Automated Testing of Installed Software
or so far, How to validate MPI stacks of an HPC cluster?

Xavier Besseron

HPC and Computational Science @ FOSDEM 2014
February 1, 2014
Outline

1. Context & Motivations
2. Basic tests & Automation
3. ATIS
4. Main issues with MPI stacks
5. Quick overview / demo
6. Future work
Context: HPC clusters and Software

Large variety of software on HPC clusters

- Example: HPCBIOS
- Huge work to install, maintain, update, etc.

Tools to manage software

- EasyBuild: build, (re-)install
- Module: switch from one flavor to another

I counted 2211 EasyConfig files in EasyBuild
Example: HPC platform of University of Luxembourg

General statistics

- 2 clusters: Chaos and Gaia
- providing 1115 modules
- 376 different software/libraries
- 25 different flavors of zlib
- 15 different flavors of GCC
- 10 different flavors of GROMACS, OpenBLAS, ScaLAPACK
- 9 different flavors of WRF
- ...

⇒ explosion of the number of available software
Let’s focus on MPI stacks

On Gaia cluster at University of Luxembourg

- 4 MPI families: OpenMPI, MVAPICH2, MPICH, IntelMPI
- 5 versions of OpenMPI: 1.4.5 1.6.3 1.6.4 1.6.5 1.7.3
- 3 versions of MVAPICH2: 1.7 1.8.1 1.9
- 3 versions of MPICH: 2.1.3 3.0.4 3.0.3
- 8 versions of IntelMPI: 3.2.2.006 4.0.0.028 4.0.2.003
 4.1.0.027 4.1.0.030 4.1.1.036 4.1.2.040 4.1.3.045
- over 14 toolchains

⇒ 31 different modules provide MPI

And so what? Some are not working out-of-the-box

Why? Let’s try to find out

What can we do? Spam/complain to the sysadmins Fix it!
How to test an MPI stack?

- Check for binaries
  ```bash
  which mpicc mpirun
  ```

- Compile and run a small example
  ```bash
  mpicc hello.c -o hello
  mpirun -np 2 -machinefile <hostfile> hello
  ```

- Compile and run micro-benchmarks
  ```bash
  tar -xzf osu-micro-benchmarks-3.9.tar.gz
  cd osu-micro-benchmarks-3.9
  ./configure && make
  cd mpi/pt2pt
  mpirun -np 2 -machinefile <hostfile> osu_bw
  mpirun -np 2 -machinefile <hostfile> osu_latency
  ```

- Check the performance is correct
- Run HPL?
- ...
How to test many MPI stacks?

Repeat the previous slides multiple times!
How to test many MPI stacks?

Repeat the previous slides multiple times!

- Make a script that test one MPI stack
- List the MPI stacks you want to test
- Run the script for all of them
- Collect data from all the tests
- Present the results in a synthetic way
- Repeat all this periodically

⇒ ATIS framework (Automated Testing of Installed Software)
Not reinventing the wheel!

Based on existing testing framework:

CTest

- Testing tool distributed as a part of CMake
- Automates updating, configuring, building, testing, performing memory checking, performing coverage
- Submits results to a CDash or Dart dashboard system

CDash

- Open source, web-based software testing server
- Aggregates, analyzes and displays the results of software testing
- Nice feature: can spam the sysadmins when tests fail

But also Shell script, R, numdiff, cron, ...
ATIS Current status

Current focus
- Only on MPI testing
- Only on general behavior of MPI
- Only testing a couple of nodes, i.e. not the whole cluster

User-oriented testing
- Run in the same environment as a user
- Try to mimic what a normal user would do

Source code
- https://github.com/besserox/ATIS
 - About 15 files
 - 247 lines of CMake/CTest
 - 212 lines of Bash
 - 98 lines of R
Main issues with MPI stacks

- Configuration issues
 - specific connector (i.e. oarsh instead of ssh)
 - InfiniBand interface
 - ...

- Dynamic libraries issues,
 i.e. LD_LIBRARY_PATH not set properly
 - for MPI libraries itself
 - for other dependencies (hwloc, cuda, ...)

- Bug in the MPI stacks
 - bashism in IntelMPI 3.X
 - ...

- Performance issues
 - need better tuning?
Quick Demonstration / Overview

HPC @ Uni.lu CDashboard

![Dashboard Screenshot]

Automated Testing of Installed Software

<table>
<thead>
<tr>
<th>Site</th>
<th>Build Name</th>
<th>Update</th>
<th>Configure</th>
<th>Build</th>
<th>Test</th>
<th>Build Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 3.3.2.106</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>31 minutes ago</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.0.0.122</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>31 minutes ago</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.0.0.122-2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>31 minutes ago</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>F0 MPI Module Impl 4.0.0.122-2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>31 minutes ago</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>F0 MPI Module Impl 4.0.1.027-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.1.0.027-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.1.0.130-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.1.0.131</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.1.0.140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module Impl 4.1.0.145</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH1.1-GDC-4.8.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH2.1-GDC-4.8.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH1.1-GDC-4.11.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH2.1-GDC-4.11.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH1.1-GDC-4.11.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module MPTDH2.1-GDC-4.11.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH1.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH1.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH1.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH1.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH2.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaia cluster</td>
<td>MPI Module PVMCH3.1-RGDC-1.3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Future directions

• Test other software/features
 • Checkpoint/Restart of a process using BLCR
 • ...

• Test features specific to a given MPI stack
 • alternative launcher (e.g. `mpirun_rsh` for MVAPICH2)
 • disable InfiniBand
 • distributed Checkpoint/Restart of an MPI job

• More reliable detection of performance issues
 • how to tolerate temporary variation of the performance?
Any feedback?

Thank you for your attention!

- Any feedback, comments, questions?
- New ideas or features?