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1.1 Problématique

Le calcul haute performance connait un essor important et se démocratise à travers
de nombreux domaines scientifiques. Des disciplines comme la physique, la biologie
ou la météorologie réalisent des simulations numériques de plus en plus complexes qui
nécessitent une puissance de calcul considérable.

Une tendance actuelle consiste à mutualiser des ordinateurs géographiquement
éloignés en les interconnectant par un réseau de communication longue distance, par
exemple Internet. Cet ensemble de machines ainsi regroupé est appelé une grille de
calcul et permet d’offrir à ses utilisateurs une capacité de calcul importante. Cette
complexité fait des grilles de calcul un environnement complexe à la fois hétérogène et
dynamique.

L’hétérogénéité caractérise la variabilité spatiale du contexte d’exécution, c’est-à-dire
que ce contexte diffère selon l’ensemble des ressources utilisées. Les grilles sont composées
de machines avec des processeurs et des systèmes d’exploitation variés. La vitesse des
processeurs peut varier considérablement entre deux machines. Cette hétérogénéité
apparait également au niveau des réseaux de communication : les machines placées sur
un même site bénéficient généralement d’un réseau rapide avec une faible latence et un
débit important, tandis que les machines géographiquement éloignées communiquent
par un réseau longue distance moins performant.

La dynamicité correspond à la variabilité temporelle du contexte d’exécution, c’est-à-
dire que l’environnement d’exécution change au cours du temps. Le nombre de ressources
disponibles change constamment car elle dépend des réservations et de procédures de
maintenance. De plus, la charge des processeurs et des réseaux de communication varie
également en fonction de l’activité des autres utilisateurs. Enfin, cette dynamicité peut
aussi avoir pour cause des défaillances qui peuvent entrainer la perte, même temporaire,
d’un grand nombre de machines.

De part le grand nombre de composants qui constituent une grille de calcul, la
probabilité d’une défaillance est importante. Les défaillances sont un cas particulier de
variation dynamique du contexte d’exécution et elles nécessitent une prise en compte
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particulière. En effet, lors d’une défaillance, une partie de l’état de l’application disparait
avec les machines défaillantes. L’application est alors dans un état incohérent qui
l’empêche de poursuivre son exécution correctement.

Dans de telles conditions, l’exploitation des ressources d’une grille de calcul est un
problème difficile. Pour s’exécuter efficacement et correctement, une application doit
nécessairement supporter les contraintes liées à cet environnement d’exécution. Elle doit
donc être capable à la fois (1) de tolérer la défaillance d’un ou plusieurs composants et
également (2) d’être reconfigurée dynamiquement pour s’adapter aux changements du
contexte d’exécution.

1.2 Objectifs

Ces travaux de recherche portent sur l’étude et la conception de mécanismes de
reconfiguration dynamique et de tolérance aux fautes pour les applications de calcul
haute performance sur des plateformes distribuées de type grille de calcul.

Ces travaux s’intègrent dans le développement du moteur d’exécution Kaapi déve-
loppé par l’équipe MOAIS au Laboratoire d’Informatique de Grenoble (LIG). L’intergi-
ciel Kaapi permet l’exécution d’applications parallèles et distribuées écrites à l’aide
de l’interface de programmation Athapascan. Cette interface permet de décrire le
parallélisme d’une application de manière indépendante de l’architecture sur laquelle
elle s’exécute. Dans Kaapi, l’application est représentée sous la forme abstraite d’un
graphe de flot de données. Grâce à cette représentation abstraite, il est alors possible
d’inspecter et de manipuler l’état de l’application en cours d’exécution.

Ces travaux cherchent à fournir des mécanismes de reconfiguration dynamique et
de tolérance aux fautes pour le modèle graphe de flot de données offert par Atha-
pascan/Kaapi. Ainsi, l’objectif est de permettre l’exécution d’applications distribuées
Kaapi sur une grille de calcul tout en prenant en compte les variabilités de la plateforme
et l’apparition de défaillances.

Plus précisément, du point de vue de l’adaptation et de la reconfiguration dynamique,
les objectifs sont :
• d’étudier les mécanismes d’adaptation et de reconfiguration dynamique pour le

calcul haute performance ;
• de proposer un mécanisme simple, générique et performant pour permettre la

réalisation de reconfigurations ;
• d’évaluer de ce mécanisme à grande échelle dans le cadre du moteur d’exécution

Kaapi.

Sur l’aspect de la tolérance aux fautes, les objectifs sont :
• d’étudier des mécanismes de tolérance aux fautes pour les architectures distribuées

de type grille de calcul ;
• d’intégrer un mécanisme classique de tolérance aux fautes par sauvegarde coor-

donnée dans l’environnement Kaapi ;
• de proposer et d’étudier les améliorations de cette technique en prenant en compte

le modèle de graphe de flot de données.
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1.3 Contributions

Les contributions de ce travail de recherche s’articulent autour des problématiques
de la reconfiguration dynamique et la tolérance aux fautes.

Une première contribution porte sur la conception d’un mécanisme de reconfi-
guration dynamique pour les applications distribuées. Ce mécanisme est basé sur la
représentation de l’application sous forme d’un graphe de flot de données et permet de
garantir que l’application restera dans un état correct après la reconfiguration. Il pro-
pose la gestion des accès concurrents par exécution concurrente ou par exécution
coopérative. De plus, nous définissons les propriétés de cohérence et d’accessibilité
qui permettent d’assurer la cohérence mutuelle entre les processus de l’application.

Le principe d’exécution coopérative a été utilisé pour réaliser l’implémentation d’une
reconfiguration « vol de travail » dans le logiciel X-Kaapi. Il offre de très bonnes
performances à grain fin en comparaison de Cilk et de TBB.

Un protocole de gestion de la cohérence mutuelle a été implémenté dans Kaapi. Ce
protocole est optimisé pour tenir compte des informations offertes par le graphe de flot
de données de l’application. Il a été testé sur un millier de machines de Grid’5000 : il
offre à la fois des temps de coordination rapides et stables.

Du point de vue de la tolérance aux fautes, nous avons proposé plusieurs améliorations
de la technique classique de sauvegarde/reprise coordonnée. Les protocoles de tolérance
aux fautes sont vus comme des reconfigurations et ils sont implémentés à l’aide du
mécanisme de reconfiguration proposé précédemment.

Nous avons étudié et amélioré la technique de reprise globale qui est associée au
protocole de sauvegarde coordonnée. En cas de défaillance, cette technique nécessite
classiquement l’utilisation de machines de rechange à la reprise pour ne pas pénaliser
la vitesse d’exécution. Afin de supprimer le besoin de machines de rechange, nous
proposons de réaliser une sur-décomposition du domaine de calcul et d’utiliser un
algorithme d’équilibrage de charge lors de la reprise. De cette manière, l’application
peut redémarrer sur l’ensemble des machines non défaillantes avec des performances
proches de l’optimal.

Nous proposons également une méthode originale de reprise partielle. Grâce au
graphe de flot de données de l’application, elle ne réexécute que le sous-ensemble de
tâches strictement nécessaires à la reprise. Cette méthode permet de réduire la
quantité de travail à réexécuter à la reprise si on la compare à la méthode classique de
reprise globale. De plus, si le travail perdu contient suffisamment de parallélisme, il est
possible de réexécuter le travail perdu plus rapidement et ainsi de réduire le surcout
induit par une panne.

L’étude des performances de ces deux techniques de reprise a été réalisée par
des simulations ainsi que par des expérimentations avec une application réelle sur
la plateforme Grid’5000. Cela nous a permis de mettre en évidence les gains des
améliorations proposées, mais aussi leurs limites.

De manière transversale, une contribution de ces travaux a été l’intégration dans
le logiciel Kaapi des mécanismes de reconfiguration dynamique et des protocoles de
tolérance aux fautes proposés, mais aussi le développement d’outils pour le déploiement
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d’application et l’expérimentation à grande échelle. Ces outils ont été à la base
des victoires de l’équipe Kaapi/MOAIS lors des challenges organisés par l’ETSI dans
le cadre des PlugTests 2007 (Pékin, Chine) et 2008 (Sophia-Antipolis).

Les travaux de cette thèse ont fait l’objet de trois publications pour des conférences
internationales [30, 29, 78], d’un chapitre de livre [28], d’un article dans un journal
national [33], de deux publications pour des conférences nationales [32, 31] et de deux
communications orales [27, 26].

1.4 Organisation du manuscrit

Ce document est organisé en trois parties.
La partie I présente l’état de l’art des domaines de la tolérance aux fautes (chapitre 2)

et de l’adaptation dynamique (chapitre 3).
Le chapitre 2 introduit les concepts et la terminologie liés à la sureté de fonctionne-

ment. Puis, il présente la tolérance aux fautes pour les systèmes distribués et détaille
les techniques basées sur une mémoire stable qui sont plus adaptées au calcul haute
performance. Enfin, un aperçu des implémentations réalisées dans la communauté
internationale est donné.

Le chapitre 3 explique, tout d’abord, le concept d’adaption dynamique. En particulier,
il met en avant les trois fonctions essentielles que sont l’observation, la décision et la
reconfiguration. Ensuite, la reconfiguration dynamique pour les applications distribuées
est détaillée ; nous y présentons notamment les propriétés qui peuvent être attendues
par un mécanisme de reconfiguration. Finalement, nous donnons une description du
fonctionnement des principales solutions logicielles qui offrent des fonctions d’adaptation
ou de reconfiguration dynamique.

La partie II propose le mécanisme de reconfiguration conçu pour l’environnement
Kaapi. Elle est organisée en trois chapitres.

Le chapitre 4 est une présentation du modèle de programmation Athapascan et
du moteur d’exécution Kaapi, et notamment du modèle de graphe de flot de données.
C’est sur ce modèle qu’est basé le mécanisme de reconfiguration proposé dans le chapitre
suivant.

Dans le chapitre 5, nous présentons les mécanismes proposés pour l’environnement
Kaapi. Tout d’abord, nous modélisons le processus de reconfiguration. Puis nous
détaillons deux aspects fondamentaux qui permettent d’appliquer une reconfiguration
tout en garantissant un état correct de l’application : la gestion des accès concurrents
et la gestion de la cohérence.

Le chapitre 6 présente les expérimentations qui ont été réalisées pour évaluer les
mécanismes de reconfiguration du chapitre précédent. D’abord, nous étudions la gestion
de la concurrence à travers les méthodes d’exécution concurrente et coopérative pour
la reconfiguration « vol de travail ». Ensuite, le protocole de gestion de la cohérence
mutuelle est expérimenté sur une grille de calcul afin de mesurer son surcout.

La partie III présente, à travers trois chapitres, les travaux de cette thèse por-
tant sur la tolérance aux fautes. Ces travaux reposent en partie sur le mécanisme de
reconfiguration dynamique présenté dans la partie précédente.
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Le chapitre 7 présente tout d’abord l’organisation des mécanismes de tolérance
aux fautes dans Kaapi et les cinq composants identifés : le détecteur de panne, le
coordinateur des pannes, la mémoire stable, le protocole de sauvegarde et le protocole
de reprise. La suite de ce chapitre s’attache à présenter l’implémentation du protocole
classique de sauvegarde coordonnée réalisée dans Kaapi. Cette implémentation est
également évaluée par une série d’expériences.

Le chapitre 8 étudie la reprise globale qui est le protocole classique de reprise associé
à la sauvegarde coordonnée. Nous présentons son implémentation et nous modélisons la
phase de reprise. Ensuite, nous étudions, théoriquement et expérimentalement, l’effet
de la sur-décomposition d’une application de décomposition de domaine sur la vitesse
d’exécution après la reprise.

Dans le chapitre 9, nous proposons un protocole original de reprise partielle utilisant
la sauvegarde coordonnée. Ce procotole est présenté et analysé théoriquement. Ensuite,
nous l’avons étudié à travers des simulations et plusieurs expérimentations.

Le chapitre 10 conclut ces travaux en rappelant les principaux résultats. Enfin,
suite à ces travaux, nous proposons les perspectives de recherche qui nous semblent
importantes.
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2 Tolérance aux fautes

2.1 Introduction

La tolérance aux fautes est l’aptitude d’un système informatique à accomplir
sa fonction malgré la présence ou l’occurrence de fautes [13], qu’il s’agisse de dégra-
dations physiques du matériel, de défauts logiciels, d’attaques malveillantes, d’erreurs
d’interaction homme-machine. Elle apparait comme un moyen de garantir une sureté
de fonctionnement.

Disponibilité

Fiabilité

Sécurité-innocuité

Confidentialité

Intégrité

Maintenabilité

Prévention des fautes

Tolérance aux fautes

Élimination des fautes

Prévision des fautes

Fonctionnement
Sureté de

Fautes

Attributs

Entraves

Moyens

Défaillances

Erreurs

Fig. 2.1: L’arbre de la sureté de fonctionnement [13]

La première section présente les concepts généraux de la sureté de fonctionnement.
La seconde section aborde les différentes méthodes de tolérance aux fautes d’une manière
très générale. La troisième section donne le modèle d’application distribuée et présente
les techniques de tolérance aux fautes spécifiques à ce domaine.

2.2 Sureté de fonctionnement et tolérance aux fautes

La sureté de fonctionnement d’un système informatique est son aptitude à
délivrer un service en lequel on peut avoir une confiance justifiée [18]. La sureté de
fonctionnement peut-être présentée autour de trois notions décrites à la figure 2.1
extraite de [13] : ses attributs, ses entraves et ses moyens.

2.2.1 Attributs de la sureté de fonctionnement

Les attributs de la sureté de fonctionnement correspondent aux propriétés que doit
vérifier un système. Ces attributs permettent d’évaluer la qualité de service fournie par
le système. Six attributs de la sureté de fonctionnement sont définis dans [18] :
• la disponibilité est le fait d’être prêt à l’utilisation ;
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Sureté de fonctionnement et tolérance aux fautes 2.2

• la fiabilité correspond à la continuité du service ;
• la sécurité-innocuité est l’absence de conséquences catastrophiques engendrées

par les fautes ;
• la confidentialité correspond à l’absence de divulgation non autorisée de l’infor-

mation ;
• l’intégrité indique l’absence d’altérations inappropriées de l’information ;
• la maintenabilité correspond à l’aptitude aux réparations et aux évolutions.
L’importance de chaque attribut peut différer selon l’application et les besoins

auxquels le système informatique est destiné. Pour les applications parallèles de longue
durée, les principaux attributs seront la fiabilibité et la maintenabilité.

2.2.2 Entraves à la sureté de fonctionnement

Les entraves à la sureté de fonctionnement sont de trois types [13] : les fautes, les
erreurs et les défaillances. Fautes, erreurs et défaillances sont liées par des relations de
causalité illustrées sur la figure 2.2.

Faute Erreur Défaillance Faute
ConséquencesPropagationActivation

Fig. 2.2: La chaine fondamentale des entraves à la sureté de fonctionnement [13]. Les
flèches indiquent les relations de causalité entre fautes, erreurs et défaillances.

Une défaillance (ou panne) est l’évènement qui survient lorsque le comportement
du système dévie de sa fonction1. L’erreur est la partie de l’état du système qui est
susceptible d’entrainer une défaillance. La défaillance survient lorsque l’erreur affecte le
service délivré à l’utilisateur. La faute est définie comme la cause adjugée ou supposée
de l’erreur.

Les fautes sont classées selon huit critères : phase de création ou d’occurence, fron-
tières du système, cause phénoménologique, dimension, intention, capacité et persistance.
La combinaison pertinente de ces critères permet de donner un classement exhaustif de
tous les types de fautes. Pour simplifier, on peut les regrouper en trois grandes classes
non exclusives :
• les fautes de développement qui rassemblent les fautes pouvant survenir durant le

développement ;
• les fautes physiques qui rassemblent les fautes affectant le matériel ;
• les fautes d’interactions qui rassemblent les fautes externes, c’est-à-dire celles qui

sont localisées à l’extérieur des frontières du système et qui propagent des erreurs
à l’intérieur du système par interaction ou interférence.

2.2.3 Moyens d’assurer la sureté de fonctionnement

Les moyens d’assurer la sureté de fonctionnement sont définis comme les méthodes
utilisées pour assurer cette propriété. On distingue quatre méthodes principales [18].

1et non de la spécification du système puisqu’elle peut être erronée
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• La prévention des fautes vise à empêcher l’apparition ou l’introduction des
fautes dans le système. Elle repose sur des règles de développement (modularisation,
utilisation de langage fortement typé, preuve formelle, etc.).
• L’élimination des fautes s’attache à réduire la présence (nombre, sévérité) des

fautes. Cette méthode opère à la fois lors du développement (vérification des
conditions, test de régressions, injection de fautes, etc.) ou lors de l’utilisation
(maintenance).
• La prévision des fautes cherche à estimer (qualitativement et quantitativement)

l’occurrence et les conséquences des fautes. Elle est réalisée par la modélisation et
l’évaluation de systèmes.
• La tolérance aux fautes essaie de masquer l’occurrence des fautes et de continuer

à fournir le service demandé malgré leur apparition.
La section suivante va présenter les différentes approches pour réaliser la tolérance

aux fautes.

2.2.4 Tolérance aux fautes

L’objectif de la tolérance aux fautes est d’éviter les défaillances du système malgré
la présence de fautes. Cela revient à casser la chaine décrite à la figure 2.2, qui conduit
de la faute à la défaillance. La tolérance aux fautes est mise en œuvre par la détection
d’erreur et le rétablissement du système.

2.2.4.1 Détection d’erreur

La détection d’erreur peut être réalisée lors d’une suspension de service. On dit
alors qu’elle est préemptive. À l’opposé, on dit qu’elle est concomitante lorsqu’elle est
réalisée lors de l’exécution normale du service.

Les techniques de détection concomitante utilisent la redondance au niveau informa-
tion ou composant, ou la redondance temporelle ou algorithmique. Les formes les plus
utilisées sont les suivantes.
• Les codes détecteur d’erreur : ils introduisent une redondance dans la représenta-

tion de l’information [150].
• Le doublement et la comparaison : les unités de traitement sont dupliquées et

leurs résultats sont comparés.
• Les contrôles temporels et d’exécution : un « chien de garde » (watchdog) contrôle

les temps de réponse ou l’avancée de l’exécution.
• Les contrôles de vraisemblance ou de données structurées : des assertions sont

insérées dans le code pour vérifier des types, des indices, des valeurs, etc.

2.2.4.2 Rétablissement du système

Le rétablissement du système vise à transformer l’état erroné en un état exempt
d’erreur et de faute. Le traitement de la faute se fait en identifiant le composant fautif
et en l’excluant. Le traitement de l’erreur peut se faire par trois techniques : la reprise,
la poursuite et la compensation [13].

La reprise est la technique la plus couramment utilisée. L’état du système est
sauvegardé régulièrement. Lorsqu’une erreur est détectée, le système est ramené à
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un état antérieur à l’occurrence de l’erreur. Cet état sauvegardé est appelé point de
reprise.

La poursuite consiste à rechercher un nouvel état exempt d’erreur. Ceci peut
par exemple être réalisé en associant un traitement exceptionnel lorsqu’une erreur est
détectée. Le but de ce traitement est alors de corriger l’état erroné.

La compensation nécessite que l’état du système comporte suffisamment de redon-
dance pour permettre sa transformation en un état exempt d’erreur. Elle est transparente
vis-à-vis de l’application car elle ne nécessite pas de réexécuter une partie de l’application
(reprise), ni d’exécuter une procédure dédiée (poursuite). Elle peut par exemple être
réalisée en répliquant des composants et en effectuant un vote majoritaire sur les résul-
tats. Une autre manière de procéder est d’utiliser les codes correcteurs d’erreurs [150]
ou plus généralement des algorithmes tolérants aux fautes [88, 38, 152, 131].

On peut noter que la méthode de compensation ne nécessite pas de détection
d’erreurs spécifique puisqu’elle effectue elle-même la détection d’erreur. Une méthode de
compensation peut servir de détecteur d’erreur, tandis que l’inverse n’est pas vrai. En
effet, la compensation nécessite une redondance plus importante pour pouvoir corriger
l’erreur [13]. Par exemple en termes de composants, deux composants suffisent à détecter
une erreur, mais au moins trois seront nécessaires pour la corriger.

Dans la suite de ce chapitre, nous nous intéressons à la tolérance aux fautes pour
les systèmes distribués, et en particulier aux méthodes de rétablissement du système.

2.3 Tolérance aux fautes pour les systèmes distri-
bués

Un système distribué est constitué par l’aggrégation d’un très grand nombre de
composants. Une faute d’un seul des composants entraine la défaillance de tout le
système. Ainsi, même si chaque composant présente une probabilité de faute très faible,
la défaillance du système est inévitable [142].

La tolérance aux fautes apparait comme un élément indispensable aux systèmes
répartis. Pour répondre à ce besoin, plusieurs techniques ont été conçues. Elles reposent
toutes sur un mécanisme de redondance [16]. Dans un premier temps, nous présentons
d’abord une modélisation du système distribué puis nous décrivons les mécanismes de
redondance.

2.3.1 Modèle et hypothèses

Un système distribué est modélisé comme un ensemble de processus qui commu-
niquent en échangeant des messages par l’intermédiaire de canaux de communication.
L’état du système est donc distribué sur l’ensemble des processus et il n’y a pas d’horloge
globale.

Pour caractériser les canaux de communication, plusieurs modèles temporels existent.
• Le modèle synchrone indique que la durée de transfert (i.e. le temps entre l’émis-

sion et la réception) des messages est bornée. Cependant ce modèle n’est pas
suffisamment proche de la réalité puisqu’il nécessite que la borne de temps soit
toujours respectée.
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• Le modèle asynchrone garantit qu’un message émis sur le canal de communication
sera délivré au destinataire, cependant il n’est pas possible de borner la durée de
transfert du message. En présence de défaillances, ce modèle ne permet pas de
résoudre certains problèmes fondamentaux comme le consensus [73].
• Le modèle asynchrone avec détecteur de défaillance [48] permet de résoudre

le problème du consensus en présence de défaillances tout en conservant des
hypothèses réalistes vis-à-vis des communications.

Par la suite, nous nous plaçons dans un modèle asynchrone avec détecteur de défaillance
(ou dans un modèle équivalent). De plus, les canaux de communication sont supposés
fiables et ordonnés (First In, First Out)2.

Modèle de pannes. Les défaillances (ou pannes) potentielles d’un service peuvent
prendre des formes variées. Les classements proposés pour distinguer les différents types
de défaillances s’appuient sur différents critères. Les principaux critères utilisés dans
la littérature [17, 92] pour caractériser les défaillances des processus ou des canaux de
communication sont les suivants.
• Selon la gravité, on distingue alors les arrêts, les omissions (des messages sont

perdus), les défaillances de temporisation (le temps de réaction du système est en
dehors des plages spécifiées), les défaillances en valeurs (les résultats fournis sont
incorrects) et les défaillances incohérentes ou byzantines.
• Selon la persistance temporelle, on trouve les défaillances transitoires (isolées dans

le temps), les défaillances intermittentes (aléatoires et répétées) et les défaillances
permanentes (définitives jusqu’à réparation).
• Selon l’intention de la faute, on différencie les défaillances malveillantes et les

défaillances non malveillantes.

2.3.2 Gestion de la redondance

La tolérance aux fautes dans un système distribué est assurée par la redondance.
Cette redondance peut être spatiale (réplication de composants), temporelle (traite-
ments multiples) ou informationnelle (redondance de données, codes, signatures). Les
mécanismes de redondances mis en œuvre appartiennent à deux catégories : les méca-
nismes utilisant la réplication et les mécanismes s’appuyant sur une mémoire stable.
Ces mécanismes sont présentés dans les paragraphes suivants.

2.3.2.1 Redondance spatiale et temporelle : réplication

La tolérance aux fautes par réplication consiste à utiliser des copies multiples
d’un même composant ou processus. De cette manière, en cas de défaillance d’un des
composants, la défaillance peut être masquée par l’une des copies. La principale difficulté
de cette approche est de conserver une cohérence forte entre les copies. Il existe quatre
stratégies principales permettant d’assurer cette cohérence [63] :
• Pour la réplication passive [155], on distingue la copie primaire et les copies

secondaires. La copie primaire est la seule qui reçoit les requêtes et qui effectue
toutes les opérations. Pour assurer la cohérence, la copie primaire diffuse son

2Ces hypothèses peuvent être garanties par un protocole de communication sous-jacent.
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nouvel état aux copies secondaires après chaque modification. Cet état sert de
point de reprise en cas de défaillance.
• La réplication active [155] désigne les stratégies dans lesquelles toutes les copies

jouent un rôle identique. Toutes les copies reçoivent la même séquence ordonnée
de requêtes, qui sont toutes traitées dans le même ordre. Cette stratégie évite
d’utiliser des points de reprise couteux. En revanche, elle nécessite un mécanisme
de diffusion atomique et requiert que l’exécution des requêtes soit déterministe
pour garantir la cohérence.
• La réplication semi-active [63] est une amélioration de la réplication active.

À la différence de la réplication active, les copies secondaires attendent une
notification de la copie primaire avant de traiter la requête. Cette notification
comporte les informations nécessaires qui permettent de résoudre le problème de
l’indéterminisme du traitement des requêtes.
• La réplication coordinateur/cohortes [63] est également une solution hybride

entre la réplication active et la réplication passive. La copie primaire est appelée
coordinateur et les copies secondaires sont appelées cohortes. Cette méthode est
une réplication passive pour laquelle les requêtes sont transférées à toutes les
copies pour éviter de les perdre en cas de défaillance.

Le principal désavantage de cette méthode par réplication est qu’elle nécessite
de nombreuses ressources : pour tolérer p défaillances, il est nécessaire d’avoir p + 1
composants identiques. Cette méthode n’est donc pas adaptée aux calculs parallèles où
la performance (temps de calcul) est souvent le critère prépondérant : les ressources
doivent être exploitées en priorité pour le calcul.

2.3.2.2 Redondance informationnelle : mémoire stable

La mémoire stable représente un support de stockage. Son rôle est de conserver les
sauvegardes des informations du système qui permettront de reprendre l’exécution de
l’application dans un état cohérent [66]. Une mémoire stable doit préserver l’intégrité
des données et les garder accessibles, même en cas de défaillance.

La réalisation physique d’une mémoire stable dépend essentiellement des types de
défaillances auxquels on souhaite faire face.

• Pour un système qui ne tolère qu’une seule défaillance (respectivement p dé-
faillances), la mémoire stable peut être réalisée par la mémoire volatile d’un autre
processus (respectivement de p autres processus).
• Dans un système qui ne souhaite tolérer que les défaillances transitoires, la mémoire

stable peut correspondre au disque dur local du processus.
• Pour un système qui veut tolérer un nombre quelconque de défaillances per-

manentes, la mémoire stable doit être réalisée sur une machine extérieure aux
machines de calcul et qui est supposée être fiable.

Le principe de la tolérance aux fautes par mémoire stable est, en cas de défaillance,
de rétablir l’application dans un état cohérent en utilisant les informations stockées sur
la mémoire stable. Dans la suite de chapitre, nous étudierons uniquement les protocoles
basés sur une mémoire stable.
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2.4 Techniques de tolérance aux fautes par mémoire
stable

Le début de ce chapitre a présenté les concepts sous-jacents à la réalisation d’un
système distribué tolérant aux fautes. Nous présentons ici les techniques de tolérance
aux fautes basées sur l’utilisation d’une mémoire stable car elles sont plus adaptées
au calcul parallèle haute performance. Dans le cadre de ce mémoire, nous considérons
uniquement cette approche.

La tolérance aux fautes basée sur une mémoire stable utilise la redondance d’infor-
mations. Ces informations correspondent à la sauvegarde de l’état des processus ou
bien à la journalisation d’évènements, et sont stockées sur la mémoire stable.

Une difficulté majeure de cette approche est la constitution, à partir des informations
sauvegardées, d’un état correct du système prenant en compte tous les processus. La
constitution d’un tel état introduit un surcout qui va dépendre des contraintes imposées
au système : nombre et types de défaillances à tolérer, reprise globale du système ou
uniquement des processus défaillants, etc. La conception du protocole de tolérance
aux fautes doit prendre en compte ces contraintes tout en limitant la dégradation de
performance infligée au système.

Deux approches sont possibles pour construire un état global cohérent suivant le
moment de sa construction [66, 49].

À priori : les sauvegardes des processus sont coordonnées à l’exécution pour constituer
un état global cohérent.

À posteriori : les sauvegardes sont faites de manière indépendante et l’état global
cohérent est construit à la reprise.

Si la première approche garantit un état correct par construction de la sauvegarde, la
seconde approche peut ne pas arriver à reconstruire cet état correct sans hypothèse
supplémentaire.

Voyons maintenant plus précisément comment définir un état correct ou cohérent.

2.4.1 État global cohérent

L’état global d’une application parallèle est composé :
• de l’état local de tous les processus participant au calcul,
• et de l’état de tous les canaux de communication entre les processus.
Sans horloge globale, il n’est pas possible d’observer de manière simultanée l’état des

processus. De plus l’état des canaux de communication n’est pas accessible directement.
Ces contraintes empêchent de connaitre à un instant donné l’état global de l’application,
et donc de le sauvegarder.

En pratique, l’état global de l’application est donc reconstitué à partir des états
des processus observés à des instants différents et des informations sur les canaux de
communication acquises sur les processus émetteurs et récepteurs. Chandy et Lamport
ont donc défini la notion d’état global cohérent de la manière suivante.

Définition 1 Un état global cohérent est un état qui peut se produire durant une
exécution correcte ( i.e. sans défaillance) de l’application. Plus formellement, un état
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global cohérent est un état dans lequel, si l’état d’un processus montre la réception d’un
message, alors l’état du processus qui a émis ce message « contient3 » l’émission de ce
message [66, 49].

Dans la figure 2.3b, l’état global, formé des losanges sur chacune des lignes de temps
des trois processus P0, P1 et P2 et des canaux de communication, est incohérent car le
message m1 est enregistré comme reçu dans l’état sauvegardé du processus P2 alors
que la sauvegarde du processus P1 ne montre pas l’émission du message m1. On peut
remarquer que ce message ne fait pas partie de l’état des canaux de communication car
il n’existe pas encore lorsque P1 sauvegarde son état local et il n’existe plus lorsque P2

sauvegarde son état local. Ce message m1 est appelé « message orphelin ».

P0

P1

P2

m1

m0

m2

(a) État global cohérent

P0

P1

P2

m0

m1

m2

(b) État global incohérent

Fig. 2.3: Exemple d’état global cohérent (a) et incohérent (b). Les axes horizontaux
représentent le temps pour trois processus P0, P1 et P2. Les flèches représentent des
communications entre les processus. Les losanges représentent les évènements associés à
la capture de l’état des processus.

Définition 2 Soit un état global, on appelle message orphelin est un message qui
apparait comme reçu dans l’état d’un processus alors qu’il n’apparait pas dans l’état du
processus qui l’a émis.

Les messages orphelins sont la cause de l’incohérence d’un état global car ils cor-
respondent à un état qui ne peut pas se produire lors d’une exécution correcte. Ils
proviennent du décalage des sauvegardes locales qui peut se produire entre deux proces-
sus distants qui communiquent.

Le rôle du protocole de tolérance aux fautes est de reconstruire un état global
cohérent à partir de l’état potentiellement incohérent du système après une panne et
des informations sauvegardées sur la mémoire stable. L’état global cohérent reconstruit
n’est pas nécessairement un état de l’application avant la défaillance ; il suffit qu’il soit
un état de l’application qui aurait pu se produire durant une exécution sans panne.

La section suivante présente les protocoles de reprise basés sur la sauvegarde.
Puis nous présenterons les protocoles basés sur la journalisation des évènements non
déterministes.

3signifie que l’évènement associé à l’émission précède l’évènement associé à la prise d’état du
processus.
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2.4.2 Reprise par sauvegarde

Les protocoles de reprise par sauvegarde réalisent des sauvegardes régulières de
l’état des processus. Pour redémarrer, ils utilisent le dernier ensemble de sauvegardes
formant un état global cohérent [66].

Les protocoles de reprise par sauvegarde peuvent être classés en trois catégories selon
le mode de construction de l’état global cohérent de la reprise : la sauvegarde coordonnée,
la sauvegarde non coordonnée et la sauvegarde induite par les communications.

2.4.2.1 Sauvegarde non coordonnée

La sauvegarde non coordonnée [66] évite la coordination et laisse à chaque processus
la décision de sauvegarder son état quand il le souhaite. Ainsi un processus peut décider
de sauvegarder son état quand ça lui convient le mieux, par exemple quand la taille de
son état est minimale [151]. Lors de la reprise, un algorithme analyse les différences
entre les points de sauvegarde des processus pour tenter de déterminer l’ensemble des
sauvegardes les plus récentes formant un état global cohérent.

Cependant cette approche comporte plusieurs inconvénients. Tout d’abord, lors de
la reprise, il y a un risque d’effet domino [123] : lors de la construction de l’état global
cohérent, les dépendances entre les messages peuvent entrainer un retour à l’état initial.
On peut ainsi perdre une grande partie du travail déjà effectué. De plus, certaines
sauvegardes peuvent être inutiles pour la construction d’un état global cohérent. Ces
sauvegardes induisent un surcout mais ne contribuent pas au redémarrage. Enfin, cette
méthode oblige les processus à conserver à priori toutes les sauvegardes. Un ramasse-
miette peut être utilisé pour supprimer les sauvegardes inutiles en détectant l’ensemble
des sauvegardes le plus récent qui constitue un état global cohérent.

2.4.2.2 Sauvegarde coordonnée

La sauvegarde coordonnée est réalisée en coordonnant les processus de manière
à assurer que l’ensemble des états des processus forme un état global cohérent. Il
existe différentes manières de coordonner les processus. On distingue en particulier la
sauvegarde coordonnée bloquante ou la sauvegarde coordonnée non bloquante.

La sauvegarde coordonnée bloquante [138, 118] est réalisée en plusieurs étapes.
Tout d’abord, tous les processus de calcul sont arrêtés et les canaux de communication
sont vidés. Puis chaque processus sauvegarde son état local. Enfin, les calculs peuvent
reprendre. Les canaux de communication étant vides au moment de la sauvegarde, l’état
global de l’application correspond à l’état local de tous ses processus et il est cohérent.

La sauvegarde coordonnée non bloquante [49] permet d’identifer l’état des
canaux de communication grâce à des « messages marqueurs ». Lors d’une étape de
sauvegarde, chaque processus sauvegarde son état local puis diffuse immédiatement4

un marqueur sur tous ses canaux de communication. Ensuite, il sauvegarde tous les
messages reçus sur chaque canal de communication jusqu’à la réception d’un marqueur.
Cet ensemble de messages correspond à l’état du canal de communication qui sera alors
sauvegardé sur la mémoire stable.

4avant tout autre message
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L’avantage de la sauvegarde coordonnée est qu’elle n’est pas sensible à l’effet do-
mino lors de la reprise. Seule la dernière sauvegarde est nécessaire pour un redémarrage
ce qui réduit le surcout de stockage. Le principal inconvénient est le surcout induit
par la synchronisation des processus. D’autres méthodes ont été proposées pour tenter
d’améliorer les performances :
• La sauvegarde avec horloges synchronisées [100] synchronise les horloges des

processus. Si chaque processus effectue sa sauvegarde et s’il attend un temps
suffisant (dépendant des déviations entre les horloges et du temps de détection
d’une défaillance), on est assuré de la cohérence des sauvegardes sans avoir échangé
de messages.
• La sauvegarde coordonnée minimale [96] ne synchronise un processus qu’avec

les processus dont il dépend réellement. Ceci est réalisé en deux étapes. Durant la
première, un processus identifie les processus dont il dépend (il émet des messages
qui sont diffusés de proche en proche selon les dépendances entre processus) ;
durant la deuxième, les processus identifiés réalisent leur sauvegarde.

2.4.2.3 Sauvegarde induite par les communications

La sauvegarde induite par les communications (Communication-Induced Checkpoin-
ting ou CIC) [19, 9] est un compromis entre la sauvegarde coordonnée et la sauvegarde
non coordonnée. Ce protocole utilise deux types de points de sauvegarde : les sauve-
gardes locales et les sauvegardes forcées. Les sauvegardes locales sont des sauvegardes
que le processus décide d’effectuer indépendamment. Les sauvegardes forcées sont des
sauvegardes qui doivent être effectuées pour empêcher l’effet domino en cas de reprise.

Ce protocole repose sur les notions de Z-chemin (zigzag path) et de Z-cycle définies
dans [113]. Ces notions permettent de déterminer si une sauvegarde sera utile ou non
en cas de panne et de reprise.

La sauvegarde induite par les communications a été spécialisée pour l’ordonnan-
cement par vol de travail. Cette variante, appelée TIC (Theft-Induced Checkpoin-
ting) [92, 94, 93] considère que dans le cas du vol de travail, les seules communications
qui modifient l’état de l’application sont les requêtes et les retours de vol.

2.4.3 Reprise par journalisation

Le principe de la tolérance aux fautes par journalisation est de sauvegarder l’histoire
de l’application. Les protocoles par journalisation utilisent à la fois la sauvegarde locale
de l’état des processus et la journalisation des évènements déterministes pour permettre
la reprise de l’application. Il est alors possible de reprendre l’exécution des processus
défaillants (et uniquement des processus défaillants) à partir de leur dernière sauvegarde
en rejouant les évènements non déterministes sauvegardés.

Pour cela, les protocoles basés sur la journalisation reposent sur l’hypothèse PWD :

Définition 3 Hypothèse PWD (PieceWise Deterministic assumption) [137]
• Un processus est modélisé par une séquence d’intervalles d’état.
• Chaque intervalle débute par un évènement non déterministe.
• L’exécution du processus durant chaque intervalle est déterministe.

35



2 Tolérance aux fautes

Chaque processus crée un journal des évènements non déterministes qu’il observe
pendant l’exécution normale (sans panne). En cas de panne, le processus défaillant est
capable de reconstruire son état d’avant la panne en partant de sa dernière sauvegarde
et en rejouant les évènements non déterministes inscrits dans son journal. L’hypothèse
PWD garantit que cette reconstruction aboutira au même état.

Pour pouvoir bénéficier de cette hypothèse, il faut être capable de détecter et d’enre-
gistrer ces évènements non déterministes. Ces évènements peuvent être des réceptions de
messages ou des évènements internes au processus (des décisions d’ordonnancement par
exemple). Il faut également remarquer que ces informations (le journal et les sauvegardes
périodiques) doivent être stockées sur une mémoire stable.

Lors de la reprise par journalisation, seuls les processus défaillants retournent en
arrière. La reprise force l’exécution des processus redémarrés à être identique à celle
qui s’est produite avant la panne. L’état obtenu après la reprise est donc exactement
l’état de l’application d’avant la défaillance. Cet état global est nécessairement cohérent
puisqu’il correspond à un état de l’application lors d’une exécution sans panne.

La reprise par journalisation n’est donc pas sensible à l’effet domino. C’est pourquoi
la journalisation est souvent utilisée conjointement à la sauvegarde non coordonnée.

Sous l’hypothèse PWD, il est possible de définir la notion de processus orphelin et
la condition de « non-orphelinité ».

Définition 4 On appelle processus orphelin un processus dont l’état dépend d’un
évènement non déterministe qui ne peut être reproduit à la reprise [66].

L’existence de ces processus orphelins caractérise les états globaux « pathologiques »
pour lesquels il n’est pas possible de reprendre une exécution. En effet, un processus
orphelin est un processus dont l’état dépend d’un évènement non déterministe qui ne
pourra pas être reproduit à la reprise.

Pour pouvoir redémarrer l’application, les protocoles de journalisation doivent assurer
la condition de « non-orphelinité ».

Proposition 1 Condition de « non-orphelinité » Lors de la reprise des processus
défaillants, le système ne doit contenir aucun processus orphelin.

Une formalisation de cette condition de « non-orphelinité » peut être trouvée
dans [66].

Les protocoles de reprise par journalisation diffèrent par leur manière d’assurer et
d’implanter cette condition de « non-orphelinité ». La suite présente la journalisation
pessimiste, la journalisation optimiste et la journalisation causale.

2.4.3.1 Journalisation pessimiste

Le protocole de reprise par journalisation pessimiste [137] repose sur l’hypothèse
(pessimiste) qu’une défaillance peut se produire immédiatement après un évènement non
déterministe. Le principe de ce protocole est donc de ne pas permettre à un processus
de dépendre d’un évènement non déterministe tant que celui-ci n’a pas été stocké sur
un support stable.
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Concrètement, si on considère que les évènements non déterministes sont uniquement
les réceptions de messages, ce protocole impose aux processus de sauvegarder tous les
messages reçus avant d’émettre un message à un autre processus [8]. Les sauvegardes
effectuées doivent donc être réalisées de manière synchrone.

L’avantage de ce protocole est qu’il ne crée jamais de processus orphelin. Cependant,
la sauvegarde synchrone induit un surcout conséquent lors d’une exécution sans panne,
en particulier pour les applications effectuant beaucoup de communications.

2.4.3.2 Journalisation optimiste

La journalisation optimiste [137] veut améliorer les performances en faisant l’hypo-
thèse (optimiste) qu’une panne ne se produira pas avant la sauvegarde de l’évènement
non déterministe. Ainsi, la contrainte est relâchée et les sauvegardes peuvent être
réalisées de manière asynchrone.

Cependant, le désavantage de cette méthode est qu’elle ne garantit pas strictement
la « condition de non-orphelinité ». Ainsi les processus qui n’ont pas encore sauvegardé
leurs évènements non déterministes sont des processus orphelins. Pour obtenir un état
global cohérent, ces processus devront revenir en arrière au dernier état où ils n’étaient
pas orphelins. Il faut remarquer que ce calcul pour obtenir l’état global cohérent à la
reprise peut avoir un cout important.

2.4.3.3 Journalisation causale

La journalisation causale [65, 66] combine les avantages de la journalisation pessimiste
pour la reprise et les avantages de la journalisation optimiste en ce qui concerne le
surcout à l’exécution. L’inconvénient est sa complexité.

Le principe est de conserver en mémoire locale les informations permettant de rejouer
un évènement non déterministe mais également les informations de précédence (au
sens de la relation de précédence causale de Lamport [101]) avec les autres évènements
non déterministes [8]. Ces informations (appelées également le déterminant) sont aussi
ajoutées à tous les messages émis vers les autres processus. Ces informations sont retirées
de la mémoire locale des processus une fois qu’elles ont été enregistrées sur un support
stable.

Ainsi, à tout moment, un processus connait l’historique des évènements qui ont
produit son état et celui des autres processus. Ces informations le protègent des
défaillances des autres processus et permettent de garantir la condition de « non-
orphelinité » [65].

2.4.4 Comparaison des protocoles

Le tableau 2.1 propose une comparaison des avantages et des inconvénients de
différentes techniques de tolérance aux fautes par reprise. Les critères utilisés sont les
suivants.

Hypothèse PWD : indique si cette technique repose sur l’hypothèse PWD. On re-
marque que seuls les protocoles par journalisation font cette hypothèse.

37



2 Tolérance aux fautes

Processus orphelins : indique si l’état correspondant à la dernière sauvegarde peut
contenir des processus orphelins. Les processus orphelins peuvent être évités en
utilisant plusieurs sauvegardes.

Effet domino : indique s’il y a un risque d’effet domino au moment de la reprise.
L’effet domino va obliger à conserver toutes les sauvegardes pour perdre le moins
de calculs possibles. Les techniques par journalisation ne sont pas sensibles à
l’effet domino puisqu’elles ont sauvegardé les messages pouvant en être à l’origine.

Nombre de sauvegardes : donne le nombre de sauvegardes par processus à conserver
pour redémarrer dans un état global cohérent. Ceci est la conséquence de la
possibilité d’apparition de processus orphelins et de l’effet domino.

Protocole Hypothèse
PWD

Processus
orphelins

Effet
Domino

Nombre de
sauvegardes

Journalisation pessimiste Oui Non Non Une

Journalisation optimiste Oui Possible Non Plusieurs

Journalisation causale Oui Non Non Une

Sauvegarde coordonnée Non Non Non Une

Sauvegarde non coordonnée Non Possible Possible Toutes

Sauvegarde induite par les commu-
nications

Non Possible Non Plusieurs

Tab. 2.1: Comparaison des différentes méthodes de tolérance aux fautes par reprise

2.5 Implémentations existantes

Cette section donne un aperçu et une comparaison des principales implémentations
de protocoles de tolérance aux fautes pour les applications parallèles de calcul distribué.

De nombreuses implémentations des protocoles décrits précédemment ont été faites.
Cette section va présenter les principales implémentations dans le cadre des environne-
ments de programmation parallèle. Un environnement complet de tolérance aux fautes
est un système complexe. Nous allons donc d’abord présenter les implémentations de
sauvegarde locale de l’état d’un processus, puis les implémentations de protocoles de
tolérance aux fautes proprement dites.

2.5.1 Sauvegarde locale d’un processus

Le problème de la sauvegarde locale de l’état d’un processus peut être abordé de
trois manières différentes, dépendant du niveau (dans la pile logiciel) auquel elle est
effectuée.

La première approche se situe au niveau système : l’état du processus est sauvegardé
comme un espace mémoire. La sauvegarde peut alors être faite par le noyau comme avec
Berkeley Lab’s Linux Checkpoint/Restart (BLCR) [64], ou bien par une bibliothèque

38



Implémentations existantes 2.5

utilisateur comme Condor [104], Libckpt [120] ou MTCP [129]. En particulier,
Libckpt offre un mécanisme de sauvegarde incrémentale et de compression qui permet
de réduire le volume de données sauvegardées [122]. Parmi ces solutions, seuls BLCR
et MTCP supportent les applications multithreadées. Cette méthode est très utilisée
parce qu’elle est transparente pour le développeur de l’application, mais elle comporte
plusieurs inconvénients : elle requiert des ressources homogènes pour le redémarrage
(même système d’exploitation et même architecture processeur) ; et l’espace mémoire
contient des données inutiles au redémarrage, ce qui implique que la taille du checkpoint
est plus grande que nécessaire.

Dans le but d’abstraire l’état d’un processus, la deuxième approche considère que la
responsabilité de l’utilisateur est d’écrire les fonctions pour sauvegarder et restaurer l’état
d’un processus. Cette méthode est efficace car le développeur peut choisir exactement
quelles données doivent être sauvegardées, mais cela nécessite un effort supplémentaire
de la part du développeur de l’application.

La troisième approche opère au niveau de l’intergiciel. Elle combine les avantages
des deux approches précédentes, mais elle requiert que l’application soit écrite avec
un intergiciel qui utilise une représentation abstraite de l’application. Cette représen-
tation abstraite peut prendre la forme d’objets (Charm++ [86]), de listes de tâches
(Satin [159]) ou d’un graphe de flot de données (Kaapi [93, 92]). Grâce à cette repré-
sentation abstraite, l’intergiciel peut sauvegarder lui-même les données représentant
l’état de l’application. Cette approche est totalement transparente pour le développeur
de l’application ; un processus peut être restauré sur une ressource hétérogène (la repré-
sentation abstraite est indépendante de l’architecture) et la taille de la sauvegarde est
plus petite que l’espace mémoire du processus.

2.5.2 Implémentations de protocoles de tolérance aux fautes

L’objectif des environnements de calcul de tolérance aux fautes est d’offrir un moyen
simple de rendre une application tolérante aux fautes. On distingue en particulier les
méthodes semi-automatiques et les méthodes automatiques.

Dans la catégorie semi-automatique, on trouve FT-MPI [71] et LA-MPI [15]. À
l’apparition d’une panne, l’environnement de calcul survit et remonte une erreur au
niveau de l’application qui peut alors la traiter et réagir de manière adéquate. Les
intergiciels semi-automatiques peuvent offrir de bonnes performances car ils permettent
de spécialiser la méthode de tolérance aux fautes pour une application donnée, mais ils
manquent de transparence pour le développeur de l’application.

Les méthodes automatiques sont beaucoup plus nombreuses. Elles reposent sur les
techniques de tolérances aux fautes proposées dans ce chapitre.

Tout d’abord, FT/MPI [20] et P2P-MPI [126] implémentent des techniques de
tolérance aux fautes basées sur la réplication. Les processus sont répliqués, et de cette
manière, la défaillance d’un processus répliqué n’affectera pas le calcul. Ces méthodes
évitent les interruptions de service mais elles visent les platformes avec un très grand
nombre de machines puisqu’elles utilisent beaucoup de ressources.

CoCheck [136] est une des premières solutions à offrir de la tolérance aux fautes à
MPI (1996). Il utilise un protocole de sauvegarde coordonnée bloquante pour garantir
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la cohérence de l’état global de l’application, et Condor [104] pour la sauvegarde locale
de chaque processus. La technique de tolérance aux fautes par sauvegarde coordonnée
est très répandue. Elle a été implémentée en différentes variantes et optimisée pour MPI
avec Starfish MPI [2], LAM/MPI [133], MPICH-V [44, 102, 56], Open MPI [90]
et aussi avec d’autres modèles de programmation dans Charm++ [164]. DMTCP [12]
propose aussi une sauvegarde coordonnée bloquante tout en étant indépendant du
modèle de programmation.

La sauvegarde non coordonnée est utilisée sans journalisation dans Starfish MPI [2].
Starfish MPI utilise des communications de groupe atomiques qui garantissent une
diffusion fiable et ordonnée des messages et il n’est donc pas sensible à l’effet domino.
Cependant la sauvegarde non coordonnée est principalement utilisée conjointement à
un protocole de journalisation pour éviter l’effet domino.

Quant à la sauvegarde induite par les communications, une implémentation spé-
cialisée pour le vol de travail est réalisée dans Kaapi avec le TIC (Theft-Induced
Checkpointing) [92, 94, 93]. Dans ProActive, un protocole de sauvegarde induite
par les communications, étendu par un mécanisme de journalisation des messages, a
également été implémenté [21].

Les protocoles par journalisation ont aussi largement été étudiés. L’environnement
Egida [124, 125] offre son propre langage pour exprimer les différents protocoles de
journalisation : pessimiste, optimiste et causale.

Des implémentations de la journalisation pessimiste sont proposées dans MPI-
FT [105], MPICH-V [40, 42] et Charm++ [47]. La journalisation causale a été
expérimentée à travers Manetho [65] et MPICH-V [102].

Finalement, Satin [159] offre un service de tolérance aux fautes par une appproche
différente des protocoles classiques. Cette approche est brièvement présentée dans la
section suivante. Toutes ces implémentations de protocoles de tolérance aux fautes
sont rarement comparées entre elles. On peut noter que cet effort a été fait dans les
environnements Egida [124, 125] et MPICH-V [43] qui implémentent chacun plusieurs
variantes de ces protocoles.

2.5.3 Comparaison des implémentations

Cette section détaille quelques environnements de programmation parallèle récents
qui implémentent des mécanismes de tolérance aux fautes. Ils ont été choisis parce qu’ils
sont largement utilisés ou parce qu’ils proposent une approche originale du problème de
la tolérance aux fautes. Ils représentent un aperçu des solutions automatiques actuelles
pour la tolérance aux fautes.

Ces implémentations sont comparées dans le tableau 2.2 en utilisant les critères
suivants.

Sauvegarde locale : indique les méthodes utilisées pour sauvegarder localement un
processus parmi celles décrites à la section 2.5.1. Ceci influence directement la
portabilité et la taille de l’état sauvegardé.

Protocole : correspond au protocole de tolérance aux fautes utilisé. Les protocoles
classiques sont détaillés dans la section 2.4.
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Composants de stockage : donne le composant physique qui est utilisé pour conser-
ver les états sauvegardés ou les messages enregistrés.

Composants fiables : définit quels composants sont supposés fiables dans cette im-
plémentation.

Processeur de rechange : indique si un processeur de rechange est nécessaire pour
redémarrer l’application. Redémarrer sans processeur de rechange requiert un
système d’équilibrage de charge pour empêcher une baisse des performances.

Type de reprise : définit combien de processus doivent reprendre à un état antérieur
lors du redémarrage : globale pour tous, locale pour seulement les processus
défaillants, et partielle pour une solution intermédiaire.

2.5.3.1 MPICH-V

MPICH-V offre une implémentation de MPI pour des ressources volatiles. Il est
basé sur l’implémentation MPICH du standard MPI-1. Les protocoles de tolérance
aux fautes sont implémentés en remplaçant le composant standard ch_p4 de MPICH
(réalisant les communications TCP) par un composant V-protocol qui représente le
protocole de tolérance aux fautes. Les versions récentes de MPICH-V peuvent utiliser
Condor, Libckpt ou BLCR pour la sauvegarde locale de processus.

Plusieurs protocoles de tolérance aux fautes ont été implémentés dans MPICH-V.
MPICH-V1 [40] est une implémentation de la journalisation pessimiste basée sur le
concept de canal mémoire (memory channel). Un canal mémoire est un processus fiable
qui enregistre tous les messages échangés entre deux processus MPI. Il n’y a donc
pas de communication directe entre les processus MPI. MPICH-V2 [42] implémente
un protocole de journalisation pessimiste à l’émission. Il améliore les performances de
MPICH-V1 en enregistrant les messages sur l’émetteur grâce à un processus Event
Logger. MPICH-Cl [44] offre un protocole de sauvegarde coordonnée non bloquante
qui utilise un serveur de sauvegarde fiable pour sauvegarder. MPICH-VCl [102] est
une amélioration de MPICH-Cl. Chaque processus conserve une copie locale de la
sauvegarde émise sur le serveur de sauvegarde. Ceci permet d’accélérer le redémarrage
en cas de panne. MPICH-VCausal [102] implémente un protocole de journalisation
causale optimisée. Il propose de supprimer le principal inconvénient des protocoles de
journalisation causale (le volume important d’informations de causalité aggrégées à
chaque message) en les sauvegardant de manière asynchrone sur un processus fiable
Event Logger. MPICH-Pcl [56] fait partie de la nouvelle version de MPICH-V. Elle est
basée sur MPICH-2 qui supporte le standard MPI-2. C’est un protocole de sauvegarde
coordonnée bloquante.

Tous ces protocoles ont été comparés les uns aux autres dans [43, 102, 44, 56]. De
ces études, il en ressort principalement les conclusions suivantes. Les protocoles par
sauvegarde coordonnée offrent de bonnes performances comparés aux protocoles par
journalisation pour des exécutions sans panne, mais également pour des exécutions en
présence de pannes. La coordination n’est pas le premier facteur limitant des protocoles
par sauvegarde coordonnée ; la dégradation des performances est principalement due à
la charge des serveurs de sauvegarde lors des phases de sauvegarde et de reprise. Enfin,
lorsque la fréquence d’apparition des défaillances devient importante, les protocoles par
journalisation sont plus intéressants puisqu’ils permettent d’avancer dans le calcul.
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Intergiciel Sauvegarde locale Protocole Composants de stockage Composants fiables
Processeur de
rechange

Type de
reprise

CoCheck
(1996) [136]

Espace mémoire
(Condor)

Sauvegarde coordonnée blo-
quante

Serveurs de sauvegarde Serveurs de sauvegarde Nécessaire Globale

MPICH-Cl
(2003) [44]

Espace mémoire
(Condor)

Sauvegarde coordonnée non blo-
quante

Serveurs de sauvegarde
Serveurs de sauvegarde + 1
Dispatcher + 1 Checkpoint
Scheduler

Nécessaire Globale

MPICH-Vcl
(2003) [102]

Espace mémoire
(Condor, Libckpt ou
BLCR)

Sauvegarde coordonnée non blo-
quante

Machine locale + Serveurs
de sauvegarde

Serveurs de sauvegarde + 1
Dispatcher + 1 Checkpoint
Scheduler

Nécessaire Globale

FTC-Charm++
(2004) [164]

Niveau intergiciel Sauvegarde coordonnée blo-
quante

Machine locale + Buddy
processor

- Non nécessaire Globale

MPICH-Pcl
(2006) [56]

Espace mémoire
(Condor, Libckpt ou
BLCR)

Sauvegarde coordonnée blo-
quante

Machine locale + Serveurs
de sauvegarde

Serveurs de sauvegarde + 1
processus mpiexec

Nécessaire Globale

Open MPI
(2007) [90]

Espace mémoire
(BLCR) ou fonctions
de l’utilisateur

Sauvegarde coordonnée blo-
quante

Serveurs de sauvegarde Serveurs de sauvegarde Nécessaire Globale

Kaapi-CCK
(2008)

Niveau intergiciel Sauvegarde coordonnée blo-
quante

Serveurs de sauvegarde Serveurs de sauvegarde Non nécessaire
Globale ou
partielle

Kaapi-TIC
(2005) [93]

Niveau intergiciel Sauvegarde induite par les com-
munications

Serveurs de sauvegarde Serveurs de sauvegarde Non nécessaire Locale

MPICH-V1
(2002) [40]

Espace mémoire
(Condor)

Journalisation pessimiste
Serveurs de sauvegarde +
Canaux mémoire

Serveurs de sauvegarde +
Cannaux mémoire + 1
Dispatcher

Nécessaire Locale

MPICH-V2
(2003) [42]

Espace mémoire
(Condor)

Journalisation pessimiste à l’émis-
sion

Serveurs de sauvegarde +
Event Logger

Serveurs de sauvegarde +
Event loggers + 1 Dispatcher
+ 1 Checkpoint Scheduler

Nécessaire Locale

MPICH-VCausal
(2004) [102]

Espace mémoire
(Condor)

Journalisation causale à l’émis-
sion

Serveurs de sauvegarde +
Event Logger

Serveurs de sauvegarde +
Event loggers + 1 Dispatcher
+ 1 Checkpoint Scheduler

Nécessaire Locale

FTL-Charm++
(2004) [47]

Niveau intergiciel Journalisation pessimiste à l’émis-
sion

Machine locale + Buddy
processor

- Nécessaire Locale

Satin (2006) [159] - Protocole Ad hoc utilisant une
table globale

- - Non nécessaire -

Tab. 2.2: Comparaison des principales implémentations de protocoles de tolérance aux fautes
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2.5.3.2 Charm++

Charm++ est un langage parallèle orienté objet qui offre une virtualisation des
processeurs. L’application est écrite en utilisant des objets C++ spéciaux, appelés
chares. Les méthodes des chares peuvent être appelées de manière asynchrone à partir
des autres chares.

Les chares peuvent être migrés entre processus ce qui permet à Charm++ d’offrir
un équilibrage de charge automatique à l’exécution. Grâce à cette propriété, Charm++
n’a pas besoin de processus de remplacement. En effet en cas de panne, les processus
défaillants peuvent être restaurés sur des processus non défaillants, puis la charge entre
les processus est équilibrée automatiquement.

Charm++ propose deux protocoles de tolérance aux fautes. FTC-Charm++ [164]
implémente une sauvegarde coordonnée bloquante. Le choix est de ne reposer sur
aucun composant fiable, donc deux copies de chaque sauvegarde sont conservées, une
localement et l’autre sur un autre processus de calcul, appelé Buddy processor. Avec
cette méthode, FTC-Charm++ ne peut pas tolérer tous les types de défaillances,
en particulier lorsqu’un grand nombre de machines tombe en panne. Néanmoins, les
auteurs argumentent du bien fondé de l’approche en estimant en pratique rare les cas
où le système ne peut redémarrer.

FTL-Charm++ [47] utilise un protocole de journalisation pessimiste à l’émission.
Si un message est émis vers un chare distant (i.e. sur un processus distant), ce message
est sauvegardé sur l’émetteur. Si un message est émis vers un chare local (i.e. sur le
même processus), ce message est sauvegardé sur un autre processus (le buddy processor).
Un numéro est associé à chaque message, ce qui permet de rejouer les messages dans le
même ordre à la reprise.

Adaptive MPI (AMPI) est une implémentation de MPI qui repose sur Charm++.
Elle bénéficie donc automatiquement des propriétés d’équilibrage de charge et de
tolérance aux fautes de Charm++.

2.5.3.3 Open MPI

Open MPI est une implémentation qui supporte entièrement le standard MPI-2.
L’architecture de la partie tolérance de fautes a été conçue pour être flexible et modulaire
de manière à encourager l’expérimentation de nouvelles techniques. Elle est découpée
en cinq composants [90].
• Snapshot Coordinator : il est responsable de lancer, surveiller et collecter les

demandes de sauvegarde.
• File Management : il gère les fichiers liés aux sauvegardes.
• Distributed Checkpoint/Restart Coordination Protocol : ce composant s’occupe du

protocole de coordination qui garantit que l’état global est cohérent. Actuellement,
seule une sauvegarde coordonnée bloquante similaire à celle de LAM/MPI est
implémentée.
• Local Checkpoint/Restart System : il est responsable de sauvegarder et de restaurer

l’état local des processus. Pour le moment, il supporte la sauvegarde au niveau de
l’application grâce à une API qui permet à l’utilisateur de spécifier ses fonctions
de sauvegarde et de restauration et la sauvegarde sous forme d’espace mémoire
grâce à BLCR.
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• MPI Library Notification Mechanisms : ce composant informe et coordonne les
autres parties de l’implémentation MPI des évènements de sauvegarde et de
reprise.

2.5.3.4 Satin

Satin est un environnement de programmation parallèle en Java basé sur le principe
« diviser pour régner ». Avec Satin, les processeurs ont des files de travail qui contiennent
des tâches qui représentent le travail à exécuter. La charge est équilibrée en utilisant un
ordonnancement par vol de travail. Une caractéristique du modèle de programmation
de Satin est que les tâches n’ont pas d’effet de bord.

Le protocole de tolérance aux fautes proposé dans Satin ne repose pas sur les
méthodes classiques comme la sauvegarde ou la journalisation. La tolérance aux fautes
est spécialisée pour l’ordonnancement par vol de travail [159]. Le protocole fonctionne
de cette manière : en cas de panne, le résultat d’une tâche orpheline (i.e. volée à un
processeur défaillant) est enregistré dans une table globale si la tâche est finie ; sinon la
tâche orpheline est annulée. Concernant les tâches volées par un processeur défaillant,
elles sont réordonnancées. Les résultats de la table globale peuvent-être alors utilisés au
lieu d’exécuter une tâche.

Cette méthode garantit que le calcul se terminera et elle réduit la quantité de
travail perdu parce que l’exécution utilisera les résultats de la table globale après une
défaillance. Cette méthode ne nécessite pas de composant fiable ni de processeur de
remplacement. Mais en cas de panne de tous les processus, l’application devra être
réexécutée entièrement.

Néanmoins, la mise en route du protocole n’intervient qu’après la première panne.
La quantité de travail perdu peut donc être assez importante [92].

2.5.3.5 Kaapi

Kaapi est un moteur d’exécution qui permet d’exécuter des applications parallèles
qui sont écrites à l’aide du langage Athapascan. Athapascan permet de décrire une
application sous-forme d’un graphe de flot de données de manière indépendante de la
plate-forme d’exécution. Ce graphe de flot de données est utilisé pour la représentation
interne de l’état de l’application dans Kaapi. Le moteur d’exécution Kaapi propose
deux méthodes d’ordonnancement pour exécuter le graphe de flot de données, le vol de
travail et le partitionnement statique.

Dans Kaapi, la sauvegarde de l’état des processus est réalisé au niveau intergiciel
grâce à la représentation abstraite de l’application sous forme d’un graphe de flot
de données. Grâce à cette représentation, l’état de l’application est portable (il est
possible de redémarrer sur une architecture différente) et manipulable (il est possible de
fusionner, découper le calcul entre plusieurs). Ainsi en cas de défaillance, l’application
peut redémarrer sans machine de remplacement. Les algorithmes d’ordonnancement
permettent alors d’équilibrer la charge pour continuer l’exécution de manière efficace.

Kaapi est l’environnement qui a été utilisé pour réaliser les expérimentations
présentées dans ce manuscrit. Il propose deux protocoles de tolérance aux fautes, TIC
et CCK.

44



Conclusion 2.6

• Le protocole TIC (Theft-Induced Checkpointing) est basé sur le protocole CIC
(Communication-Induced Checkpointing) présenté à la section 2.4.2.3). Cepen-
dant, il a été optimisé et spécialisé pour le modèle graphe de flot de données et
une exécution avec vol de travail. Après défaillance, ce protocole permet de re-
prendre l’exécution de l’application en effectuant seulement la reprise des processus
défaillants.
• Le protocole CCK (Coordinated Checkpointing in Kaapi ) est basé sur la technique

de sauvegarde coordonnée à la section 2.4.2.2. Cependant il propose, en plus de
la reprise globale, une reprise partielle où seul le travail strictement nécessaire
est réexécuté pour redémarrer l’application. Ce protocole fait partie des travaux
présentés dans cette thèse, il est détaillé au chapitre 9.

2.6 Conclusion

Ce chapitre a présenté un aperçu de la tolérance aux fautes pour les systèmes
distribués de calcul haute performance.

En premier lieu, nous avons abordé d’un point de vue très général la sureté de
fonctionnement et le vocabulaire associé au domaine de la tolérance aux fautes. Il
apparait que la tolérance aux fautes n’est qu’une des approches qui permettent d’assurer
la sureté de fonctionnement.

Les techniques de tolérance aux fautes spécifiques aux systèmes distribués sont
basées sur la réplication ou sur l’utilisation d’une mémoire stable. La réplication n’est
pas adaptée au domaine du calcul haute performance puisqu’elle nécessite un nombre
important de ressources qui pourraient être utilisées pour accélérer le calcul.

Dans le cadre de cette thèse, nous nous sommes donc limités aux techniques de
tolérance aux fautes basées sur l’utilisation d’une mémoire stable. La difficulté de ces
techniques repose sur la construction (à la sauvegarde ou la reprise) d’un état global
cohérent de l’application.

Les protocoles de reprise basés sur la sauvegarde visent à construire un état global
cohérent, c’est-à-dire un état qui aurait pu se produire durant une exécution sans panne.
Pour cela, ils cherchent à déterminer un ensemble de sauvegardes qui forme un état
exempt de message orphelin.

Les protocoles de reprise basés sur la journalisation font l’hypothèse d’une exécution
déterministe par morceaux (hypothèse PWD) et visent à rétablir l’état de l’application
exactement tel qu’il était avant la panne (cet état est donc nécessairement cohérent).
Pour cela, ces protocoles rejouent les évènements non déterministes sauvegardés qui ont
amené les processus à cet état.

Chaque protocole possède ses propres caractéristiques et le choix d’un protocole de
tolérance aux fautes doit être guidé par les propriétés de l’application, par la plate-forme
d’exécution et par la fréquence d’apparition des pannes.

La recherche dans le domaine de la tolérance aux fautes pour les systèmes distribués
est déjà ancienne ; le nombre d’implémentations réalisées est assez conséquent. Les
travaux les plus récents et les plus représentatifs ont été présentés. Il est à noter que les
protocoles les plus utilisés sont les protocoles les plus simples.
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3.1 Introduction

Comme cela a été évoqué dans l’introduction, les architectures de calcul (multi-
cœurs, grilles de calcul) sont des plates-formes d’exécution très dynamiques. Cet aspect
dynamique prend plusieurs formes : apparation ou disparition de ressources, charge et
vitesse variables des processeurs et des réseaux, matériels et logiciels hétérogènes. Dans
un tel contexte, il apparait nécessaire d’adapter l’application pour l’exécuter avec les
meilleures performances.

Les notions d’adaptation et de reconfiguration seront détaillées dans la suite de
ce chapitre, mais nous pouvons déjà préciser qu’elles sont liées. L’adaptation est le
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processus qui va permettre, en observant l’application et l’environnement d’exécution,
de choisir la configuration qui correspond le mieux1. La reconfiguration est alors l’étape
qui consiste à appliquer la nouvelle configuration choisie.

L’adaptation et la configuration statiques sont celles qui sont réalisées avant ou au
début de l’exécution de l’application. Par exemple, l’adaptation statique peut se faire à
la compilation ; la reconfiguration prend alors la forme d’une recompilation. Mais elle
peut aussi se faire au lancement de l’application, par l’intermédiaire de paramètres ou
de fichiers de configuration. Dans tous les cas, cela nécessite de connaitre le contexte
d’exécution au moment de l’adaptation statique. Une telle adaptation n’aura donc du
sens que si ce contexte ne varie pas (ou peu) lors de l’exécution.

Si l’adaptation et la reconfiguration sont effectuées au cours de l’exécution de
l’application, on dira qu’elles sont dynamiques. Une telle adaptation peut intervenir
plusieurs fois au cours de l’exécution d’une application. Ce cas est adapté lorsque le
contexte d’exécution peut changer à tout moment. L’application requiert dans ce cas
un mécanisme de reconfiguration dynamique, ce qui va accroitre sa complexité. Par
la suite, nous nous intéressons principalement à l’adaptation et à la reconfiguration
dynamique.

Ce chapitre est organisé en trois sections. La section 3.2 présente la notion d’adap-
tation dynamique du point de vue général des systèmes informatiques. La section 3.3
détaille le problème de la reconfiguration dynamique pour les applications distribuées.
Enfin, la dernière section détaille le cas plus spécifique des applications parallèles pour
le calcul haute performance.

3.2 Adaptation dynamique

3.2.1 Problématique

Pour qu’un système informatique fournisse un service adapté1, il est nécessaire de
le configurer correctement. Dans les cas simples, la configuration peut être réalisée
manuellement. Dans le cas d’applications complexes, l’utilisateur n’a pas forcément les
connaissances nécessaires pour choisir les meilleurs paramètres ou la meilleure configu-
ration. De plus, si l’environnement d’exécution de l’application a des caractéristiques
variables, il peut être nécessaire de réajuster ces paramètres régulièrement.

Le but de l’adaptation dynamique est de pallier ce problème en proposant un
mécanisme pour définir (et redéfinir) la configuration de l’application. Le choix de la
bonne configuration dépend évidemment du critère d’évaluation. Au final, pour une
application et un contexte d’exécution donnés, il est nécessaire de se poser les questions
suivantes.

Quels sont les critères à optimiser ? Ceci permet de définir le but de l’adaptation.
Il dépend évidemment du type d’application et des besoins de l’utilisateur. Par exemple,
dans le cas du calcul haute performance, le critère qui est généralement considéré est le
temps d’exécution. Le but de l’adaptation va donc être de trouver la configuration qui

1Cela nécessite évidemment un critère d’évaluation.
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donnera le temps d’exécution le plus court. Dans le cas d’une application interactive, le
critère pourra être le temps de réactivité de l’application.

À quels changements souhaite-t-on s’adapter ? L’adaptation est nécessaire
parce que les performances de l’application (au sens défini ci-dessus) ne sont pas
toujours optimales selon le contexte d’exécution. Les changements à prendre en compte
sont généralement ceux qui affectent les performances de l’application et pour lesquels
la modification de la configuration pourrait améliorer les performances. Par exemple, il
sera intéressant d’adapter une application parallèle à l’ajout de machines s’il est possible
d’extraire plus de parallélisme et de l’exécuter sur ces processeurs supplémentaires.
Une classification des changements possibles du contexte d’exécution est présentée à la
section 3.2.3.

Quels sont les changements de configuration possibles ? Les changements
de configuration possibles dépendent de l’application. Les différentes configurations
peuvent s’exprimer de plusieurs manières : changement de la valeur d’un paramètre,
changement de la méthode de calcul, changement du protocole de communication,
etc. Certaines configurations auront plus ou moins d’influence sur les performances de
l’application. Dans le cas d’une application parallèle, un changement de configuration
pourra correspondre à exposer plus de parallélisme pour permettre une exécution sur
plus de machines.

Comment choisir la nouvelle configuration en fonction des nouvelles contraintes ?
Le choix de la nouvelle configuration doit être fait pour améliorer les performances de
l’application. La décision est prise en tenant compte de plusieurs éléments : les critères
à optimiser, les nouvelles contraintes d’exécution et les changements de configuration
possibles. Les différents mécanismes existants seront présentés en section 3.2.4.3.

3.2.2 Définitions et terminologie

Dans cette section, nous fixons la terminologie et définissons les principales notions
qui seront utilisées dans le reste de ce document. Ces définitions sont partiellement
extraites de [57].

Le système informatique considéré correspond à l’ensemble des éléments que
l’on cherche à optimiser et qui sont la cible de l’adaptation. Les autres éléments qui
interagissent avec le système constituent le contexte d’exécution.

Le contexte d’exécution correspond à l’ensemble des éléments qui influencent
le système lors de son exécution. Ce contexte prend en compte à la fois l’environne-
ment physique (matériel et logiciel) mais aussi l’attente des utilisateurs. Le contexte
d’exécution peut être très dynamique. Les différentes causes de variabilité du contexte
d’exécution sont présentées à la section 3.2.3.

Le critère de performance est ce qui permet d’évaluer l’adéquation du système
vis-à-vis de son contexte d’exécution. Il est lié à la fonction du système et au besoin de
l’utilisateur. Il peut être composé de plusieurs objectifs.

Une adaptation est une modification du système, en réponse à un changement
dans son contexte, dont l’objectif est de rendre le système résultant plus performant
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(au sens du critère de performance choisi) dans le nouveau contexte. L’adaptation est
composée de trois fonctions :
• L’observation consiste à récupérer des informations sur le contexte d’exécution.

Elle est détaillée à la section 3.2.4.1.
• La reconfiguration correspond à l’étape modification du système pour le passer

de son ancienne configuration à sa nouvelle configuration. Elle est présentée à la
section 3.2.4.2 puis détaillée en 3.3.
• La décision consiste à choisir la meilleure reconfiguration, en fonction du critère

de performance considéré et en fonction du contexte d’exécution observé. Elle est
détaillée en section 3.2.4.3

3.2.3 Variabilité du contexte d’exécution

Les variations des caractéristiques de l’environnement ont plusieurs origines. Dans
[57], David les classe en trois types : les variabilités spatiales qui sont liées à la diversité
des plates-formes d’exécution ; les variabilités temporelles qui sont dues à la dynami-
cité des systèmes ; et les variabilités des besoins qui correspondent à la diversité des
utilisateurs et des utilisations. La suite de cette section présente les différents types de
variabilités qui existent en les illustrant par quelques exemples sans l’intention d’être
exhaustif.

Les plates-formes d’exécution sont très variées. Les caractéristiques techniques
peuvent être très différentes entre le circuit logique programmable (FPGA2), les systèmes
multiprocesseurs sur puce (MPSoC3), les téléphones portables, les ordinateurs de bureau,
les consoles de jeu et les supercalculateurs. Bien que ces plates-formes répondent au
départ à un besoin spécifique, les frontières entre les cas d’utilisation sont de plus en
plus floues et il n’est pas rare qu’une application soit destinée à plusieurs types de
plates-formes. Les caractéristiques techniques varient notamment du point de vue de
l’architecture du processeur, de la vitesse, du système d’exploitation, des périphériques
physiques, etc. L’hétérogénéité entre ces plates-formes apparait également au niveau de
leurs capacités (puissance de calcul, mémoire disponible, connectivité).

Enfin, l’application peut également être distribuée sur plusieurs machines. Ces
architectures distribuées peuvent prendre plusieurs formes : grappe et grilles de calcul,
réseaux pair-à-pair, réseaux domestiques, etc. La complexité est encore augmentée
lorsque les machines qui composent cette plate-forme distribuée sont hétérogènes. Un
exemple marquant est la plate-forme BOINC [11] qui regroupe à la fois les ressources
des ordinateurs de bureau, des consoles de jeu PlayStation 3 et des cartes graphiques.

Un autre aspect est celui de la variabilité temporelle. En effet, les caractéristiques
de la plate-forme d’exécution peuvent varier au cours du temps. Par exemple sur un
ordinateur portable, la fréquence du processeur peut changer en fonction du niveau de
sa batterie. Les téléphones portables (et tous les appareils mobiles en général) ont des
contraintes sur les réseaux de communication (Wifi, 3G, GPRS, etc. ou même aucun
réseau disponible) qui influencent notamment le débit et la latence des communications.
Les nœuds d’une grille de calcul peuvent voir leur charge évoluer en fonction des activités

2Field-Programmable Gate Array
3MultiProcessor System-on-Chip
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des utilisateurs. Les plates-formes d’exécution distribuées ajoutent une dynamicité
supplémentaire puisque le nombre de machines disponibles peut également changer. La
variabilité temporelle peut aussi avoir pour origine l’application elle-même. Par exemple,
une application de simulation peut avoir une première étape de calcul intensif, puis une
seconde étape de visualisation des résultats moins gourmande en calcul.

Enfin, le besoin de l’utilisateur peut changer pour une même application. Une
application de simulation qui fonctionne en mode interactif aura tendance à réduire la
qualité de la simulation pour offrir un temps de réaction plus rapide. Les téléphones
portables proposent un mode silencieux qui coupe le son de toutes les applications. La
qualité d’un encodage vidéo peut être adaptée au type d’appareil qui sera utilisé pour
le visionner (téléphone portable, ordinateur de bureau ou projecteur de cinéma).

3.2.4 Mécanique de l’adaptation

Les trois fonctions essentielles à la mécanique de l’adaptation sont l’observation,
la décision et la reconfiguration. Les travaux qui cherchent à modéliser le processus
d’adaptation de manière générale sans s’attacher à une application précise [45, 69, 4, 52]
font une séparation claire de ces trois fonctions. Dans les travaux spécifiques à une
application ou à un modèle d’exécution [143, 158, 2], ces fonctions apparaissent de
manière plus implicite.

La suite de cette section précise le rôle de chacune de ces fonctions et donne les
différentes approches utilisées pour les réaliser.

3.2.4.1 Observation

La fonction d’observation va permettre au système de connaitre l’état de l’environ-
nement d’exécution. L’adaptation se faisant en fonction du contexte d’exécution, il est
indispensable de connaitre son état et ses variations [62].

De manière générale, l’observation peut fournir plusieurs services :
• La notification permet à un composant de demander la surveillance de certains

paramètres et d’être averti en cas de changement.
• L’interrogation permet à toute autre partie du système, notamment les fonctions

de décision et de reconfiguration, de prendre connaissance de l’état du système
pour réaliser leur action correctement.
• La prédiction essaie d’anticiper les évolutions à venir à l’aide des mesures effectuées.
Les logiciels dédiés à l’observation offrent une interface pour accéder à leurs services.

WildCAT [58, 57] et l’architecture GMA [139], implémentée dans Mercury [81], sup-
portent à la fois l’interrogation et la notification. Network Weather Service [156]
et Delphoi [106] ne proposent pas de service de notification mais offrent l’interrogation
et la prédiction.

En dehors de ces logiciels dédiés à l’observation, de nombreux travaux sur l’adaptation
utilisent leur propre système de surveillance. On peut distinguer ceux qui offrent un
cadre généraliste, en proposant de surveiller tous types de paramètres comme dans
ACEEL [51], Dynaco [45] ou PCL [69]. À l’opposé, les travaux spécifiques à une
application ou à un modèle d’exécution surveillent des caractéristiques précises du
contexte d’exécution, comme l’ajout ou la disparition de machine dans Starfish
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MPI [2], ou la charge des processeurs et les temps d’inactivité des processus dans
AMPI [87].

Enfin, on trouve aussi une autre approche dans GrADS [143] et ASSIST [5] qui
utilise la notion de contrat. Le contrat spécifie les attentes en termes de performances.
Le composant d’observation surveille alors l’application et lorsque le contrat est rompu,
l’adaptation est déclenchée.

3.2.4.2 Reconfiguration

La fonction de reconfiguration est celle qui va modifier la configuration du système
de manière à ce qu’il soit mieux adapté au contexte d’exécution. La reconfiguration
dynamique est une étape particulièrement critique puisqu’elle se déroule pendant l’exé-
cution de l’application. Le processus d’adaptation (et donc a fortiori la reconfiguration)
ne doit pas entraver le fonctionnement de l’application. Il est nécessaire de trouver
à quel moment l’exécuter et aussi comment appliquer correctement les modifications.
Ce problème est exacerbé dans le cas des applications distribuées. La description du
processus de reconfiguration dans cette section est succincte. La section 3.3 aborde
le problème de la reconfiguration pour les applications distribuées de manière plus
détaillée.

On peut déjà distinguer les travaux en deux catégories, ceux qui fixent le type de
reconfiguration et ceux qui proposent un canevas générique permettant d’appliquer
tout type de reconfiguration. Dans GrADS [143], Starfish MPI [2], AMPI [87],
Satin [158] et ASSIST [147] les reconfigurations proposées se limitent à la migration
de processus et à l’ajout et la suppression de processus. D’autres travaux s’attachent à
reconfigurer la couche de communication [149, 148].

Des modèles de reconfiguration plus généraux reposent généralement sur un des
paradigmes suivants [132] : un modèle par composants, la reflexion, la programmation
par aspect ou bien les patrons de conception. Ce sont ces outils qui permettent de
modifier simplement la configuration de l’application et d’apporter certaines garanties
sur la cohérence. Dans ACEEL [51], les composants adaptables doivent suivre le patron
de conception Strategy. Safran [57, 59] propose des actions permettant de modifier
la structure des composants et offre aussi un protocole à méta-objets. Dans [45], Buisson
propose la notion de plan. La reconfiguration est réalisée en exécutant le plan qui
contient une liste d’instructions spécifiques sur lesquelles il est possible de raisonner.
PCL [69] offre la reflexion du programme de l’application en utilisant une représentation
sous forme d’un graphe statique de tâches (Static Task Graph). Les reconfigurations
sont alors décrites à l’aide d’opération sur ce graphe.

3.2.4.3 Décision

La fonction de décision est un point clé dans le processus d’adaptation. L’objectif de la
décision est de choisir une reconfiguration adéquate en fonction du contexte d’exécution.
Elle est « l’intelligence » de l’adaptation. La fonction de décision repose donc sur la
fonction d’observation pour connaitre l’état du contexte d’exécution. L’adéquation de
la configuration choisie est liée au critère de performance considéré.

De nombreux travaux visent un type de reconfiguration fixé. Dans ces cas là,
la fonction de décision est donnée avec l’application par le biais d’un modèle de
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performance de l’application. Ce modèle définit implicitement le critère de performance
et les informations observées. C’est ce qui est fait dans GrADS [143] et ASSIST [147].
L’approche de AMPI est très similaire puisqu’elle emploie des stratégies, qui ne sont
pas spécifiques à une application, mais plutôt à un type d’application [87]. Au contraire,
Satin propose un algorithme de décision basé sur un modèle d’exécution indépendant
d’une application donnée [158].

Dans le cas d’un moteur d’adaptation générique, ni le critère de performance, ni les
informations observées, ni les reconfigurations possibles ne sont définis. La réalisation
de la fonction de décision est alors un problème complexe. Il faut donner un moyen
d’exprimer le choix de la reconfiguration.

Dans PCL, la décision est gérée dans une fonction appelée Adaptor. Elle est écrite
dans un langage de programmation classique [68]. Safran [57] et ACEEL [51] proposent
de définir les politiques d’adaptation sous forme de règles basées sur le paradigme ECA
(évènement, condition, action). Lorsque l’évènement se produit, la condition est testée
et, si elle est vérifiée, l’action de reconfiguration sera exécutée. VGrADS (qui étend le
projet GrADS [23]) utilise la logique floue pour évaluer le contrat de performance donné
par l’application [127]. Enfin, [114] présente une approche probabiliste au problème
de la décision en couplant un modèle de décision Bayésien et un modèle de décision
Markovien.

Dans [45], Buisson ajoute une fonction supplémentaire : la planification. Dans ses
travaux, le choix de la nouvelle reconfiguration se fait en deux étapes : la décision telle
que nous l’avons présentée et la planification qui consiste à déterminer par quels moyens
adopter la nouvelle configuration. Pour cela, la planification utilise un programme guide
qui est spécifique à l’entité à adapter et construit le plan de reconfiguration. C’est ce
plan qui est exécuté lors de l’étape de reconfiguration.

3.3 Reconfiguration dynamique des applications dis-
tribuées

Dans la section précédente, nous avons présenté dans quel contexte pouvait s’utiliser
la reconfiguration dynamique. Cette nouvelle section nous permet d’aborder les pro-
blèmes essentiels qui touchent la reconfiguration dynamique d’applications distribuées.
Nous présentons d’abord des critères de classification puis les propriétés des reconfigura-
tions. Ensuite, nous détaillerons les problèmes de cohérence liés à une reconfiguration.

3.3.1 Classification

Plusieurs critères ont été proposés pour classer les reconfigurations [6, 110, 84]. Nous
allons nous intéresser aux critères suivants : type de reconfiguration et origine de la
reconfiguration.

Dans [85, 84], Hofmeister modélise une application distribuée comme un ensemble
d’entités qui contiennent des programmes et des données. Chaque entité expose aux
autres entités une interface. Les connexions entre les interfaces représentent les canaux
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de communication entre les entités. L’ensemble des entités et des connexions forment
la structure de l’application. La géométrie de l’application décrit comment cette
structure est déployée sur la plate-forme d’exécution.

Hofmeister distingue trois types de reconfiguration.
• Les changements geométriques sont les reconfigurations qui ne modifient pas

la structure de l’application mais qui changent le placement des entités sur la
plate-forme d’exécution. Ce type de changements ne modifie pas le degré de paral-
lélisme de l’application. C’est typiquement le cas de la migration d’un processus.
Ces changements utilisent généralement les techniques de sauvegarde/reprise du
domaine de la tolérance aux fautes : l’exécution est arrêtée ; l’état du processus
est capturé et transféré sur la nouvelle machine ; puis un processus est démarré
sur la nouvelle machine et reprend le calcul.
• Les changements structurels sont les reconfigurations qui vont modifier les

connexions entre les entités, ou bien ajouter ou supprimer des entités. Par exemple,
ce type de modifications permet de changer le parallélisme de l’application. Il est
plus complexe puisque les opérations nécessaires à la reconfiguration dépendent
de l’application. Généralement, une telle reconfiguration ne peut s’appliquer qu’à
certains points précis de l’exécution de manière à garantir une certaine cohérence.
• Les remplacements d’entités consistent à changer l’implémentation interne

d’une entité sans changer la structure de l’application. Ceci représente le cas où
l’algorithme de calcul est changé pour réduire le temps de calcul (au détriment de
la précision du calcul par exemple) sans modification de l’interface de l’entité. Ce
cas a été étudié en détails dans [36, 37]

Dans [110], Goudarzi propose de distinguer les changements programmés et les
changements évolutifs.
• Les changements programmés (programmed changes) sont ceux qui ont été

prévus par le développeur et qui ont donc été pris en compte lors de la conception
de l’application.
• Les changements évolutifs (evolutionary changes) sont les changements impré-

visibles ou imprévus au moment de la conception mais qui deviennent nécessaires
au cours de la durée de vie de l’application.

Bien que les changements programmés puissent être réalisés par des mécanismes ad
hoc de l’application, les changements évolutifs nécessitent des mécanismes plus généraux,
notamment en faisant apparaitre une certaine abstraction de l’état de l’application [147].

3.3.2 Propriétés de la reconfiguration

[147] identifie plusieurs propriétés du processus de reconfiguration. Les propriétés
indispensables sont la cohérence et la généralité.
• La cohérence signifie qu’une reconfiguration doit laisser l’application dans un

état correct. La problématique de la cohérence est détaillée en 3.3.3.
• La généralité indique que le processus de reconfiguration doit pouvoir supporter

tous les types de reconfigurations sur tous les types d’entités.
Les propriétés souhaitables sont la scalabilité et l’efficacité.
• La scalabilité indique que la reconfiguration doit pouvoir s’appliquer à tout le

système ou seulement à une petite partie. Dans le cas où seulement une partie
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du système est concernée par la reconfiguration, le reste du système doit pouvoir
continuer de fonctionner pendant la reconfiguration.
• L’efficacité signifie que le temps de reconfiguration doit être aussi petit que

possible de manière à réduire l’interruption de service.
Enfin les deux propriétés importantes pour faciliter l’utilisation du mécanisme d’adap-
tation sont la responsabilité de la cohérence et la transparence.
• La responsabilité de la cohérence d’une reconfiguration ne devrait pas être

laissée à l’utilisateur puisque cela nécessite une certaine connaissance du fonction-
nement interne de l’application ou du moteur d’exécution. Laisser la responsabilité
de la cohérence au mécanisme d’adaptation permet de concevoir des reconfigura-
tions indépendantes de l’application et du moteur d’exécution.
• La transparence permet à l’utilisateur de ne pas se soucier de la sémantique de

la reconfiguration lors de la programmation de l’application.

3.3.3 Cohérence de la reconfiguration

La reconfiguration est un processus qui peut modifier l’application en profondeur.
Elle peut mettre en œuvre la création, la suppression ou la migration d’entités et
interférer avec les interactions en cours entre les entités. Le processus de reconfiguration
ne doit pas entrainer d’erreurs entre les entités qui interagissent.

La cohérence est une propriété indispensable d’une reconfiguration car le système
peut devenir inutilisable si elle n’est pas respectée. Le système doit se retrouver dans
un état correct après une reconfiguration pour prévenir une défaillance. Pour garantir
la cohérence d’un système après une reconfiguration, les trois aspects suivants ont été
identifiés [110, 6].
• Le système doit satisfaire ses obligations d’intégrité structurelle (structural

integrity).
• Les entités du système doivent avoir des états mutuellement cohérents (mu-

tually consistent states).
• Les invariants d’état de l’application doivent être vérifiés (application state

invariants).
D’autres travaux identifient des propriétés similaires [61, 72].

Intégrité structurelle. La structure du système doit respecter les contraintes des
interfaces des entités et la manière dont elles sont connectées.

Au niveau objet (au sens programmation orientée objet), cela peut être garanti grâce
aux techniques d’héritage ou vérifié par typage dynamique. Au niveau composant, le
modèle de composants doit offrir des moyens de vérifier les contraintes de l’interface à
l’exécution. Cela nécessite un moyen d’exprimer ces contraintes [162, 153].

Cohérence mutuelle. Les interactions sont le seul moyen par lequel une entité peut
en affecter une autre. Des entités sont dites être dans des états mutuellement cohérents
si chaque interaction résulte en un état cohérent une fois terminée [7, 98, 111, 110]. En
conséquence, si deux entités interagissent, elles auront la même perception du résultat
de l’interaction (réussie ou échouée).
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Pour garantir la cohérence mutuelle, la plupart des approches préconisent d’effectuer
les reconfigurations seulement au moment des états appelés états sains pour la recon-
figuration (reconfiguration-safe state). Un tel état signifie que chaque entité participant
à la reconfiguration a un état stable, indépendant et accessible, et qu’elle ne participe à
aucune interaction.

cohérence mutuelle
Ne préserve pas la

cohérence mutuelle
Maintient une certaine

Détecte un état sain, la

n’y a plus d’interaction en cours
reconfiguration commence lorsqu’il

Guide l’application vers un état sain,
la reconfiguration commence même
lorsqu’il y a une interaction en cours

N’interrompt pas les interactionsInterrompt les interactions

la reconfiguration soit appliquée

Les interactions en cours

sont terminées avant que

la reconfiguration soit appliquée

sont terminées après que

Les interactions en cours

Fig. 3.1: Les approches pour préserver la cohérence mutuelle d’une reconfiguration [6]

Dans [6], Almeida propose une classification des approches visant à garantir la cohé-
rence mutuelle des entités reconfigurées. Cette classification est présentée à la figure 3.1.
Parmi les méthodes qui garantissent la cohérence mutuelle des états, Almeida distingue
celles qui atteignent un état sain pour la reconfiguration en observant l’exécution du
système, et celles qui atteignent un état sain en guidant le système vers cet état. Dans
le premier cas, il n’y a pas de garantie qu’un tel état sera atteint et cela dépend du
comportement de l’application. Dans le deuxième cas, c’est le rôle du processus de
reconfiguration de garantir que cet état sera atteint.

Les approches qui guident l’application pour atteindre un état sain sont séparées
en deux catégories [6, 110]. Il y a celles qui interrompent les interactions en cours et
les autres. Les processus de reconfiguration basés sur l’interruption des interactions
nécessitent un mécanisme de retour en arrière pour reprendre sans erreur en cas
d’interruption. Ceux qui n’interrompent pas les interactions sont conçus pour assurer
que, une fois la reconfiguration appliquée, les interactions en cours seront terminées.

Parmi cette dernière catégorie, on trouve les travaux [97, 111, 35, 154, 7] qui traitent
le problème avec un modèle très général. Ils offrent des solutions assez générales mais
également complexes. On peut notamment trouver une comparaison de ces travaux
dans [6]. La section 3.4.1 présente les principaux travaux axés sur le domaine du calcul
parallèle haute performance.
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Invariants d’état de l’application. Les invariants d’état sont des prédicats portant
sur tout ou une partie du système. Ces prédicats sont exprimés en fonction des variables
d’état du système.

La diversité des reconfigurations possibles ne permet généralement pas au processus
de reconfiguration de rétablir les invariants d’état de l’application. Cela nécessite le
plus souvent une aide du développeur de l’application. Ce thème est abordé dans [6].

3.4 Cas du calcul parallèle haute performance

Le but de cette section est de détailler les solutions proposées pour fournir des mé-
canismes d’adaptation et de reconfiguration dynamique pour les applications parallèles
de calcul haute performance. Nous nous intéressons particulièrement aux plate-formes
d’exécution de type grappes ou grilles de calcul.

Pour ces applications, les critères de performances généralement considérés sont les
suivants.
• Le temps d’exécution : on souhaite minimiser le temps pendant lequel l’application

s’exécute sur la plate-forme.
• Le temps de complétion : on souhaite minimiser le temps entre la soumission de

l’application à la plate-forme et la fin de l’exécution.
• L’efficacité : on souhaite maximiser l’utilisation des ressources de la plate-forme.

Sur les architectures distribuées de type grilles de calcul, le contexte d’exécution a
des caractéristiques et des variabilités spécifiques. Les variabilités spatiales sont liées à
la plate-forme. Même si nous nous limitons aux grilles de calcul, nous pouvons noter
des variabilités spatiales liées à l’hétérogénéité des processeurs (en architecture et en
vitesse), des systèmes d’exploitation, des réseaux de communication mais également
au niveau de la taille respective des grappes qui composent la grille. Une partie de ces
problèmes est réglée par des configurations statiques à la compilation et au lancement
de l’application.

Cependant, les variabilités temporelles nécessitent les processus d’adaptation et de
reconfiguration dynamique pour être traitées efficacement. Principalement, on trouve
l’ajout et la suppression de machines et les variations de charge (processeurs, réseaux,
etc.). Les variabilités dues aux besoins des utilisateurs sont très réduites puisque les
applications considérées présentent peu d’interactivité.

Concernant la suppression de machines, elle peut avoir plusieurs origines.
Elle peut être volontaire, c’est-à-dire décidée par l’utilisateur ou le gestionnaire de

ressources, mais elle peut aussi être liée à une défaillance. La suppression d’une machine
de calcul ayant pour cause une défaillance est plus compliquée à gérer puisqu’elle est
difficilement prévisible. Nous voyons ici une corrélation importante entre le domaine de
l’adaptation et de la tolérance aux fautes. Dans le cas d’une défaillance de machines ;
les techniques de tolérance aux fautes peuvent être complétées par un mécanisme
d’adaptation pour tenir des machines supprimées. Dans le cas d’une migration de
processus, le processus d’adaptation peut requérir des mécanismes de tolérance aux
fautes pour pouvoir sauvegarder et reprendre l’exécution d’un processus sur une autre
machine.
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La suite de cette section présente les principales solutions d’adaptation et de re-
configuration dynamique pour les applications parallèles de calcul haute performance
sur grille. Pour cela, nous identifions d’abord les critères considérés pour comparer ces
différentes solutions. Ces critères font référence aux principaux thèmes abordés dans ce
chapitre.
• Observation : indique comment est réalisée la fonction d’observation.
• Décision : détaille comment est choisie la nouvelle reconfiguration.
• Reconfiguration : donne les types de reconfigurations possibles.
• Gestion de cohérence : indique comment cette solution permet de garantir la

cohérence de la reconfiguration.

3.4.1 Comparaison des solutions

De très nombreuses solutions fournissent des mécanismes d’adaptation. Il n’est pas
possible de toutes les citer. Nous proposons tout d’abord une brève liste des solutions
existantes. Puis, la fin de ce chapitre détaille les solutions les plus représentatives et les
plus intéressantes pour le domaine du calcul parallèle haute performance.

3.4.1.1 Aperçu

Une partie de ces travaux proposant des mécanismes d’adaptation ou de reconfi-
guration se limitent à des reconfigurations locales4. On peut citer ACEEL [52, 51],
Safran [57], DART [82], LEAD++ [10].

D’autres travaux sont dédiés à la gestion des ressources pour les grilles comme
Globus [75, 74], AppLes [24] ou GridWay [89].

AFPAC [46] et ASSIST [4] abordent le problème de l’adaptation dynamique de
composants parallèles. PCL [69] permet l’adaptation d’applications parallèles en utili-
sant la réflexion. Satin propose un mécanisme d’adaptation qui se limite à l’ajout et la
suppression de processus. De même pour le modèle de programmation MPI, AMPI [87],
Starfish MPI [2], GrADS [143] mais aussi [135, 107] considèrent uniquement l’ajout,
la suppression ou la migration des processus.

D’autres travaux adaptent le protocole de communication. MPI/CTP [148] repose
sur la couche de communication configurable CTP et permet de changer dynamiquement
entre les protocoles par RendezVous ou EagerRendezVous en fonction de la proportion
de messages pré-postés. PRO-MPI [149] propose de changer le protocole de communi-
cation (send-receive ou RemoteDMA) avec Infiniband. Pour cela, il détermine, à partir
d’exécutions précédentes, des profils d’exécution des différentes phases de l’application.

L’adaptation d’application est également utilisée à des fins de sécurité ou d’adminis-
tration. Dynasa [134] reprend le modèle d’adaptation de Dynaco [45] pour résoudre
les problèmes de sécurité sur les grilles de calcul. Pour cela, il utilise des techniques
de tolérance aux fautes (sauvegarde et réplication). Jade [60] est un environnement
d’administration autonome qui utilise une mécanique d’adaptation afin de fournir des
services d’auto-réparation et d’auto-optimisation.

4C’est-à-dire qu’elles ne permettent pas de reconfigurer des objets distribués.
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Le domaine du pilotage d’application de simulation numérique aborde aussi le
problème de la cohérence. EPSN [70] cherche à appliquer des traitements (observations
ou modifications) sur un ensemble temporellement cohérent des données des processus
de simulation. Enfin, le domaine de la tolérance aux fautes propose aussi des mécanismes
d’adaptation puisqu’au moment de la reprise, il peut être nécessaire de prendre en compte
le nouveau contexte d’exécution. Ces environnements sont présentés à la section 2.5.

3.4.1.2 Dynaco / AFPAC

Dans [45], Buisson propose un modèle de canevas d’adaptation dynamique pouvant
correspondre à tout type d’adaptation. Cette solution a été implémentée à travers les
prototypes Dynaco, AFPAC et Taco. Dynaco est une implémentation du modèle
de canevas dynamique pour les composants Fractal et il assure les mécanismes
d’adaption. AFPAC assure la gestion de la cohérence de la reconfiguration et Taco
permet l’annotation automatique d’une application parallèle pour faire apparaitre son
graphe de controle.

Le modèle d’un composant parallèle adaptable avec Dynaco et AFPAC est présenté
à la figure 3.2.

Fig. 3.2: Modèle d’un composant parallèle adaptable avec Dynaco et AFPAC [46]

La solution d’adaptation proposée par Buisson dans [45] repose sur un modèle
composant. Un composant adaptable est un composant qui a été étendu pour comporter
les fonctions d’observation, de décision, de planification et d’exécution. Un composant
adaptable peut être parallèle, et dans ce cas il encapsule une application parallèle dont
l’exécution se fait de manière distribuée.

Observation. Dans le canevas d’adaptation dynamique présenté dans [45], la fonction
d’observation doit fournir deux services, la notification et l’interrogation. Elle peut
surveiller tout type d’informations par le biais d’une interface. Dans Dynaco, le choix
a été fait d’externaliser cette fonction.

Décision. Buisson distingue la décision et la planification. La décision choisit la
nouvelle configuration à adopter grâce à une politique. La planification définit par
quelle moyen l’adopter à l’aide d’un guide. Dans un composant Dynaco, ces fonctions
sont implémentées par des composants « décideur » et « planificateur » qui reposent
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respectivement sur une politique et un guide. La politique et le guide sont spécifiques à
un composant adaptable donné.

Aucune contrainte n’est faite sur le formalisme utilisé pour exprimer la politique.
Dans le prototype Dynaco, trois formalismes sont proposés : code Java, système
expert Jess ou algorithme génétique.

Reconfiguration. La reconfiguration est réalisée par le composant « exécuteur » qui
exécute le plan défini par le « planificateur ». L’« exécuteur » repose sur un coordinateur
qui choisit à quel moment exécuter le plan. C’est le rôle du coordinateur de garantir la
cohérence de la reconfiguration.

Gestion de la cohérence. Buisson donne le modèle théorique suivant. Chaque
composant séquentiel qui constitue le composant parallèle détermine ses candidats
locaux d’adaptation, qui peut être dans le passé ou dans le futur. Un candidat global
est une combinaison des candidats locaux. Pour être valide et garantir la cohérence de
la reconfiguration, ce candidat global doit vérifier le prédicat de cohérence global [45].
Ce prédicat exprime les conditions nécessaires pour qu’une combinaison de candidats
locaux forme un candidat global correct. Le prédicat de cohérence global dépend à la
fois de l’application et de la reconfiguration. Les candidats globaux sont donc l’ensemble
des combinaisons de candidats locaux qui satisfont le prédicat global de cohérence.
Ensuite, le choix d’un point global d’adaptation parmi les candidats globaux se fait
selon une métrique définie.

AFPAC [46] est la solution proposée par Buisson pour assurer la cohérence lors de
la reconfiguration de composants adaptables parallèles. Cependant AFPAC se limite
aux applications SPMD5. Dans AFPAC, le prédicat de cohérence global est l’identité.
Cela signifie que les candidats globaux d’adaptation valides sont ceux dont tous les
composants séquentiels sont au même endroit du calcul. AFPAC propose un algorithme
distribué qui permet de trouver le point d’adaptation global et de guider les processus
vers ce point.

Taco [45] est l’outil qui permet une annotation automatique de programme MPI.
Ceci permet de connaitre son graphe de controle qui sert à déterminer les candidats
locaux d’adaptation.

Évaluation. Buisson propose un modèle théorique très général et très complet qui per-
met d’envisager tout type d’adaptation. Il met en avant la séparation de préoccupations
pour bien distinguer le code de l’application et les différents composants intervenant
dans l’adaptation. Au final, le processus d’adaptation est complexe et chaque adaptation
doit être conçue par un expert en adaptation (sic).

Le passage à la pratique est assez limité puisqu’il est restreint aux applications
SPMD pour la partie gestion de cohérence de la reconfiguration avec AFPAC et aux
programmes MPI pour Taco. En effet, l’absence d’une représentation abstraite du
calcul dans le modèle de programmation MPI rend ce problème difficile dans le cas
général.

5Single Program, Multiple Data
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3.4.1.3 ASSIST

ASSIST[4, 3, 5, 147] est un environnement d’exécution d’applications distribuées.
Les applications sont décrites sous la forme de graphes de modules à l’aide du langage
de coordination (Coordination Language) ASSIST-CL. Comme le montre la figure 3.3,
les modules sont interconnectés par des flux de données typées. Chaque module peut
être parallèle ou séquentiel.

Un module parallèle (parmod) est utilisé pour décrire l’exécution parallèle d’un
certain nombre de fonctions séquentielles. Ils peuvent être de deux types : Topology
none qui correspond à un modèle maitre-esclaves ; ou Topology array qui correspond à
un modèle SPMD.

Le langage ASSIST-CL [147] permet de décrire la structure de calcul des modules
parallèles tout en faisant appel aux fonctions C, C++ ou FORTRAN pour les parties
séquentielles. Cette structure permet de construire un graphe de flot de contrôle du
module parallèle lors de la compilation. ASSIST-CL comporte l’instruction sync qui
agit comme une barrière globale.

a

d

Fig. 3.3: Module subgraph avec ASSIST-CL : (a) donne le code source du module ;
(b) donne sa représentation sous forme de graphe

Observation. ASSIST utilise la notion de contrat associé au module. Ce contrat
spécifie les informations qui doivent être observées et également les objectifs de per-
formance exprimés en fonction des valeurs observées. Lorsque les objectifs ne sont pas
atteints, une adaptation est déclenchée.

Reconfiguration. Les reconfigurations proposées par ASSIST pour un module se
limitent à l’ajout de nouvelles ressources, à un rééquilibrage du calcul ou éventuellement
à la migration entière du module [5].

Décision. Le choix d’une nouvelle reconfiguration dans ASSIST est réalisé en utilisant
le modèle de performance fourni avec le contrat du module. Ce modèle de performance
est analysé pour déterminer un changement dans la configuration actuelle qui permettra
d’améliorer les performances. Cette analyse peut être réalisée facilement puisque les
types de reconfigurations sont limités.
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Gestion de la cohérence. La gestion de la cohérence d’un module parallèle dans
ASSIST est déléguée à une entité appelée configuration manager. Le configuration
manager est responsable de trouver les points sains pour la configuration dans l’exécution
du module. ASSIST identifie deux types d’états sains pour la reconfiguration dans son
modèle de programmation :
• les barrières globales, qui sont indiquées dans le code du module parallèle par

l’instruction sync (on-barrier reconfiguration) ;
• la fin d’une étape de calcul parallèle, qui signifie que l’état interne distribué est

sain et que le module est en attente de données (on-stream reconfiguration).
Les concepteurs d’ASSIST soulignent que ce ne sont pas les seuls états sains existants
pour la configuration, mais ce sont des points faciles à trouver pour un compilateur
et qu’ils suffisent pour les scenarios réels. ASSIST est capable de trouver et de gui-
der l’application vers de tels états (en bloquant l’arrivée des nouvelles données par
exemple) [147].

Évaluation. L’utilisation d’ASSIST pour l’adaptation semble assez simple puisque
cela nécessite deux étapes : décrire le parallélisme du module parallèle avec ASSIST-
CL et définir le contrat d’adaptation. ASSIST a une connaissance de la structure
du calcul parallèle de l’application ce qui permet de garantir automatiquement la
cohérence des reconfigurations. Cependant, ASSIST est limité aux applications de
type maitre-esclaves ou SPMD, et les reconfigurations sont uniquement géométriques
ou structurelles.

3.4.1.4 PCL

PCL (Program Control Language) [1, 69, 68] est un environnement pour concevoir
et implémenter des applications adaptatives distribuées. Il repose sur deux aspects :
la construction d’un graphe statique de tâches (Static Task Graph) offrant une vue
globale de l’application distribuée, et un langage permettant de spécifier les différentes
fonctions de l’adaptation.

PCL s’utilise comme un compilateur. La construction du graphe statique de tâches
se veut peu intrusive puisqu’elle s’effectue en ajoutant des labels au code source de
l’application. L’utilisation de ces labels permet ensuite de désigner dans PCL les tâches
ou les parties du code concernées par les différentes parties de l’adaptation. La figure 3.4
montre un aperçu de la structure d’une application adaptative dans PCL.

Observation. La fonction d’observation dans PCL offre les services d’interrogation
et de notification par l’intermédiaire des notions de métrique (Metric) et d’évènement
(Event). La métrique définit une valeur qui peut être mesurée, et l’évènement permet de
déclencher une adaptation lorsqu’une condition est vérifiée. Une fois définie, la métrique
peut être interrogée à distance de manière transparente ; le compilateur génère le code
d’appel distant automatiquement.

Décision. Dans PCL, la décision est réalisée par une fonction appelée Adaptor qui
est écrite dans un langage de programmation classique. Cette fonction peut décider
d’effectuer certaines reconfigurations en interrogeant les métriques définies.
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Fig. 3.4: Aperçu de la structure d’une application adaptative dans PCL [69]

Reconfiguration. Les reconfigurations proposées dans PCL sont de deux types. Le
premier type correspond aux opérations de modification du graphe statique de tâches qui
peuvent être l’ajout, la suppression ou le remplacement d’une tâche, ou bien l’ajout ou
la suppression d’un arc. Le deuxième type est le changement de valeur d’un paramètre
(qui aura préalablement été identifié dans PCL). Toutes ces reconfigurations peuvent
s’appliquer localement ou globalement.

Gestion de la cohérence. La gestion de la cohérence repose en partie sur le pro-
grammeur de l’adaptation qui doit spécifier les contraintes de cohérence liées à son
adaptation. Pour cela, il doit donner une contrainte interne (internal constraint) et une
contrainte externe (external constraint) [68].

La contrainte interne utilise la notion de région du graphe. Une région correspond à
un ensemble de tâches. Une région est dite active si une tâche de la région est en cours
d’exécution. La contrainte interne d’une reconfiguration s’exprime par une région et
une politique interne. Elle permet d’indiquer quand la reconfiguration peut s’exécuter
relativement à cette région. Les choix de politique interne peuvent être :
• Any : la reconfiguration peut s’exécuter à tout moment ;
• RegionIn : la reconfiguration ne peut s’exécuter qu’à l’entrée de la région spécifi-

ciée ;
• RegionOut : la reconfiguration ne peut s’exécuter qu’à la sortie de la région

spécificiée ;
• OutsideRegion : la reconfiguration ne peut s’exécuter que lorsque la région est

inactive.
La contrainte externe permet d’exprimer l’état relatif (du point de vue du numéro

d’itération) nécessaire entre les processus participant à la reconfiguration.
• Any indique qu’il n’y a aucune contrainte entre l’état des processus ;
• EqualRegionCounters indique que les processus doivent être au même numéro

d’itération.
Ces contraintes permettent à l’utilisateur d’indiquer les conditions nécessaires pour
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garantir la cohérence d’une adaptation. Grâce à ces informations, PCL choisit un état
sain pour appliquer la reconfiguration.

Évaluation. PCL propose un mécanisme d’adaptation indépendant du modèle de
parallélisation. Il offre une représentation abstraite de la structure du calcul d’une
manière peu intrusive. Il offre également le support pour réaliser l’observation du
contexte d’exécution.

PCL demande un effort de l’utilisateur puisqu’il doit spécifier lui-même la région dans
laquelle peut s’exécuter sa reconfiguration, mais cela permet des reconfigurations plus
fines car il peut exprimer des reconfigurations locales, globales ou même désynchronisées.

La représentation abstraite du calcul sous forme d’un graphe est au cœur du méca-
nisme d’adaptation puisque les reconfigurations sont exprimées en termes d’opérations
sur ce graphe. Elle permet également à PCL d’assurer la cohérence des reconfigurations
grâce aux spécifications données par l’utilisateur.

3.4.1.5 AMPI

AMPI (Adaptive MPI ) [87, 34] est une implémentation de MPI basée sur Charm++.
AMPI propose des fonctionnalités d’adaptation pour les programmes MPI grâce à
quelques extensions. L’approche de AMPI est de fournir de l’adaptivité pour MPI par
l’intermédiaire de processeurs virtuels. Le programme MPI original est sur-décomposé
en V processeurs virtuels pour exhibiter plus de parallélisme, mais ces processeurs
virtuels seront exécutés sur seulement P processeurs physiques. Finalement, les V
processeurs virtuels sont chacun exécutés dans V processus légers qui sont repliés
sur P processus. Pour bénéficier de tous les avantages de AMPI, il est nécessaire de
sur-décomposer l’application, c’est-à-dire de prendre V bien plus grand que P .

L’architecture du mécanisme d’équilibrage de charge adaptatif de AMPI est présen-
tée à la figure 3.5.

Adaptive Run−Time System

LB ManagerDatabase

LB Strategy 1 LB Strategy 2

Thread [2]
Thread [1]

Thread [5]
Thread [4] Application

Location Manager
Thread [3]

Fig. 3.5: Composants du mécanisme d’équilibrage de charge adaptatif de AMPI [87]
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Reconfiguration. Les reconfigurations dans AMPI sont limitées à la migration de
processeurs virtuels. Cette migration a pour but de fournir un équilibrage de charge
adaptatif.

Observation. La fonction d’observation est réalisée par un composant appelé Load
Balancing Manager. Il collecte la charge de chaque machine et le temps d’inactivité
de chaque processus. Ces informations sont centralisées dans la base de données Load
Balancing Database [87].

Décision. La fonction de décision est activée par l’appel collectif dans le code de
l’application à l’extension AMPI AMPI_Migrate ou AMPI_Async_Migrate. L’appel à
cette fonction ne déclenche pas forcément la migration mais va demander au composant
Load Balancing Manager de prendre la décision.

Pour prendre sa décision, le Load Balancing Manager repose sur un composant de
stratégie appelé Load Balancing Strategy. Plusieurs stratégies peuvent être implémentées.
La stratégie utilisée va déterminer, en utilisant les informations de la base de données
Load Balancing Database, les processeurs virtuels qui doivent être migrés et à quel
moment.

Gestion de la cohérence. Les reconfigurations étant limitées à la migration de
processus légers, le problème de la cohérence de la reconfiguration est simplifié. Il
repose sur deux aspects. Premièrement, les points de migration sont indiqués dans
le code source de l’application par l’intermédiaire des extensions AMPI_Migrate ou
AMPI_Async_Migrate qui représente des barrières dans le calcul. Deuxièmement, le
moteur d’exécution AMPI permet de faire suivre les messages d’un processeur virtuel
une fois qu’il a migré.

Évaluation. AMPI propose une solution intéressante pour l’adaptation de pro-
gramme MPI puisqu’elle nécessite très peu de modification de code source de l’applica-
tion. Les reconfigurations possibles restent limitées à cause du modèle de programmation
MPI peu expressif. Seule la sur-décomposition permet d’obtenir une représentation
abstraite de l’application sous forme de processeurs virtuels.

Enfin, AMPI donne une faible garantie sur la cohérence de la reconfiguration qui
repose entièrement sur le placement des appels aux extensions de AMPI placés par
l’utilisateur.

3.4.1.6 Satin

Satin [158, 157] est un environnement de programmation parallèle qui propose des
fonctionnalités d’adaptation. Les applications Satin sont basées sur le principe « diviser
pour régner ». Les tâches de l’application sont ordonnancées par vol de travail. Une
application Satin est donc malléable, c’est-à-dire que des processeurs peuvent joindre
ou quitter le calcul en cours d’exécution.

Le mécanisme d’adaptation proposé par Satin repose sur cette hypothèse de
malléabilité de l’application. Le but de l’adaptation dans Satin est d’ajouter ou de
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supprimer les processus de manière à utiliser les ressources qui fournissent la meilleure
efficacité pour l’application.

Observation. L’exécution est divisée en périodes d’observation. Durant une période
d’observation, chaque processeur mesure son temps d’inactivité et son temps passé à
communiquer et il peut ainsi calculer son surcout d’exécution sur cette période. Ceci
permet de calculer les surcouts par processeur, intra-grappe, inter-grappes et globaux.
Satin observe également la vitesse relative des processeurs en mesurant périodiquement
sur chaque processeur le temps d’exécution d’un sous-calcul représentatif de l’application.
Grâce à toutes ces informations, Satin peut calculer l’efficacité moyenne pondérée de
l’exécution de l’application.

Reconfiguration. Les seules reconfigurations envisagées par Satin sont l’ajout ou la
suppression de processus. Pour cela, le mécanisme d’adaptation suppose que l’application
est malléable.

a�� nodes

faster nodes
available

if compute weighted
average efficiency E wa

wait & collectstatistics

rank nodesremove worst nodes

waE

Ewa

Y

N

N

Y

above
if

below
if

Emin

maxE

Fig. 3.6: Stratégie de décision dans Satin [158]

Décision. La fonction de décision de Satin est donnée à la figure 3.6. Elle est basée
sur un algorithme ad hoc lié à la fois au critère de performance (l’efficacité de l’exécution)
et aux reconfigurations envisagées (ajout ou suppression de processus). L’algorithme de
décision est assez simple (cf figure 3.6). L’efficacité moyenne pondérée est calculée ; si
elle est supérieure au seuil Emax alors des processus sont ajoutés ; si elle est inférieure
au seuil Emin alors les plus mauvais processus sont retirés. Cette heuristique n’offre
pas de garantie de résultat mais en pratique elle permet d’obtenir une amélioration des
performances pour plusieurs scenarios typiques des grilles de calcul [158].
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Gestion de la cohérence. La gestion de la cohérence d’une reconfiguration par
Satin est déléguée à l’application puisque le mécanisme d’adaptation suppose l’applica-
tion malléable. Cette hypothèse est vérifiée lorsque l’application repose sur le modèle
d’exécution de Satin.

Évaluation. Satin s’intéresse surtout à la partie décision de l’adaptation et se
restreint à la problématique de la sélection de ressources. L’originalité de l’approche
proposée par Satin est que la décision de l’adaptation ne dépend pas d’un modèle
de performance de l’application ou d’un ensemble de règles fournies par l’utilisateur.
Cependant cet algorithme de décision ne décide que de l’ajout ou de la suppression de
ressources.

3.5 Conclusion

Ce chapitre a présenté l’adaptation et la reconfiguration dynamique et a précisé le
lien qu’il y a entre ces deux notions.

L’adaptation est un processus qui vise à modifier le système considéré en réponse à
un changement dans son contexte d’exécution. L’objectif de l’adaptation est de rendre le
système plus performant dans son nouveau contexte. Nous avons donné une classification
des travaux portant sur l’adaptation et il en ressort un certain consensus pour distinguer
trois fonctions élémentaires qui composent l’adaptation : l’observation, la décision et la
reconfiguration.

Nous avons ensuite ciblé notre étude sur la fonction de reconfiguration pour les
applications de calcul distribué. La littérature nous a permis de mettre en évidence
des critères de classification et les propriétés des reconfigurations. En particulier, la
cohérence d’une reconfiguration est un point critique et difficile pour les systèmes
distribués. Elle est composée de trois aspects : l’intégrité structurelle, la cohérence
mutuelle et les invariants de l’état de l’application.

De point de vue de la conception d’une application distribuée reconfigurable et
adaptable, la diversité des solutions récentes proposées indique que le problème est encore
ouvert. On peut distinguer d’un côté les solutions qui se limitent à des reconfigurations
données (comme par exemple l’ajout et le retrait de machines) et de l’autre, celles
portant sur des reconfigurations générales. Ces dernières utilisent une représentation
abstraite du futur de l’application (principalement sous forme d’un graphe) pour
permettre de déterminer automatiquement un état sain pour la reconfiguration. Cet
état sain est appelé point de reconfiguration et permet de garantir la cohérence de la
reconfiguration. Certains travaux proposent également au programmeur de spécifier
lui-même les contraintes de son opération de reconfiguration.

Ce chapitre nous a permis d’exposer les concepts-clefs indispensables à la mise en
place d’un mécanisme de reconfiguration pour un environnement de calcul distribué. La
partie II de ce manuscrit porte sur la conception et la mise en œuvre de mécanismes
originaux de reconfiguration pour les applications parallèles. Ces mécanismes seront
évalués grâce à l’environnement Kaapi.
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4.1 Introduction

Ce chapitre présente le modèle de programmation et d’exécution sur lequel repose
le mécanisme de reconfiguration dynamique qui sera présenté au chapitre suivant.

De nombreux modèles de programmation ont été proposés pour faciliter la pro-
grammation des applications parallèles. Ces modèles proposent différents niveaux
d’abstraction. Au plus proche de la machine, on trouve les modèles de programmation
comme les processus légers [112] ou MPI [108, 109]. Les processus légers permettent
d’exploiter le parallélisme des machines multiprocesseurs ou multicœurs ; MPI permet
d’exploiter le parallélisme entre plusieurs machines par échanges de messages.

Parmi les modèles de plus haut niveau, il existe ceux qui sont basés sur le parallélisme
de contrôle, par exemple Cilk [39], Intel TBB [99] ou Satin [146] et, ceux qui utilisent
le parallélisme de données comme HPF [83] ou BSP [145]. Le modèle flot de données
est encore plus général et il est proposé dans Jade [130] et Athapascan [76, 77].

Pour les travaux présentés dans cette thèse, nous avons choisi d’utiliser le modèle de
programmation Athapascan et le moteur d’exécution Kaapi. Le moteur d’exécution
Kaapi interprète la description de l’application en Athapascan et crée une représenta-
tion interne du flot de données pour l’exécuter. Grâce à cette représentation abstraite, le
couple Athapascan/Kaapi correspond bien à nos besoins. En effet, comme cela a été
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évoqué au chapitre 3, une telle représentation abstraite est très utile pour implémenter
des mécanismes d’adaptation et de reconfiguration dynamiques.

Représentation abstraite de l’application

Représentation abstraite de la plate-forme d’exécution

Interfaces systèmes (pthreads, sockets, myrinet, ...)

Interface Athapascan

Application

Plate-forme d’exécution (multicœurs, grappes, grilles, ...)

Ordonnanceurs (vol de travail, partitionnement statique, ...)

Moteur d’exécution Kaapi

Fig. 4.1: Interface de programmation Athapascan et moteur d’exécution Kaapi

Comme le montre la figure 4.1, le moteur d’exécution Kaapi est composé de
plusieurs couches. La couche la plus basse permet d’abstraire l’architecture matérielle en
fournissant une interface indépendante du système et des informations sur l’organisation
hiérarchique des cœurs de calcul. La couche la plus haute exécute les instructions du
langage Athapascan pour construire une représentation interne du graphe de flot de
données décrit par l’application. La couche intermédiaire interprète ce graphe de flot de
données interne et exécute les différentes tâches de calcul de l’application sur les cœurs
de calcul disponibles.

Ce chapitre est organisé de la manière suivante. La section 4.2 décrit le modèle de
programmation Athapascan et donne le graphe de flot de données et la sémantique
associée. La section 4.3 présente le moteur d’exécution Kaapi et les différentes méthodes
d’ordonnancement existantes.

4.2 Modèle de programmation Athapascan

Le modèle de programmation Athapascan consiste à décrire une application sous
forme d’un graphe de flot de données, en reposant sur les notions de tâches et de
données partagées. Les sections suivantes présentent les mots-clés du langage, puis
le graphe de flot de données correspondant.
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4.2.1 Langage Athapascan

Le langage Athapascan est une extension du langage C++1 qui repose sur les
mots-clés : Fork, Shared et Shared_xx. Les spécifications, la syntaxe et la sémantique
du langage Athapascan sont détaillées dans [76, 77].

Le mot-clé Shared<Type> permet de créer une variable de type Type en mémoire
partagée, i.e. une donnée partagée. Une donnée partagée pourra être accédée et
modifiée par les tâches de calcul. Les accès des tâches aux données partagées permettent
de définir des contraintes sur l’ordre d’exécution des tâches.

Le mot-clé Fork<Task>() permet de créer une tâche de calcul Task. Une tâche
représente un appel de fonction C++ de type fonction classe. La création d’une tâche est
un appel non bloquant (asynchrone). L’ordre de création des tâches est appelé ordre de
référence. Lors de la création des tâches, comme en C++, le programmeur peut passer
des paramètres par valeurs ou par références (pointeurs). Les paramètres passés par
valeur correspondent à une copie privée du paramètre au moment de l’appel à Fork.
Les seuls paramètres passés par référence sont les variables en mémoire partagée.
Pour ces paramètres, la tâche doit préciser le droit (lecture ou écriture) et le mode
d’accès qu’elle requiert. Cela se traduit par une déclaration d’un paramètre formel
avec l’un des types Shared_<droit/mode> qui permet de préciser à la fois le droit et le
mode d’accès à la donnée en mémoire partagée.

Les droits d’accès actuellement définis dans Athapascan sont les suivants.

Écriture : qui indique que la tâche va écrire la nouvelle version (paramètre formel de
type Shared_w) de la donnée ou si la tâche contribue, par accumulation2, à la
future version de la donnée (paramètre formel de type Shared_cw).

Lecture : qui indique que la tâche va seulement lire la donnée dans la mémoire partagée
(paramètre formel de type Shared_r).

Exclusif : qui indique que la tâche prend un accès exclusif à la donnée en lecture et
écriture (paramètre formel associé de type Shared_rw).

Le droit d’accès que possède une tâche ne peut pas être muté : par exemple, une tâche
qui possède un droit en écriture ne peut pas lire la donnée.

Le mode d’accès d’une tâche à une donnée partagée permet de définir la portée
du droit d’accès. Il peut être direct ou différé.

direct : un mode d’accès direct accorde à la tâche elle-même le droit d’accès spécifié.
Il permet à la tâche d’accéder elle-même à la donnée partagée en respectant le
droit d’accès.

différé : un mode d’accès différé accorde le droit d’accès spécifié seulement à la
descendance de la tâche. Ainsi un mode d’accès différé ne permet pas à la tâche
elle-même d’accéder à la donnée partagée, mais le permet à ses tâches-filles. Un
mode d’accès différé est indiqué par la lettre p (postponed).

1Qui est implémenté comme une bibliothèque générique -template- en C++
2Se référer à [76, 77] : l’opération d’accumulation doit être une fonction classe supposée cumulative

et associative pour permettre une évaluation parallèle sans restriction sur un ordre à respecter.
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Mot-clé Type d’accès
Shared_w écriture seule directe
Shared_wp écriture seule différée
Shared_r lecture seule directe
Shared_rp lecture seule différée
Shared_rw modification directe
Shared_rpwp modification différée
Shared_cw écriture cummulée directe
Shared_cwp écriture cummulée différée

Tab. 4.1: Droits et modes d’accès aux données partagées en Athapascan

Le tableau 4.1 récapitule les modes d’accès d’une tâche à une donnée partagée
en Athapascan. Les règles de compatibilité en les types d’accès Athapascan sont
présentées dans [76, 79].

La figure 4.2 montre un exemple de programme écrit en Athapascan et le compare
à la version séquentielle. Ce programme calcule le ne terme de la suite de Fibonacci
en utilisant l’algorithme récursif naïf. À gauche, nous donnons la version séquentielle
écrite en utilisant des fonctions pour définir chaque opération élémentaire. À droite,
nous donnons la version Athapascan qui définit pour chaque opération élémentaire
une tâche sous la forme struct Task::operator().

Les deux programmes de la figure 4.2 calculent la même valeur. Les mots-clés
d’Athapascan permettent d’exprimer le parallélisme du calcul en créant explicitement
des tâches accédant à des variables en mémoire partagée. Sur l’exemple de la figure (b)
aux lignes 21 et 22, la tâche Fibo crée deux tâches Fibo chargées de calculer les nombres
de Fibonacci n− 1 et n− 2 : ces deux tâches sont indépendantes car elles produisent
des données (droit d’accès en écriture) et travaillent sur des variables distinctes de la
mémoire partagée. Ensuite à la ligne 23, une tâche Sum est créée : le droit d’accès en
lecture requis pour ses 2e et 3e paramètres fera que le moteur d’exécution Kaapi ne
l’exécutera que lorsque ses paramètres effectifs res1 et res2 auront été produits à la
fin de l’exécution des tâches Fibo précédemment créées.

Le parallélisme d’une application Athapascan est explicite (c’est au rôle du pro-
grammeur de décrire les tâches et les variables en mémoire partagée) mais il est
indépendant de l’architecture. Le moteur d’exécution Kaapi, et en particulier l’algo-
rithme d’ordonnancement, décidera ou non d’utiliser le parallélisme de l’application
selon les ressources de calcul disponibles.

Néanmoins, tel quel Athapascan n’est pas directement utilisable pour décrire des
applications dans lesquelles le degré de parallélisme doit être proche du nombre de
ressources utilisées : en effet, si la gestion du parallélisme implique l’ajout d’un grand
nombre d’opérations arithmétiques, il vaut mieux utiliser un algorithme d’extraction
adaptatif pour éviter la perte d’efficacité [140]. De même Athapascan n’est pas
bien adapté pour la description des schémas itératifs pour lesquels il est préférable
d’ordonnancer l’ensemble des tâches du corps de boucle. Ce dernier point est l’objectif
de la section suivante.
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1 void Sum(

2
3 int* res ,

4 int a,

5 int b )

6 {

7 *res = a + b;

8 }

9
10
11 void Fibo (

12
13 int* res ,

14 int n )

15 {

16 if ( n < 2 )

17 *res = n;

18 else

19 {

20 int res1 , res2;

21 res1 = Fibo ( n -1 );

22 res2 = Fibo ( n -2 );

23 Sum( res , res1 , res2 );

24 }

25 }

26
27
28 void fibonacci ( unsigned int n )

29 {

30 int res;

31 res = Fibo ( n );

32 Print ( res );

33 }

(a) Programme séquentiel

1 struct Sum {

2 void operator () (

3 a1 :: Shared_w <int > res ,

4 a1 :: Shared_r <int > a,

5 a1 :: Shared_r <int > b)

6 {

7 res. write ( a. read () + b. read () );

8 }

9 };

10
11 struct Fibo {

12 void operator () (

13 a1 :: Shared_w <int > res ,

14 int n )

15 {

16 if ( n < 2 )

17 res. write ( n );

18 else

19 {

20 a1 :: Shared <int > res1 , res2;

21 a1 :: Fork <Fibo >()( res1 , n -1);

22 a1 :: Fork <Fibo >()( res2 , n -2);

23 a1 :: Fork <Sum >() (res , res1 , res2 );

24 }

25 }

26 };

27
28 void fibonacci ( unsigned int n )

29 {

30 a1 :: Shared <int > res;

31 a1 :: Fork <Fibo >() ( res , n );

32 a1 :: Fork <Print >() ( res );

33 }

(b) Programme Athapascan

Fig. 4.2: Programmes récursifs qui calculent la suite de Fibonacci

4.2.2 Extension du langage Athapascan

Cette section propose une extension du langage Athapascan pour les applications
itératives comme celles considérées dans [117]. Cette extension repose sur le mot-clé
While qui permet d’exprimer une boucle de calcul et l’arrêt sur une condition.

Trois éléments sont nécessaires pour définir cette boucle en Athapascan. Ces trois
éléments apparaissent dans l’utilisation de l’instruction While que nous avons introduite
dans le cadre de ce travail.
• Un donnée partagée contenant la valeur de la condition de répétition qui sert à

arrêter la boucle. Tant que la valeur de cette donnée partagée est vraie, la boucle
est répétée ; lorsqu’elle devient fausse, la boucle s’arrête.
• La tâche représentant le noyau de calcul (kernel) de la boucle est la partie du

programme qui doit être répétée tant que la condition de répétition est vraie.
• La tâche représentant le calcul de la condition de répétition est la partie du

programme qui permet de calculer la valeur de la condition de répétition.

L’exécution de l’instruction

a1::While <Kernel ,Test > ( condition )

( /* parametres Kernel */ )
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( /* extra parametres Test */ );

correspond à la création d’une tâche spéciale appelée Loop. L’exécution des itérations
est réalisée de manière asynchrone de la même manière que pour le Fork. Les contraintes
induites par les types d’accès sont les mêmes.

La sémantique de l’instruction While est définie pour être équivalente à l’exécution
du programme séquentiel C++ suivant :

while( condition )

{

Kernel () ( [ parametres Kernel] );

Test () ( condition [, extra parametres Test ] );

}

L’exécution de la tâche Loop sera équivalente à l’exécution des tâches Kernel et
Test tant que la valeur de la donnée partagée condition est vraie. La tâche Test doit
modifier la donnée partagée condition pour permettre l’arrêt de la boucle.

Séparer le noyau de calcul et le test de répétition permet de dérouler le corps de la
boucle indépendamment du test d’arrêt. Typiquement, si on suppose que le noyau de
calcul fait décroitre une valeur3 (par exemple une erreur) et que la condition d’arrêt
est le franchissement d’un seuil, il peut être utile de réaliser un contrôle amorti du test
d’arrêt en ne testant pas la condition à chaque itération [22]4.

Un second intérêt de cette séparation est d’identifier facilement ces tâches afin de ne
pas les évaluer lors de la reprise après panne : pour toutes les itérations perdues nous
savons que ces tâches ont retourné la valeur vraie, sinon le programme se serait arrêté
en cours d’itération.

Pour illustrer une telle boucle de calcul, nous utilisons un exemple de programme
qui calcule la ne ligne du triangle de Pascal. Le triangle de Pascal est une représentation
géométrique des cœfficients binomiaux. À la ligne i et à la colonne j (0 ≤ j ≤ i), on
trouve le cœfficent binômial

(

i

j

)

. La figure 4.3 montre l’affichage attendu pour un appel
à la fonction pascal.

pascal(0) → 1
pascal(1) → 1 1
pascal(2) → 1 2 1
pascal(3) → 1 3 3 1

...
...

. . .
pascal(n) → 1 n . . . . . . n 1

Fig. 4.3: La fonction pascal calcule la ne ligne du triangle de Pascal

La figure 4.4 montre deux programmes réalisant de manière itérative la fonction
pascal définie ci-dessus. À gauche (figure (a)), la version séquentielle a été écrite pour
exprimer chaque opération élémentaire dans une fonction indépendante. De plus, la

3Il faut supposer cette valeur décroissante monotone.
4Cette possibilité peut être indiquée par le programmeur en positionnant l’attribut relaxed sur la

tâche Loop.
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boucle de calcul de la fonction pascal a été écrite pour décrire la sémantique de la
boucle de calcul du programme Athapascan présenté à droite (figure (b)).

1
2
3 void Add( int& a, int& b )

4 {

5 a += b;

6 }

7
8
9

10
11 bool Test (

12 int a,

13 int b )

14 {

15 return a < b;

16 }

17
18
19
20
21 void Kernel ( std :: vector <int >& tab ,

22 int& curr_iter )

23 {

24 int i;

25 for (i = tab.size () -1; i > 0; i--)

26 Add(tab[i], tab[i -1]);

27 curr_iter ++;

28 }

29
30
31 void pascal ( int n )

32 {

33 std :: vector <int > tab;

34 tab. resize ( n );

35
36 ... // Initialisation de tab

37
38 bool condition = true;

39 int curr_iter = 0;

40 while ( condition )

41 {

42 Kernel ( tab , curr_iter );

43 condition = Test ( curr_iter , n )

44 }

45
46 ... // Affichage de tab

47 }

(a) Programme séquentiel

1 struct Add {

2 void operator () ( a1 :: Shared_rw <int > a,

3 a1 :: Shared_r <int > b )

4 {

5 a. access += b. read ();

6 }

7 };

8
9 struct Test {

10 void operator () (

11 a1 :: Shared_w <bool > condition ,

12 a1 :: Shared_r <int > a,

13 int b )

14 {

15 condition . write ( a. read () < b );

16 }

17 };

18
19 struct Kernel {

20 void operator () (

21 std :: vector <a1 :: Shared_rpwp <int > >&tab ,

22 a1 :: Shared_rw <int > curr_iter )

23 {

24 int i;

25 for (i= tab.size () -1; i > 0; i--)

26 a1 :: Fork <Add >()( tab[i], tab[i -1]);

27 curr_iter . access ()++;

28 }

29 };

30
31 void pascal ( int n )

32 {

33 std :: vector < a1 :: Shared <int > > tab;

34 tab. resize ( n);

35
36 ... // Initialisation de tab

37
38 a1 :: Shared <bool > condition (true );

39 a1 :: Shared <int > curr_iter (0);

40
41 a1 :: While <Kernel ,Test > ( condition )

42 ( tab , curr_iter , largeur ),

43 ( condition , curr_iter , nb_iter );

44
45
46 ... // Affichage de tab

47 }

(b) Programme Athapascan

Fig. 4.4: Programmes itératifs qui calculent la ne ligne du triangle de Pascal

Dans le programme Athapascan de la figure 4.4a, la boucle d’itération est exprimée
à l’aide de l’instruction While. Cette instruction utilise les trois éléments suivants :

• la donnée partagée condition qui contient la valeur de la condition de répétition ;
• une tâche Kernel qui contient le noyau de calcul à répéter ;
• et la tâche Test qui calcule la valeur de la condition.
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4.2.3 Graphe de flot de données

L’exécution d’une application écrite à l’aide du langage Athapascan peut être
représentée sous forme d’un graphe de flot de données. Ce graphe permet de
représenter les tâches, les versions des données et les accès des tâches sur les versions.

Nous définissons le graphe de flot de données de la manière suivante :

Définition 5 Le graphe de flot de données associé à l’exécution d’une application
Athapascan est un graphe orienté acyclique G = (S,A).
• Les tâches ST et les versions SV forment l’ensemble des sommets du graphe
S = ST ∪ SV .
• Les accès des tâches aux données forment l’ensemble A des arcs du graphe.

Ce graphe est un graphe biparti : un sommet tâche est uniquement connecté à des
sommets versions ; un sommet version est uniquement connecté à des sommets tâches.

Un arc dans le graphe signifie un accès de type lecture ou écriture entre une donnée
et une tâche. Soient t ∈ ST une tâche et v ∈ SV une version, alors :
• l’arc (t, v) ∈ A signifie que la tâche t écrit la version v ; la tâche t précède toute

tâche qui lit la version v.
• l’arc (v, t) ∈ A signifie que la tâche t lit la version v ; la tâche t est précédée par

toute tâche qui écrit la version v.
On remarque que si plusieurs tâches écrivent la même version, alors l’accès est un

accès en écriture cumulée. De même, si une tâche lit une version et écrit une autre
version de la même donnée, alors l’accès est une modification.

Ce graphe est dynamique : les sommets tâches et versions sont ajoutés et supprimés
au cours de l’exécution de l’application. Par exemple, la création d’une donnée partagée
avec le mot-clé Shared ajoute un sommet version qui correspond à la version initiale ;
la création d’une tâche avec le mot-clé Fork ajoute un sommet tâche ainsi que les
arcs correspondant aux accès directs de la tâche ; un accès en écriture directe sur une
donnée partagée crée un nouveau sommet version. La construction de ce graphe en
cours d’exécution de l’application est détaillée dans [76].

L’aspect dynamique de ce graphe permet de décrire des applications récursives.
L’exécution d’une tâche crée les sous-tâches qui la composent et permet d’affiner
localement la description du parallélisme.

La figure 4.5 montre les graphes de flot de données associés à l’exécution du
programme récursif de calcul de Fibonacci. Le programme Athapascan correspondant
est donné à la figure 4.2b. Ce programme est récursif. Les trois sous-figures (a), (b) et
(c), montrent le développement du graphe lors de l’exécution des tâches :
• le graphe de flot de données (a) résulte de l’exécution de la fonction fibonacci ;
• le graphe de flot de données (b) correspond au développement du sous-graphe de

la tâche Fibo(3) ;
• le graphe de flot de données (c) correspond au développement du sous-graphe de

la tâche Fibo(2).
Le graphe de flot initial comprend déjà toutes les informations nécessaires à l’exécution,
mais le parallélisme interne à une tâche n’apparait que lorsqu’elle est exécutée.
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Fibo(2)

Fibo(3)

(a) (b) (c)

Print

res

Fibo(1)

res1 res2

Sum

Fibo(0) Fibo(1)

res1 res2

Sum

Fibo(3)

res

Print Print

res

Fibo(1)

res1 res2

Sum

Fibo(2)

Fig. 4.5: Graphes de flot de données associés au programme Athapascan de calcul
de la suite de Fibonacci de la figure 4.2b

Le cas de programmes Athapascan itératifs est similaire. La boucle d’itération est
représentée par une tâche spéciale Loop. L’exécution de cette tâche dépend alors de la
valeur de la donnée partagée condition :
• Si condition vaut faux, alors la tâche Loop ne fait rien ;
• Si condition vaut vrai, alors la tâche Loop ajoute dans le graphe les tâches

Kernel et Test représentant une itération et insère une nouvelle tâche Loop

représentant les autres itérations.
La figure 4.6 montre les graphes de flot de données associés à l’exécution du

programme itératif de calcul du triangle de Pascal. Ce programme est donné à la
figure 4.4b. Ce graphe de flot de données est développé à l’exécution lors de l’exécution
des tâches :
• le graphe (a) montre la tâche Loop avec ses accès sur les données ;
• le graphe (b) montre le graphe résultant du développement d’une itération de la

boucle ;
• le graphe (c) correspond au graphe développé après l’exécution de la tâche Kernel

et fait apparaitre le calcul interne de la boucle.
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Loop[1]

Loop[0]

Loop[1]

Kernel Test

tab[0] tab[1] tab[2] iter cond

tab[0] tab[1] tab[2] iter cond

tab[0] tab[1] tab[2] iter cond

tab[0] tab[1] tab[2] iter cond

tab[0] tab[1] tab[2] iter cond tab[0] tab[1] tab[2] iter cond Versions 2

Add Add Test

tab[0] tab[1] tab[2] iter cond Versions 1

tab[0] tab[1] tab[2] iter cond Versions 1.1

Kernel

Loop[0]

Fig. 4.6: Graphes de flot de données associés à l’exemple Pascal de la figure 4.4b
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4.2.4 Sémantique Athapascan

La sémantique du langage Athapascan est définie par l’ordre séquentiel d’exécution
des programmes Athapascan : ainsi le résultat de l’exécution d’un programme Atha-
pascan est le même que celui de l’exécution du programme dans lequel les mots-clés
du langage ont été retirés.

Plus précisément, l’exécution séquentielle d’un programme Athapascan est
définie de la manière suivante :
• une déclaration Shared est remplacée par la déclaration d’une variable suivie de

son initialisation ;
• un Fork est remplacé par l’appel direct de la méthode de calcul ;
• les types d’accès Shared_xx sont remplacés par le passage des paramètres par

référence C++ (qui permet la lecture et l’écriture) ;
• les accès aux données (read(),write(),access()) sont remplacés par des accès

directs ;
• l’instruction While est remplacée par une boucle while (cf section 4.2.2).
Le graphe de flot de données de l’application Athapascan définit les contraintes

de précédence entre les tâches. Ces contraintes de précédence définissent un ordre
partiel ≺G qui doit être respecté par toute exécution valide calculée par un ordonnance-
ment.

Définition 6 Soit G le graphe de flot de données de l’instance5 de l’application consi-
dérée. Un ordre d’exécution ≺ des tâches de l’application est dit valide s’il respecte les
contraintes de précédence du graphe de flot de données G.

Plus formellement, on dira que l’ordre ≺ est valide s’il est compatible avec l’ordre
≺G, c’est-à-dire que pour tout couple d’éléments (a, b), (a ≺G b)⇒ (a ≺ b).

Un ordre d’exécution particulier est l’ordre de création des tâches, appelé l’ordre de
référence. Cet ordre est différent de l’ordre séquentiel car selon cet ordre les tâches-filles
sont exécutées après la tâche-mère alors que pour l’ordre séquentiel, les tâches-filles
sont exécutées durant l’exécution de la tâche-mère. Dans [76], Galilée montre que le
l’ordre de référence est toujours un ordre d’exécution valide.

Dans [76], Galilée définit la sémantique d’Athapascan à partir du graphe de
flot de données construit par l’interprétation des mots-clés du langage Athapascan. À
partir de cette définition, Galilée prouve que la sémantique d’Athapascan est telle que
pour toute exécution (éventuellement parallèle), la valeur retournée lors d’un accès en
lecture à une donnée partagée est identique à la valeur lue lors de l’exécution séquentielle
de l’application [76].

Proposition 2 [76] Quel que soit un ordre d’exécution ≺ des tâches valide, la valeur
retournée lors d’un accès en lecture à une donnée partagée est identique à la valeur lue
lors de l’exécution séquentielle de l’application.

Cette propriété, montrée par Galilée [76], repose sur le fait que les tâches ne modifient
pas la mémoire par un effet de bord, c’est-à-dire qu’une tâche ne peut pas accéder, soit

5L’instance d’une application est l’association d’une application et d’un ensemble de ses valeurs
d’entrée.
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directement soit via sa descendance, à un objet pour lequel elle n’a pas déclaré l’accès
avec les droits correspondants. Ceci interdit en particulier l’utilisation de variables
globales dans les tâches de l’application.

Définition 7 Étant donné un ordre d’exécution ≺ nous noterons par V aleur≺(d) la
valeur calculée du sommet version d ∈ SV en utilisant l’ordre ≺.

Galilée a montré que si ≺1,≺2 sont deux ordres valides, alors les fonctions valeurs
sont identiques, i.e. V aleur≺1

≡ V aleur≺2
.

Néanmoins dans le cadre de cette thèse, nous verrons dans les chapitres à suivre
comment transformer dynamiquement l’application représentée par son graphe de flot
de données. Parmi l’ensemble de transformation à priori possible, certaines préservent la
sémantique de l’application et d’autres non. Nous nous intéressons essentiellement aux
transformations qui préservent la structure du graphe et ne modifient pas les valeurs
calculées (quitte à ajouter des tâches).

Définition 8 Soit G un graphe de flot de données de l’application à un instant t. Une
fonction f qui transforme G en G′ est appelée transformation valide si ≺G′ est
un ordre valide, i.e., ∀(a, b) a ≺G b ⇒ f(a) ≺G′ f(b) et pour tout nœud d ∈ SV alors
d ∈ G′ et f(valeur(d)) = valeur(d).

Ces transformations servent à caractériser d’une part un ordre d’exécution et d’autre
part le fait que les valeurs calculées restent identiques avant et après transformation : elles
préservent les nœuds versions du graphe original G′ ainsi que l’ordre initial d’exécution
des tâches.

4.3 Moteur d’exécution Kaapi

Kaapi est un intergiciel qui permet d’exécuter des applications programmées avec
le langage Athapascan sur une architecture distribuée. Comme le montre la figure 4.1,
le moteur d’exécution Kaapi se compose de trois parties :
• La représentation abstraite de l’application constitue une structure de données

qui représente l’état de l’application sous la forme de graphe de flot de données
Athapascan. Ces graphes sont encapsulés dans des objets appelés K-threads
(comme Kaapi-threads) qui représentent le travail à effectuer. Cette représentation
abstraite est présentée dans la section 4.3.1.
• La représentation abstraite de la plate-forme d’exécution constitue une structure

de données qui décrit la hiérarchie des processus de calculs. Les cœurs de calcul
sont représentés sous la forme d’objets appelés K-processeurs (comme Kaapi-
processeurs).
• La partie ordonnancement constitue le moteur d’exécution qui, grâce aux informa-

tions sur l’état de l’application et l’organisation hiérarchique des cœurs de calcul,
effectue les choix d’ordonnancement. Pour cela, le moteur d’exécution découpe
les K-threads pour extraire le parallélisme et les place sur les K-processeurs pour
les exécuter. Le moteur d’exécution séquentiel et les algorithmes d’extraction du
parallélisme sont présentés dans la section 4.3.2.
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4.3.1 État de l’application

Le graphe de flot de données présenté à la section 4.2.3 permet de représenter les
calculs de l’application sous la forme de tâches. Kaapi utilise ce graphe pour connaitre
les calculs à effectuer. Chaque graphe est stocké dans un objet appelé K-thread.

En interne, le graphe de flot de données est annoté à l’aide d’attributs qui per-
mettent d’avoir toutes les informations nécessaires à l’exécution. Par exemple, chaque
tâche a un attribut qui correspond à son état et un attribut qui identifie le code d’exé-
cution de la tâche. L’annotation du graphe permet de séparer l’état de l’application et
le code d’ordonnancement.

Ce graphe de flot de données annoté par les attributs constitue une représentation
abstraite du calcul. Lorsqu’aucune tâche n’est en cours d’exécution, le graphe de
flot de données complet, c’est-à-dire l’ensemble de tous les K-threads, respecte les
conditions nécessaires et suffisantes pour constituer une représentation valide de l’état
de l’application [92] :
• Le graphe de flot de données est une représentation close, i.e. il contient toutes

les informations nécessaires pour représenter l’état de l’application. En effet,
lorsqu’aucune tâche n’est en cours d’exécution, le graphe de flot de données
contient toutes les informations nécessaires à la poursuite du calcul (la valeur des
données, les tâches à exécuter et les dépendances) puisque les tâches interfèrent
uniquement avec les données passées en paramètres (les effets de bord sur la
mémoire sont interdits).
• Le graphe de flot de données est une représentation causalement connectée à

l’application, i.e. toute modification de l’état de l’application est visible dans la re-
présentation et inversement, toute modification de la représentation est répercutée
sur l’état de l’application. Ceci est dû au fait que le moteur d’exécution Kaapi in-
terprète le graphe de flot de données pour exécuter l’application. Réciproquement
les tâches exécutées et les données modifiées sont directement reportées dans le
graphe.

Il est important de remarquer que lorqu’une tâche est en cours d’exécution, le graphe
de flot de données n’est plus une représentation valide de l’état de l’application. En
effet, dans ce cas l’état de l’application dépend de la position du pointeur d’instructions
dans la tâche courante et cette information n’est pas inscrite dans la représentation
abstraite.

Une propriété importante de cette représentation abstraite est qu’elle est indépen-
dante de l’architecture de la machine d’exécution6 (système d’exploitation, processeur)
et donc supporte l’hétérogénéité. Toutes ces propriétés permettent au moteur d’exécu-
tion Kaapi d’utiliser cette représentation abstraite pour, à la fois manipuler l’état de
l’application, mais aussi le sauvegarder et le migrer.

4.3.2 Exécution et ordonnancement

Dans le moteur d’exécution Kaapi, les K-threads représentent le calcul et les K-
processeurs représentent les ressources de calcul. L’exécution est réalisée en assignant
les K-threads aux K-processeurs.

6À la condition que ce graphe et ses attributs soit décrits d’une manière portable.
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Initialement, le graphe de flot de données de l’application est contenu dans un
seul K-thread. Pour réaliser une exécution parallèle, il est donc nécessaire de découper
les K-threads en extrayant le parallélisme exprimé dans le graphe de flot de données.
Les K-threads peuvent ensuite être distribués sur les K-processeurs libres. Ce travail
d’extraction de parallélisme et de répartition du travail est le rôle de l’ordonnanceur.

La section 4.3.2.1 présente le fonctionnement d’un K-processeur qui réalise une
exécution séquentielle. Les sections 4.3.2.2 et 4.3.2.2 présentent respectivement les
méthodes d’exécution par vol de travail et par partitionnement statique.

4.3.2.1 Exécution séquentielle

L’exécution séquentielle est la fonction de base du moteur d’exécution Kaapi.
Elle est réalisée par un K-processeur qui parcourt les tâches composant le K-thread.
L’exécution séquentielle est basée sur l’état des tâches.

Une tâche peut avoir les états suivants :
• Créée : la tâche est créée mais ses contraintes de précédence ne sont pas vérifiées.
• Attente : la tâche est créée mais ne peut pas être exécutée, elle est bloquée. Cet état

permet d’empêcher l’exécution d’une tâche même si ses contraintes de précédence
sont résolues, en attendant qu’une certaine condition soit vérifiée. Pour s’exécuter,
la tâche devra être mise dans l’état Créée lorsque cette condition sera vérifiée. Cet
état est par exemple utilisée lorsqu’une tâche doit attendre la réception d’une
donnée pour s’exécuter.
• Prête : la tâche peut être exécutée car elle n’est pas bloquée et ses contraintes de

précédence sont vérifiées.
• Exécution : la tâche est en cours d’exécution, i.e. le code de la fonction associé à la

tâche est en train d’être exécuté.
• Volée : la tâche a été volée, elle est bloquée. Cet état est utilisé par l’algorithme

de vol de travail pour créer une synchronisation pendant que la tâche est exécutée
sur un autre K-processeur.
• Terminée : l’exécution de la tâche est terminée. Elle est maintenant ignorée en

attendant sa destruction.
La figure 4.7 donne le diagramme d’état d’une tâche dans le moteur d’exécution Kaapi.

Volée

Exécution

Prête Terminée

Début
d’exécution

CrééeAttente

Condition
valide

Données en
lecture produites

Retour
de vol

Fin
d’exécution

Création
Vol

Fig. 4.7: Diagramme d’état d’une tâche dans Kaapi

C’est le K-processeur qui réalise l’exécution des K-threads. Chaque K-thread est
associé à un unique K-processeur qui est responsable de son exécution. Le K-processeur
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ne peut exécuter qu’un seul K-thread à la fois, donc il doit sélectionner un K-thread
parmi les K-threads qui lui sont associés pour l’exécuter. Parmi les K-threads associés
à un K-processeur, on distingue les trois ensembles suivants :
• L’ensemble des K-threads prêts, qui sont ceux dont la première tâche est prête.
• L’ensemble des K-threads bloqués, qui sont ceux dont la première tâche est

bloquée, c’est-à-dire dans l’état Volée ou Attente.
• Le K-thread actif, qui est le K-thread en cours d’exécution.
L’exécution d’un K-thread est séquentielle et elle se fait selon l’ordre de référence.

En effet, comme expliqué dans la section 4.2.4, l’ordre de référence est toujours un ordre
valide. Donc pour exécuter les tâches selon cet ordre, il n’y a pas besoin de vérifier
les contraintes de précédence. Cela permet une exécution séquentielle avec un faible
surcout.

Lorsqu’un K-processeur n’a plus de travail, c’est-à-dire qu’il n’a plus de K-thread
prêt, il devient inactif. Cet évènement est traité par l’ordonnanceur qui essaie alors de
créer de nouveaux K-threads en extrayant du parallélisme, soit à partir des K-threads
bloqués sur le même K-processeur, soit à partir des K-threads des autres K-processeurs
(éventuellement distants).

4.3.2.2 Vol de travail

L’ordonnancement par vol de travail est un ordonnancement dynamique de type
glouton, c’est-à-dire que s’il existe une tâche prête qui n’est pas en cours d’exécution,
alors cela signifie que tous les K-processeurs sont actifs. Une opération de vol de travail
s’effectue en plusieurs étapes :

1. Lorsqu’un K-processeur devient inactif, l’ordonnanceur déclenche une opération
de vol de travail pour lui fournir des tâches à exécuter. Ce K-processeur est appelé
le K-processeur voleur.

2. L’algorithme de vol de travail choisit un K-thread dans lequel il va tenter de
trouver une tâche à voler. Ce K-thread est appelé le K-thread victime. Plusieurs
politiques existent pour choisir la victime d’un vol ; la plus courante est le choix
aléatoire [39].

3. L’algorithme de vol de travail parcourt le K-thread victime à la recherche d’une
tâche qui peut être volée, c’est-à-dire une tâche prête. Pour cela, l’algorithme
de vol de travail parcourt et analyse le graphe de flot de données. La tâche
sélectionnée est appelée la tâche volée et son état est mis à Volée.

4. Un nouveau K-thread est créé. Il contient une copie de la tâche volée et de ses
données d’entrée ; et également une tâche spéciale, appelée Signal, qui dépend
des données écrites par la tâche volée.

5. Ce nouveau K-thread est finalement associé au K-processeur voleur.
Le rôle de cette tâche spéciale Signal est d’effectuer ce qui est appelé le retour de

vol. Cela consiste à retourner au K-thread victime les résultats produits par la copie
de la tâche volée (i.e. les données en écriture), puis à débloquer la tâche volée sur le
K-thread victime en mettant son état à Terminée car les données ont été écrites.

Proposition 3 L’opération de vol de travail est une transformation valide.
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Preuve Nous donnons l’idée de la démonstration.
• Au moment du vol, la tâche volée est prête, ce qui signifie que tous ses prédécesseurs

ont été exécutés. Donc la copie de la tâche volée s’exécute bien après tous les
prédécesseurs de la tâche volée.
• Dans le nouveau K-thread, la tâche Signal dépend des données produites par la

copie de la tâche volée ; elle s’exécute donc après la copie de la tâche volée. Les
données lues et émises sont donc correctes.
• Dans le K-thread victime, la tâche volée est dans l’état Volée tant que la tâche

Signal n’a pas écrit les données produites par la copie de la tâche volée. Donc
la tâche volée ne peut pas être exécutée ; et donc toutes les autres tâches qui
utilisent ses résultats ne peuvent s’exécuter.
• Dans le K-thread victime, lorsque la tâche volée passe dans l’état Terminée, les

données ont été écrites. Les successeurs de la tâche volée peuvent s’exécuter et
utilisent les valeurs correctes des données.

Les contraintes d’ordre du graphe de flot de données initial sont respectées et les valeurs
des versions des données sont reportées correctement. �

Lors de l’opération de vol de travail, le K-thread initial est découpé en deux K-threads
indépendants qui se synchronisent sur la fin d’exécution de la tâche volée. Ils peuvent
donc être exécutés en parallèle sur deux K-processeurs différents. Les dépendances entre
les deux K-threads sont exprimées sous forme de communications. Il est important de
constater que toutes les informations nécessaires à la synchronisation sont inscrites dans
le graphe, sous forme d’état sur les tâches, sous forme de dépendances ou sous forme de
tâches de communication.

La figure 4.8 montre comment le découpage par vol de travail s’applique sur le
graphe de flot de données. Sur les graphes présentés dans cette figure, la lettre en bas à
droite d’une tâche désigne son état. La sous-figure (a), à gauche montre le graphe de flot
de données avant l’opération de vol de tâche. Le graphe utilisé pour l’exemple est celui
du calcul de Fibonacci dont le programme est donné à la figure 4.2b. La sous-figure (b),
à droite, montre le graphe de flot de données résultant de l’opération de vol. La tâche
Fibo(2) a été volée ; elle est marquée Volée dans le K-thread victime et elle est recopiée
dans un nouveau K-thread. Une tâche Signal est également ajoutée pour permettre la
synchronisation des deux K-threads.

Une opération de vol peut être locale ou distante. Un vol distant signifie que le
K-processeur voleur et le K-thread victime sont situés sur des processus différents. Dans
ce cas, l’opération de découpage est suivie de la migration du nouveau K-thread vers le
K-processeur voleur.

À l’opposé, un vol local signifie que le K-processeur voleur et le K-thread victime
sont tous les deux sur le même processus. Dans ce cas, l’opération de vol et le retour de
vol peuvent être optimisés pour limiter les copies et éviter les communications.

Une opération de vol de travail peut présenter un cout non négligeable, particuliè-
rement lors d’un vol distant. C’est pourquoi il est nécessaire d’amortir le cout d’une
opération en volant une quantité suffisamment importante de travail. C’est pourquoi
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Fig. 4.8: Découpage d’un graphe de flot de données par vol de travail

les applications récursives sont bien adaptées à ce type d’ordonnancement puisque le
vol d’une tâche peut potiellement générer beaucoup de travail. C’est le cas de l’exemple
de Fibonacci proposé à la figure 4.8. L’exécution de la tâche Fibo(2) va développer de
nouvelles tâches comme sur l’exemple de la figure 4.5c.

Dans le cadre des applications séries-parallèles, l’ordonnancement par vol de tra-
vail offre une bonne répartition de charge. Des modèles de cout et des garanties de
performances ont été donnés dans [39, 77].

4.3.2.3 Partitionnement statique

Le partitionnement statique est un ordonnancement qui vise à partitionner et à
distribuer une sous-partie d’un graphe de flot de données pour l’exécuter en parallèle.
Ceci correspond à prendre un K-thread ou une partie d’un K-thread et à le découper
en p K-threads pour l’exécuter sur p K-processeurs. Le partitionnement statique est
présenté en détail dans [117]. L’opération de partitionnement statique se compose de
trois étapes : partitionnement, génération et distribution.

Partitionnement Le partitionnement est l’étape qui est chargée d’affecter un site
d’exécution à chaque tâche du graphe de flot de données considéré. Pour cela, Kaa-
pi repose sur des bibliothèques externes d’ordonnancement ou de partitionnement.
Actuellement, les algorithmes suivants ont été intégrés à Kaapi :
• DSC [161] (Dominant Sequence Clustering) cherche à regrouper les tâches d’un

graphe de précédence de manière à minimiser le temps d’exécution. DSC propose
un ordonnancement pour un nombre illimité de processeurs. Un algorithme
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d’équilibrage de charge [160] est utilisé pour replier les k partitions données par
DSC sur les p processeurs disponibles.
• ETF [91] (Earliest Task First) calcule l’ordonnancement de tâches à partir d’un

graphe de précédence sur un nombre p donné de processeurs. Pour cela, il cherche
à calculer la date de démarrage au plus tôt de chaque tâche.
• METIS [95] agglomère les tâches d’un graphe de dépendances pondéré dans le

but de générer des partitions équilibrées. METIS peut prendre en compte le cout
des tâches et le cout des communications. Les tâches qui communiquent beaucoup
sont regroupées dans une même partition.
• SCOTCH [115] fonctionne de manière similaire à METIS. Cependant il est capable

de partitionner pour une machine cible hétérogène (en puissance et en bande
passante). La machine cible est alors décrite sous forme d’un graphe non orienté
annoté.

Une comparaison de ces algorithmes est effectuée dans [117].
L’étape de partitionnement nécessite de convertir le graphe de flot de données initial

dans le format d’entrée de la bibliothèque utilisée. Le résultat rendu par la bibliothèque
de partitionnement est utilisé pour ajouter un attribut de site logique d’exécution sur
le graphe de flot de données initial. Ce site logique d’exécution correspond au numéro
de partition.

Génération La génération est l’étape qui va effectivement découper le graphe de flot
de données considéré en p sous-graphes de flot de données. Pour cela, la génération
tient compte des numéros de partition donnés par l’étape de partitionnement.

Dans le graphe initial, lorsqu’une version est produite sur une partition i et utilisée
sur une partition j, l’algorithme de génération doit ajouter une communication. Ainsi la
génération remplace certains arcs entre les tâches et les versions par une communication
en utilisant les tâches spéciales suivantes :
• La tâche Broadcast est la tâche d’émission qui prend un accès en lecture à une

donnée partagée. Cette tâche est placée dans la même partition que la tâche qui
produit la version de la donnée. L’exécution de cette tâche provoque la diffusion
de la version de la donnée à toutes les autres partitions qui possèdent une tâche
qui accède en lecture à cette version de la donnée. Ces partitions destinataires
sont indiquées à l’aide d’un attribut sur la tâche Broadcast. Pour permettre un
meilleur recouvrement calcul/communications, l’émission de la donnée par cette
tâche est asynchrone.
• La tâche Wait est la tâche d’attente de fin d’émission qui est insérée après la tâche

Broadcast et qui prend un accès en lecture à la même version que celle lue par la
tâche Broadcast. Cette tâche est insérée dans l’état Attente et elle est débloquée
par la fin de l’émission de la donnée. Son exécution ne fait rien mais elle permet
de garantir que la version de cette donnée ne sera pas écrasée par une écriture
avant que l’émission de la donnée ne soit terminée. Tant qu’une tâche en lecture
existe sur cette donnée, elle ne pourra pas être modifiée7. Ceci est nécessaire car
l’émission est réalisée de manière asynchrone.

7Un accès en écriture sur cette donnée peut quand même être exécuté, mais il utilisera un espace
mémoire différent pour écrire sa valeur.
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• La tâche Receive est la tâche de réception qui prend un accès en écriture à une
donnée partagée. Elle est placée dans la même partition qu’une tâche qui lit une
version produite dans une autre partition. Cette tâche est créée dans l’état Attente

et elle est passée dans l’état Créée par la réception de la donnée. Son exécution
ne fait rien, mais elle permet de bloquer l’exécution des tâches qui utilisent cette
version de la donnée en attendant sa réception.

Pour résumer, la tâche Broadcast déclenche l’émission de la donnée et la tâche Wait

correspond à la fin de l’émission de la donnée. Entre ces deux tâches, d’autres tâches
peuvent être exécutées pour recouvrir la communication par du calcul. La tâche Receive

correspond à la fin de la réception de la donnée. Pour identifier chaque communication,
les tâches Broadcast, Wait et Receive sont associées à l’aide d’un identifiant.

De plus, l’étape de génération ajoute au début et en fin de chaque K-threads une
phase de redistribution des données d’entrée et de sortie du graphe initial. Au début
de chaque K-thread, des tâches de réception Receive sont ajoutées pour recevoir les
données qui se trouvaient potentiellement sur un autre processus. De même, à la fin de
chaque K-thread, des tâches d’émission Broadcast et Wait sont ajoutées pour émettre
les données de sortie qui peuvent être utilisées sur d’autres processus. Ces tâches sont
ajoutées de façon systématique de manière à obtenir des K-thread indépendants d’un
placement particulier ou d’un algorithme de redistribution particulier des données.

Par exemple, si tous les K-threads sont finalement associés au même K-processeur,
ces tâches de redistribution de données ne sont pas nécessaires et donc leur exécution
consistera juste à leur changement d’état. Par contre, il est toujours possible de migrer
ces K-threads sur des processus distants et dans ce cas, il n’y a pas de modification à
apporter aux K-threads.

À la fin de l’étape de génération, on obtient p K-threads qui représentent le même
calcul que le graphe de flot de données initial. Pour permettre leur distribution, les
dépendances entre les tâches ont été remplacées par des communications grâce aux
tâches Broadcast, Wait et Receive.

Distribution La distribution est l’étape qui va distribuer les p K-threads générés sur
les K-processeurs. Pour cela, un algorithme de placement va d’abord associer à chaque
site logique (numéro de partition) un site physique d’exécution (un K-processeur).
Ensuite, les K-threads sont distribués en fonction de ce placement.

En pratique, on peut choisir de distribuer les p K-threads sur un nombre moindre de
K-processeurs. Dans ce cas, plusieurs algorithmes de placement sont proposés. Certains
font un placement cyclique (les K-threads k, 2k, ... sont placés sur le K-processeur k),
d’autres proposent un placement par blocs (les K-threads 1 à k − 1 sont placés sur
le K-processeur 1, les K-threads k à 2k − 1 sur le K-processeur 2, etc.). L’algorithme
de placement peut aussi tirer parti de la représentation abstraite de la plate-forme
d’exécution ou des graphes de flot de données à exécuter (pour tenir compte du volume
de données à échanger entre deux K-threads).

Proposition 4 L’opération du partitionnement statique est une transformation valide.
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Preuve Nous donnons l’idée de la démonstration. Le principe de cette transformation
est de regrouper les tâches en fonction d’une décision de placement sur une machine
particulière. L’ordre entre tâche du graphe avant le partitionnement est conservé après
transformation : les tâches de communication, soumises aux contraintes de flot de
données locales, permettent d’émettre les valeurs de données qui auraient été produites
sans partitionnement.

Les tâches de réception marquent le fait qu’une donnée n’est pas encore produite
localement : celle-ci sera activée sur réception du message contenant la donnée. Les
tâches qui suivent une tâche de réception verront la même valeur que celle qui aurait
été produite sans partitionnement. �

Add Add

tab[1] tab[2]

Add Add Test

tab[0] tab[1] tab[2] iter cond

tab[0] tab[1] tab[2] iter cond

Sous-graphe
à partitionner

1 2

1 2

1 2 2

Fig. 4.9: Graphe de flot de données correspondant au développement de deux tâches
Kernel et d’une tâche Test du programme de la figure 4.4b

La figure 4.9 montre le graphe de flot de données correspondant au développement
de deux tâches Kernel et d’une tâche Test du programme d’exemple Pascal de la
figure 4.4b. Une sous-partie du graphe a été partitionnée. Deux partitions ont été
définies ; la partition 1 de couleur bleue et la partition 2 de couleur jaune. L’attribut du
numéro de partition est montré en haut à droite d’une tâche ou d’une donnée.

La figure 4.10 montre les deux K-threads qui ont été générés après le partitionnement
de la figure 4.9. Le K-thread généré 1 reprend les tâches de la partition bleue tandis
que le K-thread généré 2 reprend les tâches de la partition jaune. Ces deux K-threads
sont augmentés des tâches de communication nécessaires pour une exécution distribuée.
Pour simplifier la figure, les tâches Wait n’apparaissent pas.

Les redistributions d’entrée et de sortie, encadrées en gris, gèrent les données d’entrée
et de sortie du sous-graphe partitionné. Dans la figure 4.9, une version de la donnée
tab[1] est produite sur la partition bleue et est utilisée sur les deux partitions. Cela
implique l’ajout d’une communication entre les deux partitions qui est gérée par les
tâches Broadcast et Receive que l’on peut voir sur la figure 4.10.

Une opération de partitionnement statique peut être couteuse puisqu’elle peut
manipuler un nombre de tâches et de données important. De même la redistribution
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Fig. 4.10: Graphes de flot de données obtenus par partitionnement statique du graphe
de la figure 4.9
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des données d’entrée et de sortie aura un impact notable si le volume des données est
conséquent. Les couts des opérations de partitionnement et de redistribution doivent
donc être amortis.

Les algorithmes itératifs utilisant l’instruction Athapascan While sont bien adaptés
au partitionnement statique car à chaque itération, le partitionnement sera le même8.
Dans ce cas, le moteur d’exécution Kaapi propose un système de mise en cache des
K-threads générés pour pouvoir exécuter les applications itératives sans recalculer le
partitionnement statique à chaque itération.

De même, les redistributions d’entrée et de sortie sont programmées (en modifiant les
attributs des tâches d’émission) pour tenir compte du caractère itératif de l’application.
En particulier pour les applications itératives présentant une forte localité des données9,
les redistributions de données effectives sont faibles, voire nulles. Sur l’exemple de la
figure 4.10, l’enchainement de plusieurs itérations du calcul ne provoquera, à chaque
itération, que la redistribution de la donnée tab[1], produite sur le K-thread 1 et
utilisée sur le K-thread 2.

Le détail de ces mécanismes de contrôle des itérations et de redistribution est
présenté dans [117].

4.4 Conclusion

Ce chapitre a présenté l’interface de programmation Athapascan et son extension.
Le fonctionnement du moteur d’exécution Kaapi qui permet d’exécuter des applications
Athapascan a été décrit. Kaapi fournit un fonctionnement séquentiel où un K-thread,
représentant le calcul de l’application, est exécuté par un K-processeur, représentant
une ressource de calcul. Un K-thread correspond à un graphe de flot de données qui sert
de représentation abstraite du calcul de l’application. Cette représentation abstraite est
observable, manipulable et migrable.

L’exécution parallèle est réalisée en découpant les graphes de flot de données grâce
au parallélisme exprimé à l’aide du langage Athapascan. Plusieurs K-threads peuvent
alors s’exécuter en parallèle et en distribué, sur plusieurs K-processeurs de manière
transparente. Les synchronisations sont automatiquement gérées par des communica-
tions.

Deux opérations de découpage sont proposées : le vol de travail, plutôt adapté aux
applications récursives, et le partitionnement statique, plutôt adapté aux applications
itératives. Ces opérations de découpage ne modifient pas la sémantique du programme
Athapascan.

Il faut noter que le langage Athapascan permet de décrire une application avec
une sémantique de lecture séquentielle du programme. De plus, aucune communication
n’est spécifiée explicitement dans le modèle de programmation Athapascan. Grâce
au graphe de flot de données, les communications sont déduites automatiquement des
dépendances lors des opérations d’extraction de parallélisme.

8Sous réserve que le nombre de K-processeurs disponibles ne change pas.
9C’est par exemple le cas des applications basées sur la décomposition de domaine.
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La représentation abstraite sous forme d’un graphe de flot de données est un point
clé dans le reste de ces travaux, autant pour la partie reconfiguration dynamique que
pour la partie tolérance aux fautes.
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5.1 Introduction

Ce chapitre propose des mécanismes de reconfiguration pour les applications paral-
lèles distribuées. Ces mécanismes sont instanciés dans le moteur d’exécution Kaapi.
Pour cela, nous plaçons le moteur d’exécution Kaapi tel qu’il a été présenté au chapitre
précédent dans un contexte où nous distinguons deux modes de fonctionnement. Un
mode de fonctionnement normal où chaque K-processeur exécute un K-thread séquen-
tiellement selon l’ordre de référence et un mode de reconfiguration où une opération de
reconfiguration est appliquée sur l’application.

Ainsi, nous choisissons de considérer les opérations d’extraction de parallélisme (le
vol de travail et le partitionnement statique) présentées au chapitre précédent comme des
opérations de reconfiguration de l’application. D’autres opérations de reconfiguration
peuvent également être envisagées comme la migration de K-threads ou les opérations de
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tolérance aux fautes. La section 7.3 du chapitre 7 présentera un protocole de sauvegarde
coordonnée reposant sur ces mécanismes de reconfiguration.

5.1.1 Types de reconfigurations

Pour différencier les reconfigurations possibles, nous utilisons plusieurs critères. Tout
d’abord, nous distinguons les reconfigurations du moteur d’exécution et les reconfigura-
tions de l’application.

Une reconfiguration du moteur d’exécution change la manière dont le graphe
de flot de données est exécuté, cependant elle ne doit pas changer la sémantique de
l’application. Plus précisément, une reconfiguration qui modifie la sémantique du graphe
de flot de données n’est pas valide puisque dans ce cas, le moteur d’exécution ne
réalise plus correctement sa fonction. Par les reconfigurations valides, nous trouvons
par exemple le changement du réseau utilisé pour communiquer entre deux processus
donnés (par exemple Myrinet au lieu de TCP). Ce type de reconfiguration est spécifique
au moteur d’exécution Kaapi. Elles ne font pas l’objet d’étude de nos travaux, bien
que pouvant aussi bénéficier des mécanismes de reconfiguration que nous proposons.

Les reconfigurations de l’application sont celles visées par ces travaux. Une reconfi-
guration de l’application est une reconfiguration qui va agir sur la représentation
abstraite de l’application, i.e. son graphe de flot de données. Une telle reconfiguration
peut être indépendante ou dépendante de l’application :
• Une reconfiguration indépendante de l’application est une reconfiguration

qui garantit que les opérations faites sur le graphe sont des modifications qui
respectent la sémantique Athapascan. Les opérations effectuées reposent uni-
quement sur la définition du graphe de flot de données et la sémantique de
lecture/écriture associée ; elles ne font aucune hypothèse sur les calculs exécutés
par les tâches. Voici des exemples de telles reconfigurations :
– les opérations de découpage de graphe de flot de données présentées dans le

chapitre précédent (le vol de travail, section 4.3.2.2 ; et le partitionnement
statique, section 4.3.2.3) ;

– une opération de fusion qui regroupe les tâches des deux K-threads en un seul ;
– une opération de changement de l’ordre de référence1 des tâches d’un K-thread.
• Une reconfiguration dépendante de l’application est définie en se basant

sur une connaissance ou une propriété de l’application. Ces reconfigurations font
des modifications qui changent la sémantique du graphe Athapascan. Elles sont
dédiées à une application particulière et sont généralement définies par l’utilisateur
de l’application. Parmi ces reconfigurations, nous donnons les quelques exemples
suivants :
– le remplacement d’une tâche par une autre qui calcule un résultat approché

mais avec une méthode plus performante ;
– le découpage d’une tâche en plusieurs tâches pour exposer plus de parallélisme,

ou inversement la fusion de plusieurs tâches en une seule ;

1L’ordre de référence n’apparait pas dans la représentation sous forme de graphe de flot de données,
cependant il correspond à l’ordre d’empilement des tâches dans le K-thread. Il est utilisé comme ordre
d’exécution par défaut par le K-processeur et peut influencer les performances de l’application.
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– l’ajout de tâches destinées à afficher la valeur de données.
Ces opérations dépendent explicitement des opérations effectuées par les tâches
impliquées dans la reconfiguration.

Orthogonalement, nous distinguons également les reconfigurations locales et les
reconfigurations distribuées. Pour cela, nous regardons la notion de distribution du
moteur d’exécution Kaapi pour lequel le grain de distribution est le K-thread. En effet
dans Kaapi, un K-thread est un élément toujours exécuté séquentiellement, tandis que
deux K-threads peuvent s’exécuter sur deux processeurs différents, donc potentiellement
de manière distribuée.

Nous définissons donc une reconfiguration locale comme une reconfiguration
qui n’opère que sur un seul K-thread ou sur seulement une partie d’un K-thread.
Inversement, une reconfiguration distribuée est une reconfiguration qui opère sur
des éléments d’au moins deux K-threads différents.

5.1.2 Problématiques

Les mécanismes de reconfiguration qui font l’objet de ce chapitre ont été conçus
pour le moteur d’exécution Kaapi. Cependant ils sont présentés de manière à être indé-
pendants, autant que possible, du moteur d’exécution Kaapi et de son implémentation.
Pour cela, nous nous plaçons dans le modèle suivant, qui est calqué sur Kaapi.
• Notre application est constituée d’un ensemble de processus distribués.
• Ces processus communiquent par l’intermédiaire de canaux de communication

supposé FIFO (First In, First Out).
• L’état de l’application est représenté par une structure de données abstraite qui

est distribuée sur l’ensemble des processus.
• Cette structure de données est constituée d’un ensemble d’objet indépendants qui

représentent les calculs à effectuer.
• L’exécution est réalisée en interprétant les objets de la représentation abstraite

de l’application.
• Une reconfiguration est réalisée en modifiant l’état de l’application, c’est-à-dire

en modifiant les objets qui constituent la représentation abstraite.
Pour concevoir ce mécanisme de reconfiguration pour le moteur d’exécution Kaapi,

nous nous sommes intéressés aux problématiques suivantes : les accès concurrents et la
gestion de la cohérence entre les objets de la représentation abstraite.

Gestion des accès concurrents. Les reconfigurations que nous considérons sont
dynamiques, c’est-à-dire qu’elles peuvent être déclenchées à tout moment de l’exécution.
De plus, le déclenchement de ces reconfigurations est asynchrone ; il est exécuté dans
son propre processus léger, i.e. son propre thread noyau. Ce genre de comportement
correspond au cas où la reconfiguration peut être déclenchée par une communication,
un évènement périodique ou une temporisation2.

Ainsi, les processus légers qui exécutent l’application et le processus léger qui
exécute la reconfiguration peuvent s’exécuter en concurrence. Si les deux processus

2Dans Kaapi, les communications et le démon d’évènements utilisent des threads noyau dédiés.
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légers accèdent et modifient un même objet en même temps, cela peut provoquer des
incohérences.

Gestion de la cohérence. Cette problématique a été présentée dans l’état de l’art
à la section 3.3.3. Elle est généralement décomposée en trois aspects : l’intégrité
structurelle, la cohérence mutuelle et les invariants d’état de l’application. Pour la suite,
nous nous focalisons principalement sur la cohérence mutuelle.

La problématique de la cohérence mutuelle intervient lorsque la reconfiguration cible
deux objets qui peuvent interagir. Lorsque deux objets entrent en interaction, l’état des
objets peut être lié. Dès lors, pour appliquer correctement une reconfiguration, il peut
être nécessaire de garantir la cohérence mutuelle entre l’état observé de ces objets. Il
faut ajouter deux remarques.
• Tout d’abord, la notion de cohérence mutuelle n’a de sens que lorsque la re-

configuration opère sur au moins deux objets distribués3. Cela correspond aux
reconfigurations distribuées.
• De plus, la cohérence mutuelle n’est pas une propriété indispensable pour toutes

les reconfigurations. La cohérence mutuelle peut-être nécessaire à certaines recon-
figurations mais pas pour d’autres reconfigurations.

L’objectif de ce chapitre est donc d’offrir une solution aux problématiques exposées
précédemment. Ce chapitre est organisé de la manière suivante. La prochaine section
présente une modélisation du processus de reconfiguration. La section 5.3 présente le
mécanisme gestion des accès concurrents et la section 5.4 le mécanisme de gestion de la
cohérence.

5.2 Modélisation du processus de reconfiguration

5.2.1 Définition d’une reconfiguration

Nous définissons une reconfiguration de l’application comme une opération qui
modifie l’état de l’application. Dans notre cas, l’état de l’application est représenté par
une structure de données abstraite (un graphe de flot de données dans le cas de Kaapi).
Une reconfiguration peut être vue comme une fonction qui est appliquée sur plusieurs
objets pour les modifier.

Une opération de reconfiguration est définie par sa fonction de reconfiguration.
C’est la fonction qui sera exécutée par chacun des processus de la cible de la reconfigu-
ration. Cette fonction reconfigure l’application en modifiant l’état de chaque processus
(c’est-à-dire qu’elle modifie le graphe de flot de données pour les processus Kaapi). Elle
est écrite en langage de programmation classique et elle peut prendre des paramètres
en entrée. Elle retourne également une valeur de sortie.

3Ici distribué signifie que les deux objets sont affectés par au moins deux flots d’exécution, mais
pas forcément distant. En effet, sur une même machine, une modification effectuée par un processeur
n’est pas forcément visible instantanément par un autre processeur. On peut observer alors un délai
similaire à une communication qui est dû à un réordonnancement des instructions d’écriture et de
lecture par le compilateur ou le processeur.
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L’instanciation d’une reconfiguration est réalisée en donnant, en plus de la
fonction de reconfiguration définie ci-dessus, les éléments suivants.
• La cible de la reconfiguration, qui correspond à l’ensemble de processus sur

lesquels doit être exécutée la fonction de reconfiguration. Dans le cas du moteur
d’exécution Kaapi, les processus sont désignés grâce à un identifiant unique.
• Les valeurs des paramètres d’entrée de la fonction de reconfiguration.

5.2.2 Déroulement d’une reconfiguration

La fonction de reconfiguration est exécutée comme un programme SPMD4 sur
l’ensemble des processus cibles. On distingue trois étapes dans le déroulement d’une
reconfiguration : le prologue, la réalisation et l’épilogue.

Prologue. Le prologue (ou déclenchement) est l’étape qui réalise l’instanciation de
la reconfiguration en définissant les différents éléments qui la compose (la fonction, la
cible et les paramètres). Le prologue est un programme séquentiel qui peut s’éxécuter
sur n’importe quel processus et dans n’importe quel flot d’exécution. Le processus qui
exécute le prologue (c’est-à-dire celui qui déclenche la reconfiguration) est appelé le
processus maitre de la reconfiguration. Le prologue est terminé par l’invocation
de la reconfiguration, qui provoque la réalisation de la reconfiguration. L’appel de
l’invocation bloque le flot qui exécute le prologue jusqu’à la fin de la réalisation.

Réalisation. La réalisation est l’étape durant laquelle la fonction de reconfiguration
est exécutée sur chacun des processus qui composent la cible de la reconfiguration. Le
processus léger qui exécute cette fonction est appelé flot de reconfiguration. Selon
l’implémentation (cf section 5.3), le flot de reconfiguration peut être concurrent avec
l’exécution de l’application. Par défaut, il n’y a pas de contrainte de synchronisation
entre les flots de reconfiguration des différents processus cibles. Cependant, l’ajout
d’une contrainte de cohérence mutuelle (cf section 5.4.3) ou l’utilisation explicite de
communication entre les processus peut être utilisée pour synchroniser les processus.
À la fin de l’exécution de la fonction de reconfiguration, chaque processus retourne le
résultat de la fonction au processus maitre de la reconfiguration.

Nous distinguons deux fonctions essentielles qui composent la phase de réalisation
d’une reconfiguration : l’exploration et la mutation. L’exploration désigne les accès
en lecture du flot de reconfiguration, tandis que la mutation désigne les modifications
des objets par le flot de reconfiguration. L’exploration permet au flot de reconfiguration
d’explorer et d’analyser l’état de l’application. Le but de l’exploration est de trouver et
de marquer les objets à modifier, c’est-à-dire de désigner les objets qui seront modifiés
par la mutation. La mutation permet alors au flot de reconfiguration de réellement
modifier les objets qui ont été marqués pour réaliser la reconfiguration.

Épilogue. L’épilogue est l’étape qui correspond à la fin de la réalisation et à la reprise
du flot d’exécution qui a effectué l’invocation. L’épilogue commence lorsque la fonction
de reconfiguration a fini d’être exécutée sur tous les processus cibles et que tous les

4Single Program, Multiple Data
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résultats ont été retournés. L’épilogue permet d’analyser les résultats de la réalisation
de la reconfiguration.
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Fig. 5.1: Déroulement d’une reconfiguration distribuée

La figure 5.1 montre le déroulement d’une reconfiguration sur un exemple. L’ap-
plication est composée de quatre processus et l’axe horizontal indique l’avancée de
l’exécution. Le processus 1 est le processus maitre qui instancie la reconfiguration en
définissant l’ensemble des processus 0, 1 et 2 comme cible de la reconfiguration.

Si deux reconfigurations sont réalisées simultanément, plusieurs processus peuvent
être impliqués dans les deux reconfigurations. Dans ce cas, il faut garantir que les
reconfigurations seront appliquées dans le même ordre sur chacun des processus. Cela
peut être réalisé grâce à un algorithme d’exclusion mutuelle répartie [128].

5.3 Gestion des accès concurrents

La gestion des accès concurrents vise à protéger les objets cibles de la reconfiguration
de toutes modifications extérieures durant la durée de la reconfiguration. Dans la
suite de cette section, nous présentons d’abord la notion d’objet reconfigurable et une
modélisation des contraintes liées aux flots d’exécution et de reconfiguration. Puis
nous proposons deux méthodes d’exécution qui satisfont ces contraintes : l’exécution
concurrente et l’exécution coopérative.
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5.3.1 Notion d’objet reconfigurable

L’état de l’application est constitué par une structure de données appelée repré-
sentation abstraite de l’application. Elle est constituée d’objets indépendants qui
représentent les calculs à effectuer. Une reconfiguration est une opération qui modifie
un ou plusieurs objets qui constitue l’état de l’application.

Nous définissons la notion d’objet reconfigurable ou R-objet comme un objet de
la représentation abstraite de l’application qui peut être modifié de manière cohérente
indépendamment des autres. Pour cela, l’état de cet objet doit être clos (i.e. indépendant
de tout autre structure de données) et accessible. Un R-objet est une encapsulation
abstraite des structures de données physiques (c’est-à-dire telle qu’elles sont en mémoire).
Un R-objet peut également être un conteneur qui contient d’autres R-objets. Ceci permet
de refléter des hiérarchies d’objets en mémoire.

Par la suite, nous associons à chaque R-objet un état qui permet de connaitre
comment les flots (d’exécution et de reconfiguration) accèdent à l’objet. Un R-objet
est donc composé de deux parties, une partie qui contient l’état de l’objet de la
représentation abstraite, et une partie qui contient l’état du R-objet vis-à-vis de la
reconfiguration.

Structures de données et objets reconfigurables dans Kaapi. Pour Kaapi,
nous définissons les objets reconfigurables en suivant l’organisation hiérarchique des
données en mémoire. L’état d’une application dans le moteur d’exécution Kaapi est
représenté comme un ensemble de K-threads répartis sur l’ensemble de processus Kaapi.
Sur chaque processus, plusieurs K-processeurs ont pour rôle d’exécuter le calcul en
interprétant le graphe de flot de données contenu dans les K-threads.

Dans Kaapi, la représentation interne de l’état de l’application sous forme d’un
graphe de flot de données, repose sur les objets reconfigurables suivants [78].
• Le R-objet K-thread correspond à une partie du graphe de flot de données de

l’application, selon la définition de la section 4.3. Il se comporte comme une pile
de K-frames (ordre LIFO5).
• Le R-objet K-frame est l’équivalent pour les tâches Athapascan de la notion

de frame (structure de données) d’une pile d’appel de fonctions lors de l’exécution
d’un programme. Ainsi, un niveau de récursion dans le graphe de flot de données
correspond à l’empilement d’une nouvelle K-frame dans le K-thread. Une K-frame
se comporte comme une file de K-tasks (ordre FIFO6).
• Le R-objet K-task représente une tâche de calcul Athapascan. La structure

de données K-task contient les informations sur les modes d’accès aux données
partagées qui permettent de déduire les contraintes de dépendances du graphe de
flot de données.

Cette structure de données est illustrée sur un exemple à la figure 5.2. Dans cette
figure, les objets reconfigurables sont les K-threads, les K-frames et les K-tasks.

Le fonctionnement interne du moteur d’exécution est fortement couplé à la représen-
tation en mémoire du graphe de flot de données et à la manière dont il est interprété.
Ces structures de données ont été choisies pour optimiser l’exécution séquentielle (Work

5Last In, First Out
6First In, First Out
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Fig. 5.2: Représentation interne du graphe de flot de données : les objets reconfigurables
sont les K-threads, les K-frames et les K-tasks.
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First Principle). Ainsi, l’ordre naturel de lecture des K-tasks (par les instructions pop())
correspond à l’ordre d’exécution suivi par le K-processeur (i.e. l’ordre de référence) qui
est un ordre valide d’exécution respectant la sémantique Athapascan.

5.3.2 Flot d’exécution et flot de reconfiguration

Durant une exécution classique, sans reconfiguration, il y a au plus un flot d’exécution
qui accède à un objet en mémoire puisque chaque K-thread est associé à un unique
K-processeur. Cependant, durant une étape de reconfiguration, un nouveau processus
léger, appelé flot de reconfiguration, est utilisé pour réaliser la reconfiguration. Ce flot
de reconfiguration peut entrer en conflit avec les flots d’exécution de l’application. Pour
cela, il est nécessaire de garantir l’exclusion mutuelle lorsque ces deux flots tentent de
modifier un même objet.

Flot d’exécution. Durant l’exécution de l’application, chaque objet de la hiérarchie
peut prendre deux états différents selon la présence d’un flot d’exécution. Le diagramme
d’état d’un objet selon le flot d’exécution est donné à la figure 5.3.

L’action RUN est celle qui fait passer un objet Inactif dans l’état Exécution. Quand un
objet est dans cet état, cela signifie qu’il est en cours d’exécution par le flot d’exécution.
Un objet dans l’état Exécution peut être modifié par le flot d’exécution qui nécessite
donc un accès exclusif à l’objet.

L’action STOP fait donc passer l’objet dans l’état Inactif. Dans cet état, le flot
d’exécution n’accède pas à l’objet.

Inactif Exécution

RUN

STOP

Fig. 5.3: Diagramme d’état d’un objet selon le flot d’exécution

Flot de reconfiguration. Lors de la réalisation d’une reconfiguration, un flot de
reconfiguration est créé pour reconfigurer les objets. Un flot de reconfiguration peut
réaliser deux types d’accès aux objets : des accès en lecture seule, c’est l’exploration et
des accès de modification, c’est la mutation. Nous définissions donc trois états pour un
objet selon le flot de reconfiguration. La figure 5.4 montre le diagramme d’état d’un
objet selon le flot de reconfiguration.

Inactif Exploration Mutation

ACQUIRE MARK

RELEASE UNMARK

Fig. 5.4: Diagramme d’état d’un objet selon le flot de reconfiguration
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L’état Inactif signifie que le flot de reconfiguration n’accède pas à l’objet. Les actions
ACQUIRE et RELEASE permettent au flot de reconfiguration d’obtenir et de libérer une
référence sur un objet. Ces actions font passer l’état de l’objet de Inactif à Exploration

et inversement. L’état Exploration signifie que le flot de reconfiguration accède à l’objet
en lecture. Le flot de reconfiguration ne peut pas modifier l’objet dans cet état ; mais
comme l’objet est accédé en lecture, l’objet ne peut pas être détruit.

Les actions MARK et UNMARK permettent au flot de reconfiguration de marquer
un objet qu’il va modifier. Ces actions font passer l’état de l’objet de l’état Exploration

à l’état Mutation et inversement. Lorsque l’objet est dans l’état Mutation, le flot de
reconfiguration peut modifier l’objet et donc il nécessite un accès exclusif à l’objet.

5.3.3 Exécution concurrente

La méthode d’exécution concurrente d’une reconfiguration consiste à laisser le flot de
reconfiguration s’exécuter en concurrence du flot d’exécution. Cependant pour garantir
la cohérence des objets de l’application, il faut assurer des accès exclusifs aux objets
lorsqu’ils sont modifiés.

Lors d’une exécution concurrente d’une reconfiguration, un flot d’exécution et un
flot de reconfiguration s’exécutent en même temps. Dans ce cas, l’état d’un objet est
le produit cartésien de l’état de l’objet selon le flot d’exécution par l’état de l’objet
selon le flot de reconfiguration. L’analyse de tous les états permet de détecter les cas de
conflit, et donc d’éliminer les transitions qui ne respectent les accès exclusifs à l’objet.

Pour désigner l’état produit, nous utilisons la notation sous forme d’une paire (A,
B), où la première composante A représente l’état de l’objet selon le flot d’exécution et
la deuxième composante B représente l’état de l’objet selon le flot de reconfiguration.
• (Inactif, Inactif) désigne le cas où aucun flot n’accède à l’objet. Il n’y a pas de

conflit.
• (Inactif, Exploration) désigne le cas où seul le flot de reconfiguration accède en

lecture à l’objet. Il n’y a pas de conflit.
• (Inactif, Mutation) désigne le cas où seul le flot de reconfiguration accède à l’objet

et qu’il le modifie. Il n’y a pas de conflit.
• (Exécution, Inactif) désigne le cas où seul le flot d’exécution accède à l’objet et le

modifie. Il n’y a pas de conflit.
• (Exécution, Exploration) désigne le cas où le flot de reconfiguration accède à l’objet en

lecture et que le flot d’exécution modifie l’objet. Il n’y a pas de conflit, cependant
l’objet ne doit pas être détruit tant que le flot de reconfiguration y accède.
• (Exécution, Mutation) désigne le cas où le flot d’exécution et le flot de reconfiguration

modifient tous les deux l’objet. Cet état est un état conflictuel car la modification
par deux flots peut créer des incohérences dans l’état de l’objet. Il faut donc
empêcher toute transition vers cet état.

La figure 5.5 montre le diagramme d’état résultant. Grâce à ce diagramme, nous
pouvons connaitre les actions à entreprendre pour pouvoir reconfigurer un objet. Ainsi,
lorsqu’un flot de reconfiguration veut modifier un objet, il doit d’abord y accéder en
lecture, c’est la phase d’exploration. Pour modifier l’objet, le flot de reconfiguration
doit le passer dans l’état (Inactif, Mutation). Deux cas sont alors possibles :
• L’objet est dans l’état (Inactif, Exploration), c’est-à-dire qu’il n’est pas en train
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Fig. 5.5: Diagramme d’état d’un objet pour une exécution concurrente

d’être exécuté. Il peut directement passer dans (Inactif, Mutation) à l’aide de l’action
MARK.
• L’objet est dans l’état (Exécution, Exploration), c’est-à-dire qu’il est en train d’être

exécuté. Le flot d’exécution doit d’abord être arrêté, c’est l’action STOP. L’objet
passe alors dans l’état (Inactif, Mutation) qui correspond au cas précédent.

La méthode d’exécution concurrente à l’avantage de permettre de reconfigurer des
objets de l’application sans nécessairement arrêter tout le calcul.

Cependant, la méthode d’exécution concurrente nécessite l’utilisation de primitives
de synchronisation pour garantir l’exclusion mutuelle entre le flot de reconfiguration et
le flot d’exécution.

5.3.4 Exécution coopérative

Le principe de l’exécution coopérative est de faire coopérer le flot d’exécution et le
flot de reconfiguration pour appliquer une reconfiguration. Le flot de reconfiguration
sera exécuté par le même processus léger qui exécute le flot d’exécution de l’application.
Le flot d’exécution doit préalablement être arrêté à l’aide de l’action STOP.

léger
Processus

Requête de
reconfiguration

Résultat de la
reconfiguration

Flot de reconfiguration Flot d’exécutionFlot d’exécution

Le flot d’exécution s’arrête

dès que possible dans

un état cohérent

reconfiguration

Début du flot de Fin du flot de

reconfiguration

Reprise des calculs

Fig. 5.6: Déroulement d’une reconfiguration par coopération
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Le figure 5.6 montre le déroulement d’une telle coopération.

1. Tout d’abord, un signal de reconfiguration est émis vers le flot d’exécution qui
exécute l’objet à explorer et à modifier.

2. Le flot d’exécution s’arrête alors dès que possible après avoir consolidé l’état de
l’application, c’est-à-dire qu’il termine les modifications en cours pour laisser un
état cohérent. Ceci correspond à la transition STOP du diagramme d’état.

3. Une fois que le flot d’exécution est arrêté, le processus léger exécute le flot de
reconfiguration, sans interruption jusqu’à la fin.

4. Lorsque le flot de reconfiguration est terminé, le processus léger reprend l’exécution
du flot d’exécution de l’application.

Avec une exécution coopérative, les flots d’exécution et de reconfiguration ne s’exécute
jamais en même temps. Dans ce cas, le diagramme d’état d’un objet correspond à celui
de la figure 5.7.

Exécution Inactif Exploration Mutation

RUN RELEASE UNMARK

STOP ACQUIRE MARK

Fig. 5.7: Diagramme d’état d’un objet pour exécution coopérative

L’avantage de la méthode d’exécution coopérative est qu’elle ne nécessite pas
d’utiliser des primitives de synchronisation pour garantir l’exclusion mutuelle sur les
objets reconfigurables, ce qui permet de réaliser une implémentation plus efficace. Dans
ce cas, la synchronisation est réalisée à un grain plus important par un mécanisme
de signalisation pour l’émission et la réception de la requête de reconfiguration et du
résultat.

5.3.5 Implémentation dans X-Kaapi.

X-Kaapi est une nouvelle implémentation du moteur d’exécution Kaapi qui vise
à expérimenter, entre autres7, le mécanisme d’exécution concurrente et coopérative.
Pour le moment, ce prototype ne fonctionne qu’en mémoire partagée et ne traite que
les reconfigurations « vol de travail ».

Exécution concurrente. L’implémentation actuelle du moteur d’exécution X-Kaa-
pi offre un mécanisme de reconfiguration par exécution concurrente. Pour cela, les
opérations de parcours et de manipulation de la structure de données qui représente
l’état de l’application utilisent différentes primitives de synchronisation selon le type du
R-objet considéré.
• Les R-objets de type K-thread et K-frame se comportent respectivement comme

des piles et des files. L’exclusion mutuelle dans ces objets est garantie à la fois

7L’objectif de X-Kaapi est aussi de construire un noyau de calcul pour des systèmes embarqués
qui soit petit et avec un surcoût à l’exécution minimum.
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par des algorithmes sans verrou (l’insertion ne nécessite pas de prise de verrou) et
par des verrous (en particulier pour la destruction).
• Les R-objets de type K-task sont sollicités beaucoup plus souvent que les autres

R-objets (K-thread et K-frame) puisqu’ils sont les briques élémentaires de re-
présentation du calcul. Les opérations de vérouillage et de dévérouillage étant
couteuses, l’exclusion mutuelle sur les K-tasks est réalisée à l’aide de l’instruction
compare-and-swap pour offrir de meilleures performances.

Lors d’une opération de vol de travail, lorsqu’un processeur est inactif, ce processeur
déclenche une opération de reconfiguration qui s’exécute en concurrence avec les autres
flots d’exécution du code applicatif ou de reconfiguration (dans le cas où d’autres
processeurs seraient inactifs). Une tâche est volée ou exécutée de manière unique grâce
à l’utilisation d’une opération de type compare-and-swap.

Exécution coopérative. L’objectif de cette exécution est de réduire au minimum
l’utilisation des primitives de synchronisation pour améliorer les performances. Ainsi
pour suivre le principe du travail d’abord (Work first principle), le code du flot d’exé-
cution qui exécute les tâches créées (contenu dans les K-frames) ne comporte aucune
synchronisation. Lors d’une opération de reconfiguration, ce flot est interrompu le temps
du traitement (vol d’une tâche) de l’opération de reconfiguration. Une synchronisation
existe entre les différents voleurs cherchant à voler un même flot d’exécution, mais
aucune n’existe lors de l’exécution des tâches.

Ce type d’exécution possède un surcoût extrêmement faible dans le cas de l’exécution
d’un programme parallèle à grain fin (le nombre d’instructions exécutées par une tâche
est très faible ; le nombre de tâches est en O(T1)) et ayant un chemin critique T∞ très
faible (T∞ ≪ T1) :
• dans ce type d’ordonnnancement, le nombre de requêtes de vol est petit (de l’ordre

de T∞) [39, 80] ;
• en cas de requête de vol, le temps d’attente avant que l’opération de reconfiguration

soit traitée est faible car la durée d’exécution des tâches est faible.
À l’inverse, l’implémentation par exécution concurrente dans X-Kaapi, une opération
compare-and-swap est ajoutée pour chaque tâche exécutée.

5.4 Gestion de la cohérence

Comme nous l’avons vu dans la section 3.3.3 page 55 du chapitre 3, la gestion de
la cohérence repose sur les trois points suivants : l’intégrité structurelle, la cohérence
mutuelle et les invariants de l’état [110, 6]. Nous présentons comment nous garantissons
ces trois aspects.

5.4.1 Intégrité structurelle

L’intégrité structurelle signifie que la structure de l’application doit respecter les
contraintes des interfaces des objets et la manière dont ils sont connectées.

Notre modèle de reconfiguration est basé sur le moteur d’exécution Kaapi et le
langage de programmation objet C++. De plus, les opérations de reconfiguration que
nous proposons s’expriment sous forme de manipulation du graphe de flot de données et
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de ses attributs. Nous reposons alors sur une interface de manipulation du graphe qui
permet de vérifier les modifications effectuées par la reconfiguration. Ces vérifications
sont alors effectuées de deux manières, statiquement à la compilation en imposant
un typage sur les objets constituant le graphe et ses attributs, et dynamiquement
à l’exécution à l’aide d’assertions insérées dans l’implémentation de l’interface de
manipulation du graphe.

5.4.2 Invariants de l’état

Un invariant de l’état de l’application est un prédicat portant sur tout ou une partie
du système. Il est exprimé en fonction des variables d’état de l’application. Il est, en
général, intrinsèquement lié à l’application.

Dans le moteur d’exécution Kaapi, la représentation abstraite de l’état de l’appli-
cation sous forme d’un graphe de flot de données permet d’exprimer facilement des
invariants de l’état. De plus, comme cela a été présenté à la section 4.2.4 du chapitre 4
(page 81), la sémantique d’exécution d’une application Athapascan est basée sur les
contraintes de précédence induites par le graphe de flot de données. Ceci permet de
définir un invariant de l’état pour les applications Athapascan qui est indépendant
d’une application donnée.

Ainsi, nous définissons l’invariant de sémantique Athapascan qui signifie que
la sémantique Athapascan de l’application ne doit pas être modifiée. Cet invariant
s’exprime en utilisant l’ordre d’exécution des tâches induit par le graphe de flot de
données de l’application : l’ordre d’exécution des tâches après la reconfiguration doit
être compatible avec l’ordre d’exécution des tâches avant la reconfiguration.

Notations
• Soit une reconfiguration R.
• Soit G (respectivement G′) le graphe de flot de données représentant l’état de

l’application avant (respectivement après) la reconfiguration R.
• Soit ≺G (respectivement ≺G′) l’ordre partiel d’exécution des tâches défini par le

graphe G (respectivement G′).

Définition 9 On dit que la reconfiguration R préserve l’invariant de sémantique

Athapascan d’une application si l’ordre ≺G′ est compatible avec l’ordre ≺G, c’est-à-
dire si pour tout couple d’éléments (a, b), (a ≺G b)⇒ (a ≺G′ b).

Les reconfigurations comme le vol de travail ou le partitionnement statique conservent
l’invariant de sémantique Athapascan quelle que soit l’application considérée. Nous
l’avons montré dans les sections 4.3.2.2 et 4.3.2.3.

Nous les désignons comme les reconfigurations indépendantes de l’application. In-
versement, d’autres reconfigurations ne préservent cet invariant que sous certaines
hypothèses qui sont liées à l’application. Ces reconfigurations ne sont donc valides que
pour une application donnée. Nous les désignons comme les reconfigurations dépendantes
de l’application.
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5.4.3 Cohérence mutuelle

Des problèmes de cohérence entre deux objets peuvent apparaitre à partir du moment
où ils communiquent, c’est-à-dire qu’ils échangent des informations. Nous considérons
alors que deux objets sont dans un état mutuellement cohérent si les deux objets ont
la même vision de toutes les communications qu’ils ont échangées, c’est-à-dire que
tout message émis par un objet apparait reçu par l’autre objet et inversement. Pour
cela, il faut noter que cette partie de l’état doit être accessible, c’est-à-dire que cette
information doit apparaitre dans la structure de données représentant l’application.

Telle qu’elle est définie, la notion de cohérence mutuelle n’a de sens que pour
deux objets qui sont potentiellement modifiés par deux flots d’exécution différents.
Cela correspond aux reconfigurations que nous avons qualifiées de distribuées dans la
section 5.1.1.

En effet, comme nous l’avons expliqué dans la section 2.4.1 du chapitre 2 (page 32),
l’état d’une application est constitué deux éléments : l’état local des processus et l’état
des canaux de communication. L’état local d’un processus est accessible localement sur
chaque processus tandis que l’état des canaux de communication n’est pas accessible
directement. Ainsi, la cause de l’incohérence d’un état observé est due au fait que l’état
observé est incomplet puisqu’il manque les informations liées aux messages en transit.

Dans le cas de la sauvegarde coordonnée pour la tolérance aux fautes, l’état des
canaux de communication n’a pas besoin d’être accessible directement, mais il suffit
qu’il puisse être identifié. C’est par exemple le cas de la sauvegarde coordonnée non
bloquante de Chandy et Lamport qui se déroule en deux temps [49] : d’abord l’état
local du processus est sauvegardé, puis les messages des canaux qui sont reçus depuis la
sauvegarde locale et jusqu’à la reception du « message marqueur » sont sauvegardés.
Ces « messages marqueurs » sont chargés de pousser les messages en transit. Cette
méthode permet de faire remonter l’état des canaux au niveau applicatif. Mais il faut
remarquer que l’état du processus et l’état des canaux de communication ne sont pas
accessibles simultanément. C’est la reconstruction de l’état à la reprise qui permet
d’avoir l’état cohérent.

Dans le cas de la reconfiguration, il est nécessaire de pouvoir, à un instant donné,
accéder à un état cohérent (sans devoir le reconstruire comme dans une reprise). D’où la
nécessité de prendre en compte les deux aspects cohérence et accessibilité de l’état.
Le problème de la cohérence mutuelle pour la reconfiguration s’apparente donc plus au
cas de la sauvegarde coordonnée bloquante, pour laquelle la sauvegarde ne s’effectue
qu’en un temps, puisque l’on attend que l’état des canaux de communication soit nul
avant de sauvegarder l’état local d’un processus.

Nous appelons point local de reconfiguration le moment, dans l’exécution d’un
processus de l’application, où l’état local du processus est observé pour effectuer la
reconfiguration. Durant toute la durée de la reconfiguration, les flots d’exécution du
processus sont arrêtés. L’état local du processus n’est donc pas modifié autrement
que par l’opération de reconfiguration. Le point local de reconfiguration apparait donc
comme ponctuel du point de vue des flots d’exécution. De même, le point global
de reconfiguration désigne l’ensemble des points locaux de reconfiguration de tous
les processus participant à la reconfiguration. Sur une échelle de temps absolu, les
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points locaux qui composent le point global de reconfiguration ne s’exécutent pas
simultanément. Cependant, ce point global de reconfiguration apparait comme ponctuel
du point de vue de l’exécution de l’application car les processus ne possèdent pas
d’horloge globale.

Processus 2

Processus 1

Point global de
reconfiguration B

Point global de
reconfiguration A

Point global de
reconfiguration C

État directement
accessible

État globalement
cohérent OUI NON

OUI

OUI

NON OUI

Point local de reconfiguration

Message
Point global de reconfiguration

Fig. 5.8: Cohérence et accessibilité des points globaux de reconfiguration

La figure 5.8 montre plusieurs exemples de coupe de l’état qui représentent des points
globaux de reconfiguration. Le point global de reconfiguration C n’est pas cohérent
puisqu’il représente un état qui ne peut pas se produire dans une exécution normale
(le message apparait comme reçu mais non émis). Le point global de reconfiguration B
est cohérent (il représente un état qui peut se produire lors d’une exécution normale),
cependant l’état des canaux de communication n’est pas vide (un message traverse
la ligne de coupe du point global). Enfin, le point global A représente un état à la
fois cohérent et accessible directement. Il peut donc être utilisé pour appliquer une
reconfiguration qui requiert une cohérence mutuelle entre les objets visés.

Le problème de la cohérence mutuelle d’un ensemble d’objets est similaire à celui
de la sauvegarde coordonnée bloquante pour la tolérance aux fautes. La différence
ici est que nous ne nous intéressons pas forcément à l’application tout entière, mais
éventuellement à un sous-ensemble d’objets qui composent l’application. Donc, pour
observer un ensemble d’objets dans un état mutuellement cohérent, il faut rendre
accessible l’état des canaux de communication entre ces objets. Pour rendre accessible
l’état d’un canal de communication, la sauvegarde coordonnée bloquante vide ce canal
de communication à l’aide d’un « message marqueur » spécifique chargé de pousser les
messages en transit. Ceci nécessite, bien entendu, que les canaux de communication
soient FIFO.

Remarquons que rendre l’état des canaux de communication accessible ne se limite
pas à vider les canaux de communication. Il faut également que l’émission et la réception
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du message apparaissent dans ce qui est considéré comme l’état de l’application. Par
exemple, si l’état de l’application est considéré comme l’espace mémoire utilisateur
alloué par l’application, il faut inscrire l’émission et la réception des messages dans
l’espace mémoire utilisateur (puisqu’on n’inclut pas les informations du noyau dans
l’état de l’application). Dans le cas du moteur d’exécution Kaapi où l’état est représenté
par un graphe de flot de données, l’état des émissions et des réceptions de messages est
accessible dans le graphe sous forme de tâches et d’attributs d’état sur les tâches.

5.4.3.1 Formalisation

Nous considérons le système composé par les processus qui contiennent les objets
visés par la reconfiguration et les canaux de communication entre ces processus.

Processus j

Processus i

m1

m2

m3

m4

E1
i Di Fi E3

i R2
i R4

i

R1
j E2

j R3
j Dj Fj E4

j

Temps sur j

Temps sur i

Fig. 5.9: Modèle pour la gestion de la cohérence mutuelle d’une reconfiguration

Notations Pour une reconfiguration donnée et pour le point global de reconfiguration
PG choisi, nous utilisons les notations suivantes.
• Le point local de reconfiguration sur le processus Pi est noté PLi.
• Les dates Di et Fi correspondent respectivement à la date de début et de fin du

point local de reconfiguration du processus Pi.
• Pour tout messagemk de Pi vers Pj, nous notons Eki la date d’émission du message
mk sur le processus Pi et Rkj la date de réception du message mk sur le processus
Pj.

Ces notations sont illustrées sur la figure 5.9.

Hypothèses. Nous ajoutons deux hypothèses supplémentaires à notre problème.
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• Tout d’abord, nous précisons que le début d’un point local de reconfiguration
précède toujours la fin du point local de reconfiguration. Pour tout processus Pi,

Di < Fi

• De plus, durant l’exécution d’une reconfiguration, la cible est isolée. C’est-à-dire
qu’elle ne reçoit et n’émet aucun message. Nous l’exprimons formellement de la
manière suivante. Pour tout message mk de Pi vers Pj,

Eki < Di ∨ Fi < E
k
i et Rkj < Dj ∨ Fj < R

k
j

Nous appelons cette propriété l’isolation des points locaux de reconfiguration.
L’isolation permet de considérer que le point de reconfiguration est ponctuel
vis-à-vis des communications puisque toute communication est traitée soit avant,
soit après le point de reconfiguration.

Comme nous l’avons dit à la définition 1 page 32, selon Chandy et Lamport, un état
cohérent est un état dans lequel, si l’état d’un processus reflète la réception d’un message,
alors l’état du processus qui a émis le message doit reflèter l’émission du message [49].
Nous définissons donc la propriété de cohérence globale dans notre formalisme.

Définition 10 L’état d’un point global de reconfiguration est globalement cohérent

selon Chandy et Lamport [49] si et seulement si pour tout message mk de Pi vers Pj,

Rkj < Dj ⇒ E
k
i < Di

De même, nous définissons la propriété d’accessibilité de l’état qui doit garantir
qu’aucun message n’est présent dans les canaux de communication dans la coupe d’état
correspondant au point global de reconfiguration. Nous l’exprimons en disant que si un
message a été émis avant le point local sur le processus émetteur, alors il doit être reçu
avant le point local sur le processus récepteur.

Définition 11 L’état d’un point global de reconfiguration est accessible si et seulement
si pour tout message mk de Pi vers Pj,

Eki < Di ⇒ R
k
j < Dj

Enfin, nous définissons la cohérence mutuelle qui doit assurer que tous les processus
ont la même vision de toutes les communications qu’ils ont échangées.

Définition 12 L’état d’un point global de reconfiguration est mutuellement cohé-

rent si et seulement si pour tout message mk de Pi vers Pj,

Eki < Di ⇔ R
k
j < Dj et Fi < Eki ⇔ Fj < R

k
j

La proposition suivante se montre alors trivialement à partir des définitions 10, 11,
12 et de l’hypothèse d’isolation.

Proposition 5 Sous l’hypothèse d’isolation, l’état d’un point global de reconfigura-
tion est mutuellement cohérent si et seulement si cet état est globalement cohérent et
accessible.
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5.4.3.2 Contraintes de cohérence mutuelle

D’après la section précédente, pour construire un protocole de gestion de la cohérence
mutuelle, il est nécessaire et suffisant de vérifier les trois contraintes : isolation, cohérence
et accessibilité.

Isolation. Elle doit garantir que pendant la phase de mutation, les objets visés par la
reconfiguration ne seront pas modifiés, excepté par le flot de reconfiguration. Elle doit
être assuré vis-à-vis des flots de d’exécution et également des communications (que ce soit
les communications en provenance des autres objets visés par la reconfiguration, ou bien
celles en provenance d’objets de l’application qui ne participent pas à la reconfiguration).

L’isolation est réalisée grâce aux méthodes de gestion des accès concurrents qui
permettent d’éviter qu’un objet en cours de mutation soit modifié par un autre flot que
le flot de reconfiguration qui effectue la mutation.

Accessibilité. D’après la définition 11, l’accessibilité signifie que si un message a été
émis avant le point local de reconfiguration sur un autre processus, alors le point local
de reconfiguration doit être après la réception de ce message sur le processus récepteur.
Concrètement, cela signifie qu’avant d’effectuer la mutation (qui correspond au point
local), il faut s’assurer que les canaux de communication ne contiennent pas de messages
qui ont été émis avant un point local sur un autre processus. L’accessibilité est donc
garantie en utilisant des techniques de vidage des canaux de communication (supposés
FIFO).

L’opération de vidage peut être réalisée de plusieurs manières selon le type du
canal de communication. Généralement, les canaux considérés sont de réseaux de
communication entre des machines distantes qui reposent sur des protocoles FIFO
(First In First Out). Dans ce cas, l’opération de vidage du canal de communication est
effectuée en émettant un « message marqueur » à travers le canal de communication.
Ce message marqueur est le dernier message émis sur le canal avant le point local de
reconfiguration. À la réception de ce message marqueur, grâce à la propriété FIFO du
canal et si aucun autre message n’a été émis après le message marqueur, alors le canal
de communication est vide.

Sans connaissance particulière sur le schéma de communication de l’application, le
vidage des canaux de communication entre n processus est réalisé classiquement de la
manière suivante. Chacun des n processus émet à chacun des n− 1 autres processus le
message marqueur. Lorsqu’un processus a reçu n− 1 messages marqueurs, alors il est
sûr que tous les canaux de communication qui lui délivrent des messages sont vides.
Cette méthode requiert l’émission de O(n2) messages marqueurs pour vider les canaux
de communication entre n processus.

Cohérence. Le but de la cohérence est d’empêcher que le point global constitue
un état impossible à l’exécution vis-à-vis des messages (puisque les points locaux ne
peuvent pas s’exécuter exactement en même temps), c’est-à-dire un état inatteignable
dans une exécution normale. Grâce à l’hypothèse d’isolation, la définition 10 de la
cohérence globale est équivalente à la proposition suivante.
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Pour tout message mk de Pi vers Pj,

Fi < E
k
i ⇒ Fj < R

k
j

Nous exprimons cette proposition en disant que pour garantir la cohérence, il faut
que tout message émis après le point local sur un processus soit reçu après le point
local sur le processus récepteur.

Deux approches sont possibles pour vérifier cette contrainte : bloquer les messages à
l’émission ou à la réception.
• Bloquer les messages à l’émission consiste à bloquer l’exécution des objets cibles

tant que tous les objets cibles n’ont pas fini leur point local de reconfiguration.
• Bloquer les messages à la réception consiste à ne pas délivrer les messages des

canaux de communication à partir du moment où le message marqueur à été reçu
et tant que le point local de reconfiguration n’est pas terminé. Ceci est réalisé sur
le processus récepteur en conservant ces messages en mémoire sans les délivrer à
l’application.

5.4.3.3 Cohérence mutuelle dans Kaapi

Nous proposons pour Kaapi, une interface de gestion de la cohérence qui permet
au programmeur d’une reconfiguration de demander un état mutuellement cohérent
entre l’ensemble des objets cibles de la reconfiguration. Le protocole de coordination
est alors réalisé par le moteur d’exécution Kaapi. Cette interface se compose des deux
appels suivants.
• acquire_mutual_consistency() indique l’entrée dans le point local de reconfi-

guration d’un processus. C’est un appel bloquant dont le but est de coordonner les
processus qui participent à la reconfiguration pour garantir un état mutuellement
cohérent entre les objets cibles de la reconfiguration. Nous rappelons que l’étape
de réalisation d’une reconfiguration se comporte comme un programme SPMD.
Cet appel doit être réalisé dans chaque flot de reconfiguration d’une même recon-
figuration pendant l’étape de réalisation. Au moment de l’appel, l’ensemble des
processus impliqués est déjà connu puisqu’il s’agit de la cible de la reconfiguration.
Sur un processus donné, l’appel bloque le flot de reconfiguration jusqu’à ce que la
cohérence mutuelle soit assurée sur ce processus.
• release_mutual_consistency() indique la sortie du point local de reconfigu-

ration d’un processus. C’est un appel bloquant qui permet d’indiquer que la
reconfiguration est terminée, ou au moins que les modifications nécessitant un
état mutuellement cohérent sont terminées.

Cette interface permet au programmeur d’une reconfiguration de spécifier, s’il en a
besoin, la contrainte de cohérence mutuelle.

Le protocole de gestion de la cohérence de Kaapi est déclenché lors de l’appel à la
fonction acquire_mutual_consistency(). Nous proposons dans Kaapi un protocole
de gestion de la cohérence mutuelle qui se base sur la connaissance de l’application pour
coordonner les processus cibles.

Le protocole implementé dans Kaapi se déroule en deux étapes. La première étape
assure l’accessibilité de l’état en arrêtant les flots d’exécution et en vidant les canaux
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de communication. La seconde étape assure la cohérence en bloquant les messages
à l’émission. Quant à l’isolation, elle est gérée par les techniques décrites dans la
section 5.3.

Réalisation de l’accessibilité. Dans Kaapi, l’accessibilité est réalisée en vidant les
canaux de communication. Pour vider les canaux de communication, nous proposons
une méthode qui réduit le nombre de messages émis par rapport à la méthode classique
où chaque processus émet un message à tous les autres processus. Notre méthode est
basée sur la connaissance que nous avons de l’application grâce au graphe de flot de
données qui représente le futur de l’exécution. Le principe est de determiner, grâce
aux informations contenues dans le graphe de flot de données, les communications qui
sont potentiellement en cours et ainsi de ne vider que les canaux de communication
potentiellement non vides.

Étant donné que la cohérence mutuelle se fait vis-à-vis de l’état de l’application, nous
ne prenons en compte que les communications qui influencent l’état de l’application.
Ainsi tous les messages, comme les messages de contrôle utilisés par le moteur d’exécution
Kaapi ne sont pas concernés.

Les informations sur les communications sont présentées dans le graphe de flot de
données de plusieurs manières.
• L’émission de données apparait sous la forme d’une tâche de communication

Broadcast sur l’émetteur et par une tâche de communication Receive sur le
récepteur.
• Un vol de travail apparait sous forme d’un attribut d’état Volée sur la tâche volée

sur la victime et par un attribut de vol sur le K-processeur sur le processus voleur.
• Un retour de vol (i.e. l’émission du résultat après l’exécution d’une tâche volée)

est identifié par une tâche Signal chargée de retourner le résultat sur le voleur et
par la tâche dans l’état volée sur la victime.

Ces communications sont donc les seules qui sont prises en compte dans ce protocole
optimisé.

Nous devons également remarquer que la representation abstraite de l’application
dans Kaapi nous permet d’accéder au futur de l’exécution, mais pas au passé de
l’exécution car une fois exécutée par Kaapi, la tâche est détruite pour libérer la
mémoire. Cela signifie qu’il n’est pas possible de savoir si un message vient d’être émis.
Par contre, il est possible d’identifier ceux qui n’ont pas encore été reçus.

Sur un processus Pi, l’exécution de l’appel acquire_mutual_consistency() pro-
voque l’arrêt des flots d’exécution du processus. Ensuite, l’analyse du graphe de flot
de données du processus Pi permet de déterminer l’ensemble des communications qui
peuvent être reçues et donc l’ensemble des émetteurs potentiels, noté E. Ce sont les
canaux de communication entre les émetteurs potentiels et ce processus qui doivent
être vidés.

Pour cela, le vidage des canaux de communication est fait par un aller-retour de
messages (PING-PONG). Si le processus Pi a comme émetteur potentiel le processus Pj,
alors Pi émet le message PING à Pj. Quand le processus Pj reçoit le message PING en
provenance de Pi, cela lui indique que Pi est un de ses processus récepteurs.

Sur réception d’un message PING et si le processus Pj a arrêté ses flots d’exécution
alors il émet en retour le message PONG à Pi. S’il n’a pas arrêté ses flots d’exécution,
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Pj enregistre le message et le message PONG ne sera émis vers Pi qu’après l’arrêt des
flots d’exécution. Ceci permet de garantir que plus aucun message lié au calcul ne
sera émis après le message PONG par l’exécution de tâches de communication. À la
réception du message PONG en provenance de Pj, le processus Pi est assuré que le
processus Pj est arrêté (donc il n’enverra plus de nouveau message) et que les messages
émis précédemment ont été reçus. Le message PONG joue ici le rôle du « message
marqueur ». L’appel à la fonction acquire_mutual_consistency() se termine lorsque
tous les canaux sont vides.

Le nombre de messages échangés à cette étape dépend du nombre de voisins de chaque
processus. Si nous notons n le nombre de processus participant à la reconfiguration et v
le nombre moyen de voisins des processus, alors le nombre de messages émis pour le
vidage des canaux de communication est en O(n× v).

Réalisation de la cohérence. Dans l’implémentation actuelle de Kaapi, la cohé-
rence est assurée en bloquant les messages à l’émission. Plus précisément, le principe est
de bloquer, jusqu’à la fin du point local de reconfiguration, les flots d’exécution distants
qui peuvent générer l’émission de messages . Ceci est réalisé de la manière suivante.

Les flots d’exécution des processus cibles ont été arrêtés au début de l’appel à
acquire_mutual_consistency(). Nous réalisons la cohérence grâce à un bloquage à
l’émission, c’est-à-dire que chaque processus ne doit pas émettre de message vers un
processus qui n’a pas fini son point local de reconfiguration. Pour cela, nous utilisons
un message CONT qui permet à un processus de signaler à ses voisins (i.e. l’ensemble
des émetteurs potentiels calculé lors de l’étape de vidage de canaux de communication)
qu’il est sorti de son point local de reconfiguration.

Pour indiquer la fin du point local de reconfiguration, le flot de reconfiguration
appelle la fonction release_mutual_consistency(). Avant de redémarrer ses flots
d’exécution, le processus attend de recevoir tous les messages CONT ; il doit en recevoir
autant qu’il a reçu de messages PING. Ensuite, il peut redémarrer les flots d’exécution
et sortir de l’appel à la fonction release_mutual_consistency().

Pour vérifier la validité de ce protocole, nous nous basons sur les points suivants.
• La réception d’un message CONT signifie que l’émetteur a fini son point local de

reconfiguration.
• Avant de redémarrer ses flots d’exécution, un processus attend de recevoir un

message CONT de la part de tous les processus vers lesquels il peut émettre des
messages.
• Un processus ne peut émettre des messages applicatifs qu’après avoir redémarré

ses flots d’exécution.
Ce protocole garantit donc qu’aucun message émis après un point local de reconfiguration
sur un processus ne sera reçu avant la fin d’un point local de reconfiguration sur un
autre processus. Il permet donc d’assurer la cohérence globale.

La figure 5.10 montre l’algorithme complet qui comprend le vidage des canaux de
communication et le bloquage des messages à l’émission. Le protocole est illustré sur
la figure 5.11. Sur cette figure, la reconfiguration s’applique sur les processus 1, 2 et 3.
Le processus 1 peut recevoir des communications en provenance de 2 uniquement ; le
processus 2 peut recevoir des communications de 1 et 3 ; tandis que le processus 3 peut
recevoir des communications de 2 uniquement.
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A – Fonction acquire_mutual_consistency() :
A.1 – Arrêt des calculs

A.1.1 – Arrêt des flots d’exécution
A.1.2 – Réémettre un message PONG à Pj pour chaque message PING reçu de Pj et

mis en attente en C.3

A.2 – Vidage des canaux de communication
A.2.1 – Initialisation de NPING , le compteur de messages reçus, à 0
A.2.2 – Calcul de E = {processus émetteurs potentiels}
A.2.3 – ∀k ∈ E, émission du message PING à Pk
A.2.4 – ∀k ∈ E, attente du message PONG de Pk

B – Fonction release_mutual_consistency() :
B.1 – Signalisation de la fin du point local de reconfiguration

B.1.1 – ∀k ∈ E, émission du message CONT à Pk
B.1.2 – Attente de NPING messages CONT

B.2 – Redémarrage des flots d’exécution

C – Sur réception d’un message PING :
C.1 – Incrémenter NPING

C.2 – Si les calculs sont arrêtés, réémettre PONG vers l’émetteur
C.3 – Sinon mettre le message en attente jusqu’à l’exécution de l’étape A.1.2

D – Sur réception d’un message PONG :
D.1 – Si le nombre de messages PONG reçus est Card(E), alors réveiller le processus

bloqué en 1.2.4

E – Sur réception d’un message CONT :
E.1 – Si le nombre de messages CONT reçus est NPING, alors réveiller le processus bloqué

en B.1.2

Fig. 5.10: Algorithme de cohérence mutuelle sur les processus cibles

5.5 Conclusion

Dans ce chapitre, nous avons présenté des mécanismes pour faciliter la reconfiguration
d’applications parallèles distribuées. Ce chapitre a abordé ce problème à travers la
gestion des accès concurrents et la gestion de la cohérence.

La gestion des accès concurrents est un aspect peu étudié dans la littérature du point
de vue général des reconfigurations. Notre contribution a porté sur une modélisation des
problèmes de concurrence. Nous avons proposé deux méthodes d’exécution. L’exécution
concurrente permet d’exécuter une reconfiguration en concurrence des flots d’exécution
si elle cible des objets inactifs. L’exécution coopérative préempte un flot d’exécution
et délègue l’exécution de la reconfiguration au processus léger qui exécutait le flot
d’exécution de l’application. Cette dernière approche permet une implémentation sans
primitive de synchronisation.

La gestion de la cohérence, en particulier la gestion de la cohérence mutuelle, est
un problème largement abordé dans la littérature. Pour résoudre ce problème, nous
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Fig. 5.11: Protocole de cohérence mutuelle dans Kaapi
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Conclusion 5.5

avons fait le rapprochement avec les protocoles de tolérance aux fautes par sauvegarde
coordonnée bloquante ou non bloquante qui utilisent la notion de cohérence definie par
Chandy et Lamport. Nous avons défini une propriété supplémentaire, l’accessibilité,
qui associée à la cohérence selon Chandy et Lamport, permet de garantir la cohérence
mutuelle d’un ensemble de processus pour la reconfiguration.

Enfin, nous avons proposé pour chacun de ces aspects une implémentation dans le
moteur d’exécution Kaapi.
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6.1 Introduction

Dans ce chapitre, nous nous intéressons à évaluer le cout de réalisation des méca-
nismes de reconfiguration que nous avons proposés au chapitre précédent.

Dans la section 6.2 de ce chapitre, nous effectuons la comparaison entre l’exécution
concurrente et l’exécution coopérative d’une reconfiguration. Pour cela, nous nous
attacherons uniquement à la reconfiguration « vol de travail » à travers le logiciel
X-Kaapi.

Dans la section 6.3, nous mesurons le cout du mécanisme permettant de garantir
la cohérence mutuelle dans Kaapi. Cette brique de base est importante. Elle est
notamment utilisée avec les protocoles de tolérance aux fautes qui seront vus dans la
partie suivante.

6.2 Vol de travail concurrent et coopératif

Nous comparons tout d’abord les implémentations concurrente et coopérative du
vol de travail sur une application simple. Ensuite, nous utilisons l’implémentation
coopérative du vol de travail pour se comparer à Cilk et TBB.

6.2.1 Comparaison des deux approches

Nous comparons deux implémentations du vol de travail au sein du logiciel X-Kaa-
pi. La première est basée sur le principe de l’exécution concurrente présentée dans la
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section 5.3.3 ; la seconde utilise la méthode d’exécution coopérative exposée dans la
section 5.3.4.

L’opération de vol de travail pour le modèle de programmation Kaapi est présentée
dans la section 4.3.2.2. Le logiciel X-Kaapi ne fonctionne (pour le moment) qu’en
mémoire partagée ; le vol de travail proposé n’opère donc qu’entre des objets locaux. La
reconfiguration « vol de travail » est déclenchée lorsqu’un K-processeur devient inactif.
Dans ces implémentations, la cible du vol de travail est un K-thread, appelé victime ;
l’unique R-objet modifié (ou marqué) est une K-task, dénommée comme la tâche volée.

Il faut remarquer que l’implémentation de la reconfiguration « vol de travail » reste la
même dans les deux cas. Seule l’implémentation du mécanisme de reconfiguration change
entre la version concurrente et la version coopérative. Comme cela a été expliqué dans
les sections 5.3.3 et 5.3.4, la version concurrente utilise des primitives de synchronisation
(verrou, instruction compare-and-swap) pour garantir l’exclusion mutuelle entre le flot
de reconfiguration et le flot d’exécution qui sont chacun exécutés par un processus léger
qui accèdent de manière concurrente aux K-threads. Quant à la version coopérative,
elle permet au processus léger qui exécute le flot d’exécution de s’interrompre pour
exécuter le flot de reconfiguration, ce qui nécessite un certain délai.

L’objectif de ces premières expériences est de mesurer le cout de ces deux approches
sur un problème simple, le calcul du Ne terme de la suite de Fibonacci. Cette application
est une implémentation naïve de l’algorithme récursif de la suite de Fibonnaci, similaire
à celle présentée à la figure 4.2b.

Cette application nous permet pour une même instance, c’est-à-dire pour N fixé, de
faire varier facilement le nombre de tâches créées. Ceci est réalisé en modifiant le seuil,
noté s, en dessous duquel une tâche de calcul calcule son résultat séquentiellement au
lieu de créer de nouvelles tâches pour le calculer en parallèle.

Un seuil s petit correspond à la création de beaucoup de tâches à grain fin ; tandis
qu’un seuil s grand implique la création de peu de tâches à gros grain. Grâce à cela, nous
pouvons observer le cout induit par la gestion des tâches des mécanismes d’exécution
concurrent et coopératif.

Toutes les expériences de cette section ont été réalisées sur une machine à 8 cœurs
de la grappe Digitalis de Grenoble de Grid’5000. Les temps reportés sont la moyenne
d’au moins 10 mesures. Les écarts types des mesures sont généralement très faibles, de
l’ordre de 1 %.

6.2.1.1 À grain fin

Dans cette expérience, nous cherchons essentiellement à mesurer le cout induit pour
une application en créant un grand nombre de tâches à grain fin : le calcul du Ne nombre
de Fibonacci s’y prête particulièrement bien car les instructions arithmétiques exécutées
par les tâches sont très faibles.

Pour l’instance considérée, N = 45, le temps moyen d’exécution du programme
séquentiel est 7,197 secondes. Les deux versions parallèles, concurrente et coopérative,
utilisent un seuil d’arrêt de découpe s = 5 en deçà duquel le code séquentiel est exécuté1.
Avec ce seuil, le nombre total de tâches exécutées est 3 467 955 496.

1Ce seuil d’arrêt est le même que celui pris par Cilk dans [39].
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Fig. 6.1: Temps d’exécution de Fibonacci (N = 45, s = 5) pour les versions concurrente
et coopérative de la reconfiguration « vol de travail »
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Fig. 6.2: Surcout de gestion du parallélisme n× Tn − Tseq avec Fibonacci à grain fin
(N = 45, s = 5) pour les versions concurrente et coopérative de la reconfiguration « vol
de travail »
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La figure 6.1 montre les temps obtenus en faisant varier le nombre de cœurs. Le
temps sur 1 cœur de la version concurrente est de 53,440 secondes ; cette version est 7,43
fois plus lente que la version séquentielle. Quant à la version coopérative, elle s’exécute
en 10,796 secondes sur 1 cœur ; elle est 4,28 fois plus lente que le programme séquentiel.

Le figure 6.2 montre le surcout dû à la gestion des tâches de l’application lors de
l’exécution. Ce surcout est calculé de la manière suivante : (n×Tn−T1) en prenant n le
nombre de cœurs. Le surcout est quasiment constant quel que soit le nombre de cœurs.

Le surcout par tâche (n × Tn − T1)/#tasks est de 1, 33 × 10−8 seconde pour la
version concurrente et de 6, 80× 10−9 seconde pour la version coopérative. Bien que ces
surcouts soient faibles, du fait du grand nombre de tâches, leur accumulation devient
importante.

Cette différence est due à la manière d’exécuter les tâches. L’implémentation concur-
rente utilise un compare-and-swap pour exécuter chaque tâche afin d’éviter les conflits
lors des accès concurrents. L’implémentation coopérative garantit qu’il n’y a pas d’accès
concurrent sur les tâches, l’utilisation de compare-and-swap est donc inutile.

Notons également que ces deux versions possèdent une bonne accélération relative
sur 8 cœurs : 7, 85 pour la version concurrente et 7, 60 pour la version coopérative.

6.2.1.2 À gros grain
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Fig. 6.3: Temps d’exécution de Fibonacci (N = 45, s = 40) pour les versions concurrente
et coopérative de la reconfiguration « vol de travail »

Pour ces nouvelles mesures, nous augmentons le grain de l’application en prenant un
seuil d’arrêt s de 40. De ce cas, le nombre de tâches exécutées est 168. Les figures 6.3
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Fig. 6.4: Surcout de gestion du parallélisme n× Tn − Tseq avec Fibonacci à grain fin
(N = 45, s = 40) pour les versions concurrente et coopérative de la reconfiguration
« vol de travail »

et 6.4 montrent respectivement le temps d’exécution et le surcout associé pour le calcul
de Fibonacci N = 45.

Nous remarquons que, à gros grain, la version coopérative est moins efficace que la
version concurrente, notamment lorsque le nombre de cœurs utilisés augmente.

En effet, cette version coopérative souffre du manque de réactivité aux requêtes
de vols. Le flot d’exécution ne peut coopérer et traiter les requêtes de vol qu’entre
l’exécution de deux taches. Lorsque le grain des tâches devient gros, cela affecte le
temps de calcul puisqu’il y a un délai important entre le moment de la requête de vol
(instanciation de la reconfiguration) et le traitement de la requête (réalisation de la
reconfiguration).

La version concurrente du vol de travail ne souffre pas de ce problème puisque, grâce
à l’utilisation de primitives de synchronisation, le K-thread voleur (par l’intermédiaire
du flot de reconfiguration) peut accéder en concurrence aux tâches du K-thread vic-
time. Dans ce cas, la réponse à la requête de vol est plus rapide. De plus, le surcout
lié à l’utilisation des compare-and-swap lors de l’exécution de chaque tâche devient
négligeable face au temps d’exécution des tâches.

Sur la figure 6.4, nous voyons que le surcout par rapport à l’exécution séquentielle
est proportionnel au nombre de processeurs utilisés. En effet, les voleurs sont plus
nombreux. Cependant, à cause du gros grain des tâches, le délai de réponse à une
requête de vol est important. En conséquence, les processeurs inactifs (et donc voleurs)
restent inactifs longtemps.
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Cette expérience a mis en évidence le fait qu’un grain trop grand présente des
inconvénients.
• Il augmente le chemin critique T∞ et diminue le degré de parallélisme utilisable

dans le cadre des algorithmes à base de vol de travail [39].
• De plus, dans le cas du vol coopératif, le délai de réponse aux requêtes de vol est

important.

6.2.2 Comparaison avec Cilk et TBB

Comme le vol de travail est également utilisé dans les bibliothèques Cilk [39]
et TBB [99], nous avons voulu comparer leurs performances avec le vol de travail
coopératif de X-Kaapi. Pour cette comparaison, nous utilisons les algorithmes merge,
min_element et transform de la STL (Standard Template Library) sur des tableaux
de type double. Ces expériences ont été réalisées grâce à l’aide de Daouda Traoré et de
Christophe Laferrière et ont abouti à la publication de [31].

L’opération arithmétique effectuée par l’algorithme transform est l’opération *=2.
Les codes sont tous écrits en C++ et compilés avec la version 4.3 du compilateur g++

avec option d’optimisation -O2. La machine d’expérience est une architecture multicœur
NUMA composée de 8 processeurs dual-cœurs AMD 875 à 2.2 Ghz. À chaque processeur
est associé un banc mémoire de 4 Go, soit 32 Go de mémoire au total. Chaque expérience
qui utilise k cœurs (k = 1 ou 8) est réalisée en figeant chaque thread noyau POSIX sur
un des k cœurs utilisés.

La stratégie d’allocation des tableaux est contrôlée en utilisant numactl afin d’allouer
chaque page des tableaux sur chacun des k bancs mémoire utilisés de manière cyclique
(stratégie --interleave de numactl).

Chaque valeur tracée correspond à la moyenne des mesures de 30 exécutions du
programme avec les mêmes entrées. L’écart type des valeurs est dans tous les cas très
petit (de deux ordres de grandeur plus petit que les valeurs). Le programme répète
plusieurs fois le même calcul sur les mêmes données. La première mesure est ignorée
pour éviter les effets liés aux défauts de cache, l’objectif premier étant de mesurer les
couts arithmétiques sans tenir compte des effets de cache.

Les figures 6.5 et 6.6 montrent le surcout Tseq/Tbibliothèque pour chacune des biblio-
thèques testées en fonction de la taille du tableau d’entrée et pour les trois algorithmes.
Le temps séquentiel Tseq utilisé comme référence est le temps d’exécution avec la STL
C++. La figure 6.5 montre ce surcout lorsqu’un seul cœur est utilisé. La figure 6.6
correspond à l’exécution sur 8 cœurs.

Pour l’exécution sur 8 cœurs, figure 6.6, X-Kaapi permet un gain d’au plus 6, 68
pour transform et 6, 72 pour merge. Pour min_element, le gain maximum observé
est 8, 95. Ce gain supérieur à 8 peut s’expliquer par le fait qu’en utilisant 8 cœurs, on
bénéficie d’un cache 8 fois plus grand que la STL qui ne tourne que sur un cœur. Dans
le cas de min_element, le gain représente environ 73% de plus que TBB et 153% de
plus que Cilk++.

Les temps d’exécution sur 8 cœurs pour 15 000 éléments sont donnés dans le
tableau 6.2.2. Le grain est très fin puisque les temps mesurés sont de l’ordre de 10−5
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Fig. 6.5: Accélération des bibliothèques par rapport à la STL sur 1 cœur
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Fig. 6.6: Accélération des bibliothèques par rapport à la STL sur 8 cœurs
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X-Kaapi TBB Cilk

transform 3, 65× 10−5 s 8, 73× 10−5 s 1, 08× 10−4 s
min_element 2, 74× 10−5 s 9, 12× 10−5 s 1, 13× 10−4 s
merge 7, 15× 10−5 s 1, 26× 10−4 s 1, 58× 10−4 s

Tab. 6.1: Temps d’exécution sur 8 cœurs des algorithmes parallèles transform,
min_element et merge pour 15 000 éléments

seconde. Cette taille de 15 000 est la taille à partir de laquelle le code X-Kaapi devient
plus rapide que le code séquentiel de la STL sur 8 cœurs. Pour les autres bibliothèques,
cette taille est de plus de 30 000.

6.3 Gestion de la cohérence mutuelle

Cette section présente l’évaluation expérimentale du protocole de cohérence mutuelle
proposé dans le chapitre précédent. Cette évaluation porte sur deux points. Tout d’abord,
nous étudions le nombre de messages échangés par chaque processus pour obtenir la
cohérence mutuelle, puis nous mesurons le temps total nécessaire pour réaliser une
reconfiguration vide.

Le protocole étudié est le protocole optimisé implémenté dans Kaapi. Comme nous
l’avons expliqué dans la section 5.4.3.3, cette version optimisée de la gestion de la
cohérence mutuelle utilise le graphe de flot de données de l’application pour déterminer
les canaux de communication qui doivent être vidés. Elle sera désignée par la suite
comme la cohérence mutuelle optimisée.

Durant cette étude expérimentale, nous nous comparons à la version non optimisée
de ce protocole de gestion de la cohérence mutuelle. Pour assurer la cohérence mutuelle,
cette version, appelée par la suite cohérence mutuelle non optimisée, doit vider
tous les canaux de communication entre tous les processus puisqu’elle n’utilise pas
d’information sur l’état de l’application.

Pour les mesures de la suite de chapitre, nous utilisons une application de résolution
du problème des N-reines. Cette application compte le nombre de placements possibles
de N dames d’un jeu d’échecs sur un échiquier de N × N cases, sans qu’elles ne se
menacent mutuellement. L’algorithme de résolution est récursif et il est écrit en Atha-
pascan. L’application est exécutée par le moteur d’exécution Kaapi en utilisant un
ordonnancement par vol de travail.

6.3.1 Nombre de messages échangés

Nous étudions ici le nombre de messages échangés pour assurer la cohérence mutuelle
d’une reconfiguration. Dans le chapitre précédent, nous avons donné la complexité en
termes de messages pour les deux versions du protocole.
• La cohérence mutuelle non optimisée nécessite O(n2) messages.
• La cohérence mutuelle optimisée nécessite O(n× v) messages.
Nous rappelons les notations suivantes : n désigne le nombre de processus participant

au calcul et v le nombre de voisins. Nous désignons ici par le terme voisins l’ensemble
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des émetteurs potentiels qui sont définis dans la section 5.4.3.3. Cet ensemble est calculé
lors de l’étape de vidage des canaux de communication après partir des tâches qui
induisent des communications dans le graphe de flot de données de l’application.

Le paramètre n, le nombre de processus, est connu. Le paramètre v, le nombre
de voisins, n’est pas connu. Cette valeur dépend notamment de l’application et de
l’ordonnancement utilisé. Dans la suite de cette section, nous cherchons à évaluer la
valeur de v pour une application récursive ordonnancée par vol de travail grâce à des
mesures.

Nombre de voisins (v) Proportion de mesures

v = 0 14,52 %
v = 1 73,83 %
v = 2 4,22 %
v = 3 2,53 %
v = 4 1,60 %
v = 5 0,93 %
v = 6 0,56 %
v ≥ 7 1,81 %

Tab. 6.2: Distribution des mesures du nombre de voisins pour une exécution de
l’application N-reines sur 1193 machines

Pour effectuer ces mesures, nous utilisons l’application des N-reines que nous exé-
cutons sur 1153 machines de Grid’5000 avec un ordonnancement par vol de travail. À
intervalle régulier pendant l’exécution et sur tous les processus participant au calcul,
nous comptons le nombre de voisins de chaque processus selon la définition donnée dans
la section 5.4.3.3. La distribution des mesures en fonction de la valeur v du nombre de
voisins est donnée dans le tableau 6.2. Nous remarquons que plus de 88 % des mesures
correspondent à un nombre de voisins de 0 ou 1 ; la valeur maximale relevée est de 37
voisins pour un processus.

Sur la figure 6.7 nous montrons l’évolution du nombre moyen de voisins en fonction
du nombre de machines utilisées. Les mesures indiquent un nombre moyen de 1,5 voisin
par processus. Cette valeur diminue légèrement lorsque le nombre de machines utilisées
augmente.

Dans le cas d’une application récursive ordonnancée par vol de travail, nous pouvons
considérer que le nombre moyen de voisins par processus est une constante faible. Ainsi
la complexité globale en nombre de messages de notre protocole optimisé de gestion de
la cohérence mutuelle apparait comme linéaire fonction du nombre de processus.

6.3.2 Temps de gestion de la cohérence mutuelle

Nous mesurons maintenant le temps de gestion de la cohérence mutuelle sur l’ap-
plication de N-reines. Comme nous l’avons vu précédemment, le cout de ce protocole
dépend essentiellement du nombre de processus participant au calcul.
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Fig. 6.7: Nombre moyen de voisins durant l’exécution en fonction du nombre de
machines utilisées pour l’application des N-reines

Pour réaliser ces mesures nous considérons une reconfiguration vide, c’est-à-dire qui
ne fait rien, avec cohérence mutuelle. La fonction de reconfiguration de la reconfiguration
vide consiste donc uniquement à l’appel des fonctions de gestion de cohérence mutuelle
de Kaapi2. Le temps mesuré correspond au temps total d’exécution de la reconfiguration
sur le processus maitre, du début du prologue à la fin de l’épilogue.

Les mesures ont été effectuées sur les machines de Grid’5000 en plaçant un processus
de calcul par machine. La figure 6.8 montre les temps moyens mesurés pour exécuter la
reconfiguration vide en fonction du nombre de machines sur lequel s’exécute l’application.
Trois séries de mesures ont été réalisées à trois occasions différentes et en changeant
l’ordre d’utilisation des machines ; les résultats de chacune de ces séries de mesures sont
donnés dans les sous figures (a), (b) et (c).

La première série de mesures, figure 6.8a a été réalisée sur 1042 machines réparties
sur 7 sites de Grid’5000 en utilisant la disposition du tableau ci-dessous.

Machines 1–282 283–352 353–473 474–597 598–727 728–866 867–1042

Site Orsay Toulouse Lille Sophia Lyon Rennes Bordeaux

Pour les mesures effectuées sur n machines, seules les n premières machines du tableau
sont utilisées. Ce tableau indique alors des sites de Grid’5000 utilisés. Par exemple, les
mesures sur 473 machines ont utilisé 282 machines du site d’Orsay, 70 machines du site
de Toulouse et 121 du site de Lille. Cette information sur la répartition des machines
entre les sites est aussi portée sur le bas des figures.

2acquire_mutual_consistency() et release_mutual_consistency()
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Pour la deuxième série de mesures, figure 6.8b, nous avons utilisé 1153 machines de
Grid’5000 réparties sur 8 sites de la manière suivante.

Machines 1–283 284–351 352–443 444–622 623–737 738–867 868–1008 1009–1153

Site Orsay Toulouse Lille Bordeaux Nancy Lyon Sophia Rennes

Pour la troisième série de mesures, figure 6.8c, nous avons utilisé 879 machines de
Grid’5000 réparties sur 7 sites, dont la répartition est donnée ci-dessous.

Machines 1–138 139–283 284–403 404–537 538–670 671–748 749–879

Site Nancy Sophia Lille Bordeaux Rennes Toulouse Lyon

Les courbes de la figure 6.8 montre le temps de gestion de la cohérence mutuelle,
version optimisée et version non optimisée, en fonction du nombre de machines et pour
différentes conditions expérimentales. Chaque point correspond à la moyenne de 30 à
200 mesures. Les barres d’erreur affichent l’écart type des valeurs mesurées.

Nous nous intéressons tout d’abord aux mesures de la version non optimisée du
protocole de gestion de la cohérence mutuelle. Nous constatons une variabilité importante
des temps mesurés. En effet, pour un grand nombre de machines (i.e. 1000 machines),
l’écart type dépasse 0,5 seconde (voire même 1 seconde pour les séries de mesure no 1 et
no 2).

Dans le cas du protocole non optimisé, le temps de gestion de la cohérence mutuelle
augmente avec le nombre de machines. À cause de la variabilité des mesures, il est
difficile de préciser le comportement des courbes. Cependant, il semble que ce temps
évolue par paliers. L’ajout des machines d’un site supplémentaire semble provoquer une
augmentation brutale du temps de gestion de la cohérence mutuelle. Ce phénomène
est assez visible avec le site de Bordeaux dans les trois séries de mesures. L’ajout de
machines proches (géographiquement, mais surtout du point de vue de la qualité du
réseau) a donc un impact beaucoup plus faible que l’ajout de machines distantes.

Pour la version optimisée de ce protocole, les valeurs mesurées sont beaucoup plus
stables. Les écarts types sont la plupart du temps inférieurs à 0,1 seconde3.

De plus, l’influence du nombre de machines sur le temps de gestion de la cohérence
mutuelle est très faible. Les courbes sont quasiment plates. Pour la première série de
mesures, le temps passe de 0,10 s pour 25 machines à 0,24 s pour 1042 machines ; pour
la deuxième série de mesures, il passe de 0,12 s pour 100 machines à 0,19 s pour 1153
machines ; et pour la troisième série de mesures, il passe de 0,76 s pour 69 machines à
0,97 s pour 879 machines.

Pour la troisième série de mesures, le temps de cohérence mutuelle est, dès les
premières machines, beaucoup plus élevé que pour les deux autres séries de mesures. Nous
n’avons pas trouvé d’explication à ce phénomène autre que les différences de conditions
expérimentales. Cependant, nous retrouvons globalement les mêmes comportements
que pour les autres séries de mesures.

Pour résumer, comparée à la version non optimisée, la version optimisée du protocole
offre de bonnes performances. Le temps de gestion de la cohérence mutuelle est stable

3Sur les figures, l’écart type n’est pas tracé lorsqu’il est trop faible.
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Fig. 6.8: Temps de gestion de la cohérence mutuelle en fonction du nombre de machines,
version optimisée et version non optimisée
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Fig. 6.8: Temps de gestion de la cohérence mutuelle en fonction du nombre de machines,
version optimisée et version non optimisée

et l’ajout de machines supplémentaires, même à partir de sites distants, n’a qu’une
influence minime. Il permet ainsi de coordonner un ensemble de 1000 machines en
moins de 250 ms. Tous ces éléments nous poussent à croire que ce protocole optimisé se
comportera bien sur un nombre plus important de machines.

6.4 Conclusion

Dans ce chapitre, nous avons présenté plusieurs séries d’expériences qui nous ont
permis d’évaluer les mécanismes de reconfiguration que nous avons proposés au chapitre 5.
Ces expériences ont porté sur deux aspects : la gestion des accès concurrents et la
gestion de la cohérence mutuelle.

Les expériences sur la gestion des accès concurrents se sont tout d’abord attachées à
comparer les performances de l’exécution concurrente et de l’exécution coopérative pour
la reconfiguration « vol de travail » dans le moteur d’exécution X-Kaapi. La version
coopérative du vol de travail se révèle plus efficace à grain fin puisqu’elle évite d’ajouter
des instructions couteuses de synchronisation sur le chemin critique de l’application.
Cependant, à gros grain, l’exécution coopérative est victime d’une latence importante
pour répondre aux requêtes de vol. En conséquence, les processeurs inactifs mettent
plus de temps pour récupérer du travail.

Nous avons ensuite comparé les performances du vol de travail coopératif de X-
Kaapi avec le vol de travail de Cilk et TBB sur des algorithmes de la STL. Les gains
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mesurés sur 8 cœurs sont assez importants, même sur des tableaux de petite taille.
L’exécution coopérative semble être une technique idéale pour l’exécution à grain fin
avec un faible surcout.

La suite de ce chapitre a évalué le cout de la gestion de la cohérence mutuelle à grande
échelle. Tout d’abord, nous avons étudié le nombre moyen de voisins par processus
pour une application ordonnancée par vol de travail. Ce nombre est en moyenne faible
(inférieur à 2) et permet de justifier la version optimisée du protocole de gestion de
cohérence mutuelle qui repose sur le modèle de graphe de flot de données de Kaapi.
Cette version optimisée du protocole de gestion de la cohérence mutuelle permet de
coordonner plus de 1000 processus en un temps inférieur à 250 ms. Un autre avantage
est que le temps de coordination est beaucoup plus stable qu’avec le protocole non
optimisé.
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7.1 Introduction

Ce chapitre présente un aperçu général des mécanismes de tolérance aux fautes
intégrés dans Kaapi. Il est constitué de deux sections principales.

La section 7.2 introduit les cinq composants grâce auxquels le moteur d’exécution
Kaapi peut tolérer les fautes et elle présente leur organisation et leurs interactions. Ces
composants sont le détecteur de panne, le coordinateur des pannes, la mémoire stable,
le protocole de sauvegarde et le protocole de reprise.

La section 7.3 détaille le composant de sauvegarde coordonnée sur lequel repose les
techniques de reprise globale et de reprise partielle qui sont présentées dans les chapitre 8
et 9. Des expérimentations sont également proposées : leurs résultats permettent de
mettre en évidence les différentes variables qui influencent le cout de ce mécanisme de
sauvegarde coordonnée.
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7.2 Organisation de la tolérance aux fautes dans
Kaapi

Nous distinguons deux modes de fonctionnement du moteur d’exécution Kaapi
vis-à-vis de la tolérance aux fautes : l’exécution sans panne et la reprise.

L’exécution sans panne est le mode de fonctionnement durant lequel l’application
s’exécute normalement tant qu’aucune panne ne se produit. Durant l’exécution sans
panne, il est nécessaire de sauvegarder certaines informations pour assurer la tolérance
aux fautes. Cette sauvegarde d’informations peut prendre la forme de sauvegarde de
l’état des processus ou de journalisation des messages1. Elle doit contenir les informations
nécessaires pour effectuer une reprise et utilise une mémoire stable pour conserver les
informations sauvegardées.

La reprise est le mode de fonctionnement qui intervient après qu’une panne s’est
produite. Dans ce mode de fonctionnement, il n’y a pas de sauvegarde d’informations,
mais le mécanisme de reprise est activé pour rétablir un état global cohérent de
l’application après la panne. Ce protocole utilise les informations sauvegardées sur la
mémoire stable pour reconstruire l’état de l’application.

➑
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Fig. 7.1: Organisation des mécanismes de tolérance aux fautes dans Kaapi. La signifi-
cation des numéros est détaillée dans le texte.

1Dans la suite de ce chapitre, nous désignerons indifféremment la sauvegarde de l’état des processus
ou la journalisation des messages par les termes « sauvegarde d’informations » ou « sauvegarde ».
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La tolérance aux fautes dans Kaapi repose sur cinq composants : la mémoire
stable, le protocole de sauvegarde, le protocole de reprise, le détecteur de
panne et le coordinateur des pannes. La figure 7.1 présente l’organisation de ces
différents composants. Ce schéma est une extension de la figure 4.1 page 72 du chapitre
présentant le modèle de programmation Athapascan et le moteur d’exécution Kaapi.

Durant l’exécution sans panne, le protocole de sauvegarde décide régulièrement
de sauvegarder certaines informations. En reprenant la notation des numéros de la
figure 7.1, nous avons les opérations suivantes qui sont effectuées.

➊ Tout d’abord, le protocole de sauvegarde lit l’état de l’application qui est
contenu dans la représentation abstraite de l’application.
➋ Puis, il sauvegarde ces informations dans la mémoire stable.
➌ Le protocole de sauvegarde reçoit des acquittements de la part du composant de
mémoire stable qui lui indiquent que la sauvegarde a bien été reçue et enregistrée.

Lorsqu’une panne se produit, l’exécution passe en mode reprise.
➍ Le détecteur de panne alerte le coordinateur de pannes.
➎ Le coordinateur de pannes met à jour la représentation abstraite de la plate-
forme d’exécution pour indiquer les processus défaillants.
➏ Puis il active le protocole de reprise.
➐ Le protocole de reprise interroge la mémoire stable pour connaitre les états
sauvegardés et choisir les informations à récupérer.
➑ La mémoire stable envoie les informations demandées.
➒ Le protocole de reprise peut alors reconstruire un état global cohérent de
l’application.

Une fois que le protocole de reprise s’est terminé, l’exécution sans panne peut
reprendre.

Chacun de ces composants réalise une fonction élémentaire nécessaire pour assurer
la tolérance aux fautes. La suite de ce chapitre décrit ces composants, le service rendu
ainsi que les hypothèses nécessaires à leur bon fonctionnement.

7.2.1 Détection des pannes

Le but d’un détecteur de panne est de détecter les pannes qui peuvent survenir
durant l’exécution de l’application aussitôt que possible. Une fois qu’une panne a été
détectée, le détecteur de panne avertit le coordinateur des pannes. Les travaux de cette
thèse ne portent pas sur les détecteurs de pannes. Cependant, il est indispensable de
s’attaquer à ce problème pour offrir un service de tolérance aux fautes. Dans cette
section, nous indiquons uniquement les solutions qui ont été mises en œuvre dans le
moteur d’exécution Kaapi.

Dans notre modèle, nous prenons en compte les pannes en termes de processus.
Nous considérons qu’un processus est en panne lorsqu’il ne fournit plus le service qu’on
attend de lui. Le rôle du détecteur de panne est alors de vérifier que les processus
remplissent bien leur rôle.

Cette tâche est assez compliquée en pratique et pour détecter les pannes, nous
préférons utiliser plusieurs détecteurs de pannes qui vont chacun tester une propriété
des processus. Si la propriété vérifiée par l’un des détecteurs de panne n’est pas vraie pour
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un processus donné, alors ce processus est considéré comme défaillant. Le coordinateur
des pannes en est alors informé.

Nous sommes conscient que l’approche choisie est pragmatique. Ce choix s’explique
d’une part par la difficulté de récupérer un code de détecteur (en particulier du code
C++, plus simple à intégrer dans Kaapi entièrement en C++) et d’autre part par le
manque de temps par rapport à nos objectifs de ce travail. Idéalement, ce composant
devrait passer à l’échelle [25] et offrir un certain niveau de qualité de service [53].

Dans le moteur d’exécution Kaapi, nous avons implémenté deux détecteurs de
pannes : un détecteur d’erreur réseau et un détecteur par battement de cœur.
• Le détecteur d’erreur réseau est un détecteur de panne qui s’exécute sur tous

les processus de calcul Kaapi. Ce détecteur intercepte tous les codes d’erreurs en
provenance des différentes couches de communication. Lorsqu’il intercepte une
erreur inattendue (échec de l’émission d’un message, message reçu incomplet,
fermeture d’une connexion, etc.), le processus qui est à l’autre bout du canal de
communication est considéré comme défaillant.
Ce détecteur vérifie donc la propriété qui dit qu’aucune communication ne doit
produire de code d’erreur inattendue. Cela nécessite donc d’identifier tous les codes
d’erreur et leurs conséquences pour le moteur d’exécution. Il permet notamment
de détecter les processus qui s’arrêtent brutalement (car dans ce cas le système
d’exploitation ferme la connexion restée ouverte). Ce détecteur est intéressant en
pratique puisqu’il offre une bonne réactivité.
• Le détecteur par battement de cœur, également appelé heartbeat, s’exécute

sur tous les processus de calcul. Le principe de ce détecteur est d’émettre pério-
diquement un message HB-PING vers un autre processus choisi au hasard. À la
réception d’un tel message, le processus distant doit répondre avec le HB-PONG.
Si le message de réponse HB-PONG n’est pas reçu dans un délai configurable, alors
le processus distant est considéré comme défaillant.
Ce détecteur vérifie donc la propriété qui dit que tous les processus doivent être
joignables et répondre dans le délai imparti. Il permet de détecter des pannes
qui peuvent ne pas être repérées par le détecteur d’erreur réseau, par exemple le
cas de la défaillance du système d’exploitation ou la coupure physique d’un lien
réseau.
Ce détecteur peut cependant produire des faux positifs dans le cas où le réseau
ou la machine distante sont surchargées. C’est notamment le cas si le délai de
réponse est trop faible. Inversement, un délai trop important entrainera une perte
de réactivité en cas de panne, ce qui a pour conséquence d’augmenter le temps de
calcul gaspillé.

7.2.2 Réaction aux pannes

La réaction aux pannes est réalisée par le composant coordinateur des pannes. Ce
composant assure les trois fonctions suivantes.
• Il collecte les alertes de pannes en provenance des détecteurs de pannes.
• Il informe tous les processus de calcul de la défaillance pour qu’ils puissent mettre

à jour leur représentation abstraite de la plate-forme d’exécution. Ceci permet
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ensuite d’ignorer toute communication (entrante ou sortante) avec un processus
considéré défaillant.
• Enfin, il active le protocole de reprise.

Le coordinateur des pannes ne s’interroge pas sur la validité des pannes détectées, mais
il doit mettre en place les actions nécessaires à la reprise de l’exécution.

Il faut remarquer que dans notre modèle, nous considérons que les pannes sont
franches. Ainsi, même si la panne est seulement temporaire ou si un détecteur de panne
commet une erreur, nous choisissons tout de même d’exclure définitivement le processus
de la suite du calcul. C’est pour cela que tous les autres processus doivent être informés
des défaillances avant la reprise du calcul. Ainsi à la reprise, tous les processus non
défaillants ignoreront le ou les processus considérés comme défaillants pour éviter qu’ils
ne corrompent l’état de l’application. Ces considérations permettent aussi de traiter le
cas des pannes byzantines.

En général, un processus ne tombe pas toujours en panne tout seul. En effet, les
défaillances de processus peuvent être groupées, par exemple si toute une grappe de
machines est coupée du réseau ou si un premier processus défaillant émet des données
qui provoquent des erreurs sur d’autres processus.

C’est pourquoi le coordinateur de pannes implémenté dans le moteur d’exécution
Kaapi utilise un délai de garde, qui permet d’attendre d’autres pannes avant de
déclencher la reprise. Ce délai permet d’attendre un certain temps avant d’activer le
protocole de reprise, de manière à éviter que les autres pannes ne soient détectées
pendant la reprise.

Pas de panne Garde

Reprise

Panne

Panne

Expiration du
délai de garde

Panne

Fin de la
Reprise

Fig. 7.2: Réaction aux pannes dans Kaapi

La figure 7.2 montre le diagramme de décision du coordinateur des pannes dans
Kaapi. Le coordinateur des pannes peut se trouver dans trois états différents : Pas de

panne, Garde et Reprise.
• Lorsqu’aucune panne ne s’est produite, l’état est Pas de panne. Dans cet état, soit

l’application est en cours d’exécution, ou bien elle est en train de sauvegarder son
état.
• L’apparition d’une panne fait passer le coordinateur des pannes dans l’état Garde :

il est en attente du délai de garde. De plus, chaque alerte de panne réinitialise le
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délai de garde et provoque la diffusion de l’information de la nouvelle panne à
tous les processus de calcul.
• La fin du délai de garde provoque le passage dans l’état Reprise. Le passage dans

cet état correspond à l’activation du protocole de reprise. Lorsque la reprise est
terminée, l’exécution de l’application reprend et l’état redevient Pas de panne.

Il faut noter que le coordinateur des pannes ne réagit qu’après le délai de garde
suite au signalement de la première panne d’un processus. Si un processus en panne est
de nouveau signalé comme étant défaillant, cette alerte est ignorée.

7.2.3 Mémoire stable

La mémoire stable est une abstraction qui permet de désigner un moyen sûr de
conserver les informations nécessaires pour redémarrer l’application en cas de panne. La
mémoire stable est le seul composant qui, en théorie, doit ne pas tomber en panne. En
effet, c’est ce composant qui réalise le transfert fiable d’informations entre l’exécution
sans panne et la reprise.

Nous identifions quatre opérations élémentaires que le composant de mémoire stable
doit fournir pour réaliser correctement sa fonction.
• La sauvegarde : le protocole de sauvegarde enregistre des informations dans la

mémoire. À chaque information est associé un identifiant qui est donné par le
protocole de sauvegarde.
• L’acquittement : la mémoire stable peut fournir pour chaque information sauve-

gardée un accusé de réception qui confirme que l’information a bien été reçue et
qu’elle est maintenant conservée de manière stable.
• L’interrogation : le protocole de reprise interroge la mémoire stable pour connaitre

les informations conservées en mémoire stable. Cela consiste à consulter la liste
des identifiants des informations sauvegardées sans nécessairement récupérer les
informations elles-mêmes.
• Le recouvrement : le protocole de reprise choisit certaines informations et les

récupère à partir de la mémoire stable.

La principale difficulté pour réaliser une mémoire stable est de garantir la stabilité
des informations. La stabilité en-soi n’est pas réalisable, mais il est possible de s’en
approcher à l’aide de diverses techniques. Il faut prendre en compte plusieurs aspects
comme le stockage physique des données (disque dur, mémoire vive, etc.) ou leur
accessibilité (accès réseau). Ainsi, les principales techniques sont le codage redondant
et la réplication des données [121]. Elles permettent d’éviter de reposer sur un unique
composant centralisé plus sensible aux pannes. Cependant, ces considérations sont en
dehors du cadre de cette thèse. La plupart du temps, la mémoire stable est uniquement
une simple hypothèse sur la machine et le processus qui offre ce service.

Outre ces aspects, la performance est certainement le point le plus important pour
un composant de mémoire stable. En effet, la principale fonction d’une mémoire stable
est de recevoir et d’émettre des données. Lorsque le volume de données à sauvegarder
et à restituer est important (ce qui est par exemple le cas des applications de calcul
scientifique), la performance de la mémoire stable est l’élément qui va principalement
influencer les durées de sauvegarde et de reprise [43]. Ces paramètres ont alors un
impact sur le nombre de sauvegardes ainsi que sur le travail perdu en cas de panne [41].
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De plus, le placement physique de ce composant sur la plate-forme d’exécution a une
importance capitale.

Dans le moteur d’exécution Kaapi, la mémoire stable est réalisée par un ensemble
de processus spéciaux appelés serveurs de sauvegarde. Chaque processus de calcul est
associé à un serveur de sauvegarde et chaque serveur de sauvegarde peut être utilisé par
plusieurs processus de calcul. Les serveurs de sauvegarde conservent les informations
que le processus de calcul lui envoie par le biais du protocole de sauvegarde.

Ces serveurs de sauvegarde utilisent l’espace disque de la machine sur laquelle ils
s’exécutent pour conserver les données et les méta-données2. En cas de défaillance du
processus serveur de sauvegarde, il est donc possible de redémarrer le processus sans
perdre les informations sauvegardées.

Cependant, les serveurs de sauvegarde Kaapi n’utilisent pas de mécanismes de
redondance des données. Donc leur stabilité repose essentiellement sur l’hypothèse de
stabilité du matériel et de la connexion utilisée, et il sera important dans l’avenir de sup-
primer cette hypothèse. Actuellement, les serveurs de sauvegarde Kaapi s’apparentent
plus à une « simulation » de mémoire stable destinée à réaliser les expériences.

7.2.4 Protocoles de sauvegarde et de reprise

Le protocole de sauvegarde est le composant qui est responsable de sélectionner et
d’enregistrer les informations nécessaires au redémarrage. Ce composant est actif durant
l’exécution sans panne de l’application. Le composant du protocole de reprise est quant
à lui est chargé de redémarrer l’application en utilisant les informations sauvegardées
sur la mémoire stable par le protocole de sauvegarde. Ce composant est activé lors de
la phase de reprise.

De nombreuses techniques existent pour réaliser la sauvegarde et la reprise d’une
application. Ces techniques ont été présentées dans l’état de l’art à la section 2.4.
Généralement, la sauvegarde et la reprise sont fortement couplées dans la mesure où la
méthode pour redémarrer l’application dépend fortement des informations qui ont été
sauvegardées durant l’exécution. Cependant, nous décidons de distinguer un composant
de sauvegarde et un composant de reprise parce qu’ils effectuent chacun des opérations
différentes et qu’ils s’exécutent à des moments différents.

Ces deux composants sont les seuls qui vont directement interagir avec l’état de
l’application et son exécution. Nous proposons d’effectuer ces interactions (lecture ou
écriture), en utilisant les mécanismes de reconfiguration décrits dans la partie II de
cette thèse. Ceci permet simplifier l’implémentation de ces protocoles et de bénéficier
d’un accès sûr à l’état de l’application.

Dans le moteur d’exécution Kaapi, deux familles de protocoles de sauvegarde et de
reprise sont actuellement implémentés.
• La famille de protocoles TIC (Theft-Induced Checkpointing) comporte deux

composants : un composant de sauvegarde appelé TIC-Checkpoint, et un composant
de reprise appelé TIC-Restart. Ces deux composants s’utilisent ensemble pour

2Les méta-données correspondent, entre autres, aux identifiants et aux fichiers physiques des
informations sauvegardées.
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rendre le moteur d’exécution Kaapi tolérant aux fautes pour les applications
utilisant l’ordonnancement par vol de travail. Ils implémentent le protocole TIC
proposé par Jafar dans [92] qui est une adaptation pour le vol de travail de la
technique de sauvegarde induite par les communications (section 2.4.2.3).
• La famille de protocoles CCK (Coordinated Checkpointing in Kaapi ) comporte

un composant de sauvegarde appelé CCK-Checkpoint et deux composants de reprise
CCK-GlobalRestart et CCK-Restart.
Le composant de sauvegarde CCK-Checkpoint est une implémentation de la tech-
nique classique de sauvegarde coordonnée bloquante présentée à la section 2.4.2.2.
Ce composant est implémenté en utilisant le mécanisme de reconfiguration dyna-
mique présenté dans la partie II en imposant une contrainte de cohérence mutuelle
(section 5.4.3) sur l’ensemble des processus qui participent au calcul.
Les deux composants de reprise sont capables de redémarrer une application
sauvegardée par CCK-Checkpoint. Le composant CCK-GlobalRestart effectue la reprise
avec la technique classique où tous les processus redémarrent depuis la dernière
sauvegarde. Il est présenté et illustré par des expérimentations au chapitre 8. Le
composant CCK-Restart offre un redémarrage optimisé qui permet seulement à
une partie de processus de repartir depuis leur dernière sauvegarde. Ce dernier
protocole est détaillé dans le chapitre 9.

Maintenant que nous avons présenté l’ensemble des composants nécessaires aux
mécanismes de tolérance aux fautes dans Kaapi, nous allons présenter en détail la
réalisation de la sauvegarde coordonnée 2.4.2.2 sur laquelle se basent les protocoles de
reprise CCK.

7.3 Sauvegarde coordonnée

Pour réaliser la sauvegarde coordonnée, nous choisissons d’utiliser le mécanisme de
reconfiguration dynamique présenté au chapitre 5. Ce mécanisme de reconfiguration
permet d’accéder de manière sure à l’état de chacun des processus. De plus, le mécanisme
de cohérence mutuelle de la section 5.4.3 permet de garantir la cohérence et l’accessibilité
de l’ensemble des états locaux des processus qui composent l’application.

Le protocole de sauvegarde CCK repose donc sur la synchronisation offerte par le
mécanisme de cohérence mutuelle. Ceci permet de simplifier l’implémentation de la
sauvegarde. Ainsi le protocole de sauvegarde résultant s’apparente à la technique de
sauvegarde coordonnée bloquante car l’état des processus ne sera sauvegardé qu’une
fois que tous les canaux de communication auront été vidés.

7.3.1 État de l’application et état local d’un processus

L’état d’une application est constitué de l’état de tous ses processus et de l’état des
canaux de communication [49]. De plus, le mécanisme de cohérence mutuelle utilisé
pour la sauvegarde permet de rendre l’état accessible, c’est-à-dire de vider les canaux de
communication. L’état de l’application est alors composé uniquement de l’état local de
chacun des processus. Pour réaliser une sauvegarde de l’état de l’application, il convient
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donc de sauvegarder l’état de tous les processus composant l’application après les avoir
coordonnés pour les rendre mutuellement cohérents entre eux.

L’état d’un processus peut être sauvegardé grâce à sa représentation abstraite sous
la forme d’un graphe de flot de données et de ses attributs. Ce graphe comprend
notamment les tâches et les versions des données d’entrée. Au moment de la sauvegarde
(i.e. au point local de reconfiguration sur chaque processus), l’exécution est arrêtée
et aucune tâche n’est en cours d’exécution ; donc comme nous l’avons expliqué dans
la section 4.3.1, le graphe de flot de données et ses attributs constituent donc une
représentation valide de l’état de l’application.

L’état global de l’application correspond donc à l’ensemble des graphes de flot de
données locaux. Un point de sauvegarde de l’application est donc constitué d’une copie
de l’ensemble des graphes de flot de données locaux des processus qui participent au
calcul à l’instant de la sauvegarde.

De plus, la sauvegarde sous forme d’un graphe de flot de données plutôt que sous
forme de zone mémoire d’un processus et de ses registres permet de résoudre (en partie)
le problème de l’hétérogénéité. Un tel point de sauvegarde pourra être rechargé sur
n’importe quelle machine, quelle que soit son architecture, pour peu que les données
soient bien encodées.

7.3.2 Protocole de sauvegarde

Pour effectuer une étape de sauvegarde, nous distinguons deux fonctions élémentaires :
la fonction de coordination et la fonction de sauvegarde locale. La fonction de
coordination est réalisée par un unique processus appelé processus coordinateur tandis
que la fonction de sauvegarde locale est réalisée par tous les processus qui participent
au calcul.

En pratique, le processus coordinateur peut être un des processus de calcul, mais il
a la particularité d’initier l’étape de sauvegarde. Dans Kaapi et pour des raisons de
simplicité, ce processus est systématiquement le processus qui possède l’identifiant 0.

7.3.2.1 Protocole sur le processus coordinateur

Le rôle du processus coordinateur de la sauvegarde est de coordonner tous les
processus pour réaliser une étape de sauvegarde et de vérifier le bon déroulement de
la sauvegarde. Nous réalisons cette sauvegarde en utilisant le mécanisme de reconfigu-
ration dynamique présenté au chapitre 5. Nous considérons ici la sauvegarde comme
une reconfiguration qui ajoute la propriété de tolérance aux fautes à l’application.
Plus précisément, la reconfiguration « sauvegarde » reconfigure l’application en une
application qui ne perdra pas plus de Wt −Wsauvegarde en cas de panne, où Wt est
le travail effectué à l’instant t et Wsauvegarde est le travail effectué au moment de la
sauvegarde.

Le protocole de sauvegarde sur le processus coordinateur est défini à travers les trois
étapes qui constituent une reconfiguration : le prologue, la réalisation et l’épilogue. Pour
l’exécuter, le processus coordinateur utilise un processus léger dédié pour ne pas bloquer
le calcul pendant le prologue et l’épilogue. Le protocole de sauvegarde est déclenché à
des dates prédéfinies (généralement de manière périodique) mais peut éventuellement
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être forcé par un appel direct, par exemple en cas d’arrêt forcé de l’application par
l’utilisateur.

Prologue. Durant le prologue, le processus coordinateur choisit la version de la
sauvegarde et définit la reconfiguration « sauvegarde » qui sera appliquée sur les
processus de calcul. La version de la sauvegarde est un identifiant unique qui doit
permettre de reconnaitre une sauvegarde donnée. La reconfiguration est définie par les
éléments suivants.
• La fonction de reconfiguration « sauvegarde locale » qui est la fonction qui sera

exécutée sur chacun des processus de calcul pour sauvegarder l’état local de
l’application.
• La cible de la reconfiguration qui dans le cas de la sauvegarde coordonnée de

l’application correspond à l’ensemble de tous les processus qui participent au
calcul.
• Le seul paramètre d’entrée de la fonction de reconfiguration est la version de la

sauvegarde.
Le prologue aboutit alors à la réalisation de la sauvegarde.

Réalisation. La réalisation correspond à l’exécution de la fonction de reconfiguration
« sauvegarde locale » sur tous les processus de calcul. Cette fonction est détaillée dans
la section suivante 7.3.2.2. La réalisation se termine lorsque tous les processus de calcul
ont terminé la sauvegarde locale.

Épilogue. L’épilogue consiste à définir le statut de la sauvegarde effectuée. L’épilogue
permet de vérifier que l’exécution de la sauvegarde locale s’est exécutée correctement
sur chacun des processus. Ensuite l’épilogue attend la réception d’un acquittement
en provenance de la mémoire stable pour chacun des processus ayant participé à la
sauvegarde. L’acquittement signifie que la sauvegarde d’un processus a bien été reçue
et assure que les informations sauvegardées sont bien conservées sur la mémoire stable.

Si tout s’est déroulé correctement la sauvegarde peut être validée. L’information
de validité d’une sauvegarde est également inscrite dans la mémoire pour permettre
de reconnaitre la dernière sauvegarde valide lorsqu’un redémarrage est nécessaire. Les
anciennes sauvegardes peuvent éventuellement être supprimées de la mémoire stable
puisqu’avec un protocole de sauvegarde coordonnée, il est toujours possible de redémarrer
à partir de la dernière sauvegarde.

Cette étape d’attente ne ralentit pas le calcul puisque le protocole de sauvegarde est
exécuté dans un processus léger dédié. Elle permet de simplifier la gestion des différentes
versions des sauvegardes : il n’est plus nécessaire d’avoir un ramasse-miette distribué
pour supprimer les sauvegardes inutiles et, la recherche de la dernière sauvegarde valide
est immédiate.

7.3.2.2 Protocole sur les processus de calcul

Sur les processus de calcul, le protocole de sauvegarde consiste à exécuter la fonction
de reconfiguration « sauvegarde locale » définie par le processus coordinateur. Cette
fonction effectue les opérations suivantes.
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1. Elle explore l’état de l’application en utilisant l’interface de gestion des accès
concurrents dont les propriétés ont été décrites à la section 5.3 du chapitre 5. Tout
d’abord la reconfiguration « sauvegarde locale » prend connaissance de tous les
K-threads existants puis elle les marque (action MARK) pour les désigner comme
des objets visés par la reconfiguration.

2. Elle fait à la fonction acquire_mutual_consistency() pour obtenir la cohérence
mutuelle du processus vis-à-vis de tous les autres. Ceci provoque entre autres
l’arrêt des flots d’exécution.

3. Après l’appel à acquire_mutual_consistency(), le processus est dans son point
local de reconfiguration. L’état de l’application est donc sauvegardé en envoyant
une copie de chaque K-thread sur la mémoire stable sous le numéro de ver-
sion donné pour cette sauvegarde. La sauvegarde se termine par une demande
d’émission d’un acquittement vers le processus coordinateur.

4. L’appel à release_mutual_consistency() permet de terminer le point local de
reconfiguration.

5. Les objets marqués précédemment sont démarqués (action UNMARK).

6. Enfin, la fonction de reconfiguration « sauvegarde locale » définit le résultat de
l’exécution de la sauvegarde qui sera retourné au processus coordinateur pour
indiquer si la sauvegarde s’est déroulée correctement. Ce résultat est utilisé par le
processus coordinateur au moment de l’épilogue pour vérifier que le protocole de
sauvegarde s’est bien déroulé correctement.

7.3.3 Expérimentations

Cette section présente quelques expériences qui visent à démontrer l’effet des certains
paramètres sur la durée d’une sauvegarde coordonnée et sur le temps d’exécution d’une
application utilisant la tolérance aux fautes. Nous mettons en avant l’influence que
chacun de ces paramètres peut avoir sur le cout d’une sauvegarde.

Ces expériences sont réalisées à l’aide du moteur d’exécution Kaapi présenté au
chapitre 4.

7.3.3.1 Influence des serveurs de sauvegarde

Sur les grappes ou les grilles de calcul qui ne possèdent pas de machine de stockage
dédiée, il est possible d’utiliser les machines de calcul pour réaliser les serveurs de
sauvegarde. Ces serveurs de sauvegarde servent à conserver les informations sauvegardées
par plusieurs processus de calcul.

Pour obtenir de bonnes performances lors de l’étape de sauvegarde, il est important de
choisir un placement et un nombre de serveurs adéquat. Ce placement dépend fortement
de la topologie du réseau de la grappe ou de la grille de calcul. Nous proposons une
expérience qui met en évidence ce phénomène.

Cette expérience a été réalisée sur un sous-ensemble de 180 machines de la grappe
d’Orsay de Grid’5000. L’architecture du réseau de cette grappe est montrée à la figure 7.3.
La topologie réseau de l’ensemble des nœuds considérés est organisée en deux niveaux
de switchs. Chacun des 12 switchs du premier niveau connecte entre elles 15 machines
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Fig. 7.3: Architecture du réseau d’un sous-ensemble de nœuds d’Orsay de Grid’5000
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par des liens Ethernet de 1 Gb/s ; Le switch du second niveau connecte entre eux les
switchs du premier niveau par des liens de 3 Gb/s.

Parmi les 180 machines utilisées, 120 sont utilisées pour exécuter des processus
de calcul. Les autres sont utilisées pour exécuter un nombre variable (12, 24 ou 60)
de serveurs de sauvegarde. À chaque processus de calcul est associé un serveur de
sauvegarde sur lequel il enregistrera son état lors de l’étape de sauvegarde. Un serveur
de sauvegarde est donc partagé par 10, 5 ou 2 processus de calcul selon le nombre de
serveurs de sauvegarde choisi. Nous comparons alors trois méthodes de placement des
serveurs de sauvegarde parmi l’ensemble des machines de la grappe.
• Le placement dans l’ordre est l’approche naïve qui consiste à placer les serveurs

selon l’ordre par défaut donné par le gestionnaire de ressources. Ainsi, les premières
machines constituent les machines de calcul et les dernières machines constituent
les serveurs de sauvegarde. Avec un tel placement, tous les serveurs de sauvegarde
sont regroupés sur quelques switchs de premier niveau.
• Le placement par switch correspond à répartir les serveurs de sauvegarde

équitablement parmi tous les switchs disponibles. De plus, nous prenons soin
d’associer à chaque à chaque processus de calcul un serveur de sauvegarde du
même switch. Cette approche nécessite cependant d’avoir la connaissance de
l’organisation du réseau au sein de la grappe.
• Le placement aléatoire consiste à définir aléatoirement le rôle de chaque machine

de la grappe. Avec une grande probabilité, les serveurs de sauvegardes sont répartis
de manière équilibrée entre les switchs, cependant le serveur de sauvegarde associé
à chaque processus de calcul est potentiellement placé sur un autre switch.

Pour réaliser cette expérience, nous utilisons une application de type décomposition
de domaine. À chaque étape de sauvegarde, le volume total (i.e. pour tous les proces-
sus) des données à sauvegarder représente environ 20 Go, soit 169 Mo par processus.
Pour chaque étape de sauvegarde, la valeur mesurée est le temps d’exécution de la
reconfiguration « sauvegarde » (du prologue à l’épilogue) sur le processus maitre.

Nombre de serveurs Placement

de sauvegarde Dans l’ordre Aléatoire Par switch

12 83,07 s 19,71 s 15,56 s

24 41,50 s 16,30 s 7,70 s

60 22,23 s 15,05 s 3,10 s

Tab. 7.1: Durée d’une sauvegarde d’un volume de données de 20 Go en fonction du
nombre de serveurs de sauvegarde et du placement des serveurs de sauvegarde

Le tableau 7.1 donne la durée moyenne de la sauvegarde pour les trois placements
proposés et pour un nombre variable de serveurs de sauvegarde. Une quinzaine de
mesures a été réalisée dans chaque cas, les écarts types sont de l’ordre de 1 %. La
figure 7.4 montre ces résultats sous forme d’un diagramme en bâtons.

Cette expérience montre que les performances de la sauvegarde peuvent dépendre
fortement du placement des serveurs de sauvegarde au sein de la grappe de calcul. Pour
être efficace et lorsque le volume de données à sauvegarder est important, il faut placer
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Fig. 7.4: Durée d’une sauvegarde d’un volume de données de 20 Go en fonction du
nombre de serveurs de sauvegarde et du placement des serveurs de sauvegarde

les serveurs de sauvegarde au plus près des machines de calcul. Nos résultats montrent
une différence d’un facteur 4 entre le placement par switch et le placement naïf dans
l’ordre. Le placement aléatoire offre un compromis intéressant lorsque la topologie du
réseau de communication n’est pas connue.

Dans le cas du placement dans l’ordre, le point de congestion se situe au niveau
des liens de second niveau. En effet, ces liens offrent un débit de 3 Gb/s pour des
communications entre des groupes de 15 machines, tandis que les liens du premier niveau
offrent un débit de 1 Gb/s pour des communications associées à une seule machine.
Du point de vue d’une grille de calcul par rapport aux grappes qui la composent, le
phénomène est le même.

Enfin, la durée d’une sauvegarde diminue en fonction du nombre de serveurs de
sauvegarde. En effet, l’ajout de serveurs de sauvegarde permet d’augmenter la capacité
globale de réception du système et de détourner une partie des données sauvegardées
passant par le lien limitant vers les nouveaux serveurs ajoutés. Il faut noter que dans
notre cas, i.e. pour les grilles de calcul, les machines utilisées pour les serveurs de
sauvegarde sont les mêmes que celles qui sont utilisées par les processus de calcul.
Diminuer le nombre de machines dédiées aux calculs augmentera le temps d’exécution
de l’application. Il est donc nécessaire de réaliser un choix sur la proportion de machines
à utiliser pour réaliser des serveurs de sauvegarde par rapport aux machines utilisées
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pour les processus de calcul.

7.3.3.2 Influence de la taille de la sauvegarde

La durée de la sauvegarde est également influencée par le volume de données à
sauvegarder par l’application. Pour mettre en évidence ce phénomène, nous nous plaçons
dans des conditions similaires à celles de l’expérience présentée précédemment.

Nous utilisons 132 machines de la grappe d’Orsay de Grid’5000 : 120 machines sont
destinées aux processus de calcul et 12 machines sont utilisées pour les serveurs de
sauvegarde. Les serveurs de sauvegarde sont placés selon la configuration « par switch »
décrite à la section précédente.

L’application utilisée est une application itérative de décomposition de domaine.
Elle nous permet de fixer la quantité de données sauvegardées par l’application lors de
la sauvegarde en choisissant une taille adéquate pour le domaine de calcul.
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Fig. 7.5: Durée de la sauvegarde en fonction de la taille de la sauvegarde

La figure 7.5 montre la durée moyenne de la sauvegarde pour des tailles de sauvegarde
de 200 Mo, 2 Go et 20 Go. Ces mesures sont le résultat d’une quinzaine de mesures et
les écarts types sont de l’ordre de 1 %.

Sur les résultats obtenus, une augmentation de la taille de la sauvegarde d’un facteur
10 se traduit également par l’augmentation de la durée de sauvegarde d’un facteur 10. La
durée de la sauvegarde est proportionnelle au volume totale de données à sauvegarder3.

Dans le cas de la sauvegarde de 200 Mo, le débit global de sauvegarde, c’est-à-dire
le rapport de la taille de la sauvegarde sur la durée de la sauvegarde, est de 833 Mo/s

3Nous rappelons cependant que nous sommes dans un cas où les serveurs de sauvegarde sont
correctement placés et les données à sauvegarder sont réparties de manière équilibrée sur les processus.
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contre environ 1 250 Mo/s pour les tailles de sauvegarde de 2 Go et 20 Go. Ceci peut
s’expliquer par le fait que le temps mesuré prend en compte le cout de la coordination
des processus. Pour des grandes tailles de sauvegarde, ce cout est négligeable par rapport
au temps de transfert des données. Dans le cas de petites tailles de sauvegarde, cela
n’est plus vrai.

7.3.3.3 Influence du nombre de machines

Nous souhaitons également étudier le comportement de notre sauvegarde coordonnée
lorsqu’elle est utilisée avec un grand nombre de machines. Pour cela, nous réalisons une
expérience qui mesure le temps de sauvegarde de l’application et nous le comparons,
dans des conditions identiques, au temps de gestion de la cohérence mutuelle tel qu’il a
été étudié dans la section 6.3.

Nous utilisons une application de résolution du problème des N-reines. Cette appli-
cation compte le nombre de placements possibles de N dames d’un jeu d’échecs sur un
échiquier de N ×N cases, sans qu’elles ne se menacent mutuellement. L’algorithme de
résolution est récursif et il est écrit en Athapascan. L’application est exécutée par le
moteur d’exécution Kaapi en utilisant un ordonnancement par vol de travail.

Pour cette expérience, nous souhaitons prendre en compte uniquement le cout de
la sauvegarde sur un grand nombre de processus et éviter que les mesures ne soient
parasitées par d’autres éléments comme par exemple le temps de transfert des données.
Pour cela, nous nous plaçons dans les conditions expérimentales suivantes.
• L’application utilisée possède la caractéristique d’avoir un faible volume de données

à sauvegarder. La taille maximale constatée durant cette expérience pour la
sauvegarde totale de l’application (c’est-à-dire pour tous les processus compris)
ne dépassaient pas 14 Mo.
• Nous choisissons de placer les serveurs de sauvegarde au plus proche des processus

de calcul. Bien que cela ne corresponde pas à un cas d’utilisation réel, chaque
processus de calcul sauvegarde ses informations sur un serveur de sauvegarde
localisé sur la même machine.

Ces mesures ont été réalisées sur 879 machines de Grid’5000 de différents sites en
utilisant la disposition suivante.

Machines 1–138 139–283 284–403 404–537 538–670 671–748 749–879

Site Nancy Sophia Lille Bordeaux Rennes Toulouse Lyon

La figure 7.6 donne le temps de sauvegarde mesuré sur l’application des N-reines en
fonction du nombre de machines sur lequel est exécutée l’application. La figure montre
également, pour des conditions identiques, le temps d’exécution d’une reconfiguration
vide avec cohérence mutuelle. Les valeurs affichées sont des moyennes d’environ 90
mesures et les barres d’erreurs représentent l’écart type.

Ces résultats montrent que, lorsque la taille de la sauvegarde est petite, le cout de la
sauvegarde coordonnée est presque entièrement lié à la gestion de la cohérence mutuelle.
Dans les conditions de cette expérience, la sauvegarde complète de l’application des
N-reines s’exécutant sur plus de 800 machines dure environ 1 seconde.

Lorsque le volume de données à sauvegarder devient grand, le cout de la sauvegarde
dépend alors plus de la vitesse de transfert des données entre les processus de calcul et
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Fig. 7.6: Durée de la sauvegarde en fonction du nombre de machines. La taille totale
sauvegardée est au plus de 14Mo.

les serveurs de serveurs. Cette dernière dépend entre autres du réseau de communication
utilisé, du nombre de serveurs de sauvegarde et de leur placement.

7.3.3.4 Influence de la période de sauvegarde

Par cette expérience, nous cherchons à étudier l’influence de la sauvegarde sur
le temps d’exécution d’une application. Nous utilisons une application itérative de
résolution du problème de Poisson par décomposition de domaine. Cette application
présente la particularité d’avoir un état sauvegardé de taille constante au cours du
temps. La durée de la sauvegarde est donc quasiment la même à chaque étape.

Nous exécutons cette application sur un ensemble de 786 machines de Grid’5000
avec 86 serveurs de sauvegarde. Le temps d’exécution mesuré pour 100 itérations de
cette application est de 185,4 secondes. Ce temps sert de référence pour évaluer le
surcout engendré par les sauvegardes. La durée moyenne d’une sauvegarde est de 18,7
secondes et la taille de chaque sauvegarde de l’application complète représente 12 Go.

Les résultats de cette expérience sont représentés sur la figure 7.7. Le temps de
sauvegarde correspond au temps cumulé par l’application pour effectuer ses sauvegardes,
tandis que le temps de calcul indique le temps cumulé à s’exécuter normalement, i.e.
en dehors des sauvegardes. Les mesures ont été réalisées pour 0 (temps de référence), 2,
4 et 10 sauvegardes durant les 100 itérations de l’exécution de l’application.

La majorité du surcout des exécutions avec sauvegardes est lié au temps passé à
sauvegarder les données de l’application. Pour cette application, ce surcout est assez
facilement prévisible puisqu’il correspond à la durée d’une étape de sauvegarde multipliée
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Fig. 7.7: Temps d’exécution de l’application en fonction du nombre de sauvegardes
sur 786 machines de Grid’5000 en utilisant au total 86 serveurs de sauvegarde (soit en
moyenne 9 machines pour 1 serveur)

par le nombre de sauvegardes réalisées. Ceci est principalement dû au fait que la durée
d’une sauvegarde est prévisible car le volume de données sauvegardées à chaque étape
est constant.

Nous remarquons également que le temps de calcul augmente légèrement avec
le nombre de sauvegardes réalisées. Sans avoir précisément recherché la cause de ce
phénomène, nous conjecturons qu’il est provoqué par les perturbations provoquées
par chaque sauvegarde sur la charge du réseau et sur l’ordonnancement des calculs.
Cependant, cette augmentation reste négligeable par rapport au surcout induit par la
sauvegarde proprement dite.

Du fait du temps nécessaire pour garantir la cohérence mutuelle des processus
et pour sauvegarder l’état de l’application, le protocole de sauvegarde coordonnée
induit un surcout par rapport à une exécution normale d’une application, même sans
panne. Connaitre ce surcout et arriver à le prédire permet de déterminer la période de
sauvegarde optimale à utiliser durant l’exécution [163, 41]. Cependant, il est nécessaire
de connaitre les caractéristiques de l’application, par exemple être capable de prédire le
volume de données sauvegardées.
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7.3.4 Améliorations possibles

Plusieurs solutions sont possibles pour améliorer les performances de ce protocole
de sauvegarde coordonnée bloquante. Nous proposons ici des améliorations pour chacun
des trois aspects suivants : la coordination des processus, le volume des données à
sauvegarder et la durée de l’étape de sauvegarde locale.

Sauvegarde entre itérations. La sauvegarde entre itérations s’applique uniquement
au cas d’une application qui s’exécute par ordonnancement statique. Elle permet de
réduire la coordination nécessaire entre les processus4 en utilisant la synchronisation
implicite qui est présente dans le mécanisme d’exécution par ordonnancement statique.
En effet, cette synchronisation garantit les propriétés de cohérence et d’accessibilité et
peut donc permettre d’éviter l’appel aux fonctions de gestion de la cohérence mutuelle
acquire_mutual_consistency() et release_mutual_consistency(). Ceci permet
de réaliser une version spécialisée de la sauvegarde coordonnée qui ne peut sauvegarder
l’état de l’application qu’entre les itérations. De plus, cette sauvegarde entre itérations
permet également de réduire la quantité de données sauvegardées puisque les données
temporaires internes à chaque itération n’ont donc pas besoin d’être sauvegardées.

Sauvegarde incrémentale. Le principe de la sauvegarde incrémentale est de ne
sauvegarder que les données qui ont été modifiées depuis la dernière sauvegarde. Ceci
permet de réduire le volume de données à sauvegarder car toutes les données ne sont
pas forcément modifiées entre chaque étape de sauvegarde. Généralement la sauvegarde
incrémentale utilise le bit de modification des pages mémoires des mécanismes de gestion
de mémoire virtuelle pour connaitre les données qui ont été modifiées depuis la dernière
sauvegarde [118].

Dans Kaapi, nous proposons une solution dont le grain est la donnée partagée
Athapascan. En effet, en analysant le graphe de flot de données, il est possible de
déterminer les données qui ont été modifiées par le calcul : ce sont au plus celles qui
ont un accès en écriture ; les données avec seulement un accès en lecture pourraient
n’être sauvegardées qu’une seule fois pour toute l’exécution. Le volume des données à
sauvegarder peut alors être réduit.

Émission asynchrone de la sauvegarde. La sauvegarde locale de l’état du pro-
cessus est une opération bloquante du protocole de sauvegarde coordonnée puisque le
calcul ne peut pas reprendre tant que la sauvegarde locale n’est pas terminée au risque
de corrompre l’état sauvegardé. En particulier, le cout de cette sauvegarde locale peut
être important si le volume de données représentant l’état du processus est grand et si
ces données sont émises par le réseau qui constitue alors un goulot d’étranglement.

La solution à ce problème consiste à effectuer une copie locale, synchrone et rapide,
de l’état puis d’effectuer l’émission, plus lente, des données de manière asynchrone vers
la mémoire stable. La sortie du point local de reconfiguration peut alors s’effectuer dès
la fin de la copie pour permettre la reprise du calcul au plus tôt. Sur certains systèmes, il
est possible d’implémenter ce mécanisme de manière efficace en utilisant l’appel système

4Bien que ce cout de coordination soit relativement faible comme cela a été montré par les expériences
de la section 6.3.
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fork qui effectue une copie paresseuse5 de l’espace mémoire du processus. Le processus
père peut alors continuer les étapes de la sauvegarde tandis que le processus fils réalise
la sauvegarde distante de son état. Ceci permet de sauvegarder l’état du processus tel
qu’il était au moment de l’appel fork et permet de reprendre le calcul plus rapidement
car la durée de l’étape de sauvegarde locale est réduite.

Pour résumer, cette optimisation réduit la durée de chaque sauvegarde locale et
ainsi le temps pendant lequel chaque processus ne calcule pas. Cependant, le processus
coordinateur doit toujours attendre la réception de tous les acquittements pour valider
la sauvegarde. Ceci n’est pas gênant puisque cette attente est réalisée dans un processus
léger dédié et que pendant ce temps le calcul peut continuer.

7.4 Conclusion

Ce chapitre a présenté les mécanismes nécessaires à la mise en place de la tolérance
aux fautes dans un intergiciel et, plus particulièrement dans le cas du moteur d’exécution
Kaapi. Nous avons vu comment ces composants sont organisés et interagissent entre
eux.

Bien que tous ces composants aient leur importance pour obtenir un mécanisme de
tolérance aux fautes efficace et performant, nos travaux portent essentiellement sur les
protocoles de sauvegarde et de reprise.

Le reste de ce chapitre s’est porté sur la sauvegarde coordonnée. Nous avons explicité
l’état global d’une application Kaapi et présenté le protocole de sauvegarde coordonnée
qui repose sur les mécanismes de reconfiguration de la partie II. En particulier, l’implé-
mentation de la sauvegarde coordonnée est simplifiée puisqu’elle est vue comme une
reconfiguration avec cohérence mutuelle de l’ensemble des processus de l’application, qui
utilise la sauvegarde locale de l’état d’un processus comme fonction de reconfiguration.

Enfin, nous avons mené une série d’expériences qui ont permis de mettre en évidence
les couts d’un tel mécanisme de sauvegarde coordonnée. Il en ressort principalement
que ce cout est dépendant du nombre et du placement des serveurs de sauvegarde.
La taille des données est un paramètre majeur puisque la durée de la sauvegarde
est généralement proportionnelle à la quantité de données sauvegardées. Grâce aux
mécanismes de reconfiguration de la partie II, le cout de la coordination reste faible même
pour un millier de machines. De plus, dès lors que la taille des données à sauvegarder est
suffisamment grande, le temps de coordination devient négligeable comparé au temps
de transfert des données.

C’est pourquoi les meilleurs moyens pour améliorer les performances de la sauvegarde
consistent à réduire le volume des données sauvegardées (grâce à des techniques comme
la sauvegarde incrémentale ou la compression) ou à améliorer le temps de transfert
entre les processus de calcul et les serveurs de sauvegarde.

La sauvegarde coordonnée présentée dans ce chapitre est utilisée par les techniques
de reprise globale et de reprise partielle qui consistuent la suite de nos travaux. Ces
deux techniques sont présentées respectivement dans les chapitres suivants 8 et 9.

5Les pages mémoires sont partagées entre les deux processus et la copie n’est réellement effectuée
que lorsqu’un des deux processus modifie sa mémoire.
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8.1 Introduction

Ce chapitre présente le protocole de reprise globale qui est une technique classique
qui permet de reprendre l’exécution après une panne. Cette reprise est utilisée en
conjonction avec la sauvegarde coordonnée présentée dans le chapitre précédent à la
section 7.3.

Dans la section suivante, nous présentons rapidement l’intégration de ce protocole
dans Kaapi et la problématique liée à l’utilisation de machines de rechange pour le
redémarrage. Nous utiliserons tout au long de ce chapitre une application de décom-
position de domaine qui résout un problème de Poisson en trois dimensions (3D) par
une méthode aux différences finies. Cette application est représentative, de part son
schéma de communication et des volumes de données, de beaucoup d’applications en
calcul scientifique.

La section 8.3 présente une modélisation du processus de reprise. La section 8.4
étudie les effets de la sur-décomposition sur la vitesse d’exécution à la reprise. Enfin, le
principe de sur-décomposition est mis en pratique avec la technique de reprise globale
dans les expériences présentées dans la section 8.5.

8.2 Protocole de reprise globale

La reprise globale est la méthode de reprise classique associée à la sauvegarde
coordonnée. Elle est présentée à la section 2.4.2.2. Le principe de cette méthode est
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simplement de recharger l’état de l’application tel qu’il a été sauvegardé lors de la
dernière étape de sauvegarde. Ainsi tous les processus reprennent le calcul au moment
de la dernière sauvegarde.

Nous abordons maintenant deux aspects liés à la reprise : sa cohérence et l’utilisation
de machine de remplacement.

Cohérence de la reprise. La cohérence de cette reprise globale repose sur le fait que
la sauvegarde coordonnée enregistre un état global cohérent de l’état de l’application.
La cohérence de l’état global de l’application est garantie au moment de la sauvegarde,
la reprise peut donc s’effectuer de manière transparente.

Dans notre cas, nous utilisons une sauvegarde coordonnée bloquante présentée à
la section 7.3. L’état global sauvegardé vérifie à la fois la propriété de cohérence et la
propriété d’accessibilité de l’état. Comme expliqué dans le chapitre 5, l’accessibilité
signifie que les canaux de communication sont vides. La reprise globale nécessite donc
uniquement de rétablir l’état des processus.

Machines de rechange. Les méthodes classiques de reprise globale nécessitent
généralement des machines de rechange pour remplacer les machines défaillantes. Ceci
est en réalité une contrainte liée à la méthode de sauvegarde de l’état local et au moteur
d’exécution.

En effet, lorsque l’état d’un processus est sauvegardé au niveau système, c’est-à-dire
sous forme d’un espace mémoire (cf section 2.5.1), le seul moyen de rétablir l’état
du processus est de recréer le processus. Bien qu’il soit possible de placer plusieurs
processus de calcul sur la même machine, cela peut provoquer un déséquilibre de
charge qui ralentira l’exécution après la reprise. C’est pourquoi, ces méthodes suggèrent
l’utilisation d’une machine de rechange.

Alternativement, si l’état des processus est sauvegardé au niveau de l’intergiciel,
c’est-à-dire sous forme d’une représentation abstraite (cf section 2.5.1), il est alors
possible de recharger l’état de plusieurs processus dans un même processus. Couplé à un
algorithme d’ordonnancement capable de rééquilibrer la charge de calcul de l’application,
cette solution permet de se passer de machines de rechange.

Puisque Kaapi possède ces deux caractéristiques (une sauvegarde de l’état sous
forme d’une représentation abstraite et des algorithmes d’ordonnancement capables de
rééquilibrer la charge), nous choisissons de nous intéresser à la reprise sans l’utilisation
de machine de rechange. Nous motivons de plus ce choix par son aspect pragmatique.
En effet, pour utiliser des machines de rechange pour la reprise, il est nécessaire d’avoir
réservé des machines à cet effet qui auraient pu soit servir à cette application ou à
d’autres, ou bien d’attendre la réparation des machines défaillantes ou la disponibilité
d’autres machines.

8.3 Modélisation de la reprise

Pour évaluer le cout de la reprise globale, nous modélisons le processus de reprise
pour différencier les différentes étapes qui la compose. Cette modélisation est illustrée
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sur la figure 8.1.

Travail
effectué

États : Exécution Sauvegarde Garde Reprise

Wperdu

Tsauvegarde Tperdu Tgarde Treprise Tréexécution
Temps

Tpanne

Fig. 8.1: Modélisation de la reprise après une panne

Durant l’exécution, le moteur d’exécution peut prendre quatre états différents. En
fonctionnement sans panne, le moteur d’exécution est soit dans l’état Exécution, soit
dans l’état Sauvegarde. L’état Exécution signifie que le moteur d’exécution exécute le
travail de l’application. L’état Sauvegarde correspond à la période où le calcul est arrêté
pour réaliser une sauvegarde de l’état de l’application. Lorsque le moteur d’exécution
détecte une panne, il passe dans l’état Garde. Il demeure dans cet état tant que le
délai de garde n’est pas passé (cf section 7.2.2). L’exécution du protocole de reprise
correspond à l’état Reprise.

La courbe de la figure 8.1 montre l’évolution du travail effectué par l’application selon
les différents états du moteur d’exécution. Le calcul de l’application ne progresse que
lorsque le moteur d’exécution est dans l’état Exécution. En effet, durant la sauvegarde,
le calcul est arrêté pour réaliser la sauvegarde de l’état de l’application. De même,
l’apparition d’une panne empêche le calcul de progresser puisqu’un processus (et donc
une partie des données) a disparu. À la fin de la reprise globale, l’état de l’application
de la dernière sauvegarde est rétabli. La quantité de travail effectuée redescend donc au
niveau de celui de la dernière étape de sauvegarde.

Grâce à cette modélisation, nous pouvons identifier les grandeurs importantes que
nous utiliserons pour évaluer le protocole de reprise globale. Ces grandeurs sont indiquées
sur la modélisation proposée à la figure 8.1.
• Le temps de sauvegarde est noté Tsauvegarde. Dans notre modèle, il correspond

au temps d’arrêt du calcul lors de la sauvegarde.
• La quantité de travail perdu, notée Wperdu, correspond au travail qui a été
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exécuté par l’application entre la dernière sauvegarde et la panne. Ce travail est
perdu puisqu’il a déjà été exécuté mais qu’il devra être réexécuté pour terminer
l’exécution de l’application.
• Le temps perdu, noté Tperdu, correspond au temps qui a été nécessaire pour

exécuter le travail perdu.
• Tgarde est le temps de la garde pendant lequel le moteur d’exécution attend la

détection d’autres pannes. Ce temps correspond au temps entre la détection de la
panne et la décision de la reprise. Il correspond au délai de garde si aucune autre
panne ne se produit durant cette période.
• Le temps de reprise, noté Treprise, est le temps nécessaire pour exécuter le pro-

tocole de reprise, en particulier pour recharger l’état sauvegardé de l’application.
• Le temps de réexécution du travail perdu est noté Tréexécution. Il correspond

au temps d’exécution nécessaire pour que l’application retrouve la même quantité
de travail qu’elle avait juste avant que la panne se produise.

Nous notons alors Tpanne, le surcout induit par la panne comparé à une exécution
sans panne. Dans notre modèle, il s’exprime de la manière suivante :

Tpanne = Tgarde + Treprise + Tréexécution

Pour limiter l’impact d’une panne sur l’exécution d’une application, il faut réduire
Tpanne, et donc les trois grandeurs Tgarde, Treprise et Tréexécution.

La grandeur Tgarde est liée au délai de garde qui est une valeur configurable. Le
délai de garde est indépendant du protocole de reprise et mais il est lié à la qualité des
détecteurs de pannes. Plus les détecteurs de pannes sont réactifs, plus le délai de garde
peut être diminué. Avec un délai de garde trop faible, le risque est de lancer le protocole
de reprise sans avoir détecté toutes les pannes, ce qui provoquera l’échec le reprise1.
Pour ces raisons, nous ne nous intéresserons pas à cette valeur et nous la considèrerons
comme fixée.

La grandeur Treprise est intrinsèquement liée au protocole de reprise. Ce temps prend
en compte le temps nécessaire pour recharger l’état des processus défaillants et le cout
de l’algorithme qui reconstruit ou vérifie la cohérence de l’état global obtenu. Une
manière de réduire Treprise est d’améliorer les performances de la mémoire stable de
manière à rendre les opérations d’interrogation et de recouvrement plus rapides.

Dans ce manuscrit nous nous intéressons principalement à réduire la grandeur
Tréexécution. Dans la suite de ce chapitre, nous étudierons comment réduire cette grandeur
pour la reprise globale grâce à la technique de sur-décomposition. Dans ce cas, la quantité
de travail perdu Wperdu correspond exactement au travail exécuté entre la dernière
sauvegarde et la défaillance. Alternativement, nous proposerons dans le chapitre 9 un
protocole de reprise partielle qui permet de réduire la quantité de travail perdu Wperdu.
Ce qui permet grâce à un réordonnancement adéquate de diminuer le temps Tréexécution
de réexécution du travail perdu.

8.4 Effet de la sur-décomposition

Dans le but d’expliquer l’effet de la sur-décomposition sur la reprise globale, nous
proposons d’abord dans cette section une modélisation d’une application cible de notre

1Mais une nouvelle reprise peut toujours être relancée.
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mécanisme de tolérance aux fautes par sauvegarde coordonnée et reprise. L’application
considérée est une application itérative de calcul scientifique de type décomposition de
domaine.

Ensuite nous présentons le principe de sur-décomposition d’une application et nous
étudions ses effets sur l’exécution avant et après la panne.

8.4.1 Modélisation d’une application

Nous considérons le problème de Poisson sur un domaine de calcul en trois di-
mensions2. L’application calcule la solution de ce problème d’EDP classique par un
schéma aux différences finies dont le système linéaire résultant est résolu par la méthode
itérative de Jacobi. À chaque itération, chaque élément du domaine de calcul est mis à
jour grâce à la valeur de ses voisins. Au fur et à mesure des itérations, le domaine de
calcul converge vers la solution du problème de Poisson qui est un point fixe.

Élément du domaine

Domaine de calcul

Sous-domaines voisins

Sous-domaine

Fig. 8.2: Décomposition d’un domaine de calcul

Le domaine de calcul est un ensemble de points ; ces points sont appelés éléments
du domaine. Les éléments du domaine sont généralement des nombres réels représen-
tés par le type double. Le domaine de calcul complet est découpé en d sous-domaines
qui regroupent chacun plusieurs éléments du domaine. Ces sous-domaines représentent
l’unité de base du calcul. Nous définissons les voisins d’un sous-domaine comme les
sous-domaines adjacents au sous-domaine considéré qui interviennent dans le calcul
pour la mise à jour du sous-domaine. Ces définitions sont illustrées à la figure 8.2.

Le graphe de flot de données Athapascan de l’application de résolution selon la
méthode de Jacobi est défini à partir de la décomposition en sous-domaine du domaine
de calcul. Ainsi, à chaque sous-domaine de calcul est associée une donnée partagée
Athapascan. À chaque itération du calcul, la mise à jour du domaine complet est
réalisée par la mise à jour de chaque sous-domaine par l’intermédiaire d’une tâche de
calcul Athapascan3. Cette tâche de calcul dépend du sous-domaine à mettre à jour

2Pour des soucis de clarté, les figures présenterons un domaine en une ou deux dimensions.
3Ceci correspond juste à une description simplifiée, la vraie application est plus complexe.
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et de la valeur des sous-domaines voisins à l’itération précédente. Le graphe de flot de
données résultant est donné à la figure 8.3.

Update Update Update Update Update UpdateItération 1

Update Update Update Update Update UpdateItération 2

dom[1].0 dom[2].0 dom[3].0dom[0].0 dom[4].0 dom[5].0Version 0

dom[1].1 dom[2].1 dom[3].1dom[0].1 dom[4].1 dom[5].1Version 1

dom[1].2 dom[2].2 dom[3].2dom[0].2 dom[4].2 dom[5].2Version 2

dom[0] dom[1] dom[2] dom[3] dom[4] dom[5]

Domaine

Fig. 8.3: Graphe de flot de données simplifié d’une méthode de Jacobi sur quatre
sous-domaines. Le graphe représentent les dépendances d’un problème de Poisson en
une dimension (1D) représenté en haut de la figure.

8.4.2 Sur-décomposition

L’approche la plus simple pour paralléliser une application par décomposition de
domaine sur n processeurs est d’utiliser une découpe en n sous-domaines. Chaque
sous-domaine est alors affecté à un processeur et, inversement, chaque processeur ne
travaille que sur un sous-domaine. Cette approche classique est couramment utilisée,
notamment avec le modèle de programmation MPI. En effet, le code est plus simple car
il ne nécessite pas de gérer plusieurs sous-domaines par processeur.

Cette approche présente l’inconvénient de lier le découpage, et donc la parallélisation
au nombre de processeurs disponibles pour exécuter le calcul. L’équilibrage de charge est
réalisé au moment de la découpe et il est donc dépendant du nombre de processeurs sur
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lequel l’application s’exécute. Il peut difficilement être remis en cause durant l’exécution,
en particulier si le nombre de processeurs disponibles change.

La sur-décomposition est une approche qui vise à découper le domaine de calcul
en un nombre de sous-domaines d très supérieur au nombre n de processeurs. L’objectif
est alors d’avoir une découpe en sous-domaines qui peuvent être placés plus librement
sur les processeurs. On dit alors qu’elle est indépendante du nombre de processeurs
utilisés pour l’exécution. L’ensemble des sous-domaines sont alors repliés sur l’ensemble
des processeurs disponibles. Ceci est réalisé dans Kaapi grâce au mécanisme de par-
titionnement statique présenté à la section 4.3.2.3. Un exemple de regroupement est
illustré à la figure 8.4.

Update Update Update

dom[0].0 dom[1].0 dom[2].0

dom[0].1 dom[1].1 dom[2].1

dom[3].0 dom[4].0 dom[5].0

Update Update Update

dom[3].1 dom[4].1 dom[5].1

Processeur 1 Processeur 2

(a) Regroupement sur 2 processeurs

Update Update

dom[0].0 dom[1].0

dom[0].1 dom[1].1

dom[4].0 dom[5].0

Update Update

dom[4].1 dom[5].1

dom[2].0 dom[3].0

Update Update

dom[2].1 dom[3].1

Processeur 1 Processeur 2 Processeur 3

(b) Regroupement sur 3 processeurs

Fig. 8.4: Regroupement des calculs après sur-décomposition : le parallélisme de l’ap-
plication est décrit de manière indépendante du nombre de processeurs. Dans ce cas
particulier, le choix du nombre de sous-domaines et du nombre de processeurs fait que
chaque processeur reçoit un même nombre de tâches.

Le sous-domaine correspond donc au grain de calcul, c’est-à-dire celui qui est utilisé
pour réaliser l’ordonnancement. Pour un domaine de calcul fixé, un plus grand nombre
de sous-domaines implique un temps de calcul par sous-domaine plus petit. On appellera
grain ce temps d’exécution d’une tâche sur un sous-domaine. À cela deux conséquences :
le nombre de tâches qui composent l’application est plus important mais ces tâches
ont un grain plus faible. La charge peut être équilibrée plus facilement sur un nombre
quelconque de processeurs.

La sur-décomposition est présentée ici car elle présente de bonnes propriétés vis-à-vis
d’une exécution en présence de fautes. Elle offre en particulier plus de flexibilité sur
l’ordonnancement lorsque le nombre de processeurs varie, à cause des pannes, et qu’il
n’y a pas de machines de rechange. Ces bonnes propriétés de la sur-décomposition sont
présentées dans les sections suivantes.

8.4.3 Exécution avant et après une panne

Nous considérons l’application modélisée à la section 8.4.1 et nous allons évaluer le
temps d’exécution d’une itération selon la décomposition utilisée. Pour cette évaluation,
nous choisissons d’ignorer les communications et de prendre uniquement en compte les
calculs. Nous supposons également que les processeurs sont homogènes.

Pour cette application et pour un domaine de calcul fixé, nous notons W le travail
correspondant à la mise à jour du domaine complet.W représente donc le travail effectué
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durant une itération de l’application.
Nous notons également T dn le temps d’exécution du travail W découpé en d sous-

domaines sur n processeurs. T 1
1 , également noté T , correspond donc au temps d’exécution

séquentiel sans découpage du domaine de calcul. Pour une exécution sur n processeurs,
le temps d’exécution optimal (i.e. le plus petit) correspond à une découpe en n sous-
domaines et il est noté T nn .

Avant une panne. De manière générale, pour une découpe en d sous-domaines,
le temps d’exécution de chaque sous-domaine est T

d
. De plus, la modélisation de

l’application de la section 8.4.1 nous permet de considérer qu’au sein d’une itération,
les tâches de calcul associées à chaque sous-domaine peuvent être exécutées de manière
indépendante.

Il en découle que si les d sous-domaines sont répartis de manière équilibrée sur n
processeurs, on obtient alors un nombre maximal de

⌈

d
n

⌉

par processeurs. Le chemin
critique de l’exécution d’une itération correspond au processeur auquel est associé
le plus de sous-domaines. On obtient un temps d’exécution pour une découpe en d
sous-domaines sur n processeurs de

⌈

d
n

⌉

× T
d
.
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Fig. 8.5: Temps d’exécution sur 1000 machines par rapport à l’optimal en fonction du
nombre de sous-domaines d de la décomposition

Pour une décomposition en d sous-domaines et une exécution en n machines, le
temps d’exécution est T dn ; nous le comparons au temps d’exécution optimal qui est T nn .

T dn
T nn

=

⌈

d

n

⌉

×
n

d
≤ 1 +

n

d
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La figure 8.5 montre ce temps d’exécution par rapport à l’optimal en fonction du
rapport de sur-décomposition (i.e. d

n
). Pour une sur-décomposition d

n
> 100, le surcout

théorique du temps d’exécution est de moins de 1 %.

Après une panne. Nous étudions maintenant le cas de la panne de p machines et
nous supposons qu’il y a pas de machine de rechange disponible. L’exécution peut
continuer mais seulement sur n− p machines. Dans ce cas là, l’optimal est T n−pn−p .

Le protocole de reprise globale permet de redémarrer l’application mais le découpage
utilisé avant la panne reste le même. La perte des machines défaillantes provoque
un déséquilibre de la charge. Pour une décomposition exacte en n, le travail peut
difficilement être rééquilibré après la panne puisque l’unité de calcul est trop grosse.
Dans le cas d’une sur-décomposition, le grain de calcul est suffisamment petit pour
permettre un rééquilibrage proche de l’optimal.

Avant la panne, exécution
sur n machines

Après la panne, exécution
sur n− p machines

Décomposition
exacte en n

T nn = T
n

T nn−p =
⌈

n
n−p

⌉

× T
n

Décomposition
en d

T dn =
⌈

d
n

⌉

× T
d

T dn−p =
⌈

d
n−p

⌉

× T
d

Tab. 8.1: Temps d’exécution en fonction du type de décomposition et du nombre de
machines avant et après une panne

Le tableau 8.1 donne un récapitulatif du temps d’exécution d’une itération en
fonction des différentes conditions suivant notre modèle.

En prenant en compte les pannes, nous obtenons le rapport du temps d’exécution
sur le temps optimal :

T dn−p
T n−pn−p

=

⌈

d

n− p

⌉

×
n− p

d
≤ 1 +

n− p

d
≤
n

d

T d1000−p/T
1000−p
1000−p p = 0 p = 1 p = 10 p = 100 p = 500

d = 1 000 1 1,998 1,98 1,8 1

d = 10 000 1 1,0989 1,089 1,08 1

d = 100 000 1 1,0090 1,0098 1,008 1

d = 1 000 000 1 1,0010 1,0009 1,0008 1

Tab. 8.2: Ratio du temps d’exécution sur 1000− p machines par rapport à l’optimal
après la panne de p machines pour une décomposition en d

Le tableau 8.2 donne la valeur du rapport T d1000−p/T
1000−p
1000−p qui correspond à une

exécution sur 1000 machines. Les valeurs de ce tableau sont représentées dans le
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Fig. 8.6: Temps d’exécution sur 1000 − p machines par rapport à l’optimal après la
panne de p machines

diagramme en bâtons de la figure 8.6. Le cas d = 1000 correspond au cas de la
décomposition exacte avant la panne. Nous observons que la décomposition exacte
offre un temps optimal avant la panne. Cependant, en cas de panne et si les machines
défaillantes ne peuvent pas être remplacées, le temps d’exécution est presque à un facteur
2 de l’optimal. La sur-décomposition (d ≫ n) permet d’avoir un temps d’exécution
proche de l’optimal à un facteur n

d
.

Il est important de constater que ces résultats influencent à la fois le temps de
réexécution du travail perdu Tréexécution mais également le temps d’exécution de toutes
les itérations postérieures à la reprise jusqu’à la venue de machines de rechange. Le
gain apporté par la sur-décomposition bénéficie donc à tout le reste de l’exécution.

Nous allons présenter dans la section suivante, les expériences réellement menées sur
une telle application et sur des machines de Grid’5000. Nous verrons que l’hypothèse
implicite prise ci-dessus, qui considère un surcout de gestion des sous-domaines nul,
n’est qu’une première approximation. Ces expériences vont nous permettre de mettre
en évidence l’effet de la sur-décomposition sur l’exécution après la reprise.

8.5 Expérimentations

Nous étudions l’influence de la sur-décomposition sur la vitesse d’exécution d’une
application pour une exécution sur une ou plusieurs machines. Puis, nous mettons en
évidence de manière pratique le gain que la sur-décomposition apporte sur la vitesse
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d’exécution après une reprise globale. Enfin, nous détaillons les différents couts engendrés
par une reprise globale.

8.5.1 Influence de la sur-décomposition

Pour étudier l’effet de la sur-décomposition sur le temps de calcul d’une application,
nous utilisons une application itérative de décomposition de domaine sur un domaine en
3 dimensions. Cette application correspond à la description donnée dans la section 8.4.1.
Elle est écrite avec le langage Athapascan et son extension présentée à la section 4.2.2.
Elle est exécutée grâce au moteur d’exécution Kaapi. Cette application présente la
caractéristique suivante : si les conditions ne changent pas, le temps d’exécution d’une
itération, c’est-à-dire le temps de mise-à-jour de tous les domaines, est constant.

Pour réaliser cette expérience, nous fixons le domaine de calcul sur un processeur à
107 nombres réels de type double, soit environ 76 Mo. De manière à évaluer la vitesse
d’exécution de l’application, nous mesurons le temps d’exécution d’une itération pour
différentes décompositions. Ces mesures sont réalisées pour une exécution sur 1 machine
et pour une exécution sur 100 machines. De plus, sur chaque machine, un cœur de
calcul est utilisé. Dans tous les cas, nous conservons un domaine de calcul par machine
fixé à 107 réels ; donc pour l’exécution sur 100 machines, le domaine total de calcul est
de 100× 107 = 109 réels, soit environ 7,6 Go.
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Fig. 8.7: Temps d’exécution d’une itération en fonction de la sur-décomposition utilisée

Les mesures ont été réalisées sur la grappe Griffon du site de Nancy de Grid’5000.
La figure 8.7 montre les résultats des mesures. Les valeurs tracées sont la moyenne des
temps mesurés pour une centaine d’itérations et les écarts types sont affichés autour de
chaque point sous forme de barres d’erreur. L’axe des abscisses indique la décomposition
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8 Reprise globale

utilisée pour le calcul : un nombre d de sous-domaines signifie que le domaine de 107

réels est découpé en d blocs de 107/d réels.

Nous nous intéressons tout d’abord à la courbe des temps d’itération sur 1 machine.
Le temps d’une itération de mise à jour du domaine de calcul pour une décomposition
en 1 ou 2 sous-domaines est d’environ 0,4 secondes. À partir d’une décomposition en 3
sous-domaines, le temps d’exécution diminue d’environ 35 % à 0,25 secondes. En effet,
à partir d’un découpage en 3 sous-domaines, la petite taille des blocs permet de réduire
les défauts de cache lors de la mise à jour du domaine et donc d’accélérer le calcul.

Ensuite, à partir de 3 sous-domaines, le temps d’une itération augmente faiblement
de manière linéaire en fonction du nombre de sous-domaines. Ce surcout lié au nombre
de sous-domaines est le cout de gestion du parallélisme. Il correspond aux opérations
arithmétiques supplémentaires nécessaires pour permettre la parallélisation (i.e. le
découpage) tout en garantissant un résultat identique du calcul.

Une partie de ce surcout vient de l’algorithme utilisé pour effectuer le calcul en
parallèle (ou en utilisant plusieurs sous-domaines). Par exemple, sur l’algorithme de dé-
composition de domaine utilisé lors de cette expérience, ces surcouts sont principalement
dus à la gestion des frontières de chacun des sous-domaines.

L’autre partie de ce surcout vient du moteur d’exécution utilisé et en particulier de la
gestion des structures de données utilisées. Le programme Athapascan correspondant
à cet exemple crée un nombre de tâches proportionnel au nombre de sous-domaines
utilisés pour le calcul. La gestion de ces tâches a un cout à l’exécution.

Pour la courbe des temps d’itération sur 100 machines, le domaine de calcul par
machine est le même que pour l’exécution sur 1 machine. La quantité de calcul par
machine est la même. Cependant, les machines doivent communiquer pour échanger les
frontières de leur domaine de calcul.

La courbe correspondant à l’exécution sur 100 machines présente la même forme que
la courbe sur 1 machine. Cependant, elle est décalée vers le haut. Ce décalage correspond
au surcout des communications. Ce décalage est de l’ordre de 0,05 seconde pour un
nombre de sous-domaines faible, et il est de l’ordre 0,1 seconde pour 100 sous-domaines
par machine.

Nous avons montré expérimentalement le bénéfice que peut apporter la sur-décom-
position sur la vitesse d’exécution. Deux phénomènes sont mis en évidence : les effets
de cache, qui permettent d’augmenter la vitesse du calcul lorsque la taille des sous-
domaines passe en dessous d’un certain seuil, et le surcout de gestion du parallélisme,
qui augmente proportionnellement au nombre de sous-domaines utilisés.

Il faut impérativement remarquer que ces phénomènes sont dépendants de nombreux
paramètres. L’algorithme de calcul utilisé par l’application, la taille et la forme des
domaine et également le découpage ont chacun leur influence.

8.5.2 Influence des pannes

Cette section propose d’étudier l’influence des pannes sur la vitesse d’exécution de
l’application en fonction de la sur-décomposition utilisée. Le but de cette expérience est
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de se comparer aux résultats présentés à la figure 8.6 obtenus à partir de la modélisation
de la section 8.4.

Pour cela, nous utilisons la même application que celle utilisée à la section précédente
et les mêmes conditions expérimentales. Nous exécutons l’application sur 100 machines
en utilisant un domaine identique : un domaine total de 109 réels, soit 107 réels par
machine.

Pour cette expérience, nous simulons la panne de p machines et redémarrons l’appli-
cation, sans machine de rechange, sur les 100− p machines restantes. Nous mesurons
alors le temps d’exécution d’une itération une fois le redémarrage terminé.

Les mesures sont réalisées pour des décompositions du domaine global (i.e. pour
100 les machines) entre 100 et 10000 sous-domaines, et pour des pannes de 0 (i.e. avant
la panne) et de 1 à 50 machines.
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Fig. 8.8: Temps d’exécution d’une itération sur 100− p après la panne de p machines
pour différentes sur-décompositions

Le diagramme en bâtons de la figure 8.8 rapporte les résultats des mesures effectuées.
Les valeurs affichées correspondent à la moyenne des temps de 200 itérations. Ce
diagramme est à comparer avec celui de la figure 8.6 page 168. Cependant, il est
important de noter les différences suivantes.
• Le diagramme issu de la modélisation de la section 8.4 représente une exécution

sur 1000− p machines et un taux de sur-décomposition de 1 à 1000 fois le nombre
de machines. Quant à lui, le diagramme issu des expériences correspond à une
exécution sur 100− p machines avec un taux de sur-décomposition de 1 à 100 fois
le nombre de machines.
• Le diagramme de la figure 8.8 issu des résultats expérimentaux n’est pas normalisé

par rapport au temps d’exécution optimal.
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• Enfin, le modèle présenté à la section 8.4 qui est utilisé pour réalisée la figure 8.6
ne prend pas en compte les phénomènes d’effets de cache et de surcout de gestion
du parallélisme qui ont été mis en évidence dans la section 8.5.1.

Pour revenir aux résultats expérimentaux de la figure 8.8, nous remarquons tout
d’abord que, pour un nombre de pannes fixé, le temps d’exécution pour différentes
décompositions suit la même forme que la courbe qui a été présentée dans l’expérience
de la section précédente (figure 8.7). Ceci est particulièrement vrai pour les cas où le
nombre de sous-domaines par machines est équilibré (0 et 50 pannes).

De même, pour une décomposition fixée, le temps d’exécution d’une itération
augmente en fonction du nombre de pannes. Comme le domaine total de calcul reste le
même et que le nombre machines participant à l’exécution diminue (100 − p), il y a
plus de travail par machine. Ainsi, le temps d’exécution d’une itération après le panne
de 50 machines est deux fois plus long que sur 100 machines (i.e. avant la panne).

Les cas « Avant la panne » et « Après 50 pannes » sont les cas où le travail
est équilibré quelle que soit la décomposition utilisée. Dans les autres cas et pour
une décomposition en un faible nombre de sous-domaines par rapport au nombre de
machines, nous observons un déséquilibre du nombre de sous-domaines par machines.
Ce phénomène apparait dans les mesures par un temps d’exécution plus élevé.

Pour une décomposition en 100 sous-domaines, l’exécution avant la panne (i.e. sur
100 machines) se fait avec 1 sous-domaine par machine. Après la panne d’une machine,
le travail est déséquilibré : il y a 98 machines avec un 1 sous-domaine et 1 machine avec
2 sous-domaines. Le temps d’exécution étant donné par la machine la plus chargée, on
obtient un facteur 2 d’augmentation du temps de calcul, ce qui correspond à peu près
aux mesures relevées. Ce facteur est le même pour les cas avec 10 et 20 pannes.

Pour une décomposition en 200 sous-domaines, l’exécution avant la panne se fait
avec 2 sous-domaines par machines (mais ces sous-domaines sont deux fois plus petits
que dans le cas précédent). Après la panne d’une machine, le travail est également
déséquilibré puisque il y a 98 machines avec 2 sous-domaines et 1 machine avec 3
sous-domaines. Dans ce cas, et également dans les cas avec 10 et 20 pannes, le facteur
d’augmentation du temps d’itération par rapport l’exécution avant la panne est de 3/2,
ce qui correspond également aux valeurs observées.

La modélisation du temps d’exécution d’une itération après la reprise, que nous
avons présentée à la section 8.4, ne prend pas en compte les phénomènes liés aux effets
de cache et au surcout de gestion du parallélisme. Cependant, il permet tout de même
de prédire partiellement les comportements expérimentaux observés.

8.5.3 Temps de réexécution du travail perdu

Nous avons vu précédemment l’impact de la sur-décomposition sur la capacité de
bien rééquilibrer la charge après une panne. Dans la section 7.3 du chapitre précédent,
nous avons présenté le cout de l’étape de sauvegarde coordonnée.

Pour finir l’évaluation de ce protocole de reprise globale et avant d’enchaîner sur
le protocole de reprise partielle, nous allons détailler le cout d’une reprise globale. En
reprenant la modélisation de la figure 8.1, nous mesurons les deux éléments suivants :
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• Treprise qui est le temps d’exécution du protocole de reprise proprement dit. Dans
l’implémentation de ce protocole dans Kaapi, cette étape consiste à contacter les
processus non défaillants et à réinitialiser leur état. Une nouvelle distribution du
travail est calculée pour tenir compte de la disparation des machines défaillantes
en utilisant le partitionnement statique (cf section 4.3.2.3). L’ensemble des tâches
de calcul est distribué sur tous les processus participant. La redistribution des
données n’est pas prise en compte dans le temps Treprise puisque, comme nous
l’avons décrit dans 4.3.2.3, la redistribution des données est définie sous forme de
tâches de communication ; elle est donc réalisée au moment de l’exécution.
• Tréexécution qui est le temps de réexécution du travail perdu. Il correspond à

l’exécution des tâches résultant de l’étape de partitionnement statique effectuée
précédemment. C’est l’exécution des tâches de communication qui réalise la
redistribution des données de manière transparente (que la donnée soit conservée
sur un processus de calcul ou sur un serveur de sauvegarde). Il est difficile d’évaluer
séparément le temps de redistribution des données et le temps de calcul puisque
que l’implémentation de Kaapi été réalisée de manière à ce qu’ils se recouvrent.

Le scénario est le suivant. Durant l’exécution, nous choisissons de réaliser s sauve-
gardes à intervalle régulier. Si le travail total de l’application correspond àW , alors pour
s sauvegardes, l’exécution est partagée en p+ 1 parties de travail W

p+1
. Nous choisissons

également de simuler la défaillance d’une seule machine juste avant la fin de l’exécution ;
cela correspond au pire cas pour lequel le travail perdu, et donc le travail à réexécuter
pour la reprise, est de W

p+1
.

Pour réaliser ces mesures, nous nous plaçons sur 110 machines du site de Bordeaux
de Grid’5000. 100 machines sont utilisées pour les processus de calcul et 10 machines
sont utilisées pour les serveurs de sauvegarde. Nous utilisons la même application
de décomposition de domaine que nous décomposons en 1000 sous-domaines, soit 10
sous-domaines par machines. Le domaine de calcul choisi induit un volume total de
données à sauvegarder à chaque étape de 4,7 Go.

La figure 8.9 montre le résultat des mesures pour un travailW équivalent en moyenne
à environ 210,4 secondes et un nombre de sauvegarde s ∈ {1, 3, 7}. Sur la figure, les
états ont la signification suivante.
• Calcul correspond au temps d’exécution des calculs de l’application.
• Sauvegarde donne le temps cumulé des s sauvegardes.
• Garde donne le temps de la période de garde, ici 20 secondes pour ces expériences.
• Reprise indique le temps Treprise pour notre protocole de reprise globale dans

Kaapi.
• Réexécution du travail perdu correspond au temps Tréexécution après reprise pour

notre protocole de reprise globale. Ce temps prend aussi en compte la redistribution
des données.

Tout d’abord, nous remarquons que dans les trois cas, le temps de reprise Treprise est
d’environ 8 secondes. Il semble stable quelque soit la quantité de travail à réexécuter.
De plus, ce temps est faible comparé au temps de réexécution du travail perdu qui,
dans ce cas, représente la majorité du surcout induit par la panne.

Pour tenter d’évaluer l’influence de la redistribution de données sur le temps de
reprise, nous estimons le temps de reprise d’après la vitesse moyenne de calcul des
itérations à la reprise. Nous obtenons les valeurs suivantes.
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s = 1 s = 3 s = 7

Treprise estimé 117,9 s 59,0 s 29,5 s

Treprise mesuré 126,7 s 72,8 s 47,9 s

Nous constatons une différence de l’ordre de 10 à 20 secondes que nous pouvons
imputer à la redistribution des données. Les mesures réalisées ne nous permettent pas
d’être plus précis ni de déterminer l’origine exacte de ces différences. Cependant, nous
voyons que la redistribution des données est un facteur important puisque, dans le cas
de s = 7 sauvegardes, elle représente près de 40 % de Treprise.

8.6 Conclusion

Dans ce chapitre, nous nous sommes intéressés au protocole de reprise globale associé
à la sauvegarde coordonnée. Comme notre l’avons dit dans le chapitre 2, ce protocole
est une technique classique de tolérance aux fautes qui est utilisé dans de nombreux
environnements.

Nous avons présenté ce protocole de reprise globale et son implémentation dans
Kaapi. Puis nous avons modélisé le processus de reprise.

Dans le cas où il n’y a pas de machine de rechange disponible, l’exécution de l’appli-
cation peut être fortement ralentie après le redémarrage à cause d’un déséquilibrage de
charge. Nous avons alors proposé d’utiliser le principe de sur-décomposition pour pallier
cet inconvénient. Une modélisation d’une application de décomposition de domaine
a été réalisée pour permettre d’estimer la vitesse d’exécution après redémarrage en
fonction de la sur-décomposition.

Nous avons également mené plusieurs séries d’expériences afin d’apprécier, sur une
application réelle, les gains apportés par la sur-décomposition et également le cout
associé à la reprise globale.

Les résultats expérimentaux obtenus confirment les gains attendus sur la vitesse
d’exécution au redémarrage sur notre application. Ils mettent également en évidence le
surcout lié à la gestion du parallélisme qui est exacerbé lorsque la sur-décomposition
devient trop importante. Ainsi, cela permet de mettre en avant le fait que la sur-
décomposition ne convient pas aux algorithmiques et aux environnements d’exécution qui
ajoutent un surcout important à la parallélisation par rapport à l’exécution séquentielle.
Un travail futur sera d’optimiser ce type d’exécution dans le logiciel Kaapi.
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9.1 Introduction

Ce chapitre détaille le protocole de reprise partielle CCK-Restart. C’est un protocole
original de reprise partielle qui repose, pour la partie sauvegarde, sur le mécanisme de
sauvegarde coordonnée de Kaapi présenté dans le chapitre 7.

L’objectif de ce protocole de reprise partielle est de permettre une reprise plus rapide
de l’application en cas de défaillance. Contrairement au protocole de reprise globale
vu au chapitre précédent, ce protocole ne réexécute que le travail perdu strictement
nécessaire pour redémarrer l’application. En réduisant la quantité de travail à réexécuter,
nous réduisons le surcout induit par une défaillance (cf la modélisation de la reprise de
la section 8.3 page 160).
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Comme nous l’avons présenté dans le chapitre précédent et à la différence des
approches basées sur la sauvegarde d’un processus au niveau système, nous sommes
capables de recharger la représentation abstraite de l’exécution au moment de la
sauvegarde. Cette représentation abstraite est un graphe de flot de données sur lequel
nous avons appliqué, dans le chapitre précédent, des algorithmes d’ordonnancement
afin de rééquilibrer la charge de calcul.

L’idée à la base de cette réduction de la quantité de travail perdu à réexécuter est
simple : nous allons profiter de cette représentation abstraite pour ne garder dans ce
graphe de flot de données que les tâches strictement nécessaires pour permettre de
redémarrer l’exécution l’application.

Ce chapitre présente d’une part l’algorithme de calcul du travail à réexécuter
strictement nécessaire pour la suite de l’exécution et, d’autre part les résultats de
simulations et les résultats expérimentaux que nous avons obtenus sur Grid’5000.

La section suivante présente l’algorithme de reprise partielle qui calcule le travail à
réexécuter. La section 9.3.1 estime, à travers des simulations, la quantité de travail à
réexécuter pour redémarrer pour une application de type décomposition de domaine.
Enfin, les performances de ce protocole de reprise partielle sont évaluées à travers des
expérimentations effectuant la reprise partielle d’une application sur une grille de calcul.

9.2 Protocole de reprise partielle

On désire redémarrer l’application après la défaillance d’un ou plusieurs processus.
L’application comporte alors deux types de processus : des processus défaillants et
des processus non défaillants. Quel que soit le processus Pi, sa dernière sauvegarde Gi

est stockée sur un support stable. L’ensemble des sauvegardes de tous les processus
constitue un état global cohérent de l’application. De plus, notons que l’état des calculs
en cours sur les processus non défaillants est disponible.

9.2.1 Problématique

Dans le cas de la reprise globale, en cas de défaillance d’un ou plusieurs processus,
il faut redémarrer tous les processus à partir de leur dernière sauvegarde. Cependant,
les calculs réalisés sur tous les processus depuis la dernière sauvegarde sont perdus.

Pour la reprise partielle, on distingue les processus défaillants et les processus non
défaillants. Les processus défaillants doivent redémarrer de leur dernière sauvegarde
car ils ont perdu tous les calculs effectués depuis leur dernière sauvegarde. Quant aux
processus non défaillants, ils conservent leurs calculs en cours. L’état global constitué
de l’état sauvegardé des processus défaillants et de l’état courant des processus non
défaillants n’est pas cohérent si bien que le calcul ne peut pas continuer à partir de cet
état.

L’objectif du protocole de reprise partielle est de rendre cohérent cet état global de
manière à pouvoir reprendre le calcul en ayant perdu un minimum de travail. Pour cela,
on demande aux processus non défaillants de réexécuter des tâches supplémentaires
(extraites de leur dernière sauvegarde) afin de se ramener à un état global cohérent. Pour
déterminer cet ensemble des tâches à réexécuter, il faut d’abord identifier l’ensemble des
communications à destination des processus défaillants qui ont été perdues. L’ensemble
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des tâches à réexécuter est alors constitué des tâches nécessaires pour émettre à nouveau
ces communications. Cette technique nous permet de réduire le nombre de tâches à
réexécuter en permettant aux processus non défaillants de conserver le bénéfice des
calculs déjà effectués.

La suite de cette section décrit la méthode utilisée par ce protocole de reprise
partielle pour calculer l’ensemble des communications à rejouer et des calculs à refaire
sur chaque processus de manière à garantir un état global cohérent lorsque seuls les
processus défaillants sont redémarrés à partir de leur dernière sauvegarde.

9.2.2 Calcul du travail à réexécuter

Nous proposons un algorithme qui permet de calculer le travail à réexécuter nécessaire
pour redémarrer une application par reprise partielle. Cette méthode travaille sur le
graphe de flot de données de la dernière sauvegarde, noté Gi. Pour les processus non
défaillants, les informations concernant l’état d’exécution courant sont ajoutées à ce
graphe. Les sommets tâches de ce graphe Gi sont annotés en fonction de leur état :
exécutés ou non exécutés.

Cette méthode est distribuée et une difficulté réside dans le fait que rejouer une
communication perdue peut entrainer également la nécessité de rejouer d’autres com-
munications, en particulier sur des processus qui ne communiquent pas directement
avec les processus défaillants.

Processus non défaillant Processus non défaillant

Tâche non exécutée

Donnée

2

3

4

5

6

Communicat ion

Dépendance

1

Tâche d’émission

Tâche de réception

Processus défaillant

Tâche déjà exécutée

Tâche à réexécuter

Fig. 9.1: Exemple avec un processus défaillant et deux processus non défaillants ; les
tâches déjà exécutées sont marquées.
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La figure 9.1 montre un exemple de l’état d’une application au début de la reprise
avec un processus défaillant et deux processus non défaillants. Les tâches qui ont déjà
été exécutées sont marquées ; le processus défaillant, à gauche, a bien entendu perdu
toutes les tâches qu’il avait exécutées.

Les sections suivantes définissent les graphes et les ensembles qui sont utilisés dans
l’algorithme présenté à la section 9.2.3.

9.2.2.1 Notations

Par la suite, nous utilisons la notation X i pour faire référence à un graphe ou à
un ensemble associé au processus Pi, tandis que X fait référence à un graphe ou à un
ensemble global à tous les processus. X correspond à la réunion des X i de tous les
processus Pi.

Soit G = (S,A) un graphe avec S l’ensemble des sommets et A l’ensemble des arcs.
On note G∗ = (S,A∗) la fermeture transitive de ce graphe.

Graphe de flot de données. La sauvegarde d’un processus Pi est constitué du
graphe de flot de données Gi et des versions des données en entrée.

Un graphe de flot de données est un graphe orienté acyclique G = (S,A). C’est aussi
un graphe biparti entre les tâches (∈ ST ) et les versions (∈ SV ) (on a G = ST ∪ SV ).
Chaque sommet tâche est connecté à un ou plusieurs sommets versions et chaque
sommet version est connecté à un ou plusieurs sommets tâches comme présenté à la
section 4.2.3.

Tâches de communication. Parmi les sommets tâches, nous distinguons les tâches
de communication (cf section 4.3.2.3 page 87). Une tâche de communication peut
être soit une émission (Broadcast), soit une réception (Receive)1. On notera C le
sous-ensemble de ST des sommets tâches qui sont des tâches de communication.

À chaque émission est associée une unique réception et inversement. Ce couple est
appelé une communication et est identifié par un identifiant unique. Nous soulignons
de plus que les communications n’interviennent qu’entre deux processus distincts et
donc qu’on ne peut avoir l’émission et la réception d’une même communication dans le
même graphe Gi d’un processus Pi.

Nous désignons une communication par son identifiant c. Soit c une communication,
émission(c) ∈ ST est la tâche d’émission associée à la communication c et réception(c) ∈
ST est la tâche de réception associée à la communication c.

9.2.2.2 Communications perdues

Nous cherchons tout d’abord à déterminer les communications qui doivent être
rejouées pour rétablir l’application dans un état cohérent. Plusieurs cas de figure
peuvent se présenter selon l’état des processus qui communiquent.

1Pour simplifier, nous ignorons ici les tâches Wait (cf section 4.3.2.3 page 4.3.2.3).
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Communication entre deux processus défaillants. Les deux processus redé-
marrent à partir de leur dernière sauvegarde, toutes les tâches de communication entre
les deux processus seront rejouées lors de la reprise. Il n’y a donc rien à rejouer.

exécutée

Tâche non

exécutée

Tâche non

Processus défaillantProcessus défaillant

Communication entre deux processus non défaillants. Les deux processus ont
exécuté des tâches de communication. Cependant, l’état de ces processus résulte d’une
exécution normale, les communications entre ces deux processus sont dans un état
cohérent. Il n’y a rien à rejouer.

exécutée

Tâche déjà

exécutée

Tâche déjà

exécutée

Tâche non

exécutée

Tâche non

Processus non défaillantProcessus non défaillant

Communication d’un processus défaillant vers un processus non défaillant.
Le processus défaillant redémarre à partir de sa dernière sauvegarde et il va donc
réémettre toutes les communications de son graphe. Pour le processus non défaillant, il
faut distinguer deux cas selon l’état de la réception correspondante :

• Si la réception n’a pas été effectuée, ceci est cohérent avec l’état de l’émission. Il
n’y a rien à rejouer.
• Si la réception a déjà été effectuée, l’état est incohérent. Cependant, cette commu-

nication n’est pas utile au processus non défaillant pour continuer son calcul. Dans
ce cas, le processus défaillant doit simplement ne pas réémettre la communication.
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exécutée

Tâche déjà

exécutée

Tâche non

exécutée

Tâche non

exécutée

Tâche non

Processus non défaillantProcessus défaillant

Communication d’un processus non défaillant vers un processus défaillant.
Le processus défaillant redémarre à partir de sa dernière sauvegarde et donc aucune de
ses réceptions n’a été effectuée. Il a donc besoin de toutes les émissions correspondantes
en provenance du processus non défaillant pour reprendre son exécution. Ainsi, pour le
processus défaillant, cela dépend de l’état de l’émission correspondante :
• Si l’émission n’a pas été effectuée, on a un état cohérent et il n’y a rien à rejouer.
• Si l’émission a déjà été effectuée, on a besoin de la rejouer et aussi de réexécuter

toutes les tâches nécessaires à la production de la donnée communiquée.

exécutée

Tâche non

exécutée

Tâche déjà

exécutée

Tâche non

exécutée

Tâche non

Processus défaillantProcessus non défaillant

Pour résumer, rejouer une tâche de communication n’est nécessaire que dans un seul
cas : quand cette communication se fait d’un processus non défaillant à un processus
défaillant et que cette communication a déjà été effectuée depuis la dernière sauvegarde.

Définition 13 L’ensemble des communications perdues Cperdues est l’ensemble des
tâches d’émission d’un processus non défaillant vers un processus défaillant qui ont
déjà été exécutées depuis la dernière sauvegarde.

Cet ensemble correspond à l’ensemble des messages qui ne seront pas réémis par
l’état courant des processus non défaillants et l’état sauvegardé des processus défaillants.
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Ces communications correspondent aux évènements non déterministes qui ne peuvent
être réémis par l’état courant. Forcer la réémission de ces communications permet donc
d’éviter les processus orphelins.

Processus non défaillant Processus non défaillant

Tâche non exécutée

Donnée

2

3

4

5

6

Communicat ion

Dépendance

1

Tâche d’émission

Tâche de réception

Processus défaillant

Tâche déjà exécutée

Tâche à réexécuter

C perdues

Fig. 9.2: L’ensemble des communications perdues

Sur la figure 9.2, on peut voir l’ensemble des communications perdues pour notre
exemple ; ce sont les communications numérotées 1 et 2.

9.2.2.3 Graphe restreint aux communications

Nous définissons le graphe restreint aux communications Gi qui représente les
dépendances entre les émissions et les réceptions de données au sein d’un processus
Pi. Ce graphe permet de calculer l’ensemble des données à recevoir pour calculer de
manière globale l’ensemble des tâches à réexécuter pour réémettre les communications
perdues vers le processus défaillant.

Définition 14 Le graphe restreint aux communications Gi = (Si, Ai) est défini
tel que :
• Les sommets Si sont les tâches de Si qui sont des communications (Si = Ci).
• Les arcs Ai sont définis de la manière suivante : ∀r, e ∈ Si, (r, e) ∈ Ai si et

seulement si
– r est une réception,
– e est une émission,
– et s’il existe un chemin de e à r.
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Une définition équivalente de Gi est que le graphe restreint aux communications Gi

est le sous-graphe induit par les sommets des tâches de communication de la fermeture
transitive de Gi. Ainsi, pour r, e ∈ Si, l’émission de e par Pi nécessite d’abord la
réception de r si et seulement s’il existe dans Gi un arc allant de r à e.

De même, nous définissons le graphe restreint global G =
⋃

iGi qui représente les
dépendances entre les communications entre tous les processus.

9.2.2.4 Ensemble des communications à rejouer

L’ensemble Cperdues des communications perdues contient les communications à
rejouer pour rétablir l’application dans un état cohérent. Cependant, pour rejouer ces
tâches, il est nécessaire de réexécuter les tâches de calcul qui permettent de produire
les données communiquées. Ces tâches de calcul peuvent aussi nécessiter la réception
de données. Le graphe global restreint aux communications G =

⋃

iGi permet, grâce
aux dépendances entre les communications qu’il contient, de déterminer l’ensemble
total Ctotales des communications à rejouer pour réémettre toutes les communications
perdues.

Définition 15 L’ensemble des communications à rejouer Ctotales est l’ensemble
des communications du graphe G qui précédent les tâches appartenant à Cperdues.

Formellement, si G
∗

= (S,A
∗

) est la fermeture transitive de G =
⋃

iGi, on a

Ctotales = Cperdues ∪
⋃

c∈Cperdues

{c′ tels que (réception(c′), émission(c)) ∈ A
∗

}

Citotales est alors défini comme l’ensemble des communications à rejouer appartenant
au processus Pi.

Sur la figure 9.3, l’ensemble total des communications à rejouer correspond aux
communications 1, 2 et 4. La communication 4 doit être rejouée car la communication
2 dépend de 4.

9.2.2.5 Ensemble des tâches à réexécuter

Une fois que chaque processus Pi connait son ensemble Citotales, il peut déterminer
l’ensembleGiréexécution des tâches de calcul à réexécuter. Ce sont les tâches dont dépendent
les tâches d’émission des communications de Citotales. L’ensemble Giréexécution contient
l’intégralité des tâches à réexécuter pour le processus Pi. En effet, si une de ces tâches de
calcul nécessite une communication, elle a été prise en compte dans l’ensemble Cjtotales
du processus voisin Pj grâce au calcul de la fermeture transitive G∗.

Si G∗ = (S,A∗) est la fermeture transitive de G, on a

Giréexécution = émission(Ctotales) ∪
⋃

c∈Ci
totales

{t ∈ Si tels que (t, émission(c)) ∈ A∗}

Sur la figure 9.4, on peut voir l’ensemble des tâches à réexécuter pour reprendre le
calcul. Ce sont toutes les tâches nécessaires pour rejouer les communications de Ctotales.
Gdéfaillant est le graphe des processus défaillants ; ses tâches doivent également être
réexécutées.
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Processus non défaillant Processus non défaillant

Tâche non exécutée

Donnée

2

3

4

5

6

Communicat ion

Dépendance

1

Tâche d’émission

Tâche de réception

Processus défaillant

Tâche déjà exécutée

Tâche à réexécuter

C totales

C totales

Fig. 9.3: L’ensemble total des communications à rejouer

Processus non défaillant Processus non défaillant

Tâche non exécutée

Donnée

2

3

4

5

6

Communicat ion

Dépendance

1

Tâche d’émission

Tâche de réception

Processus défaillant

Tâche déjà exécutée

Tâche à réexécuter

G défai l lant G réexécution

Fig. 9.4: L’ensemble des tâches à réexécuter
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9.2.3 Algorithme

En nous basant sur la construction de Gréexécution donnée précédemment, nous
proposons un algorithme distribué qui permet le calcul des tâches à réexécuter pour
effectuer une reprise partielle. Cet algorithme s’exécute sur chaque processus, défaillant
ou non, lors d’un redémarrage. Dans le cas où il n’y a pas de processus de rechange pour
remplacer les processus défaillants, le redémarrage de chaque processus défaillant est
pris en charge par un processus non défaillant. Ce dernier exécute alors l’algorithme à
la fois pour son propre état et aussi pour l’état des processus défaillants qu’il remplace.

Cet algorithme s’exécute localement sur chaque processus en utilisant le mécanisme
de reconfiguration présenté dans le chapitre 5. Cette reconfiguration « reprise partielle »
s’applique sur tous les processus non défaillants en cohérence mutuelle. Elle travaille sur
le graphe de la dernière sauvegarde sur lequel sont ajoutées les informations concernant
l’état d’exécution courant.

Les processus qui remplacent les processus défaillants sont désignés de manière
centralisée durant le prologue de la reconfiguration. Ce sont soit de nouveaux processus
lancés sur des machines de rechange, soit des processus existants qui effectuent la reprise
des processus défaillants en plus de la leur.

La fonction de reconfiguration « reprise partielle » qui est exécutée sur chacun des
processus suit l’algorithme suivant.

1. Construction du graphe restreint aux communications Gi

2. Diffusion de Gi et de l’état de chaque communication à tous les processus

3. Calcul de l’ensemble Cperdues des communications perdues

4. Calcul de l’ensemble Citotales des communications à rejouer

5. Calcul de l’ensemble Giréexécution des tâches à réexécuter

6. Reconstruction de l’état du processus à partir de Giréexécution : les tâches à réexé-
cuter sont conservées dans l’état du processus, les autres sont supprimées.

Le protocole de reprise partielle présenté dans ce chapitre est basé sur la technique de
sauvegarde coordonnée. Cependant, son principe est proche des protocoles de tolérance
aux fautes par journalisation.

En effet, pour les protocoles de reprise par journalisation, seuls les processus dé-
faillants repartent à partir de la dernière sauvegarde. Le rôle du protocole de reprise
par journalisation est alors de rejouer les évènements non déterministes à destination
des processus qui sont retournés en arrière de manière à retrouver un état identique
à celui d’avant la panne. Habituellement, ces évènements non déterministes ont été
sauvegardés sur la mémoire stable ce qui permet de les rejouer facilement.

Dans le cas de notre protocole de reprise partielle, le fonctionnement est identique
à la seule différence que les évènements non déterministes (dans notre cas ce sont les
communications) ne sont pas sauvegardés. Nous proposons à la place de réémettre ces
communications en réexécutant les calculs qui ont permis de générer ces communications.

L’utilisation d’une sauvegarde coordonnée qui garantit un état global sauvegardé
cohérent permet de nous assurer que tous les messages qui ont été émis depuis la
dernière sauvegarde peuvent être recalculés. Le pire cas correspond alors au cas où il
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est nécessaire de réexécuter tous les calculs depuis la dernière sauvegarde, ce qui est
alors équivalent à une reprise globale.

Les protocoles par journalisation classiques présentent un surcout lors de l’exécution
sans panne, notamment du point de vue de l’utilisation du réseau. Notre protocole
reporte ce surcout uniquement au moment de la reprise en termes de calcul nécessaire
pour regénérer les messages non sauvegardés.

9.2.3.1 Cohérence de l’état reconstruit

Cette partie montre que l’état global reconstruit à la reprise est un état global
cohérent. Pour cela, nous rappelons les points suivants :
• L’état constitué de l’ensemble des dernières sauvegardes est un état global mutuel-

lement cohérent car il repose sur la technique de sauvegarde coordonnée présentée
à la section 7.3. En particulier, l’état des canaux de communication est nul.
• Durant la reprise, et donc pendant l’exécution de cet algorithme, les calculs sont

arrêtés et les processus sont dans un état mutuellement cohérent : les graphes Gi

sont donc figés et les canaux de communication sont vides.

Définition 16 On définit l’état global reconstruit comme l’état de l’application à
la fin de la reprise.

L’état global reconstruit est constitué de la réunion des éléments suivants.
• L’état Gexécution des processus non défaillants en cours d’exécution au début de la

reprise (l’état des processus défaillants est nul).
• L’état Gdéfaillant des processus défaillants restaurés à partir de la sauvegarde.
• L’ensemble Gréexécution des tâches à réexécuter.
De plus, les canaux de communication sont vides. Leur état n’intervient donc pas

dans l’état global reconstruit.

Proposition 6 L’état global reconstruit est un état global cohérent.

Preuve Un état global non cohérent est caractérisé par la présence de processus
orphelins. Nous montrons que l’état global reconstruit ne comporte pas de processus
orphelins, c’est-à-dire que tous les messages dont dépendent les processus peuvent être
réémis. En termes de tâches pour notre modèle, cela signifie qu’il ne doit pas y avoir de
communication qui a une tâche de réception sans tâche d’émission associée.

Par définition, l’ensemble des communications perdues correspond à l’ensemble des
communications du graphe Gexécution ∪Gdéfaillant ne pouvant être réémises.

Nous allons montrer que :

1. les tâches d’émission associées aux communications perdues Cperdues sont dans
Gréexécution ;

2. l’ensemble Gréexécution ne comporte pas de réception sans émission.

Tout d’abord, on a bien émission(Cperdues) ⊂ Gréexécution car d’après les définitions
de Ctotales et Gréexécution, on a émission(Cperdues) ⊂ Ctotales et émission(Ctotales) ⊂
Gréexécution. Ceci montre le point 1.
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Ensuite, l’ensemble des communications de Gréexécution correspond à l’ensemble
Ctotales qui est un sous-ensemble de l’ensemble des communications de G. G est l’état
global de la dernière sauvegarde et cet état est mutuellement cohérent, donc pour chaque
tâche de réception, la tâche d’émission associée existe également. De plus, d’après la
définition de Ctotales, si une communication c ∈ Ctotales alors émission(c) ∈ Gréexécution.
Ceci montre le point 2.

Tout ceci nous garantit que l’état global reconstruit est un état global cohérent. �

9.2.3.2 Analyse de cout

Nous analysons le cout de l’algorithme de reprise partielle proposé, en temps et en
nombre de messages.

Graphe restreint aux communications. Le graphe Gi est un graphe orienté acy-
clique. Le calcul de la fermeture transitive peut donc se faire en O(|Si|+ |Ai|) [55]. Il
en est de même pour l’extraction du sous-graphe. De plus, ces calculs sont faits en
parallèle, chaque processus Pi calcule son graphe Gi à partir de Gi. Le cout en temps
de calcul du graphe restreint est donc en O(maxi(|Si|+ |Ai|)).

Diffusion des graphes restreints. Cette étape effectue la diffusion de tous les
graphes Gi à tous les processus. Cette communication collective est un schéma du type
Gather-to-All. Ce type de communication peut être réalisé avec un cout en temps de
O(log2 n) messages [116, 144] (avec n le nombre de processus participant).

Ensemble des communications perdues. Pour déterminer l’ensemble Cperdues des
communications perdues, il suffit de parcourir le graphe global G et de regarder l’état
des tâches de communication correspondantes (émissions et réceptions).

Le cout en temps de ce calcul est donc en O(|S|).

Ensemble total des communications à rejouer. La détermination de cet en-
semble Ctotales peut se faire par le calcul de la fermeture transitive du graphe G. Ce
graphe est un graphe orienté acyclique. Ce calcul peut se faire en temps O(|S|+ |A|) [55].

Ensemble des tâches à réexécuter. L’ensemble Giréexécution des tâches à réexécuter
sur le graphe Gi sont les tâches dont dépendent les communications de Ctotales. La
détermination de cet ensemble peut encore se faire par le calcul de la fermeture transitive
du graphe Gi orienté et acyclique, qui a déjà été effectué pour le calcul du graphe
restreint.

Gestion de la cohérence mutuelle. Cet algorithme est exécuté comme une recon-
figuration nécessitant la cohérence mutuelle. La complexité de la gestion de la cohérence
mutuelle pour Kaapi est en O(nv), avec n le nombre de processus participant et v le
nombre moyen de voisins (cf section 5.4.3.3).
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Cout total. Le cout en temps de cet algorithme permettant le calcul de l’ensemble
des tâches à réexécuter est donc en O(|S|+ |A|). Le cout en nombre de messages pour
cet algorithme est en O(nv).

9.2.4 Amélioration

Nous proposons également une amélioration qui permet de réduire le nombre de
tâches à réexécuter. Cette optimisation consiste à tenir compte des versions de données
présentes en mémoire sur les processus non défaillants.

Dans le modèle d’exécution Kaapi, les tâches exécutées sont détruites au fur et à
mesure. Pourtant, il est possible qu’une version d’une donnée soit toujours disponible en
mémoire si elle doit être lue par une tâche qui n’a pas encore été exécutée. Si une telle
donnée est dans le graphe des tâches à réexécuter, elle peut être utilisée pour éliminer
des tâches de calcul de l’ensemble des tâches à réexécuter.

Processus non défaillant Processus non défaillant

Tâche non exécutée

Donnée

2

3

4

5

6

Communicat ion

Dépendance

1

Tâche d’émission

Tâche de réception

Processus défaillant

Tâche déjà exécutée

Tâche à réexécuter

Donnée présente
en mémoire

G défai l lant G réexécution optimisée

Fig. 9.5: L’ensemble des tâches à réexécuter en prenant en compte les données dispo-
nibles en mémoire

Sur la figure 9.5, nous pouvons voir l’ensemble des tâches à réexécuter pour reprendre
le calcul en prenant en compte des données présentes en mémoire. En effet, rejouer la
communication 2 ne nécessite pas de réexécuter d’autres tâches puisque la version de la
donnée est toujours présente en mémoire. Ceci permet également d’éviter de rejouer la
communication 4 et de propager la reprise partielle au troisième processus.
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9.3 Réexécution du travail perdu

Nous reprenons la modélisation de la reprise de la section 8.3 pour l’adapter au cas
de notre protocole de reprise partielle. Le surcout induit par une défaillance s’exprime
de la manière suivante :

Tpanne = Tgarde + Treprise + Tréexécution

• Tgarde est indépendant de la méthode reprise donc il ne change pas.
• Treprise correspond au temps d’exécution de l’algorithme de reprise partielle qui

calcule l’ensemble des tâches à réexécuter pour la reprise. Cet algorithme a été
présenté à la section 9.2.3 et son cout a été évalué à la section 9.2.3.2. Les
expériences de la section 9.4 montreront que ce temps est généralement faible
comparé à Tréexécution.
• Tréexécution est le temps nécessaire pour réexécuter le travail perdu Wperdu. La

technique de reprise partielle présentée dans ce chapitre permet de réduire cette
quantité de travail par rapport au cas de la reprise globale. Grâce à un bon
ordonnancement des tâches, il est alors possible de réduire ce temps de réexécution
du travail perdu.

La différence entre les deux protocoles concerne la définition du travail perdu. Nous
notons respectivement W globaleperdu et W partielleperdu le travail perdu pour la reprise globale et la
reprise partielle. De même, T globaleréexécution et T partielleréexécution désignent respectivement le temps
de réexécution du travail perdu dans le cas de la reprise globale et de la reprise partielle.

Travail perdu. Nous considérons une exécution sur n machines avec la défaillance
de p machines. Nous simplifions de plus le problème en considérant que le travail est
équilibré entre les machines et que le redémarrage se fait sur n machines (grâce à des
machines de remplacement).
• W globaleperdu est l’ensemble des instructions exécutées depuis la dernière sauvegarde.
• W globaleperdu /n est le travail exécuté par chaque processus depuis la dernière sauvegarde.
• p×W globaleperdu /n est la partie du travail perdu due aux processus défaillants.
• ε×W globaleperdu /n est la partie du travail perdu due aux processus voisins des processus

défaillants qui doivent rejouer des communications.
Nous exprimons donc le travail perdu de la reprise partielle en fonction ce celui de

la reprise globale :

W partielleperdu =
p+ ε
n
×W globaleperdu

ε est la proportion (par rapport à n− p) de tâches à réexécuter sur les processus non
défaillants. Elle est difficile à évaluer puisqu’elle dépend de très nombreux paramètres.
Elle dépend, entre autres, de l’application et du nombre de processeurs sur lesquels
elle s’exécute. En particulier, les motifs de communication entre les processus sont
déterminants ; ce sont ces communications qui créent des dépendances entre les processus
et imposent la réémission de certains messages. Cette valeur dépend également de la
date de la panne et de la date la dernière sauvegarde. Dans tous les cas, cette valeur reste
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bornée par n− p : le pire cas étant le cas où toutes les tâches doivent être réexécutées
ce qui correspond à la reprise globale.

La section suivante présente des simulations qui ont pour but d’évaluer le comporte-
ment du rapport W globaleperdu /W

partielle
perdu en fonction de différents paramètres.

Temps de réexécution. Le protocole de reprise partielle présenté ici permet d’avoir
une quantité de travail perdu plus faible qu’avec le protocole de reprise globale. Cela
permet d’avoir une quantité de travail à réexécuter plus faible à la reprise. Si le travail
a été initialement sur-décomposé, il est alors possible de paralléliser cette quantité de
travail afin de réduire le surcout induit par la panne Tpanne.

Si le travail perdu W partielleperdu peut être réparti de manière équilibrée sur tous les
processus, on a alors :

T partielleréexécution =
p+ ε
n
× T globaleréexécution

La figure 9.6 compare le travail perdu et le temps de réexécution dans le cas de la
reprise globale et dans le cas de la reprise partielle. Dans les deux cas, le processus P3

tombe en panne et une machine de rechange est disponible pour relancer le processus
P3.

Pour la reprise globale sur la sous-figure 9.6a en haut, le travail perdu W globaleperdu

est constitué de tout le travail qui a été exécuté entre la dernière sauvegarde et la
défaillance.

Sur la sous-figure 9.6b en bas, la reprise partielle permet de réduire la quantité de
travail perdu W partielleperdu . La redistribution de ce travail sur toutes les machines permet
d’obtenir un temps de réexécution T partielleréexécution plus court que dans le cas de la reprise
globale. Bien sûr, cette redistribution du travail a un cout direct : celui de redistribuer
les données associées. Nous étudierons cela de manière expérimentale dans la suite de
ce chapitre.

9.3.1 Simulations

Dans le but d’évaluer la quantité de travail à réexécuter pour le protocole de reprise
partielle, nous avons réalisé des simulations de redémarrage. Les courbes suivantes
sont le résultat de simulations de l’étape de redémarrage après défaillance d’un seul
processus.

9.3.1.1 Scénario

Pour les besoins de ces simulations, nous considérons la même application que dans
le chapitre précédent, à savoir une résolution du problème de Poisson par la méthode
itérative de Jacobi sur un domaine à trois dimensions. Nos simulations suivent la
modélisation d’application donnée dans la section 8.4.1 page 163.

Le domaine utilisé est de taille 2 0483 (soit 64 Go de données) découpé en 643

sous-domaines de 32 Ko chacun. À chaque itération du calcul, la mise à jour d’un
sous-domaine correspond à une tâche de calcul. Le calcul de cette tâche nécessite
la connaissance des 6 sous-domaines voisins (un voisin pour chaque face du cube
représentant le sous-domaine en 3 dimensions). Sur la machine de référence (Bi-Opteron
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Fig. 9.6: Réexécution du travail perdu après la défaillance du processus P3
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à 2 Ghz avec 2 Go de mémoire RAM), une tâche de calcul d’un sous-domaine s’exécute
en 10 ms.

Grâce à ces simulations nous étudions deux valeurs.
• Les tâches à réexécuter désignent l’ensemble des tâches de mise à jour d’un sous-

domaine qui doivent être réexécutées pour redémarrer correctement l’application.
Ce nombre de tâches nous permet d’évaluer la quantité de travail perdu W partielleperdu .
Cette valeur est tracée proportionnellement au nombre de tâches à réexécuter dans
le cas de la reprise globale ; ce qui correspond donc au rapport W partielleperdu /W

globale
perdu .

• Les processus impliqués désignent les processus qui contiennent au moins une
tâche de calcul à réexécuter avec la reprise partielle. Les autres processus, ceux
qui ne sont pas impliqués, sont ceux qui n’ont pas de travail perdu à cause de la
défaillance. Cependant, ces processus peuvent tout de même être utilisés lors de
l’équilibrage du travail à réexécuter.

Dans nos simulations, les sauvegardes sont réalisées périodiquement et la quantité de
travail à réexécuter calculée est celle du pire cas, c’est-à-dire quand la défaillance se
produit juste avant la prochaine sauvegarde. Une autre manière d’interpréter la période
de sauvegarde est de dire qu’elle désigne la durée entre la dernière sauvegarde et la
défaillance puisque nous nous plaçons en pire cas.

9.3.1.2 Influence de la période de sauvegarde

Pour cette simulation, nous considérons que l’application est distribuée sur 1 024
processeurs et nous associons un processus à chaque processeur. Les 643 sous-domaines
sont répartis équitablement entre tous les processus (256 sous-domaines associés à
chaque processus, soit 64 Mo par processus). Dans ce cas, le temps d’une itération
(c’est-à-dire la mise à jour de tous les sous-domaines) est de l’ordre de 2,5 secondes.

La figure 9.7 montre la proportion, par rapport à la reprise globale, de tâches à
réexécuter et de processus impliqués lors d’un redémarrage en fonction de la période de
sauvegarde. Les valeurs indiquées sont les valeurs dans le pire cas, c’est-à-dire quand
la défaillance se produit juste avant la prochaine sauvegarde. Avec une période de
sauvegarde de 60 secondes (soit environ 24 itérations), moins de 30 % des processeurs
sont impliqués dans le redémarrage et seulement 6 % des tâches doivent être réexécutées.

Pour réduire le temps du redémarrage, on peut répartir l’ensemble des tâches à
réexécuter sur tous les processeurs car il contient suffisamment de parallélisme (les 256
sous-domaines peuvent être distribués sur les autres processus). Le temps de calcul
estimé pour réexécuter les tâches strictement nécessaires au redémarrage est de 3,6
secondes avec la reprise partielle contre 60 secondes avec la reprise globale. À ce temps,
il faut ajouter le temps nécessaire pour calculer l’ensemble des tâches strictement
nécessaires et le temps nécessaire pour distribuer les tâches et les données. Ces temps
seront évalués par les expériences de la section 9.4.

9.3.1.3 Influence du nombre de processeurs

Les deux simulations suivantes montrent l’influence du nombre de processeurs sur
la reprise partielle. La figure 9.8a présente la proportion de tâches à réexécuter par
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rapport à la reprise globale en fonction du nombre de processus et pour différentes
périodes de sauvegarde.

La figure 9.8b donne le nombre de processus impliqués lors d’un redémarrage par
reprise partielle en fonction du nombre de processus et pour différentes périodes de
sauvegarde.

Pour l’application décrite dans notre scénario exécutée sur 8 192 processeurs, une
période de sauvegarde de 10 secondes permet d’obtenir moins de 10 % des tâches à
réexécuter et moins de 2 500 processus impliqués (sur 8 192).

Entre deux sauvegardes, la quantité de calcul et le nombre d’itérations effectuées
par l’application sont proportionnels au nombre de processeurs. Donc lorsque le nombre
de processeurs augmente, la proportion du nombre de tâches à réexécuter et le nombre
de processus impliqués augmentent car les graphes considérés sont plus grands et
contiennent plus de dépendances. Pour conserver les bénéfices de la reprise partielle, il
est nécessaire de diminuer la période de sauvegarde lorsque le nombre de processeurs
augmente. De plus, cela permet de garantir qu’en cas de défaillance, le travail perdu ne
sera pas trop important [67].

Ces simulations montrent l’intérêt de la reprise partielle en cas de défaillance.
Néanmoins, un aspect, en pratique fondamental, n’a pas été pris en compte : les
communications dues à la redistribution des données.

La principale raison est qu’il aurait été difficile d’avoir des résultats de simulations
qui puissent être liés aux résultats des mesures expérimentales que nous allons présenter
dans la section suivante. En effet, la diversité de matériel, de configuration, de réseaux,
etc. de la plateforme Grid’5000 font que cette difficulté aurait été à la fois conceptuelle,
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9 Reprise partielle

due à la modélisation d’une telle plateforme, et pratique, car consommatrice de temps
au détriment d’expérimentations sur une vraie architecture.

9.4 Expérimentations

Nous avons réalisé trois séries d’expériences pour évaluer notre protocole de reprise
partielle. Tout d’abord, la première série d’expériences vise à comparer les simulations
de la section 9.3.1.2 à des redémarrages sur une véritable application. Ensuite, nous
étudions le cout de notre algorithme qui détermine l’ensemble des tâches nécessaires
pour reprendre l’exécution. Enfin, nous étudions le temps nécessaire pour réexécuter le
travail perdu pour la reprise partielle et nous le comparons à la reprise globale.

Ces expériences ont été réalisées sont plusieurs sites de Grid’5000 en utilisant l’appli-
cation de décomposition de domaine qui a également servi aux sections expérimentales
des chapitres 7 et 8.

9.4.1 Influence de la période de sauvegarde

À travers cette expérience, nous cherchons à évaluer la proportion de tâches à
réexécuter pour la reprise partielle par rapport à la reprise globale. Cette valeur dépend
de beaucoup de paramètres :
• de l’application, en particulier du schéma de dépendances qui indique les sous-

domaines voisins utilisés pour mettre à jour un sous-domaine ;
• de la forme du domaine de calcul, c’est-à-dire son rapport entre les longueurs de

ses dimensions (largeur et longueur dans le cas d’un domaine en deux dimensions) ;
• du nombre de machines utilisées à l’exécution et du niveau de sur-décomposition

employé ;
• du nombre de machines défaillantes et des sous-domaines qui leur sont associés ;
• de la période de sauvegarde, ou plutôt de la quantité de travail exécuté entre la

dernière sauvegarde et la panne.
Pour étudier ce phénomène, nous allons nous limiter en fixant tous les paramètres

excepté la période de sauvegarde que nous allons faire varier. Nous considérons l’appli-
cation de décomposition de domaine dont le modèle est présenté dans la section 8.4.1
avec un domaine total découpé en 40×40×1 = 1600 sous-domaines. Nous réalisons une
exécution sur 100 machines du site de Nancy de Grid’5000 ; chaque machine possède
donc 16 sous-domaines. Nous simulons alors la panne d’une machine fixée et nous
mesurons, pour différentes valeurs de la période de sauvegarde, la proportion de tâches
à réexécuter, en pire cas, par rapport à l’ensemble total des tâches qui devraient être
réexécutées dans le cas de la reprise globale. Le pire cas correspond au cas où la panne
se produit juste avant la prochaine sauvegarde.

La figure 9.9 montre le résultat de ces mesures. Nous avons également tracé sur
cette figure le résultat d’une simulation pour des conditions identiques aux mesures. Les
deux courbes ont des allures similaires. On constate une différence maximale proche de
15 % autour de l’itération 50.

Les différences entre la simulation et les mesures expérimentales s’expliquent par le
fait que le modèle utilisé pour les simulations ne correspond pas exactement au cas réel.
Les principales différences sont que :
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Fig. 9.9: Proportion de tâches à réexécuter en pire cas pour la reprise partielle par
rapport à la reprise globale, en fonction de la période de sauvegarde

• la simulation utilise un modèle simplifié de l’application (similaire à celui présenté
en 8.4.1) qui comporte moins de tâches que la véritable application ;
• le modèle de la simulation, contrairement à l’application réelle, utilise un domaine

torique où les sous-domaines extrêmes sont voisins, ceci dans le but de simplifier
le choix du processus défaillant.

Nous concluons cette expérience en remarquant que les simulations nous ont permis
d’obtenir une impression assez juste de l’évolution de la proportion de tâches à réexécuter
dans le cas de la reprise partielle.

9.4.2 Cout de l’algorithme de reprise partielle

Par cette expérience, nous étudions le cout en temps de calcul de l’algorithme qui
détermine l’ensemble des tâches nécessaires à la reprise partielle.

L’algorithme présenté à la section 9.2.3 de ce chapitre est un algorithme distribué.
Pour des raisons de simplicité, la version de cet algorithme implémentée dans Kaapi
est centralisée.

La figure 9.10 a été réalisée en mesurant le temps d’exécution de l’implémentation
centralisée de l’algorithme. Comme l’étude de la section 9.2.3.2 l’a montré, le cout
en temps de cet algorithme est proportionnel au nombre de tâches contenues dans le
graphe de flot de données de l’application.

Pour un nombre de tâches inférieur à 1 million, le temps d’exécution de l’algorithme
est inférieur à 2,5 secondes ; ce qui est un temps raisonnable comparé au temps qui sera
nécessaire pour réexécuter le travail perdu (cf section suivante).
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Fig. 9.10: Cout de l’algorithme qui calcule l’ensemble des tâches nécessaires à la reprise
partielle en fonction du nombre de tâches du graphe de flot de données

À partir de 6 millions de tâches, les temps mesurés deviennent très irréguliers. Ceci
est dû au fait que pour cette taille de graphe, les 2 Go de mémoire de la machine sur
laquelle ont été faites les mesures étaient saturées. L’implémentation d’une version
distribuée de l’algorithme (cf section 9.2.3) permettrait de régler ce problème.

9.4.3 Temps de réexécution du travail perdu

Pour cette dernière série d’expériences, nous étudions le temps de réexécution du
travail perdu pour notre protocole de reprise partielle et nous le comparons à celui de
la reprise globale. Comme nous l’avons expliqué pour les mesures de la section 8.5.3 et
pour des raisons d’implémentation, le temps Tréexécution mesuré prend en compte à la
fois le temps de réexécution du travail perdu et également la redistribution des données
nécessaires à cette réexécution.

Les mesures de la figure 9.11 ont été réalisées sur 110 machines de Bordeaux de
Grid’5000. 100 machines ont été utilisées pour les processus de calcul et 10 machines
pour les serveurs de sauvegarde. Nous utilisons la même application de décomposition
de domaine avec un domaine total de 76 Mo.

Nous faisons varier la période de sauvegarde et nous simulons la panne d’une machine
en pire cas, c’est-à-dire juste avant la prochaine sauvegarde. La période de sauvegarde
indique donc le nombre d’itérations qui ont été calculées entre la dernière sauvegarde et
la panne. Nous avons réalisé des mesures pour des périodes de sauvegarde de 10, 100 et
200 itérations. Pour le domaine de calcul utilisé, les proportions de tâches à réexécuter
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pour la reprise partielle par rapport à la reprise globale sont respectivement de 6 %,
51 % et 75 %.

Dans le but de simuler des applications qui ont un ratio calcul/communication
plus important, nous adaptons le code de calcul de notre application de décomposition
de domaine de manière à changer le grain de calcul de la tâche de mise à jour d’un
sous-domaine. Pour cette expérience, ce grain de référence vaut 0,002 seconde. Le cas (a)
correspond au grain de référence ; la mise à jour d’un point du domaine est réalisée
en calculant une simple combinaison linéaire des points voisins. Les cas (b), (c) et (d)
correspondent respectivement à des grains de 10, 25 et 50 fois le grain de référence. Ils
permettent de simuler des applications avec des opérations de mise à jour du domaine
plus complexes.

Dans le cas de la sous figure 9.11a, nous constatons que, bien que la quantité
de travail à réexécuter soit plus faible (seulement 6 %, 51 % ou 75 %), le temps de
réexécution du travail perdu est bien plus important dans le cas de la reprise partielle.
Cette différence importante est due à la redistribution des données qui est indispensable
pour rééquilibrer le travail à la reprise.

En effet, dans le cas de la reprise partielle, le nombre de tâches à réexécuter est
plus faible. Lors de la phase d’équilibrage de charge de la reprise, ces tâches sont plus
éparpillées que pour une reprise globale. En conséquence, une grande partie des données
doit être redistribuée et cela induit un surcout important.

C’est l’étape de partitionnement statique (cf section 4.3.2.3) qui est chargée d’équili-
brer la charge de calcul à la reprise. Le travail est réparti dans un ensemble de K-threads
et un algorithme d’équilibrage de charge est utilisé pour déterminer le placement de
K-threads sur toutes les machines disponibles.

Pour la reprise globale, l’algorithme d’équilibrage de charge utilisé est basé sur une
méthode de répartition en bloc-cyclique. Cette méthode est assez performante puisque,
pour le reprise globale, les K-threads à répartir représentent des quantités de calcul
équivalentes et sont en nombre suffisant grâce à la sur-décomposition.

Pour la reprise partielle, ces considérations ne sont plus vraies. Le partitionnement
statique utilise un algorithme d’équilibrage de charge basé sur LPT (Longest Processing
Time). La quantité de travail à réexécuter étant plus faible et déséquilibrée entre les
K-threads, cet algorithme permet d’obtenir un chemin critique moins important. Cepen-
dant, il ne prend pas du tout en compte le placement des données et les communications
entre les K-threads générés.

Les mauvaises performances de la reprise partielle sur le cas de la figure 9.11a sont
donc causées par une mauvaise répartition du travail à la reprise qui ne prend pas en
compte le placement des données d’avant la panne. Cette expérience met en évidence
le fait que la répartition de la charge et le placement des tâches de calcul sont des
éléments critiques pour obtenir de bonnes performances à la reprise et, ceci de manière
beaucoup plus importante avec la reprise partielle.

Sur les figures 9.11b, 9.11c et 9.11d, nous avons respectivement augmenté le ratio
calcul/communication d’un facteur 10, 25 et 50. L’augmentation du ratio calcul/com-
munication permet de masquer le cout de redistribution des données par rapport au
temps de calcul des tâches à réexécuter.
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Pour une augmentation d’un facteur 10, sur la figure 9.11b, la reprise partielle
permet d’obtenir un temps de réexécution du travail perdu plus faible que pour la
reprise globale.

Pour une augmentation d’un facteur 25 ou 50, sur les figures 9.11c et 9.11d, et pour
les périodes de sauvegarde de 100 et 200 itérations, le rapport des temps de réexécution
T partielleréexécution/T

globale
réexécution est proche de la proportion de tâches à réexécuter calculée, soit

51 % pour une période de 100 itérations et 75 % pour une période de 200 itérations.
Pour une faible période de sauvegarde, 10 itérations sur la figure, la reprise partielle

est seulement deux fois plus rapide. Cela s’explique par le fait que le cout de redistribution
des données reste trop important pour obtenir le rapport théorique de 6 %.

9.5 Conclusion

Dans ce chapitre, nous avons proposé un protocole original de reprise partielle,
appelé CCK-Restart. Ce protocole utilise le graphe de flot de données de l’application
et les dépendances entre les tâches pour déterminer l’ensemble des tâches strictement
nécessaires à la reprise du calcul.

Nous avons présenté ce protocole et nous l’avons étudié théoriquement. Nous avons
également réalisé plusieurs simulations qui permettent d’évaluer le gain obtenu par
rapport au protocole de reprise globale présenté dans le chapitre précédent.

Enfin, nous avons expérimenté ce protocole de reprise partielle sur une application
réelle de décomposition de domaine. Deux conclusions majeures ressortent de ces
expérimentations.
• Tout d’abord, le gain de ce protocole de reprise partielle en termes de quantité de

tâches à réexécuter peut être important. De plus, pour l’application considérée, les
simulations ont permis d’estimer la proportion de tâches à réexécuter de manière
satisfaisante.
• Ensuite, la redistribution des données induite par le rééquilibrage de charge à la

reprise a une influence considérable sur le temps de réexécution du travail perdu,
en particulier lorsque le rapport calcul/communication est faible. L’utilisation
d’algorithme d’équilibrage de charge prenant en compte à la fois le cout des tâches
et le placement initial des données permettra d’améliorer les performances de ce
protocole.
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10.1 Bilan

Dans cette thèse, nous avons abordé les aspects de la reconfiguration dynamique et
de la tolérance aux fautes pour les applications distribuées sur les architectures de type
grille de calcul.

Tout d’abord, nous avons proposé un mécanisme de reconfiguration dynamique pour
l’environnement de programmation parallèle Kaapi. Comme la majorité des travaux
présentés dans l’état de l’art (chapitre 3), ce mécanisme est basé sur une représentation
abstraite de l’état de l’application. Dans notre cas, cette représentation est le graphe
de flot de données fourni par le moteur exécutif Kaapi. Elle nous permet notamment
d’inspecter l’état et de modifier le comportement de l’application en cours d’exécution.

Le mécanisme de reconfiguration que nous avons conçu porte sur deux aspects de la
reconfiguration : la gestion des accès concurrents et la gestion de la cohérence.

La gestion des accès concurrents permet de protéger la reconfiguration des modi-
fications externes pouvant intervenir durant son exécution. Bien que cet aspect soit
abordé dans la littérature sur des reconfigurations spécifiques (par exemple le vol de
travail [14, 50, 141]), nous ne connaissons pas de travaux qui l’aient étudié dans le cadre
général de la reconfiguration dynamique.

Nous avons défini deux méthodes d’exécution des reconfigurations : l’exécution
concurrente et l’exécution coopérative. L’exécution coopérative permet de réduire
l’utilisation de primitives de synchronisation dans l’implémentation du mécanisme de
reconfiguration. Ceci est possible au prix d’une latence plus importante pour l’exécution
de la reconfiguration, principalement lors de calcul avec un gros grain. Cette technique
a été intégrée au logiciel X-Kaapi et elle a montré de très bons résultats à grain fin en
comparaison de TBB et Cilk.

La gestion de la cohérence vise à garantir un état correct de l’application après une
reconfiguration. En particulier, la cohérence mutuelle est l’aspect qui permet d’offrir au
programme de reconfiguration une vision cohérente d’un ensemble d’objets distribués.
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Du point de vue général de la reconfiguration dynamique, cet aspect a été étudié à de
nombreuses reprises et notamment avec les logiciels présentés dans le chapitre 3. Dans
la plupart des cas, une représentation abstraite de l’application (généralement sous
forme d’un graphe) est utilisée pour assurer cette propriété de manière transparente
pour l’utilisateur.

Nous avons tout d’abord défini les propriétés de cohérence et d’accessibilité de
l’état global qui permettent d’assurer la cohérence mutuelle entre des objets distribués.
Ensuite, nous avons proposé pour Kaapi un protocole optimisé de gestion de la cohérence
mutuelle qui repose sur la connaissance du graphe de flot de données de l’application
pour réduire le cout de la coordination. Nous avons montré expérimentalement les
bonnes performances de ce protocole (rapidité et faible variabilité du temps d’exécution)
sur un millier de machines de la plateforme Grid’5000.

Dans le cadre de la tolérance aux fautes, nous avons principalement étudié le
protocole classique de sauvegarde/reprise coordonnée. Nous avons notamment intégré
ce protocole dans le logiciel Kaapi en réutilisant les mécanismes de reconfiguration
proposés précédemment. Les applications ciblées sont les applications itératives de type
décomposition de domaine. Nous avons proposé plusieurs améliorations de ce protocole
en nous basant sur le graphe de flot de données représentant l’application.

Une première amélioration permet d’éviter le ralentissement de la vitesse d’exécution
de l’application après la reprise lorsqu’il n’y a pas de machine de rechange disponible.
Elle repose à la fois sur la sur-décomposition du domaine de calcul de l’application et
sur le rééquilibrage du calcul à la reprise. Les résultats expérimentaux confirment la
pertinence de cette approche tant que le niveau de sur-décomposition n’est pas trop
important, auquel cas le surcout de gestion des tâches pénalise l’éxécution.

Une seconde amélioration est la conception d’un protocole original de reprise partielle
basé sur la sauvegarde coordonnée. Grâce au graphe de flot de données de l’application,
ce protocole détermine l’ensemble des tâches strictement nécessaires pour redémarrer
l’application dans un état correct. Selon les conditions, il peut réduire considérablement
la quantité de travail perdu à réexécuter par rapport à la reprise globale. Les expéri-
mentations confirment ces gains mais mettent en évidence le surcout important lié à
la redistribution des données. Ce cout est principalement dû au fait que l’algorithme
de rééquilibrage de charge ne tient pas compte du placement des données avant la
défaillance.

Le bilan de ces travaux de recherche s’exprime aussi en termes de développement
logiciel. Dans l’environnement Kaapi qui représente à lui seul plus de 100 000 lignes de
C++, ces contributions portent principalement sur deux modules.
• Le module de tolérance aux fautes de Kaapi contient l’implémentation de tous

les mécanismes et les composants nécessaires (cf section 7.2) pour exécuter une
application de manière transparente en présence de fautes. Les développements
dans ce module représentent 10 500 lignes de code.
• Le module d’ordonnancement par partitionnement statique contient les méca-

nismes qui permettent l’exécution efficace d’applications itératives à grande échelle.
Il a été développé conjointement avec Laurent Pigeon dans le cadre sa thèse [117]
et constitue environ 10 000 lignes de codes.
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Enfin, l’utilisation et l’expérimentation à grande échelle sur Grid’5000 ont permis
de mettre en évidence certains défauts de Kaapi et de les corriger. Cela a abouti,
entre autres, à l’outil de déploiement karun qui repose sur le logiciel TakTuk [54]
et, à la mise en place de bonnes pratiques pour l’expérimentation. Le savoir-faire est
conséquent (deux victoires aux PlugTests organisés par l’ETSI en 2007 et 2008), mais
il faut remarquer que le développement logiciel et l’expérimentation à grande échelle
nécessitent un temps considérable.

10.2 Perspectives

Nous présentons maintenant plusieurs perspectives de recherche qui peuvent être
explorées suite à nos travaux. Après des perspectives à court terme, nous présentons
trois axes de recherche liés à notre connaissance des problèmes de tolérance aux fautes
et aux possibilités de reconfigurer les applications dynamiquement.

10.2.1 Perspectives à court terme

De l’ensemble de travaux effectués, nous avons dégagé deux perspectives de recherche
à court terme : la première vise à étendre le cadre d’application de X-Kaapi pour des
applications parallèles ; la seconde concerne la poursuite des comparaisons expérimentales
des performances des protocoles de tolérance aux fautes.

X-Kaapi. Les performances obtenues avec X-Kaapi dans le cadre d’une exécution
coopérative de l’opération de reconfiguration « vol de travail » sont nettement supérieures
à celles observées avec TBB ou Cilk. Néanmoins, elles nécessitent que l’application
intervienne dans le traitement des requêtes de vol. Il est donc important de chercher à
combiner les deux approches afin que le moteur exécutif puisse profiter d’une exécution
coopérative lorsque l’application le peut tout en autorisant une exécution concurrente
si l’application est occupée par son calcul.

Des travaux dans cette direction ont commencé dans le projet MOAIS. À terme, le
moteur X-Kaapi devrait remplacer le moteur exécutif de Kaapi.

Comparaisons expérimentales. À court terme et en complément direct à nos
travaux, il serait intéressant d’étendre les expérimentations et les comparaisons que
nous avons réalisées à d’autres architectures et à d’autres logiciels.

Les solutions présentées dans cette thèse visaient une architecture de type grille
de calcul. Nous avons pu mesurer leurs performances en utilisant jusqu’à un millier
de machines. Cependant, leur comportement sur des grilles de plus grande taille ou
sur des supercalculateurs n’est pas connu. De même, il est important de réaliser une
comparaison des performances des protocoles de tolérance aux fautes de Kaapi avec
ceux d’autres environnements comme OpenMPI ou Charm++/AMPI. L’objectif
étant d’identifier les éléments clés dans l’obtention de performances. De ce point de vue,
nous pensons que l’utilisation d’une représentation abstraite sous la forme d’un graphe
de flot de donnée est un élément fondamental permettant beaucoup d’optimisations. Il
reste à le démontrer par l’expérience. Une partie de ces travaux sera réalisée au mois de
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mars 2010 durant une visite dans le Parallel Programming Laboratory de l’Université
d’Urbana-Champaign.

10.2.2 Tolérance aux fautes : difficultés et perspectives

Bien que le domaine de la tolérance aux fautes soit étudié depuis longtemps, beaucoup
de problèmes restent ouverts.

Mémoire stable. Du point de vue de la sauvegarde, le problème essentiel est lié au
surcout important induit par les sauvegardes. Hormis le fait de réduire le cout de la
sauvegarde, par exemple en réduisant le volume des données sauvegardées, le choix de
dates de sauvegarde adéquates permettrait de diminuer l’impact de la sauvegarde sur
l’exécution de l’application. De nombreux travaux existent déjà dans ce domaine [163, 41],
mais les solutions proposées se basent sur des modèles qui dépendent de paramètres
du système généralement inconnus en pratique (loi de distribution d’apparition des
pannes, taille de la sauvegarde, durée de la reprise, etc.) et elles ne sont donc pas ou
peu utilisées. Ainsi, la conception d’algorithmes « en ligne » de choix des intervalles de
sauvegarde nous semble intéressant. Les paramètres manquant seraient alors approchés
dynamiquement à l’exécution.

Une autre direction est l’utilisation d’un service distribué pour la réalisation d’une
mémoire stable en utilisant des codes correcteurs pour permettre la reconstruction des
données sauvegardées même en cas de défaillance des serveurs. Bien que cette possibilité
ait été étudiée il y a maintenant 14 ans [119] et dont certains éléments sont disponibles
à travers un logiciel [121], aucun des logiciels de calcul haute performance ne se base
sur ce genre de technique. Le manque d’expérimentations dans ce cadre ne permet pas
de conclure sur l’intérêt de l’approche et il serait intéressant de reprendre ce travail sur
les architectures actuelles.

Protocole de reprise. Du point de vue de la reprise, nous avons vu que le premier
facteur dégradant les performances, plus particulièrement dans le cas de la reprise
partielle, est la redistribution des données induite par le rééquilibrage de charge. Pour
limiter ce surcout et diminuer le temps de reprise, il est donc nécessaire de réaliser
l’équilibrage de charge en prenant en compte à la fois le cout de calcul des tâches, mais
aussi le placement des données, qu’elles soient stockées sur les processus de calcul ou
sur les serveurs de sauvegarde.

10.2.3 Reconfiguration dynamique et exécution autonome

Les mécanismes de reconfiguration présentés dans le chapitre 5 se veulent génériques.
Cependant, au cours de ces travaux, ils ont seulement été appliqués à l’ordonnancement
(vol de travail et partitionnement statique) et aux protocoles de tolérance aux fautes.
Nous proposons ici deux autres cadres pour lesquels ces mécanismes pourraient être
utilisés.
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Couplage de code et débogage d’applications distribuées. De nombreuses
reconfigurations sont imaginables comme le couplage de code dans le but de récupérer,
à un instant donné, un état cohérent de l’application afin de le visualiser [70]. De cette
manière, il serait alors possible de coupler, de manière transparente, Kaapi à l’outil
de visualisation FlowVR [103]. L’interêt d’utiliser la mécanique de reconfiguration de
Kaapi est de ne pas mélanger le code de visualisation et le code de calcul.

Ce mécanisme de reconfiguration pourrait aussi être utilisé pour réaliser du débogage
d’applications distribuées. Par exemple, la consultation d’une donnée consisterait à
ajouter dynamiquement une tâche qui affiche sa valeur. Combiné à un protocole de
sauvegarde, il serait possible de faire revenir l’exécution en arrière pour reproduire
facilement un bogue.

Exécution autonome. Enfin, le mécanisme de reconfiguration dynamique proposé
pour Kaapi peut être utilisé pour réaliser de l’adaptation dynamique1. Pour cela, il
manque encore la réalisation des fonctions d’observation et de décision vues dans le
chapitre 3. Les adaptations visées seront alors, l’ajout et le retrait dynamique de machines
afin d’offrir des garanties de performances d’une manière similaire à Satin [158] : si
l’efficacité du calcul est suffisante, des machines peuvent être ajoutées, si l’efficacité est
mauvaise des machines doivent être retirées.

Dans un but similaire, on peut envisager une reconfiguration qui transforme le calcul,
par exemple en changeant la méthode numérique par la transformation du graphe de
tâches représentant l’exécution.

1C’est même le but initial.
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Résumé
Tolérance aux fautes et reconfiguration dynamique pour les applications distribuées à

grande échelle

Ce travail se place dans le cadre du calcul haute performance sur des plateformes d’exécution
de grande taille telles que les grilles de calcul. Les grilles de calcul sont notamment caractérisées
par (1) des changements fréquents des conditions d’exécution et, en particulier, par (2) une
probabilité importante de défaillance due au grand nombre de composants. Pour exécuter une
application efficacement dans un tel environnement, il est nécessaire de prendre en compte ces
paramètres.

Nos travaux de recherche reposent sur la représentation abstraite de l’application sous
forme d’un graphe de flot de données de l’environnement de programmation parallèle et
distribuée Athapascan/Kaapi. Nous utilisons cette représentation abstraite pour apporter
des solutions aux problèmes (1) de reconfiguration dynamique et (2) de tolérance aux fautes.
• Tout d’abord, nous proposons un mécanisme de reconfiguration dynamique qui gère, de

manière transparente pour le programmeur de la reconfiguration, les problèmes d’accès
concurrents sur l’état de l’application et la cohérence mutuelle des états en cas de
reconfiguration distribuée.
• Ensuite, nous présentons un protocole de tolérance aux fautes original qui permet

d’effectuer une reprise partielle de l’application en cas de panne. Pour cela, il détermine
l’ensemble des tâches de calcul strictement nécessaires à la reprise de l’application.

Ces contributions sont évaluées en utilisant les logiciels Kaapi et X-Kaapi sur la plateforme
de calcul Grid’5000.
Mots-clés : Calcul parallèle, Grille de calcul, Adaptation et reconfiguration dynamique,
Tolérance aux fautes, Graphe de flot de données.

Abstract
Fault tolerance and dynamic reconfiguration for large scale distributed applications

This work deals with high performance computing on large scale platforms like computing
grids. Computing grids are characterized by (1) frequent changes in execution context and,
especially, by (2) a high failure probability caused by the large number of components. Running
an application efficiently in such an environment requires to consider these parameters.

Our research work is based on the abstract representation of the application as a data
flow graph from the parallel and distributed programming model Athapascan/Kaapi. This
abstract representation is used to provide solutions for (1) dynamic reconfiguration and (2)
fault tolerance issues.
• First, we propose a dynamic reconfiguration mechanism that manages, transparently

for the reconfiguration programmer, concurrent operations on the application state and
mutual consistency of states for distributed reconfiguration.
• Secondly, we present an original fault tolerance protocol that allows partial rollback

of the application in case of failure. For this purpose, the set of strictly required
computation tasks to recover is computed.

These contributions are evaluated through the Kaapi and X-Kaapi software on the
Grid’5000 computing platform.
Keywords : Parallel computing, Grid computing, Dynamic adaptation and reconfiguration,
Fault tolerance, Data flow graph.
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