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I. METHODS

The supercelll used in our calculations is represented in
Fig. [S1land compared with the unit cell. The comparison
between the respective reciprocal-space Brillouin zones
(BZ) is also shown, emphasizing the folding of the g-
point g (given in fractional coordinates as (1/3,—1/6,0))
onto T in the supercell case (note that both § and —q are
folded onto T in this way).

The DFT ground state calculations were per-
formed with Quantum ESPRESSO? using LDA® norm-
conserving pseudopotentials® with a kinetic energy cut-
off at 110 Ry. The phonon frequencies and eigenmodes
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FIG. S1. Top: representations of the hBN unit cell (uc) and
non-diagonal supercell (sc) used in our calculations (boron is
green, nitrogen is gray). Bottom: schemes of the reciprocal-
space BZ in the two cases (the BZ borders are in gray and
teal, respectively), showing that in the first Brillouin zone
of the supercell, the momentum ¢ is folded back onto the I
point.

were computed with density functional perturbation the-
ory (DFPT),” using a g-point grid sampling of 18 x 18 x 6.
The GoWj and semi-self-consistent GWq (sscGWy) cor-
rections to the band energies were obtained with the
YAMBO codef for the unit cell, using the plasmon-pole
approximation for the dynamical screening. The direct
and indirect gaps were converged with a 18 x 18 x 6 k-
point grid, summing 160 and 280 states for the screen-
ing function and the Green’s function, respectively. The
corrections were computed for the last 4 valence bands
and the first 6 conduction bands. The sscGW amounts
to an additional opening of the band gap by 0.22 eV
with respect to the single GoW calculation” The fully
converged result was subsequently used to construct a
k-dependent scissor operator in such a way that, when
applied to the supercell, it would yield exactly the same
optical absorption spectrum as the unit cell (here we ne-
glect the changes in the GW corrections due to lattice dis-
placements). The exciton energies E* and wave functions
&% were computed with YAMBO by solving the Bethe-
Salpeter equation (BSE) with RPA static screening and
the Tamm-Dancoff approximation, including the GW-
corrected band structures. The Bethe-Salpeter equa-
tion in the supercell is solved iteratively in the YAMBO
code using the SLEPC library® for the first 600 eigen-
values and eigenvectors. The macroscopic dielectric
function £()(w) was computed using the modified re-
sponse function where the long-range Fourier component
is removed ? Its resonant part can be written as:
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Here, N is the number of k-points in the Brillouin zone
sampling and Vg the BZ volume. The term in the nu-
merator, 7% =", @5 (ck|e- D |vk), is the oscillator
strength of exciton S. It is a linear combination of op-
tical matrix elements in the dipole approximation (e is
the light polarization direction), describing direct transi-
tions from an occupied state v to an unoccupied one c,
weighted by the corresponding components of the exci-
tonic wave function. In the unit cell, a reasonably con-
verged calculation of the static screening can be obtained
by considering an 18 x 18 x 6 k-point grid and summing
250 bands. However, the energy window close to the ab-
sorption edge is already converged with a 12 x 12 x 4 sam-
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FIG. S2. The imaginary part of the dielectric functions are
plotted for the hBN unit cell (blue, DFT-GW-BSE calculation
on fine k-point grid) and non-diagonal supercell (red, DFT-
scissor-BSE calculation on coarse k-point grid). Only the first
480 states are included in the iterative solution of the BSE in
the supercell. The black vertical line is at the energy of the
indirect quasiparticle band gap. Both spectra have a broad-
ening parameter of 0.04 eV. Difference in the spectra (due
to finite k-point samplings) only occur in the energy region
above the band gap. In the relevant energy region below the
band gap, both spectra are identical.

pling. As the non-diagonal supercell contains 6 times the
atoms of the unit cell, the convergence parameters were
changed accordingly, using a 12 x 2 x 4 k-point grid, and
including enough states in the Bethe-Salpeter kernel to
span the transition energy region relevant for the absorp-
tion edge. The static screening was computed summing
1.2 -6 - 250 bands. The factor 1.2 is a safety margin to
account both for the folded bands from the zone edge
and for spurious finite-¢g bands (see Fig.[S2|for a compar-
ison of the optical absorption spectra Im () (w) between
unit cell and supercell). The normalised phonon displace-
ments (rescaled by the square root of the atomic masses)
were used to compute the finite-difference derivatives.
A global scaling factor was multiplied by the displace-
ments and converged to 0.0025 A, which is just above the
threshold of numerical noise. The harmonic behaviour of
e(w) with respect to the scaling factor was numerically
verified.

II. EQUILIBRIUM RESULTS ON THE
SUPERCELL

The result of a BSE calculation in the supercell with
atoms fixed at their equilibrium positions is shown in Fig.
The energy separations between direct and indirect
band gaps, as well as with low-lying ¢ = 0 and finite-¢q
excitonic states, are emphasized by vertical lines. The
first ¢ = 0 exciton at 5.7 ¢V (dashed blue vertical line) is
dark, while the second one at 5.75 eV (main blue peak)
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FIG. S3. Equilibrium supercell calculation. The imaginary
part of the dielectric function including only transitions at
¢ =0 (Ime®(w) in the text) is shown in blue. The peak
broadenings are set to 1.5 meV for the temperature of 0 K.
The vertical black lines denote the quasiparticle indirect and
direct gaps, while the dotted blue line indicates the position
of the dark Esy4 exciton with ¢ = 0. The dashed red lines
indicate the positions of the A; and B; excitons at g (labeled
11 and 2, respectively). The excitonic wave functions are
plotted (intensities only) in the insets: blue for the ¢ = 0
pair, and purple for ¢ = g ones (the dashed red arrow labeling
the g direction). Here the hole (black square) is fixed on top
of a nitrogen atom, and the resulting electronic density is
displayed.

is optically active. The intensities of their wave functions
U(re,rn) are almost identical. The one of the bright ex-
citon is represented in blue in the inset of Fig. Both
electron and hole mostly lie in the same layer. Two finite-
q excitonic states appear below the direct ones: they are
labeled 71 and 2 (dashed red lines). The wave function
intensities of the two indirect excitons are very similar.
One of them is displayed in purple in the second inset
of Fig. showing again a mostly planar distribution.
Although the wave function in the fixed-hole represen-
tation looks approximately distorted along the armchair
lattice direction, the full wave function is actually sym-
metric with respect to the zigzag direction (parallel to
the g-vector) upon rotation around the principal axis of
the Cy, symmetry group which is oriented in-plane along
the g direction (see also Section .

III. POSITION OF THE DIRECT BAND GAP

The direct quasiparticle band gap in bulk hBN is tra-
ditionally identified at the so-called 77 point1? From
Fig. 1 of the main text, we see that this point lies
close to K, along the I'K symmetry line (to be precise:



T, — K| ~ 1/6|]K —TI'|). However, there are other three
points that give a comparable band gap: M, T» (along
the MK line: |Te —K| ~1/3]K—M|=1/6/K—-T), and
H, the high-symmetry point directly above K along the
out-of-plane direction. In our GW calculations, the band
gaps at these points lie in a small 0.1 eV energy interval
(with E}f < EP> < EM < EI'), which is the accuracy
of the GW method. Since we know that GW underesti-
mates the true quasiparticle corrections in hBN, we have
to assume that the relative energy differences between
these band gaps may change with more refined approxi-
mations and/or more accurate calculations. In the main
text, we “average” the true position of the top of the
valence band from “around” K to exactly K, by taking
7 = |K—M] = 05/K — I'| as the momentum transfer
corresponding to the indirect gap.
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FIG. S4. Temperature dependent spectra. The computed
spontaneous emission rate (see Fig. 3b and Eq. (4) of the
main text) is shown with a green line for various tempera-
tures. The main phonon modes responsible for the peaks are
labeled, as well as the overtones (“0.”). The peak broad-
enings as a function of temperature, as well as the effective
“excitonic” temperatures, are discussed in the text. Black
dots: experimental PL emission spectrum®* (uncorrected for
setup response). Blue squares: experimental CL emission
spectrum.12

IV. TEMPERATURE DEPENDENCE

In our calculations, the temperature-dependent exci-
ton lifetime, which is related to the imaginary part of the
exciton-phonon self-energy and inversely proportional to
the line broadenings 7, remains an empirical parame-
ter. As the imaginary part of our response functions
intrinsically gives a Lorentzian shape for single peaks
(Im[w — E —in]~1), we focus on the range of temperatures
in which the experimental phonon-assisted peaks can also
be reasonably described with a Lorentzian broadening
(from 0 to 100 K)™' We use a linear model where the
line broadening 7 is given by13

where Npp = [eFo/FT — 1]~ is the Bose-Einstein dis-
tribution. The values of the parameters are taken from
the experimental fit in Ref. [I1]: Ty = 3 meV, a = 0.1
meV/K, b= 150 meV, and Eop = 25 meV. For complete-
ness, in Fig. we provide a version of Fig. 3b of the
main text with several temperatures (T'= 8, 20, 60 and
100 K). The effective “excitonic” temperatures Toy. en-
tering the Boltzmann factor of Eq. (4) of the main text
are taken from the data points in Fig. lc of Ref. [I4].
At the lowest temperature (5 —8 K, top frame), both the
experimental spectra obtained from photoluminescence
(PL, black dots, from Ref. [I1I]) and cathodolumines-
cence (CL, blue squares, from Ref. [12]) are compared
with the computed one (green line). The temperature-
dependent data are only available for the PL spectrum.
Notice however that, contrary to the CL spectrum, the
PL one is uncorrected for the response of the lumines-
cence setup, giving rise to wrong relative peak intensities
in the low-energy structure.

V. FORM OF THE FINITE-DIFFERENCE
RESPONSE FUNCTION

Here we give the full derivation of Eqgs. (2) and (3) of
the main text. Let us consider the part of the response
function due to excitonic state S (see Eq. for the
full response function):
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Xp(w) =

where the subscript R denotes a parametric dependence
on lattice displacements, i.e. Xg is the frozen-atom re-
sponse function (we take for simplicity 1 to be indepen-
dent of R, an assumption that does not affect the validity
of the results). We want to make the Taylor expansion of
Eq. up to second order in the lattice displacements,
therefore as an initial step we need to compute its first
derivative and evaluate it at the equilibrium atomic po-
sitions:
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FIG. S5. Static exciton-phonon couplings between the i1 and i2 excitons and the 12 different phonons at § = %|FK |. We
compare results obtained from the full second derivative of the response function (dashed blue lines) and from the second
derivative of the oscillator strengths (full red lines), see Eq. . An average over polarization of the incoming light and sum
over the 6 equivalent directions of phonons with wave vector [g| is performed.
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At this point we notice that the oscillator strengths of ~ which corresponds to Eq. (3) of the main text. This
any finite-q excitons for optical absorption must be zero derivative is evaluated numerically using the finite-
because of momentum conservation. In the case of a difference expression

supercell, it means that the excitons being folded into I"

from a different point in the unit cell are dark if the atoms 82XR/@R2 (w) ~ [x(AR;w)—2x0(w)+x(—AR; W)}/AR?
are clamped at the equilibrium positions. If we label ex- ]

citons belonging to such subset with S’, this means that ~ Lhe results, displayed in Fig. for each phonon mode,

s g B . confirm the equivalence of the two sides of Eq. .
Tr=o = 0 and therefore Ox%, (w)/ 8R‘ R=0 0. This is This means that, numerically, we can obtain the exciton-

explicitly conﬁrrped numeric.ally by our finite-difference phonon coupling for the calculation of phonon-assisted
calculations. This argument is analogous to the one often absorption/emission both through a finite-difference cal-

used. in the case of optical .ab§orption in '_Ehe independent— culation of the whole response function or through a
particle model for the vanishing of the dipole optical ma- finite-difference calculation of just the excitonic oscillator
trix elements below the direct band gap. 1516 strength.

The same argument applied to the second derivative of
XIS% leads to the vanishing of the terms containing deriva-
tives of the exciton binding energy. The only term that

remains is the one containing the second derivative of L
TS A. Symmetry analysis with group theory
B

VI. EXCITON SYMMETRY AND COUPLING
WITH PHONONS

32XIS%’ (w) B 5‘2|T1§/\2 In bulk hBN, the point group (including the non-

S’ so1—1
OR?2 |pr=0  ORZ2 RZO[ER=O_M+”7} » (S5) symmorphic point symmetry operations of the space
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FIG. S6. Symmetries at I" and g. Top and side views of the bulk hBN lattice. Boron (nitrogen) atoms are in green (gray).
The borders of the repeated unit cells are shown with dashed black lines. Left: original unit cell for the hexagonal lattice (Dgp,
point group) and lattice vectors. Right: non-diagonal supercell used in the calculations, folding point § (C2, point group) at I',
and lattice vectors. The axes of rotation corresponding to the symmetries of the ¢ points of the systems are shown with solid
black lines.

Don E Ch(x) on(zy) oa(22) Mode | Symm. | Freq. (meV)
Ay 1 +1 +1 +1 LOs | Ay 183.00
Ao, +1 -1 -1 +1 LO, B 177.63
Ey, +9 0 —9 0 TOg3 Ay 159.58
Es, +2 0 42 0 TO, B 159.48
E1 ) 0 42 0 LA Ay 93.33
B | 42 0 9 0 LO: | B 93.22
703 Ay 92.47
) ] 704 B 87.53
TABLE I. Partial character table for point group Dgp,. TO, A, 65.10
TA By 64.72
704 Ag 22.25
Cay | E Ca(x) oy (zy) ou(z2) ZA B 21.54
Ay +1 +1 +1 +1 TABLE IV. Symmetry of the phonon modes at g. The modes
Ay +1 +1 -1 -1 are listed as Davydov pairs in order of increasing frequency
B, +1 -1 +1 -1 with the lowest-frequency mode at the bottom (compare Fig.
By +1 -1 -1 +1 (1) in the main text).

TABLE II. Character table for point group Cs,.

group) is Dgp. It contains 24 symmetry operations
grouped in 12 classes. It is the group that is also used for
the characterizations of perturbations (such as phonons
and excitons) of hBN with zero wave-vector (correspond-
ing to the high-symmetry point I'). In Table El we report,
a subsection of the character table focusing on the op-
TABLE III. Connection between the elements of Cs, and Dgp,. t(lﬁa IEts ggief)e porﬁls“eitlfl?)tii;oen?o?ftﬁleteée:;tets(,)ialrlls.ax{:; l;‘lllgd

for the lattice vectors is reported and the three rota-

D, Cay
Cé - Oy
on(zy) = ov(zy)
ca(xz) = op(x2)




FIG. S7. Top view of the atomic displacements and forces
for the TO; phonon mode at one of the six equivalent g-
vectors/Cy rotation axes (solid black line). The corresponding
non-diagonal supercell is represented in dashed gray lines.

tion axes belonging to Dgp are drawn. Recall that bulk
hBN displays AA’ stacking (two inequivalent layers per
unit cell): therefore many of the symmetry operations
are non-symmorphic. The point group for the symmetry
analysis of a perturbation with finite wave vector q is a
subset of the one at I'. In the case of § lying on the 'K
line, the point symmetry group is Cy, with Co, C Dgp,.
The character table of Cs, is provided in Table [[I] In
the right panel of Fig. [S6] showing the crystal lattice
as repetitions of the non-diagonal supercell used in our
calculations, the only rotation axis of Cy, is drawn. This
axis runs along the zigzag direction, and it is identified by
checking the rotational symmetry of the phonon modes,
as shown in Fig. I]ZI From this we see that the Csy ro-
tation in Cy, coincides with the C4 rotation in Dgp, and
we use this to make a connection between the elements
of Cy, and Dgy,, shown in Table [[ITl The dipole operator
transforms as the [z, y, z] vector and belongs to represen-
tations E1, [z, y]+ Agy[2] for Dgp, and Aj[x]+ By [y]+ Ba[#]
for C5,. The in-plane component of the dipole transforms
accordingly as E1, and A; + By, respectively.

Let us first analyse the two excitons (one dark, one
bright) of our system at I' (see Fig. . The incoming
optical light (E4,,) interacts with the ground state |G) of
the system (which is fully symmetric, Ay4) creating an
excited state of symmetry A,y ® Eq,, = E1,. Therefore,
the bright exciton corresponds to the Ey, representation.
The dark state is its Davydov partner, thus it must have
opposite parity with respect to inversion SynrnrnetryIZI and
it corresponds to the Ey, representation, in analogy with
the symmetry of the Davydov splitting for the acoustic
phonons.

Any irreducible representation of Dg; will be a re-
ducible representation of Cy,, and therefore can be ex-
pressed in terms of a linear combination of irreducible
representations of Cs,. These are the so-called compati-
bility relations that we will need to analyse indirect pro-
cesses from I' to g (in particular, we want to describe
the splitting of the Ey, and Es, excitons). This applies
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FIG. S8. Interplay between Davydov and symmetry splitting
at very low wave vector for the transverse and longidutinal
phonon modes (TA, TO:, LA, LO; in the text). The dis-
persion of modes with symmetry A; (TO1, LA) and By (TA,
LO1) is shown in red and blue, respectively.

also to the characters of the representations: if we de-
fine xg(C%) as the character of a (reducible) represen-
tation of group G with respect to symmetry operation
C, the “wonderful orthogonality theorem” (according
to Ref. [I8)) for characters establishes the coefficients ar,
of the linear combination associated with irreducible rep-
resentation I';. In our case, the formulas reduce to

XDa (Cr) =Y ar, X&) (Cr)
r;
1 )
ar; = 1 Z X(Cl';lv) (Ck)XDSh (Ck),
k

and we can compute the ar, coeflicients using the Ta-
bles [} [ and [T} We find Az, — B, and both Ej, and
Es, splitting as A; + By, confirming our previous identi-
fication of the dipole representations. Therefore, the two
indirect excitons labeled as i1 and ¢2 with momentum g
can only have either A; or B; symmetry.

B. Phonon symmetries and dispersion

We list in Table [[V] the results of our DFPT calcula-
tions for the symmetries of the phonon modes at §g. The
formation of quasi-degenerate parallel phonon branches
can be understood by zooming in on the region close to
the T point as in Fig. [S8] At I" we see the two degenerate
TA and LA modes (E3, symmetry) at zero frequency, as
well as their Davydov partner (TO; and LO; modes, Eq
symmetry) 6 meV above. The large value of the splitting
is due to the constructive interference of the Fourier com-
ponents of the inter-layer interaction at zero wave vector.
When g # 0, the degenerate modes further split into two
non-degenerate ones of symmetry A; and B;. The two
A1 modes mix via an avoided crossing and then approach
their respective By mode. In this way two distinct Davy-
dov pairs are formed, each one with a tiny energy split-



ting. The low value of the splitting at finite ¢ is due to
the destructive interference of the Fourier components of
the inter-layer interaction.

C. Selection rules for indirect absorption

In order to analyse the indirect process, we first list
in Table [V] the results of our DFPT calculations for
the symmetries of the phonon modes at §. Next we
consider the time-dependent perturbation theory for a
model excitonic Hamiltonian H with exciton-radiation
and exciton-lattice interactions as the perturbations:
H = Hy+ V(t) = Hy + De %! + gze~ %t + h.c., where

J

w and Qg are the photon and phonon frequencies, re-
spectively, and D and g7 the coupling operators (a sum
over all phonon modes is assumed). We want to qual-
itatively describe the phonon-assisted processes leading
to the formation or annihilation of a finite-¢ excitonic
state |17). We include only single-photon and single-
phonon processes, and for simplicity we only consider
phonon emission contributions. (Note that the following
derivation is not meant to give a precise computational
description of indirect absorption but that it serves only
for the symmetry analysis of the involved phonons and
excitons). Then we can write the second-order Fermi
golden rule expression for the transition probability per
unit time as*

2
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Here |, ) is an intermediate excitonic state with energy
E, and |G) is the ground state of the system. The first
term corresponds to the process of photon absorption
with phonon emission creating the final excitonic state
|¢5), while the second term describes the combined pho-
ton and phonon emission. We notice immediately that
if we take the static approximation for the transition
probabilities (i.e. setting fw = k7 = 0 in the denom-
inators) and D = D' (e.g. the dipole operator), the
squared quantities coincide for both photon absorption
and emission. This is the limit in which we performed
our finite-difference calculations and is analogous to the
Hall-Bardeen-Blatt theory of indirect absorption for in-
dependent particles ™ The first term in the squared sum
represents the creation of a direct virtual exciton i)
by light as the intermediate step, followed by a scatter-
ing to the finite-g state |¢;) via phonon emission. The
second term adds the contribution of the inverse pro-
cess, when the virtual state [1),/) is created at finite-q
by a phonon, and then arrives at the energy of |¢f) by
absorbing a photon. For the purposes of finding the se-
lection rules, the two contributions are equivalent and
thus we focus on the first one, <wf|g;|wa> (Y| D|G).
The final allowed excitons in the energy window that
we consider must have A; and B; symmetry and the
first matrix element in the process, (| D |G), imposes
Fq,, as the only possible representation for the direct in-
termediate state |¢,). Since Ey, — A; + By and gg
transforms with the symmetry of the various phonon
modes involved, for gg [tha) we have the tensor product
(A1—|—B1—|—A2—|—BQ)®(A1—|—B1). However, A1®(A2+B2) =
A2 + BQ and B1 X (A2 + BQ) = BQ + AQ, therefore the

§(Ef + hw + hSdg).

(

phonon modes transforming as As or By cannot give the
allowed final states and their coupling is forbidden. We
see from Table [[V] that these representations correspond
to the out-of-plane Z phonon modes, while the in-plane
ones T and L all transform as A; or B; and therefore
are all allowed. If we consider instead incoming light po-
larised out-of-plane (Ag,, — Bs), the picture changes and
now (Al +Bl +A2 +BQ)®BQ = BQ-FAQ +Bl —|—1417 mean-
ing that if the polarization is exclusively out-of-plane only
the Z phonon modes can couple to excitons i1 and 2.

We find that our first-principles calculations respect
the aforementioned selection rules, as shown in Fig. [S9]
In particular, if light is polarzsed exclusively along the
x/zigzag direction, i.e., it transforms as A; (top frame),
then only the TA, LOy, TO5 and LOs phonon modes (all
transforming as By, portrayed in blue) can couple to il
forming phonon-assisted peaks, and only the T'O;, LA,
TO3 and LO3 modes (all transforming as A, portrayed
in red) can couple to i2. Conversely, if light is polarized
exclusively along the y/armchair direction, i.e., it trans-
forms as By (bottom frame), then only the A; phonon
modes couple with ¢1, and only the B; modes couple
with 2. This unmistakably shows that exciton il (the
one responsible for the luminescence spectrum) has B;
symmetry, while exciton 72 transforms as A;. Addition-
ally, we notice that the leading peak for absorption is due
solely to the strong coupling between the 2 exciton and
the LO3 phonon mode: therefore, this peak completely
disappears when light is polarised along the y direction
(that is, orthogonal to the g vector). Finally, we confirm
that the total spectrum is 7/3-periodic by varying the
light polarization direction.
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FIG. S9. Ab initio results on exciton-phonon coupling, re-
solved by direction of light-polarization and symmetry of con-
tributing phonon modes. The contribution to absorption, as-
sisted by a phonon of wave vector ¢ along the z-direction is
plotted (solid black line) for light polarization e along the
z-direction (top frame) and the y-direction (bottom frame).
The dashed black line represents the full result obtained by
averaging over the two contributions. The red vertical lines
serve as a guide for the eyes to understand which phonon-
assisted peaks come from the coupling to excitons il or 2.
The color of each phonon-assisted peak indicates the sym-
metry of the phonon mode responsible for it (Bi: blue, As:
red).

VII. VAN ROOSBROECK-SHOCKLEY
RELATION

We give here a short account of the van Roosbroeck-
Shockley (RS) relation?” in order to add some context
to its application to our results (Eq. (4) of the main
text). We mainly adapt the contents of Refs. [21] and
[22], where a more exhaustive treatment can be found.

Direct transitions in the independent-particle
case. Let us consider a steady state of photon absorption
and emission processes between valence and conduction
bands. For simplicity of notation, the photon polariza-
tions are not included. The net absorption rate (per unit
energy, per unit volume) will be given by the difference
between the transition rates of absorption and stimulated
emission processes:

27r/\f
ﬁ Ny,

gbs(""}) = IC Z%vaFlk(s €ck — €vk — m)y
cvk

(S7)
where €, is the energy of an electron in the nth band

with wave vector k, T i 15 the transition rate and AF’
F Fr F ., F/
nvknck — NNy

cvk —

Here, nnk is the probability that state
€nk 18 occupied with an electron, and nﬂ. the probabil-
ity that it is occupied with a hole. We assume a time-
independent Fermi-Dirac distribution for electronic oc-
cupations in the steady state, nf, = [1 +elenk—pe) /KT =
with p. and pp, being the chemical potentials for electrons
and holes, respectively. In the independent-particle case
the transition rate can be taken as the optical matrix ele-
ment in the dipole approximation: Te,x = | (ck| D |vk) |2.
We can similarly write the expression for the spontaneous
emission rate,

21 G(w)

R°P(w) W,

= K(w)

Z Tevkn cknvké(eck — €pk — hw)
cvk

(S8)

The spontaneous emission is only proportional to the
photon density of states, G(w), while both absorption
and stimulated emission are proportional to the the pho-
ton density per unit energy, N (w). If we define an aver-
age photon number, A/, these two quantities are related
by the total photon density [N (w)dw = [NG(w)dw
The dimensional term K(w) is made of quantities mainly
related to the the electro-magnetic field. It is impor-
tant to notice that this term is also frequency-dependent.
We now list the expressions for the optical quantities in-
volved.

2me? h? 1
m2V  n,(w)?hw
1 np(w)?(hw)?

Dimensional factor K(w) =

Photon density of states G(w) = I V(W)
c c
Group velocity V,(w) =
! e (@) + 2 ()
Incoming photon flux F(w) = N(w) ¢
ny(w)

The absorption coefficient a(w) can be written in terms
of the absorption rate as R.,  (fw) = F(w)a(w). Finally,
we observe that independently from the specific (cvk)
transition considered, the following relation always holds:

F _F/

ek _ 1 o~ (hw—Ap)/kT
F F/ F Fl — o(hw—(pe— kT _
Ny — N e(hw—(pe—pn))/ 1

Then, by putting everything together and compar-

ing Egs. and (S8), we find Ry(w) =
G(w)V, (w)a(w)e™ (hw=Am/kT
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FIG. S10. Simplified two-exciton scheme for hBN, displaying the processes of photon absorption (dashed blue arrows) and
emission (dotted red arrows) mediated by phonon absorption (left) and phonon emission (right).
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FIG. S11. Phonon-assisted emission in bulk hexagonal
boron nitride. Spectral functions e2(q,was) = >, €5x (7, Wa)
(red, top, ImeZf™(w) in the main text) and RF(q,w.) =
>ox B (q,we) (green, bottom, RP(w) in the main text) at
8 K. The A-components of the spectrum, belonging to the
different phonon modes, are also plotted in various colours.
The exciton-phonon couplings are labeled. The dotted verti-
cal lines in correspondence with the peaks serve as a guide for
the eyes.

This leads us to the RS relation:

n,(w)?(hw)?

Rapltd) = = 52—
_ np(w) (hw)?
T w23

(w)ef(hwau)/lcT
(S9)
Z(w)e—(hw—Ap)/kT’

where for the last equality we have used a(w) =
hwea(w)/(ny(w)hc).

Direct transitions in the exciton case. In this
case the absorption coefficient is computed including ex-
citonic effects (a®*°(w) or equivalently £5*°(w); we can

always obtain the full refractive index as nf*“(w) =

\/(\/ETXC(W)Q +e5°(w)? +e$°(w))/2 ). This means
that the transition rate 7. in Egs. (S7) and
(S8) will be replaced by the excitonic one, Tg =
1> eor ®5ok (ck| P |vk)|?, with the external sum now run-
ning over the exciton index S. Analogously, the energies
of single-particle transitions will be replaced by the ex-
citon energy levels £°. Concerning the occupation func-
tions, if the absorption/emission features are dominated
by the creation/annihilation of electron-hole bound pairs,
it is sufficient to replace the Bose-Einstein/Boltzmann
factor in Eq. with a more appropriate term to de-
scribe the occupation of excitonic states. We use the
Boltzmann distribution Np(hw) = e~ (" =#)/kT | with
w* fixed to the energy of the lowest-bound exciton. Since
below the quasiparticle gap we are dealing with a discrete
excitonic spectrum, Np will be a discrete function taking
values for hw = E°.

Indirect transitions. In this case we have to take
into account that the energy of a photon absorbed (fiw,)
and that of a photon emitted (hw,) in a process mediated
by the same phonon are not the same, and they are both
different from the energy of the electronic transition (fiw).
In particular, with the help of Fig. [SI0] we can write the
following relations: hw, = hw, + 2h82), Aw. = hw £ A2y
and hw, = fw F Ay, where ) is the frequency of the
phonon assisting the transition and the upper and lower
signs refer to the cases of phonon absorption and emis-
sion, respectively. We need to write a generalised form of
the RS relation that takes these energy differences into
account. Focusing on the case of an indirect transition
mediated by the emission of a single phonon of branch A
and momentum ¢, the second-order absorption and emis-
sion rates (i.e. per unit time, energy and volume) can be
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expressed as (back in the independent-particle case)

27 N (wq
s(Wa) = K(wa)? J(Vk ) 27—0(1)2/3(1)\(”‘1)‘ + 1)[nkan5€’+q - ngﬁqnf,é](?(ecmq — €k + MQgx — hwy)
cvk
S10
Sp 2 g(we) (2) F Fr ( )
R (we) = K(we)?Tk Z’kaqA(nqA + 1)nck+qnvk5(eck+q — €k — th)\ — hwe),
cvk

where ngy represents the Bose-Einstein distribution for
phonons (we use np in the main text).

Then, considering a(fw,) = Rl (fiwg)/F(hw,) and
writing the frequency-dependent functions explicitly, we

can write the final results:

Ny (we)nr (Wa)(h“JE) (hwa)
m2c2h3
Ny (we)(h“JE)(ma)2

= p Eo W
m2c3ht (@a

o~ (hw—Ap) /kT

R®P (we) = a(wtl)

)e—(hw—Au)/kT_

(S11)

Or, in the excitonic case (dropping the labels on the
frequencies): R*P(w) o n(w)w(w — 2Q41)%e5*(w —
2Q2)Np. The emission spectra shown in Fig. 3 of
the main text are obtained by using the latter equation
(Eq. (4) in the main text) and summing over all phonon
modes with momentum ¢ = § corresponding to the in-
direct gap. Using our ab initio results, a comparison
between e5(q, fiw,) (where all phonon-assisted peaks are
simply mirrored with respect to the energy of the exci-
tonic state involved) and R*?(hw,), the full RS relation,
is shown in Fig. [ST1]
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