
Deep dive into Interledger:
Understanding the Interledger ecosystem

– Part 3 –

Lucian Trestioreanu, Cyril Cassagnes, and Radu State

Ripple UBRI @ Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg

29, Avenue JF Kennedy, 1855 Luxembourg, Luxembourg

Abstract. At the technical level, the goal of Interledger is to provide an architecture
and a minimal set of protocols to enable interoperability for any value transfer system. The
Interledger protocol is literally a protocol for Interledger payments. To understand how is it
possible to achieve this goal, several aspects of the technology require a deeper analysis. For
this reason, in our journey to become knowledgeable and active contributor we decided to
create our own test-bed on our premises. By doing so, we notice that some aspects are well
documented but we found that others might need more attention and clarification. Despite
a large community effort, the task to keep information on a fast evolving software ecosystem
is tedious and not always the priority for such a project. Therefore, the purpose of this
series of documents is to guide, through several hands-on activities, community members
who want to engage at different levels. The series of documents consolidate all the relevant
information from generating a simple payment to ultimately create a test-bed with the
Interledger protocol suite between Ripple and other distributed ledger technology.

Contents

1 What this document covers 3

2 Who this document is for 3

3 The Interledger ecosystem 3
3.1 The Interledger protocol suite . 3

3.1.1 The Interledger Protocol . 3

4 The ledgers 7
4.1 The Ripple ledger . 7

4.1.1 Preparation . 7
4.1.2 Start up . 8

4.2 The Ethereum ledger . 14

List of Figures

1 ILP packet flow . 3
2 Example 1: ILP . 5
3 ILPv4 flow diagram . 6

List of Tables

1 Useful Rippled server commands . 9

2

1 What this document covers

In Part 3, we are going to discuss two other components of the Interledger protocol suite and
of the infrastructure suite, namely the Interledger protocol (ILP) which is the core of the whole
system and, respectively, the Ledgers. We are also going to discuss some examples along the
way. For easier orientation, we kept the general chapter structure unmodified.

2 Who this document is for

No prerequisites regarding the Interledger ecosystem are expected from the reader. However,
developers, computer science students or people used to deal with computer programming chal-
lenges should be able to reproduce our setup without struggle.

3 The Interledger ecosystem

3.1 The Interledger protocol suite

3.1.1 The Interledger Protocol

The Interledger Protocol (ILP), currently at version 4, is the main protocol facilitating the
Interledger money transfers. It provides a solution to route payments across disconnected ledgers
while minimizing the sender and receiver’s risk of losing funds. What makes it different from
previous versions is that it is optimized for sending many low value packets:

”We talked about the idea of streaming payments, where if you make payments so efficient
that you could pay for like a milliliter of beer or a second of video. That’s the way we think
about efficiency of payments.”[1]

It is made for payment channels, which means faster and cheaper payments, while also
accommodating any type of ledger.

Fig. 1: ILP packet flow. [2]

ILPv4 involves Hashed Time Lock Agreements (HTLA) [3], and makes use of three packet
types:

• Prepare, corresponding to request, with the following fields:

– destination - ILP address,

– amount - UInt64,

– condition - UInt256,

– expiration - timestamp,

– end-to-end (sender-receiver) data - OCTET STRING.

Example of an ilp-prepare packet:

3

{

amount= 69368000,

executionCondition= fHII9adb3JY3D5drSNSoquLTIUJJhNLMeiiADnW4li0=,

expiresAt= 2019-06-19T11:04:18.149Z,

destination= g.conn1.ilsp_clients.mduni.local.viby9ZjztwCVMtptFjaueqsdlIxWSUba

y7Jo3BxJyGc.elrqFEKZEc8BMcZ4PDUiPEAF,

data= t6lmRiiFZecXhltYNsnyPYSgPld+Itmn+NefM5ytnFJiFDuMieyF9b2vB

o2HPiNm34GpCBlU/HoGaCAsOQ==

}

• Fulfill, corresponding to response, and carrying the following fields:

– execution condition fulfillment - UInt256,
This is the proof that the receiver has been paid, so the fulfill packets are relayed back
by the connectors from the receiver to the sender. It consists of a simple pre-image
of a hash, and only the receiver can know this information.

– end-to-end (sender-receiver) data - OCTET STRING.

The components of the prepare and fulfill packets concerning HTLA are:
- amount, time (expiration), and condition for Prepare, and
- the execution condition fulfillment (the hash) for the Fulfill packet, which must be re-
ceived before expiration. This implies that the machines involved in the process should be
time-synchronized. This is not an absolute enforcement, but any time offsets will packet
rejection chances.

• Reject, corresponding generally to error messages. They can be returned either by the
receiver or the connectors in specific conditions and consist of:

– a standardized error code,

– triggered by: - ILP address;
is the identifier of the participant that originally generated the error,

– user-readable error message - UTF8String,

– machine readable error data - OCTET STRING.

The connectors forward the prepare packets from the sender to the receiver, and relay back
the response or the reject from the receiver to the sender, as shown in Figure 1. As such, ILP v4
uses a chaining of HTLAs to achieve an end-to-end transfer [3]. In ILP v4, HTLAs are mainly
supported over Simple Payment Channels. Simple Payment Channels are generally supported
by today’s major blockchains like BTC, ETH, XRP,.. [4, 5].

Concerning Figure 1 and ILP v4: even if the original ILP packet is prepared by the Sender
and addressed for the Receiver (end-to-end), the transfer from the Sender to the Receiver will
be in fact a chaining of transfers between the directly connected (and trusted) peers. Each pair
of directly connected peers generally uses a dedicated, separate Payment Channel to settle their
obligations [3, 4, 5]. Other means are possible [5], but not really used or supported [4].

Example 1. We will further expand on Part 1 - Example 1 and Part 2 - Example 1, using the
Figure 2.

4

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP server

SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer
1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module
Moneyd

ILP module
Moneyd

Alice’s ILP address Bob’s ILP address

INTERLEDGER

Money (XRP)

Connector

5. ILP transfer

Fig. 2: Example 1: ILP.

• Alice’s SPSP client:

– resolves the payment pointer ”$example.com/bob” to https://example.com/bob

– connects over HTTP to Bob’s SPSP server at address https://example.com/bob (2)

– queries the SPSP server for Bob’s ILP address and a unique secret (2). The SPSP
server forwards the request to the STREAM server module and fetches the answer

• Bob’s SPSP server sends Bob’s ILP address and the secret to Alice’s SPSP client (3)

• Alice’s SPSP client passes the credentials to the STREAM client module which initiates
a logical STREAM connection over ILP, using the ILP module, in our case, Moneyd (4)

5

Fig. 3: ILPv4 flow diagram.

6

• The ILP module, Moneyd, sends the ILP packets corresponding to the STREAM virtual
connection towards its upstream parent connector, which further routes them to its child,
Bob’s Moneyd module (5).

The STREAM module is able to break the payment into multiple packets, which would be
sent over ILP using prepare-fulfill-error packets. The STREAM module at the receiver’s end
will finally reassemble the payment.

Wrapping-up ILP, Figure 3 presents the finite state machine diagram of an ILP packet and
the protocol flow chart.

4 The ledgers

4.1 The Ripple ledger

The Rippled XRP ledger is made up of two types of servers: ”trackers” (or stock servers) and
”validators”. They run the same piece of software [6], just with a different configuration. Al-
though they can answer user queries, validators should ideally just process the transactions they
receive from the trackers.

’Ideally, validating nodes are clustered with at least two stock nodes, to prevent DoS attacks
and to preserve availability while updating the stock nodes. This configuration enables the vali-
dating node to be cut off from the internet, except for messages to/from other trusted nodes in the
cluster and SSH connections via a LAN connection. Using two stock nodes provides redundant
communication to the validating node, which is useful in case one of the stock nodes crashes or
goes offline. However, this means a validating node has 3x the cost, 3x the monitoring, and 3x
the time commitment of a stock node. Production validating nodes should have at least 32 GB
of memory as well as a 50 GB+ solid state drive. I encourage operator to refrain from making
API calls (monitoring excepted) on validating nodes’. [7]

Validators participate in the consensus process and vote on fees and amendments. Trackers
are meant to be placed in-between validators and the rest of the network, pick-up traffic and
forward it to the validators. They work as relays, protecting the validators. They also can hold
the full history of the ledger and answer queries about old ledgers. On the other hand, the
validators can work with minimal stored history.

Below is the procedure to build and cold-start an independent local validators cluster. One
aspect to keep in mind is that ’there is no rippled setting that defines which network it uses.
Instead, it uses the consensus of validators it trusts to know which ledger to accept as the truth.
When different consensus groups of rippled instances only trust other members of the same
group, each group continues as a parallel network. Even if malicious or misbehaving computers
connect to both networks, the consensus process overrides the confusion as long as the members
of each network are not configured to trust members of another network in excess of their quorum
settings.’ [8]

4.1.1 Preparation

To build a parallel Rippled servers (validators, trackers) network, which, in its entirety is also
called the ”Rippled Ledger”, the minimal required hardware resources1 need to be planned in

1https://developers.ripple.com/system-requirements.html, accessed June 2019

7

https://developers.ripple.com/system-requirements.html

advance. Depending on the available resources, each Rippled server can be deployed on a
different physical machine or not. However, for high traffic use-cases, in order to streamline
I/O, each server could have its own physical SSD.

To install the pre-packaged Rippled server, the instructions on the Ripple developer portal
should be followed2. Then, another guide is disseminated on the developer portal to install
Rippled from the source code3. After that, the following steps must be followed:

• Build the validators keys and tokens, using the published documentation4 and code5.

– Create keys:

~/validator-keys-tool/build/gcc.debug$./validator-keys create_keys

– Create tokens:

~/validator-keys-tool/build/gcc.debug$./validator-keys create_token --keyfile

/home/user/.ripple/validator-keys.json

• Add generated [validator token] to ’rippled.cfg’.
• Add generated [validators] public keys to ’validators.txt’. Comment the rest of ’valida-

tors.txt’.
• In ’rippled.cfg’, add the peer validators’ IPs in the field [ips fixed] in the form of IP:port

(51235).
• Check that ’validator.txt’ file name is the same with the name referenced by ’rippled.cfg’.
• Configure clustering as per the Ripple documentation6, using the validation create7 method:

~/rippled/ccabuild$./rippled --conf /home/user/rippled/cfg/rippled-example.cfg

validation_create

4.1.2 Start up

In the case when Docker images have been used, after creating the Docker image of the Rippled
server, this can be loaded and started on each physical/virtual server machine with the following:

- ’sudo docker load -i /path/to/your_docker_image.tar’

- ’sudo docker images’ - to check the image name

- ’sudo docker run -ti -u root --network host --name <container_name> <image_name>’

- ’sudo docker exec -ti -u root <container_name> bash’. To open a second terminal

to the container, just run the command again into a fresh terminal window.

With the docker images loaded on each Rippled server machine, the actual Rippled validators
servers network can be cold-started as follows:

• Start the first Rippled server with ’quorum 1’ and wait a few minutes for it to stabilize:

2https://developers.ripple.com/install-rippled.html, accessed June 2019
3https://developers.ripple.com/build-run-rippled-ubuntu.html, accessed June 2019
4https://developers.ripple.com/run-rippled-as-a-validator.html#enable-validation-on-your-rippled-server, ac-

cessed June 2019
5https://github.com/ripple/validator-keys-tool, accessed June 2019
6https://developers.ripple.com/cluster-rippled-servers.html, accessed June 2019
7https://developers.ripple.com/validation create.html, accessed June 2019

8

https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/build-run-rippled-ubuntu.html
https://developers.ripple.com/run-rippled-as-a-validator.html#enable-validation-on-your-rippled-server
https://github.com/ripple/validator-keys-tool
https://developers.ripple.com/cluster-rippled-servers.html
https://developers.ripple.com/validation_create.html

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg --quorum 1

• Start the remaining servers with the same command, waiting for each to stabilize, first.

• Restart the servers in the same order, waiting a few minutes for each to stabilize before
starting the next, with ’quorum 2’:

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg --quorum 2

In a new terminal window handling the Docker container, use the ”stop” command in
Table 1 to gracefully stop the servers before restart.

In this minimal set-up though, if any of the servers is restarted, it will lose previously
kept ledger history - even with full history enabled. This won’t stop it working after restart, as
validators do not need full history to work properly. To be able to access previous ledger history,
tracking servers should be also set up. Data API8 is a useful history tool which could also be
set-up if desired, although setting it up on a private network seems not too obvious.

’Ripple API’9 provides the means to interact with the server. For example, in Ripple, all the
money are created in the beginning, and stored in an account with a hard-coded address, called
the ”Genesis account’. One can check the ’Genesis account’ with:

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg account_info

rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh

Some other useful server commands are provided in Table 1. These can be entered from a
separate terminal window handling the docker container.

Table 1: Useful Rippled server commands.

command effect

wallet propose create a new wallet with random seed credentials (inactive until funded)
stop gracefully stop the server
restart restart the server
server info various easy-to-read info about the server
server state almost same info as above, but easier-to-process instead of easy-to-read
peers info on peer validators: connected? ledger sequences available? ...

Immediately after creating and starting the validators cluster network (which form the XRP
ledger), one can open a few accounts with the ’wallet propose’ command above, and fund them
using for example the following simple procedure. Regarding the wallets, they can be sometimes
classified as ’hot’ or ’cold’ wallets. The difference is that ’hot’ wallets are connected to the
internet, while ’cold’ wallets are not. ’Hot’ wallets provide the advantage of quick access but
lower security, like anything connected to the internet. ’Cold’ wallets are slower to access (need
to connect) but more secure due to generally not being online. It is generally recommended to
hold only the amounts necessary for daily operation in the ’hot’ wallet, while the bulk of the
money would be kept offline.

8https://developers.ripple.com/data-api.html, accessed June 2019
9https://developers.ripple.com/rippleapi-reference.html, accessed June 2019

9

https://developers.ripple.com/data-api.html
https://developers.ripple.com/rippleapi-reference.html

• Install Ripple-API for javascript10.
• Place the two example scripts in the app folder: ’/home/user/ripple api/get-account-info.js’.
• Run them with ’./node modules/.bin/babel-node get-account-info.js’. The code should run on

one of the Ripple servers.

Example script - get account info11:

//GET ACCOUNT INFO

’use strict’;

const RippleAPI = require(’ripple-lib’).RippleAPI;

const api = new RippleAPI({

server: ’ws://localhost:6006’

});

api.connect().then(() => {

/* begin custom code ------------------------------------ */

const testAddress = ’rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh’;

console.log(’getting account info for’, testAddress);

return api.getAccountInfo(testAddress);

}).then(info => {

console.log(info);

console.log(’getAccountInfo done’);

/* end custom code -------------------------------------- */

}).then(() => {

return api.disconnect();

}).then(() => {

console.log(’done and disconnected.’);

}).catch(console.error);

Example script - fund an account11:

//Account funding

const RippleAPI = require(’ripple-lib’).RippleAPI

// SENDER - ADDRESS 1

const ADDRESS_1 = "rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh"

const SECRET_1 = "snoPBrXtMeMyMHUVTgbuqAfg1SUTb"

// RECEIVER - ADDRESS 2

const ADDRESS_2 = "rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj"

const instructions = {maxLedgerVersionOffset: 5}

const currency = ’XRP’

const amount = ’20000000’ // this is not ’drops’ but XRP

const payment = {

source: {

address: ADDRESS_1,

maxAmount: {

10https://developers.ripple.com/get-started-with-rippleapi-for-javascript.html, accessed June 2019
11https://xrpl.org/rippleapi-reference.html, accessed July 2019

10

https://developers.ripple.com/get-started-with-rippleapi-for-javascript.html
https://xrpl.org/rippleapi-reference.html

value: amount,

currency: currency

}

},

destination: {

address: ADDRESS_2,

amount: {

value: amount,

currency: currency

}

}

}

const api = new RippleAPI({

//server: ’wss://s1.ripple.com’ //MAINNET

//server: ’wss://s.altnet.rippletest.net:51233’ // TESTNET

server: ’ws://localhost:6006’ // Localhost

})

api.connect().then(() => {

console.log(’Connected...’)

api.preparePayment(ADDRESS_1, payment, instructions).then(prepared => {

const {signedTransaction, id} = api.sign(prepared.txJSON, SECRET_1)

console.log(id)

api.submit(signedTransaction).then(result => {

console.log(JSON.stringify(result, null, 2))

api.disconnect()

})

})

}).catch(console.error)

The known amendments seem not to be automatically enabled after cold starting a pri-
vate network. In order to force them, we added the [features] stanza in each validator’s config
file. Otherwise, the validators would apparently work, but, when trying to open for example a
paychan, would throw the error ”logic not enabled’ - because the paychan amendment is not
enabled. According to documentation12, for an amendment to become enabled, it needs the
support of 80% of validators’ votes for two weeks. If it loses this support, the amendment is
temporarily disabled, and it can be re-enabled after it re-gains this support.

[features]
PayChan
Escrow
CryptoConditions
fix1528
.......

Below is an example config file for a private network cluster of 3 validators. The file is located
in ’home/user/rippled/cfg’. We used a docker container with a compiled version of Rippled.

12https://developers.ripple.com/amendments.html, accessed June 2019

11

https://developers.ripple.com/amendments.html

[server]

port_rpc_admin_local

port_peer

port_ws_admin_local

port_ws_public

port_public

[port_rpc_admin_local]

port = 5005

ip = 127.0.0.1

admin = 127.0.0.1

protocol = http

[port_peer] //talk to other validators

port = 51235

ip = 0.0.0.0

protocol = peer

[port_ws_admin_local]

port = 6006

ip = 127.0.0.1

admin = 127.0.0.1

protocol = ws

[port_ws_public]

port = 6005

ip = 127.0.0.1

protocol = wss

[port_public] //connectors, moneyd, switch API will connect here

ip = 0.0.0.0

port = 51233

protocol = ws

[node_size] //required for full history

huge

This is primary persistent datastore for Rippled. This includes transaction

metadata, account states, and ledger headers. Helpful information can be

found here: https://ripple.com/wiki/NodeBackEnd

delete old ledgers while maintaining at least 2000. Do not require an

external administrative command to initiate deletion.

[node_db] //NuDB type required for full history

type=NuDB

path=/var/lib/rippled/db/nudb

#open_files=2000 //these are not needed for NuDB

#filter_bits=12

#cache_mb=256

#file_size_mb=8

#file_size_mult=2

#online_delete=2000

#advisory_delete=0

[ledger_history] //although enabled, full history seems not to work

12

//correctly for validators, will need trackers for this.

full

[database_path]

/var/lib/rippled/db

This needs to be an absolute directory reference, not a relative one.

Modify this value as required.

[debug_logfile]

/var/log/rippled/debug.log

[sntp_servers] // servers for time sync

time.windows.com

time.apple.com

time.nist.gov

pool.ntp.org

File containing trusted validator keys or validator list publishers.

Unless an absolute path is specified, it will be considered relative to the

folder in which the rippled.cfg file is located.

[validators_file]

validators-example.txt

Turn down default logging to save disk space in the long run.

Valid values here are trace, debug, info, warning, error, and fatal

[rpc_startup]

{ "command": "log_level", "severity": "trace" } //verbose logging

If ssl_verify is 1, certificates will be validated.

To allow the use of self-signed certificates for development or internal use,

set to ssl_verify to 0.

[ssl_verify]

0

[ips_fixed]

192.168.1.97 51235 //IPs and ports of the other 2 peer validators

192.168.1.132 51235

[peer_private]

1

[node_seed]

shEm9dGAs2aq6MMe9XsXYXKrPmqft

[cluster_nodes]

n9LPJFoTLxVbTtdWADZzPpCwACwC3aLAYGhFcNNR61fD9DTc2w5L ripdbg1

n9KUMms9ZrDgHU7rN9pRTRGMKEWy5Ghk3qj53aCPAbJRur2sTqwp ripdbg3

[validator-token]

eyJtYW5pZmVzdCI6IkpBQUFBQUZ4SWUwYkVlUVp1bGNsKzRadk44cGhXUWJNNWhlV3RKY0hN

YUVKcUpadWVRWm9jWE1oQXYvVWY3MmlaQ0VQZndPZTd0TjNaY0V1UnFDd2Q3U2JkU3hPTnJq

TXlsNWlka2N3UlFJaEFKc3IzL3g2U0RiRGprOHc0Mks2eU91M1FPbW4vNjVIeTM4bkxjbnJa

c1ROQWlBSnRlRTRpdjVqSjRJMytvS0VseEFjTmFUL3VoQnRlSVFyK29RdmVoemJESEFTUU53

RnpLN21kV3lUaTZoTWY4SUJTRUxmZHI1cjhuMFdIeE5BSGNHSXJURDV1N09BK3FKZWZLMzkw

13

Smx3aE5ydGVLL09LWS8rQldDUHo0ejQ4VXptaHd3PSIsInZhbGlkYXRpb25fc2VjcmV0X2tl

eSI6IkJGMTcyRjJBMzNGQTZDOTdBQ0JBODhBNTA0NThGQzZFRURENzBCNjEwMzdEMjcwNjgz

RTQ3MzRBNUY2OURGRkMifQ==

[features]

PayChan

Escrow

CryptoConditions

fix1528

DepositPreauth

FeeEscalation

fix1373

MultiSign

TickSize

fix1623

fix1515

TrustSetAuth

fix1513

fix1512

fix1571

Flow

fix1201

fix1523

fix1543

SortedDirectories

EnforceInvariants

fix1368

DepositAuth

fix1578

4.2 The ETH ledger. Connecting the XRP and ETH ledgers through ’Machinomy’

For the scope of this work, we will assimilate the ETH network to a black-box holding the ETH
wallet accounts, executing commands and providing immediate response. For testing purposes,
such a friendly ’black-box’ can be ’Ganache’13, previously called ’TestRPC’. After download,
Ganache can be started directly:

cd /Downloads

./ganache-1.3.1-x86_64.AppImage

’Machinomy’14 is used to connect the XRP and ETH ledgers. It achieves this by deploying a
specific contract on the ETH ledger. One contract manages all the channels for Ether micropay-
ments (all the sender-receiver pairs). Thus, Machinomy creates the settlement capability when
ILP payment interacts with the ETH ledger.

’Machinomy is a micropayments SDK for Ethereum platform. State channels is a design
pattern for instant blockchain transactions. It moves most of the transactions off-chain. As
transactions do not touch the blockchain, fees and waiting times are eliminated, in a secure
way.’ [9]

13https://truffleframework.com/docs/ganache/quickstart, accessed June 2019, accessed June 2019
14https://machinomy.com/, accessed June 2019

14

https://truffleframework.com/docs/ganache/quickstart
https://machinomy.com/

Machinomy should be installed15 on the same machine with the ETH provider, in this case,
Ganache. After installing Machinomy, a contract can be deployed on the ETH network using
the following:

cd machinomy/node_modules/@machinomy/contracts

yarn truffle migrate --reset

Checking back in Ganache after Machinomy contract deployment, you will notice that a small
amount of ETH has been subtracted from the first account, and in the Transactions tab, the
contract has been deployed.

After a Ganache restart, the ’–reset’ option has to be used because Ganache is not persistent.
The contract will be deployed on the first Ganache account. The other accounts can be used by
ETH client wallets.

After deploying the Machinomy contract on the ETH network, apps like Switch API can be
used to exchange XRP and ETH back and forth. The plugins should be set to access Ganache
using http://ganache IP:ganache port. A detailed explanation on Switch API will be provided
in Part 4.

In Part 4 we will discuss the Bilateral Transfer Protocol (BTP) which is a link protocol and
a carrier for ILP, a trading app named Switch, and we are going to see the architecture of an
entire, functional, private Ripple network which is currently the basis of our test-bed.

Acknowledgements

This work was done in the framework of the Ripple UBRI initiative.

15https://github.com/machinomy/machinomy, accessed June 2019

15

https://github.com/machinomy/machinomy

Acronyms

API Abstract Programming Interface. 7, 9, 15, 16

ILP Interledger Protocol. 3–5, 7, 14

SPSP Simple Payment Setup Protocol. 5

Glossary

Moneyd An ILP provider, allowing all applications on an end-user computer to use funds on
the live ILP network. 5, 7

Switch API A SDK for cross-chain trading between BTC, ETH, DAI and XRP with In-
terledger Streaming. 15

XRP Ripple’s digital payment asset which is used for Interledger payments. 4, 9, 14, 15

References

[1] Ripple. Ripple InterLedger Protocol’s role in realizing the Internet of
Value [IoV], [Online] Accessed: June 11, 2019. https://bcfocus.com/news/

ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/.

[2] Ripple. Install Rippled, [Online] Accessed: June 6, 2019. https://developers.ripple.com/

install-rippled.html.

[3] D. Appelt, A. Hope-Bailie, M. de Jong, E. Schwartz, B. Sharafian, S. Thomas, and B. Way. ILP v4: Version 4
of the Interledger protocol, April 2018, [Online] Accessed: June 13, 2019. https://github.com/interledger/
rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf.

[4] Evan Schwartz. Trustlines Explanation, [Online] Accessed: June 13, 2019. https://forum.interledger.org/
t/trustlines-explanation/358.

[5] Ripple. Hashed-Timelock Agreements (HTLAs), [Online] Accessed: June 11, 2019. https://interledger.

org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels.

[6] Ripple. Install Rippled, [Online] Accessed: April 10, 2019. https://developers.ripple.com/

install-rippled.html.

[7] Rabbit. The Interledger Protocol, July. 2018. [Online] Accessed: April 10, 2019. https://xrpcommunity.

blog/rippled/.

[8] Ripple. Parallel Networks and Consensus, [Online] Accessed: April 10, 2019. https://mduo13.github.io/

ripple-dev-portal/tutorial-rippled-setup.html.

[9] Sergey Ukustov, Andrei Riaskov, Alexander Burtovoy, and Matthew Slipper. Machinomy, [Online] Accessed:
April 10, 2019. https://machinomy.com/.

16

https://bcfocus.com/news/ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/
https://bcfocus.com/news/ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/
https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/install-rippled.html
https://github.com/interledger/rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf
https://github.com/interledger/rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf
https://forum.interledger.org/t/trustlines-explanation/358
https://forum.interledger.org/t/trustlines-explanation/358
https://interledger.org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels
https://interledger.org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels
https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/install-rippled.html
https://xrpcommunity.blog/rippled/
https://xrpcommunity.blog/rippled/
https://mduo13.github.io/ripple-dev-portal/tutorial-rippled-setup.html
https://mduo13.github.io/ripple-dev-portal/tutorial-rippled-setup.html
https://machinomy.com/

	What this document covers
	Who this document is for
	The Interledger ecosystem
	The Interledger protocol suite
	The Interledger Protocol

	The ledgers
	The Ripple ledger
	Preparation
	Start up

	The Ethereum ledger

