein ≈ 1.25 mM (Magnus and Keizer, 1997) leading to
a concentration of 1.71 mM. The inner membrane has a volume of 0.021 µm3 what
corresponds to∼ 2·104 ANTs within the mitochondrion. This number of ANTs working
at a turnover rate of 23 s−1 exports 4.6·105 ATPs/s. We further estimated the number
of ATP produced by non-synaptic brain mitochondria (Table 8.1). This value critically
depends on the volume of the mitochondria and, since no complete reconstructions
are available in the literature, this is only a rough estimation based on an assumed
cylindrical shaped mitochondria with a radius of 0.3 µm and length 1 µm (Perkins
et al., 2001).

Tissue Rate(s−1) Density(nmol/mg prot) Concentration (mM) Volume (µm3) Nr.ANTs ATPs/sec ATP moles/sec
Synapse 23 ? 1.37? 1.71 ‡ 0.021 † 2 · 104 4.6 · 105 0.75 · 10−18

Non-synapse 22 ? 1.44 ? 1.79 ‡ 0.28 3 · 105 6.6 · 106 1.1 · 10−17

Table 8.1: Estimation ATP production in brain tissue.
? Chinopoulos et al. (2009), ‡ 1 nmol/mg prot ≈ 1.25 mM (Magnus and Keizer, 1997), † our estimation.

The number of ATP molecules produced by a synaptic mitochondrion coincides
with the estimations of Attwell and Laughlin (Attwell and Laughlin, 2001) explained
above. Moreover, a similar value of 6.02 ·105 ATP molecules per second has been also
estimated for hair cell mitochondria (Babu et al., 2017). In Table 7.1 we compare the
different estimations with the results of our MCell and ODE simulations.
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8.8 Time scales estimation

We calculate the spatial time scales for a diffusion coefficient of D = 1.5 · 10−7cm2s−1

by considering the characteristic length scales as the diameter of cristae junctions ∼
25.5 nm 1 (L1) and the distance from the center of the mitochondrion to the IBM ∼
0.13 µm (L2). The time required to transverse these distances is τ and is calculated
as τ = L2/6D.

τ1 =
L2

1

6D
∼ 7 · 10−6s

τ2 =
L2

2

6D
∼ 2 · 10−4s

A number of reactions occur in the ANT model. We calculated the corresponding
time scales of some of the reactions to compare with the temporal scales of diffusion.
The time scales of the forward reactions are denoted by τf and for the backward
reactions by τb accordingly to a previous report (Andrews and Arkin, 2006). For these
calculations, we used the initial concentrations. As before L represents the free protein,
Di denotes ADP molecules from the matrix side and Do ADP from the inner boundary
membrane and cristae side, called outside.

Di + L
 LD τf ∼ 2.4 · 10−4s, τb ∼ 2.5 · 10−5s

Do + L
 DL τf ∼ 4 · 10−4s, τb ∼ 1 · 10−2s

Ti + L
 LT τf ∼ 1.6 · 10−3s, τb ∼ 2.5 · 10−5s

To + L
 TL τf ∼ 27s, τb ∼ 5 · 10−3s

A similar analyzes has been done for the reactions of the ATP synthase model.

Eo 
 EH3 τf ∼ 1 · 10−3s, τb ∼ 1 · 10−3s

Di +H3EO 
 H3ES τf ∼ 3.1 · 10−1s, τb ∼ 1 · 10−2s

H3ES 
 Ti +H3E τf ∼ 2 · 10−4s, τb ∼ 1.8 · 10−2s

Different time scales are found for the reactions of the ANT and ATP synthase
models that spread over a large range but most of them are between 1 · 10−5 s and
1 · 10−2 s (Figure 8.12). We graphically represent the time scales of the reactions
(blue dots) and the temporal scales of diffusion (black lines). They overlap for both

1The diameter of the cristae junctions is an average over 25 junctions measured in the recon-
structed mesh.
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Figure 8.12: Graphical representation of the temporal scales. The black lines represent the temporal
scales of diffusion, upper line for a diffusion coefficient of 1.5·10−7cm2/s, and the lower line for a
diffusion coefficient of 1.5·10−8cm2/s. The blue dots are a representation of the temporal scales of
the reactions. Decreasing the diffusion coefficient brings the temporal scales closer.

considered diffusion coefficients but for the smaller diffusion coefficient the scales get
closer together and diffusion limitation becomes more predominant.

94



8.9 Details of MCell simulations

Appendix B

8.9 Details of MCell simulations

The MCell model is composed of 9 MDL modules: A main file with the global simula-
tion specifications (Scene.main.mdl), the geometry file where the geometry is defined
(Scene.geometry.mdl), a file where molecules are introduced (Scene.molecules.mdl),
a file where the reactions are set (Scene.reactions.mdl), a file with all the parameter
values used (Scene.parameters.mdl), the output file (Scene.rxn_output.mdl), the
surface classes file (Scene.surface_classes.mdl) and the modify surface region file
(Scene.mod_surf_regions.mdl). A useful reference guideline –giving details of each
module– can be found here MCell Quick Reference Guide.

Main file

Below is included a part of the main file, where the global simulation parameters are
specified, i.e. the total number of iterations, the time step (in seconds), if check-
pointing the simulation this is also specified in this file (in this example the simu-
lations will stop after 5 days running), the spatial partitioning is included, all the
others MDL files that need to be read are called here (e.g. Scene.parameters.mdl,
Scene.molecules.mdl, Scene.reactions.mdl, etc), afterwards the objects that are part
of the simulations are determined. Finally the initial location of the molecules is spec-
ified, in this example rel_d_mo number of D molecules are released inside the object
inner_with_cristae_final.

ITERATIONS = 1e8

TIME_STEP = 1e-9

VACANCY_SEARCH_DISTANCE = 10

CHECKPOINT_OUTFILE = "chkpt_10_1"

CHECKPOINT_REALTIME = 5:0:0:0

INCLUDE_FILE = "Scene.initialization.mdl"

95

https://mcell.org/documentation/index.html


Appendix

PARTITION_X = [[-0.400000005960464 TO 0.400000005960464 STEP 0.00999999977648258]]

PARTITION_Y = [[-0.349999994039536 TO 0.349999994039536 STEP 0.00999999977648258]]

PARTITION_Z = [[-0.400000005960464 TO 0.400000005960464 STEP 0.00999999977648258]]

INCLUDE_FILE = "Scene.parameters.mdl"

INCLUDE_FILE = "Scene.molecules.mdl"

INCLUDE_FILE = "Scene.surface_classes.mdl"

INCLUDE_FILE = "Scene.reactions.mdl"

INCLUDE_FILE = "Scene.geometry_syn_resc.mdl"

INCLUDE_FILE = "Scene.mod_surf_regions.mdl"

INSTANTIATE Scene OBJECT

{

inner_with_cristae_final OBJECT inner_with_cristae_final {}

outer_membrane_final OBJECT outer_membrane_final {}

syn OBJECT syn {}

rel_d_m RELEASE_SITE

{

SHAPE = Scene.inner_with_cristae_final[ALL]

MOLECULE = D

NUMBER_TO_RELEASE = rel_d_mo

RELEASE_PROBABILITY = 1

...

}

Geometry

In the geometry module all the objects and regions included in the simulations are
defined, as a set of vertices, edges and surfaces.

inner_with_cristae_final POLYGON_LIST

{

VERTEX_LIST

{
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[ -0.000546309340279549, -0.107638701796532, -0.378262519836426 ]

[ -0.00388858979567885, -0.11393629014492, -0.380676567554474 ]

[ -0.00802061147987843, -0.108226649463177, -0.38147896528244 ]

[ -0.00697485264390707, -0.099134773015976, -0.377753883600235 ]

[ 0.00244327099062502, -0.102245070040226, -0.370583981275558 ]

[ -0.00312606617808342, -0.120454244315624, -0.37895792722702 ]

[ -0.012694513425231, -0.118293903768063, -0.383267849683762 ]

[ -0.00239189038984478, -0.0949208214879036, -0.369176000356674 ]

[ -0.0165454987436533, -0.105396278202534, -0.379870444536209 ]

...

DEFINE_SURFACE_REGIONS

{

curva

{

ELEMENT_LIST = [1735, 1944, 8212, 8777, 9140, 29757, 29783,

29807, 29809, 29810, 29833, 29834, 29835, 29853, 29854,

29855, 29856, 29873, 29874, 29875, 29876, 29877, ...]

}

}

Molecules

In the file Scene.molecules.mdl all the particles in my model are set. In this extraction of
my model, ATP (T), ADP (D) and E−3(Eo) molecules are specified, and the diffusion
coefficient set (in units of cm2s−1).

DEFINE_MOLECULES

{

T

{

DIFFUSION_CONSTANT_3D = 1.5e-7

}

D

{

DIFFUSION_CONSTANT_3D = 1.5e-7

}

Eo

{

DIFFUSION_CONSTANT_2D = 0

}

...
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}

Reactions

All the reactions taking part in the model are set in its own module (an extraction is
shown below). As before, L represents the free ANT protein, TL, LT, DLT, etc. are
bimolecular or trimolecular states of the protein. On brackets the rate of the reaction
is specified (in units of M−1s−1 and s−1 for bimolecular and unimolecular reactions
respectively).

DEFINE_REACTIONS

{

L’ + T, <-> LT’ [>k2_on, <k2_off]

LT’ + D’ <-> DLT’ [>k1_on, <k1_off]

L’ + T’ <-> TL’ [>k5_on, <k5_off]

TL’ + D, <-> TLD’ [>k6_on, <k6_off]

TLD’ -> DLT’ [kcp] : counter_prod

...

}

Parameters

In the optional file Scene.parameters.mdl all the values of the variables set can be
specified.

/* DEFINE PARAMETERS */

a12 = 24 /* units=s-1 */

a43 = 8e5 /* units=M-1s-1 */

a56 = 1e3 /* units=s-1 */

a45 = 1e2 /* units=s-1 */

a54 = 1e2 /* units=s-1 */

a21 = 40 /* units=s-1 */

a65 = 924 /* units=s-1 */

a34 = 1e2 /* units=s-1 */

a32 = 5e3 /* units=s-1 */

a23 = 4e6 /* units=M-1s-1 */

a16 = 452457 /* units=s-1 */

a61 = 11006 /* units=s-1 */

a25 = 1.17e-12 /* units=s-1 */

a52 = 2.0 /* units=s-1 */

rel_eo_mo = 7100 /* units=number_of_proteins */

...
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Output

In the file Scene.rxn_output.mdl, the output from the simulations is established,
in this example -in the seventh line- the number of ATP molecules inside the object
inner_with_cristae_final is tracked. The number of reaction happening can also
be tracked, the number of time a species hits a surface can also be tracked, etc.

INCLUDE_FILE = "./my_seed.mdl"

sprintf(param1,"%05g",my_se)

REACTION_DATA_OUTPUT

{

STEP=1e-7

{COUNT[T,Scene.inner_with_cristae_final]}=> "./react_data/param1_" & param1 & "/T.inner_with_cristae_final.dat"

{COUNT[T,Scene.outer_membrane_final]}=> "./react_data/param1_" & param1 & "/T.outer_membrane_final.dat"

{COUNT[D,Scene.inner_with_cristae_final]}=> "./react_data/param1_" & param1 & "/D.inner_with_cristae_final.dat"

{COUNT[D,Scene.outer_membrane_final]}=> "./react_data/param1_" & param1 & "/D.outer_membrane_final.dat"

Surface classes

In the file Scene.surface_classes.mdl, properties of a surface can be defined trans-
parent, absorptive, reflective or a concentration can be clamped. In this example, I
campled the concentration of ADP molecules to 0.9 mM.

DEFINE_SURFACE_CLASSES

{

Surface_Clamp

{

CLAMP_CONCENTRATION D, = 0.9e-3

}

}

Modified surface regions

If a surface class has been generated, this property can be assing to an object in the
file Scene.mod_surf_regions.mdl. In my simulations, the concentration of ADP
molecules was clamped to the outer membrane.

MODIFY_SURFACE_REGIONS

{

outer_membrane_final[ALL]

{

SURFACE_CLASS = Surface_Clamp
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}

}
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