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I. METHODS

The supercell1 used in our calculations is represented in
Fig. S1 and compared with the unit cell. The comparison
between the respective reciprocal-space Brillouin zones
(BZ) is also shown, emphasizing the folding of the q-
point q (given in fractional coordinates as (1/3,−1/6, 0))
onto Γ in the supercell case (note that both q and −q are
folded onto Γ in this way).

The DFT ground state calculations were per-
formed with Quantum ESPRESSO2 using LDA3 norm-
conserving pseudopotentials4 with a kinetic energy cut-
off at 110 Ry. The phonon frequencies and eigenmodes

FIG. S1. Top: representations of the hBN unit cell (uc) and
non-diagonal supercell (sc) used in our calculations (boron is
green, nitrogen is gray). Bottom: schemes of the reciprocal-
space BZ in the two cases (the BZ borders are in gray and
teal, respectively), showing that in the first Brillouin zone
of the supercell, the momentum q is folded back onto the Γ
point.

were computed with density functional perturbation the-
ory (DFPT),5 using a q-point grid sampling of 18×18×6.
The G0W0 and semi-self-consistent GW0 (sscGW0) cor-
rections to the band energies were obtained with the
YAMBO code6 for the unit cell, using the plasmon-pole
approximation for the dynamical screening. The direct
and indirect gaps were converged with a 18 × 18 × 6 k-
point grid, summing 160 and 280 states for the screen-
ing function and the Green’s function, respectively. The
corrections were computed for the last 4 valence bands
and the first 6 conduction bands. The sscGW0 amounts
to an additional opening of the band gap by 0.22 eV
with respect to the single G0W0 calculation.7 The fully
converged result was subsequently used to construct a
k-dependent scissor operator in such a way that, when
applied to the supercell, it would yield exactly the same
optical absorption spectrum as the unit cell (here we ne-
glect the changes in the GW corrections due to lattice dis-
placements). The exciton energies Es and wave functions
ΦS were computed with YAMBO by solving the Bethe-
Salpeter equation (BSE) with RPA static screening and
the Tamm-Dancoff approximation, including the GW-
corrected band structures. The Bethe-Salpeter equa-
tion in the supercell is solved iteratively in the YAMBO
code using the SLEPC library8 for the first 600 eigen-
values and eigenvectors. The macroscopic dielectric
function ε(0)(ω) was computed using the modified re-
sponse function where the long-range Fourier component
is removed.9 Its resonant part can be written as:

ε(0)(ω) = 1− 8π

NkVR

∑
S

|TS |2
~ω − ES + iη

. (S1)

Here, Nk is the number of k-points in the Brillouin zone
sampling and VR the BZ volume. The term in the nu-
merator, TS =

∑
kcv ΦScvk 〈ck| e · D̂ |vk〉, is the oscillator

strength of exciton S. It is a linear combination of op-
tical matrix elements in the dipole approximation (e is
the light polarization direction), describing direct transi-
tions from an occupied state v to an unoccupied one c,
weighted by the corresponding components of the exci-
tonic wave function. In the unit cell, a reasonably con-
verged calculation of the static screening can be obtained
by considering an 18× 18× 6 k-point grid and summing
250 bands. However, the energy window close to the ab-
sorption edge is already converged with a 12×12×4 sam-
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FIG. S2. The imaginary part of the dielectric functions are
plotted for the hBN unit cell (blue, DFT-GW-BSE calculation
on fine k-point grid) and non-diagonal supercell (red, DFT-
scissor-BSE calculation on coarse k-point grid). Only the first
480 states are included in the iterative solution of the BSE in
the supercell. The black vertical line is at the energy of the
indirect quasiparticle band gap. Both spectra have a broad-
ening parameter of 0.04 eV. Difference in the spectra (due
to finite k-point samplings) only occur in the energy region
above the band gap. In the relevant energy region below the
band gap, both spectra are identical.

pling. As the non-diagonal supercell contains 6 times the
atoms of the unit cell, the convergence parameters were
changed accordingly, using a 12× 2× 4 k-point grid, and
including enough states in the Bethe-Salpeter kernel to
span the transition energy region relevant for the absorp-
tion edge. The static screening was computed summing
1.2 · 6 · 250 bands. The factor 1.2 is a safety margin to
account both for the folded bands from the zone edge
and for spurious finite-q bands (see Fig. S2 for a compar-
ison of the optical absorption spectra Im ε(0)(ω) between
unit cell and supercell). The normalised phonon displace-
ments (rescaled by the square root of the atomic masses)
were used to compute the finite-difference derivatives.
A global scaling factor was multiplied by the displace-
ments and converged to 0.0025 Å, which is just above the
threshold of numerical noise. The harmonic behaviour of
ε(ω) with respect to the scaling factor was numerically
verified.

II. EQUILIBRIUM RESULTS ON THE
SUPERCELL

The result of a BSE calculation in the supercell with
atoms fixed at their equilibrium positions is shown in Fig.
S3. The energy separations between direct and indirect
band gaps, as well as with low-lying q = 0 and finite-q
excitonic states, are emphasized by vertical lines. The
first q = 0 exciton at 5.7 eV (dashed blue vertical line) is
dark, while the second one at 5.75 eV (main blue peak)

FIG. S3. Equilibrium supercell calculation. The imaginary
part of the dielectric function including only transitions at
q = 0 (Im ε(0)(ω) in the text) is shown in blue. The peak
broadenings are set to 1.5 meV for the temperature of 0 K.
The vertical black lines denote the quasiparticle indirect and
direct gaps, while the dotted blue line indicates the position
of the dark E2g exciton with q = 0. The dashed red lines
indicate the positions of the A1 and B1 excitons at q (labeled
i1 and i2, respectively). The excitonic wave functions are
plotted (intensities only) in the insets: blue for the q = 0
pair, and purple for q = q ones (the dashed red arrow labeling
the q direction). Here the hole (black square) is fixed on top
of a nitrogen atom, and the resulting electronic density is
displayed.

is optically active. The intensities of their wave functions
Ψ(re, rh) are almost identical. The one of the bright ex-
citon is represented in blue in the inset of Fig. S3. Both
electron and hole mostly lie in the same layer. Two finite-
q excitonic states appear below the direct ones: they are
labeled i1 and i2 (dashed red lines). The wave function
intensities of the two indirect excitons are very similar.
One of them is displayed in purple in the second inset
of Fig. S3, showing again a mostly planar distribution.
Although the wave function in the fixed-hole represen-
tation looks approximately distorted along the armchair
lattice direction, the full wave function is actually sym-
metric with respect to the zigzag direction (parallel to
the q-vector) upon rotation around the principal axis of
the C2v symmetry group which is oriented in-plane along
the q direction (see also Section VI).

III. POSITION OF THE DIRECT BAND GAP

The direct quasiparticle band gap in bulk hBN is tra-
ditionally identified at the so-called T1 point.10 From
Fig. 1 of the main text, we see that this point lies
close to K, along the ΓK symmetry line (to be precise:
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|T1 −K| ' 1/6|K− Γ|). However, there are other three
points that give a comparable band gap: M, T2 (along
the MK line: |T2−K| ' 1/3|K−M| = 1/6|K−Γ|), and
H, the high-symmetry point directly above K along the
out-of-plane direction. In our GW calculations, the band
gaps at these points lie in a small 0.1 eV energy interval
(with EHg < ET2

g < EMg < ET1
g ), which is the accuracy

of the GW method. Since we know that GW underesti-
mates the true quasiparticle corrections in hBN, we have
to assume that the relative energy differences between
these band gaps may change with more refined approxi-
mations and/or more accurate calculations. In the main
text, we “average” the true position of the top of the
valence band from “around” K to exactly K, by taking
q = |K −M| = 0.5|K − Γ| as the momentum transfer
corresponding to the indirect gap.
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FIG. S4. Temperature dependent spectra. The computed
spontaneous emission rate (see Fig. 3b and Eq. (4) of the
main text) is shown with a green line for various tempera-
tures. The main phonon modes responsible for the peaks are
labeled, as well as the overtones (“o.”). The peak broad-
enings as a function of temperature, as well as the effective
“excitonic” temperatures, are discussed in the text. Black
dots: experimental PL emission spectrum11 (uncorrected for
setup response). Blue squares: experimental CL emission
spectrum.12

IV. TEMPERATURE DEPENDENCE

In our calculations, the temperature-dependent exci-
ton lifetime, which is related to the imaginary part of the
exciton-phonon self-energy and inversely proportional to
the line broadenings η, remains an empirical parame-
ter. As the imaginary part of our response functions
intrinsically gives a Lorentzian shape for single peaks
(Im[ω−E−iη]−1), we focus on the range of temperatures
in which the experimental phonon-assisted peaks can also
be reasonably described with a Lorentzian broadening
(from 0 to 100 K).11 We use a linear model where the
line broadening η is given by13

η = Γ0 + aT + bNBE(T ), (S2)

where NBE = [eEO/kT − 1]−1 is the Bose-Einstein dis-
tribution. The values of the parameters are taken from
the experimental fit in Ref. [11]: Γ0 = 3 meV, a = 0.1
meV/K, b = 150 meV, and EO = 25 meV. For complete-
ness, in Fig. S4 we provide a version of Fig. 3b of the
main text with several temperatures (T= 8, 20, 60 and
100 K). The effective “excitonic” temperatures Texc en-
tering the Boltzmann factor of Eq. (4) of the main text
are taken from the data points in Fig. 1c of Ref. [14].
At the lowest temperature (5−8 K, top frame), both the
experimental spectra obtained from photoluminescence
(PL, black dots, from Ref. [11]) and cathodolumines-
cence (CL, blue squares, from Ref. [12]) are compared
with the computed one (green line). The temperature-
dependent data are only available for the PL spectrum.
Notice however that, contrary to the CL spectrum, the
PL one is uncorrected for the response of the lumines-
cence setup, giving rise to wrong relative peak intensities
in the low-energy structure.

V. FORM OF THE FINITE-DIFFERENCE
RESPONSE FUNCTION

Here we give the full derivation of Eqs. (2) and (3) of
the main text. Let us consider the part of the response
function due to excitonic state S (see Eq. (S1) for the
full response function):

χSR(ω) =
|TSR |2

ESR − ~ω + iη
, (S3)

where the subscript R denotes a parametric dependence
on lattice displacements, i.e. χS0 is the frozen-atom re-
sponse function (we take for simplicity η to be indepen-
dent of R, an assumption that does not affect the validity
of the results). We want to make the Taylor expansion of
Eq. (S3) up to second order in the lattice displacements,
therefore as an initial step we need to compute its first
derivative and evaluate it at the equilibrium atomic po-
sitions:
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FIG. S5. Static exciton-phonon couplings between the i1 and i2 excitons and the 12 different phonons at q = 1
2
|ΓK|. We

compare results obtained from the full second derivative of the response function (dashed blue lines) and from the second
derivative of the oscillator strengths (full red lines), see Eq. (S5). An average over polarization of the incoming light and sum
over the 6 equivalent directions of phonons with wave vector |q| is performed.

∂χSR(ω)

∂R

∣∣∣
R=0

=
∂|TSR |
∂R

∣∣∣
R=0

2|TSR=0|[ESR=0 − ~ω + iη]−1 +
∂[ESR − ~ω + iη]−1

∂R

∣∣∣
R=0
|TSR=0|2. (S4)

At this point we notice that the oscillator strengths of
any finite-q excitons for optical absorption must be zero
because of momentum conservation. In the case of a
supercell, it means that the excitons being folded into Γ
from a different point in the unit cell are dark if the atoms
are clamped at the equilibrium positions. If we label ex-
citons belonging to such subset with S′, this means that

TS
′

R=0 = 0 and therefore ∂χS
′

R (ω)/∂R
∣∣∣
R=0

= 0. This is

explicitly confirmed numerically by our finite-difference
calculations. This argument is analogous to the one often
used in the case of optical absorption in the independent-
particle model for the vanishing of the dipole optical ma-
trix elements below the direct band gap.15,16

The same argument applied to the second derivative of
χSR leads to the vanishing of the terms containing deriva-
tives of the exciton binding energy. The only term that
remains is the one containing the second derivative of
TS
′

R :

∂2χS
′

R (ω)

∂R2

∣∣∣
R=0

=
∂2|TS′R |2
∂R2

∣∣∣
R=0

[ES
′

R=0−~ω+iη]−1, (S5)

which corresponds to Eq. (3) of the main text. This
derivative is evaluated numerically using the finite-
difference expression

∂2χR/∂R
2(ω) ≈ [χ(∆R;ω)−2χ0(ω)+χ(−∆R;ω)]/∆R2.

The results, displayed in Fig. S5 for each phonon mode,
confirm the equivalence of the two sides of Eq. (S5).
This means that, numerically, we can obtain the exciton-
phonon coupling for the calculation of phonon-assisted
absorption/emission both through a finite-difference cal-
culation of the whole response function or through a
finite-difference calculation of just the excitonic oscillator
strength.

VI. EXCITON SYMMETRY AND COUPLING
WITH PHONONS

A. Symmetry analysis with group theory

In bulk hBN, the point group (including the non-
symmorphic point symmetry operations of the space
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FIG. S6. Symmetries at Γ and q. Top and side views of the bulk hBN lattice. Boron (nitrogen) atoms are in green (gray).
The borders of the repeated unit cells are shown with dashed black lines. Left: original unit cell for the hexagonal lattice (D6h

point group) and lattice vectors. Right: non-diagonal supercell used in the calculations, folding point q (C2v point group) at Γ,
and lattice vectors. The axes of rotation corresponding to the symmetries of the q points of the systems are shown with solid
black lines.

D6h E C ′2(x) σh(xy) σd(xz)
A1g +1 +1 +1 +1
A2u +1 −1 −1 +1
E1g +2 0 −2 0
E2g +2 0 +2 0
E1u +2 0 +2 0
E2u +2 0 −2 0

TABLE I. Partial character table for point group D6h.

C2v E C2(x) σv(xy) σv(xz)
A1 +1 +1 +1 +1
A2 +1 +1 −1 −1
B1 +1 −1 +1 −1
B2 +1 −1 −1 +1

TABLE II. Character table for point group C2v.

D6h C2v

C ′2 → C2

σh(xy) → σv(xy)
σd(xz) → σv(xz)

TABLE III. Connection between the elements of C2v and D6h.

Mode Symm. Freq. (meV)

LO3 A1 183.00
LO2 B1 177.63
TO3 A1 159.58
TO2 B1 159.48
LA A1 93.33
LO1 B1 93.22
ZO3 A2 92.47
ZO2 B2 87.53
TO1 A1 65.10
TA B1 64.72
ZO1 A2 22.25
ZA B2 21.54

TABLE IV. Symmetry of the phonon modes at q. The modes
are listed as Davydov pairs in order of increasing frequency
with the lowest-frequency mode at the bottom (compare Fig.
(1) in the main text).

group) is D6h. It contains 24 symmetry operations
grouped in 12 classes. It is the group that is also used for
the characterizations of perturbations (such as phonons
and excitons) of hBN with zero wave-vector (correspond-
ing to the high-symmetry point Γ). In Table I we report
a subsection of the character table focusing on the op-
erations and representations of interest to us. In Fig.
S6 (left panel) our choice for the Cartesian axes and
for the lattice vectors is reported and the three rota-
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q, C2

FIG. S7. Top view of the atomic displacements and forces
for the TO1 phonon mode at one of the six equivalent q-
vectors/C2 rotation axes (solid black line). The corresponding
non-diagonal supercell is represented in dashed gray lines.

tion axes belonging to D6h are drawn. Recall that bulk
hBN displays AA′ stacking (two inequivalent layers per
unit cell): therefore many of the symmetry operations
are non-symmorphic. The point group for the symmetry
analysis of a perturbation with finite wave vector q is a
subset of the one at Γ. In the case of q lying on the ΓK
line, the point symmetry group is C2v with C2v ⊂ D6h.
The character table of C2v is provided in Table II. In
the right panel of Fig. S6, showing the crystal lattice
as repetitions of the non-diagonal supercell used in our
calculations, the only rotation axis of C2v is drawn. This
axis runs along the zigzag direction, and it is identified by
checking the rotational symmetry of the phonon modes,
as shown in Fig. S8.17 From this we see that the C2 ro-
tation in C2v coincides with the C ′2 rotation in D6h, and
we use this to make a connection between the elements
of C2v and D6h, shown in Table III. The dipole operator
transforms as the [x, y, z] vector and belongs to represen-
tations E1u[x, y]+A2u[z] for D6h and A1[x]+B1[y]+B2[z]
for C2v. The in-plane component of the dipole transforms
accordingly as E1u and A1 +B1, respectively.

Let us first analyse the two excitons (one dark, one
bright) of our system at Γ (see Fig. S3). The incoming
optical light (E1u) interacts with the ground state |G〉 of
the system (which is fully symmetric, A1g) creating an
excited state of symmetry A1g ⊗ E1u = E1u. Therefore,
the bright exciton corresponds to the E1u representation.
The dark state is its Davydov partner, thus it must have
opposite parity with respect to inversion symmetry7 and
it corresponds to the E2g representation, in analogy with
the symmetry of the Davydov splitting for the acoustic
phonons.

Any irreducible representation of D6h will be a re-
ducible representation of C2v, and therefore can be ex-
pressed in terms of a linear combination of irreducible
representations of C2v. These are the so-called compati-
bility relations that we will need to analyse indirect pro-
cesses from Γ to q (in particular, we want to describe
the splitting of the E1u and E2g excitons). This applies
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FIG. S8. Interplay between Davydov and symmetry splitting
at very low wave vector for the transverse and longidutinal
phonon modes (TA, TO1, LA, LO1 in the text). The dis-
persion of modes with symmetry A1 (TO1, LA) and B1 (TA,
LO1) is shown in red and blue, respectively.

also to the characters of the representations: if we de-
fine χG(Ck) as the character of a (reducible) represen-
tation of group G with respect to symmetry operation
Ck, the “wonderful orthogonality theorem” (according
to Ref. 18) for characters establishes the coefficients aΓi

of the linear combination associated with irreducible rep-
resentation Γi. In our case, the formulas reduce to

χD6h
(Ck) =

∑
Γi

aΓi
χ

(Γi)
C2v

(Ck)

aΓi =
1

4

∑
k

χ
(Γi)
C2v

(Ck)χD6h
(Ck),

and we can compute the aΓi
coefficients using the Ta-

bles I, II and III. We find A2u → B2 and both E1u and
E2g splitting as A1 +B1, confirming our previous identi-
fication of the dipole representations. Therefore, the two
indirect excitons labeled as i1 and i2 with momentum q
can only have either A1 or B1 symmetry.

B. Phonon symmetries and dispersion

We list in Table IV the results of our DFPT calcula-
tions for the symmetries of the phonon modes at q. The
formation of quasi-degenerate parallel phonon branches
can be understood by zooming in on the region close to
the Γ point as in Fig. S8. At Γ we see the two degenerate
TA and LA modes (E2u symmetry) at zero frequency, as
well as their Davydov partner (TO1 and LO1 modes, E2g

symmetry) 6 meV above. The large value of the splitting
is due to the constructive interference of the Fourier com-
ponents of the inter-layer interaction at zero wave vector.
When q 6= 0, the degenerate modes further split into two
non-degenerate ones of symmetry A1 and B1. The two
A1 modes mix via an avoided crossing and then approach
their respective B1 mode. In this way two distinct Davy-
dov pairs are formed, each one with a tiny energy split-
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ting. The low value of the splitting at finite q is due to
the destructive interference of the Fourier components of
the inter-layer interaction.

C. Selection rules for indirect absorption

In order to analyse the indirect process, we first list
in Table IV the results of our DFPT calculations for
the symmetries of the phonon modes at q. Next we
consider the time-dependent perturbation theory for a
model excitonic Hamiltonian H0 with exciton-radiation
and exciton-lattice interactions as the perturbations:
H = H0 + V (t) = H0 + De−iωt + gqe

−iΩqt + h.c., where

ω and Ωq are the photon and phonon frequencies, re-
spectively, and D and gq the coupling operators (a sum
over all phonon modes is assumed). We want to qual-
itatively describe the phonon-assisted processes leading
to the formation or annihilation of a finite-q excitonic
state |ψf 〉. We include only single-photon and single-
phonon processes, and for simplicity we only consider
phonon emission contributions. (Note that the following
derivation is not meant to give a precise computational
description of indirect absorption but that it serves only
for the symmetry analysis of the involved phonons and
excitons). Then we can write the second-order Fermi
golden rule expression for the transition probability per
unit time as19

P IIf =
2π

~

∣∣∣∣∑
α

〈ψf | g†q |ψα〉 〈ψα|D |G〉
Eα − ~ω

+
∑
α′

〈ψf |D |ψα′〉 〈ψα′ | g†q |G〉
Eα′ − ~Ωq

∣∣∣∣2δ(Ef − ~ω + ~Ωq)+

2π

~

∣∣∣∣∑
α

〈ψf | g†q |ψα〉 〈ψα|D† |G〉
Eα + ~ω

+
∑
α′

〈ψf |D† |ψα′〉 〈ψα′ | g†q |G〉
Eα′ − ~Ωq

∣∣∣∣2δ(Ef + ~ω + ~Ωq).

(S6)

Here |ψα〉 is an intermediate excitonic state with energy
Eα and |G〉 is the ground state of the system. The first
term corresponds to the process of photon absorption
with phonon emission creating the final excitonic state
|ψf 〉, while the second term describes the combined pho-
ton and phonon emission. We notice immediately that
if we take the static approximation for the transition
probabilities (i.e. setting ~ω = ~Ωq = 0 in the denom-
inators) and D = D† (e.g. the dipole operator), the
squared quantities coincide for both photon absorption
and emission. This is the limit in which we performed
our finite-difference calculations and is analogous to the
Hall-Bardeen-Blatt theory of indirect absorption for in-
dependent particles.15 The first term in the squared sum
represents the creation of a direct virtual exciton |ψα〉
by light as the intermediate step, followed by a scatter-
ing to the finite-q state |ψf 〉 via phonon emission. The
second term adds the contribution of the inverse pro-
cess, when the virtual state |ψα′〉 is created at finite-q
by a phonon, and then arrives at the energy of |ψf 〉 by
absorbing a photon. For the purposes of finding the se-
lection rules, the two contributions are equivalent and

thus we focus on the first one, 〈ψf | g†q |ψα〉 〈ψα|D |G〉.
The final allowed excitons in the energy window that
we consider must have A1 and B1 symmetry and the
first matrix element in the process, 〈ψα|D |G〉, imposes
E1u as the only possible representation for the direct in-

termediate state |ψα〉. Since E1u → A1 + B1 and g†q
transforms with the symmetry of the various phonon

modes involved, for g†q |ψα〉 we have the tensor product

(A1+B1+A2+B2)⊗(A1+B1). However, A1⊗(A2+B2) =
A2 + B2 and B1 ⊗ (A2 + B2) = B2 + A2, therefore the

phonon modes transforming as A2 or B2 cannot give the
allowed final states and their coupling is forbidden. We
see from Table IV that these representations correspond
to the out-of-plane Z phonon modes, while the in-plane
ones T and L all transform as A1 or B1 and therefore
are all allowed. If we consider instead incoming light po-
larised out-of-plane (A2u → B2), the picture changes and
now (A1+B1+A2+B2)⊗B2 = B2+A2+B1+A1, mean-
ing that if the polarization is exclusively out-of-plane only
the Z phonon modes can couple to excitons i1 and i2.

We find that our first-principles calculations respect
the aforementioned selection rules, as shown in Fig. S9.
In particular, if light is polarzsed exclusively along the
x/zigzag direction, i.e., it transforms as A1 (top frame),
then only the TA, LO1, TO2 and LO2 phonon modes (all
transforming as B1, portrayed in blue) can couple to i1
forming phonon-assisted peaks, and only the TO1, LA,
TO3 and LO3 modes (all transforming as A1, portrayed
in red) can couple to i2. Conversely, if light is polarized
exclusively along the y/armchair direction, i.e., it trans-
forms as B1 (bottom frame), then only the A1 phonon
modes couple with i1, and only the B1 modes couple
with i2. This unmistakably shows that exciton i1 (the
one responsible for the luminescence spectrum) has B1

symmetry, while exciton i2 transforms as A1. Addition-
ally, we notice that the leading peak for absorption is due
solely to the strong coupling between the i2 exciton and
the LO3 phonon mode: therefore, this peak completely
disappears when light is polarised along the y direction
(that is, orthogonal to the q vector). Finally, we confirm
that the total spectrum is π/3-periodic by varying the
light polarization direction.
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FIG. S9. Ab initio results on exciton-phonon coupling, re-
solved by direction of light-polarization and symmetry of con-
tributing phonon modes. The contribution to absorption, as-
sisted by a phonon of wave vector q̄ along the x-direction is
plotted (solid black line) for light polarization e along the
x-direction (top frame) and the y-direction (bottom frame).
The dashed black line represents the full result obtained by
averaging over the two contributions. The red vertical lines
serve as a guide for the eyes to understand which phonon-
assisted peaks come from the coupling to excitons i1 or i2.
The color of each phonon-assisted peak indicates the sym-
metry of the phonon mode responsible for it (B1: blue, A1:
red).

VII. VAN ROOSBROECK-SHOCKLEY
RELATION

We give here a short account of the van Roosbroeck-
Shockley (RS) relation,20 in order to add some context
to its application to our results (Eq. (4) of the main
text). We mainly adapt the contents of Refs. [21] and
[22], where a more exhaustive treatment can be found.

Direct transitions in the independent-particle
case. Let us consider a steady state of photon absorption
and emission processes between valence and conduction
bands. For simplicity of notation, the photon polariza-
tions are not included. The net absorption rate (per unit
energy, per unit volume) will be given by the difference
between the transition rates of absorption and stimulated
emission processes:

R′abs(ω) = K(ω)
2π

~
N (ω)

Nk

∑
cvk

Tcvk∆F ′
cvkδ(εck − εvk − ~ω),

(S7)
where εnk is the energy of an electron in the nth band
with wave vector k, Tcvk is the transition rate and ∆F ′

cvk =
nFvkn

F ′
ck − nFcknF ′vk. Here, nFnk is the probability that state

εnk is occupied with an electron, and nF ′nk the probabil-
ity that it is occupied with a hole. We assume a time-
independent Fermi-Dirac distribution for electronic oc-
cupations in the steady state, nFnk = [1+e(εnk−µe)/kT ]−1,
with µe and µh being the chemical potentials for electrons
and holes, respectively. In the independent-particle case
the transition rate can be taken as the optical matrix ele-
ment in the dipole approximation: Tcvk = | 〈ck| D̂ |vk〉 |2.
We can similarly write the expression for the spontaneous
emission rate,

Rsp(ω) = K(ω)
2π

~
G(ω)

Nk

∑
cvk

TcvknFcknF ′vkδ(εck − εvk − ~ω).

(S8)

The spontaneous emission is only proportional to the
photon density of states, G(ω), while both absorption
and stimulated emission are proportional to the the pho-
ton density per unit energy, N (ω). If we define an aver-
age photon number, N , these two quantities are related
by the total photon density

∫
N (ω)dω =

∫
NG(ω)dω.

The dimensional term K(ω) is made of quantities mainly
related to the the electro-magnetic field. It is impor-
tant to notice that this term is also frequency-dependent.
We now list the expressions for the optical quantities in-
volved.

Dimensional factor K(ω) =
2πe2~2

m2V

1

nr(ω)2~ω

Photon density of states G(ω) =
1

π2c2~3

nr(ω)2(~ω)2

Vg(ω)

Group velocity Vg(ω) =
c

nr(ω) + ω ∂nr(ω)
∂ω

≈ c

nr(ω)

Incoming photon flux F(ω) = N (ω)
c

nr(ω)

The absorption coefficient α(ω) can be written in terms
of the absorption rate as R′abs(~ω) = F(ω)α(ω). Finally,
we observe that independently from the specific (cvk)
transition considered, the following relation always holds:

nFckn
F ′
vk

nFvkn
F ′
ck − nFcknF ′vk

=
1

e(~ω−(µe−µh))/kT − 1
≈ e−(~ω−∆µ)/kT

Then, by putting everything together and compar-
ing Eqs. (S7) and (S8), we find Rsp(ω) =

G(ω)Vg(ω)α(ω)e−(~ω−∆µ)/kT .



9

|GSi

|q = qi
|q = 0i

h̄!a

h̄⌦q

h̄!e

h̄⌦q

|GSi

|q = qi
|q = 0i

h̄!e

h̄⌦q

h̄!a

h̄⌦q

Phonon absorption Phonon emission

Photon em.

Photon abs.

FIG. S10. Simplified two-exciton scheme for hBN, displaying the processes of photon absorption (dashed blue arrows) and
emission (dotted red arrows) mediated by phonon absorption (left) and phonon emission (right).
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FIG. S11. Phonon-assisted emission in bulk hexagonal
boron nitride. Spectral functions ε2(q, ωa) =

∑
λ ε

exc
2λ (q, ωa)

(red, top, Imεemq (ω) in the main text) and Rsp(q, ωe) =∑
λR

sp
λ (q, ωe) (green, bottom, Rsp

q (ω) in the main text) at
8 K. The λ-components of the spectrum, belonging to the
different phonon modes, are also plotted in various colours.
The exciton-phonon couplings are labeled. The dotted verti-
cal lines in correspondence with the peaks serve as a guide for
the eyes.

This leads us to the RS relation:

Rsp(ω) =
nr(ω)2(~ω)2

π2c2~3
α(ω)e−(~ω−∆µ)/kT

=
nr(ω)(~ω)3

π2c3~4
ε2(ω)e−(~ω−∆µ)/kT ,

(S9)

where for the last equality we have used α(ω) =
~ωε2(ω)/(nr(ω)~c).

Direct transitions in the exciton case. In this
case the absorption coefficient is computed including ex-
citonic effects (αexc(ω) or equivalently εexc

2 (ω); we can
always obtain the full refractive index as nexc

r (ω) =√
(
√
εexc

1 (ω)2 + εexc
2 (ω)2 + εexc

1 (ω))/2
)
. This means

that the transition rate Tcvk in Eqs. (S7) and
(S8) will be replaced by the excitonic one, TS =
|∑cvk ΦScvk 〈ck| p̂ |vk〉|2, with the external sum now run-
ning over the exciton index S. Analogously, the energies
of single-particle transitions will be replaced by the ex-
citon energy levels ES . Concerning the occupation func-
tions, if the absorption/emission features are dominated
by the creation/annihilation of electron-hole bound pairs,
it is sufficient to replace the Bose-Einstein/Boltzmann
factor in Eq. (S9) with a more appropriate term to de-
scribe the occupation of excitonic states. We use the
Boltzmann distribution NB(~ω) = e−(~ω−µ∗)/kT , with
µ∗ fixed to the energy of the lowest-bound exciton. Since
below the quasiparticle gap we are dealing with a discrete
excitonic spectrum, NB will be a discrete function taking
values for ~ω = ES .

Indirect transitions. In this case we have to take
into account that the energy of a photon absorbed (~ωa)
and that of a photon emitted (~ωe) in a process mediated
by the same phonon are not the same, and they are both
different from the energy of the electronic transition (~ω).
In particular, with the help of Fig. S10, we can write the
following relations: ~ωe = ~ωa ± 2~Ωλ, ~ωe = ~ω ± ~Ωλ
and ~ωa = ~ω ∓ ~Ωλ, where Ωλ is the frequency of the
phonon assisting the transition and the upper and lower
signs refer to the cases of phonon absorption and emis-
sion, respectively. We need to write a generalised form of
the RS relation that takes these energy differences into
account. Focusing on the case of an indirect transition
mediated by the emission of a single phonon of branch λ
and momentum q, the second-order absorption and emis-
sion rates (i.e. per unit time, energy and volume) can be
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expressed as (back in the independent-particle case)

R′abs(ωa) = K(ωa)
2π

~
N (ωa)

Nk

∑
cvk

T (2)
cvkqλ(nqλ + 1)[nFvkn

F ′
ck+q − nFck+qn

F ′
vk]δ(εck+q − εvk + ~Ωqλ − ~ωa)

Rsp(ωe) = K(ωe)
2π

~
G(ωe)

Nk

∑
cvk

T (2)
cvkqλ(nqλ + 1)nFck+qn

F ′
vkδ(εck+q − εvk − ~Ωqλ − ~ωe),

(S10)

where nqλ represents the Bose-Einstein distribution for
phonons (we use nB in the main text).

Then, considering α(~ωa) = R′abs(~ωa)/F(~ωa) and
writing the frequency-dependent functions explicitly, we
can write the final results:

Rsp(ωe) =
nr(ωe)nr(ωa)(~ωe)(~ωa)

π2c2~3
α(ωa)e−(~ω−∆µ)/kT

=
nr(ωe)(~ωe)(~ωa)2

π2c3~4
ε2(ωa)e−(~ω−∆µ)/kT .

(S11)

Or, in the excitonic case (dropping the labels on the
frequencies): Rsp(ω) ∝ nexc

r (ω)ω(ω − 2Ωqλ)2εexc
2 (ω −

2Ωqλ)NB . The emission spectra shown in Fig. 3 of
the main text are obtained by using the latter equation
(Eq. (4) in the main text) and summing over all phonon
modes with momentum q = q corresponding to the in-
direct gap. Using our ab initio results, a comparison
between ε2(q, ~ωa) (where all phonon-assisted peaks are
simply mirrored with respect to the energy of the exci-
tonic state involved) and Rsp(~ωe), the full RS relation,
is shown in Fig. S11.

1 J. H. Lloyd-Williams and B. Monserrat, Phys. Rev. B 92,
184301 (2015).

2 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.
Condens. Matter 21, 395502 (2009).

3 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
4 M. Fuchs and M. Scheffler, Computer Physics Communi-

cations 119, 67 (1999).
5 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,

Rev. Mod. Phys. 73, 515 (2001).
6 D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite,

I. Marri, E. Cannuccia, P. M. Melo, M. Marsili, F. Paleari,
A. Marrazzo, G. Prandini, P. Bonf, M. O. Atambo,
F. Affinito, M. Palummo, A. M. Sanchez, C. Hogan,
M. Grning, D. Varsano, and A. Marini, Journal of Physics:
Condensed Matter (2019).

7 F. Paleari, T. Galvani, H. Amara, F. Ducastelle,
A. Molina-Sánchez, and L. Wirtz, 2D Materials 5, 045017
(2018).

8 V. Hernandez, J. E. Roman, and V. Vidal, ACM Trans.
Math. Softw. 31, 351 (2005).

9 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74,
601 (2002).
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