UNIVERSITE DU
LUXEMBOURG

University of Luxembourg

Faculty of Science, Technology and Communication

Deontic Agency and Moral Luck

Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master in Information and Computer Sciences

Supervisor
Prof. Dr. Leon van der Torre
Author
Paul MEDER Reviewer
Prof. Dr. Martin Theobald
Student Number
009060593f First Advisor
Dr. Xavier PARENT
Date
August 2018 Second Advisor
Priv.-Doz. Dr.-Ing.

Christoph BENZMULLER

Abstract

This work presents temporal STIT 1/O logic, an 1/O logic based on tempo-
ral STIT logic, and documents its investigation with the proof assistant tool Is-
abelle/HOL. We show how to semantically embedding temporal STIT logic as
well as the outs operator in HOL. Implementing those embeddings and also the
already existing embedding of the out; operator into Isabelle/HOL framework,
enables the application of higher-order automatic theorem provers for automated
reasoning tasks in temporal STIT /O logic. Finally, we relate our logic to a more
philosophical topic called moral luck, identify which aspects of moral luck can be

studied by it, and use examples from this subject as test cases for the logic.

Keywords: Deontic logic, Input/Output logic, STIT logic, Higher-order logic, Semantical
Embedding, Moral luck

Declaration of Honor

| hereby declare on my honor that | am the sole author of the present thesis. |

have conducted all work connected with the thesis on my own.

| only used those resources that are referenced in the work. All formulations
and concepts adopted literally or in their essential content from printed, unprinted
or Internet sources have been cited according to the rules for academic work and

identified by means of footnotes or other precise indications of source.

This thesis has not been presented to any other examination authority. The
work is submitted in printed and electronic form.

Luxembourg, August 2018

Paul Meder

Acknowledgments

| want to thank the University of Luxembourg as well as the professors for their
lectures during my studies. The courses allowed me to improve my knowledge and

skills about computer science and prepared me well for the master thesis.

| wish to express my gratitude to Prof. Dr. Leon van der Torre and Dr. Xavier
Parent for allowing me to participate at this project. During our meetings they

provided me with relevant advices and were so kind to review my thesis.

Further on, | would like to sincerely thank Priv.-Doz. Dr.-Ing. Christoph

Benzmiiller who offered me valuable suggestions to realize my work.

Moreover, | am thankful to Mr. Ali Farjami for his help and advices throughout

this work.

Finally, I am grateful to all my family members and friends for their support

and encouragement during my studies and this project.

CONTENTS

Contents

Abstract

Contents

List of Figures

1

2

3

Introduction
1.1 Context.
1.2 Research questions
1.3 Goals and methodology
1.4 Interdisciplinary aspects.
1.5 STIT theory
1.6 Structure of the thesis
The logic
2.1 Input/Output logic
2.1.1 Semantics
2.1.2 Proof Theory
22 T-STITI/Ologic
The implementation

3.1

3.2

3.3

3.4

Higher-order logic
Isabelle/HOL Framework
Semantical Embedding
Implementation

3.41 Primitives

vii

CONTENTS

xi

CONTENTS CONTENTS

3.42 Connectives 20
343 STIToperators i 21
3.44 Temporal Operators 22
3.45 Relational Properties 23
3.4.6 Relational Constraints 24
347 Validity 25
348 Axioms-Horty 26
349 Axioms- Llorini 28

3.5 Limitations of Isabelle/HOL 31
36 T-STITI1/Ologicin HOL 32
3.6.1 Simple minded output outy 32
3.6.2 Basicoutputouto 38
3.6.3 Applying outy to formulas of T-STIT logic 42
3.6.4 Listofexamples 44

4 Moral Luck 47
4.1 Introduction to moral luck 47
42 OughtimpliesCan 48
4.3 The four kinds of moral luck 50
4.3.1 Constitutive moral luck, 50
4.3.2 Circumstantial moral luck 50
433 Resultant moral luck L. 51
434 Causalmoralluck. 52

4.4 Relationtoourlogic 53
45 Example - Drunk Drivers oL 54
451 Formulation 54
452 \Verification 55

4.6 Example - Murder attempt 56

viii

CONTENTS

46.1
4.6.2 Verification

4.7 Proposed solutions

5 Conclusion
5.1 Summary

5.2 Future work

Appendix A

.1 Deontic Logic

Appendix B

.2 Ought-to-be vs Ought-to-do
.3 The gambling problem
4 Driving Example and Moral luck

.5 Critical view on STIT theory

Appendix C

.6 Temporal STIT logic

.7 Semantics

7.1
7.2

7.3

Appendix D

.9 Examples

Formulation

Branching Time and Agent Choice

Choice function
Satisfaction in BT4+AC structure

Temporal Kripke STIT Model

CONTENTS

LIST OF FIGURES

List of Figures

1.1

3.1

3.2

3.3

3.4

35

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

Agent facing four choices.

Proofs generated by Sledgehammer
Counter model generated by Nitpick
Generated counter model in Kripke semantics
Model satisfying constraints C1-C6 but falsifying constraint C7 . .
Isabelle/HOL: out; example
Isabelle/HOL: Countermodel for z € outpre(N,a)
Isabelle/HOL: Problems for out;
Isabelle/HOL: outy and STIT logic
Driving Example in Isabelle/HOL
Isabelle/HOL: outy vs. outa
Isabelle/HOL: outs example

Isabelle/HOL: Proof theory of outs on examples

Isabelle/HOL: Moral luck example

The gambling problem,
The driving example

Two choice situations

Branching Time,
Branching Time with an agent’s choice
Branching Time with group choices
Standard Kripke Model L

Temporal Kripke STIT Model

LIST OF FIGURES

31

LIST OF FIGURES LIST OF FIGURES

9 Group Actions 95
10 Isabelle/HOL embedding for the Group Action Example (part 1) . 96
11 Isabelle/HOL embedding for the Group Action Example (part 2) . 96
12 Isabelle/HOL embedding for the Group Action Example (part 3) . 97
13 Isabelle/HOL embedding for the Group Action Example (part 4) . 97
14 Temporal Kripke STIT model from Lorini's paper 98

15 Isabelle/HOL: Model from Lorini's paper 99

Xi

LIST OF FIGURES LIST OF FIGURES

xii

CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Context

The field of logic that deals with normative concepts such as obligation, prohi-
bition, and permission, is known as Deontic logic. It is a very well studied area of
philosophy and mathematical logic. When it comes to the formalization of knowl-
edge about norms, for instance, the representation of legal knowledge, deontic
logic is an obvious choice. Various kinds of deontic logics have been developed
over the years. We have the traditional deontic logic, which includes Standard
Deontic Logic (SDL), a modal logic of type KD, and Dyadic Deontic Logic (DDL),
which have been proposed to deal with contrary-to-duty (CTD) reasoning. The
so-called norm-based deontic logics represent another family. In contrast to tradi-
tional deontic logic, the deontic operators are not evaluated with a possible worlds
semantics. For a norm-based deontic logic, the deontic modalities are analyzed
with reference to a set of explicitly given norms. Such a framework investigates
which norms apply for a given input set, referred to as facts, and a set of explicitly
given conditional norms, referred to as normative system. A particular framework
that falls within this category, is called input/output (1/0) logic. It has been devel-
oped by Makinson and van der Torre [23] and it is one of the latest achievements
in the area of deontic logic and gained a high recognition in the Al community.
Each of those deontic logics is used in different application domains such as legal
and ethical reasoning, or normative multi-agent systems. For the latest, one needs
to combine deontic logic with modalities of agency. Horty's work [19] focuses on
the combination of deontic logic and a modal logic of action, known as STIT
theory, and it is considered as a major and important contribution in the domain

of deontic agency.

Deontic logic has recently received new attention in computer science with
regard to automated reasoning. One of the latest paper [6] by the Individual and
Collective Reasoning (ICR) group, proposes an infrastructure for the automation of
deontic and normative reasoning and discusses the development of computational
tools for reasoning based on deontic logic. The presented infrastructure supports a
wide variety of different variants of deontic logics. But how did the authors encode
deontic logic into a computer system, so that logical reasoning can be simulated
on it? They took a particular deontic logic and performed a so-called shallow
semantical embeddings (SSE) [1] of that logic in higher-order logic (HOL). By

using this approach, HOL serves as a meta-logic in which the syntax and semantics

1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

of that particular deontic logic can be represented and modeled. The embedded
logic was then implemented into a computer software, Isabelle/HOL [26]. It is a
proof assistant tool which uses HOL as its background logic. A variety of state-
of-the-art higher-order automatic theorem provers (ATPs) and model finders are
integrated into /sabelle and can be called by the framework’'s supported tools.
Basically speaking, an ATP is a computer software which takes a logical statement
as its input and automatically generates a proof for it by using a set of axioms,
theorems, and hypotheses. Due to the technique of semantical embedding, the
authors were able to represent SDL [2], DDL by Carmo and Jones [5], as well
as the out; operator for /0 logic [7] in higher-order logic and their embeddings
were implemented into frameworks such as Isabelle/HOL. This approach allows
for applying ATPs in order to solve certain problems modeled by those logics.
Those works form more or less the basis of the literature with regard to deontic
logic, HOL and computer supported reasoning. However, besides those deontic
logics, several non-classical logics such as several modal logics [2], including SDL,
conditional logic [4], and many others have also been embedded in HOL and
verified within the Isabelle/HOL framework.

1.2 Research questions

In this thesis, we investigate and contribute to the area of deontic logic, agency
and automated reasoning. We are particularly interested in further observing and
verifying Input/Output (1/0) logic with the proof assistant tool Isabelle/HOL [26],
but also explore STIT logic and its combination with 1/0 logic with the help of
the framework. By the earlier mentioned semantical embedding approach, STIT
logic and 1/O logic can be formulated in such a way that they can be represented
in HOL and therefore be simulated within the Isabelle/HOL tool. For this thesis,
we therefore identified and focus on the following research questions:

RQ1: Due to the recently notable success of embeddings of non-classical logics
in HOL and their verifications in Isabelle/HOL, is it possible to realize an
embedding of STIT logic in HOL or are there any limitations?

RQ2: So far, the literature only documents an embedding of the out; operator
in HOL [7]. Can the work of I/O logic in HOL be extended by providing a

semantical embedding of the outs operator?

RQ3: Typically, 1/0 logic is used with propositional logic. How do the /0O oper-
ators out; and outs perform when using STIT logic as the base logic?

CHAPTER 1. INTRODUCTION 1.3. GOALS AND METHODOLOGY

RQ4: It has been suggested that moral luck can be studied using deontic logic,
but which aspects can be analyzed and which aspects are out of reach?

1.3 Goals and methodology

We want to investigate a logic which is composed of two logics. 1/0 logic covers
the deontic part whereas STIT logic is used for the agency part. We consider a
STIT logic augmented with some temporal operators, known as temporal STIT
logic [22], shortly T-STIT logic. For 1/O logic, we focus on the out; and outy
operator. The question is how to combine these two logics? In its traditional form,
|/O logic uses the language of classical propositional logic as its base logic. To
combine them, we change the language of the base logic to a language of T-STIT
logic. We will refer to the combined logic as T-STIT 1/0 logic.

In order to answer our research questions, the first goal of this thesis is to come
up with a semantical embedding for T-STIT logic in higher-order logic (HOL) and
provide an implementation of it in Isabelle/HOL. Lorini's T-STIT logic provides
us with a possible worlds semantics, which comes in useful when embedding the
logic in HOL. In particular, the semantics introduce a so-called temporal Kripke
STIT model, a multi-relational Kripke model with specific constraints on each
accessibility relation. We will test the implementation by trying to generate proofs
for the axioms of T-STIT logic as well as for some laws for STIT logic from
Horty's work [19]. [sabelle/HOL supports automatic reasoning tools, such as
Sledgehammer [11] and Nitpick [10], which can be used to prove or disprove

logical statements, respectively.

Next, the focus lies on the semantical embedding for the I/O operators out;
and outy in HOL. Those embeddings will also be implemented into Isabelle/HOL.
The work in [7] documents the first experiments with it and already presents a
semantical embedding of out; in HOL. The embedding of out; is based on its
traditional formulation. However, for the outs operator there is a translation into
modal logic, which will be used to realize the embedding. Having implemented
the embeddings of the two operators and T-STIT logic into Isasbelle/HOL, we
are able to investigate their combination, which we refer to as T-STIT 1/0 logic,
and apply the operators to a number of different examples in order to verify their

correctness.

The final part is to apply T-STIT 1/0 logic to examples of moral luck. Moral
luck describes the phenomenon when an agent is held accountable for his actions
and its consequences even though it is clear that the agent was neither in full
control of his actions nor its consequences. It conflicts therefore with the ethical

principle that agents are not morally responsible for actions that they are unable

1.4. INTERDISCIPLINARY ASPECTS CHAPTER 1. INTRODUCTION

to control. Horty already observed that his two defined obligation operators have
something to say about moral luck [19] (Chapter 5, page 121). In this thesis, we
want to go into more detail and see which aspects of moral luck, deontic logic is
able to analyze. Therefore we dedicate a section of this thesis with a survey of
different kinds of moral luck and we use it as a test case for the logic. In particular,
we focus on a specific kind of moral luck, known as resultant moral luck. It is
concerned with the consequences of an agent's actions. Due to T-STIT logic, we
are able to formalize and model such scenarios and by using /O logic, we are able

to tell what is obligatory in those situations.

By achieving our proposed goals, this thesis contributes the following to the
literature of deontic logic, agency and automated reasoning. First, it documents
an semantical embedding of T-STIT logic, a logic of action, in HOL and how it
has been implemented in Isabelle/HOL. Next, we extend the work of /O logic in
HOL by providing an embedding for the outy operator. Since we also investigate
T-STIT 1/O logic, we explore further aspects of 1/O logic with a more expressive

base logic and give more insight of it with regard to moral luck.

1.4 Interdisciplinary aspects

Testing our logic on examples from a phenomenon such as moral luck, can be
extremely valuable and indicate how well the logic can deal with such real-world
scenarios and if it is possible to use it outside of theoretical computer science.
Such involvements include artificial intelligence (Al) applications where logic is
considered as one of the most important and powerful tools used in the develop-

ment.

Self-driving cars or autonomous weapons are two modern and popular exam-
ples of technologies where Al is used as a key concept. In contrast to manual
driving cars, driverless cars are considered to be safer, more fuel-efficient, and
their popularity is increasing day by day. But putting, for instance, Al behind the
wheel of a car gives raise to ethical problems. When the car is faced with moral
dilemmas, how should it behave in those lose-lose situations? Who can be held
accountable when an autonomous vehicle ends up in a tragic accident? Imagine
a scenario with an unavoidable crash, the self-driving car has to make a choice
between either saving the life of the driver or the lives of five pedestrians. It comes
down to the reasoning power of Al in the driverless car, which now has to decide
between life and death. What does the Al consider as the right choice? The most
logical approach would be to minimize casualties. In this case, it would mean that
killing one person is better than killing five people, thus the Al will favor the lives

of pedestrians over the life of the driver. However, considering this as the right

CHAPTER 1. INTRODUCTION 1.5. STIT THEORY

approach is highly doubtable. ldentifying the right choice is extremely complex
in such circumstances, if not impossible, and it is a quite challenging task that
computer scientists are facing when developing the logic of such an Al and its
implementation. Not only are they concerned with the correctness of the logic
but they also have to adjust it in such a way that the Al is able to deal with
such ethical decisions. Such cases are illustrating that Al has sparked more ethical

debates than any other technology before it.

The rest of the introduction section is used to provide a general overview of
STIT theory. We give a general overview of the logic of agency, known as STIT
logic, that originates in the domain of philosophy of action. We present the

motivations behind this logic and the key concepts of it.

1.5 STIT theory

Agency deals with what agents can bring about and actions are a way to bring
about some state of affairs. A particular logic of agency is the logic of STIT
which deals with choices and strategies for individual agents as well as for groups
of agents. This logic originates from the domains of the philosophy of action and
has been proposed in 1990 [9]. The objective was to formulate semantics about
agents and what they do. This allows analyzing the needs for a general theory of
an agent making a choice among alternatives that lead to an action. The works of
Belnap et al. [8] and Horty [19] are considered as major contributions in the area
of STIT theory. Over the recent years, people in computer science have also done
some work in STIT theory. Most of it includes proof theory and axiomatization
[31].

STIT refers to the acronym seeing to it that and originally the logic was em-
bedded in a branching time indeterministic framework. The time is represented in
the form of a tree and the branches are referred to as histories. Any choice made
or action performed by an agent restricts the future to a subset of these histories.
According to Horty, histories can be thought of as 'possible outcomes of actions’
and an action or a choice K of an agent may therefore be represented by a set
of outcomes. Further, this theory consists of an agentive modality in order to
formulate the idea that an agent causes some state of affairs. Usually one writes
this modality as [« stit :] and can be interpreted as agent « sees to it that .
Over the years, several different kinds of agency operators have been proposed in
STIT theory. Belnap and Perloff introduced the logic for the achievement STIT.
Besides the strong support for the theory of the achievement STIT, its logic is
rather complex. In particular, Brian Chellas, who established the first semantics

of a logic of action in [14], stated the following:

1.5. STIT THEORY CHAPTER 1. INTRODUCTION

Belnap and Perloff’s “theories of agency are complex, fascinating, and
illuminating — without a doubt the most subtle and sophisticated pro-
posals of their kind to date.” [15].

The complexity of the achievement STIT might be a reason why Horty stayed
away from it when he was studying agency operators that could mix with deontic
aspects. Inspired by the work in philosophy of action, Horty introduced the delib-
erative STIT theories [20] which contain the logic of two operators of agency. The
first operator of agency is called Chellas’s STIT [« cstit :] and it is the most
elementary one. It is named after Brian Chellas since it corresponded more or less
to his operator A, in [14]. In terms of semantics, we have that [acstit @]
holds if and only if agent & makes a choice K and ¢ is true in all outcomes that
could result because of agent a making this choice K. The later one also means
that ¢ can be seen as a necessary consequence of choice K. Besides the Chellas
STIT operator, Horty also introduced the deliberate stit modality. The operator
is typically written as [adstit :] and can be read as agent « deliberately sees
to it that . For an agent « to deliberately see to it that ¢, it is required that
[aestit : @] and further that there exists at least one outcome in which ¢ does
not hold. So it corresponds to the Chellas's STIT with a negative condition.

Good Good Bad Good Bad Worst Best

hy \ ha| hg | ha h,—,\ h{-,/ h7
RERRIENANY

K K K3 Ky

Figure 1.1: Agent facing four choices

Consider Figure 1.1, which will be used as an illustration for some of these
concepts. It represents a situation where a single agent « is faced with four choices
Ki,---, K4. The seven histories h1,---, h7 can be thought of as possible outcomes.
Besides the choice K3, each other choice restricts the possible outcomes to two.
The labels Good, Bad, Best and Worst can be seen as propositions and indicate
the result of the outcome. They only hold in the outcomes where they occur.
For instance, the proposition Good might be interpreted as 'something is about
to happen’ and holds for the histories hi, hs and hy. Assuming that agent « is
making the choice K then [« cstit : Good] is true since for every outcome of
the choice K7, namely hy and ho, the proposition Good is true. Moreover, we
have that [adstit : Good] holds as well for the choice K7. Indeed we have that

[aestit : Good] and there is an outcome, for instance, hs, where the proposition

CHAPTER 1. INTRODUCTION 1.5. STIT THEORY

Good does not hold.

STIT logic distinguishes itself from other logics of agency such as Coalition
logic or Alternating-time temporal logic. Those logics were designed in order
to express what an agent is able to do. This feature is also captured by STIT
logic, however, what clearly makes a difference between this logic and the other
two, is that STIT logic can additionally express what an agent actually does.
Consequently, this results in a more expressive power since it allows us to exactly
figure out the contributions of an agent to the actual state of affairs or what
actually happened. This ability is considered as a major factor in responsibility
assignment or distribution. Take for instance the example of a person that has
been killed. When it comes to tracking the agents who committed this crime, we
don’t only want to identify those agents who had been able to perform the act
of killing someone but we want to know who is responsible for the death of the
person. Or in other words, we precisely want to charge the agent that killed the
person. While Coalition logic and Alternating-time temporal logic are only capable
of capturing the part of being able or empowered to do, STIT logic accomplishes to
single out both parts due to its greater expressive power. This is what makes this
logic a suitable candidate when we want to investigate some important differences
in the general context of agency. Depending on the context, further expressive
power can be achieved by adding operators from different logics such as epistemic
or deontic logic. For instance, if we want to express what an agent knowingly does,
we have to add epistemic operators whereas deontic operators or even a combined
deontic-stit operator are essentially needed when we want to reason about what

an agent ought to do.

Moreover, STIT logic is not restricted to individual agents, but it can also
express collective actions meaning what a group of agents does. Thus it is con-
cerned with a set of agents which is often referred to as a coalition. To express
such statements, the language of STIT has to be extended with constant sym-
bols which denote then the sets of agents. Those symbols vary from literature
to literature. The most common ones are Agt, A or I'. The group or coalition
A sees to it that ¢ is then stated by [Astit : ¢]. By doing so, one leaves the
field of mono-agency and enters the domain of multi-agency. When it comes to
identifying the responsibility of an agent in a multi-agent system, one needs the
ability to contrast the agents. In particular, one should be able to tell that agent
«, but not agent 3, committed a specific crime. However in the case that agent
a and 8 have both committed the same crime, one needs also to single out the
responsibilities that are shared among multiple agents. Such expressions can again
be covered by STIT logic. Horty [19] and Broerson [12] provided specific versions
of STIT logic regarding what group of agents or coalitions do.

1.6. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

1.6 Structure of the thesis

The thesis is composed of three main parts and is structured in the follow-
ing way: Chapter 2 presents the logical part. In particular, T-STIT 1/0 logic, a
combination of 1/0O logic and T-STIT logic. We start by recalling the semantics
and proof theory of Makinson's and van der Torre's traditional |/O logic and then
how we combine it with T-STIT logic. Chapter 3 contains the part about the im-
plementation. It starts off with an introduction to higher-order logic (HOL) and
Isabelle/HOL. Next, it documents the semantical embedding of temporal STIT
logic in HOL and its implementation into Isabelle/HOL. Subsequently, it demon-
strates the implementation of 1/O operators out; and outs into Isabelle/HOL.
Chapter 4 focuses on the conceptual part. It presents the principle of Moral Luck
and the problem that comes with it. We identify which aspects of moral luck
can be related to deontic logic and use examples of moral luck as test cases for
our logic. The final chapter summarizes and concludes the work and outlines
some directions for future work. Appendix A contains a general overview of de-
ontic logic whereas appendix B presents the distinction between ought-to-be and
ought-to-do, two important examples from Horty's book [19] and a critical view
on STIT theory. Appendix C includes first a section of Lorini's T-STIT logic [22]
to cover its syntax, semantics and axioms. Further, it also contains a semantics
based on Horty's work [19]. The final appendix D documents how temporal Kripke
STIT models are encoded in Isabelle/HOL in order to evaluate some formulas on

a specific model.

CHAPTER 2. THE LOGIC

2 The logic

This chapter starts with a section to recall the semantics and proof theory of
traditional Input/Output logic in order to provide a basic understanding of this
logic. The notations are taken from [23] . Then we introduce T-STIT 1/0 logic,
which is an 1/0 logic using Lorini's T-STIT logic as its base logic.

2.1 Input/Output logic

Input/Output (I/O) logic was initially developed by Makinson and van der
Torre, and introduced in [23]. It is considered as one of the new achievements
in deontic logic. 1/0 logic focuses on the reasoning and studying of conditional
norms. Typically, a conditional norm expresses what ought to be the case in a
certain situation. Just like modal logic, which can be seen as a family of systems

K, D, S4, S5 and so on, 1/0 logic is also a family of logics.

However, they are different in terms of semantics. Modal logic is usually in-
terpreted in possible world semantics, but I/O logic falls within the category of
operational or norm-based semantics. Obligations are not explained by some sets
of possible worlds among which some are ideal or at least better than others, but
they are referenced to a given set of conditional norms. The meaning of the de-
ontic concepts is given in terms of a set of procedures yielding outputs for inputs.
The basic mechanism behind these procedures is that of detachment or modus

ponens.

2.1.1 Semantics

Let £ denote the set containing all the formulas of propositional logic. N ¢
L x L is called a normative system and is a set of pairs of formulas. In 1/0
logic, a pair (a,x) € N is referred to as a conditional norm or obligation, where
a and z are formulas of propositional logic. a is called the body and represents
some situation or condition, whereas z is called the head and represents what is
obligatory or desirable in that situation. Thus the pair (a,z) is read as 'given q,
it is obligatory that x'. For example, whenever you are driving in your car and you
are approaching a right light, it is obligatory that you stop. The unconditional

obligation of x is denoted by (T, z), where T is representing an arbitrary tautology.

Given a set A ¢ L, serving as an input set, the main construct of 1/O logic

2.1. INPUT/OUTPUT LOGIC CHAPTER 2. THE LOGIC

has the form z € out(N, A) and is interpreted as follows, 'given a state of affairs
A, x (obligation) is in the output under the norms N'. When A is a set, which
consists only of one element a, the curly brackets are omitted and one writes
out(N,a). Alternatively, x € out(N,a) can be formulated as (a,z) € out(N). In
[23], Makinson and van der Torre introduced several different |/O operations. In
particular, outy, outs, outs and outy are defined as the four standard or traditional
output operations of 1/O Logic. To understand their semantics, we first need to

recall some further notations.

For a given N, N(A) denotes the image N under A and is formally written
as N(A) ={z | (a,z) € N for some a € A}. Intuitively, N(A) can be thought of
as the set of all the heads x detached from the pairs (a,z) such that the body a
is an element of A. Alternatively, N(A) can be interpreted as the set containing

the direct consequences of the normative system N for some input set A.

Remark In most cases, we use IV to denote the set of conditional norms. However,
any letter can be used to denote such a set. For instance, in the literature of 1/0
logic, the letter G is also sometimes used to represent such a set. Consequently,
we write then G(A) to refer to the image G under A.

Cn(A) represents the set of logical consequences of A and is formally defined

as Cn(A) = {x | AE x}, where = is the propositional consequence relation.

Finally, a set A ¢ L of formulas is called consistent if A # 1, where 1 is

representing an arbitrary contradiction, and inconsistent otherwise.

Example 1 Let N = {(a,x), (b,y),(anb,z)} and A= {a,b}. Then, we have the

following:

A Cn(A) N(A) N(Cn(A))
{a,b} Cn({a,b}) A{z,y} {zy,2}

For some set of facts A and some set of conditional norms N, the output

operators outq, outy, outs and outy are formulated as follows:

out; (N, A) = Cn(N(Cn(A)))

outa(N,A) =N{Cn(N(V)) | AcV,V complete}

outs(N, A) = N{Cn(N(B)) | Ac B = Cn(B) 2 N(B)}

outy(N,A) =N{Cn(N(V))| AcV 2N(V),V complete}

A set of formulas is considered as complete if it is either maximal consistent

or equal to L. For this thesis, we only focused on the operators out; and outs.

10

CHAPTER 2. THE LOGIC 2.1. INPUT/OUTPUT LOGIC

The operation outq is also called the simple-minded output and the basic idea
behind it, is the following: first, we are given a set of formulas A, which represents
some facts and we close it under logic consequence. As a next step, we pass this
closed set to the normative system. The obtained set of formulas represents the

obligations. Finally, those obligations are closed again under logical consequence.

Example 2 Let N = {(a,z),(aVvb,y),(b,z)} and A ={a}.

A Cn(A) N(Cn(a)) outi(N,A)
a Cn(a) {z,y} Cn({z,y})

We have that = € out;(N,A) as well as y € out1(N, A) since both z and
y are obviously in Cn({z,y}). Also, we have that (z A y) € out;(N,A) since

(zny) e Cn({z,y}).

However, the simple-minded output might not be enough. For instance, out;
fails when it comes to reasoning by cases. Suppose that a set of conditional
norms N contains the pairs (a,z) and (b,xz). When a Vv b is implied by some
facts, then we should be able to conclude that x is the case. Formally, for N =
{(a,z),(b,z)} and A ={aVvb}, we get that out; (N, A) = Cn(@), where Cn(a)
denotes the set containing all possible tautologies. Therefore we don't have that
x € out1(N,a v b) since avb is not a tautology. In order to support such reasoning
by cases, we use the operation outy, which is also referred to as basic output. To
show that x € outa(N, A), we need to consider the complete set V. There are
two choices, either V' equals to £ or V' is an maximal consistent extension (MCE)
of a v b. In the first case, we get that Cn(N(V)) = Cn(x). In the second case,
by maximal consistency of V, we have that either a¢ or b are in V. If a € V then
Cn(N(V)) = Cn(z). ldentically for b€ V. Thus outa(N,A) = Cn(z) n Cn(z)
and z € outy(N, A).

In [23], it has been shown that outy can be formalized in terms of modal
logic. In particular, we have: x € outo(N, A) if and only if 2z € Cn(N (L)) and
NP U A +g Oz for any modal logic S with Kg € S € Kgs. The notation N©
denotes the set of all modal formulas of the form b — Oy, such that (b,y) € N.
We have that NP U A g Ox if for all the elements y; € Y, such that Y is a finite
subset of N U A, it holds that (Ay; — Ox) € S. Alternatively, it means that
Ay; = Ox is a valid formula in S.

Example 3 Let N = {(a,z),(b,z)} and A ={a Vv b}.

In order to check if 2 € outo (N, A), we first need to check that z € Cn(N(L)).
This is straightforward, since Cn(N (L)) = Cn({x}), and obviously we have that
xeCn({z}).

11

2.1. INPUT/OUTPUT LOGIC CHAPTER 2. THE LOGIC

Next, we have N® U A = {a - Oz,b - Oxz,a v b}. The formula ((a —
Ox) A (b— Ox)A(avd)) — Oz is valid for any modal logic S with Kg € S ¢ Kys.
Thus z € outa(N, A).

2.1.2 Proof Theory

In terms of proof theory, 1/O logics are characterized by derivation rules about
norms. Given a set of norms N, a derivation system is the smallest set of norms

which extends N and is closed under certain derivation rules.

— (SI) Strengthening the input: from (a,z) to (b,z) whenever we have
Eb—>a

— (WO) Weakening the output: from (a,z) to (a,y) whenever we have
Ex >y

— (AND) Conjunction of the output: from (a,x) and (a,y) to (a,z Ay)
— (OR) Disjunction of the input: from (a,z) and (b,x) to (a Vv b,x)

— (CT) Cumulative transitivity: from (a,z) and (a A z,y) to (a,y)

derivy denotes the derivation system for the 1/O logic operator out; and is
formed by the rules SI, WO and AND. Adding OR to derivy gives derivs,
whereas extending derivy with C'T' gives derivs. They represent the derivation
systems for the output operators outs and outs, respectively. The derivation

system for outy is called derivy and it is closed under all of the five rules.

Example 4 Let N = {(a Vv b,z)}. Then we have (b,z v y) € derivi(N).

1. (avb,z) By assumption
2. (bx) 1, Sl
3. (byzVvy) 2, WO

Soundness and completeness hold for each of the four derivation systems deriv;
with respect to the corresponding output operator out; for i € {1---4}. See [23].
By soundness, we have that deriv;(N) ¢ out;(N) and by completeness, we have
that out;(N) ¢ deriv;(N). This means that we get the following theorem:

Theorem 2.1.1 For a given N € L x L, we have that ¢ € out;(N,) if and only
if (p,1) ederiv;(N).

From the previous example, we get that (b,z v y) € derivy (V). It can easily

be verified that (zVvy) € out;(N,b). Indeed, we have that out;(N,b) = Cn({z})
and (zvy)eCn({z}).

12

CHAPTER 2. THE LOGIC 2.2. T-STIT 1/O LOGIC

2.2 T-STIT 1/0 logic

Since /O logic only uses propositional logic as its base logic, it is limited in
its expressive power. For instance, it is not able to capture expressions dealing
with concepts such as agent and action. Those concepts are a crucial part of
agent theory and multi-agent systems, and STIT logic is able to express notions
such as agent and action. Thus, one way to increase the expressiveness of 1/0
logic is to a particular STIT logic as the basis. Xin Sun [29] used the individual
deliberative STIT operator as the basis to formulate /O STIT logic and proved
the completeness for it. Additionally, he showed that it is free from Ross’s paradox.

In our case, to combine |/0 logic with T-STIT logic, we will no longer consider
L as the base logic for the I/O operations, but instead we will use Lt_stjT which
denotes the language of T-STIT logic. The appendix contains a detailed section
which covers the syntax, semantics and axioms of Lorini's T-STIT logic [22]. We
will briefly recall the language's syntax and give an interpretation to its formulas.

Given a set IP of propositional letters and a finite set of agents Agt. For every
p € P and « € Agt, the language of Ly.s1iT is defined by the following BN F

(Backus Normal Form):

pu=pl-p|lonp|Op|[a]e|[Agt]le |Gy | He

Intuitively, Oy is read as "¢ is necessarily true”. Operators of the form [«a/]
denote the Chellas’'s STIT operator and can be read as "agent « sees to it that
¢". [Agt] represents the group STIT operator and can be read as "all the agents
see to it that ¢ by acting together’. The operators G and H denote the strict
future and strict past operators, respectively. G is read as "p will always be true

in the future” whereas H is read as "¢ has always been true in the past”.

For T-STIT 1/0 logic, we have then that N ¢ Lt.s1iT7 x L1sTiT and A ¢
Lt.sTiT and our logic can use formulas from T-STIT logic. For instance, a con-
ditional norm can now contain formulas such as [a]a where o denotes an agent
and a a propositional letter. The semantics of the operator out; still remains the

same and also the derivation system deriv; is still composed of the rules ST, WO
and AND.

Example 5 Let o and 3 represent two agents and a, b, ¢ and d be propositional
letters. Consider N = {(a, [a]c), (a,[B]d)} and A ={a}. Then, we have:

A Cn(A) N(Cn(A)) outi(N,A)
a Cn(a) A{lale[Bld} Cn({[a]e [B]d})

13

2.2, T-STIT 1/0 LOGIC CHAPTER 2. THE LOGIC

Example 6 Let o and 3 represent two agents and a, b, ¢ and d be propositional

letters. Consider N = {(aVvb, [«]c)}, then we have ([5]b, [a](cvd)) € derivi (N).
Indeed we get that:

1. (avb,[a]e) By assumption
2. ([B]b,[a]e) 1, Sl
3. ([B]b,[a](cvd)) 2, WO

We also preserve the same semantics for the operator outs as well as the
derivation system derive. However, in order to semantically embed outs in HOL,
we don't consider its traditional formulation but we will use its translation into

modal logic.

14

CHAPTER 3. THE IMPLEMENTATION

3 The implementation

This chapter presents the implementation of T-STIT logic as well as /0 logic
into Isabelle/HOL. We start with a section about higher-order logic (HOL), the
logic used by Isabelle/HOL. This is necessary to understand the embedding of
T-STIT logic in HOL and the implementation of it in Isabelle/HOL, covered in
the following sections. Then we discuss the limitations of the implementation. In
appendix D, we further show to formulate specific temporal Kripke STIT models
in Isabelle/HOL. The next part deals with the implementation of 1/O logic in
Isabelle/HOL with the focus on the operators out; and outy. The operators are
tested on examples with formulas of propositional logic as well as of temporal
STIT logic.

3.1 Higher-order logic

Higher order logic (HOL) was formalized by Bertrand Russell [28] and has been
introduced in 1908 in order to provide a formal basis for mathematical reasoning.
HOL is also known as type theory and got adapted over the years so that in its
modern form, it is based on the simply typed A-calculus, which originates from
Alonzo Church’s simple type theory (STT) [16], and the formulations by Leon
Henkin [17]. Type theory became an integral and indispensable part in every
subject that deals with computation and logical reasoning, which made it an

expressive foundation in the domains of mathematics and computer science.

In HOL, the set of types is denoted by T', whose elements are freely generated
from the set of the basic types {o,u}. The former one represents the type of
booleans whereas the last one represents the type of individuals. Further whenever
we have «, 3 € T then a - B € T. o — [denotes the function type and it is
referring to the type of function which takes an input of type o and produces an
output of type 5. Those function types are constructed by using the symbol —.

So any type 7 is generated by the following grammar:
Ti=o|p|T->T
A formula or term in HOL is generated by the following BNF:

8,1 3= Do | Xa | (/\Xowsﬂ)aaﬁ | (Saeﬁta)ﬂ | (_‘0—>030)o | ((Vo—>o—>050)t0)o | (v(a—m)—m()‘Xoc-So))o

15

3.2. ISABELLE/HOL FRAMEWORK CHAPTER 3. THE IMPLEMENTATION

with a, 8 € T. In the most simple case, terms can be constants of type «,
denoted by p, or variables of type «, denoted by X,. Further those X, have
to be distinct from p,. A constant always refers to the same specific object like
individual, predicate or connective. A wvariable can denote any object but does

not represent a particular object unless it is stated otherwise.

More complex typed terms can be constructed by using abstraction (s,-ata)s
and application (s4-.ta)s3. Abstraction means that we can form a term of type
a — 8 which maps the variable X of type « to a term s of type 5. The resulting
term can be interpreted as a function. Application means that we can form a term
of type B by applying the term s of type o — 3, which can be seen as a function,
to the term t of type «, which is then the argument. So the resulting term can

be interpreted as an outcome of a function to an argument.

Finally, a term is called a formula whenever the term is of type 0. Such formulas
can represent the logical connectives =5, Vooo-o and VY (a=0)—o- The symbols
—0—0 and V,_,, denote the negation operator and the disjunction, respectively,
and they work exactly the same ways as in propositional logic. The other symbol
V' (a—0)—o represents the universal quantifier or for all quantifier. The term s of
type o gets applied for each variable X of type «. Only if every application is
evaluated to true then the for all quantifier will evaluate to true. Otherwise it
evaluates to false. By using those connectives, other common logical connectives

such as Aoo-0s >0-0-201 Z00-0; Loy To and J(q0)-, can be defined.

3.2 Isabelle/HOL Framework

Isabelle is a generic interactive theorem prover, which has been used to formal-
ize various theorems in mathematics and computer science. It supports a variety
of logical frameworks including HOL. Isabelle/HOL is the specialization of Isabelle
for HOL. It is the most widely used instance of Isabelle and can be obtained for

free.

The main purpose in Isabelle/HOL is to create theories. Embedded in a theory
are the types, terms, and formulas of HOL. The type system of HOL is similar to
the one of functional programming. For instance, it provides base types, such as
bool, the type of truth values, and nat, the type of natural numbers, and function

types which are denoted by the symbol =. But, it also allows user-defined types.

The notation t :: 7 expresses that ¢ is a well-type term of type 7. The most
obvious form of a term would be a constant but also, just like in functional
programming, terms can be formed by applying functions to arguments. Let

71 = 7o denote the type of a function f, the argument ¢ is then a term of type

16

CHAPTER 3. THE IMPLEMENTATION 3.3. SEMANTICAL EMBEDDING

71 and when applied to the function f, ft is a term of type 7. Further, \-
abstractions may also occur in terms. For instance, Az.x + 1 denotes the function

that takes = as an argument and returns x + 1 as a result.

A-calculus is a very important concept in Isabelle/HOL. It allows for the re-
placement of formal by actual parameters. The substitution or computation rule
of A-calculus is defined as:

(Az.t)u =t[u/z]

where t[u/z] denotes "t with u substituted for x". For example, the expression
(Az.x + 1) 3 would be transformed into 3+ 1. The step from (A\z.t) u to t[u/x]
is commonly known as S-reduction and is automatically performed by Isabelle.

A formula is term of type bool. For instance, the constants True and False

as well as the logical connectives -, A, v and — can all been seen as formulas.

Moreover, Isabelle/HOL supports very useful reasoning tools such as Sledgehammer
[11], which applies automatic theorem provers (ATPs) and satisfiability-modulo-
theories (SMT) solver on a given goal, and Nitpick [10], a counter-model gener-

ator.

An introduction to Isabelle/HOL as well as an in-depth tutorial for functional

programming in HOL can be found in the following documentation [26].

3.3 Semantical Embedding

Since HOL is the underlying or background logic of Isabelle/HOL, we first
need to represent T-STIT logic in HOL. In other words, we have to find equivalent
notations of T-STIT logic propositions in HOL. This can be achieved by translating
the essential parts of the semantics of T-STIT logic into HOL. This procedure is
called the semantical embedding of a logic. This allows for using the background
logic as a meta-logic in order to validate the semantic truth of syntactic statements

in the embedded logic.

Embeddings of a variety of different modal logics in HOL have already been
realized [1, 2, 3]. In contrast to HOL, the truth of a propositional formula in
a modal logic depends on its context; the possible world where it is evaluated.
Thus in order to embed a modal logic in HOL, the principle of a possible world
semantics, also known as Kripke semanitcs, needs to be maintained. Since Lorini
provided a Kripke semantics for T-STIT logic [22], the techniques from these

works can be applied for our embedding.

By introducing a new type i to denote a possible world, the propositions of
T-STIT logic are mapped to associated HOL terms of type ¢ — o, which will be

17

3.3. SEMANTICAL EMBEDDING CHAPTER 3. THE IMPLEMENTATION

abbreviated as 0. By doing so, the propositional formulas can be represented as
functions from possible worlds to truth values in HOL, which allows for explicitly
evaluating the truth of a formula in a particular world. For each type o of T-STIT
logic, the embedding of «, denoted by [«], is defined as:

[l =p

[o]=0=i—0

[> B] = [a] = [8]

In HOL, the connectives such as — and v are of type 0 - o resp. 0 - 0 — o.
The negation — takes one boolean input and returns a boolean output whereas the
Vv connective takes two boolean inputs and produces an boolean output. However,
due to the lifted propositions of T-STIT logic, the type of the connectives of that
logic also have to be mapped. Meaning that for instance - and v are of type
o —> o resp. 0 - o — 0. lo distinguish them from the connectives of HOL, we
highlight the lifted connectives in blue. Those lifted connectives are -, v, A, —

and = and abbreviate the following HOL terms:

o0 = Apg - AW; .= (pw)

Vosooo = Apg Ag Aw;.(pw vV pw)
Ao—so—o = Apg A Aw;. (Yw A pw)
S ogoo = APe A AWw;. (pw = Yw)

= oo = AP A g Aw;. (w < Ppw)

The lifted negation operator takes a term ¢ of type ¢ and a world w of type i.
Then it returns the negation of the term ¢ at the world w. The lifted disjunction
takes two terms ¢ and) of type o and a world w of type i. It returns the
disjunction of both terms at that world w. The other lifted connectives work

similar to the lifted disjunction.

In modal logic, the O operator is evaluated with respect to an accessibility
relation R. To tell if two possible worlds are related or not, a constant symbol
of type ¢ - ¢ — o is introduced and associated with the accessibility relation R of
modal logic. A relation can be seen as a ternary function which takes two possible
worlds as its input and returns a boolean output which tells if the two possible
worlds are accessible via the relation or not. This allows us then to represent the
0O operator as a quantification over all possible worlds, satisfying an accessibility

relation. The same technique can be used for the O operator in T-STIT logic, the

18

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

group stit operator [Agt] as well as for both temporal operators G and H. Thus,

those type-raised HOL connectives are defined as follows (where 72, 749t G and

1 denote the corresponding accessibility relations):

Oooo = Ao AW Y. (rl, | wv) > v
. Agt
[Agt]o—o = Apg Aw;. V. (r; 2 wv) = v

Gooo = Moo Aw; Nvi. (18 _wv) - @u

i—>i—>0

Hyg = Mpg wi Yui. (r2 . wv) - o

1—>i—>0

The lifted O operator takes a term ¢ of type ¢ and a world w of type ¢ and
then checks for all worlds v of type i if the worlds w and v are related then the
term ¢ is true at the world v. The lifted [Agt], G and H operators work in the

same way, using their corresponding relations.

To evaluate the individual STIT operator [i], the corresponding accessibility
relation R; of the agent ¢ has to be considered. Thus this operator is parametric
to its relation and has to be defined differently than the other ones.

[i](imis0)—0—0 = ATiniag - APe AW Yv;. (rwv) — v

Finally, we need to encode the notation of validity for T-STIT logic propositions
(denoted by |=T‘STIT). This allows for grounding the lifted terms of type o to

type boolean o.
validy—o = Apy. Y w;.ow

The operator valid takes a term ¢ of type o and returns true if that term is
true when applied to any world w of type i. In the remainder, the notation | - |

will be used as an appropriate abbreviation for validity.

3.4 Implementation

The implementation of the above described semantical embedding of T-STIT
logic in HOL, into Isabelle/HOL will be further illustrated in this section.

3.4.1 Primitives

The following primitive types have been defined and used as a basis for the

embedding:

19

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

— Type ¢ denotes the type of possible worlds for Kripke Semantics.

— Type bool denotes the type of meta-logical truth values (i.e. True and
False) and is already provided by Isabelle/HOL.

Based on those, the following function types have been defined:

— Type o denotes the set of all functions of type ¢ = bool and represents
propositions in the embedded logic. Those propositions are evaluated in

particular worlds.

— Tye a denotes the set of all function of type ¢ = ¢ = bool and represents

the individual relation R; for possible agents.

Further, the following constants have been introduced:

— The constant aw of type ¢ represents the designated actual world.

— The constants al and a2 of type « represent the equivalence relations R

and Ry for agent 1 respectively agent 2.

— The constant r_box of type i = i = bool represents the equivalence relation
Ry.

— The constant r_agt of type i = i = bool represents the equivalence relation

RAgt-
— The constant 7_G of type i = i = bool represents the binary relation Rg.

— The constant r_H of type ¢ = i = bool represents Ry, the inverse relation
of Rg.

3.4.2 Connectives

The basic connectives are lifted to type o and are defined as follows:

= ¢ = dw. ~p(w)

= o = dw. p(w) A (w)

= pvip = dw. p(w) v Y (w)

= p=1h = dw. p(w) — P(w)

- 9= = Aw. p(w) < Y(w)

20

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

The operator O represents necessity with respect to the relation R5. The
formula Op can be interpreted as "¢ is true regardless what every other agent

does” and is defined as follows:
— Oy = Aw. Yu. (wrboxv) — ¢(v)

For a given world w, the proposition Oy is evaluated to T'rue if for all the
worlds v such that they are related via Ry to w (i.e. those worlds are alternatives

to w), v holds .

The operator & represents possibility with respect to the relation R5 and can

be defined in two different ways:
- O = Aw. Jv. (wrboxv) — ¢(v)

or

= O =-0(-p)

The first statement expresses & by using the quantifier 3. So, for a given world
w, the proposition Oy is evaluated to T'rue if there exists a world v such that v
is related to w via Ry and v holds ¢. In the second one, it is defined as the dual
of O.

3.4.3 STIT operators

In T-STIT logic, Chellas's STIT operator [15] is used as primitive operator
of agency. Depending on the literature, the Chellas operator is formulated as

[estit -] or [a].

The statement "agent « sees to it that ¢ regardless what the other agents do”
(or shorten "agent « sees to it that), for some agent « in the group of agents,

can be stated by the formula [« cstit : ¢] or [a]ep.

Remark In chapter 2, we used the notation [a] to denote the Chellas's STIT
operator. However for the implementation, we decided to use the other notation
[a estit :].

At every world w, each agent i has a set of worlds that are alternatives to w.
Those sets are induced by the agent’s relation R; and can be seen as choices

available to agent .

21

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

For each agent ¢, there exists an individual accessibility relation R;, which is
used in order to evaluate the truth of a cstit-operation. So the Chellas operator
has to be indexed by a parameter r, in order to refer to the agent who is performing

the action.
— restite = w. Yv. (rwv) — ¢(v)

The deliberative STIT operator can be defined by using Chellas's STIT operator
together with the O-operator.

— rdstit = (7 cstit o) A=Op

The group STIT operator, to capture the fact that ¢ is guaranteed by an action

of all agents, can be expressed with the relation R 4.
— gstitp = Aw. Y. (wragtv) — p(v)

Lastly, the dual of group STIT operator, stating that the group of agents do not

prevent , is expressed by:

— dualgstite = —gstit(-p)

3.4.4 Temporal Operators

Finally, we have the temporal or tense operators. The G and H operators
are used to express facts that are true in the strict future and in the strict past,
respectively. They can be defined as follows by using the relation Rg and Ry,

respectively:

- Gy = w. Y. (wrGv) — ¢(v)

- Ho = w. Yv. (wrHv) — ¢(v)
Their dual operators F', respectively P, can be expressed as:

- Fy=-G(-p)

— Po=-H(~p)

Other useful temporal operators such as G* resp. F'™*, which in contrast to G
p p p

resp. F', do also include the present.

- G*p = pA(Gyp)
- F*p=-G"(~p)

22

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

3.4.5 Relational Properties

Temporal STIT logic imposes several properties on each accessibility relation.
First, we start by declaring definitions for those properties for an arbitrary relation

T

reflexiver = V. (rxx)

symmetricr =Vzy. (rey) — (ryx)

transitiver =Vzyz. (rey) A (ryz)) — (rzz)

serial r =Vw. Ju. (rww)

The relations Ry, every R; and R4 are equivalence relations, meaning that
they are reflexive, symmetric and transitive at the same time. For instance,
the Isabelle/HOL constant r_box represent the relation Ry. To specify r_box as
an equivalence relation, we use the earlier mentioned definitions and declare it as

an axiomatization in Isabelle/HOL.:

— axiomatization where
ax_refl_rbox : "reflexive r_box" and
ax_sym_rbox : "symmetric r_box"” and

ax_trans_rbox : "transitive r_rbox”

Rage and every R; can be defined as equivalence relation in a similar way.
Next, we have to impose some properties on the binary relations Rg and Rp.
The constant r_G represent the relation R, which is declared as transitive and

serial, and thus we have the following axiomatization in Isabelle/HOL:

— axiomatization where
ax_trans_rG : "transitive r_G " and

ax_ser_rG : "serial r_G"

Since Ry is the inverse relation of R, we first start by formulating an inverse
relation and then specify Ry as the inverse of Rg.

— dnverser s = Yw. Yv. (rwv) «<— (svw)

— axiomatization where

ax_inverse_rG_rH : "inverse r_G r_H"

23

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

3.4.6 Relational Constraints

The framework for temporal STIT logic imposes special constraints on the
accessibility relations. Several constraints are making use of the inclusion w.r.t.
relations as well as the composition between two binary relations. Those can be

defined as follows for two arbitrary relation 71 and rs:
- r1Cry =Vw. Vo. (rmwv) — (roww)
— ryorg = Aw. \v. Ju. (rpwu) A (reuv)
By the first constraint C'1, every R; has to be included in R5. Due to that, we

first introduce a general formulation for that constraint, which can then be used

for any specific R; relation.

—azxClr=rcr_box

The constants al and a2 represent the relations R; and Ry for the respective

agent. On each relation, we have to impose the constraint C'1.

— axiomatization where
axCl_al : "axC1l al” and
axCl_a2 : "axCl a2”

Constraint C2 expresses the independence of agents and it can be implemented
in a similar way as C'l. We start off by defining C2 and then impose the constraint

on the constants al and a2, which represent relations for the respective agents.

— axC2rs=Vw. Yv. ((wrboxw) A (vrboxv) A (wrboxv) A (vrboxw))

— (Jz. (rwz) A(svx))

— axiomatization where
axC2_al_a2 : "axC2 al a2"

Constraint C3 says that the choice of a group corresponds to the intersection
of the choices of the individual agents in the group. Since the group consists of 2

agents, we can express this constraint as follows:

— axC3rs=VYw. Yv. (wragtv) = ((rwv) A (swwv))

— axiomatization where
axC3_al_a2 : "axC3 al a2"

24

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

Remark The constraints C2 and C'3 are designed for a framework with only two
agents. If one decides an other agent, chances have to done to those definitions

accordingly.

The constraints C4 and C5 for the temporal relations Rs and Ry, make sure
that the present is connected to the future and to the past, respectively. They

can directly be formulated as:

— axiomatization where
axC4 : "Vw. Vu. Yu. ((wrGv) A(wrGu)) — ((urGo) v (vrGu) v (u =
v))" and
axC5: "Vw. Yu. Yu. (wrHv)A(wrHu)) — ((urHv)v(vrHu)v(u =

v))"

The property of no choice between undivided histories is expressed by constraint
C6 and can be stated by using the definitions of inclusion w.r.t. relation and the

composition between two relations.

— axiomatization where
axCoé : "r_Gor_box cr_agtor_G"

Finally, the last constraint C'7 can again be directly formulated as:

— axiomatization where

axC7 : "Vw. Yv. (wrboxv) — ~(wrGv)"

3.4.7 Validity

Semantic validity is defined as follows:

= [p] = Yw. p(w)

- el = o(aw)

The first statement asserts that a propositional formula ¢ is semantically valid
if it evaluates to True for all the possible worlds whereas the second one ex-
presses that a propositional formula ¢ is semantically valid for an actual world if

it evaluates to True for the actual world aw.

25

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

3.4.8 Axioms - Horty

Although Horty does not explicitly treat proof theory in his book [19], he still
does provide axioms for the individual STIT operator and uses them for illus-
tration purposes. Due to the encoding of our embedding in Isabelle/HOL, it's
pretty straight forward to formulate those axioms and prove them by using the
Sledgehammer tool or disprove some statements with counter models generated
by Nitpick. For instance, Horty mentions the following principles for the cstit
operator ([19], Chapter 2, page 17):

RE. ¢ =1/ [acstit: o] = [a cstit :)]
N. [a cstit:T]
M. [a cstit: @ Atp] — ([a cstit : p] A [a estit =])
C. ([a cstit:] A [a estit :9b]) — [a estit : o A)]

Below the corresponding formulation of those axioms in Isabelle/HOL, which

can all be proven by Sledgehammer.

— |p=y| = |(al cstit p)=(al cstit)|

— [(alestitT)]|

— |(alestit (pa)))—((al estit p)A(al estit))]

— | ((alestit o)A(al cstit)))—(al cstit (pArh))]

In Isabelle/HOL, we declare those statements as lemmas which allows us to
apply Sledgehammer tool in order to prove those. To apply Sledgehammer
to one of those lemmas, the only thing one needs to do is to type the com-
mand "sledgehammer” next to the lemma. The tool will then call the ATPs and
SMT solvers to provide proofs for the statement. Depending on the complexity
of the statement, it can take a while until a proof is generated. But as soon as
Sledgehammer was successful, the proof appears in the output console of /Is-
abelle/HOL. See 3.1. In this case, Sledgehammer found two proves, which were

provided by two supported SMT solvers, "z3" and "cvc4”.

By illustrating the dart example ([19], Chapter 2, page 21), which serves as a
counter model, Horty disproves the following two formulas:

- @ = Ola cstit : @]

- Olacstit: p v o] = (Ola estit :] v Ola estit :)])

26

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

E3E S ¢ X
© lpha_RG_nonserialty (-/isabelle) B
(* Axioms/Laws from Horty's Book *)

(* Page 17 *)

opewawmog (@

lemma "[p = y| = [(al cstit ¢) = (al cstit ¢)] "
by simp

lemma "| al cstit T |" sledgehammerf]
by simp

lemma “| (al cstit (p A ¥)) — ((al cstit () A (al cstit (4))) | *
by simp

Sapoaul awms RIS

lemma | ((al cstit () A (al cstit (¢))) — (al cstit (p A ¥)) | *
by simp

(* Page 18 *)
lemma "~ (al dstit T) |*
by simp

@ Proof state @ Autoupdate | Update | Search: v 100% °

Sledgehammering. ..
Proof found...

"z3": Try this: by simp (0.6 ms)
“cvca": Try this: by simp (0.5 ms)

O v Output Query Sledgehammer Symbols
237,37 (8268/30849) (isabelle,isabelle,UTF-§-lsabelle) UG 20/835M8 3:52 PM

Figure 3.1: Proofs generated by Sledgehammer

When formulating those formulas into Isabelle/HOL, Nitpick is also able to
find a counter model for both formulas. Counter models are printed out in the
console of Isabelle/HOL. The output for the second formula is illustrated in figure
3.2.

2 Proof state [Auto update Update | Search: v 100%
Nitpicking formula...
o Nitpick found a counterexample for card i = 2:

Free variables:
¢ = (A, _)(i; := False, i, := True)
Y = (Ax. _)(i; := True, i, := False)

Skolem constants:
v =1,
Av. v = (Ax. _) (1 := 1ip, i i= 1)
Av. v o= (Ax.) (1 i= 1, i i= 1p)
W =1

Constants:
al = (Ax. _)(i; := (Mx. _) (i1 := True, i; := True), i; := (Ax. _) (i, := True, i, := True))
a2 = (Ax. _)(iy := (M. _) (i1 := True, i; := True), i; := (Ax. _) (i, := True, i, := True))
op rG = (Ax. _)(i; := (Ax. _)(i, := False, i, := False), i, := (Ax. _)(i, := False, i, := False))
op rH = (Ax. _)(i; := (Ax. _)(i, := False, i, := False), i, := (Ax. _)(i, := False, i, := False))
op ragt = (Ax. _)(i; := (M. _)(i; := True, i, := True), i, := (Ax. _)(i, := True, i, := True))
op rbox = (Ax. _)(i; := (M. _)(i; := True, i, := True), i, := (Ax. _)(i, := True, i, := True))

O > Output Query Sledgehammer Symbols

Figure 3.2: Counter model generated by Nitpick

Nitpick has found a counter example for card i=2, which means that the
generated model consists of two possible worlds i1 and i2. Next, we have the free
variables ¢ and 1) where ¢ is false at i1 and true at io, and % holds in i1 but it does
not in 45. For this kind of counter model the Skolem constants are not important
and can therefore be ignored. Then we move to the constants which correspond
to the different accessibility relations. al and a2 are representing the relations Ry
for agent 1 and R» for agent 2, respectively. For the relation Ry and Ry, Nitpick
relates the two worlds i1 and iy as follows, we have that Ry (i1) = Ry (i2) = {i1,12}
and Ry(i1) = Ra(i2) = {i1,i2}. The constants G and rH represents the relations

27

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

Rqa and Ry for the temporal operators G and H. In this model, they are not
needed and therefore R = Ry = @. Finally, the constant rbox represents the
relation Ry for the necessity operator O and the constant ragt represents the
relation R 44 for the group stit operator [Agt]. Just like for the relations R; and
Ry, we have that R = Rag = {i1,i2}. In terms of Kripke semantics for temporal

STIT logic, the generated counter model looks as follows:

R, E i ¢ E

Ry

Figure 3.3: Generated counter model in Kripke semantics

In the illustrated figure 3.3, it can easily be verified that the antecedent of the
formula holds whereas the conclusion does not, which falsifies the second formula.
Even though the purpose of this counter model was to disprove the second formula,

it shows as well the invalidity of the first formula.

Other axioms and laws from Horty's book were also encoded into Isabelle/HOL
and could all be proven by Sledgehammer except for one axiom where a proof

could be found but the proof reconstruction failed.

3.4.9 Axioms - Lorini

In temporal STIT logic, the K axiom holds for the O operator, for the group
STIT operator, for every individual STIT operator, as well as for the temporal

operator GG and H. We can formulate the K-axioms for each operator as follows:

= [((@p) A (O~ ¥))) » (OY)]

= [((gstitp) A (gstit (¢ - 1)) = (gstity)]

— [((alestit) A (alcstit (p — 1)) - (al estit)]
= L((Ge) A (G(p > ¥))) » (GY)]

= [((He) A (H(p >))) > (HY)]

All of the above axioms were easily verified by the Sledgehammer tool. Next,

we have the rule of necessitation which holds also for every operator.

28

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

- lel = 1(3¥)]

- Lol = l(gstit¢)]
- Lol = [(alestit p)]
- Lol = 1(Gy)]

- Lol = [(Hyp)]

These axioms can also be directly derived and require no further attention.

Furthermore, we have axiom 4 for all the operators except H.

- [(B¢) ~ (B(O))]
— | (gstit) — (gstit (gstitp))]
— |(alestit p) — (alestit (al estit p))]

- [(Gy) ~ (G(Ge))]

Those axioms follow from the facts that Ry, 44 and every R; are equivalence
relations and that R is a transitive relation as well. Additionally, we have axiom
T for the O operator, for the group STIT operator and every individual STIT

operator.

- [(B¢) — ¢]

- L(gstitp) —]

- |[(alestitp) — ¢

Since Rn, Ragt and every R; are equivalence relations, they are also reflexive

which is necessary to prove that axiom T holds for those operators. Next, we have

the axiom B for the same operators as for axiom T.

- e~ (@=(a(=9))))]

= o~ (gstit (= (gstit (-¢))))]

— | = (alestit (=(alestit (-¢))))]

Similar to axiom T, axiom B follows from the fact that the relations are sym-

metric due to the equivalence property. Moreover, we have the axiom D for the

operator G:

29

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

- [=((Gp) A (G-p))]

This axiom can be derived due the seriality property of the relation Rg. The
axioms Convg g and Convy g, which are the basic interaction axioms between

future and past of minimal tense logic, are the following:

= o= (G(Pyp))]
- o= (H(Fyp))]
Both axioms can be proven by the fact that Ry is defined as the inverse relation

of Rg. To guarantee the linearity of the future resp. the past, we have the axioms

Connectedg resp. Connectedy and those can be formulated as:

- [(P(Fp) = (Po) vV (Fo))]

- [(F(Pg) » ((Pp) vV (Fe))]

The constraints C4 resp. C5 together with the fact that Ry is the inverse
relation of R are used to derive those axioms. Further we have (O — i), (i —

Agt) and (AIA), which denote the central principles in Xu's axiomatization in
STIT logic. Since we only consider two agents, those axioms can be defined as:

- |(0p) ~ (al cstit)]

— | ((alcstit @) A (a2cstit))) — (gstit (p AY))]

- [((C(alestitp)) A (O(a2cestit)))) — (O((al estit) A (a2 estit))))]

The first axiom can be proven by constraint C'1 whereas the second one follows
from the constraint C'3. The Sledgehammer tool is not able to find a proof for the
third axiom but the countermodel generator Nitpick also could not find a counter
model for this axiom. To complete the axiomatization system, we have modus

ponens (M P), axiom (NCUH) and (IRR), a variant of Gabbay's irreflexivity

rule.

— [(F(Op)) > (dualgstit(Fy))]

- (leD Al = o)) = [¥]

- L((@(=p)) A (@U(Gp) A (Hp)))) = »] = 4]

Modus pones is proven automatically and (NCUH) can be derived from con-

straint C'6. Unfortunately, axiom (I RR) could not be proven by the Sledgehammer
tool.

30

CHAPTER 3. THE IMPLEMENTATI@b. LIMITATIONS OF ISABELLE/HOL

3.5 Limitations of Isabelle/HOL

The fact that R is a serial relation combined with the constraint (C'7), makes
every temporal Kripke STIT model infinite. In other words, it consists of infinitely

many worlds.

This has been noticed after we were running a step by step consistency check
in Isabelle/HOL, meaning that we first let Nitpick find a model satisfying the
constraint C'1l. Whenever a model was found, we added the next constraint and
looked for another model until all of the seven constraints were covered. However,
Nitpick has not been able to find a model satisfying all of them. Figure 3.4
illustrates the model, found by Nitpick, satisfying the constraints from (C1)
until (C6), but not constraint (C7).

R,

Figure 3.4: Model satisfying constraints C1-C6
but falsifying constraint C7

But just because Nitpick is not able to find a model satisfying all seven con-
straints, it does not mean that such a model does not exist. Nitpick only works
for finite models, thus it just means that there is no finite model satisfying all the
constraints and that the constraint (C7) together with R, defined as a serial
relation, can never hold in a finite model. However, there still exist infinite models
satisfying all of the constraints and in order to realize the implementation of the

embedding in Isabelle/HOL, we decided to drop the seriality property of Rg.

By removing the seriality condition from Rg, Nitpick is able to generate a
finite model satisfying all of the constraints. As a consequence, some of the axioms
from Lorini's work [22] are no longer valid since they can only be applied to infinite
models. For instance, axiom D is invalid for the G operator since it followed from
the seriality property of Rg. The axiom (IRR) could also not be proven by
Sledgehammer and instead, a counter model was found. Further, Lorini proved

the validity of the following two formulas:

— GOG*p — (Agt)Gep

31

36. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION
- GO(GT A F™) > (Agt) (G A FY)

However, when translated into Isabelle/HOL in order to verify them, Sledge-
hammer was not able to provide a proof for both and for the later formula, a

counter model was found.

3.6 T-STIT 1/0 logic in HOL

T-STIT 1/0 logic uses formulas from T-STIT logic. We showed earlier in this
chapter how to formulate those in HOL. The next task is to define the operators
outy and outy in HOL and implemented them in Isabelle/HOL so that we are able
to verify some examples of T-STIT 1/0 logic within the framework. In this section,
we describe the embeddings of the 1/O operators out; and outy. The literature
already provides us with a semantical embedding of the out; operator in HOL
[7]. We start off by showing how Parent and Benzmiiller [7] embedded the out;
operator in HOL and how they implemented it in Isabelle/HOL. They considered
propositional logic as the base logic for the out; operator. But we show that their
implementation can be used together with the previously described implementation
of T-STIT logic, so that we are able to check examples of T-STIT 1/0 logic in
Isabelle/HOL. Next, we present the embedding of the outs operator in HOL. At
first, we also consider propositional logic as the base logic for the operator and
change it then to T-STIT logic.

3.6.1 Simple minded output out;

Parent and Benzmiiller [7] present their first attempt of a semantical embedding
of 1/0 logic in HOL with the main focus lying on the I/O operator out;. In
particular, it documents their initial attempt to embed 1/0O in Isabelle/HOL, which
failed due to an inappropriate encoding of the statement = ¢, as well as a proper

embedding for the operator out; in HOL.

For a given set of conditional norms N and a set of facts A, the |/O operator
outy is defined as follows out1(N,A) = Cn(N(Cn(A))) with Cn(A) = {z |
Ak z} and N(A) = {z | (a,z) € N for some a € A}. To achieve a proper
formulation of the operator outy, Parent and Benzmiiller used the technique of
lifting propositional formulas of 1/0 logic to predicates on possible worlds. This
means that they are mapped to HOL terms of type ¢ — o where i denotes the
type of possible worlds and o refers to the boolean type. The propositional logical
connectives, such as —, A, A and 2, are also lifted and are defined in exactly the
same way as in section 5.4.2. However, the reason to apply this technique in this

case, is to use valid o, which is denoted by |¢], as a suitable encoding of E .

32

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

After having found an appropriate encoding for = ¢, the operator outpre was
defined such that outpre(N,A) = N(Cn(A)). Thus, outpre(N, A) denotes the
set {y € L | 3f € Cn(A) such that (f,y) € N} where L is the set containing
all the formulas of propositional logic. To obtain the operator outy, outpre has
to be closed under logical consequence. Closing a set under logical consequence
results in an infinite set, therefore only an approximation of out; was defined. In
particular, out; (N, A) is restricted to the consequences that follow from maximally
three formulas in outpre(N,A). Thus, out;(N,A) denotes the set {x € L |
{i,j,k} < outpre(N,A) and E (i AjAk)>xz}. Another thing to keep in mind
is that the set of facts A is limited to singleton sets only. So out; is adapted
for the use of a singleton formula such as a, but one also may consider a as
the conjunction of all the formulas in a set A. More precisely, a = a1 A+ A ay,
with a; € A for i € {1...n}. This has been done due to technical reasons. In

Isabelle/HOL, the operators outpre and out; are then formulated as follows:

— outpre = AN.Xa y.3f.(lasf] A N(f,y))

— outl = AN.Aa.\z.(Fij k.outpre N ainoutpre N a j noutpre N ak Al (injrk)ox])

Parent and Benzmiiller defined the operations outpre and outl for formulas of
propositional logic. In our case, we are using T-STIT logic as the base logic for
our 1/0O operators and we used the same technique to represent those formulas
in HOL. The encoding of validity for formulas of propositional logic is exactly the
same as validity for formulas of T-STIT logic. This means that those defined

operators can also be applied when we are changing £ to Lt.sTiT-

Having defined the operators outpre and outl, we are able to analyze some
examples. For instance, example 2 from chapter 2 can be formulated in /Is-
abelle/HOL. We have that N = {(a,x),(a Vv b,y),(b,z)} and A = {a}. See
figure 3.5.

First we have to declare the propositions a, b, x, y and z. The propositions are
mapped to associated HOL terms of type i — 0. This type represents a function
type from possible worlds to truth values in HOL. This type is abbreviated here
as e. Next, we define the set of conditional norms N and we check first if x
is in outpre(N,a), meaning in N(Cn(a)), and afterwards if x is in out1(N,a).
In both cases, Sledgehammer is able to find a proof. Further, Sledgehammer
provided proofs to show that (z Vv z) € out;(N,a) and y € outpre(N,a). For
the statements that y and (z A y) are also in out;(N,a), we also get a proof,
however, the proof solver times out. The same problem arises when checking
if y is in the out;(N,{a v b}). Finally, countermodels could be found to show

that z is neither in outpre(N,a) nor in out;(N,a). Countermodels are generated

33

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

OBRAE & 9 XP0 R HEE FX & @ |e»

biie xiie yiie ziel]

(N = {(a,x), (aVby), (b2} %)

definition "N = (AX. X=(a,x) V X=(a V b,y) V X=(b,2))" declare N_def[Defs]
(* x € outpre(N,a) ? Yes, proof found *)

lenma “outpre N a x* unfolding Defs by blast

(* x € outl(N,a) ? Yes, proof found *)

lemma "outl N a x" unfolding Defs by blast

(* (x v z) € outl(N,a) ? Yes, proof found *)

lemma “outl N'a (x V z)" unfolding Defs by blast

(* y € outpre(N,a) ? Yes, proof found *)

lemma "outpre N a y" unfolding Defs by (metis (mono_tags, lifting))
(*y € outl(N,a) ? Yes, proof found but smt times out *)

©[lemma "outl N a y" unfolding Defs by smt

(* (x A y) € outl(N,a) ? Yes, proof found but smt times out *)
©[lemma "outl N'a (xAy)" unfolding Defs by smt

(*y € outl(N, {a v b}) ? Yes, proof found but smt times out *)
O[temma "outl N (a V b) y " unfolding Defs by smt

(* z ¢ outpre(N, a) ? No, countermodel generated. *)

lemma "outpre N a z" unfolding Defs nitpick[user_axioms,show_alll oops
(* z € outl(N, a) ? No, countermodel generated. *)

lemma “outl N a z" unfolding Defs nitpick[user_axioms,show_alll oops

opewawmog (@

Sapoaul awmis RIS

[Proof state [Auto update | Update | Search: v 0% o

O v Output Query Sledgehammer Symbols

48,32 (1704/3083) (isabelle,isabelle,UTF-§-lsabelle) UG 21/567M8 131PM

Figure 3.5: Isabelle/HOL: out; example

for the HOL formula of the respective statement. For instance, the statement

z € outpre(N, a) unfolds as follows. We start from the line:
outpre N a z
Then, outpre will be substituted with its formulation and we get:
(AN Xa Ay 3f (laof]AN(f,y))) Naz

During the next step, the A-calculus will be performed. Thus, N, a and y will be

substituted for IV, a and z, respectively, and we obtain the following expression:

3f-(laafIAN(f,2))

Next, at first N will be replaced by its definition. Then we end up again with
an expression containing a A-calculus operation. All X's in the expression will be

substituted for (f,z). Thus we have the following lines:
3f-([aafIA (AX. X = (a,2) v X = (avb,y) v X = (b, 2))(f,2))

3f-(lanfIn((f,2) = (a,2) v (f,2) = (avb,y) v (f,2) = (b, 2)))

As the propositions are of type e, the connectives such as v are lifted as well. N
contains the element (a Vv b,y), and thus we have to replace the lifted connective

by its expression.
3f-(laafIn ((f.2) = (a,2) v (f,2) = (w.a(w) v b(w),y) v (f,2) = (b,2)))

34

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

Finally the last step deals with the expression |a>f|. First, the notation of
| - | will substituted with its definition and the same thing will be done for lifted

implication o.
3w (@) @)AS, 2) = (a,2)V (. 2) = Qw.a(w)vb(w), y)V (], 2) = (b,2)))
Af((Vw.(Aw.a(w) — f(w))(w))A((f, 2) = (a,2)v(f, 2) = (Aw.a(w)vb(w),y)v(f, 2) = (b,2)))

After a final A-calculus operation, the unfolding is complete. Thus z € outpre(N,a)

unfolds into the following formula:

3f((Vw.a(w) — f(w))A((f; 2) = (a,2)v(f, 2) = (Aw.a(w)vb(w),y)v(f, z) = (b, 2)))

[@ Proof state €4 Auto update Update = Search -~ 100% o
Nitpicking goal:
IfF. (v, aw — fw A ((f, 2) =(a, x) V (f, 2) = (\w. awVvbw y) Vv (f z) = (b, 2))
= Nitpick found a counterexample for card i = 2:

Constants:

a = (Ax. _)(i; := True, i, := False)
b = (Ax. _)(i, := False, i, := False)
X = (Ax. _)(i; := False, i, := False)
y = (Ax. _)(i; := False, i, := False)
z = (Ax. _)(i; := False, i, := True)

B~ Output Query Sledgehammer Symbols

Figure 3.6: Isabelle/HOL: Countermodel for z € outpre(N, a)

For this formula, Nitpick is able to give a countermodel and therefore dis-
proves the statements. Figure 3.6 shows a console output of a countermodel in
Isabelle/HOL. Consider two possible worlds i; and i3. We have that the proposi-
tion a is true at i; but false at i2 and so a corresponds to the set {i;}. Further
we have that the propositions b, x and y are equal to the empty set since they are
all false at both worlds and z is the set {i2} since z holds at the world is. The
expression Aw.a(w) v b(w) also denotes the set {i1}. It is then impossible to find

f such that this formula evaluates to true.

When using a as the conjunction of all the elements in a set of facts A, the
scope of the search space for the tools Sledgehammer and Nitpick seems to
be a bit problematic for this embedding of out;. Figure 3.7 is illustrating this

problems.

In the first example, we have a set of conditional norms R = {a,x} and a
set A ={aAb}. In Isabelle/HOL, it could be proven that z is in outpre(R, A),
however, Sledgehammer times out when trying to prove that x is in out1 (R, A).
When changing the set A to the singleton set {a}, Sledgehammer is also not
able to give a proof for showing that (z Vv y) is in out1(R,a).

35

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

EXdE S ¢ XD R@ TEEE B & @ |6/

510, Logic_outz.thy (-/isabele/) B
(*R={(a,x)}rA=1{anrb}* |
definition "R = (AX. X=(a,x))" declare R_def[Defs]

(* x € outpre(R,A) ? Yes, proof found. *)
lenma “"outpre R (a A b) x"

by (simp add: R_def kand_def kimp_def kvalid_def outpre_def)
(* x € outl(R, A) *)
(* Problem for outl — time out *)
lemma "outl R (a A b) x" nitpick[user_axioms,show_alll oops
(*(x v y) € outl(R,{a} *)

uopewawnrog ¢ @

(* Problem for outl — time out *)
lemma "outl R (a) (x V y)" nitpick[user_axioms,show_alll oops

(*s={(ax), (arb, d)} A={aAb} *)
definition "S = (AX. X=(a,x) V X = (a A b, d))" declare S_def[Defs]
(* x ¢ outpre(s, {a A b}) 7 Yes, proof found.*)

lenma "outpre S (aAb) x" unfolding Defs by blast

(* x € outl(s, {a A b}) 7 Yes, proof found.*)

[lemma "outl S (aAb) x" unfolding Defs by blast

(* d € outl(s, {a A b}) ? Yes, proof found but smt times out.*)
O[lenma "outl S (aAb) d" unfolding Defs by smt

(* (x A d) € outl(s, {a A b}) ? Yes, proof found but smt times out*)
Oftemma "outl S (aAb) (x A d) " unfolding Defs by smt

(* (d v xVy) e outl(s,{a A b}) ? Sledgehammer/Nitpick time out *)
(* Problem for outl *)

lenma “outl S (aAb) (d V x V y)" nitpick[user_axioms,show_all] oops

Sawoayl awms ppERIS

@ Proof state @ Autoupdate | Update Search: v 100% o

B v Output Query Sledgehammer Symbols
190,32 (6920/8522) (isabellesabelle,UTF-§-Isabelle) v 9MB 10:46 AM

Figure 3.7: Isabelle/HOL: Problems for outy

For the second example, it could be shown that x is in outpre(S,{a Ab}) as
well as in out1 (S, {aAb}) where S ={(a,z),(arb,d)}. Also, proofs for showing
that d and (z A d) are in out1(S,{a A b}) could be found, but the proof solver
times out. Unfortunately, the search space is too large for Sledgehammer and

therefore is not able to show that (dv z Vv y) is in out1(S,{a Ab}).

As illustrated on different examples, the Sledgehammer tool only managed
to find proofs when dealing with propositional formulas of low complexity. By
increasing a formula's complexity, the search space becomes too large which then
results in a timeout of Sledgehammer. So far, we did not use any formulas
containing any STIT operators. When doing so, the problem of the large search
scope for the tools such as Sledgehammer and Nitpick still remains. See Figure
3.8).

Consider the set of conditional norms G = {(a, [a]e), (a,[B]f), (b,en f)} and
the set of facts A = {a} where a, b, e, f are propositional letters and «, 3 are

two agents.

A Cn(A) G(Cn(A) out1(G,A)
a Cn(a) A{lale,[B]f} Cn({[a]e [B]f})
b Cn(b) {enfy Cn({enf})

We have that out1(G,a) = Cn({[a]e,[B]f}), thus formulas such as [a]e,
[B]f, e, f and (e A f) are all included in out1(G,a). When formulating this
example in Isabelle/HOL, only two proofs could be provided by Sledgehammer.
In particular, it showed that [a]e and [3]f are in outpre(G,a). All the other
statements were beyond the search scope of Sledgehammer and therefore no

proofs were found. When choosing the singleton b as the set of facts, all statements

36

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

LK) 4 10_Logic_with_STIT.thy
D@dE: & ¢ XDA R@ T EED EX & 0:|e»

£110_Logic_with_STIT.thy (~/Isabelle/)]

consts a::e b::e e::e f::e

definition "G = (MX. X=(a,al cstit e) V X=(a, a2 cstit f) Vv X=(b,e A f))"
(* 6 = {(a, [al cstit e]), (a,[a2 cstit f]),(b,e A f)} *) declare G_def[Defs]
(* [al cstit e] < outpre(G,a) ? Proof found.*)

lemma "outpre G a (al cstit e)" unfolding Defs by blast

(* [al cstit e] € outl(G,a) ? Sledgehammer/Nitpick time out *)

lemma "outl G a (al cstit e)" unfolding Defs nitpick[user_axioms,show_alll oops
(* e € outl(G,a) ? Proof found but smt times out *)

O[tlemma "outl G a e" unfolding Defs by (smt ax_refl_al)

(* (e A f) € outl(G,a) ? Sledgehammer/Nitpick time out *)

lemma "outl G a (e A f)" unfolding Defs nitpick[user_axioms,show_alll oops
(* [a2 cstit f] < outpre(G,a) ? Proof found *)

lemma "outpre G a (a2 cstit f)" unfolding Defs by blast

SauoayL Eas PEPIS UopEWAWN0G 4 B

(* (enf) € outl(G,b) 7 Proof found *)

lemma "outl G b (e A f)" unfolding Defs by blast
(* e € outl(G,b) ? Proof found *)

lemma "outl G b e" unfolding Defs by blast

(* e v f e outl(G,b) ? Proof found *)

lemma "outl G b (e V f)" unfolding Defs by blast

 Proof state [Auto update | Update | Search > 100%

B v Output Query Sledgehammer Symbols
558,27 (21560/28231) (isabelle,isabelle,UTF-8-Isabelle) uc 500MB 3:16 PM

Figure 3.8: Isabelle/HOL: out; and STIT logic

were proved, however, they were of small interest since they did not include a STIT

operator.

A possibility to reduce the search space of Sledgehammer is to directly for-
mulate a particular model in Isabelle/HOL. For instance, we used Horty's model
for the driving example ([19], Chapter 5, pages 119-121). The original model is
given in BT + AC structured, but we translated it into a temporal Kripke STIT
model and specified this model in Isabelle/HOL. The example presents a situation
where we have two drivers who drive toward each other on a one-lane road. They
have no possibility to stop or to communicate with each other, and at one partic-
ular moment, each one of them must independently decide whether he continues
driving along the road or swerves. Further, the drivers can only swerve in one sin-
gle direction, therefore they will end up in a collision when both of them choose
to continue driving along the road or to swerve. A collision can only be avoided
when one of them swerves and the other does not. We formulated then a set of
conditional norms G containing the following two pairs (b, [«]-a) and (=b, [«]a).
Formally, we have then G = {(b,[«]-a), (=b,[«]a)}. The former expresses that
under the condition that agent 5 swerved, it is obligatory that agent « sees to it
that he continues driving the road whereas the latest one states that under the
condition that agent 8 continued driving the road, it is obligatory that agent «
sees to it that he swerves. Applying out; to the set G and using b as the input

situation, it should then be obligatory that [a]-a. In fact, we have:

A Cn(A) G(Cn(A)) out1(G,A)
b Cn(b) {[a]-a} Cn({[a]-a})

Obviously, [a]-a € out1(G,b). Further since [a]-a implies —a, we also have

37

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

that (-a) € out1(G,b). Indeed, this is a consequence of the Weakening the
output (WO) rule. By the conjunction of the output (AND) rule, we also have
that ([a]-a A (-a)) € out;(G,b). When providing the model in Isabelle/HOL,
Sledgehammer finds in fact proofs to verify that those three formulas are in
out1(G,b). This is depicted in Figure 3.9.

Remark Please note that in the Isabelle/HOL implementation, the agents al and

a2 represent the drivers a and 3, respectively.

I EdE S 9 X PO R OIDEE FX & @€
10, Logic_with_STIT.thy (~/isabele B
(6 ={ (b, [al cstit: -al), (-b, [al cstit: al)} *)

definition "G = (AX. X=(b,al cstit (=a)) Vv X=(-b,al cstit a))" declare 6_def[[pefs]]]
(*Is it obiligatory that al sees to it that he continues the road under the condition that b dodged?
[al cstit: -a] € outl(G,b) ? Proof found *)
lemma "outl G b (al cstit -a)" unfolding Defs
nitpick [satisfy,user_axioms,show_all,format=2,card=4]
by (smt G_def kcstit_def knot_def)
(* since [al cstit: —a] € outl(G,b) and [al cstit: -a] entails —a, we have —a ¢ outl(G,b)
(Weakening Output) *) - -
lemma "outl G b (-a)" unfolding Defs
by (smt al_il al_i2 i3_holds i4_holds limit)

opewawn0g ¢ @

sauoayl a5 RIS

(* since [al cstit: -al € outl(G,b) and -a € outl(G,b), we have ([al cstit: -alA-a) € outl(G,b)
(AND rule) *) o T - T

lemma "outl G b ((al cstit —a) A (-a))" unfolding Defs
by (smt al_il al_i2 i3_holds i4_holds limit)

(*Is it obiligatory that al sees to it that he dodges under the condition that b continued the road?
[al cstit: al € outl(6,~b) ? Proof found *)

lemma "outl G (-b) (al cstit a)" unfolding Defs
by fastforce

(*Is it obiligatory that al sees to it that he dodges under the condition that b dodged?
lal cstit: a] € outl(G,b) ? Countermodel found *)

lemma "outl G (b) (al cstit a)" unfolding Defs
nitpick [user_axioms,show_all,format=2,card=41 oops

(*Is it obiligatory that al sees to it that he dodges?

[al cstit: a] € outl(G,T) ? Countermodel found *)

lemma "outl G T (al cstit a)" unfolding Defs
nitpick [user_axioms,show_all,format=2,card=4] oops

B v Output Query Sledgehammer Symbols
430,85 (16704/28182) (isabelle,isabelle,UTF-8-lsabelle) UG 95/749M8 2:17 P

Figure 3.9: Driving Example in Isabelle/HOL

Further, we checked that [«a]a € outi(G,-b) which means then that under
the condition that agent 8 continued driving on the road, it is obligatory that
agent « sees to that he swerves. When asked whether [a]a € outi(G,b) or
[a]a € out1 (G, T), Nitpick generated counter models, which were unsurprisingly

in both case identically to the encoded model.

3.6.2 Basic output outs

In contrast to outi, the operator outs supports reasoning by cases. For a given
set of conditional norms N and a set of facts A, we formally write outo(N, A) =
N{Cn(N(V))| AcV,V complete}. However, for the embedding, we considered
the modal logical formulation of outy. This allows us to reuse the same techniques
which have already been applied to embed different kinds of modal logics in HOL.
We will focus first on an embedding for the outo with propositional logic as the base
logic. According to the modal logical formulation, we have that x € outo (N, A) if

and only if
i. e Cn(N(L)) and

38

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

i. NFuArg Oz, with NP ={b >0y | (b,y) e N}

To formulate x € Cn(N (L)) in Isabelle/HOL, we start first by defining N(L).
In particular, we define N (L) as the set {y € £ | 3f € £ such that (f,y) € N}.
This set gets then closed under the logical consequence and thus we can only
define an approximation of Cn(N(L)). Just like for the out;, we consider only
those consequences that follow from maximally three formulas in N(£). So,
Cn(N (L)) denotes the set {x € L | {i,7,k} S N(L) and E(iAnjrk)ox}. In
Isabelle/HOL, we formulate them as:

- G_L=)XG\y.3f.G(f,y)

- out2= NG Az.(Jijk.G_LLGiAnG_LGjAG_LGkn|(injrk)oz])

Remark As already stated in the chapter for /0 logic (2), a set of conditional
norms can be denoted by any letter. The letter G was mostly used during the
implementation in Isabelle/HOL, therefore the formulation uses this letter instead
of N.

The next step is to find an encoding for N® U A +g Ox in Isabelle/HOL.
First, we have that S refers to any modal logic such that K € S ¢ K45. For the
implementation we choose S equal to K45, so the accessibility relation for the
O operator is transitive and euclidean. Thus it satisfies the following axioms and

rules:

(K) 8¢~ v) > (Op > 0Y)
(4) Oy~ DOp
(5) Cp—~0O%¢
(Nec) if - ¢ then - Op
(MP) if - ¢ and + ¢ — 1) then + ¢
In section 5.4.2, we already showed how to formulate the 00 and < operators in
Isabelle/HOL. Further, we demonstrated how to formulate transitivity and declare

a transitive relation. Declaring a relation as euclidean can be realized in the same

way and euclideaness is defined as follows in Isabelle/HOL:

— euclideanr =Vxyz. (rey) A(rzz)) > (ryz)

39

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Since S is defined now as a K45 modal logic, N® U A +g45 Ox means that
for a finite subset Y, such that Y ¢ N7 U A4, it holds that (Ay; — Oz) € K45
with y; denoting the elements of Y. Alternatively, (A y; — Oz) € K45 means that
Ay; — Oz is a valid formula in any K45 modal logic meaning that one needs to
show that = Ay; — Oz. An appropriate notation for validity in Isabelle/HOL has
already been introduced in Section 5.4.7 and can therefore be reused in this case.

In 1/0 logic, obligations are referenced to a given set of conditional norms for
some input. Thus one always has to define those sets. For instance, consider the
classical example which demonstrates the difference between out; and outs. We
have G = {(a,z),(b,x)}, A={avb} and x € outy(G, A) but = ¢ out; (G, A). To
verify that x € outo(G, A) by using the translation into modal logic, we first have
to check that x € Cn(G(L)). This is clearly the case since Cn(G(L)) = Cn(x).
In Isabelle/HOL, we would start by defining the set G and then try to get proofs for
the statements G_L G x and out2 G x, to show that z € G(L) and x € Cn(G(L))),
respectively. As shown in figure 3.10, Sledgehammer provided proofs for those

statements.

)8 R@ CDEE BX & 0 <

c e
[(*consts G_Box :: “"e=bool® *)

definition "G = (AX. X=(a,x) V X=(b,x))" (* 6 = {(a,x), (b,x)} *) declare G_def[Defs]
(* outl *)

(* x € outl(G, {a v b}) ? No. Countermodel found. *)

lemma "outl G (a V b) x" unfolding Defs nitpick[user_axioms,show_alll oops

(* x € G(Cn({a v b})) ? No. Countermodel found. *)

lemma "outpre G (a V b) x" unfolding Defs nitpick[user_axioms,show_alll oops

mwawnr0g ¢ @

(* out2 *)
(* X € G(L), where L is the set of all propositional formulas? Yes, proof found *)
lemma "G_L G x" unfolding Defs by blast
(* x € Cn(G(L)) ? Yes, proof found *)
lemma "(out2 G x) " unfolding Defs by blast
(* for all the elements Y € (G_Box U A), do we have (AY O Ox) € K45 ? Yes, proof found *)
lemma "| ((a > Ox) A (b D Ox) A (a Vb)) DoOx "
using kand_def kimp_def kor_def kvalid_def by auto
(* Both together *)
lemma "| ((a > Ox) A (b D Ox) A (aVb))DOx | Aout26x "
by (smt G_L_def G_def kand_def kimp_def kor_def kvalid_def out2_def)

ams praps uom

sauoayL

@ Proof state @ Autoupdate | Update | Search: v o100% 2

O v Output Query Sledgehammer Symbols

63,30 2096/8521) (isabelle,isabelle,UTF-8-lsabelle) UG /1074MB 452 PM

Figure 3.10: Isabelle/HOL: out; vs. outo

For the modal logic part, we focus first on N= U A which corresponds to the
set {a - Ox,b - Ox,a Vv b}. By compactness, we can always choose the finite
subset Y as NP U A. As we want to check that z € outy(G, A), we need to show
that ((a > 0Oz) A (b - Oz) A (aVvb)) - Ox is a valid formula in a K45 modal
logic. Assuming that the antecedent is false, then the formula is automatically
valid. Assuming that the antecedent holds, then (aVvb) is true and therefore either
a or b is true as well. If a holds, then Ox must hold as well since we assumed that
the antecedent holds. In the same way, Ox holds in the case b is true. Therefore

the formula is valid again. In Isabelle/HOL, we check the validity of this formula

40

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

as follows:
| ((a20z)A(boOx)A(avh))>0z |

For this statement, Sledgehammer also generated a proof, and since we also
got a proof for z € Cn(G(L)), we have that = € outa(G, A). We check both
statements individually, however one can also check them together by using the
HOL conjunction A. See figure 3.10. Finally, Nitpick generated counter models

to show that x is neither in outpre(G,a) nor in out1 (G, a).

Just like for out;, we also encountered the same problem for outs regard-
ing the large search scope for Sledgehammer. x € outo(N,A) means that
z € Cn(N(L)) and N7 U A +g45 Ox. The modal logic part has never caused
problems in Isabelle/HOL however we could not always get proofs for the first part.
Consider a set of conditional norms Q = {(a,c), (a,d), (b,cad)} and A ={aVvb},
Sledgehammer is able to give a proof for the modal logic part as well as for
(end) e Q(L). But when closing Q(L) under the set of logical consequences,
it could not prove that (cAd) € Cn(Q(L)). See figure 3.11 . In Isabelle/HOL,
we only defined an approximation of Cn(Q(L)). We are looking only at the con-
sequences which follow maximally from three formulas in Q(L£). This requires to
make use of the quantifier 3 which will look for propositional formulas 4, 7 and
k such that they corresponds to some head y of some pair (b,y) € @ and that
E (injAk) o (cad). This use of the quantifier 3 may be the reason which
caused the time out of Sledgehammer. Thus we were trying to find an alterna-
tive formulation for (¢ A d) € Cn(Q(L)) without making use of a quantifier. In
Isabelle/HOL, we always explicitly define the sets of conditional norms therefore
it is always finite and we know which elements it contains. In that case, we could
take the conjunction of all the heads y; for the pairs (b;,y;) and directly check if
E Ayi 2 (cAd) which corresponds to | (y1A+++Ay,)2(cad) | in HOL. For the set @,
we formulate (¢ A d) € Cn(Q(L)) as [(erda(ead)) o (end)| and this obviously
holds.

Using the formulation mentioned above, Sledgehammer is also able to imme-
diately come up with a proof. Thus we have that (cAd) e Cn(Q(L)). To verify
QP U A kg5 O(cAd) in Isabelle/HOL, we need to check that

| ((a> Oc)A(as Od)A(bo O(end))A(avd))> O(ecAd)]

As depicted in Figure 3.11, Sledgehammer shows that this is a valid formula.
Further it is able to give a proof for the conjunction of the statements (c A d) €
Cn(Q(L)) and QU A 45 O(cAd), thus we proved that (cAd) € oute(Q, {aV

b}).

41

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Ded@E S ¢ DB R@ NEHED B & @ |€»

010_Logic_out2.thy (~/Isabelle/) <]

L]

(*0={(a,c), (a,d), (b, crd) } A = {a v b} *)

definition "Q = (AX. X=(a,c) V X=(a,d) Vv X=(b,c A d))" declare Q_def[Defs]

(*(c A d) € out2(Q,A) *)

(* e ndeaq(L)*)

lemma "G_L Q (c A d)*
by (meson G_L_def Q_def)

(* ¢ Adecn(QL) — Sledgehammer times out / Nitpick out of scope *)

lemma " (out2 Q (c A d))" nitpick[user_axioms,show_all] oops

(* Verify modal logic part *)

lemma " ((a > Oc) A (a> 0d) A (b > 8(c Ad) A(aVvhb) DdlcAd |
using kand_def kbox_def kimp_def kor_def kvalid_def by auto

(* Both parts together with the old formulation Time out *)

lenma “| ((a D> Oc) A (a>0d) A (bD>0O(cAd)A(aVvb) d>8(cAd |A (out2Q (c Ad)"
oops

(* New formulation for ¢ A d € Cn(Q(L)) *)

lemma “|(c A d A (c A d))D(c A d) |" by (simp add: kand_def kimp_def kvalid_def)

(* Both parts together with new formulation — Proof found *)

lemma "| ((a D Oc) A (a>0Od) A (bD>O(cAd) A(aVvbhb) D0O(Ad |

Alle AdA(c Ad)DlcAd | "

using kand_def kbox_def kimp_def kor_def kvalid_def by auto

wown0a (@

ams popEpIs uone:

sapoauy

@ Proof state @ Autoupdate | Update | Search: v 1w00% 2
‘theorem |[(a DO0Oc) A(bVveDd>DOc)A(avb) DOc| AlcAcDc]

O v Output Query Sledgehammer Symbols
158,1(5477/10823) Input/output complete (isabelle,isabelle,UTF-§-lsabelle) UG 0/748M8 1:55 PM

Figure 3.11: Isabelle/HOL: outy example

3.6.3 Applying out, to formulas of T-STIT logic

The language of T-STIT logic already consists of an operator 0. It satisfies
all principles of a modal logic S5. Also, the modal formulation of outy makes use
of an operator O, but this one satisfies different principles, namely the ones from
a modal logic K45. So when combining both logics in Isabelle/HOL, we have
to clearly distinguish them. Therefore we let O denote the lifted O operator for

L1.sTiT and O; denotes the lifted O operator for the modal logic K45.

In order to verify the driving example for the outy, it was necessary to implement
a corresponding model into Isabelle/HOL in order for Sledgehammer to come
up with proofs. However, for the outy operation in Isabelle/HOL, a model does
not have to be provided. It is sufficient to define the set of conditional norms G,
namely G = {(b, [«]-a), (-b, [a]a)}, and we can check the same statements also
hold for the outs operation. And indeed, the statements, which did hold for outy,

held as well for outs.

We can also illustrate the soundness of the logic on some examples in Is-
abelle/HOL. See figure 3.12. Take for instance K = {(a,[a]z)}. Obviously we
have that [a]z € outo(K,a). By weakening the output (WO), we have that
[a](z vy) and x are in outa(K,a) since [a](z Vv y) and x are logical conse-
quences of [a]z. Further we can conclude that [z € outo(K,{a Ab}). This is
guaranteed by strengthening the input (Sl) since we have that [a]x € out2 (K, a)
and a logically follows from a A b. For a set M = {(a,[a]x), (a,[a]y)}, we have
that [a]x and [«]y are in oute(M,a). By the conjunction of the output (AND),
we get that ([a]z A [a]y) € outa(M,a) and since ([a]z A [a]y) o [a](xAy), we
also get that [a](zAy) € outo(M,a). Finally, for aset T = {(a, [a]x), (b, [a]x)},
we obtain that [«]x € outo(T,a) and [«]x € outy(T,b) which implies by the OR

42

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

rule that [a]z € outo(T,a v b).

EdE S e XDE @ T HEE B & @ |eH
010_Logic_outz_STIT.thy (~/Isabelle/ B

(* W0 rule of 1/0 STIT logic *)

definition "K = (XX. X= (a, (al cstit x))) " declare K_def[Defs]

(* [al cstit x] € out2(K,a) *)

lemma "[((a D> Oi(al cstit x)) A (a)) D Oi(al cstit x) | A [(al cstit x)D (al cstit x) |"
by (simp add: kand_def kimp_def kvalid_def)

(* [al cstit (xvy)] € out2(K,a) *)

lemma "[((a D Oq(al cstit (x)))A(a)) D Oi(al cstit (xvy)) | A [(al cstit x)D (al cstit (xvy))]"
by (simp add: k4Sbox_def kand_def kcstit_def kimp_def kor_def kvalid_def)

(* SI rule for I/0 STIT *)

(* Tal cstit x] € out2(K, {arb}) *)

lemma " ((a D Oi(al cstit x)) A (a A b)) D Oy(al cstit x) | A [(al cstit x)D (al cstit x) |*
by (simp add: kand_def kimp_def kvalid_def)

onewawng ¢ @

sauoayl ams PIRPIS

(* AND rule for I/0 STIT *)
definition "M = (AX. X= (a, (al cstit x)) V X=(a, (al cstit y))) " declare M_def[Defs]
(* (lal cstit (x)] A [al cstit (y)]) € out2(M,a) *)
lemma "| ((a D Oi(al cstit (x))) A (a D Oi(al cstit (y))) A(a)) D Oi((al cstit x)A(al cstit y)) |
A | ((al cstit x)A(al cstit y)) D ((al cstit x)A(al cstit y)) |"
by (simp add: k45box_def kand_def kimp_def kvalid_def)
(* [al cstit (xAy)] € out2(M,a) *)
lemma "[((a D> Oy(al cstit (x))) A (a D Di(al cstit (y))) A(a)) D Oy(al cstit (xAy)) |
A [((al cstit x)A(al cstit y)) D (al cstit (xAy)) |*
by (simp add: k4Sbox_def kand_def kcstit_def kimp_def kvalid_def)
(* OR rule for I/0 STIT *)
definition "T = (A\X. X= (a, (al cstit x)) V X= (b, (al cstit x)))" declare T_def[Defs]
(* [al cstit x] € out2(T,{a v b}) *)
Iemm?"m ((a > Oi(al cstit x)) A (b D Oi(al cstit x)) A (a vV b)) D Oy(al estit x) [
A [(al cstit x)D (al cstit x) |"
using kand_def kimp_def kor_def kvalid_def by auto

O v Output Query Sledgehammer Symbols

337,96 (12895/15380) (isabelle,isabelle,UTF-8-Isabelle) 0 UG M 11:59 AM

Figure 3.12: Isabelle/HOL: Proof theory of outy on examples

Besides those rules which hold for the outy, we also tried some other rules
which do not hold for this operation. For instance, we showed that the rules
of cumulative transitivity and transitivity don't hold for an example when us-
ing the outy operator. For the former we considered a set of norms T'1 =
{([a]a,[a]x), ([a]a A [a]z, [a]y)} and Nitpick generated a counter-model to
show that [«]y ¢ outa(T'1, [a]a). Forthe later, when T2 = {([«a]x, [a]y), ([a]y, [a]2)}
then [a]z ¢ oute (T2, [a]x).

Another interesting aspect of combining STIT with I/O logic is to study the
relation between obligations of multiple agents and the obligation of a group of
agents. For example, let's say that in a case of an emergency in a hospital, it
is obligatory for person 1 to lock all the windows whereas person 1 is obligated
to open all the security doors. So in an emergency scenario, it is then obligatory
for the group, which consists of person 1 and 2, to lock all the windows and
open all the security doors. So let the statement a denote the case of emergency.
The statements = and y express closing the windows and opening the security
doors, respectively. The two agents are denoted by v and (3, and refer to person
1 and 2, respectively. Agt will denote the group of agents which consists of
agent « and 3. Then we can define the set of conditional norms as follows
S ={(a,[a]zx),(a,[B]ly)}, use a as the input fact and we would like to conclude
that [Agt](z Ay) € outa(S,a). When formulating this example in Isabelle/HOL,
it could indeed be proven that [Agt](x A y) € outa(S,a).

43

3.6. T-STIT 1/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

3.6.4 List of examples

We evaluated the out; and outs on as many different examples as possible in
order to verify that the operations work as intended. Below is a table containing
all the examples to which the operators have been applied. The first column
represents the set of conditional norms whereas the second one shows the input
set that we used. The third column contains the output that we requested for the
example. The fourth and fifth columns tell us whether the requested output is
in out1 (N, A) and outs(N, A), respectively, or not. Thus Yes indicates that the
requested output should be detached by the respective output operator under the
given input set A and the set of conditional norms N. A No indicates then the
opposite. If the cell contains Yes and the color of that cell is green, it indicates
that Sledgehammer was able to prove the statement. A red background indicates
that Sledgehammer timed out and thus could not provide a proof. A yellow
background indicates that Sledgehammer was only able to provide a proof when
a certain model was specified. If the cell contains No, we have to disprove the
statement by using the tool Nitpick. Whenever a counter model was needed,
Nitpick was able to generate one and therefore the background color of those
cells are always green. The results from the examples for operator outs are quite
promising. Every statement that contained an outy could correctly be proved or
disproved by Sledgehammer resp. Nitpick. The reason behind this can surely

be traced back to the modal formulation of outs.

44

CHAPTER 3. THE IMPLEMENTATION

3.6. T-STIT I/O LOGIC IN HOL

N A Output(s) In out;(N,A)? || In outa(N, A)?
{(a,z),(b,x)} {a} x Yes Yes
{(a,z),(b,x)} {a} xVvb Yes Yes
{(a,x),(b,z)} {a Vv b} x No Yes
{(a,z),(b,x)} {anb} x Yes Yes
{(a,b),(a,c)} {a} b,c,bAc Yes Yes
{(a,a),(a,b),(a,c)} {an=c} a,aNbAc Yes Yes
{(a,¢),(b,c),(d,c)} {avbvd} || c No Yes
{(a,c),(b,c),(d,cne)} {avbvd} || ¢ No Yes
{(a,c),(b,c),(d,cne)} {avbvd} || cre No No
{(a,c),(bve,c)} {a Vv b} c No Yes
{(a,c¢),(a,d),(bcnd)} {a Vv b} cyd,end No Yes
{(a,¢),(a,d),(b,cnd)} {a} cnd Yes Yes
{(a,z)} {a nb} x Yes Yes
{(a,z)} {a} TVy Yes Yes
{(a,z),(anb,d)} {anb} x Yes Yes
{(7,k), (=k,a)} {-k} k.kna Yes Yes
{(a,[a]x)} {a} [a]z, Ola]x,x Yes Yes
{(a,[a]z)} {a} [a](zvy) Yes Yes
{(a,[a]x)} {a b} [a]z Yes Yes
{(a,[a]z), (a,[a]y)} {a} [a](z) A la](y) Yes Yes
{(a,[a]z), (a,[a]y)} {a} [e](z Ay) Yes Yes
{(a,[a]x), (b, [a]z)} {a Vv b} [a] No Yes
{(a,[a]z), (b, [e]z)} {[o]z} [a]z No No
{([ada, [a]x), (a Ala](z), [aly)} | {[a]a} [ady No No
{([e]z, [a]y), ([aly, [a]2)} {[o]z} [a]2 No No
{(a,[a]z), (a,[Bly)} {a} [Agt](z A y) Yes Yes
{(a,[Agt]2)} {a} [a](2) A 181(2) No No
{(b;[a](=a)), (=D, [a]a)} {0} [a](=a),-a Yes Yes
{(b,[a](=a)), (=b, [a]a)} {=b} [](a),a Yes Yes
{(b,[@](=a)), (=0, [a]a)} {0} a No No
{(b,[a](=a)), (=b, [a]a)} {7} [](a) No No
{(avb,[ale)} 1 | [altev) Yes Yes
{(a,[0Je), (@, [B11), (b e A)} {a) [ale,e,en f Yes Yes
{(a,[aJe), (@, [B)F), (e n)} {81y | ens Yes Yes
(7, [a]e)) n [a(ev f) Yes Yes
{(T, [dstit: €])} {1} [adstit: (ev f)] No No
{(a,02)} {a} Oz, oz, x,x VY Yes Yes
{(a,02)} {a} [a]x, [B]x, [Agt]z Yes Yes
{(a,02)} {a} [a]x A [B]x Yes Yes

45

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

46

CHAPTER 4. MORAL LUCK

4 Moral Luck

This chapter presents the phenomenon of moral luck. Before identify which
aspects of moral luck can actually be studied by our logic and how they are related,
the chapter documents the four different kinds of moral luck identified by Thomas

Nagel [25]. Finally we use examples from moral luck as test cases for our logic.

4.1 Introduction to moral luck

The literature of moral luck is focused around the question whether luck can
ever make a moral difference or not. Chance affects our lives in much more ways
that one might actually think. However, one might consider morality as an area
where luck does not play such a powerful role. The following example actually
illustrates though how much of an impact luck can have when dealing with moral

judgments.

Example 7 (Drunk drivers) Let A and B be next door neighbors. At one
evening, both go to the same party and get equally drunk. When the party
comes to an end, A and B get to their own vehicles and since they are neighbors,
both take the same road in order to drive home. The only difference is that A
will leave a few minutes earlier than B. The roads are pretty much deserted at
that time and A manages to drive home safely even with a high percentage of
alcohol in his blood. A couple of minutes later, B drives down the same road and
suddenly a child appears in front of his car. Since B also drank a lot at the party,
his reaction time is impaired by the alcohol and it makes it impossible for him to
stop and swerve to avoid hitting and killing the child.

The question in this example is as follows, who deserves more blame? In the
20th century, the British philosopher Bernard Williams introduced the term moral
luck. It describes scenarios where a moral agent is assigned a moral judgment. The
agent gets either praised or blamed for his or her action and its consequences, even
if it is clear that either the action or its consequences were beyond the agent’s
control. Williams and the American philosopher Thomas Nagel developed the
subject of moral luck in their respective work [30, 25]. Both of them argue that
luck actually can make a moral difference and used similar examples to illustrate
the issue when dealing with moral responsibility. In philosophy, moral responsibility

refers to acts or states of affairs for which an agent can get praised or blamed.

47

4.2. OUGHT IMPLIES CAN CHAPTER 4. MORAL LUCK

Back to the example, we might notice at a first look that it seems that person
B is clearly more blameworthy due to the fact that B killed the child and A did
not. But looking more deeply into the situation, we have that A and B made the
equally blameworthy choice and decided to drive home while being intoxicated.
However, B encountered an external factor while driving down the road, namely
a child. Imagine now, that the child had crossed the path of person A. Being

drunk, A would also have been unable to avoid hitting the child.

Both drivers neglected the fact that one should not take the road while having
a high percentage of alcohol in the blood. Still, both of them decided to drive
home and neither one of them intended to hit and kill anyone. It seems, therefore,
irrational that B is more blameworthy than A. Both of them neglected the same
thing and only because of luck, nobody got harmed and killed in the scenario
of person A. Therefore, we say that A got morally lucky. Such an example
illustrates the problem of moral luck. But luck should not affect the degree of

moral responsibility.

So a question that one may ask is, how to figure out and know for sure that

someone should deserve praise or blame for some situation that just happened?

4.2 Ought implies Can

A well-known ethical formula in moral philosophy is the principle of Ought
implies can. Among philosophers, this principle is commonly used when dealing
with moral obligations. It states that if an agent ought or should perform an
action morally, then he or she must be able to perform it. Alternatively, an agent
is only morally required to do things that are possible for him or her under natural
conditions. According to this principle, obligations of a human are restricted to
what is humanly possible and therefore we have a limit on ethical responsibility.
As a consequence, some obligations might break due to changes in real-world
circumstances. Consider the case where a person A made a promise to person
B in order to meet for lunch. Consequently, A has the obligation to keep this
promise. On his or her way to meet B, person A, however, ends up in a car crash
and gets knocked unconscious. Several minutes later, an ambulance arrives and A
gets brought to the nearest hospital. A is now unable to meet B. Even though A
promised to have lunch with B, A did nothing wrong in this situation. This may
lead some of us to think that we can neglect obligations by intentionally getting
ourselves into situations where we are unable to do what we are obligated to do.
For instance, the court charges someone to pay child support. Then this person
decides to go to a casino and spends every dollar on gambling but he or she loses

all of his or her fortune in the end. Having no money at all, the person is unable

48

CHAPTER 4. MORAL LUCK 4.2. OUGHT IMPLIES CAN

to pay the child support, he or she has then no obligation to do so. However, this
argument is not valid. If person A has an obligation for X, and X depends on
doing Y, then if Y falls within the control of A, then person A has an obligation
for Y as well. In the case of the previous example, the person has an obligation
to pay child support and thus he or she also has an obligation not to visit a casino

and waste away all the money.

From a logical point of view, the principle of Ought implies can also makes
absolute sense. Therefore it belongs to the few principles, which basically everyone
agrees. With this principle in mind, if an agent faces a situation, which is out of
his or her control, then we should agree on that he or she cannot be morally

responsible for it.

Imagine that someone would cut the brake lines of somebody’s car without
getting noticed. As a consequence, the driver of that car would end up in an
accident but he is not morally responsible for the resulting injuries and damage.
However, he still took part in the chain of events that resulted in injuries and
damage. Had the driver decided not to get into his car, then this accident would

never have taken place.

This small example illustrates the difference between casual and moral respon-
sibility. The former states whether agents had been involved in a series of events
or not whereas the latest assigns responsibility to the agents. Depending on what
happened, the agents receive either positive or negative judgments. However, the
concept of moral responsibility is only considered for moral agents. Meaning that
we only consider those agents that have the ability to distinguish between right

and wrong and then make choices accordingly.

Looking back at the example of the drunk drivers and if we consider that one
is only morally responsible for what is in your control, then we have to conclude
that both drivers should be equally blameworthy. Alternatively, we say that A and
B are morally equal. Neither person is relevantly worse than the other. The fact
that the child ran into the road, is something beyond B's control and therefore

he has no influence on it.

A moral assessment cannot depend on factors which are out of range of the
agent's control. This is statement is captured by the condition of control. In
particular, it states that agents are morally assessable only to the extent that
what they are assessed for depends on factors under their control. This implies
then if the differences in the actions of two agents are only because of factors
outside their control than the differences in their actions cannot be relevant for
the moral evaluation. Thus the problem of moral responsibility is much more
complex than it looked at first sight.

49

4.3. THE FOUR KINDS OF MORAL LUCK CHAPTER 4. MORAL LUCK

4.3 The four kinds of moral luck

Nagel states that external factors might affect the moral quality of our actions
and he goes on by describing these effects in terms of different kinds of luck. In

particular, Nagel identified four kinds of moral luck.

4.3.1 Constitutive moral luck

Constitutive moral luck is referred to as the luck that deals with our own con-
stitution or personal character. Thus it is concerned with the individual character
traits and motivations of an agent. Nagel claims that some people are born gen-
erous whereas some of us are more greedy and envious. On one side, some people
tend to get angry very quickly and on the other, there are people who are more

easy going and very calm. Therefore everyone has a different temperament.

According to Nagel, people tend to make their choices based on their person-
ality which implies that our own personal traits dictate our actions. As a conse-
quence, different personalities will lead to different choices and we act as who we
are. However one may argue that our personality, to some extent, is shaped by
influences which are out of our control. Such influences include parental as well

as academic education, environmental and genetics.

For example, a person may not like to share his or her snacks with another
person. But a lot of other people find sharing food with each other to be second
nature. Even though that one person may have gotten used to offering to whoever
is around him or her, it is easy for others to judge that person by his or her
natural disposition towards not sharing as selfish and greedy. Regardless of people’s
intentions or actions, they are held praiseworthy or blameworthy for parts of their

personality that they do not control.

4.3.2 Circumstantial moral luck

Circumstantial moral luck is concerned with the surrounding or the situation
the moral agent finds himself in. According to Nagel, people don't have any
control over the circumstances they face during their lifetime. But one should
keep in mind that those surrounding play a huge factor when it comes to making

a choice.

An example, illustrating the concept of circumstantial moral luck, can be found
in Nagel's paper [25]. It deals with the followers and supporters of the Nazi regime
in Germany. Some of those people are morally blameworthy for terrible deeds

during that time. Others can be morally blamed for allowing those deeds to occur

50

CHAPTER 4. MORAL LUCK 4.3. THE FOUR KINDS OF MORAL LUCK

because they did not make the effort to oppose them. However, imagine that
those people would have been moved to different countries some years before this
regime had been in control, then those people would have possibly lived different
lives and would not receive the same amount of moral blame. But this is due to

the luck of circumstances in which they are surrounded.

This makes it clear, that people who have done things for which they deserve
moral blame, would not have done those if they had found themselves in different

circumstances.

4.3.3 Resultant moral luck

Resultant moral luck is the most obvious form of luck. Thus it is concerned
with the way things turn out and deals with the consequences of actions and
situations. When two people are performing the same action or making the same
choice, the degree of responsibility might differ due to subsequent events which are
out of their control. Resultant luck may arise in cases of negligence, intentional

wrongdoing or decision under uncertainty.

For instance, take two truck drivers who have forgotten to get their brakes
checked. Due to this negligence, both drivers experience a moment where their
brakes fail, which will then end up in a crash. One driver only caused material
damage, but the other one finds a dead pedestrian in front of his truck. In both
scenarios, we notice two different outcomes of the crashes. In one situation, a
pedestrian appeared and got unluckily hit by the truck whereas, in the other, the
pedestrian did not appear or avoided being hit. Both drivers were negligent in the
same way, however, in one situation, it ended up in a tragedy. In the other one,
it was just a matter of luck that nobody ended up dead. The same kind of luck

was also illustrated by the example of the two drunken drivers.

A successful and unsuccessful murder attempt is considered as a case of in-
tentional wrongdoing. In many countries, the charges for an attempting murder
versus actual murder are quite different. But the intention in both cases is exactly
the same and the person is judged by the end result of whether someone died or
not. This might be something which is outside of the agent’s control. For in-
stance, a bird could have been flown into the path of a bullet or maybe the victim
have been worn a bullet proofed vest or the trigger of the weapon is not work-
ing, resulting in a failed murder attempt. From a moral point of view, murdering
someone is wrong. Additionally, the law considers murder as a crime, therefore
morality and law overlap in the case of murder. However, in law, the punishment
for attempted and actual murder is not the same. The law prioritizes outcomes

over intentions meaning that it is primarily concerned with definite outcomes and

51

4.3. THE FOUR KINDS OF MORAL LUCK CHAPTER 4. MORAL LUCK

secondly with intentions. The difference between killing someone and grievous
bodily harm is not traced back to the intentions or the inflicted wounds, but it
is a matter of the outcome, whether someone has died or not. In contrast, our

moral judgment may be identically in the case of murder and vicious assault.

Decisions under uncertainty deal with the issue that an agent takes a highly
risky action. Due to that, the result of that action is surely unpredictable, so that
under no circumstances one is able to foresee the outcome. But in the end, the
moral judgment will be based on that outcome of the agent. For example, take a
person who is a merciless and ruthless leader of a revolution and fights violently
against an authoritarian regime. It is clear to him that if he fails he is going to be
responsible for the anarchy. But he will also be held accountable for the suffering
and death of the people, believing in him, that was in vain due. However, a success

against the regime would mean that he gets justification for the outcome.

4.3.4 Causal moral luck

Causal moral luck can be seen as a combination of constitutive and circum-
stantial moral luck. Therefore it is the luck due to antecedent circumstances and

according to Nagel, it is largely related to the classical problem of free will.

It is all about the events that have influenced the person that you are. For
instance, someone may have read a life-changing book or a person may have been
inspired by a teacher during his or her studies. A person's personality is formed

by the events that have happened to him or her.

Further, a person is unable to control where he or she comes from. But unde-
niable, it has a huge impact on what a person is going to become. Some people
may have encountered hard struggles during their lives, which made them more
viciousness, while others may not have faced such things. People can be raised
in the most terrible circumstances but still have amazing personalities. However,
it also holds vice versa. The best possible environment does not guarantee good

character traits.

Nagel has been criticized for introducing this kind of moral luck as a separate
category. For many, it is considered as largely redundant since it does not include
any new cases which have not been already separately covered by constitutive or

circumstantial luck.

52

CHAPTER 4. MORAL LUCK 4.4, RELATION TO OUR LOGIC

4.4 Relation to our logic

Moral luck is a rather philosophical topic, however, since we want to use ex-
amplew from it as test cases, we have to relate it to our presented logic, T-STIT

I/O logic, and identify the aspects that can be analyzed by it.

First, we must be able to formalize and model examples from moral luck. Since
we presented the different kinds of moral luck, we have to determine which out
of the four kinds is suitable for our logic, meaning that the logic is able to model
such examples of this kind. Clearly, our logic is not able to capture an agent's
personality, character or circumstances. This already rules out three out of the
four kinds of moral luck. An agent’s actions and its consequences are covered in
resultant moral luck. With T-STIT logic, we are able to capture the concepts of
agency and action, which means then that we put our focus on examples from
resultant moral luck and T-STIT logic is used to formalize the statements to model

a scenario of an agent in the example.

In 1/O logic, we have an input set A which describes our state of affairs and
if ¢ € out(N,A), we say that ¢ is obligatory under the norms N for such an
input set A. This is how obligations are determined in 1/0O logic. So when we
model an example of moral luck, the set A is used to represent the scenario of
an agent in such an example whereas the set N contains the desired norms. As
already mentioned before, T-STIT logic is used for the modeling part, thus the
sets A and N contain formulas of this logic. With our /O operators, we are able
to determine which obligations hold for the different agents in their respective
situations. But which other aspects from moral luck can we cover with deontic
logic, in particular, 1/0 logic? Looking for instance at the example of two drunk
drivers, we have that both of them made the choice to drive home under the
influence of alcohol. Deontic logic is the study that is concerned with obligations
and looking at this example from a deontic logical point of view, we clearly want
that it is forbidden for the agents to be drunk and take the road. Alternatively,
it is obligatory not to be drunk and not to drive at the same time. However, in
both cases, both agents still made the choice not to follow this obligation. By
doing so, we say that both of them committed a violation of an obligation. A
violation is formally represented as follows: for a set of conditional norms N and
an input set A, an obligation for ¢ has been violated if and only if ¢ € out(N, A)
and ~¢ € Cn(A). Alternatively this can be expressed as L € out(N, A) uCn(A).
Violations of obligations can be seen as not permitted actions or even forbidden
actions. In an ideal system, we expected that the agents behave according to
our norms and obligations. However, in non-ideal systems, agents might actually
behave differently, and the conflict between an expected and an actual behavior

causes those violations of obligations. An agent is then responsible for a violation

53

4.5. EXAMPLE - DRUNK DRIVERS CHAPTER 4. MORAL LUCK

of an obligation ¢ if there has been an obligation of ¢ but they decided to perform

an action which led to —p.

4.5 Example - Drunk Drivers

4.5.1 Formulation

A particular example of resultant moral luck is the one regarding the two drunk
drivers, mentioned at the beginning of this chapter, and we use it as a test case for
our logic. We want to investigate which obligations are holding in the cases of the
two drivers. With the operators out; and outo, we are able to express obligations
for some set of conditional norms and a given input set. STIT logic is used to
represent the actions and choices of the agents. To formulate this example, we
need two agents o and 8 which are representing the two drivers. The scenarios of
both agents are almost identical, the only difference comes from the fact that one
agent ended up killing someone whereas the other one did not. We will focus first
on the case for the former agent, which will be denoted by «, and specify an input
set to model his scenario. The propositions Drunk, and [«]Drive represent
the facts that agent « got drunk and that he still decided to drive, respectively.
In the case of a, we also had that a child appeared on the road, thus we use
the proposition Jump as a corresponding representation. The influence of alcohol
impairs the agent’s driving behavior in such a way that he is no longer able to drive
carefully. In STIT logic, the formula O[]y denotes that agent a has the ability
to see to it that . Thus, we can represented this sentence by the proposition
Drunk, — -<O[a]DriveCare fully. Finally, we have that if the agent decides to
drive, but not being able to do it carefully, and there is somebody appearing on the
road, then this results in killing or hurting that person. Thus the last input fact is
formalized as (=< [a] DriveCare fullyn[a|DrivenJump) — (Killv Hurt). We
will use A to denote input set, containing all those facts of agent «. In addition
to the input facts, we use N to denote the set of conditional norms containing

the following identified conditional norms:

This norm states that in any situation, it is obligatory that one does not kill
and does not hurt somebody else. Alternatively, under no circumstances, it

is not allowed to kill or hurt somebody.

— (T,0DriveCare fully)
This norm states that in any situation, it is obligatory that it is necessary

to drive carefully. One is obligated to always drive carefully.

54

CHAPTER 4. MORAL LUCK 4.5. EXAMPLE - DRUNK DRIVERS

- (=Cla]DriveCare fully, [a]Stay)
This norms that under the condition that agent « is not able to drive care-
fully, it is obligatory that agent « sees to it that he stays at his current
place. By staying at the current place, it indicates that agent « should not
take the road.

For agent 3, we have more or less the same input set A’ containing the following
propositions: Drunkg, [3]Drive, ~Jump, Drunks - ~<[B]DriveCare fully
and (=[S DriveCare fully A [8]Drive A Jump) — (Killv Hurt). For the set
of conditional norms N’, the first two norms are identical to ones we used for
agent «. The third norm will just be adapted for agent 3, meaning that we have
(=B8] DriveCarefully,[3]Stay) € N'.

4.5.2 \Verification

In the case of agent «, when applying the operators out; to the sets N and

A, we get the following output set:
out1 (N, A) = Cn({-Kill N—=Hurt,0DriveCare fully, [a]Stay})

and therefore we obviously get that (=KillA-Hurt) € out; (N, A) and [«]Stay €
out1(N, A). Further, since ODriveCarefully - [a]DriveCare fully and

[a]DriveCarefully - <la]DriveCare fully, we have Ola]DriveCare fully €
out1 (N, A). All of these statements are also part of outs(NN, A). The operators
outy and outy behaved as expected. Also when formulating this example in Is-
abelle/HOL for the outy operator, we are able to obtain proofs that those proposi-
tions are included in outo (N, A). But looking more closely at the example, we no-
tice the following. The output set is consistent, thus L ¢ out;(N, A) for i € {1,2}.
However, looking back at the input set A, we notice that Kill v Hurt € Cn(A)
and -O[a]DriveCarefully € Cn(A). The agent « is not able to drive carefully
even though there is an obligation which tells us that is necessary to drive carefully
and therefore we have a conflict between those two and we say that this obligation

has been violated. In particular, we have two violations:

- Ola]DriveCare fully € out1 (N, A) but =C[a] DriveCare fully € Cn(A).

— (=Kill A =Hurt) € out1(N, A) but (Killv Hurt) € Cn(A).

By applying the out; operator to the sets N’ and A’, we get a similar output
set for agent 3.

out1(N', A") = Cn({~Kill A ~Hurt,0DriveCarefully,[3]Stay})

55

4.6. EXAMPLE - MURDER ATTEMPT CHAPTER 4. MORAL LUCK

Since (Kill v Hurt) ¢ Cn(A"), we have that agent (3 did not violated the obliga-
tion of = K'ill A ~Hurt. However, we still observe a violation:

— O[B]DriveCarefully € out;(N', A") but =[] DriveCare fully € Cn(A")

Due to violations, our input set gets inconsistent with our output. This
implies also that it is not possible to satisfy all the norms in the given situ-
ation. Dealing with violations has always been a challenge in traditional 1/0
logic. Additionally, Contrary-To-Duty (CTD) reasoning and deontic dilemmas
(unsolvable conflicts between obligations) are difficult to handle for the stan-
dard 1/O operators out; and outy. This example can be seen as CTD reason-
ing. The norm (T,0DriveCarefully) represents a primary obligation whereas
(=C[a]DriveCare fully,[a]Stay) is the Contrary-To-Duty obligation to it and
tells us what is obligatory in the case when our primary obligation has been vio-
lated.

OedE & ¢ XDE R@ CHEE EBX & @ |e»
0110_Logic_out2_STIT.thy (~/Applications /) B
]
(* Moral Luck example *) -
consts Drunk::e Drive::e DriveCarefully::e Jump::e Kill::e Hurt::e Stay::e 2
(* O(al cstit DriveCarefully) & out2(N,A) *) g
lemma “| ((T > O.(=Kill A —Hurt)) A (T > Oi(ODriveCarefully)) 2
A (=©(al cstit DriveCarefully) D Oj(al cstit Stay)) E
A (Drunk A (al cstit Drive) A (Jump) A (Drunk D>-<(al cstit DriveCarefully) i
A (=0 (al cstit DriveCarefully) A Jump A (al cstit Drive)>(Kill V Hurt))) =
)) D O.(¢(al cstit DriveCarefully))| * z
by (smt axCl_al ax_refl_rbox kdSbox_def kand_def kbox_def ”
kestit_def kdia_def kimp_def knot_def ktrue_def kvalid_def) H
(*(al cstit Stay) < out2(N,A) *) o
lemma "[((T D Oy(-Kill A -Hurt)) A (T D Oy(ODrivecCarefully)) g
A (~0(al cstit DriveCarefully) > Oi(al cstit Stay))
A (Drunk A (al cstit Drive) A (Jump) A (Drunk >-O(al cstit DriveCarefully)
A (=0(al cstit DriveCarefully) A Jump A (al cstit Drive)D(Kill V Hurt)))
)) D Oy(al cstit Stay)|"
by (simp add: kand_def kimp_def kvalid_def)
(*(=Kill A —Hurt) € out2(N,A) *)
lemma “| ((T > O(=Kill A =Hurt)) A (T > Oi(ODriveCarefully))
A (=0(al cstit DriveCarefully) D O(al cstit Stay))
A (Drunk A (al cstit Drive) A (Jump) A (Drunk D>-<(al cstit DriveCarefully)
A (=¢(al cstit DriveCarefully) A Jump A (al cstit Drive)D(Kill V Hurt)))
)) D Oy(=Kill A —Hurt)|"
by (simp add: kand_def kimp_def ktrue_def kvalid_def)
8 Proof state [Auto update Update Search: v 100% T
O v Ouput Query Sledgehammer Symbols
4794 Q0714/20710) (isabelleisabelle UTF-8-Isabelle. 1 UG .12/1071ME 9:49 AM

Figure 4.1: Isabelle/HOL: Moral luck example

4.6 Example - Murder attempt

4.6.1 Formulation

Another example of resultant moral luck is the earlier mentioned case of a
successful and unsuccessful murder attempt. In one scenario, an assassin shoots
and kills his target whereas, in the other one, the assassin is not able to shoot and
kill the target because of a malfunctioning trigger of his weapon. To formalize
this example, we need to consider again agents « and [which are denoting the

two assassins. Next, we need to define some propositions for the input sets of the

56

CHAPTER 4. MORAL LUCK 4.6. EXAMPLE - MURDER ATTEMPT

agents to model their scenarios. Agent « is the assassin in the first scenario and
the input set A contains the following propositions:

- [a]Pull
— TriggerWorking

— ([a]Pull A TriggerWorking) — Kill

The input set A’ for agent 3, the assassin in the second scenario, is almost

identically but in the case for 3, the trigger is not working properly.

— [B]Pull
— =TriggerWorking

— ([B]Pull A TriggerWorking) — Kill

The propositions [a]Pull and [S]Pull are representing the facts that « and 3
chose to pull the trigger of their weapons, respectively. The proposition Trigger
Working is representing the fact that the trigger of the weapon is working
properly. If an agent decides to pull the trigger and this trigger is working as
intended then this results in shooting and killing somebody with his weapon.
This is captured by the propositions ([a]Pull A TriggerWorking) — Kill and
([B]PullATriggerWorking) — Kill. Finally, the set of conditional norm N will

contain the following norm:

In a similar way as in the first example, this norms states that in any situa-

tion, it is obligatory that one does not kill somebody else.

4.6.2 Verification

Having defined the input and the conditional norms sets, we can apply the

operator outy to the sets. For both agents, we obviously have that:

out1 (N, A) = out1 (N, A") = Cn({-Kill})

For agent (3, we detached the obligation of not killing somebody. Since Kill ¢
Cn(A’), agent 3 did not kill someone, hence he also did not violate this obligation.
However, we observe again a violation of a norm in the case of agent a. We have
that =Kl € out; (N, A) but Kill e Cn(A). This results also in an inconsistency
between the output and the input set and shows again the weakness of traditional
1/0 logic.

57

4.7. PROPOSED SOLUTIONS CHAPTER 4. MORAL LUCK

4.7 Proposed solutions

A first solution to tackle this problem is to make use of constraints in 1/0
logic. This is referred to as Constraint 1/0O logic (clOL) [24]. It introduces a set
C, the so-called set of constraints, as an extra parameter and is used to filter out

excessive output. Next, we have the following two definitions [24] :

— maz family(N, A,C) is the set of c-maximal subsets N’ of N such that
out(N', A) is consistent with C.

— out family(N, A,C) = {out(N', A) | N € mazxfamily(N,A,C)} where
out = out; with i € {1,2,3,4}

The constrained output operator out, is then defined as follows [24]:

outc.(N, A) = u/ nout family(N, A, C)

Using clOL, we can actually handle for instance the example of the drunk
drivers without getting inconsistency between the output and the input set. Of
course the results depend on the choice for the set of constraints C. Set C' = &
and out = outy, then mazfamily(N,A,) = {N} and outfamily(N, A, @) =
{out(N,A)}. Then out.(N,A) = out(N,A) and we get the same solution as we
did before.

Set C' = A, then max family(N, A, A) = {{(=C[a]DriveCarefully, [«]Stay)}}
and outfamily(N, A, A) = {Cn([a]Stay)}. Thus out.(N,A) = Cn([a]Stay)
and we have consistent output which is also consistent with our input. Since the
agent violated two obligations in the situation, it is therefore clear that they no
longer hold in that case. Being able to handle such violations is an advantage of
clOL over the traditional unconstrained 1/0 logic. However, clOL has to drawback

of having no proof theory.

Another way to handle this example is to consider the |/O logic defined in the
following work [27]. It presents an unconstrained 1/O logic with a consistency
check that still preserves a proof theory. In [27], the output operator is denoted
by O and in terms of semantics, the authors propose that = € O(N, A) if and only
if there is a finite set M € N and a set B ¢ Cn(A) such that M(B) # @ and

i. x 4+ AM(B) where x 4+ y stands short for x +y and y + x.

ii. V(a,x) € M, we have that {a,x} U B is consistent.

On the side of the proof theory, for some conjunction a of elements of A, we say

58

CHAPTER 4. MORAL LUCK 4.7. PROPOSED SOLUTIONS

that (a,xz) € D(N) if and only if (a,x) is derivable from N by using the following
rules [27]:

— (SI) Strengthening the input: from (a,z) to (b,z) whenever we have
bra

— (EQ) Equivalence of the output: from (a,z) to (a,y) whenever we have

Ty

— (R-AND) Restricted AND: from (a,z) and (a,y) to (a,z A y) whenever

a A x consistent and a A y consistent

To check that [a]Stay is outputted in context of Cn(A), we have to consider

M = {(=C[a]DriveCarefully,[a]Stay)} and B = Cn(A). Then M(B) =
{[a]Stay} and AM(B) -+ [«]Stay. Moreover, {-C[a]DriveCare fully, [a] Stay tu
B is consistent, thus [«]Stay € O(N, A).

As long as the set B contains the proposition —~O[a]DriveCare fully, the
proposition ODriveCarefully is not outputted due to the consistency check. To
output this proposition, M needs to contain at least the element {(T, O DriveCare fully)}
and we choose B = Cn(A) to keep the context close to the intended input. How-
ever, this will never pass the consistency test and thus ODriwveCare fully is not
outputted. The proposition —Kill A—~Hurt is also never part of the output as long
as B is equal to A or Cn(A). Given that the context is Cn(A) then the agent «
is not able to drive carefully, the obligation that agent « sees to it that he stays
becomes operative whereas the obligation to always drive carefully is inactive. The
other obligation of not killing and not hurting somebody is also out since in the

context of Cn(A), agent a ended up killing or hurting somebody.

However, it is still possible to output the propositions =Kill A ~Hurt and
ODriveCarefully. Since B € Cn(A), we can choose B = {T}, M = N and
obviously we will have the conjunction of those mentioned propositions in the
output. However, by changing B to such a set, we are alternating the situation
so that it does not correspond anymore to the situation that we had in mind for

our input.

For 3, we have that [3]Stay € O(N', A") by setting M = {(=<[B]DriveCare fully,
[B]Stay)} and B = Cn(A”"). In contrast to the input set for agent «, we have
that (Kill v Hurt) ¢ Cn(A”), and therefore it is not possible to violate the
norm (T,-Kill A~Hurt). By choosing M = {(T,-Kill A~Hurt)} and keeping
B=Cn(A"), we get (=Kill A=Hurt) e O(N', A").

With the proposed formalization of the example, we tried to make it as precise

as possible. Depending on how one decides to formulate and model such an

59

4.7. PROPOSED SOLUTIONS CHAPTER 4. MORAL LUCK

example, different outcomes might be achieved. Of course, there may exists
alternatives when it comes to the formalization for this kind of examples. It is
always a subjective matter and it can be a challenging task to tell that a certain
formulation of an example is absolutely correct. However, with every formulation,
one should capture the fact that both agents have been neglecting an obligation
which leads then to the conflict between an output and the input set. Such
violations expose the limitations of the traditional |/O operators and have led to

development of clOL and 1/0 logic with consistency check.

60

CHAPTER 5. CONCLUSION

5 Conclusion

5.1 Summary

The aim of the thesis was to further study the concepts of deontic and agency
with regard to automatic reasoning tools. In particular, we were interested in
T-STIT logic combined with 1/O logic, which we called T-STIT 1/O logic, and
we used the proof assistant tool Isabelle/HOL to verify examples of this logic.
In order to do so, we first presented a semantical embedding of T-STIT logic in
HOL. Next, we showed the already existing embedding of the out; operator and
we applied it to formulas of T-STIT logic in Isabelle/HOL. Then we extended the
work of 1/O logic in HOL by introducing an embedding for the outs operator in
HOL. The embedding has been implemented into the framework Isabelle/HOL
so that we could apply the outs operator first to formulas of propositional logic
and afterward to formulas of T-STIT logic. Finally, we related our logic to moral
luck, identified which aspects of it are possible to study by the logic and we used

examples from it as test cases.

Next, we will give answers to our proposed research questions, identified in
chapter 1. The first research question, we wanted to investigate in this thesis, was

the following:

RQ1: Due to the recently notable success of embeddings of non-classical logics
in HOL and their verifications in Isabelle/HOL, is it possible to realize an
embedding of STIT logic in HOL or are there any limitations?

In order to realize a semantical embedding of a STIT logic in HOL, we decided to
use Lorini's temporal STIT logic [22]. Due to the logic's possible world semantics,
the techniques from previous works [1] of the literature could be reused. The
embedding was then implemented into Isabelle/HOL, a proof assistant for higher-
order logic. However, the implementation has its limits. The constraints imposed
on the models and the seriality condition of the R relation made every model
infinite which causes issues for the framework's tools such as Sledgehammer and
Nitpick. To overcome this, we decided to remove the property of seriality from
Rg. As a consequence, this step makes the models finite and most of the axioms
from Lorini's work [22] could still be proved by the tools. However other axioms
were no longer provable because of the removing of the property for the relation
R¢. We also tried to prove some laws from Horty's book [19] within [sabelle/HOL.

61

5.1. SUMMARY CHAPTER 5. CONCLUSION

Most of them could also be correctly verified or disproved. As far as we know,
this has been the first attempt of an embedding of a modal logic of action in HOL
but maybe when the embedding is based on a different semantics, for instance
choosing the original semantics of STIT theory, we might be able to overcome the

encountered limitations.

In this work, we considered the out; and outy operators for 1/0 logic. To verify
the outs operator on examples in Isabelle/HOL, we need a representation for it in

HOL. This was captured by our second research question:

RQ2: So far, the literature only documents an embedding of the out; operator
in HOL [7]. Can the work of /O logic in HOL be extended by providing a

semantical embedding of the outy, operator?

In contrast to the embedding of the out; in HOL, we did not decide to use
the traditional formulation of the outs for our semantical embedding in HOL but
instead, we used its translation into modal logic. By choosing this formulation, the
embedding for outy could be realized by reusing the same technique already used
for other embeddings of various modal logics. Due to its translation into modal
logic, the statements were much easier to prove for the tools and the timeout
issue, from which the out; operators suffers, could be avoided. After adapting
the formulation of x € Cn(N(L)) in Isabelle/HOL, all the statements from the
examples could be correctly proved or disproved by the corresponding tools. We
conclude that the implementation of the outs operator is able to deal with more
complex statements and the tools can prove them accordingly. This certainly can
be traced back to the modal formulation of the outs, used for the realization of
the embedding in HOL.

The two embeddings of those logics are then combined. This allows us then
to investigate examples of T-STIT 1/0 logic in Isabelle/HOL. The third research

question is concerned about this aspect.

RQ3: Typically, 1/0 logic is used with propositional logic. How do the 1/0O oper-
ators outy and oute perform when using STIT logic as the base logic?

Benzmiiller and Parent [7] already introduced a semantical embedding of the
outy in HOL. However when changing the base logic from propositional logic to
temporal STIT logic, a lot of statements could not be proven in Isabelle/HOL
due to the large search space for the Sledgehammer tool. By specifying a model,
like in the case for the driving model, the scope of the search space gets reduced
which allowed then to prove the desired statements of the example. In contrast,

the outy operator performs far better with T-STIT logic as its base logic than the

62

CHAPTER 5. CONCLUSION 5.2. FUTURE WORK

outy operator, in the sense that the tools did not encounter the time-out issue and

therefore they were able to provide proofs for all the corresponding statements.

Next, we moved to the conceptual part of the thesis. We presented moral luck
and the problem that comes with it. In particular, it conflicts with the ethical
principle that agents are not morally responsible for actions that are outside their
control. The relation between moral luck and T-STIT I/O logic has been covered

by the following question:

RQ4: It has been suggested that moral luck can be studied using deontic logic,

but which aspects can be analyzed and which aspects are out of reach?

According to Nagel's studies, moral luck can be classified into four different
kinds. Agents can be morally lucky due to their characters, circumstances or a
combination of both, known as causal moral luck. However our logic is not able
to capture aspects of an agent's character or circumstances. Thus, the class that
we are able to focus on, is the one that deals with the agent's actions and their
consequences, known as resultant moral luck. We identified which aspects of it
can be captured by denotic logic. Looking at an example from resultant moral
luck, we noticed that the agents always committed violations to the obligations.
Finally examples of moral luck were formulated in terms of temporal STIT logic
and we used |/O logic to determine what is obligatory in those scenarios. The
operators out; and outs behaved as expected but the examples showed again the
limits of unconstrained 1/0 logic. Because of violations to obligations, the output
is inconsistent with the input set. To handle this issue, two possible approaches
were presented in form of constrained /0 logic and an 1/O logic with consistency
check.

All the research questions could be answered to a satisfiable degree. However,
those answers lead us to the identification of new problems for which we can
formulate again new research questions for future work. The newly identified

problems will be discussed in the final section of this thesis.

5.2 Future work

In terms of STIT logic, we considered Lorini's temporal STIT logic [22] because
he provided a possible world semantics for it. The presented embedding is based
on those and it could be realized by using techniques from previous work. But as
presented, the implementation of the embedding also has its limitations in terms
of being only able to deal with finite models. The original semantics of STIT logic
are given in terms of branching time and agent choice structure and most of the

examples from the literature are formulated in those. So far, there has been no

63

5.2. FUTURE WORK CHAPTER 5. CONCLUSION

work conducted with regard to those semantics in HOL and it is still open if it is
possible to do so. Realizing an embedding based on the original semantics may
overcome the limitations that we have faced. Further, we should also investigate
the following: is it feasible to prove that Lorini’s possible world semantics and
the original ones are equivalent? For simple examples, it is straightforward to
find equivalent models. But in some cases, it is not so evident and it is an open
question if it is possible to find for all branching time and agent choice models a
corresponding temporal Kripke STIT model. So a future step would then be to
show the relationship between those two semantics and to prove that for every
temporal Kripke STIT model, there is an equivalent model in terms of branching

time and agent choice, and vice versa.

The implementation of the semantical embedding outy in HOL was explic-
itly tested on a variety of examples. We applied the operator to formulas of
propositional logic and T-STIT logic. Even though we obtained a proof for every
statement, this does not guarantee the correctness of the embedding. This also
includes the embedding of the out; operator, presented in [7], which also has only
been tested on examples so far. To do so, one has to provide the faithfulness of
these embeddings. Therefore further work includes presenting proofs of the sound-
ness and completeness of those. This also holds for the embedding of T-STIT
logic in HOL.

This work presented an embedding of the outs operator but one may also be
interested in providing embeddings for the other two traditional operators, outs
and out4. This would then complete the work of traditional or unconstrained 1/0
logic in HOL. Just like for the outs operator, there exists also a translation into
modal logic for outs [23] and its formulation is similar to the one for outs. In
contrast to the formulation for outs, for outs it is required that we consider a
modal logic S such that KT ¢ S ¢ KT45. Thus the embedding for outs will
be almost identical to the one for outs, the only difference is that the relation
R for the corresponding O operator has to fulfill the property of reflexivity. As
illustrated on an example in the previous chapter, the rule of cumulative transitivity
does not hold for the operator outs and therefore Nitpick generated a counter
model. However when adding the condition of reflexivity to the relation for the
lifted operator 0O;, then Nitpick is no longer able to disprove the corresponding
statement and additionally Sledgehammer provides us with a proof. Further,
the examples for testing the rules of AND, SI and WO also hold for the outy
operator. Still, one would need to test the operator on further examples and
finally provide again the faithfulness of the embedding. Additionally, a lot of the
statements could not be proven for the out; operator due to the complexity of
the formulas, therefore one might consider to optimize the embedding of it or to

use an alternative formulation for this operator.

64

CHAPTER 5. CONCLUSION 5.2. FUTURE WORK

After the completion of traditional 1/0 logic in HOL, the next step would
be to move to the "stronger” I/O logics. Due to the vulnerability of traditional
I/O logic to violations which occur in the examples of moral luck, a next step
would be to implement constrained 1/O logic [24] into Isabelle/HOL by using
again the semantical embedding approach. Because of the downside of having no
proof theory, there have been suggestions in the /0 logic framework to overcome
this. Some works [27] propose an unconstrained 1/O logic with a consistency
check, which allows the logic to handle violations, CTD, and dilemmas while still
preserving its proof theory. So it would be interesting to see if embeddings for

those kinds of 1/O logics could be obtained as well.

To further analyze the principle of moral luck, T-STIT logic must be extended
with additional operators. For the examples, the STIT operators were used to
represent the actions and choices of the agents. To study the examples from moral
luck more deeply, one may also have to consider the intentions of the agents or
their knowledge. Knowledge operators exist in epistemic logic and there have also
been attempts of adding these to STIT theory [13]. It may be interesting to see if
it is possible to extend STIT logic with a notation to express an agent's intention.
STIT logic is already able to express actions and abilities of agents, but together
with an agency operator for intention, those operators can be used to formalize
an agent’s responsibility and blameworthiness which would be very useful when

studying examples of moral luck.

65

5.2. FUTURE WORK CHAPTER 5. CONCLUSION

66

APPENDIX . APPENDIX A

Appendix A

.1 Deontic Logic

In deontic logic, Op is usually used in order to express that it is obligatory that
p is the case, (or it ought to be that p is the case), and Pp to express that it is
permitted, or permissible, that p is the case. The term 'deontic’ originates from

the ancient Greek word de on, meaning that which is binding or proper.

The most familiar deontic logic is known as Standard Deontic Logic (SDL),
proposed by von Wright in 1951. It has been developed as a branch of modal
logic where an obligation is interpreted as a variation of modal necessity. Instead
of the unary operators for the alethic modalities necessity and possibility, denoted
by O and <, it uses unary operators for the deontological modalities of obligation
and permission, denoted by O and P. Having this modal logical setting brings
several advantages with it. In the first place, it allows us to make use of Kripke
Semantics which means that obligations can be modeled with possible worlds
techniques. Therefore, we say that a formula QOp is true if and only if p is true
in all ideal worlds. Further, it lets us define permissions in terms of obligations.
To say that p is permissible can be stated as it is not obligatory that p is not the
case. Formally, Pp = -O-p. To deal with prohibition, an operator F'p, which is
interpreted as it is forbidden that p is the case, is also defined with the help of the
ought operator O, namely F'p = O-p. To say that p is forbidden is equivalent to
say that it is obligatory that p is not the case. In terms of semantics, we have that
a formula Pp is true if and only if there exists at least one ideal world in which
p is true, and F'p is true if and only if p is false in all ideal worlds. Additionally,
the axiomatization of this theory is pretty straightforward and the proof properties
are well known. In particular, SDL is a propositional modal logic which extends
the propositional tautologies with the axioms K : O(p = ¢q) = (Op — Oq) and
D :Op — Pp. Moreover it is closed under the primitive inference rules of modus
ponens: if - p and + (p — ¢q) then + ¢ and Necessitation: if + p then = Op where
the symbol + is read as 'is provable’. Modus ponens is also known as detachment.
More specifically, in the literature of deontic logic, the term factual detachment
is used. The resulting system is known as KD. The elegance of this theory lies in
its simplicity. Being classified as a propositional modal logic, SDL is gifted with
another benefit. Extension with other modalities such as temporal operations or
an action modality can easily be realized. For instance, in his work [19], Horty

investigated the combination of deontic logic with STIT logic, a modal logic of

67

.1. DEONTIC LOGIC APPENDIX . APPENDIX A

action.

But being a highly simplified theory has also its downside. A well-known prob-
lem that SDL has to deal with, is its vulnerability to deontic paradoxes. For
instance, some paradoxes are related to weakening: O(p A q) = Op. As deontic
logic have been developed as a branch of modal logic, most deontic logics support
weakening. On the one hand, we have that O(p A ¢) > Op might seem intuitive
but on the other hand, its equivalent Op — O(pV q) does not look so convincing.
An example of such paradoxes is Ross's paradox (1941). Consider the following

two statements:

1. It is obligatory that the letter is mailed.

2. It is obligatory that the letter is mailed or the letter is burned.

In SDL, the statements 1 and 2 can be expressed by Om and O(m Vv b), respec-
tively. Further, we have that - m — (m Vv b). Applying the Necessitation rule to
it, we get that - O(m — (m Vv b)). Finally by the application of the K axiom
and followed by the modus ponens rule, we can infer - Om — O(m v b). This
indicates that the second statement follows from the first one. However, it seems
odd to say that an obligation to mail the letter entails an obligation that can be
fulfilled by burning the letter. This is a counterintuitive derivation and it can be

traced back to the interpretation of 'or’ in our natural language.

Another main issue in the study of deontic logic is the representation of the
so-called Contrary-To-Duty (CTD) obligations. Several well-known paradoxes are
caused by those. A CTD obligation is an obligation which tells us what ought to
be the case if something that should not be is the case. In SDL, a conditional
obligation is normally formulated as ¢ — Op, where ¢ represents the condition
and p the deontic conclusion. We say that the conditional obligation ¢ - QOp is
a Contray-To-Duty or secondary obligation of the primary obligation Op1, when
q and p; are contradictory. Forrester's paradox, sometimes also referred to as the

gentle murderer paradox, is a popular example. Consider the following scenario:

1. Smith should not kill Jones.
2. If Smith kills Jones then he should do it gently.

3. Smith kills Jones.

In SDL, those three statements are represented by the formulas O-k, kK = O(kAg)
and k, respectively. They are considered as the set of premises. As -k and k are

contradictory, we have that the conditional obligation £ - O(k A g) is a CTD

68

APPENDIX . APPENDIX A .1. DEONTIC LOGIC

obligation to the obligation O-k. Since SDL supports the rule of modus pones
or factual detachment, we can infer O(k A g) from the statements 2 and 3. From
O(k A g), we are able to derive Ok which leads us to the main problem of this
paradox. We have that Ok and O-k are inconsistent in SDL even though the
three formulas from our set of premises were intuitively consistent. In SDL, there

is no consistent formulation available for this paradox.

The type of possible worlds semantics used by SDL is not flexible enough. In
this semantics, we are only able to distinguish between two types of worlds, namely
actual and ideal worlds. From Forester's paradox, we had initially O—-k and we
are able to derive Ok from a set of formulas. This causes then the paradox since
it is clear that no ideal world can hold k£ and -k at the same time. Thus ideal
worlds are not enough in order to represent a proper model for this paradox. To
do so, the notation of sub-ideal worlds is introduced and which solves then the
inconsistency in the ideal worlds. Further, a preference ordering can be established
on these sub-ideal worlds due to the finer distinction between a hierarchy of sub-
ideal worlds instead of one type of ideal world. By replacing the principle of ideality
of SDL by the principle of optimality, we move to dyadic deontic logic (DDL),
which has been introduced by Hansson. Hansson's proposed DDL is actually able

to deal with contrary-to-duty reasoning.

A dyadic obligation is a conditional obligation, which is formulated as O(p |)
and is interpreted as it is obligatory that p is the case if ¢ is the case. An
unconditional obligation can also be formulated as follows O(p | T). They are
seen as special kind of dyadic obligations. {O(k | T),O(kAg|k),k} represents a
dyadic formulation of Forrester's paradox. Due to the optimally principle of DDL,
a consistent formulation of the paradox can be achieved.

In contrast to SDL and DDL, which are analyzing the deontic modalities with
reference to a set of possible worlds, there exist as well a family of frameworks
which are referred to as norm-based deontic logic. A set of explicitly given norms is
used in order to evaluate the deontic modalities. In such frameworks, the focus lies
on interference patterns and thus the perspective is different from the traditional
setting. In particular, for some given input A, referred to as facts, and a set of
given conditional norms N, the framework tells us which norms apply. A instance
of such a framework is Makinson's and van der Torre's I/O logic [23]. A key
characteristic of this logic is its semantics. Rather than reusing truth-values and
possible worlds techniques as other logics do, it provides operational semantics
which are based on detachment. In order to capture the meaning of the deontic
concepts, |/O operations are yielding outputs, seen as obligations, for inputs. This
is achieved by defining different output operators, denoted by out. x € out(N, A)

means than that 'given the input set A, x is obligatory under the norms N. In

69

.1. DEONTIC LOGIC APPENDIX . APPENDIX A

terms of proof theory, 1/0 logic consists of a set of inference rules. Those rules
are applied to pairs of formulas rather than individual ones. /O logic is covered

in more detail in chapter 2.

70

APPENDIX . APPENDIX B

Appendix B

.2 Ought-to-be vs Ought-to-do

When it comes to ought-to-be and ought-to-do sentences and obligations,
philosophers often mention that there is clear distinction between both of them. 'It
ought to be that you are friendly’ denotes an ought-to-be sentence which expresses
an ought-to-be obligation whereas "You ought to help an injured person’ represents
an ought-to-do sentence which states an ought-to-do obligation. Deontic logic is
primarily concerned with ought-to-be obligations, however in natural languages,
besides expressing statements that something is ought to be, one also wants to
have statements that someone ought to do something. The deontic operator O
seems to capture the idea of the first concept, but to what extent can it be used
to represents the second concept? In deontic logic, it often has been assumed
that what an agent ought to do can be identified with the notation of what it
ought to be what the agent does. If this assumption is correct then it is possible
to paraphrase a sentence like "You ought to go home' as 'lt ought to be that you
go home’. A way to formulate the concept of an ought-to-do obligation is to add
some action logic or dynamic logic to a deontic system or vice versa. Then this
would allow stating someone is ought to do something if and only if it ought to

be that someone sees to it or brings it about.

Among deontic logicians and philosophers, the distinctions between the logics of
ought-to-be and ought-to-do obligations is a highly discussed topic. In particular,

we have that:

— Ought-to-do deontic statements refer to actions and express imperatives of

the form "an agent ought to perform an action”.

— Ought-to-be deontic statements express a desired state of affairs (results of

actions) at a certain moment.

For Humberstone, there is also a distinction between the two kinds of ought
statements. Humberstone [21] states that ought-to-be statements are situational
oughts whereas ought-to-do statements are agent-implicating oughts. Horty il-
lustrated Humberstone's distinction in his book [19]. He points out a scenario in
which Albert has competed in a gymnastics event. From all the performances of
the participants, Albert's one was clearly superior, however, the judge is known to

be biased, so that it most likely that somebody else will be awarded the medal.

71

.3. THE GAMBLING PROBLEM APPENDIX . APPENDIX B

Then the sentence 'Albert ought to win the medal’ is referred to that kind of
statement that Humberstone would consider as a situational ought. It reflects a
judgment about a situation, not about Albert, and can, therefore, be paraphrased
as 'it ought to be that Albert wins the medal’. There is no indication, that it
will be Albert's fault when he does not manage to win the medal. Further is
winning the medal not within Albert’s control after his performance. However, if
one assumes that Albert has been lazy and ignoring his training schedule, then
the sentence 'Albert ought to practice harder’ would refer to the kind of ought
statement that Humberstone categorizes as agent-implicating. It indicates that
Albert has the ability to actually practice harder and the blame comes down to

him if he fails to do so.

Further, Horty addresses the challenge on how to formulate obligations for
actions in his book. In particular, the focus lies on the assumption whether that
what an agent ought to do can be identified with the notion of what it ought to be
what the agent does. As a first attempt, he defines an obligation to do an action
as an obligation that such an action is done. In other words, he analyses whether
ought-to-do can be reduced to ought-to-be. In order to formalize ought-to-do
deontic statements, the STIT framework is extended with the Standard Deontic
Logic (SDL) ought-operator, denoted by (O. Then he investigates the claim of
the Meinong-Chisholm thesis which states the following:

An agent a ought to see to it that ¢, if and only if, it ought to be
the case that the agent « sees to it that ¢.

Finally, he comes to the conclusion that ought-to-do statements can't be formal-
ized as ought-to-be statements about action. Thus, the statement "agent o ought
to see to it that A" can't be captured by the formula QO[a estit : A], which cor-
responds to the statement "it ought to be that agent « sees to it that A". The

so-called gambling problem serves as an illustration in order to justify his claim.

.3 The gambling problem

We first give a quick overview on Horty's utilitarian STIT model before looking
at the gambling problem. Such a model corresponds to the tree which represents
a branching structure for indeterministic time. Each moment in the tree is repre-
sented as a partitioning of branches or histories. It is open to the future meaning
that each branch represents a growth of the world. Horty uses a function Value
which assigns to each history a value in terms of a real number. A real number is
representing the utility of that history. Hence the utility of a history h is denoted
by Value(h). The higher the value of the utility, the better the history. In Horty's

72

APPENDIX . APPENDIX B .3. THE GAMBLING PROBLEM

STIT model, propositions are evaluated for a pair composed of a moment and a
history. A proposition A is true at a moment-history pair m/h if and only if it
got assigned the value True in the STIT model. Formally m/h e V(A) where V
denotes the evaluation function mapping each proposition to a set of m/h pairs.
The general evaluation for a formula QA in such a model is the following: OA
holds at a moment-history pair m/h if and only if there is a history h’ passing
through that moment m such that A holds for all moment-history pairs m/h’ for

which that utility of history h”’ is at least as great as the utility of history h'.

The example of the gambling problem captures a moment m in which an agent
faces the choice between gambling or refraining. By choosing to gamble, the agent
might double his 5 dollars or might lose them. This is represented by the action or
choice K. If the agents, however, decides to refrain, he keeps his 5 dollars and is
represented by the action Ks. The statement A expresses that the agent gambles

whereas, —A indicates that the agent refrains. Figure 1 illustrates the situation.

A A -A —-A
s hy ks

—k
L
=
on
L

V-

- Chioice,
j\'_ K a

¥]

Figure 1: The gambling problem

The histories h1 and ho represent the possible outcomes when the agent decides
to gamble, i.e. to perform the action Ki. In one history, the agent doubles his
money and ends up with 10 dollars whereas, in the other one, he ends up losing
his money. By choosing to refrain and therefore not taking part in the game, the
agent ends up either in the history hs or hy, where the agent still preserves his 5
dollars.

Since [aestit @ A] is true at the index m/h; and also along all the histories
with greater or equal utility, we have that the formula O[aecstit : A] is settled
true at moment m for this model. However an interpretation of O[a cstit : A] as
"agent « ought to perform action K7" is counter-intuitive and a strange conclusion

to draw here. By gambling, the agent may risk an outcome of utility 0 but at the

73

.3. THE GAMBLING PROBLEM APPENDIX . APPENDIX B

same time, he is able to guarantee an outcome of utility 5 just by not taking part

in the game.

From the description of the gambling problem, there is no information on which
action is better than another one. Further, without knowing the probabilities of
winning, there is nothing we can say in favor of the action K7, except that this
choice might be more preferred by the more adventurous agents. We just know
that when performing K7, we may either end up with more or less money then by
choosing K.

This demonstrates that O[acstit : A] can't be interpreted as "agent a ought
to see to it that A”. So it is not sufficient to simply adapt and generalize the SDL

ought-operator to STIT-logic in order to express ought-to-do statements.

Ought-to-be statements are evaluating the truth based on the optimal histories
and this optimality is determined by the utilities associated with the individual
histories. Having the highest utility is enough for a history to be considered as
optimal. So if ought-to-be is concerned about optimal histories, then ought-to-do

is dealing with optimal actions.

However actions are assumed to be non-deterministic, therefore actions corre-
spond with sets of histories and one has to consider those rather than individual
histories. The notation of optimality has to be adapted in such a way that it
applies to sets of histories, which identify the different actions. The approach
used by Horty is very simple and straightforward. The ordering of the action is
based on the underlying ordering of the histories. More specifically, we say that
an action is strictly better than another one if all the histories of that action are
at least as good as the histories of the other one and it does not hold the other
way around. Further an action K is categorized as optimal, if there is no other
action K’ such that K’ is strictly better than K.

Having defined the ranking of actions, Horty introduces a utilitarian ought
operator, also known as the dominance ought operator, which only applies to
actions. This allows to formulate ought-to-do statements of the form "agent «
ought to see to it that A" and is denoted by O« cstit : A]. O« cstit : A]
is settled true at moment m if and only if the outcomes of each optimal action,
available to the agent o at moment m, guarantee the truth of A. When applying
the new operator to the gambling problem, we have that both formulas O« estit :
A] and @[« cstit : =A] are false, since neither actions are better or worse than
the other one. More specifically, K7 is not strictly better than K5 since the utility
of history hso is smaller than the utility of hs, and Ky is not strictly better than
K since the utility of history hs is smaller than the utility of ;. This shows that

none of the action is better than the other one and consequently both actions are

74

APPENDIX . APPENDIX B 4. DRIVING EXAMPLE AND MORAL LUCK

categorized as optimal. Therefore we have that @[« cstit : A] is not valid since
the outcomes of the action K5 don't guarantee A, and O[« cstit : —~A] does not
hold since none of the outcomes of the action K7 hold =A. Using this operator,
in order to represent ought to do statements, solves the gambling problem. Still
obtaining the utility 10 or 0 is not something that is control of the agent. None
of the actions available to the agent can for sure obtain a utility of 10. The only

factor which determines it is luck.

With the help of the following example, Horty points out that luck becomes an
even more important factor when we consider multiple agents. In particular, it is
about moral luck, the role of external factors in our moral evaluations. Assuming
that we have two agents « and 3, an action of agent 8 can be considered as
an external factor for agent « since it is something that « is unable to control.
Therefore achieving a certain utility depends not only on the actions of agent «

but it also depends on what [does.

.4 Driving Example and Moral luck

The driving example [19] (Chapter 5, pages 119-121) addresses this challenge.
In particular, Horty uses this example as an illustration to show the difference
between the so-called dominance act utilitarianism and orthodox perspective on
the agent’s ought. The dominance act utilitarianism perspective is captured by
O« estit : A]. For the orthodox perspective, Horty introduces another ought-to-
do operator, known as the orthodox ought operator @[« cstit : A]. In contrast
to the dominance ought operator, the truth or falsity of @[« cstit : A] may vary
from index to index. Intuitively @[« cstit : A] holds at an index if and only if
the truth of A is guaranteed by each available action that is optimal under the

circumstances in which the agent finds himself at that index.

Imagine a situation where we have two drivers who drive toward each other on
a one-lane road. They have no possibility to stop or to communicate with each
other, and at one particular moment, each one of them must independently decide
whether he continues driving along the road or swerves. Further, the drivers can
only swerve in one single direction, therefore they will end up in a collision when
both of them choose to continue driving along the road or to swerve. A collision

can only be avoided when one of them swerves and the other does not.

Figure 2 illustrates the driving example. We have agents « and 3 who represent
the two drivers. Every driver has two actions available to him. K represents the
action that a swerves whereas K> refers to the action that « stays on the road.
In a similar way, K5 and K4 denote the actions that 3 swerves or that 5 continues

driving. Further, m represents the moment where both drivers have to make their

75

4. DRIVING EXAMPLE AND MORAL LUCK APPENDIX . APPENDIX B

’1] hg h3 ’14
1 0 1 0
a a = -
ﬁb b b —|b
K3 \ /
i \ /-
Ky \ /

K] K>

Choice))

Choice

Figure 2: The driving example

choice. There are four histories, denoted by hi, ho, hs and hy4, passing through
the moment m. The statement a, which expresses that « swerves, is true at the
histories hq and ho. Therefore h; and hoy are the possible outcomes of the action
K1 whereas performing action K5 might result either in the histories h3 or hy.
Likewise the statement b, expressing that 3 swerves, holds at the histories ho and
hs, making them the possible outcomes of action K3. Finally, 5 might end up in
the histories hi or hy when he decides to perform K4. The histories hy and hg
are considered as the ideal outcomes since along those, one driver swerves and the
other stays on the road and thus they don't end up in a collision. Therefore we
assign the utility of 1 to those two histories. The other two histories hy and hs
are non-ideal since along those the collision can't be avoided and thus they have
a utility of 0.

To apply Horty’s dominance ought operator, we first have to identify the opti-
mal actions of the agents. For both agents, we have that both actions available are
classified as optimal. Consequently, we have then for agent «, that O[« cstit : a]
and O[« cstit : —a] are settled false at moment m since K; and Ky are opti-
mal but K7 can only guarantee the truth of a whereas K5 makes only —a true.
Likewise for 3, we have that ®[f cstit : b] and O[S cstit : -b] are also settled
false at moment m. To evaluate the orthodox ought operator, we have to focus
on an index which consists of a moment and an history. For instance, agent «
finds himself at index m/hy. At this particular index, agent 3 continues the road,
therefore it reduces the possible outcomes of action K7 to the history h; and of
action K to the history hy. Therefore the optimal action available to agent «
under these circumstances, is to swerve which is captured by action K. Since the

truth of a is guaranteed by K7, we have that the statement @[« cstit : a] holds

76

APPENDIX . APPENDIX B 5. CRITICAL VIEW ON STIT THEORY

at the index m/h;. However, when focusing on a different index, for instance
m/a, @[a cstit = a] is no longer true. At this index, agent [swerves, thus the
optimal action available to « is K3, which refers to the action that « stays on the
road. Ko does not guarantee the truth of a but of —a, therefore at index m/hs,
the statement @[« cstit : —~a] holds.

According to Horty, the differences between those two ought operators provides
us with another perspective on the issue of moral luck. Both operators are able to
capture a legitimate sense of the ought used in our ordinary judgments. On the
one hand, the orthodox ought captures the sense of looking back after the actual
event. Imagine that at a later moment, through which history h4 passes, agent «
finds himself recovering from his injuries of the collision in the bed of a hospital.
Since at the index m/hy it holds that @[« cstit a], the agent o might regret his
choice and might say to himself that he ought to have swerved. On the other
hand, the dominance ought capture the sense of looking forward. Yet, the agent
might honestly regret his choice, it is not something on which he can be blamed.
From this perspective, neither was it the case that agent o ought to swerve nor
was it the case that he ought to continue the road. This means that the agent
did not fail to do something he ought to have done. Either choice of « at that
time could have led to a collision and the outcome cannot be fully determined by
himself. Also, the choice of the other agent plays a role in the determination of

the outcome but this is a factor which is outside the control of agent «.

.5 Critical view on STIT theory

In computer science, actions are typically formalized in terms of preconditions
and postconditions such that they can be put in a sequence plan. This allows for
giving an operational semantics of a computer program like in Hoare logic. In a
logic of action, propositions are not identified with actions, however, propositions
are used to specify aspects of actions. On one hand, in dynamic logic actions are
basically viewed as objects to which a name is assigned so that they are part of
the logic’s language. Postconditions indicate then the propositions that are made
true by an action whereas preconditions tell us which propositions are necessary
and sufficient conditions for the possible execution of an action. On the other
hand, due to the different view of actions in STIT theory, it seems less clear on

how to define the preconditions.

Horty's approach is based on the utilitarian perspective. Generally speaking,
this means that an action is right or obligatory if it maximizes utility. The out-
comes of the actions, or in other words, the histories, are expressed in terms of

numbers. The only purpose of those numbers is to determine if a history is better

77

5. CRITICAL VIEW ON STIT THEORY APPENDIX . APPENDIX B

or worse than another history. Other than that, those numbers have no meaning.
For instance, for the gambling problem, the same results can be achieved when
assigning different values to the histories but still preserving the same linear order.
When changing the values of the histories h1, hs, hs and h4 in the model to 1000,
7, 250 and 250, respectively, then the original model, depicted in 1, and the new
one have no difference in terms of results. Both models are not distinguishable in
the logic proposed by Horty.

Horty's approach to order the actions and how he identifies that a particular
action is better than another one needs also to be discussed. Consider the following
figure 3:

e e

Figure 3: Two choice situations

On the left, we have a moment m where an agent « can either perform action
K7 or K. With Horty's ordering on actions, we get that K is a better action than
K because all the histories of the action K are at least as good as the histories of
the action K5 and it does not hold the other way around. Consequently, we have
that O« estit : A] is true at m, so that a ought to perform K;. However, for the
situation on the right side, we have that at moment n, it is not that case that «
ought to perform K3 nor is it the case that he ought to perform K. In particular,
K is not a better action than K4 since the history ho, a possible outcome of K3,
is not better than hg, a possible outcome of K4. Similarly, K, is not a better
action than K3 due to the fact that for a possible outcome of K}, for instance,
hs, there is a possible outcome of K3 that is better, namely h1. Because of the
utilitarian setting, chosen by Horty, there are reasonable arguments to support
the claim that K3 is actually a better action than Kj. Like already mentioned
before, the utilities, assigned to the individual histories, have no meaning. So all
the information that we can get from the model on the right is the following:
the highest utility can only be reached when performing the action K7 whereas
the lowest can be achieved by performing K. When an agent has to decide
between those two actions, there are two valid reasons to choose K. In the first
place, K; is the action that might lead to the best possible outcome, namely

hy1. Second, by performing K7, the agent can surely avoid the worst possible

78

APPENDIX . APPENDIX B 5. CRITICAL VIEW ON STIT THEORY

outcome, namely hy. Horty's logic is only about choices, non-determinism, and
utilities. The probabilities regarding the occurrence of the different histories are
unknown and also not considered by the logic.

79

5. CRITICAL VIEW ON STIT THEORY APPENDIX . APPENDIX B

80

APPENDIX . APPENDIX C

Appendix C

This section presents the syntax, semantics and axioms of Lorini's temporal
STIT logic [22] and serves to provide background knowledge to the reader. All of
the definitions from this section are taken from Lorini's work [22], otherwise we
put the corresponding reference to that definition. Besides Lorini's possible world
semantics, we will also give a semantics in Branching Time and Agent Choice,

which is taken from Horty's work [19].

.6 Temporal STIT logic

Definition 1 (Syntax) Let P be the set of atomic propositions and Agt be a
finite set of agents. The language L1.s1i7 of temporal STIT logic is generated by
the following BN F' (Backus Normal Form):

pu=pl-plonp|Op]|[ale|[Agtle | Ge | He

where p e P and « € Agt.

Other connectives are introduced by the definitions:

disjunction vy is =(-p A=)
implication @ —>1v¢ is (=p) Vv

equivalence <Y is (p->Y)A (Y-)
versum T is pVv-p (for some p e P)

falsum 1 is =T

Oy can be interpreted as "y is true no matter what the agents do” or simply
" is necessarily true”. The dual of O is defined as Cyp = =0-¢ and expresses "

is possibly true”.

Operators of the form [«] represent the Chellas’s STIT operators. The formula
[a] captures the fact that ¢ is guaranteed by an action or choice of agent «
and can be interpreted as "agent « sees to it that ¢ regardless what the other
agents do”. For simplification reasons, the interpretation of [«]¢ can be shortened
to "agent « sees to it that ¢". The dual operator of [a] is defined in the usual
way as: {(a)p = =[a]-p. The dual of the Chellas's STIT operator («)y can be
interpreted as "agent « allows it that ¢". Further STIT theory offers the way to
formalize the concept of ability. This is achieved by combining the < operator

81

7. SEMANTICS APPENDIX . APPENDIX C

with [a]. The formula O[] expresses then that agent « has the ability to see

to it that ¢ or that agent « has the choice to enforce ¢.

Remark Please note that in STIT literature, []y is usually written [« cstit: @],
but the former notation is used because of conciseness reasons. Additionally, there
exist several STIT operators such as the deliberative STIT operator which can be
defined in terms of Chellas’s STIT operator and the O operator as following:

o dstit : = [« estit : A =O.
2 2 2

[Agt] represents the group STIT operator. For a propositional formula ¢, it
captures the fact that ¢ is guaranteed by a choice of all the agents and has to
be interpreted as "all agents see to it that ¢ by acting together”. Just like for
the Chellas’s STIT operator, the dual operator of [Agt] is expressed as (Agt)p =

Moreover, the operators G and H are tense operators that are used to express
facts that are always true in the strict future respectively facts that are always
true in the strict past. The strict future, respectively the strict past, does not
include the present. G can be interpreted as "¢ will always be true in the future”
whereas Hy means "¢ has always been true in the past”. The dual operator of G
is defined as Fp = =G-¢ and can be read as "¢ will be true at some point in the
future”. Likewise, the dual operator of H is defined as Py = —=H-¢ and can be
read as " has been true at some point in the past”.

Finally, Lorini defines two very helpful operators as follows:

- Go=pnGyp

- F*(p = ﬂG*ﬁ(p

G™p expresses that "y is true in the present and will always be true” and F*¢

means that "y is true in the present and will be true at some point in the future”.

.7 Semantics

This section presents two possible semantics for Lt_s1y1. The first alternative
is a Branching Time (BT) structure augmented by an agent choice (AC) function,
abbreviated BT+AC structure, and corresponds to the original framework for STIT
logic given by Belnap [8]. However, some works, like the one proposed by Lorini
[22], have also adapted a Kripke style semantics for STIT logic. Those have the
advantage of being similar to the semantics of modal logic than Belnap's original

semantics.

82

APPENDIX . APPENDIX C 7. SEMANTICS

.7.1 Branching Time and Agent Choice

The semantics of STIT can be embedded in a branching time structure (BT),
which is defined as:

Definition 2 (BT structure [19]) A branching time structure M is of the form
(M, <), where:
— M is a non-empty set of moments

— < is a transitive, irreflexive and treelike ordering on M.

By treelike ordering, we say that for any moments mi, mo, mz € M, if

mq < mg and mo < mg then either m1 = mo or mq < mg or mo <M.

A history is considered as a maximal linearly ordered set of moments m from
M. Further, when we have m € h, we say that the moment m lies on the history
h and the set of all the histories is denoted by Hist.

H,, ={h|heHist,meh}

represent the set of histories passing through the moment m. A moment-history
pair is a pair m/h consisting of a moment m from M and a history h from H,,.

In other words, it's a history and a moment in that history.

hi ho hz hy hs

'

Figure 4: Branching Time

Figure 4 visualizes a branching time structure which is illustrated as a tree
containing five histories hy...hs. Further there are three moments, denoted by
m1, mo and mg, lying on the different histories. For instance, we have that
mg € hy and mq € hg. The upward direction represents the forward direction of
time and so we have that m; < mo and m; < ms. Finally, we can also give the
histories passing through a certain moment. For example, the set H,,,, denoting

the histories going through ms, contains hy and hs.

83

7. SEMANTICS APPENDIX . APPENDIX C

By augmenting the BT structure with the choices of agents, one obtains the
most elementary framework in STIT logic. The resulting structure is called agents

and choices in branching time and is abbreviated as BT+AC structure.

Definition 3 (BT + AC structure [19]) A branching time and agent choice
(BT+AC) structure is a tuple M = (M, <, Choice, V') where:

— (M, <) is a BT structure.

— Choice: Agtx M + 92" is a function mapping each agent o and moment

m into a partition C'hoice],' of the set of histories H,,.

— VP 2MxHist is 5 yaluation function assigning to each atom p a set
V(p) € M x Hist.

In general, a BT + AC structure is often referred to simply as STIT structure
or STIT model. The Choice function is a very fundamental aspect of the BT+AC
structure and it is specified detailed in Horty's book [19].

.7.2 Choice function

Individual Choice

Each equivalence class induced by C'hoice)’ can be seen as a choice or ac-
tion that is available to agent o« at moment m. For any history h € H,,,
Choice}(h) returns a particular choice K from Choice]) such that it contains
the history h. Or in other words, the particular action that has been performed
by agent i at the moment-history pair m/h. Formally, Choice[(h) = {h' | 3K «
Choice]) such that h,h’ € K'}. The histories belonging to a particular action K
can be thought of as possible outcomes that might result from performing this

action.

Further, there are several constraints imposed on the Choice function. In
order to impose the first constraint on the Choice function, Horty introduces the
following definition:

Definition 4 (Undivided histories [19]) Let (M, <) be a BT-structure such that
m e M and hi,ho € Hy,. h1 and ho are said to be undivided at m if and only if

there exists m' € M such that m <m/ and m’ € hy N hs.

Then he defines the property of No Choice between undivided histories, which

forms then the first constraint on the Choice function.

Definition 5 (No choice between undivided histories [19]) Vh,h' € H,,, if h

and R’ are undivided at the moment m, then h' € Choicel"(h) for every agent i.

84

APPENDIX . APPENDIX C 7. SEMANTICS

ms \ l

Ky \(.‘J’mit el

N

mi

VI T
Choice,

Ky K>

Figure 5: Branching Time with an agent’s choice

Figure 5 illustrates the choice partitions. At moment m1, there are two choices
available to agent o, namely K3 and K5. Formally, we write Choice"" = {K1, K2}
with K7 = {hy,ha,hs} and Ky = {hy}. We can say, for instance, at the index
mi/hs, the agent « performs action K which might result in history hj, ho
or hy. Further, the particular choice that contains the history hs is K1, so we
write Choice" (hg) = {h1,ho,h3} = Ki. Moreover, the histories h; and hg are
undivided at moment m since they share the later moment ms in common. Thus,

we have hy, hg € Hy,, and there is ma such that my < mg and mg € hy N ha.

Group Choice

When dealing with group agency, Horty further specifies the C'hoice function.
In [19], he defines the so called group actions by introducing an action selection
function s,, from Agt into 27 such that for each m € M and « € Agt, s,,(c) €
Choicel!. So, the selection function s,, selects a particular action for each agent
at moment m. Next, the set Select,, is the set containing all of the action

selection functions s,,.
Selecty, = {sm : Agt = 2™ | 5., () € Choice™, Vo € Agt}
This allows then to formulate the property of independence of agents (or in-
dependence of choices) and will be used as the second constraint. It can be

interpreted in the sense that agents can never be deprived of choices due to the

choices made by the other agents. Alternatively, this constraints means that every

85

7. SEMANTICS APPENDIX . APPENDIX C

possible choice of an agent is consistent with every choice made by every other
agent. Two choices are said to be consistent if and only if they have at least one

outcome in common. This condition can be defined as:

Definition 6 (Independence of agents [19]) For each function s, € Select,, we

must have Naeagr Sm(e) # @.

By using the action selection functions s,,, the C'hoice function can be generalized
in order to apply for particular groups of agents. The collective choice for a group

of agents A € Agt at a moment m can be stated as:

Choice’y ={ () sm(a) | sm € Select,}
acA

Again, Choice’y (h) = {h' | 3K € Choice’} such that h,h' € K}.

To illustrate the concept of group choices, consider the example represented in
figure 6 which can be found in Horty's book [19] (Chapter 2, page 30).

A A A -A A A
hi hy hy hy hs he

\ //

W N7/
K

K, 2

Choicel!

Figure 6: Branching Time with group choices

In contrast to the previous figure, we have two agents, a and 3. Each one
of them has several choices open to him/her. The choices available to agent
« at the moment m are represented by the vertical partitions on H,, whereas
the choice available to agent 8 at moment m are represented by the horizontal
partitions on H,,. In particular, Choice]] = {K1, Ky} with Ky = {hy,ho, hs}
and Ky = {ha,hs,he¢} and Choicejf = {K3, Ka} with K3 = {h2,h3,ha} and
Ky ={hi,hs,h¢}. At moment m, each agent has two possible choices, so the set

Select,, will contain the following four functions si, so, s3 and sy4:

86

APPENDIX . APPENDIX C 7. SEMANTICS

si(a) =K1 and s1(B) = K3
so(a) =Ky and s9(f) = Ky
s3(@) = K2 and s3(8)=Kj3
sg(a) =Ky and s4(B) = Ky

Now let A = {«, 3} denoting the group consisting of agent « and agent 3.
The choices available to the group A at moment m are then:

Choice’y = {[) sm(i) | sm € Selecty, }
€A

= {sm(a) N sm(B) | Sm € Selecty, }

= {s1(@) n51(8), s2(@) N 52(8), s3(a) N 53(8), sa(a) N s4(5)}
= {Kl N Kg,Kl N K4,K2 n Kg,KQ n K4}

For example, take m/hg as an index, then the group A is able to perform
K1 n K3 which might result in the history hs or hs. And since K1 n K3 is the
particular action performed by A at m that contains the history h3, we have
Choice’y (hg) = K1 n K3.

.7.3 Satisfaction in BT+AC structure

Definition 7 (Satisfaction [19]) Given a BT+AC structure M = (M, <, Choice, V')
and a moment-history pair m/h, we define the satisfaction relation M, m/h E ¢

(read as "y is true at the moment-history pair m/h in M") as follows:

- M,m/h e p<=m[heV(p)

- M,m/hE-p <= M,m/h# ¢

- M,m/hEprtp <= M,m[hEpand M,m/hE

- M,m/h=0p <= VYh' e Hy : M,m/h E ¢

- M,m/h=Op <= Ih e Hy : M,m/h E @

- M,m/h = [a]p < Vh' € Choicel}(h) : M,m[h" = ¢

- M,m/[h & [Agt]p <> VL' € Choicely, (h) : M,m/[h" = ¢

- M,m/h e Gp <= VYm'ehsuchthat m<m': M,m'[hE e

- M,m/h = Hp <= VYm' € h such that m' <m: M,m'/hE ¢

87

7. SEMANTICS APPENDIX . APPENDIX C

A formula ¢ is valid if and only if for every BT4+AC models M and for every
moment-history pairs m/h, we have M, m/h = ¢. A formula ¢ is satisfiable
if and only if there is a BT+AC model M and some moment-history pairs m/h
such that M, m/h E ¢.

Example 8 In Figure 5, we have that M, m;/h; & [«]A since Choice' (hy) =
{K1} = {h1,ha,hs} and for every history h € Choice'* (h1), we have M, m;1/h E
A. However at the index m; /hy, the formula [«] A is not satisfied (i.e. M, mq/hy #
[a]A) since Choicel'' (hy) = {K4} = {h4} and M, m1/hy ¥ A. Moreover, we
have that M, mg/h; £ OA, because for every history h € H,,, = {hi,ha}, we
have M, ms/h £ A. Finally, we have that M, m1/hy = GA since my € hy such
that my < mg and M, my/h; E A.

Example 9 In Figure 6, it is not possible for both agents to individually see to
it that A, since Yh € H,,, we have M, m/h ¥ [a]A resp. M,m/h ¥ [B]A.
But by acting together, the formula [A]A is true at index m/he and m/hs,
where A denotes the group of agent consisting of o and 3, is valid. For every
history h € Choice’y (hs) = {ha, hs}, we have M, m/h e A. Finally, we have that
Vhe Hp, M,m/hEe C[A]A.

.7.4 Temporal Kripke STIT Model

In this section, we discuss a Kripke-style semantic for STIT logic. In contrast to
the BT+AC semantics, the Kripke semantic for STIT takes the concept of worlds

as a primitive. Let’s first remind the definition of a Kripke model for modal logic.

Definition 8 (Kripke Model) A Kripke model is a structure M = (W, R,V)

where

— W is a nonempty set of possible worlds.

— R is a binary relation on worlds, called accessibility relation. For any world
weW, let R(w) ={veW | (w,v) e R}.

— V:Pw 2% is a valuation function. A proposition p is true at a world w if

and only if w e V(p).

A Kripke model is illustrated in Figure 7. The possible worlds are represented
by the nodes and the relation is indicated by the arrows from nodes to nodes. Here
we have W = {w,ws, w3, w4} and for instance R(w;) = {we,w3}. Additionally,
each possible world w is labelled with the propositional atom which are true at

88

APPENDIX . APPENDIX C 7. SEMANTICS

w. The set of atoms P is composed of p and ¢, which gives us in this case the

following valuation functions: V(p) = {w1, ws,ws} and V(q) = {wy, w4 }.

o

/ w4
"

wy

Figure 7: Standard Kripke Model

The temporal Kripke STIT model can be seen as Kripke model with multiple
relations on which several constraints are imposed. A world w corresponds to
a moment-history pair m/h in a BT+AC model. Moments will be defined as
equivalence classes which are induced by an equivalence relation over the set of

worlds and an agent’s set of choice at a moment is a partition of that moment.

Definition 9 (Equivalence relation) Let R be a binary relation on the set W.

R is called an equivalence relation if it has the following three properties:
— Reflexivity: Vw € W, we have (w,w) € R.
— Symmetry: Yw,v e W, if (w,v) € R, then (v,w) € R.
— Transitivity: Yw,v,u e W, if (w,v) € R and (v,u) € R, then (w,u) € R.
Further, given two binary relation R; and R», let R; o Ry denote the operation

of composition between binary relation. Finally, we define R™!, the inverse relation
of R, as R7! = {(v,w) | (w,v) € R}.

Before giving the definition of a temporal Kripke STIT model, we will list the

different accessibility relations and give an interpretation for each of them.

For any given world w € W, we have

— Rp(w) defines the set of worlds that are alternatives to the world w. The
equivalence classes induced by R can be seen as moments. For any world

veW, ve Ry(w) can be interpreted as "v and w belong to the same

moment’.

89

7. SEMANTICS APPENDIX . APPENDIX C

— R;(w) defines the set of worlds that identifies agent i's actual choice or
action at world w. In other words, the set of all alternatives that are forced

by agent i's choice or action at world w.

— Ragi(w) defines the set of worlds that identifies the actual choice or action
of a group Agt at the world w. In other words, the set of all alternatives
that are forced by the collective choice or action of all the agents at world

w.

— Rg(w) defines the set of worlds that are in the strict future of the world w.

The strict future does not include the present.

— Ry (w) defines the set of worlds that are in the strict past of the world w.

The strict past does not include the present.

Lorini defines then the temporal Kripke STIT model as follows.

Definition 10 (Temporal Kripke STIT model) A temporal Kripke STIT model
M is a tuple (W, Rg, {R; | i € Agt}, Ragt, R, Ru, V') where:

— W is a non-empty set of possible worlds.

— Rp, every R; and R4 are equivalence relations between the worlds in W
such that:

(C1) Ric Rp
(C2) Ywr,...,w, e W: if (w;,w;j) € Ry Vi,je{l,...,n} then
Nieagt Ri(w;) # @
(C3) Yw e W : Ragr(w) = Njeage Ri(w)
— Rg and Ry are relations between the worlds in W such that Rg is serial
and transitive, Ry is the inverse relation of R.
(C4) Yu,v,weW :if u,ve Rg(w) then ue Rg(v) or ve Rg(u) or u=v
(C5)
(C6) Rgo Ry S Rago R
(C7) YVwe W :if ve Rg(w) then v ¢ Rg(w)

Vu,v,weW :if u,ve Ry(w) then ue Ry(v) or ve Ry(u) oru=v

— V : P 2% is a valuation function assigning to each atom p a set V(p) c W.

Constraint (C'1) states that an agent can only choose between possible alter-
natives. For any world w € W, the equivalence relation R; induces a partition on
the set Ry(w) and any element of this partition can be seen as a possible choice

for an agent ¢ at world w.

90

APPENDIX . APPENDIX C 7. SEMANTICS

Constraint (C2) corresponds to the property of independence of agents or
independence of choices.

Constraint (C3) means that the choices of agents in the group Agt are made

up of the choices of each individual agent and no more.

Constraint (C4) guarantees that the time is connected towards the future while

constraint (C5) ensures the connection towards the past.

Constraint (C6) corresponds to the property of no choice between undivided
histories. If v is in the future of w and v and v are in the same, then there exists
an alternative z in the collective choice of all agents at w such that u is in the

future of z.

Constraint (C7) makes sure that if two worlds belong to the same moment

then it is not possible that the one world is in the future of the other one.

Figure 8: Temporal Kripke STIT Model

Figure 8 gives an illustration of a temporal Kripke STIT model. In fact, it is the
same as shown in Figure 5 but just represented in Kripke STIT semantics. The
moments, which are induced by the relation Ry, are represented by the rectangles.
We have two moments, m; consists of the set of worlds {i;,i2,i3,74} whereas
my of {is,i¢}.The choices available to agent o at a moment are represented
by columns. For example, at moment m;, agent « has two choices, namely

{i1,19,73} and {iq}. The dotted rectangles show the choices available to the

91

.8. AXIOMS APPENDIX . APPENDIX C

group. In this case, the group of agents only consists of agent a. The arrows
serve as a representation for the temporal relation Rg.

Definition 11 (Satisfaction) Given a temporal Kripke STIT model M = (W, R, {R; |
i€ Agt}, Rag, Ra, Ry, V') and a world w € W, Lorini defines the satisfaction re-
lation M, w E ¢ (read as "y is true at world w in M") as follows:

- M,wEp<= weV(p)

- MwE -~ <= M,wk p

- MwEpAr) <= M,wEpand M,wEy
- M,wEOp <= Yve Rg(w) : M,vEp

- MwEeEOp <= FveRy(w) : MvEp

- MwE [i]Jp <= YveRj(w) : M,vEp

- M,wk [Agtlp <= Vv e Rag(w) : M,vE ¢
- M, wEGp <<= VYveRg(w): M,vEp

- MwEe Hp <= Yve Ry(w): M,vEp

A formula ¢ is valid if and only if for every temporal Kripke STIT model M
and for every world w € W, we have M, w &= . A formula ¢ is satis fiable if and
only if there is a temporal Kripke STIT model M and some world w € W such
that M, w & .

Example 10 In Figure 8, we have for instance that M, w1 E [a] A since R, (w1) =
{w1, w9, w3} and for every world w € R,(wy), we have M,w = A. Further
M, ws = OA, since for every world w € Ry(ws) = {ws,ws}, we have M, w = A.
Finally, we have that M, w; £ GA since for every world w € Rg(w;) = {ws}, we
have M,w E A.

.8 Axioms

Finally, Lorini proposed the following axioms for T-STIT logic. First, we have
all the tautologies of classical proposition calculus. For instance, a formula such

as Vv -y is considered as a tautology.

The relation Ry, every R; and Ry, are defined as equivalence relation for
the operators O, [7] for each i € Agt, and [Agt], respectively. Thus we have all
principles of a modal logic S5 for those operators. In particular, for an operator

v € {0, [i] for each i € Agt,[Agt]}, the following principles are valid:

92

APPENDIX . APPENDIX C 8. AXIOMS

(Nec) if - ¢ then - vy
(K) - v(p—>v) > (v > Vi)
(T) mve—o
(B) mo—>v-v-p
(4) Frp—>vve

Remark We write - ¢ in order to express the formula ¢ is derivable. Alternatively,

one also says that ¢ is a theorem or that ¢ is provable.

The temporal operator GG satisfies all the principles of a modal logic KD4 since
the corresponding relation R is defined as serial and transitive. More precisely,
besides the axioms (Nec), (K) and (4), we also have the following principle for

the operator G:
(D) +~(GpnG-p)

The relation Ry is declared as the inverse relation of R, therefore the other
temporal operator H just holds the principles of a modal logic K, which includes
the axioms (Nec) and (K).

Further, Lorini gave the following axioms with respect to the class of temporal
Kripke STIT models:

(O —1i) FOp—[ily
(i = Agt) = ([UprA---Anlen) = [Agtl(pr A A en)
(AIA) = (O[1pr A A O[n]en) = O([L]er A A[n]en)
(Convg. i) +¢ - GPyp
(Convpgg) o — HFy
(Connectedg) + PFo - (Po VoV Fo)
(Connectedy) + FPp - (Ppv oV Fo)
(NCUH) + FOp — (Agt)Fo
(MP) if ¢ and + ¢ — 1 then + ¢
(IRR) if v (0-pAO(Gp A Hp)) — ¢ then + ¢, provided p does not

occur in ¢

93

.8. AXIOMS APPENDIX . APPENDIX C

For instance, the axiom (O — i) says that if ¢ is settled as true no matter
what the agent does, then the agent sees to it that . Together with (AT A),
they form two essential principles of Xu's axiomatization [31] for Chellas's STIT
operator. According to Axiom (i — Agt), all agents bring about together what

each of them brings about individually.

(Connectedq) and (Connectedyr) are the axioms that guarantee the linearity
of the future and the past, respectively. According to (Convg, i) and (Convy.c),
we have that what is, will always have been and what is, has always been going
to be, respectively. Both correspond to the basic axioms of interaction between

future and time in minimal tense logic.

Axiom (NCUH) states that if at some moment in the future it is possible
that ¢, then the collective group of agents will possibly reach a state in which ¢
is true. This axiom corresponds to the constraint of 'no choice between undivided

histories'.

Moreover, we have the modus pones rule (M P), which says that if ¢ is deriv-

able as well as ¢ — 1 is derivable, then 1) is derivable.

(IRR) corresponds to an alternative formulation of Gabbay's well-known ir-
reflexivity rule. It has commonly been used in order to prove the completeness of
several temporal logic where the time is assumed to be irreflexive. In temporal
STIT logic, we also have a special kind of irreflexivity for the relation R¢, which
is a consequence from the fact that Ry is reflexive and the constraint (C7) from
definition 10.

94

APPENDIX . APPENDIX D

Appendix D

.9 Examples

In his book [19], Horty illustrates group agency and ability through an example
(Chapter 2, p. 30, Figure 2.5). With our embedding, it is possible to formulate
the model of this example in Isabelle/HOL and verify the possible actions of the
individual agents as well as the group actions.

The example is given in a BT4+AC model but since the embedding is based
on Kripke semantics, the example has to be transformed. In this case, it is pretty
straightforward. The figure 9 represents the example in temporal Kripke STIT

semantics.

R g R
pemm==- pRem==-
A A ‘

R, e e e
2 i3y |y
| [— 1 lacssses a
R R gt
: E A
1 1

RZ ! L] : 0" _. :
L1 Vs e |
| [——] | R — 2

Ry R

Figure 9: Group Actions

The figure 10 shows the first part of the implementation for the example in
Isabelle/HOL. We start by defining our constants, in this case, the six possible
worlds i1, ig, i3, 44, i5 and ig of type ¢ and the proposition A of type 0. It is
important that we explicitly state that all the six worlds are different from each
other. Further all the worlds in our model belong to the same moment, which
can be stated for instance as R(i1) = {i1,42,1%3,14,1%5,46}, and since there is only
a single moment, we have no two worlds w and v such that v € Rg(w). Next,

we specify the relation R4 for every world. For instance at world i3, we have
Ragi(i2) = {i2,i3}.

95

9. EXAMPLES APPENDIX . APPENDIX D

DEe®dd & 9¢ Y00 A& THEE B & @ [«
algha_RG_nonseralth (-lsabele B
a
(* Example from the book “Agency and deontic logic - page 3@ Figure 2.5: Group Actions" -

by John F. Horty *)

consts il::i i2::i i3::d id::d i5::d i6::d
consts A::o

A (i1 # 14) A (i1 # 45) A (i1 # i6)" and
) A (2 # i4) A (2 # i5) A (i2 # i6)" and

A (i3 # i4) A (i3 # i5) A (i3 # i6)" and
A (i4 # 43) A (i4 # i5) A (i4 # i6)" and
A (85 # 3) A (i5 # i4) A (i5 # i6)" and
diff_i6 : "(i6 # il) A (i6 # i2) A (i6 # i3) A (i6 # i4) A (16 # 15)" and

rbox_il : "(il rbox il) A (il rbox i2) A (il rbox i3) A (il rbox i4)
A (i1 rbox i5) A (il rbox i6)" and

no_r6 : " (. ¥ v. ~(w rGv)) " and
rAGE_il : "(il ragt i1) A (. (v # i1) — ~(il ragt w))" and
rAgt_i2 : "(i2 ragt i2) A (i2 ragt i3) A (W. ((w # i2) A (w # i3)) — —(i2 ragt w))" and

rAgt_i3
rAgt_id4 : "(i4 ragt i4) A (. (W # i4) — ~(id ragt w))" and

rAgt_i5 : "(i5 ragt i5) A (i5 ragt i6) A (vw. ((w # i5) A (w # i6)) — —(i5 ragt w))" and
rAgt_i6 : "(i6 ragt i6) A (i6 ragt i5) A (vw. ((w # i5) A (w # i6)) — —(i6 ragt w))" and

"(i3 ragt i3) A (i3 ragt i2) A ((w # i2) A (w # i3)) — ~(i3 ragt w))" and

@ proofstate @ Auwoupdste | Update Search - o o
theorem ~ [0 (- gstit A)]

B v Ouput Query Siedgehammer Symbols

276,61 0857/26776) (sabellsabelle UTF--Isabelle) UG 5578 259 PM

Figure 10: Isabelle/HOL embedding for the Group Action Example (part 1)

Moreover, we have to define the individual choices at the different worlds for
the agents. In the example, we have two agents, a; and as. Taking for instance
world 72 again and let R; resp. Ry denote the accessibility relations for the agent
ay resp. ag, then we have Ri(i2) = {i1,i2,i3} and Ra(iz) = {i2,i3,i4}. The

Isabelle/HOL formulation for those relations is shown in Figure 11.

) ¢ XB0 RA@ CEEE X & @ |¢

althy (- tsabale) B

&3 @

alpha_RG._no

al il : "(al il i1) A (al il i2) A (al il i3)
A (. (W # 11) A (W # §2) A (v # i3)) — —(al il w))" and

a2 il : “(a2 il i1) A (a2 i1 i5) A (a2 il i6)
A (. (W # 1) A (W # i5) A (v # i6)) — ~(a2 il w))" and

ali2 : "(al i2 i2) A (al i2 i1) A (al i2 i3)
M. (W # i1) A (W # i2) A (w # i3)) — —(al i2 w))" and

a2_i2 : "(a2 i2 12) A (a2 i2 i3) A (a2 2 i4)
A (W, (0 #12) A (W # i3) A (W # i4)) — —(a2 i2 w))" and
al i3 : “(al i3 i3) A (al i3 1) A (al i3 i2)

A (. (W # 11) A (W # §2) A (v # i3)) — ~(al i3 w))" and
a2 i3 : "(a2 i3 i3) A (a2 i3 i2) A (a2 i3 i4)
(. ((w # 32) A (W # i3) A (w # i4)) — (a2 i3 w))" and
i A (al i4 i5) A (al i4 i6)

M. ((w # i4) A (w # 15) A (v # i6)) — ~(al i4 w))" and
2 A (a2 i4 12) A (a2 14 i3)
A (W (0 # 32) A (u # i3) A (W # i4)) — ~(a2 i4 w))" and
al i5 : "(al i5 i5) A (al i5 i4) A (al i5 i6)
A (Y. ((w # 14) A (w # i5) A (w # i6)) — —(al i5 w))" and
a2_i5 : "(a2 i5 i5) A (a2 i5 i1) A (a2 i5 i6)
v, ((w # 11) A (w # i5) A (w # i6)) » —(a2 i5 w))" and
: "(al i6 i6) A (al i6 i4) A (al i6 i5)
A (W, ((w # i4) A (W # 15) A (w # §6)) — ~(al i6 w))" and
a2_i6 : "(a2 i6 i6) A (a2 i6 il) A (a2 6 i5)
A (W ((w # 11) A (w # 15) A (w # i6)) — —(a2 16 w))" and

9 Proof state € Autoupdate _Update _ Search - oo o
theorem ~ |0 (- gstit A)

O ~ Ouput Que Siedgehammer Symbols

276,61 (10857/26776) (Gsabeleisabelle UTF—5-sabelle < UG | //S85MB 325 P

Figure 11: Isabelle/HOL embedding for the Group Action Example (part 2)

Finally, we have to define for each world whether it holds the proposition A or
—A and we have to set the actual world, i.e. the world on which we have evaluated

the propositions. In this case, we choose i as the actual world.

In this example, at world s, it is not possible for both agents to individually
see to it that A, meaning that propositions &[al estit: A] and Ola2 estit : A
are false at 75. However, by acting together, it is possible that both agents do see
to it that A, so O[Agt]A is true at is.

Sledgehammer is able to provide a proof in order to show that the proposi-

96

APPENDIX . APPENDIX D .9. EXAMPLES

tions are valid at the world i3 and when asked for a model that satisfies those
propositions, Nitpick came up with the same model as we specified. This is

shown in figure 12.

®
*

@XxE S ¢ XDE 4@ COEEE B &

 alpha_RG_nonserial.thy (~/Isabelle/) B
a
il holds : " (<A i1) " and
i2_holds : " (A i2) " and
i3_holds : * (A i3) " and
i4_holds : " (<A i4) " and
i5_holds : " (A i5) " and
i6_holds : * (A i6) " and
actual_w : "aw = i2"
o [temma " [-(O(al cstit A)) |1 "

nitpick [satisfy,user_axioms,show_all,format=2]
by (metis al_i2 al_i3 a2_i2 actual_w axC2_al_a2 ax_sym_rbox ax_trans_al ax_trans_rbox il_holds i4_holds)

lemma " [~(0(a2 cstit A)) |3 *
nitpick [satisfy,user_axioms,show_all,format=2]
by (metis al_i2 a2_i2 a2_i3 actual_w axC2_al_a2 ax_sym_rbox ax_trans_a2 ax_trans_rbox il_holds i4_holds)

o [enma " | o gstit A) |i "
nitpick [satisfy,user_axioms,show_all,format=2]
by (metis al_i2 actual_w axCl_al i2_holds i3_holds rAgt_i2)

9 Proof sute @ Awoupdate _Update Search v oo o

theorem - [0 (- gstit A)

B v Ouput Query Siedgehammer Symbols

2781 10860/26776) (isabelle sabelle UTF-B-1sabelley > UG~ 525M8 3:59 7M1

Figure 12: Isabelle/HOL embedding for the Group Action Example (part 3)

Not only are the propositions valid at the world i, they also hold in every
world of the model. In order that Sledgehammer is able to find a proof for that,

we have to limit the tool so that only considers the 6 possible worlds. This is

represented in figure 13.

axiomatization where
1imit : "vw. (w = il) V (w = i2) Vv (w = i3) V (w = i4) VvV (w = i5) (w = i6)"

lemma * |-(<(al cstit A)) |
nitpick [satisfy,user_axioms,show_all,format=2]
by (metis (full_types) al_il al_i2 al_i3 al_i4 al_i5 al_i6 il_holds i4_holds limit)

lemma " |=(©(a2 cstit A)) |
nitpick [satisfy,user_axioms,show_all,format=2]
by (metis (full_types) a2_il a2_i2 a2_i3 a2_i4 a2_i5 a2_i6 il_holds i4_holds limit)

lemma " | ©(gstit A)
nitpick [satisfy,user_axioms,show_all,format=2]
by (smt ax_sym_rbox ax_trans_rbox i2_holds i3_holds limit rAgt_i2 rbox_il)

Figure 13: Isabelle/HOL embedding for the Group Action Example (part 4)

All the formulas for Horty's example could be proven in Isabelle/HOL. For this
particular example, the model was composed only of one single moment and the
formulas, which we verified, did not include any temporal operators. However, it
would still be interesting to see if Isabelle/HOL is able to evaluate some formulas
with some temporal operators for a model. Thus we specified a model from
Lorini's paper [22] which he used in order to illustrate the semantics of temporal
STIT logic. We already mentioned that temporal Kripke STIT models are infinite
and this can also be seen in the model which is depicted in figure 14. The
model is composed of five moments but actually, there are infinitely more which

is represented by the dotted lines. In Isabelle/HOL we specified a finite version of

97

9. EXAMPLES APPENDIX . APPENDIX D

this model meaning that we only considered the five moments that are depicted
in the figure and removed the temporal relation for the 'outer’ moments. The
formulation of this model was done in a similar way as for the model of the

previous example.

Figure 14: Temporal Kripke STIT model from Lorini's paper

The world w is considered as the actual world and Lorini mentions three formu-
las which hold for the infinite model, but they also hold for the finite version. For
that finite model M, we have that M, w & [2]p since p holds in every world that
is in agent 2's choice at world w. For agent 1, we have that M,w = [1](pV q)
since either p or ¢ holds in every world in agent 1's choice at world w. Further,
we have that the group, consisting of agents 1 and 2, sees to it that ¢ will be true
at some point in the future. This is formulated as M, w = [Agt]Fq. Those three
formulas could also be verified by the Sledgehammer tool. For the finite model,

we also have that M, w = G(Oq) which could be proved as well.

98

APPENDIX . APPENDIX D .9. EXAMPLES

DEedE - 9 e 50 B® CHEE # @ [[¢/»
ipha_RG._nonserl th (- Appications) B

Oftenma True nitpick [satisfy,user_axioms,show_all,card=16] oops
(* Actual world w : il *)
(* At i1, it holds that [al cstit: (p v q)] ? Proof found*)
[lenma " | al cstit (p v Q) 1 "
nitpick [satisfy,user_axioms,show_all,fornat=2,card=16]
. | using a1_ila actual_wa il_holds_a i2_holds_a i5_holds_a i6_holds_a by force
(* At il, it holds that [a2 cstit: p] ? Proof found*)
[lemma " | a2 cstit (p) Ji "
nitpick [satisfy,user_axioms,show_all,fornat=2,card=16]
using a2_ila actual_wa il_holds_a i2_holds_a i3_holds_a i4_holds_a by force
(* At i1, it holds that [Agt](F q) 7 Proof found*)
lenma " | gstit (F q) |1 "
nitpick [satisfy,user_axioms,show_all,format=2,card=16]
_ | by (metis actual_wa i10_holds_a i9_holds_a rAgt_ila rG_ila rG_iza)
(* At il, it holds that G (O q) ? Proof found*)
lenma ™ | G (D q) 1 *
nitpick [satisfy,user_axioms,show_all,fornat=2,card=161
| by (metis actual_wa i10_holds_a i9_holds_a r6_ila rbox_i9a)

oL s PP vonewBW00

9 Proof state @ Auoupdste _Update Search - oom o

B v Ouput Query Sledgehammer Symbols

5161 @2368/27158) sabelle jsabelle.UTF-8-sabelle) 10 UG 37/801M8 1030 AM

Figure 15: Isabelle/HOL: Model from Lorini's paper

99

9. EXAMPLES APPENDIX . APPENDIX D

100

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

C. Benzmiiller and L. C. Paulson. Quantified Multimodal Logics in Simple
Type Theory. Logica Universalis (Special Issue on Multimodal Logics), 7(1),
pp. 7-20, doi:10.1007 /s11787-012-0052-y. 2013.

C. Benzmiiller, M. Claus, and N. Sultana. Systematic verification of the modal
logic cube in Isabelle/HOL. arXiv:1507.08717, 2015.

C. Benzmiiller, B. Woltzenlogel Paleo . Higher-Order Modal Logics: Automa-
tion and Applications 2015

C. Benzmiiller, D. Gabbay, V. Genovese and D. Rispoli. Embedding and Au-
tomating Conditional Logics in Classical Higher-Order Logic. Annals of Math-
ematics and Artificial Intelligence. 66. 2011.

C. Benzmiiller, A. Farjami, and X. Parent. Faithful semantical embed-
ding of a dyadic deontic logic in HOL. Technical report, CoRR, 2018.
https://arxiv.org/abs/1802.08454.

C. Benzmiiller, X. Parent, and L. van der Torre. A Deontic Logic Reasoning
Infrastructure. 60-69. 10.1007/978-3-319-94418-0_6. 2018.

C. Benzmiiller, X. Parent. 1/O Logic in HOL - First Steps, Computer Science

and Communications, University of Luxembourg, Luxembourg. (2018)

N. Belnap, M. Perloff, and M.Xu, Facing the future: agents and choices in

our indeterminist world, Oxford University Press, New York, 2001.

N. Belnap and M. Perloff. Seeing to it that: A canonical form for agentives.
In Knowledge Representation and Defeasible Reasoning, H. E. Kyburg, R. P.
Loui and G. N. Carlson, eds, pp. 167-190. Kluwer, Boston, 1990.

[10] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for

higher-order logic based on a relational model finder. In International Confer-

ence on Interactive Theorem proving, pages 131-146

[11] J. C. Blanchette and L. C. Paulson. Hammering Away - A User’s Guide to

Sledgehammer for Isabelle/HOL, 2017.

[12] Jan Broerson. A logical analysis of the interaction between ‘obligation-to-do’

and 'knowingly doing’, Deon 2008, vol. 5076, pp. 140-154. Springer, Heidel-
berg (2008)

101

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Jan Broersen. A Complete STIT Logic for Knowledge and Action, and Some
of Its Applications. 47-59. 10.1007/978-3-540-93920-7_4. (2008)

[14] Brian F. Chellas, The Logical Form of Imperatives, Ph.D. thesis, Philosophy
Department, Stanford University, 1969.

[15] Brian F. Chellas, Time and modality in the logic of agency, Studia Log- ica
51, no. 3/4, pp. 485-518. 1992.

[16] A. Church. A formulation of the simple theory of types. In The journal of
symbolic logic, volume 5, pages 56—68. Cambridge Univ Press, 1940.

[17] Henkin, L. A theory of propositional types. Fundamenta Mathematicae 52
(1963), 323-344

[18] A.Herzig, F. Schwarzentruber, Properties in logics of individual and group
agency, Advances in Modal Logic (Vol. 7, pp. 133-149), London: King's Col-
lege, 2008.

[19] John F. Horty, Agency and Deontic Logic, Oxford University Press, 2001.

[20] John F. Horty and Nuel Belnap, The Deliberative Stit: A Study of Action,
Omission, Ability, and Obligation, Journal of Philosophical Logic, Vol. 24, No.
6, pp. 583-644, 1995.

[21] I.L. Humberstone. Two sorts of ‘ought’s. Analysis, 32:8-11. 1971.

[22] E. Lorini. Temporal STIT logic and its application to normative reasoning.
Journal of Applied Non-Classical Logics, 23(4):372-399.

[23] David Makinson and Leendert van der Torre, Input/output logics, Journal of
Philosophical Logic, 29(4), 383-408, (2000).

[24] David Makinson and Leendert van der Torre. 2001. Constraints for input/out-
put logics. Journal of Philosophical Logic 30, 2 (2001), 155-185.

[25] Thomas Nagel. Moral luck. In Mortal questions, 24—38. New York: Cambridge
University (1979)

[26] T. Nipkow, L. C. Paulson and M. Wenzel, Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS, Springer, 2002.

[27] X. Parent and L. van der Torre. The pragmatic oddity in a norm-based se-
mantics. In G. Governatori, editor, Proceedings of the 16th Edition of the
International Conference on Artificial Intelligence and Law, ICAIL '17, pages
169-178, New York, NY, USA, 2017. ACM.

[28] Russell, B. Mathematical logic as based on the theory of types. American
Journal of Mathematics 30 (1908), 222-262.

102

BIBLIOGRAPHY BIBLIOGRAPHY
[29] Xin Sun. Input/Output STIT Logic for Normative Systems, Computer Sci-
ence and Communications, University of Luxembourg, Luxembourg. (2015)

[30] Bernard Williams. Moral Luck. Moral Luck: Philosophical Papers 1973-1980.
Cambridge: Cambridge University Press. pp. 20-39. (1981)

[31] Ming Xu, Axioms for deliberative STIT, Journal of Philosophical Logic, 27,
505-552, (1998)

103

BIBLIOGRAPHY BIBLIOGRAPHY

104

	Abstract
	Contents
	List of Figures
	Introduction
	Context
	Research questions
	Goals and methodology
	Interdisciplinary aspects
	STIT theory
	Structure of the thesis

	The logic
	Input/Output logic
	Semantics
	Proof Theory

	T-STIT I/O logic

	The implementation
	Higher-order logic
	Isabelle/HOL Framework
	Semantical Embedding
	Implementation
	Primitives
	Connectives
	STIT operators
	Temporal Operators
	Relational Properties
	Relational Constraints
	Validity
	Axioms - Horty
	Axioms - Lorini

	Limitations of Isabelle/HOL
	T-STIT I/O logic in HOL
	Simple minded output out1
	Basic output out2
	Applying out2 to formulas of T-STIT logic
	List of examples

	Moral Luck
	Introduction to moral luck
	Ought implies Can
	The four kinds of moral luck
	Constitutive moral luck
	Circumstantial moral luck
	Resultant moral luck
	Causal moral luck

	Relation to our logic
	Example - Drunk Drivers
	Formulation
	Verification

	Example - Murder attempt
	Formulation
	Verification

	Proposed solutions

	Conclusion
	Summary
	Future work

	Appendix A
	Deontic Logic

	Appendix B
	Ought-to-be vs Ought-to-do
	The gambling problem
	Driving Example and Moral luck
	Critical view on STIT theory

	Appendix C
	Temporal STIT logic
	Semantics
	Branching Time and Agent Choice
	Choice function
	Satisfaction in BT+AC structure
	Temporal Kripke STIT Model

	Axioms

	Appendix D
	Examples

