
1 INTRODUCTION 

In many technical applications the dynamic behaviour of structures can be characterized by a 
linear model. When adapting a peal of bells to the natural frequency of a bell tower for exam-
ple, the tower is regarded as a SDOF system (single degree of freedom) with constant natural 
frequency. This model is supposed to fulfill the requirements of a linear SDOF system for a 
sufficient distance between excitation frequency (peal of bells) and the natural frequency of the 
tower. As well, the strings of a piano are regarded as linear approximately, because the nonline-
arities have only a very small part in the oscillation so that they are not audible. 

Whenever nonlinear effects appear more strongly, a linear description of the system is no 
longer sufficient. These nonlinear effects are often not wanted, since the analysis of measure-
ment data distorted by nonlinearities is quite difficult. However, in many cases nonlinearities 
can be a benefit for technical applications. An example is the friction damping through friction 
elements to turbine blades or in interstices of machine tools. Nonlinearities in stiffness and in 
damping, which are based on structural properties, can be used to identify the cause of their ap-
pearance e.g. cracks or damage due to corrosion. Often, a combination of different types of 
nonlinearities makes analyses difficult. In case of damage in reinforced concrete structures the 
following examples can be mentioned: friction in cracks, change in stiffness due to the alter-
nately opening and closing of cracks under dynamic excitation or amplitude dependent material 
behaviour. 
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ABSTRACT: The detection of damages in civil engineering structures and bridges in particular 
is mainly done by visual examination. However, defects as for instance partial rupture of a pre-
stressing cable or fatigue cracks in reinforcement can not be visually observed. It is well known 
that damage changes dynamic structural parameters like eigenfrequencies, eigenmodes and 
damping. However, the sensitivity to small damages is sometimes low. Therefore, as an alterna-
tive the occurrence and evaluation of non-linear dynamic behaviour is considered. The basic 
idea is that non-linear dynamic effects increase with growing cracks under forced excitation. 
The implementation of this idea in the regular inspection program of bridges presupposes exact 
knowledge of the eigenfrequencies of the undamaged structure that are also supposed to be 
force dependent. This paper presents the results of an experimental approach with three rein-
forced concrete beams of different damage states investigating the non-linear behaviour due to 
the excitation force. 



2 THE BASICS OF NON-LINEARITY 

Assuming linear behaviour of a harmonically excited structure, the differential equation (1) de-
scribes the vibration adequately, where M is the mass matrix, C the damping matrix, K the stiff-
ness matrix and F the excitation force. 
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Disturbances in the structure like cracks lead to non-linear stiffness- and damping matrices. 
In this case the coefficients in the equation of motion are dependent on the vibration amplitude, 
velocity and thus on the excitation force. 

Worden et al. (2001) and Dimitriadis et al. (2006) present an overview of the most studied 
types of nonlinearities. Much research is driven by the aerospace sector. The methodology is 
applicable to other domains of engineering. A distinction has to be made between nonlinearities 
depending on displacement and nonlinearities depending on velocity. Figure 1 shows common 
nonlinearities and their dependence. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 1. Common nonlinearities and their dependence on displacement and velocity 

 
 
There is a large amount of different nonlinearities discussed in literature. The above-

mentioned nonlinearities are representative for many different types occurring in vibratory sys-
tems. They allow a theoretical and approximate description of non-linear behaviour. Nonlinear-
ities may occur, for which a classification according to the types in figure 1 is not possible. In 
this case a description can be based on a combination of nonlinearities or on a nonlinear mate-
rial behaviour.  

3 HOW TO DETECT NON-LINEARITIES IN MEASUREMENTS 

3.1 Is the systems vibration non-linear?  

For the investigation of nonlinear dynamic behaviour it is initially essential to discover, wheth-
er the structure behaves nonlinear at all. For this purpose four elementary operations are pre-
sented. 

For linear systems the principle of superposition is valid. This principal applies both to static 
systems and to dynamic systems. It reads as follows: The motions of a body proceeding at the 
same time do not affect each other mutually. The resulting quantities (displacement, velocity, 
acceleration) arise from a geometrical addition of the components. 
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Superposition is independent of the type of excitation. If this principle does not apply, nonline-
ar dynamical behaviour exists. 

As well the distortion (harmonic distortion) of the response vibration, excited by a sinusoidal 
excitation force, is an explicit indicator for the existence of nonlinearity. In the case of linear 
vibration the ratio of the amplitudes of the input (X(ω)) and output (Y(ω)) signals is always 
constant. Hence the frequency response function (FRF) is independent of the excitation force 
level and can be expressed as: 
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If the FRF does not comply with equation (3), it is possible to establish a connection between 
the input signal and the intensity of the nonlinearity when exciting the structure with excitation 
forces of different amplitude. The characteristic distortion of the FRF (FRF distortion) in com-
parison with the ‘linear FRF’ could give information about the type of nonlinearity. 

An additional characteristic of linear systems is reciprocity. Reciprocity holds if an output 
YB at a point B due to an input XA at a point A gives a ratio, that is numerical equal to that 
when the input and output points are reversed. 
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3.2 How to detect non-linearity 

In order to construct more exact descriptions and characteristics of the nonlinear behaviour like 
the intensity and the type of nonlinearity, the application of several methods and the compari-
son of the respective results is advisable. There are a lot of practical methods presented in liter-
ature. 

In general, two different methods to analyze nonlinear behaviour can be distinguished: the 
nonlinear time domain method (NL-TDM) and the nonlinear frequency domain method (NL-
FDM). Within the NL-TDM a structure is excited sinusoidal near or at the natural frequency. 
When turning off the excitation, the systems vibration will die away. The frequency and damp-
ing is now observed during this process and a time dependent relationship of the modal parame-
ters can be established. Using the NL-FDM the structure is excited with a swept sine or stepped 
sine signal over a certain frequency range (also with different excitation forces) encompassing 
the resonance frequency of interest and the vibration response is analyzed. An excitation de-
pendent relationship will be observed. 

Van Den Abeele & De Visscher (2000) discuss both methods in their research work. A rein-
forced concrete beam is damaged to failure in five steps. After each load step the modal param-
eters are measured. They conclude, that using either method, the increase in nonlinearity is the 
most sensitive indicator of cumulative microdamage. It is also shown, that it is possible to iden-
tify and detect damage in the midsection of the beam with the help of modal curvature. There-
fore it is advantageous to have a dense measurement grid. 

Tomlinson (1986) illustrates in his work the principal procedure of the identification of non-
linearities. He suggests among other things the use of the principles of superposition and reci-
procity. To be able to detect different types of nonlinearities, he describes the characteristic dis-
tortions of the frequency response functions in the Nyquist plot compared to the linear case. For 
that the deviation of the frequency isochrones, being a circle in linear case, can be used. 

In Wordon et al. (2001) the coherence function and especially the different display formats of 
the frequency response function are considered to be very useful to detect and identify nonline-
arities. The already mentioned Nyquist plot and the inverse frequency response function (IFRF) 
are among the different graphic representations of the frequency response function. With the 
help of the IFRF it is possible to distinguish between stiffness- and damping nonlinearities. As 
another appropriate method the Hilbert transform is discussed in detail. 

The Hilbert transform is also treated in the work of Bruns (2004). Different nonlinearities 
and their characteristic effects on the Hilbert transform are shown. 

Gloth et al. (2002) analyze the so-called impedance plots as results of measurements applied 
to big aerospace structures. The impedance plots show the natural frequencies and the deflec-
tions of the structure in dependence on the excitation force. 

Dimitriadis (2006) uses the occurrence of higher harmonics in the response spectrum, de-
pending also on the excitation force. By means of a model he simulates different types of non-
linearities and analysis in each case the characteristic of the higher harmonics. User-friendly 
and applicatory “expert rules” are developed to describe the characteristic influences of diverse 
types of nonlinearities on the measured dynamic responses. 



4 REINFORCED CONCRETE UNDER DYNAMIC EXCITATION 

Concrete is a heterogeneous construction material. It consists of visco-elastic cement mortar 
and embedded aggregates like crushed stone. In uncracked state, the strain of the concrete and 
the reinforcement of the beam are equal. In cracked state, relative displacements between the 
concrete and the reinforcing bars occurs. The level of cracks has an important influence on the 
damping of the structure. Büttner (1992) examined the characteristic damping of reinforced 
concrete and obtained some reference values. This characteristic is shown in figure 2. 
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Figure 2. Damping of concrete in principle 

 
 
In uncracked state, the damping behaviour is defined by the properties of the material. This 

kind of damping is called material damping. It is possible to describe the damping behaviour of 
concrete with the model of viscous damping. When applying a cyclic load, the occurrence of 
small nonlinear effects in the assumed linear material behaviour leads to an elliptic loop in the 
stress-strain diagram (hysteretic curve). Hysteretic behaviour results into damping effects. The 
stiffness is not influenced by hysteretic behaviour for small excitation forces. For larger values 
of the excitation force, the nonlinearity becomes more distinct and finally influences also the 
stiffness and consequently the natural frequencies of the system. 

In cracked state, the effects in the cracks due to friction between the concrete and reinforcing 
bars have the biggest influence on the damping characteristic. This type of damping is called 
structural damping. Damping increases when the system passes into cracked state and takes the 
highest value in full cracked state. Additionally the damping value in cracked state is signifi-
cantly dependent on the level of excitation force. While the damping value initially increases 
with small dynamic loads (the cracks are still closed - shear bond), it decreases with high values 
of dynamic loads (cracks are open – Coulomb friction). This behaviour is conform to the rela-
tionship between bond stress and the relative displacement shown in figure 3. 

 
Figure 3. Bond stress vs. relative displacement of concrete and reinforcement 

 



 
The behaviour of cracked reinforced concrete under forced excitation can easily be described 

by means of a stick-slip-model. Magnevall et al. (2006) describes the dynamic behaviour of a 
SDOF system considering a mass with a spring (constant stiffness) and a damping element 
(constant damping) connected in parallel. A further hysteretic element with nonlinear character-
istic line is also connected in parallel. From a particular excitation force, the nonlinear influ-
ence breaks out. Up to a certain excitation force, shear bond is ruling. Afterwards shear bond is 
surmounted and the mechanism exchanges into friction. In case of sinusoidal excitation a per-
manent alteration between stick and slip condition occurs (stick-slip-condition). In case of fur-
ther increasing excitation force the system is completely in slip-condition. Thus it is possible to 
determine approximately two different ‘linear’ natural frequencies for such a system. First, the 
natural frequency for low excitation force and stick-condition and secondly, the natural fre-
quency for high excitation forces and slip-condition. 

5 EXPERIMENT 

5.1 The beams 

Three reinforced concrete beams with different damage levels are examined concerning their 
non-linear dynamical behaviour. 6 m long beams are made of concrete C40/50 and six rein-
forcement bars of diameter 16 mm are equally distributed over the tension and the compression 
zone. Figure 4 shows the three beams. 

 

 
Figure 4. Three examined beams 

 
 
Beam 1 has been loaded up to 45% of its calculated strength during a symmetrical three point 

bending test. Beam 2 can be considered as undamaged. The analysis of the dynamical behav-
iour of beam 3 (unspecified damaged) should detect a damage in the area of one support during 
storage. 

5.2 Measurement program 

Initially the natural frequencies are determined using hammer impact. For the investigation de-
scribed in chapter 5.5 the beams are excited harmonically by means of a swept sine excitation 
starting with an excitation frequency smaller than the first natural frequency and ending with an 
excitation frequency higher than the third natural frequency of the beam. In order to transfer as 
much as possible of the oscillation energy into the nonlinear parts of the oscillation, the beams 
are excited with a swept sine with a small sweep-rate of 0.3 Hz/s. To avoid additional damage 
due to the test the excitation force for the undamaged beam 2 and unspecified damaged beam 3 
has been restricted to 80 N in the first eigenfrequency. This results into maximum tensile stress 
of approximately 2,7 N/mm2, which is smaller than the nominal tensile stress of concrete 
C40/50. 

5.3 Measurement setup 

Figure 5 illustrates the beam in a free-free set-up. The shaker excites the beam via a force sen-
sor. The dynamic responses are measured with acceleration sensors at three points on the beam. 



 
Figure 5. Measurement set-up, measurement points P4, P50, P85, Shaker & force sensor 

5.4 Hammer-impact measurement 

Initially the natural frequencies of the three beams are measured using hammer impact. The en-
ergy associated with an individual frequency is small and nonlinear effects do not appear clear-
ly. So only the quasi-linear dynamic properties of the system can be observed, when using the 
hammer impact method. Table 1 figures the first eight natural frequencies of the three beams. 

 
Table 1. Eigenfrequencies [Hz] using hammer-impact 

Mode damaged 
beam 1 

undamaged 
beam 2 

unsp. dam. 
beam 3 

B1 16.6 22.8 21.7 
B2 52.2 63.1 57.2 
B3 106 123 113 
T1 165 194 187 
B4 172 201 191 
B5 250 295 283 
T2 350 391 375 
B6 361 407 390 

5.5 Forced excitation – frequency response function (FRF) 

In case of linear systems the FRF is independent of the excitation force and takes constant val-
ues when exciting the structure with different force levels. However, as already mentioned in 
chapter 3.1, the stiffness and damping values are dependent on the excitation force for non-
linear systems. Therefore, observing nonlinear systems necessitates a comparison between the 
parameters of the system under different excitation forces. Figures 6,7 and 8 show the frequen-
cy response functions for the first three modes of the beams. 



 
Figure 6. FRF, mode 1 different force level, measurement point 4 
 
 
 
 

 
Figure 7. FRF, mode 2 different force level, measurement point 4 
 
 



 
Figure 8. FRF, mode 3 different force level, measurement point 4 
 

 
For the undamaged beam 2 both the natural frequencies and the amplitudes of the FRF de-

crease with increasing excitation force. This property can be explained by means of the strongly 
dependent hysteretic material behaviour of concrete, probably due to inevitable microcracks. 

Comparing the behaviour of the three beams in the first mode, it has to be noted, that beam 3 
and beam 2 indicate qualitative analogue behaviour. Differences in the amplitudes of the FRFs 
are due to varying material behaviour. The properties of the damaged beam 1 show a clear dif-
ference. It is obvious that the frequency decreases up to a certain excitation force more than the 
frequencies of the undamaged beam 2. At higher excitation forces there is a remarkable in-
crease of amplitudes. According to the excitation force the cracks are opened and thus the stiff-
ness is reduced. This results in an intense decrease of the eigenfrequencies with increasing ex-
citation force. Due to the bond between concrete and reinforcement (a hysteretic behaviour) the 
damping ratio increases and according to this the amplitude of the FRF decreases. In case of 
low excitation forces there is only shear bond (static friction, stick-condition); in case of higher 
force values bond changes between static and dynamic friction (permanent change between 
stick and slip condition) and thus increasing damping. In this state the resonance frequency is 
still decreased. Exciting the beam with higher excitation forces, the bond is just ensured by dy-
namic friction (slip-condition). In this state the stiffness, so the eigenfrequency is no longer in-
fluenced and keeps a constant value. As the friction force still slightly decreases with increasing 
excitation force, the damping ratio is also decreasing. So the FRF amplitude increases again. 
The described behaviour can be regarded as an indicator for a typical damage in RC structures. 

The described effect can also been observed when investigating the FRF of the second mode 
of the unspecified damaged beam 3. This might be an indicator for a damage concerning mode 
2. 
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Figure 9. Decrease of the first three eigenfrequencies from 5N to 80N 

 
 
Figure 9 contains the percentage decrease of the resonance frequencies from an excitation 

force from 5 N to 80 N. The most significant decrease can be denoted for the first mode of the 
damaged beam 1. The natural frequencies of the undamaged beam 2 show comparatively small 
changes. Likewise the first mode is influenced the most. As already mentioned this is due to the 
strong distortion dependent hysteretic material behaviour. As the deflection of mode 1 is always 
greater than the deflections of mode 2 and 3, the influence on the first mode is more significant. 
This is different when inspecting the unspecified damaged beam 3. Here the decrease of the 
second natural frequency (f2) is dominant. The decrease of f1 is similar to f1 of the undamaged 
beam 2. f3 of beam 3 tends to the behaviour of f3 of the damaged beam 1. 

Dimitriadis (2006) illustrates in his expert rules the influence of different types of nonline-
arities on the natural frequencies and the FRFs in general. The rules read as follows: 
− (a) If the frequencies of the modes vary consistently with excitation level then the nonlinear-

ity is likely to lie in the stiffness. 
− (b) If the frequencies of the modes are completely unaffected by the excitation level and on-

ly their amplitudes change then the nonlinearity is polynomial damping (e.g. quadratic damp-
ing). 

− (c) If the impact of the nonlinearity decreases continuously with excitation amplitude then 
the nonlinearity is friction. 
Rule ‘a’ can be applied to the frequency dependent behaviour of f1 of beam 1 up to an excita-

tion force of 80 N. In this range there is a strong dependence due to a stiffness nonlinearity. For 
excitation forces greater than 80 N this dependence does no longer exist and the natural fre-
quency keeps a constant value with increasing excitation force (rule ‘b’). Furthermore the in-
fluence of the nonlinearity on the dynamic behaviour decreases (rule ‘c’), because the FRF am-
plitudes begin to increase again, despite increasing excitation force. Thus it is a matter of a 
damping-related nonlinearity. 

5.6 Result 

Fitting the above-mentioned results into the big picture, the state of the three beams can easily 
be assessed. The investigation of the dependence of the natural frequencies on the excitation 
force has been very useful, because it showed a strong nonlinear behaviour especially for the 
damaged beam 1 and for mode 2 of the unspecified damaged beam 3. There is nonlinear behav-
iour of beam 2 (undamaged) as well, but this is due to hysteretic material behaviour. As already 
mentioned in the introduction, beam 3 is supposed to be unspecified damaged. With the help of 
the different methods explained above, it can be assumed, that beam 3 is damaged at the zone 
of big curvatures of modes 2 and 3. The result of a visual inspection of the beam is presented in 
figure 10.  
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Figure 10. Predicted damage, beam 3; modeshapes and modal curvatures 
 
There is a clear crack near to the supports. It is possibly due to unscheduled loads during 

storage. Cracks with a width of 0.1 mm in bridges are already problematic concerning corrosion 
of reinforcement or prestressing cable. There are a few more cracks visible, cause of insuffi-
cient reinforcement for shear. 

6 CONCLUSION AND PROSPECT 

Using non-linear vibration analysis for detecting damage in civil engineering structures is still 
in the early stages. The presented experimental investigation showed promising results. There is 
an obvious relationship between excitation force and eigenfrequencies. For the undamaged 
beam the decrease of the eigenfrequencies with increasing excitation force is small but not neg-
ligible. This and the change of damping is due to non-linear material behaviour. The damaged 
beam showed a very noticeable relationship between modal parameters and excitation force. 
The described stick-slip effect can be used as an indicator for damaged reinforced concrete. By 
means of the most affected modes, first appraisal of damage location is possible. 

As the force dependent non-linear effects seem to be a sensitive indicator for damage it has 
to be determined whether these effects can be used as well in practice. It will be further investi-
gated if this approach can be implemented in the regular inspection program of bridges to doc-
ument their actual force dependent behaviour and thus, their actual structural state. 
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