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ABSTRACT. Making use of the dual Bonahon-Schläfli formula, we prove that the dual
volume of the convex core of a quasi-Fuchsian manifold M is bounded by an explicit
constant, depending only on the topology of M, times the Weil-Petersson distance between
the hyperbolic structures on the upper and lower boundary components of the convex core
of M.

INTRODUCTION

Let Σ be a closed oriented surface of genus g≥ 2. The Teichmüller space of Σ, denoted
by T(Σ), can be interpreted as the space of isotopy classes of either conformal structures or
hyperbolic metrics on Σ, thanks to the uniformization theorem. The Weil-Petersson Kähler
structure, with its induced distance dWP, naturally arises from the interplay of these two
interpretations. As described by Brock [Bro03], the coarse geometry of the Weil-Petersson
distance turns out to be related to the growth of the volume of the convex core of quasi-
Fuchsian manifolds. More precisely, in [Bro03] the author proved the existence of two
constants K1 > 1 and K2 > 0, depending only on the topology of Σ, such that every quasi-
Fuchsian manifold M satisfies

(1) K−1
1 dWP(c+(M),c−(M))−K2 ≤ Vol(CM)≤ K1 dWP(c+(M),c−(M))+K2.

Inspired by this phenomenon, the aim of this paper is to determine an explicit control from
above of the dual volume of the convex core of a quasi-Fuchsian manifold M in terms of
the Weil-Petersson distance between the hyperbolic metrics on the boundary of its convex
core, in analogy to what has been done by Schlenker [Sch13] for the renormalized volume
of M and the Weil-Petersson distance between its conformal structures at infinity.

In order to be more precise, we need to introduce some notation. If M is a quasi-Fuchs-
ian manifold homeomorphic to Σ×R, then CM will denote its convex core. When M is
not Fuchsian, the subset CM is homeomorphic to the product of Σ with a compact interval
of R with non-empty interior. Its boundary components ∂±CM, are locally convex pleated
surfaces with hyperbolic metrics m+(M), m−(M) ∈ T(Σ) and bending measured lamina-
tions µ+, µ−. The manifold M can be extended at infinity by adding two surfaces ∂±∞ M,
so that M∪∂±∞ M is homeomorphic to Σ× [−∞,+∞]. The surfaces ∂±∞ M are endowed with
natural complex structures c±(M), coming from the conformal action of the fundamental
group of M on the boundary at infinity of the hyperbolic space H3. By a classical result of
Bers [Ber60], the data of c±(M) uniquely determine the hyperbolic manifold M, and any
couple of conformal structures can be realized in this way.

The notion of dual volume arises from the polar correspondence between the hyperbolic
3-space H3 and the de Sitter 3-space dS3 (see [Riv86], [Sch02] for details), In general, if
N is a convex subset with regular boundary of a quasi-Fuchsian (or, in general, co-compact
hyperbolic) manifold M, we set the dual volume of N to be

Vol∗(N) := Vol(N)− 1
2

∫
∂N
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where H is the trace of the shape operator of ∂N with respect the interior normal vec-
tor field. Even if the convex core does not have regular boundary, a simple approxima-
tion argument shows that it makes sense to define the dual volume of the convex core of
M as Vol∗(CM) := Vol(CM)− 1

2 Lµ(m), where µ is the bending measured lamination of
∂CM and m ∈ T(∂CM) is its hyperbolic metric. As we deform the quasi-Fuchsian struc-
ture (Mt)t , the variation of the dual volume of the convex core is described by the dual
Bonahon-Schläfli formula, which asserts that

d
dt

Vol∗(CMt)|t=0 =−
1
2

d(Lµ)(ṁ).

Here ṁ denotes the derivative of the hyperbolic metrics mt on the boundary of the convex
cores CMt (a simple proof of this relation, originally showed in [KS09], can be found in
[Maz18]).

The dual Bonahon-Schläfli formula, together with the properties of the bending mea-
sured lamination, allows us to bound uniformly the variation of Vol∗(CM) with respect to
ṁ. The aim of this paper is to prove the following statement:

Theorem A. There exists a universal constant C > 0 such that, for every quasi-Fuchsian
manifold M homeomorphic to Σ×R, we have

|Vol∗(CM)| ≤C (g−1)1/2 dWP(m−(M),m+(M)),

with C ≈ 7.3459.

The dual volume and the hyperbolic volume of the convex core differ by the term
1
2 Lµ(m), which is bounded by 6π|χ(Σ)| (see [BBB19]). Moreover, the structures c±(M)
and m±(M) are at bounded Weil-Petersson distance from each other, by the works of Linch
[Lin74] and Sullivan [Sul81] (see also Epstein and Marden [CEM06, Part II]). Therefore,
Theorem A can be used to give an alternative proof of Brock’s upper bound in (1) and to
exhibit explicit constants satisfying the inequality, with a fairly simple argument.

A similar strategy has been developed by Schlenker [Sch13] using the notion of renor-
malized volume, first introduced in [KS08]. The key ingredients in the work [Sch13] are
the variation formula of the renormalized volume RVol(M) and the Nehari’s bound of the
norm of the Schwarzian derivative of the complex projective structures at infinity of ∂∞M.
In particular, the author showed that, for every quasi-Fuchsian manifold M, we have:

(2) RVol(M)≤ 3
√

π(g−1)1/2 dWP(c+(M),c−(M)).

We remark that the multiplicative constant C appearing in our statement is larger than the
one obtained using the renormalized volume, 3

√
π ≈ 5.3174 < 7.3459≈C. Therefore, the

inequality (2) is more efficient in terms of coarse estimates.
Nevertheless, Theorem A carries more information than its implications concerning the

coarse Weil-Petersson geometry, in particular when we consider quasi-Fuchsian structures
that are close to the Fuchsian locus. In this case, Theorem A and the inequality (2) fur-
nish complementary insights, since they involve the Weil-Petersson distance between the
hyperbolic structures, on one side, and the conformal structures at infinity on the other.
Moreover, Proposition 2.4 and its application for the bound of the dual volume show that
the multiplicative constant in Theorem A can be improved if we have a better control of
Lµ(m) than Lµ(m) ≤ 6π|χ(Σ)| (from [BBB19]), exactly as the inequality (2) can be im-
proved if we have a better control of the L∞-norm of the Schwarzian at infinity than the
Nehari’s bound.

We finally mention that, carrying on the analogy between the picture "at the convex
core" and "at infinity" by Schlenker [Sch17], our result fits well into the comparison of the
two descriptions of the space of quasi-Fuchsian structures, as summarized in the following
table:
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On ∂CM On ∂∞M

Induced metrics m± Conformal structures c±

Thurston’s conjecture Bers’ Simultaneous
on prescribing m± Uniformization Theorem

Bending measured lamination µ Measured foliation F

Hyperbolic length Lµ(m) Extremal length extF(c)
Dual volume Vol∗(CM) Renormalized volume RVol(M)

Dual Bonahon-Schläfli formula [Sch17, Theorem 1.2]
δ Vol∗ =− 1

2 d(Lµ)(ṁ) δ RVol =− 1
2 d(extF)(ċ)

Bound on Lµ(m) [BBB19] [Sch17, Theorem 1.4]
Lm±(l±)≤ 6π|χ(S)| extF(c)≤ 3π|χ(S)|

Bound of Vol∗ with dWP(m+,m−) Bound of RVol with dWP(c+,c−)
Theorem A Inequality (2)

Outline of the paper. In Section 1 we recall the definition of Teichmüller space T(Σ) as
deformation space of Riemann surface structures, and of its tangent and cotangent bun-
dles via Beltrami differentials and holomorphic quadratic differentials. In particular we
remind the notion of Weil-Petersson metric and of other similarly defined Finsler metrics
on T(Σ), using Lp-norms of Beltrami differentials. Then, following [Tro92], we introduce
the description of T(Σ) as the space of isotopy classes of hyperbolic metrics, and of its
tangent bundle using traceless and divergence free (also called transverse traceless) sym-
metric tensors. The Section ends with a simple Lemma describing the relation between the
two equivalent interpretations and between their norms.

Section 2 is devoted to the proof of Proposition 2.4, in which we produce a uniform
bound of the Lp-norm of the differential of Lµ : T(Σ)→ R, the hyperbolic length function
of a measured lamination over the Teichmüller space. This is the main "quantitative" in-
gredient for the proof of Theorem A. The proof uses Tromba’s description of TT(Σ) via
transverse traceless tensors: we represent a variation of hyperbolic metrics ṁ as the real
part of a holomorphic quadratic differential Φ. Using standard properties of holomorphic
functions, the pointwise norm of Φ at x can be bounded by the Lp-norm of Φ over some
embedded geodesic ball in Σ centered at x. The variation of Lµ can be expressed as an in-
tegral over the support of µ of the product of the variation of the length measure of ṁ times
the tranverse measure of µ . Then the result will follow by using the pointwise estimation
and a Fubini’s exchange of integration over a suitable finite cover of Σ.

In Section 3 we obtain a uniform control of the differential of Vol∗ in terms of the Lp-
norm of the variation of the hyperbolic metrics on ∂CM (here we denote, with abuse, by
Vol∗ the function over the space QF(Σ) of quasi-Fuchsian structures on Σ×R, which as-
sociates to a manifold M the volume of its convex core Vol∗(CM)). To do so, we will
apply the works of Bridgeman, Canary, and Yarmola [BCY16] and Bridgeman, Brock, and
Bromberg [BBB19], which give universal controls of the bending measure of the convex
core. These results are to the dual volume as the Nehari’s bound of norm of the Schwarz-
ian derivative is to the renormalized volume (the bounds obtained in [BBB19] are actually
proved using Nehari’s bound). The dual Bonahon-Schläfli formula relates the variation of
Vol∗ with the differential of the length of the bending measured lamination, and the men-
tioned universal bounds combined with Proposition 2.4 will produce the desired control of
dVol∗ (see Corollary 3.8).

In Section 4 we will finally give a proof of Theorem A. Contrary to what happens for the
conformal structures at infinity, the hyperbolic structures on ∂CM are only conjecturally
thought to give a parametrization of the space of quasi-Fuchsian manifolds. Because of



4 FILIPPO MAZZOLI

this, proving Theorem A from Corollary 3.8 is not as immediate as it is for the renor-
malized volume using its variation formula. Our procedure to overcome to this difficulty
passes through the foliation of hyperbolic ends by constant Gaussian curvature surfaces
Σk, with k ∈ (−1,0), and the notion of landslide, which is a "smoother" analogue of earth-
quakes between hyperbolic metrics on Σ introduced by Bonsante, Mondello, and Schlenker
[BMS13] (see also [BMS15]). By the work of Schlenker [Sch06] and Labourie [Lab91],
the data of the metrics on the surfaces Σk parametrize the space of quasi-Fuchsian mani-
folds. Therefore, the strategy will roughly be to:

i) approximate the dual volume of the convex core CM by the dual volume Vol∗k of
the region enclosed by the k-surfaces of M;

ii) prove that the differentials of the functions Vol∗k converge to the differential of Vol∗

as k goes to −1, i. e. as the surfaces Σk get closer to the convex core CM;
iii) use the parametrization result for the metrics of Σk to deduce the statement of

Theorem A via an approximation argument.

For point (ii), which is the most delicate part of our argument, we will highlight a connec-
tion between the differential of the functions Vol∗k and the infinitesimal smooth grafting,
introduced in [BMS13]. As described by McMullen [McM98], the earthquake map can
be complexified using the notion of grafting along a measured lamination. In the same
way the landslide admits a complex extension via the smooth grafting map. Moreover, the
complex earthquake can be actually recovered by a suitable limit of complex landslides.
Using this convergence procedure, we are able to show that dVol∗ is the limit of the differ-
entials dVol∗k , in the sense described by Proposition 4.3. The rest of the proof of Theorem
A will be an elementary application of the results from the previous section, similarly to
what done in [Sch13] with the renormalized volume.

Acknowledgments. I would like to thank my advisor Jean-Marc Schlenker for introducing
me to this problem, and for his help and support all along this work.

1. PRELIMINARIES

Let Σ be an oriented closed surface of genus g ≥ 2. Two Riemannian metrics g, g′ on
Σ are said to be conformally equivalent if there exists a smooth function u : Σ→ R such
that g = e2ug′. A Riemann surface structure on Σ is a couple X = (Σ,c), where c is a
conformal class of Riemannian metrics of Σ. A hyperbolic structure on Σ is the datum of
a Riemannian metric h with constant Gaussian curvature equal to −1.

The Teichmüller space of Σ, denoted by T(Σ), is the space of isotopy classes of con-
formal structures over the surface Σ. Thanks to the uniformization theorem, the Teich-
müller space can be considered equivalently as the space of isotopy classes of hyperbolic
metrics on Σ. We will write Tc(Σ) (c for conformal) when we want to emphasize the first
interpretation, and Th(Σ) (h for hyperbolic) in latter case.

In the following, we will recall the definition of the Weil-Petersson Riemannian metric
on the Teichmüller space, and of other similarly defined Finsler metrics. Since the literature
usually agrees on these definitions only up to multiplicative constant, we will spend some
time in describing the setting we will work with, mainly because we will be interested in
producing explicit bounds of our geometric quantities.

Let X be a Riemann structure on Σ. A Beltrami differential on X is a (1,1)-tensor ν that
can be expressed in local coordinates as ν = n ∂z⊗dz̄, where n is a measurable complex-
valued function. If h = ρ|dz|2 is the unique hyperbolic metric in the conformal class c,
then for any q ∈ [1,∞) we define the Lq-norm of the Beltrami differential ν = n ∂z⊗dz̄ to
be

‖ν‖B,q :=
(∫

X
|n|qρ dxdy

)1/q

.
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When q = ∞, we set ‖ν‖B,∞ := ess supΣ |n|. B(X) will denote the space of Beltrami differ-
entials of X with finite L∞-norm.

A holomorphic quadratic differential on X is a symmetric 2-covariant tensor that can be
locally written as Φ = φ dz2, where φ is holomorphic. In analogy to what was done above,
for every p ∈ [1,∞) we define the Lp-norm of Φ to be

‖Φ‖Q,p :=
(∫

Σ

|φ |p

ρ p−1 dxdy
)1/p

.

When p = ∞, we set ‖Φ‖Q,∞ := ess supΣ |φ |/ρ . When p = 2, the norm ‖·‖Q,2 is induced
by a scalar product, defined as follows:

〈Φ,Ψ〉Q,2 :=
∫

Σ

φψ

ρ
dxdy .

There is a natural pairing between the space of bounded Beltrami differentials B(X) and
the space of holomorphic quadratic differentials Q(X): given a Beltrami differential ν =
n ∂z⊗dz̄ and a holomorphic quadratic differential Φ = φ dz2, we define

(Φ,ν) :=
∫

X
φ n̄dxdy .

The Hölder inequality implies that, for every Φ ∈ Q(X) and ν ∈ B(X), we have

|(Φ,ν)| ≤ ‖Φ‖Q,p‖ν‖B,q,

where p and q are conjugate exponents, i. e. 1
p +

1
q = 1. Therefore (·, ·) induces a continu-

ous (and injective, in fact) linear operator

Q(X) −→ B(X)∗

Φ 7−→ (Φ, ·).

Consequently, we can endow Q(X) with the dual norm of ‖·‖B,q, defined as

‖Φ‖∗B,q := sup
ν 6=0

|(Φ,ν)|
‖ν‖B,q

.

An elementary argument proves the following:

Lemma 1.1. For any couple of conjugate exponents p, q and for any Φ ∈ Q(X), we have
‖Φ‖Q,p = ‖Φ‖

∗
B,q.

A Beltrami differential ν ∈ B(X) is harmonic if there exists a holomorphic quadratic
differential Φ = φ dz2 such that ν = φ̄/ρ ∂z⊗ dz̄. We denote by Bh(X) the space of har-
monic Beltrami differentials on X .

Let N(X) be the subspace of B(X) of those Beltrami differentials ν verifying (Φ,ν) = 0
for every Φ ∈ Q(X). As described in [GL00], the space Bh(Σ) and N(X) are in direct
sum, and the quotient of (B(X),‖·‖B,∞) by the subspace N(X) identifies with the tangent
space to the Teichmüller space TXTc(Σ) (here we denote by X the isotopy class of the
conformal structure, with abuse). Moreover, the pairing (·, ·) determines a natural isomor-
phism between the dual of TXT(Σ) and the space of holomorphic quadratic differentials
(Q(X),‖·‖Q,1), which is consequently identified with the cotangent space T ∗XTc(Σ).

The inner product 〈·, ·〉Q,2 on Q(X) induces a Hermitian scalar product on the cotangent
space T ∗XTc(Σ), and consequently on TXTc(Σ). Its real part is the Weil-Petersson metric of
Tc(Σ), and it will be denoted by 〈·, ·〉WP.

We recall now the Riemannian description of the Teichmüller space as developed in
[Tro92]. Let S2,0Σ be the bundle of 2-covariant symmetric tensors on Σ, and let Γ(S2,0Σ)
denote the space of its smooth sections, which is an infinite dimensional vector space. The
space M of smooth Riemannian metrics on Σ identifies with an open cone inside Γ(S2,0Σ).
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Therefore, given any Riemannian metric g on Σ, the tangent space TgM is canonically
isomorphic to Γ(S2,0Σ). The metric g determines a scalar product on TgM, which can be
expressed as (h,k)g := gikg jhhi jkkh, for h, k in Γ(T 2,0Σ). The norm induced by this scalar
product will be denoted by ‖h‖2

g := 〈h,h〉g. Given h∈Γ(T 2,0Σ), we define the g-divergence
of h to be the 1-form δgh(V ) := trg(∇∗h)(∗,V ), for any V tangent vector field to Σ. Now
we set

Stt(Σ,g) := {h ∈ Γ(T 2,0
Σ) | h is symmetric, g-traceless and δgh = 0}.

An element of Stt(Σ,g) is usually called a tranverse traceless tensor (with respect to the
metric g). As shown in [Tro92], every element of Stt(Σ,g) can be written (uniquely) as the
real part of a holomorphic quadratic differential Φ ∈ Q(Σ, [g]), and vice versa for every Φ,
the tensor ReΦ belongs to Stt(Σ,g). In particular, the space Stt(Σ,g) depends only on the
conformal class of the metric g. If g is a hyperbolic metric, then Stt(Σ,g) is tangent to the
space M−1 of hyperbolic metrics on Σ, and it is transverse to the orbit of g by the action of
the group of diffeomorphisms isotopic to the identity. Therefore, the tangent space of the
Teichmüller space at the isotopy class of g can be identified with S(Σ,g).

For any open set Ω⊆ Σ and any p ∈ [1,∞), the Fischer-Tromba p-norm of h ∈ Stt(Σ,g)
is defined as

‖h‖FT,Lp(Ω) :=
(∫

Ω

‖h‖p
g dvolg

)1/p

,

where dvolg is the area form induced by g. When p = ∞, we set ‖h‖FT,L∞(Ω) := supΩ ‖h‖g.
If Ω = Σ, we simply write ‖·‖FT,p.

Let now m be a point of the Teichmüller space, and let g be a hyperbolic metric in the
equivalence class m, with associated Riemann surface structure X .

Lemma 1.2. The vector spaces Bh(X) and Stt(Σ,g) are identified to TmT(Σ) through the
linear isomorphism

Bh(X) −→ Stt(Σ,g)
νΦ 7−→ 2ReΦ.

Moreover, for every Φ ∈ Q(X) we have

‖νΦ‖B,q =
1

2
√

2
‖2ReΦ‖FT,q.

Proof. Let gt = ρt |dzt |2 be a smooth 1-parameter family of Riemannian metrics on Σ, with
g0 = g, and let Φ = φ dz0

2 be a holomorphic quadratic differential on the Riemann surface
X0 = (Σ, [g0]). If we require the identity map (Σ,g0)→ (Σ,gt) to be quasi-conformal with
harmonic Beltrami differential

ν
0
tΦ :=

tφ̄
ρ0

∂z0 ⊗dz̄0 ,

then the Riemannian metric gt can be expressed as

gt = ρt

∣∣∣∣ ∂ zt

∂ z0

∣∣∣∣2|dz0|2 +2tρt

∣∣∣∣ ∂ zt

∂ z0

∣∣∣∣2 Re
(

φ

ρ0
dz0

2
)
+O(t2).

Therefore the first order variation of gt at t = 0 coincides with

ġ0 =

(
d
dt

ρt

∣∣∣∣ ∂ zt

∂ z0

∣∣∣∣2
∣∣∣∣∣
t=0

|dz0|2
)
+2ReΦ.

The quantity ġ0 identifies with a tangent vector to the space M of Riemannian metrics over
Σ at the point g0. The first term in the expression above is conformal to the Riemannian
metric g0, hence it is tangent to the conformal class [g0]⊂M. The remaining term 2ReΦ

is a symmetric, g0-traceless and divergence-free tensor, so it lies in the subspace Stt(Σ,g0)
of Tg0M.
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The computation above proves that the harmonic Beltrami differential νΦ, seen as an
element of TmTc(Σ), corresponds to 2ReΦ ∈ Stt(Σ,g0) ∼= TmTh(Σ). Finally, an explicit
computation shows the relation between the norms ‖·‖B,q and ‖·‖FT,q. �

2. A BOUND OF THE DIFFERENTIAL OF THE LENGTH

Let ML(Σ) denote the space of measured laminations of Σ. The aim of this section is to
produce, given µ ∈ML(Σ), a quantitative upper bound of the Lp-norm of the differential of
the length function Lµ : Th(Σ)→ R, which associates to every class of hyperbolic metrics
m ∈ Th(Σ) the length of the m-geodesic realization of µ . This estimate is the content of
Proposition 2.4, which will be our main technical ingredient to produce the upper bound
of the dual volume in terms of the Weil-Petersson distance between the hyperbolic metrics
on the convex core of a quasi-Fuchsian manifold.

We briefly sketch the structure of this section: Lemma 2.1 describes a natural way to
express the differential of Lµ applied to a first order variation of hyperbolic metrics ġ.
Lemma 2.2 uses the properties of holomorphic functions to bound the pointwise value of
a holomorphic quadratic differential at x ∈ Σ with its Lq-norm on the ball centered at x.
Then Proposition 2.4 will follow by selecting a first order variation ġ in Stt(Σ,g) and then
carefully applying the bound of Lemma 2.2 in the expression found in Lemma 2.1.

Let m ∈ Th(Σ) and µ ∈ML(Σ). Given a hyperbolic metric g in the equivalence class
m, we identify the measured lamination µ with its g-geodesic realization inside (Σ,g). If
λ is a g-geodesic lamination of Σ containing the support of µ , we can cover λ by finitely
many flow boxes σ j : I× I → B j, where I = [0,1] and σ j is a homeomorphism verifying
σ
−1
j (λ ) = D j × I, for some closed subset D j of I. We select also a collection {ξ j} j of

smooth functions with supports contained in the interior of B j for every j, and such that
∑ j ξ j = 1 over λ . Since the arcs σ j(I×{s}) are transverse to λ , it makes sense to integrate
the first component of σ j with respect to the measure µ . We set the length of µ with respect
to m to be the quantity

Lµ(m) := ∑
j

∫
D j

∫ 1

0
ξ j(σ j(p, ·))d`(·)dµ (p),

where d`(s) =
∥∥∂sσ j(p,s)

∥∥
g ds. More generally, given a measurable function f defined on

a neighborhood of λ , we define∫∫
λ

f d`dµ := ∑
j

∫
D j

∫ 1

0
ξ j(σ j(p, ·)) f (σ j(p, ·))d`(·)dµ (p).

The quantity Lµ(m) does not depend on the choices we made of σ j, ξ j and the hyperbolic
metric g in the equivalence class m ∈ T(Σ) (see e. g. [Bon96]). Therefore, any measured
lamination µ of Σ determines a positive function Lµ on the Teichmüller space T(Σ), which
associates to any m ∈ Th(Σ) the length of the geodesic realization of µ in m.

Similarly, if (gt)t is a smooth 1-parameter family of hyperbolic metrics on Σ, with g0 = g
and ġ0 = ġ, we set∫∫

λ

d ˙̀dµ :=
1
2 ∑

j

∫
D j

∫ 1

0
ξ j(σ j(p, ·))

ġ(∂sσ j(p, ·),∂sσ j(p, ·))
g(∂sσ j(p, ·),∂sσ j(p, ·))

d`(·)dµ (p).

Lemma 2.1. Let µ be a measured lamination of Σ, and let (mt)t be a smooth path in Th(Σ)
verifying m0 = m and ṁ0 = ṁ ∈ TmTh(Σ). Then we have

d
(
Lµ

)
m (ṁ) =

∫∫
λ

d ˙̀dµ ,

where
∫∫

λ
d ˙̀dµ is defined as above by selecting a smooth path t 7→ gt of hyperbolic metrics

representing t 7→ mt .
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Proof. First we prove the statement when µ is a weight 1 simple closed curve γ in Σ. Let
γt : [0,1]→ Σ denote a parametrization of the geodesic representative of γ with respect
to the hyperbolic metric gt , which can be chosen to depend differentiably in t. Then the
length of γt with respect to the metric gt can be expressed as

Lγ(mt) =
∫ 1

0

√
gt(γ ′t (s),γ ′t (s))ds .

Now, by taking the derivative of this expression in t and using the fact that ∇γ̇0 ≡ 0 (with
∇ being the Levi-Civita connection of g0), we obtain that

d
dt

Lγ(mt)

∣∣∣∣
t=0

=
1
2

∫ 1

0

ġ0(γ
′
0(s),γ

′
0(s))√

g0(γ ′0(s),γ
′
0(s))

ds ,

which coincides with the quantity
∫∫

γ
d ˙̀dµ . By linearity we deduce the statement for any

rational lamination µ = ∑i aiγi.
Now, if µ is a general measured lamination, we select a sequence of rational laminations

(µn)n converging to µ . As shown in [Ker85], the functions Lµn are real analytic over
Th(Σ) and they converge in the C ∞-topology on compact sets to Lµ . In particular the
terms d

(
Lµn

)
m (ṁ) converge to d

(
Lµ

)
m (ṁ). Since the expression

∫∫
λ

d ˙̀dµ can be proved
to be continuous in the measured lamination µ ∈ML(Σ), the statement follows by an
approximation argument. �

Before stating Lemma 2.2, we define for convenience the following quantities: for every
q ∈ [1,∞) and r > 0, we set

(3) C(r,q) :=
(

2q−1
4π

(cosh(r/2))4q−2

(cosh(r/2))4q−2−1

)1/q

.

When q = ∞, we define C(r,∞) := 1 for every r > 0.

Lemma 2.2. Let (Σ,g) be a hyperbolic surface. Given x ∈ Σ and r < injradg(x), we denote
by Br(x) the metric ball of radius r centered at x ∈ Σ. Then, for every q ∈ [1,∞] and for
every holomorphic quadratic differential on (Σ, [g]), we have

‖ReΦx‖ ≤C(r,q)‖ReΦ‖FT,Lq(Br(x)).

where ‖ReΦx‖ is the pointwise norm of the tensor ReΦ at x.

Proof. If q = ∞, the statement is clear. Consider q < ∞. By passing to the universal cover,
we can assume the surface to be ∆ = {z ∈ C | |z| < 1} and x to be 0 ∈ ∆. The hyperbolic
metric of ∆ is of the form

g∆ =

(
2

1−|z|2

)2

|dz|2,

where z ∈ ∆ is the natural coordinate of ∆ ⊂ C. In what follows, we will denote by ‖·‖
the norm induced by the hyperbolic metric, and by ‖·‖0 the one induced by the standard
Euclidean metric |dz|2.

If Φ = φ dz2 is a holomorphic quadratic representative, then for any ρ ∈ (0,1) the
residue theorem tells us that

φ(0) =
1

2πi

∫
∂BE

ρ

φ(z)
z

dz ,

where BE
ρ = BE

ρ (0) = {z ∈ ∆ | |z| < ρ} (here E stands for "Euclidean"). In particular we
have

(4) |φ(0)|q ≤
(

1
2π

∫ 2π

0
|φ(ρeiθ )| dθ

)q

≤ 1
2π

∫ 2π

0
|φ(ρeiθ )|q dθ ,
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where in the last step we used the Hölder inequality. At z = ρeiθ , the hyperbolic norm of
ReΦ(z) can be expressed as follows:

‖ReΦ(z)‖= 1√
2
|φ(ρeiθ )|

(
2

1−ρ2

)−2∥∥dz2∥∥
0.

It is easy to check that the metric ball Br centered at 0 with respect to the hyperbolic
distance coincides with BE

tanh(r/2), and that the hyperbolic volume form dvol is given by
ρ(2/(1− ρ2))2 dρ dθ . Combining all these facts, if we multiply the inequality (4) by
ρ(2/(1−ρ2))2−2q and we integrate in

∫ tanhr/2
0 dρ , we deduce that∫

Br

‖ReΦ‖q dvol = 2−q/2∥∥dz2∥∥q
0

∫ tanhr/2

0
ρ

(
2

1−ρ2

)2−2q ∫ 2π

0
|φ(ρeiθ )|q dθ dρ

≥ 2π|φ(0)|q 2−q/2−2(q−1)∥∥dz2∥∥q
0

∫ tanhr/2

0
ρ(1−ρ

2)2(q−1) dρ

= 4π‖ReΦ(0)‖q 1
2q−1

(
1− 1

(cosh(r/2))4q−2

)
=C(r,q)−q‖ReΦ(0)‖q,

which proves the assertion. �

We state here another useful fact we will use in the proof of Proposition 2.4:

Lemma 2.3. Let (Σ,g) be a hyperbolic surface and let µ be a measured lamination on Σ.
Then, for every L1-function f : Nr(µ)→ R defined on the r-neighborhood of µ in Σ, we
have ∫∫

λ

(∫
Br(·)

f dvolg

)
d`dµ =

∫
Σ

(∫∫
λ∩Br(·)

d`dµ

)
f dvolg .

Proof. Assume that µ is a 1-weighted simple closed curve γ : [0,1]→ Σ, and let f̃ denote
the extension of the function f to Σ verifying f̃ (x) = 0 for all x∈ Σ\Nr(γ). We set ξ : Σ2→
R to be the function taking value ξ (x,y) = 1 if the distance between x and y is less than r,
and ξ (x,y) = 0 otherwise. Then the integral on the left can be expressed as∫ 1

0

∫
Σ

f̃ (x) ξ (x,γ(t))dvolg(x)d`(t) .

Applying Fubini’s theorem we obtain∫ 1

0

∫
Σ

f̃ (x)ξ (x,γ(t))dvolg(x)d`(t) =
∫

Σ

∫ 1

0
ξ (x,γ(t))d`(t) f̃ (x)dvolg(x)

=
∫

Σ

(∫
γ−1(Br(x))

d`(t)
)

f̃ (x)dvolg(x).

The last term coincides with the right term of the equality in the statement in the case µ = γ .
By linearity we deduce the statement when µ a rational lamination, and by continuity of
the two integrals in the statement with respect with µ we obtain the result for any general
measured lamination. �

Let m ∈ Th(Σ) and µ ∈ML(Σ), and select a hyperbolic metric g in the equivalence
class m. If (Σ̃, g̃) denotes the universal cover of (Σ,g), we define

D(m,µ,r) := sup
x̃∈Σ̃

∫∫
λ̃∩Br(x̃)

d ˜̀dµ̃ < ∞.

where λ̃ denotes the support of the measured lamination µ̃ . In other words, D(m,µ,r) is
the supremum, over the points x̃ in the universal cover Σ̃, of the length of the portion of µ̃

contained in the ball centered at x̃ of radius r.
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Proposition 2.4. For any r > 0 and for any p ∈ [1,∞] we have∥∥d
(
Lµ

)
m

∥∥
Q,p ≤ Lµ(m)1/p C(r,q) D(m,µ,r)1/q,

where p and q are conjugate exponents, i. e. 1
p +

1
q = 1.

Proof. Let ṁ be a tangent vector to the Teichmüller space at m. As described in [Tro92],
there exists a unique symmetric transverse-traceless tensor ϕ ∈ Stt(Σ,g) identified with the
tangent vector ṁ ∈ TmTh(Σ). Let Φ be the holomorphic quadratic differential on (Σ, [g])
such that ReΦ=ϕ . We start by making use of Lemma 2.1. From the definition of

∫∫
λ

d ˙̀dµ

and the inequality |ϕ(v,v)| ≤ 1√
2
‖ϕ‖g‖v‖

2
g, we see that∣∣d(Lµ

)
m (ṁ)

∣∣= ∣∣∣∣∫∫
λ

d ˙̀dµ

∣∣∣∣≤ 1
2
√

2

∫∫
λ

‖ϕ‖g d`dµ .

By applying the Hölder inequality on the right-side integral, we get

(5)
∣∣d(Lµ

)
m (ṁ)

∣∣≤ 1
2
√

2

∫∫
λ

‖ϕ‖g d`dµ ≤
Lµ(m)1/p

2
√

2

(∫∫
λ

‖ϕ‖q
g d`dµ

)1/q

.

Now we estimate the integral
∫∫

λ
‖ϕ‖q

g d`dµ by lifting it to a suitable covering of Σ, and
then applying Lemma 2.2. More precisely, let (Σ̂, ĝ)→ (Σ,g) be a N-index covering so
that injrad(Σ̂, ĝ) > r, for some N ∈ N. We denote by •̂ the lift of the object • on Σ̂. It is
immediate to check that the following relation holds∫∫

λ

‖ϕ‖q
g d`dµ =

1
N

∫∫
λ̂

‖ϕ̂‖q
ĝ d ˆ̀dµ̂ .

Then, by applying Lemma 2.2 on the surface (Σ̂, ĝ) and at each point x̂ ∈ λ̂ , we get∫∫
λ

‖ϕ‖q
g d`dµ =

1
N

∫∫
λ̂

‖ϕ̂‖q
ĝ d ˆ̀dµ̂

≤ C(r,q)q

N

∫∫
λ̂

‖ϕ̂‖q
FT,Lq(Br(·)) d ˆ̀dµ̂

=
C(r,q)q

N

∫∫
λ̂

(∫
Br(·)
‖ϕ̂‖q

ĝ dvolĝ

)
d ˆ̀dµ̂ .

Using Lemma 2.3 and the definition of D(m,µ,r), we obtain∫∫
λ̂

(∫
Br(·)
‖ϕ̂‖q

ĝ dvolĝ

)
d ˆ̀dµ̂ =

∫
Σ̂

(∫∫
λ̂∩Br(·)

d ˆ̀dµ̂

)
‖ϕ̂‖q

ĝ dvolĝ

≤ D(m,µ,r)
∫

Σ̂

‖ϕ̂‖q
ĝ dvolĝ

= N D(m,µ,r) ‖ϕ‖q
FT,q,

where, in the last step, we are using again the fact that (Σ,g)→ (Σ̂, ĝ) is a N-index covering.
Combining the last two estimates, we obtain

(6)
∫∫

λ

‖ϕ‖q
g d`dµ ≤C(r,q)q D(m,µ,r) ‖ϕ‖q

FT,q.

Using the inequalities (5) and (6), we have shown that∣∣d(Lµ

)
m (ṁ)

∣∣≤ Lµ(m)1/p C(r,q) D(m,µ,r)1/q

2
√

2
‖ϕ‖FT,q.

Finally, by applying Lemma 1.2, we obtain∣∣d(Lµ

)
m (ṁ)

∣∣≤ Lµ(m)1/p C(r,q) D(m,µ,r)1/q‖ṁ‖B,q,

which implies the statement, in light of Lemma 1.1. �
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3. THE DIFFERENTIAL OF THE DUAL VOLUME

In this section we use Proposition 2.4 to bound the differential of the function Vol∗,
which associates to each quasi-Fuchsian manifold M the dual volume of its convex core.
The link between Vol∗ and the differential of the length of the bending measured lamination
is given by the dual Bonahon-Schläfli formula (see [KS09], [Maz18]). We will recall and
make use of the results by Bridgeman, Brock, and Bromberg [BBB19], and Bridgeman,
Canary, and Yarmola [BCY16], which will allow us to estimate uniformly the quantities
Lµ(m) and D(m,µ,r) appearing in Proposition 2.4.

Let M be a complete 3-dimensional hyperbolic manifold, We say that a subset C ⊂M
is convex if for any geodesic arc γ of M connecting two points x and y of C (possibly
equal), the arc γ is fully contained in C. The manifold M is called quasi-Fuchsian if it is
homeomorphic to Σ×R and it contains a compact non-empty convex subset. In this case,
the intersection of all non-empty compact convex subsets of M is a non-empty compact
convex subset, called the convex core of M and denoted by CM, which is obviously minimal
with respect to the inclusion.

The boundary of the convex core CM is almost everywhere totally geodesic and it is
homeomorphic to two copies of Σ. If we identify the universal cover of M with H3, then
the preimage of ∂CM in H3 is the union of two locally convex pleated planes H± bent along
a measured lamination µ̃ . Since these pleated planes are invariant under the action of the
fundamental group of M, they determine two hyperbolic metrics m+, m− ∈ Th(Σ) and two
measured laminations µ+, µ− ∈ML(Σ). We will denote the couple of metrics (m+,m−)
by m ∈ T(∂CM) and the pairs of measured laminations (µ+,µ−) by µ ∈ML(∂CM).

The action of the fundamental group Γ of M naturally extends to ∂H3∼=CP1 by Möbius
tranformations. Given any x0 ∈ H3, the subset Λ of accumulation points of Γx0 in ∂H3 is
called the limit set of Γ. The action of Γ is free and properly discontinuous on ∂H3 \Λ,
and it determines a pair of Riemann surface structures c+, c− on Σ and Σ (the surface Σ

endowed with the opposite orientation), called the conformal structures at infinity of M. A
well-known result of [Ber60] states that the space of quasi-Fuchsian structures on Σ×R is
parametrized by the couple of conformal structures at infinity. In other words, the map

B : QF(Σ) −→ Tc(Σ)×Tc(Σ)
M 7−→ (c+,c−)

is a homeomorphism. In fact B is a biholomorphism if we endow QF(Σ) with the com-
plex structure of subset of the character variety χ(π1Σ,PSL2C), and the natural complex
structure of Tc(Σ). Another natural map on QF(Σ) is

Ψ : QF(Σ) −→ Th(Σ)×Th(Σ)
M 7−→ (m+,m−),

which Thurston conjectured to be another parametrization of the space of quasi-Fuchsian
manifolds. Bonahon [Bon98b] proved that the map Ψ is C 1 (and actually not C 2), there-
fore a first order variation of quasi-Fuchsian structures Ṁ determines a first order variation
of the induced hyperbolic structures ṁ on the convex core.

Definition 3.1. Let N ⊂M be a compact convex subset of M with regular boundary. The
dual volume of N is defined as

Vol∗(N) := Vol(N)− 1
2

∫
∂N

H da ,

where H is trace of the shape operator of ∂N with respect to the normal vector pointing
towards the convex side. The dual volume of the convex core of M is set to be:

Vol∗(CM) := Vol(CM)− 1
2

Lµ(m).
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Contrary to the usual hyperbolic volume of the convex core (see [Bon98a] for details),
the dual volume Vol∗(CM) turns out to be a C 1-function on the space of quasi-Fuchsian
manifolds, and its variation is described by the following result:

Theorem 3.2 ([KS09]). Let (Mt)t∈(−ε,ε) be a smooth 1-parameter family of quasi-Fuchs-
ian structures. We denote by µ = µ0 ∈ML(∂CM) the bending measure of the convex core
of M = M0 and by (mt)t the family of hyperbolic metrics on the boundary of the convex
core CMt . Then the derivative of the dual volume of CMt exists and it verifies

d
dt

Vol∗(CMt)

∣∣∣∣
t=0

=
1
2

d
(
Lµ

)
m (ṁ),

where m = m0 and ṁ = ṁ0 ∈ TmTh(Σ).

This fact has been initially proved by [KS09] making use of Bonahon’s work on the
variation of the hyperbolic volume in [Bon98a]. The author of this paper has recently
described an alternative proof of this relation that does not require the results of [Bon98a],
which can be found in [Maz18].

An immediate corollary of the variation formula of the dual volume and of our estimate
in Proposition 2.4 is the following:

Proposition 3.3. Let Vol∗ : QF(Σ)→ R denote the function associating to each quasi-
Fuchsian manifold M the dual volume of its convex core CM. Then for every r > 0 and for
every p ∈ [1,∞] we have∣∣dVol∗M (Ṁ)

∣∣≤ 1
2

Lµ(m)1/p C(r,q) D(m,µ,r)1/q ‖ṁ‖B,q,

where m and µ are the bending measure and the hyperbolic metric of the convex core of M,
respectively, C(r,q) and D(m,µ,r) are the constants defined in the previous section, and p
and q are conjugated exponents.

In the remaining part of this section we describe a procedure to obtain a multiplicative
factor in the above statement depending only on p and the genus of Σ.

As we mentioned before, the lift of the boundary of the convex core is the union of
two locally bent pleated planes H±, which are embedded in H3. This property turns out
to determine uniform upper bounds of the quantities Lµ(m) and D(m,µ,r) appearing in
the statement of Proposition 2.4. The first results in this direction have been developed
by Epstein and Marden in [CEM06, Part II]. In our exposition, we will recall and make
use of the works of Bridgeman, Brock, and Bromberg [BBB19] and Bridgeman, Canary,
and Yarmola [BCY16], which will give us separate bounds for Lµ(m) and D(m,µ,r), re-
spectively. We will also require r to be less than ln(3)/2. This restriction simplifies our
argument in the proof of Corollary 3.6. However, we do not exclude the possibility that a
joint study of the quantity Lµ(m)1/pD(m,µ,r)1/q and a careful choice of r might improve
the multiplicative constants obtained here.

First we focus on the term D(m,µ,r), which we defined before the statement of Propo-
sition 2.4. Let λ̃ denote the geodesic lamination in Σ̃ given by the lift of the support of the
measured lamination µ . Let Q be a component of Σ̃\ λ̃ and let l1, l2, l3 be three boundary
components of Q. We will use the following fact:

Lemma 3.4 ([CEM06, Corollary II.2.4.3]). Let r < ln(3)/2= arcsinh(1/
√

3), and suppose
we have a point x ∈ Q which is at distance ≤ arcsinh(e−r) from both l2 and l3. Then its
distance from l1 is > r.

Following [BCY16], given µ̃ a measured lamination on H2, we denote by ‖µ̃‖s the
supremum over α of the transverse measure of µ̃ along α , where α varies among the
geodesic arcs in H3 of length s > 0 which are transverse to the support of µ̃ .
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Theorem 3.5 ([BCY16]). Let s ∈ (0,2arcsinh1) and let µ̃ be a measured lamination of
H2 so that the pleated plane with bending measure µ̃ is embedded inside H3. Then

‖µ̃‖s ≤ 2arccos(−sinh(s/2)) .

Corollary 3.6. Let µ ∈ML(Σ) and m ∈ Th(Σ) be the bending measure and the hyper-
bolic metric, respectively, of the boundary of an incompressible hyperbolic end inside a
hyperbolic convex co-compact 3-manifold. Then for every r < ln(3)/2 we have

D(m,µ,r)≤ 4r arccos(−sinhr) .

Moreover, for every ε > 0 there exists mε ∈ Th(Σ) and µε ∈ML(Σ) as above verifying

D(mε ,µε ,r)≥ 2(π− ε)r ∀r > 0.

Proof. Let g be a hyperbolic metric in the equivalence class m ∈ Th(Σ). We denote by
(Σ̃, g̃)→ (Σ,g) the Riemannian universal cover of (Σ,g) and by λ̃ the support of the lift µ̃

of the measured lamination µ to Σ̃. Given a point x̃ in Σ̃ and a positive r < ln(3)/2, we are
looking for an upper bound of the length of µ̃ ∩Br(x̃), where Br(x̃) denotes the metric ball
of radius r at x̃.

The convenience of considering r < ln(3)/2 comes from Lemma 3.4: under this hy-
pothesis, any plaque Q of λ̃ at distance less than r from x has at most two components
of its boundary intersecting Br(x). A simple argument proves that, if this happens, we can
find a geodesic path α of length < 2r that intersects all the leaves of λ̃ ∩Br(x̃). Each leaf of
λ̃ ∩Br(x̃) has length < 2r, therefore the length of µ̃ ∩Br(x̃) is bounded by 2r (the length of
each leaf) times the total mass µ̃(α), which can be estimated applying Theorem 3.5 with
s = 2r < ln3 < 2arcsinh1. This proves the first part of the statement1.

For what concerns the last part of the assertion, we fix a simple closed curve γ and
we assign it the weight π − ε . By the work of Bonahon and Otal [BO04], we can find
a quasi-Fuchsian manifold Mε realizing (π − ε)γ as the bending lamination of the upper
component of the boundary of the convex core ∂+CMε . It is immediate to check that, if
mε is the hyperbolic metric of ∂+CMε , then D(mε ,µε ,r)≥ 2(π− ε)r for all r > 0. �

For the bound of the term Lµ(m), we will apply the following result:

Theorem 3.7 ([BBB19, Theorem 2.16]). Let µ ∈ML(Σ) and m ∈ Th(Σ) be the bending
measure and the hyperbolic metric, respectively, of the boundary of an incompressible
hyperbolic end inside a hyperbolic convex co-compact 3-manifold. Then

Lµ(m)≤ 6π|χ(Σ)|.

Finally, given p ∈ (1,∞) and r < ln(3)/2, we set

K(r, p) :=
1
2
(24π)1/p C(r,q) (4r arccos(−sinhr))1/q

=
1
2
(24π)1/p

(
2q−1

π

(cosh(r/2))4q−2

(cosh(r/2))4q−2−1
r arccos(−sinhr)

)1/q

,

where C(r,q) was defined in equation 3. We define also

K(r,1) = 12π, K(r,∞) =
r arccos(−sinhr)

2π tanh2(r/2)
.

Corollary 3.8. In the same notations of Proposition 3.3, for every p ∈ [1,∞] we have∣∣dVol∗M(Ṁ)
∣∣≤ K(p)(g−1)1/p‖ṁ‖B,q,

where K(p) := K(ln(3)/2, p) and ṁ denotes the variation of the hyperbolic metrics on the
boundary of the convex core ∂CM of M. We have:

1See Remark 3.10.
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• K(1) = 12π;
• K(2)≈ 10.3887;
• K(∞)≈ 2.66216.

Proof. We combine Proposition 3.3, Corollary 3.6 and Theorem 3.7 on the upper and lower
components of ∂CM = ∂CM0, and then we take the limit as r goes to ln(3)/2. �

We can compare this statement with the analogous bound for the differential of the renor-
malized volume:

Theorem 3.9 ([Sch13]). Let RVol : QF(Σ)→ R denote the function associating to each
quasi-Fuchsian manifold M its renormalized volume. Then for every p ∈ [1,∞] we have

dRVolM (Ṁ)≤ H(p)(g−1)1/p‖ċ‖B,q,

where ċ denotes the variation of the conformal structures at infinity of M, and where
H(p) := 3

2 (8π)1/p.

Remark 3.10. From the first part of the proof of Corollary 3.6 is clear that our estimate of
the constant D(m,µ,r) is far from being optimal. However, using the second part of the
assertion, it is easy to see that the possible improvement of the constant K(2) is not enough
to make the multiplicative constant in Theorem A to be less than 3

√
π , which is the one

appearing in the analogous statement for the renormalized volume. Because of this, we
preferred to present a simpler but rougher argument.

4. DUAL VOLUME AND WEIL-PETERSSON DISTANCE

This section is dedicated to the proof of the linear upper bound of the dual volume of a
quasi-Fuchsian manifold M in terms of the Weil-Petersson distance between the hyperbolic
structures on the boundary of its convex core CM. As we mentioned in Section 3, the data
of the hyperbolic metrics of ∂CM is only conjectured to give a parametrization of the space
of quasi-Fuchsian manifolds, contrary to what happens with the conformal structures at
infinity. In particular, the same strategy used in [Sch13] to bound the renormalized volume
cannot be immediately applied. In order to overcome this problem, we will take advantage
of the foliation by constant Gaussian curvature surfaces (k-surfaces) of M \CM, whose
existence has been proved by Labourie [Lab91] (see also Remark 4.12). The space of
hyperbolic structures with strictly convex boundary on Σ× [0,1] is parametrized by the
data of the metrics on its boundary, as proved in [Sch06]. In particular, the Teichmüller
classes of the metrics of the upper and lower k-surfaces parametrize the space of quasi-
Fuchsian structures of topological type Σ×R. Moreover, the first order variation of the
dual volume of the region Mk encosed between the two k-surfaces is intimately related
to the notion of landslide, which was first introduced and studied in [BMS13], [BMS15].
This connection will be very useful to relate the first order variation of Vol∗(CM) and
of Vol∗(Mk), as k goes to −1, allowing us to prove Theorem A using an approximation
argument, together with the bounds obtained in the previous Section.

4.1. Constant Gaussian curvature surfaces. The existence of the foliation by constant
Gaussian curvature surfaces is guaranteed by the following result:

Theorem 4.1 ([Lab91, Théorème 2]). Every geometrically finite 3-dimensional hyperbolic
end E is foliated by a family of strictly convex surfaces (Σk)k with constant curvature
k ∈ (−1,0). As k goes to −1, the surface Σk converges to the locally concave pleated
boundary of E, and as k goes to 0, Σk approaches the conformal boundary at infinity ∂∞E.

A surface of constant Gaussian curvature k embedded in some hyperbolic 3-manifold
is called a k-surface. From the Gauss equations we see that the extrinsic curvature of a
k-surface is equal to k+ 1. Therefore, if k is in (−1,0), the principal curvatures have the
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same sign and never vanish. In particular the leaves of the foliation of Theorem 4.1 are all
convex surfaces.

Given a quasi-Fuchsian manifold M, we denote by m±k (M) ∈ Th(Σ) the isotopy classes
of the hyperbolic metrics −k I±k , where I±k is the first fundamental form of the upper/lower
k-surface Σ

±
k of M. Then for every k ∈ (−1,0) we have maps

Ψk : QF(Σ) −→ Th(Σ)×Th(Σ)
M 7−→ (m−k (M),m+

k (M)).

The family of functions (Ψk)k is clearly related to the maps Ψ and B we considered in Sec-
tion 3. As k goes to −1, Ψk(M) converges to Ψ(M), and as k goes to 0, Ψk(M) converges
to B(M). The convenience in considering the foliation by k-surfaces relies in the following
result, based on the works of Labourie [Lab91] and Schlenker [Sch06]:

Theorem 4.2. The map Ψk is a C 1-diffeomorphism for every k ∈ (−1,0).

Proof. Let (N,∂N) be a compact connected 3-manifold admitting a hyperbolic structure
with convex boundary. Schlenker [Sch06] proved that any Riemannian metric with Gauss-
ian curvature > −1 on ∂N is uniquely realized as the restriction to the boundary of a
hyperbolic metric on N with smooth strictly convex boundary. In other words, if G and H
denote the spaces of isotopy classes of metrics on N with strictly convex boundary and of
metrics on ∂N with Gaussian curvature >−1, respectively, then the restriction map

r : G −→ H
[g] 7−→ [g|∂N ]

is a homeomorphism. The surjectivity was already been showed by Labourie in [Lab91],
therefore the proof proceeds by showing the local injectivity of r. To do so, the strategy in
[Sch06] is to apply the Nash-Moser implicit function theorem.

Let us fix now a k ∈ (−1,0), and consider N = Σ× I. If Gk is the space of hyperbolic
structures on N with boundary having constant Gaussian curvature equal to k, then Gk
identifies with the space of quasi-Fuchsian manifolds QF(Σ), thanks to Theorem 4.1 and
the fact that any hyperbolic structure with convex boundary on N uniquely extends to a
quasi-Fuchsian structure (see e. g. [CEM06, Theorem I.2.4.1]). In addition, the space Hk
of constant k Gaussian curvature structures on ∂N clearly identifies with the product of
two copies of the Teichmüller space Th(Σ), one for each component of ∂N. Therefore the
function r restricts to rk : Gk→Hk, which can be identified with Ψk thanks to what we just
observed. The map rk is now a function between finite dimensional differential manifolds.
The fact that r verifies the hypotheses to apply the Nash-Moser inverse function theorem
implies in particular that rk verifies the hypotheses to apply the ordinary inverse function
theorem between finite dimensional manifolds. In particular, this shows that rk is a C 1-
diffeomorphism, for any k ∈ (−1,0), as desired. �

4.2. The proof of Theorem A. In the following we outline the proof of Theorem A. Let
Vol∗k(M) denote the dual volume of the convex subset enclosed by the two k-surfaces in
M. We define V ∗k : Th(Σ)×Th(Σ)→ R to be the composition Vol∗k ◦Ψ−1

k . An immediate
corollary of Theorem 4.2 is that the function V ∗k is C 1 for every k ∈ (−1,0).

Let now M be a fixed quasi-Fuchsian manifold. Since the Teichmuller space endowed
with the Weil-Petersson metric is a unique geodesic space [Wol87], there exists a unique
Weil-Petersson geodesic βk : [0,1]→ Th(Σ) verifying βk(0) = m−k and βk(1) = m+

k , where
m±k = m±k (M). We set γk to be the path in Th(Σ)

2 given by γk(t) = (βk(t),m−k ). By con-
struction Ψ

−1
k (γk(0)) is a Fuchsian manifold for every k ∈ (−1,0) and Ψ

−1
k (γk(1)) = M.

We decompose the differential of the function V ∗k as follows

dV ∗k = dV ∗,+k +dV ∗,−k ∈ T ∗Th(Σ)⊕T ∗Th(Σ).
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Now we observe that

|V ∗k (γk(1))−V ∗k (γk(0))|=
∣∣∣∣∫ 1

0

d
dt

V ∗k (γk(t))dt
∣∣∣∣

≤
∫ 1

0
‖dV ∗,+k ‖

γk(t)

∥∥β
′
k(t)
∥∥dt

≤ max
t∈[0,1]

‖dV ∗,+k ‖
γk(t)

`WP(βk)

= max
t∈[0,1]

‖dV ∗,+k ‖
γk(t)

dWP(m+
k ,m

−
k ),

where ‖·‖p denotes the Weil-Petersson norm on T ∗p Th(Σ). The step from the first to the
second line follows from the fact that the second component of the curve γk does not
depend on t, and in the last step we used that βWP is a Weil-Petersson geodesic. Since the
dual volume of the convex core of a Fuchsian manifold vanishes, we have that

lim
k→−1

V ∗k (γk(1))−V ∗k (γk(0)) = Vol∗(CM).

By Theorem 4.1 we have

lim
k→−1

dWP(m+
k ,m

−
k ) = dWP(m+,m−)

where m+, m− are the hyperbolic metrics of the upper and lower components of ∂CM,
respectively. Therefore, taking the limit as k goes to −1 of the inequality above we obtain

(7) |Vol∗(CM)| ≤ liminf
k→−1

max
t∈[0,1]

‖dV ∗,+k ‖
γk(t)

dWP(m+,m−).

If π+ : Th(Σ)
2→ Th(Σ) denotes the projection onto the first component, then the func-

tions dV ∗,+k ◦Ψk are sections of the bundles (π+ ◦Ψk)
∗(T ∗T(Σ)). In order to simplify the

notation, we will set dLµ+ to be the map

QF(Σ) 3M 7−→ d(Lµ+(M))π+◦Ψ(M)
∈ T ∗Th(Σ).

Assuming that the functions (dV ∗,+k ◦Ψk)k converge to dLµ+ uniformly over compact
sets of QF(Σ) as k goes to −1, then Theorem A easily follows:

Proof of Theorem A. The paths Ψ
−1
k (γk) considered above lie inside a common compact

subset of QF(Σ). Following the proof of Corollary 3.8, we observe that ‖dLµ+‖ is bounded
by K(2)/

√
2 (the factor 1/

√
2 appears because we consider only the upper component of

the bending measure). Therefore, by uniform convergence we have

liminf
k→−1

max
t∈[0,1]

‖dV ∗,+k ‖
γk(t)
≤ K(2)/

√
2≈ 7.3459,

which, combined with the inequality (7), implies the statement. �

Therefore, the last step left is to prove:

Proposition 4.3. The functions (dV ∗,+k ◦Ψk)k converge uniformly to dLµ+ over compact
sets of QF(Σ) as k goes to −1

We will deduce this fact from the so called dual differential Schläfli formula, stated in
Theorem 4.4, and from the connection between the first order variation of the volumes V ∗k
and the notion of landslides introduced in [BMS13], [BMS15].

Theorem 4.4 ([RS99]). Let N be a compact manifold with boundary, and assume that
there exists a smooth 1-parameter family (gt)t of hyperbolic metrics with strictly convex
boundary on N. Then there exists the derivative of t 7→ Vol∗(N,gt) and it satisfies

d
dt

Vol∗(N,gt)|t=0 =
1
4

∫
∂N

(δg|∂N ,HI− II)daI ,

where δg = d
dt gt |t=0.
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Proof. This relation is a corollary of [RS99, Theorem 8]. It is enough to apply this result
to the definition of dual volume Vol∗(N,gt), together with the relation

δ

(∫
∂N

H da
)
=
∫

∂N

(
δH +

H
2
(δ I, I)

)
daI ,

which follows by differentiating the expression H da = H
√

det I dx∧ dy in local coordi-
nates. �

4.3. Earthquakes and landslides. We briefly recall the definition of landslide flow, in-
troduced in Bonsante, Mondello, and Schlenker [BMS13], and the properties that we will
need for the proof of Proposition 4.3.

Landslides are described by a map

L : S1×T×T −→ T×T

(eiθ ,m,m′) 7−→ Leiθ (m,m′),

where T stands for T(Σ). The first component of Leiθ (m,m′), which we will denote by
L1

eiθ (m,m′), is called the landslide of m with respect to m′ with parameter eiθ . The map L

is defined via the following result:

Theorem 4.5 ([Lab92],[Sch93]). Let m,m′ ∈ T. Then, for any representative h ∈ m, there
exists a unique h′ ∈ m′ and a unique b : T Σ→ T Σ such that:

• b is h-self-adjoint;
• b has determinant 1;
• b is Codazzi with respect to the Levi-Civita connection ∇ of h, i. e. (∇X b)Y =

(∇Y b)X for all X, Y .

The operator b is also called the Labourie operator of the couple h, h′. In the following,
we will identify, with abuse, a pair of isotopy classes m, m′ ∈ T with a pair of hyperbolic
metrics h, h′ satisfying the conclusions of the Theorem above. Given θ ∈ R/2πZ and two
metrics h, h′ with Labourie operator b, we denote by bθ the endomorphism cos(θ/2)1+
sin(θ/2)Jb, where J is the almost complex structure of h, and we set hθ := h(bθ ·,bθ ·).
Then the function L is defined as:

Leiθ (h,h′) := (hθ ,hπ+θ ).

It turns out that, for any θ , the metric hθ is hyperbolic, and L actually defines a flow, in the
sense that it satisfies Leiθ ◦Leiθ ′ = Lei(θ+θ ′) for all θ ,θ ′.

As earthquakes extend to complex earthquakes (see [McM98]), similarly happens for
landslides. Fixed h,h′ ∈ T, the map L1

•(h,h
′) extends to a holomorphic function C•(h,h′)

defined on a open neighborhood of the closure of the unit disc ∆ in C. If ζ = exp(s+ iθ)∈
∆, then Cζ can be written as

Cζ (h,h
′) = sgrs ◦Leiθ (h,h′),

where sgrs : T2→ T is called the smooth grafting map. If s = 0, then sgr0 ◦Leiθ = L1
eiθ .

Constant Gaussian curvature surfaces are a natural example in which pairs of metrics
as in Theorem 4.5 arise. Let Σk be a k-surface in a hyperbolic 3-manifold, with first fun-
damental form Ik and shape operator Bk. The third fundamental form of Σk is defined as
IIIk := Ik(Bk·,Bk·). Either by direct computation or by using the duality correspondence
between hypersurfaces of H3 and dS3 (see [Riv86], [Sch02]), we see that the third funda-
mental form is a constant Gaussian curvature metric too, with curvature k

k+1 . Moreover, if
we set

(8) hk :=−k Ik, h′k :=− k
k+1

IIIk, bk :=
1√

k+1
Bk,
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then hk and h′k = hk(bk·,bk·) are hyperbolic metrics satisfying the properties of Theorem
4.5. We refer to [BMS13] and [BMS15] for a more detailed exposition about landslides,
and to Labourie [Lab92] for what concerns k-surfaces.

Fixed h′, we set l1(h,h′) to be the infinitesimal generator of the landslide flow with
respect to the hyperbolic metric h′ at the point h ∈ T. In other words,

l1(h,h′) :=
d

dθ
L1

eiθ (h,h′)
∣∣
θ=0 ∈ ThT.

Landslides extend the notion of earthquake in the sense explained by the following Theo-
rem:

Theorem 4.6 ([BMS13, Proposition 6.8]). Let (hn)n and (h′n)n be two sequences of hyper-
bolic metrics on Σ such that (hn)n converges to h ∈ T, and (h′n)n converges to a projective
class of measured lamination [µ] in the Thurston boundary of Teichmüller space. If (θn)n is
a sequence of positive numbers such that θn`h′n converges to ι(µ, ·), then L1

eiθn (hn,h′n) con-
verges to the left earthquake Eµ/2(h), and θn · l1(hn,h′n)|hn

converges to 1
2 eµ |h =

d
dtEtµ/2(h).

Remark 4.7. The last part of the assertion follows from the fact that the functions eiθ 7→
L1

eiθ (h,h′) extend to holomorphic functions ζ 7→Cζ (h,h′), where ζ varies in a neighbor-
hood of ∆. In particular, the uniform convergence of the complex landslides C•(hn,h′n) to
the complex earthquake map implies uniform convergence in the C ∞-topology with respect
to the complex parameter ζ .

In order to prove the relation between the differential of V ∗k and the landslide flow, it
will be useful to have an explicit expression to compute the variation of the hyperbolic
length of a simple closed curve α of Σ along the infinitesimal landslide l1(h,h′).

Lemma 4.8. Let α be a simple closed curve in Σ. Then we have
d

dθ
Lα(L

1
eiθ (h,h′))

∣∣
θ=0 =−

∫
α

h(bα ′,Jα ′)

2‖α ′‖2
h

d`h ,

where J is the complex structure of h and b is the Labourie operator of the couple h, h′.

Proof. With abuse, we denote the h-geodesic realization of α by α itself. By definition of
landslide we have

d
dθ

L1
eiθ (h,h′)(α ′,α ′)

∣∣
t=0 = ḣ(α ′,α ′) = h(α ′,Jbα

′).

Since J is h-self-adjoint and J2 =−id, we deduce that ḣ(α ′,α ′) =−h(bα ′,Jα ′). Combin-
ing this relation with Proposition 2.1 we obtain the statement. �

In order to simplify the notation, we will write T2 for the Teichmüller space of the surface
Σ = Σ+ tΣ−, and by Ik, IIk and IIIk the fundamental forms of the surface Σk = Σ

+
k tΣ

−
k .

The relation between landslides and the dual volume of the region enclosed by the two k-
surfaces is described by the following fact:

Proposition 4.9. Let M be a quasi-Fuchsian manifold and let hk, h′k ∈ T2 denote the hy-
perbolic metrics −k Ik and −k(k+1)−1 IIIk. Then we have

dV ∗k ◦Ψk(M) =

√
−k+1

k
ω̂WP(l1(hk,h′k), ·) ∈ T ∗

Ψk(M)T
2,

where ω̂WP = ωWP⊕ωWP.

Proof. Given a simple closed curve α in Σk, we denote by eα the infinitesimal generator
of the left earthquake flow along α on T2. We will prove the statement by showing that,
for every simple closed curve α , we have:

(9) d(V ∗k )Ψk(M) (eα) =

√
−k+1

k
ω̂WP(l1(hk,h′k),eα).
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Since the constant k will be fixed, we will not write the dependence on k in the objects
involved in the argument, in order to simplify the notation. Given any first order variation
of metrics δ I = δ Ik on Σ = Σk, we can find a variation δg of hyperbolic metrics on M sat-
isfying δg|Σ = δ I. Our first step will be to construct an explicit variation δ I corresponding
to the vector field eα , and then to apply Proposition 4.4 to compute dV ∗k (eα).

We will identify the curve α with its I-geodesic parametrization of length Lα and at
speed 1. Let J denote the almost complex structure of I, and set V to be the vector field
along α given by −Jα ′. We can find a ε > 0 so that the map

ξ : R/LαZ× [0,ε] −→ Σ

(s,r) 7−→ expα(s)(rV (s))

is a diffeomorphism onto its image (here exp is the exponential map with respect to I). The
image of ξ is a closed cylinder in Σ having α as left boundary component. Observe that
the metric I equals dr2 + cosh2 r ds2 in the coordinates defined by ξ−1. We also choose a
smooth function η : [0,ε]→ [0,1] that coincides with 1 in a neighborhood of 0, and with 0
in a neighborhood of ε . Now define

ft : R/LαZ× [0,ε] −→ R/LαZ× [0,ε]
(s,r) 7−→ (s+ tη(r),r).

The maps ut := ξ ◦ ft ◦ ξ−1 give a smooth isotopy of the strip Imξ adjacent to α , with
u0 = id. Finally we set

δ I :=

{
d
dt u∗t I

∣∣
t=0 = 2η ′(r)cosh2 r dr ds inside Imξ ,

0 elsewhere,

where here 2dsdr = ds⊗ dr + dr⊗ ds. Thanks to our choice of the function η , δ I is
a smooth symmetric tensor of Σk that represents the first order variation of I along the
infinitesimal left earthquake eα . By Proposition 4.4, we have that

dV ∗k (δg) =
1
4

∫
Σk

(δg|Σk ,HI− II)da =−1
4

∫ Lα

0

∫
ε

0
(δ I, II)coshr dr ds ,

where the last step follows from the fact that δ I is I-traceless. Let ∇ denote the Levi-Civita
connection of I. Then the coordinate vector fields of ξ−1 satisfy:

∇∂r ∂r = 0, ∇∂s∂r = ∇∂r ∂s = tanhr ∂s, ∇∂s∂s =−sinhr coshr ∂r.

By definition, (δ I, II) = 2 Irr Iss δ Irs IIrs = 2η ′ IIrs. If we set f (r) :=
∫ Lα

0 IIrs ds, then, inte-
grating by parts and recalling that η(ε) = 0, we get

dV ∗k (δg) =−1
2

∫
ε

0
η
′(r) f (r)coshr dr

=
1
2

f (0)+
1
2

∫
ε

0
η(r)( f ′(r)coshr+ f (r)sinhr)dr(?)

Being the second fundamental form a Codazzi tensor, we have (∇∂r II)rs = (∇∂s II)rr. Using
the expressions of the connection given above, this relation can be rephrased as ∂rIIrs =
∂sIIrr− tanhr IIsr. Hence we deduce

f ′(r) =
∫ Lα

0
(∂sIIrr− tanhr IIsr)ds =− tanhr f (r),

where the first summand vanishes because α is a closed curve. Therefore the integral in
the relation (?) equals 0, and we end up with the equation

(10) dV ∗k (δg) =
1
2

∫ Lα

0
IIrs ds =−1

2

∫ Lα

0
I(Bα

′,Jα
′)ds

since ∂r|r=0 =V =−Jα ′ and ∂s|r=0 = α ′.
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Now we apply Lemma 4.8 to α , the hyperbolic metrics h =−k I, h′ =− k
k+1 III and the

operator b = 1√
k+1

B (here B is the shape operator of Σk), obtaining

d(Lα)h (l
1(h,h′)) =−1

2

√
− k

k+1

∫ Lα

0
I(Bα

′,Jα
′)ds .

This relation, combined with (10), proves that

dV ∗k (δg) =

√
−k+1

k
d(Lα)h (l

1(h,h′))

By the work of Wolpert [Wol83], we have dLα = ω̂WP(·,eα), which proves relation (9),
and therefore the statement. �

Since the complex landislide is holomorphic with respect to the complex structure of T2,
an equivalent way to state Proposition 4.9 is the following:

Proposition 4.10. Let M be a quasi-Fuchsian manifold and let hk, h′k ∈ T2 denote the
hyperbolic metrics −k Ik and −k(k + 1)−1 IIIk. Then the Weil-Petersson gradient of V ∗k
coincides, up to a multiplicative factor, with the infinitesimal grafting with respect to the
couple (hk,h′k). In other words,

gradWP V ∗k =

√
−k+1

k
d
ds

sgrs(hk,h′k)
∣∣
s=0 .

The behavior of the third fundamental forms IIIk of the k-surfaces, as k approaches −1,
is well understood and described by the following Theorem:

Theorem 4.11. Let (En)n be a sequence of hyperbolic ends converging to an hyperbolic
end E homeomorphic to Σ×R≥0, and let (kn)n be any decreasing sequence of numbers
converging to −1. Then `IIIn converges to ι(µ, ·), where IIIn denotes the third fundamental
form of the kn-surface of En, and µ is the bending measured lamination of the concave
boundary of E.

Remark 4.12. Theorem 4.11 is in fact a restatement of [Bel17, Theorem 2.10]. In [Bel17]
the author works with maximal global hyperbolic spatially compact (MGHC) de Sitter
spacetimes, which connect to the world of hyperbolic ends through the duality between the
de Sitter and the hyperbolic space-forms, as observed by Mess [Mes07]. In particular, this
phenomenon allowed Barbot, Béguin, and Zeghib [BBZ11] to give an alternative proof of
the existence of the foliation by k-surfaces.

Proof of Proposition 4.3. Let (Mn)n be a sequence of quasi-Fuchsian manifolds converg-
ing to M, and let (kn)n be a decreasing sequence converging to −1. We denote my mn and
m′n the isotopy classes of the hyperbolic metrics

hn :=−knIkn , h′n :=− kn

1+ kn
IIIkn ,

where Ikn and IIIkn are the first and second fundamental forms of the kn-surface Σ
+
kn
tΣ
−
kn

sitting inside Mn. The kn-surface is at distance < arctanh(
√

kn +1) from the convex core
of Mn (apply the same argument of [BMS13, Lemma 6.14] in the hyperbolic setting),
therefore the metrics mn converge to the metric m on the boundary of the convex core of
M. If we take

θn :=

√
−1+ kn

kn
,

then, by Theorem 4.11, the length spectrum of θn`m′n converges to the bending measure µ

of the boundary of the convex core of M. Therefore, applying Theorem 4.6 we obtain that
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l1(mn,m′n)|Ψkn (Mn) converges to 1/2 eµ |m. Combining this with Proposition 4.9, we prove
that

lim
n→∞

dV ∗kn
◦Ψkn(Mn) =

1
2

ω̂WP(eµ , ·) =−
1
2

d(Lµ)m (·),
where the last step follows from [Wol83]. This concludes the proof. �
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