
Deep dive into Interledger:
Understanding the Interledger ecosystem

Lucian Trestioreanu, Cyril Cassagnes, and Radu State

Ripple UBRI @ Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg

29, Avenue JF Kennedy, 1855 Luxembourg, Luxembourg

Abstract. At the technical level, the goal of Interledger is to provide an architecture and a
minimal set of protocols to enable interoperability between any value transfer systems. The
Interledger protocol is a protocol for inter-blockchain payments which can also accommodate
FIAT currencies. To understand how it is possible to achieve this goal, several aspects of the
technology require a deeper analysis. For this reason, in our journey to become knowledgeable
and active contributors we decided to create our own test-bed on our premises. By doing so,
we noticed that some aspects are well documented but we found that others might need more
attention and clarification. Despite a large community effort, the task to keep information on
a fast evolving software ecosystem up-to-date is tedious and not always the main priority for
such a project. The purpose of this tutorial is to guide, through several examples and hands-
on activities, community members who want to engage at different levels. The tutorial
consolidates all the relevant information from generating a simple payment to ultimately
creating a test-bed with the Interledger protocol suite between Ripple and other distributed
ledger technology.

Contents

1 What this document covers 4

2 Who this document is for 4

3 The Interledger community 4

4 The Interledger ecosystem 5
4.1 Main components of a unified payment infrastructure 6
4.2 The Money transfer system . 8

4.2.1 The Bilateral Balance . 9
4.2.2 Payment channels . 10
4.2.3 Settlement . 11
4.2.4 On-Ledger transfers . 11

4.3 The Interledger protocol suite . 11
4.3.1 The Simple Payment Setup Protocol . 12
4.3.2 The Streaming Transport for the Realtime Exchange of Assets and Messages 14
4.3.3 The Interledger Protocol . 16
4.3.4 The Bilateral Transfer Protocol . 21

5 Customer apps for money transfer 24
5.0.1 Moneyd, Moneyd-GUI and SPSP . 24
5.0.2 @Kava-Labs: Switch API . 37

6 The connectors 41

7 The ledgers 52
7.1 The Ripple ledger . 52

7.1.1 Preparation . 52
7.1.2 Start up . 53

7.2 The Ethereum ledger . 59

8 Evaluation and discussion 60

9 Conclusions and future work 60

List of Figures

1 Payment chain . 7
2 Money transfer . 9
3 Money transfer in practice . 12
4 Example 1: SPSP payment . 14
5 STREAM . 15
6 Example 2: STREAM payment . 16
7 STREAM protocol: FSM diagram . 17
8 ILP packet flow . 18
9 Example 3: ILP . 19
10 ILPv4 flow diagram . 20
11 Packet data structure . 21

2

12 Example 4: BTP . 22
13 BTP: the finite state machine diagram . 23
14 The protocol suite . 24
15 SPSP and Moneyd . 25
16 Example 5: XRP payment . 27
17 Example 5: XRP payment, advanced . 29
18 Example 5: Protocol sequence . 29
19 Example 6: Interledger payment . 34
20 Example 6: Inter-Ledger payment, advanced . 35
21 Perspective: connections . 36
22 A connector holding two wallets on two different networks 42
23 Architecture overview . 43
24 The protocol stack in the payment chain . 44
25 Example 7: advanced Interledger payment . 45
26 Example 7: interaction diagram . 45
27 Ecosystem overview . 64
28 Protocols and details . 65

List of Tables

1 A parallel between the Internet and Interledger architectures 12
2 Payment pointer to Endpoint conversion . 13
3 Useful Moneyd commands . 33
4 Useful Rippled server commands . 54

3

1 What this document covers

The scope of this document is to provide a walk-through the Interledger ecosystem starting
with the Interledger Protocol (ILP). This ecosystem encompasses Ripple validating servers, ILP
connectors, Moneyd, Switch API and more. The main goal of the document is to create a
panoramic understanding of the ecosystem, how the main project systems and tools are in-
terconnected together with practical insights into the how-tos of using the various associated
systems and tools.

In our Ripple journey, we needed a comprehensive practical understanding of the general
picture, but the required information was rather sparse, making it difficult to join the different
bits and pieces together in order to form a complete test-bed (private network). Indeed, a
positive indicator is the level of activity of the community to push the vision proposed by Ripple.
Consequently, tutorials and various other resources can become outdated after a few weeks. In
order to overcome this problem, this document consolidates the required documentation to setup
and configure all the different parts. We will provide as much detail as possible in order to build
and deploy a private Ripple network and so an Ethereum network.

The rest of this document is organized as follows. In Section 3, we review the state of
the online documentation and the different community communication channels. In Sections 4,
5, 6 and 7 we remind all the important aspects of Ripple, which we subsequently evaluate in
Section 8. Finally, we wrap-up the document in Section 9.

2 Who this document is for

No prerequisites regarding the Interledger ecosystem are expected from the reader. However,
developers, computer science students or people used to deal with computer programming chal-
lenges should be able to reproduce our setup without struggle.

3 The Interledger community

The community defines different communication channels1 for different purposes in order to
interact, get support and discuss the evolution of the protocol. The main channels are:

• The company website of Ripple2 itself, established in 2012. The website provides all
information related to business activities with RippleNet:

– The Interledger Forum3

– The Ripple Dev Blog4

– The XRP Chat Forum5

– The XRP Ledger Dev Portal6 for the rippled servers (i.e. validators and trackers) and
general concepts7. This is the development portal of the XRP Ledger, built on the
Ripple open-source platform called rippled, which is the reference implementation.
Thanks to their open source code-base they also have a Bug Bounty program8.

1https://interledger.org/community.html, accessed June 2019
2https://ripple.com/, accessed June 2019
3https://forum.interledger.org/, accessed April 2020
4https://ripple.com/dev-blog/, accessed June 2019
5http://www.xrpchat.com/, accessed June 2019
6https://developers.ripple.com/, accessed June 2019
7https://developers.ripple.com/docs.html, accessed June 2019
8https://ripple.com/bug-bounty/, accessed June 2019

4

https://interledger.org/community.html
https://ripple.com/
https://forum.interledger.org/
https://ripple.com/dev-blog/
http://www.xrpchat.com/
https://developers.ripple.com/
https://developers.ripple.com/docs.html
https://ripple.com/bug-bounty/

• The Interledger website9. This website aggregates pointers towards all resources10. Here
is a sample of the resources accessible from the website:

– The Interledger Forum11

– The reference implementation12 for ILP connector

– The Rafiki13 ILP connector, which generally has the same purpose as the reference
implementation but a newer, different architecture

– The Interledger14 community calls.

• The Interledger Whitepaper publication - A Protocol for Interledger Payments - Stefan
Thomas and Evan Schwartz – self-published online15

• Academic publication: Interledger: creating a standard for payments - Hope-Bailie, Adrian
and Thomas, Stefan - Proceedings of the 25th International Conference Companion on
World Wide Web, p. 281–282

• Not peer-reviewed research paper: The Ripple protocol consensus Algorithm and Analysis
of the XRP Ledger Consensus Protocol16

• The Interledger Payments Community Group17 whose scope is broader than Interledger
Protocol (ILP) and aims to create an open, universal payment scheme built on Web stan-
dards.

Regarding practical experimentation with Ripple, Ethereum and Interledger, at the time
of writing, the sources of documentation are sparse, disseminated over different channels like
websites, forums, conference slides. Therefore, we collect and connect a relevant selection of
these sources. A few tutorials on the Medium Interledger blog18 concern setting up and starting
a JavaScript connector, which is the reference implementation of the Interledger specifications
and related protocols. Recently, for the same connector, Strata Labs has provided a quick-start
bundle.

4 The Interledger ecosystem

RippleNet19 aims to create a friction-less experience for sending and receiving money globally.
The company targets institutions (e.g. Banks) of the financial sector. The key benefit of the
solution is modernizing the traditional systems, which are many times expensive and take days
to settle. However, one type of infrastructure won’t fulfill all the requirements. Therefore, they
strongly support the Interledger Protocol (ILP) initiative in order to realize the vision of an
international friction-less payments routing system. In other words, a standard for bridging
diverse financial systems.

9https://interledger.org/, accessed June 2019
10https://interledger.org/community.html, accessed June 2019
11https://forum.interledger.org, accessed June 2019
12https://github.com/interledgerjs, accessed June 2019
13https://github.com/interledgerjs/rafiki, accessed June 2019
14https://interledger.org/calls.html, accessed June 2019
15https://interledger.org/interledger.pdf, accessed June 2019
16https://arxiv.org/abs/1802.07242, accessed June 2019
17https://www.w3.org/community/interledger, accessed June 2019
18https://medium.com/interledger-blog, accessed June 2019
19https://ripple.com/ripplenet/, accessed July 2019

5

https://interledger.org/
https://interledger.org/community.html
https://forum.interledger.org
https://github.com/interledgerjs
https://github.com/interledgerjs/rafiki
https://interledger.org/calls.html
https://interledger.org/interledger.pdf
https://arxiv.org/abs/1802.07242
https://www.w3.org/community/interledger
https://medium.com/interledger-blog
https://ripple.com/ripplenet/

”Ripple has no direct competitors in crypto space, as it is fundamentally different from the
most cryptocurrencies: it’s more centralized, totally currency agnostic and uses probabilistic
voting (and not Proof of Work (PoW)) to confirm transactions.” [1]. This is possible thanks to
the Interledger Protocol (ILP), and because the transaction verification process of RippleNet is
not coupled to a mint process, which in the case of some others cryptocurrencies generates a
direct income.

Nonetheless, besides lower cost and faster settlement than classic banking transactions, one
of the most interesting aspects regarding the Interledger Protocol (ILP) is that it will seamlessly
manage payments when the sender’s currency is different from the receiver’s currency, or when
the sender’s payments network is different from the receiver’s payments network. For instance,
a payment is issued on the fiat currency network using MasterCard, VISA, wire-transfer and
the receiver receives it on an account (also known as a Wallet) created within a payment system
using a crypto-currency. The Interledger Protocol (ILP) offers a means to bridge the crypto-
currencies and fiat to enable interoperable and fast value exchange. Therefore, it is paramount
to underline that Interledger Protocol (ILP) is not a blockchain, a token, nor a central service.

In ILP, money is actually not moved meaning that ILP doesn’t decrease or increase of the
total amount of electronic money in circulation. A connector swapping both currency has an
account for each payment system it supports. Account balances are open and closed between
parties involved in a particular transaction according to transaction instructions of each payment
system involved. The parties are the sender, intermediaries (connectors) and the receiver. This
statement is derived from the original Ripple explanation regarding connectors:

”Interledger connectors do not actually move the money, they rely on plugins for settlement.
Plugins may settle by making a payment on an external payment system like (automated clearing
house) ACH or they may use payments channels over a digital asset ledger like XRP Ledger or
Bitcoin” [2].

In other words, when the receiver’s currency is different from the sender’s currency, also,
no money is leaving the sender’s network and no money enters the receiver’s network. What
happens is that at some point along the chain, some connector with accounts on both payment
systems, keeps the sender’s currency in one wallet (belonging to same ledger as the sender) and
forwards the money towards the receiver, now denominated in the receiver’s currency, from its
other wallet holding that currency on the second ledger - the same ledger with the receiver’s.
The main difference with the classic system running today is that with ILP, the end-to-end
payment becomes completely seamless thanks to the automation of many parts provided by the
Interledger Protocol (ILP) Suite. For example, whereas in the classical banking systems there
is no direct way for the sender to know when the recipient received the money, with ILP this
information is available immediately.

In this section, we are going to quickly go through the payment infrastructure where all
elements belong to one of the following three categories: distributed Ledger, user-level apps for
payment, and connectors. Then, we will discuss the protocols stack and we will go through each
of these components, providing details on each of them.

4.1 Main components of a unified payment infrastructure

From a high level point of view, the infrastructure comprises three main components:

Ledgers. In the context of Interledger, a Ledger is any accounting system that holds user
accounts and balances. It can be linked to cryptocurrencies like Bitcoin, Ethereum, XRP or
classic banks, PayPal and more. Here we are going to use the XRP ledger and the ETH ledger

6

which are distributed ledgers.
The XRP ledger comprises of a network of servers running the rippled software in ”validator”

or ”tracking” mode, and the connectors can plug into it. The servers run the blockchain, record
the user accounts and validate the transactions as they arise from connectors. Figure 1 illustrates
the Ledger layer designed by the early adopters of the Interledger ecosystem. Each Connector
is linked to at least two Ledgers (e.g. Ledger 1 = XRP Ledger and Ledger 2 = Ligthning) with
dedicated plugins.

The user accounts are opened and stored on-ledger. In the case of the XRP ledger, this is
how the related account info looks like at the time of opening the account:

{

"result" : {

"account_id" : "rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj",

"key_type" : "secp256k1",

"master_key" : "NIP SELF EDGY AQUA COME BAWD RING NEAL HINT HACK HEAT ADEN",

"master_seed" : "shjZQ2E3mYzxHf1VzYBJCQHqLvt7Y",

"master_seed_hex" : "925A2949624EF8CFA8A6C6A6E9211B2C",

"public_key" : "aB4XmhndLn6C3sbsp5qK4Cy3GG9mU4KVe3wqWHatuudZX7CMhsvC",

"public_key_hex" :

"024B8511437A9A20E57C21A42A463DEEFE49D1DBE48ECA7FEEDE50048D02D92152",

"status" : "success"

}

}

- ”account id” is the public address of the account, used to identify the account and perform
transactions.
- ”master seed” is the private key of the account. It is ”the lock” of the account and should be
kept safe and private.
- ”master key” can be used to regenerate the account details if needed.
- ”public key” can be used by third parties for verification.

Fig. 1: Payment chain.

ILP connectors. The reference implementation of the connector specification is in JavaScript
and so is the new Rafiki connector. However, other implementations are also written, in Java and
Rust. Figure 1 shows that connectors are bridging all ledgers and their end-users, represented

7

there by the ”sender” and ”receiver”.
Connectors are run by different entities and offer payment inter-operability across the pay-

ment platform to the ”customers” running a ”customer app”. The connectors are the ”service
providers”, or ”market makers”, or ”liquidity providers”, because they provide end-users access
to other payment networks, provide payment routing, exchange and liquidity. In order to do
this, the Connectors make use, among others, of the Interledger Protocol (ILP), and ILP ad-
dresses.

ILP address. In order to be able to identify themselves and their users, and route the payments in
a global network, the need for unique identification in the internet’s IP style has arisen. As such,
unique ILP addresses are being assigned to each Interledger node. In ILP a node can be a sender, a
connector or a receiver. All nodes implement ILP.

On the production network, any ILP address starts with ”g”. Other prefixes can be ”private” ,
”example” , ”peer” , ”self” .. We provide below some ILP address examples. These are thoroughly
explained on the Interledger website [3].

g.scylla - ”scylla” is a connector and ”g.scylla” is its ILP address
g.acme.bob - is the address held by Bob on the ”acme” connector
g.us-fed.ach.0.acmebank.swx0a0.acmecorp.sales.199. ipr.cdfa5e16-e759-4ba3-88f6-8b9dc83c1868.2 - is
a complex, real-life address.

The connectors accept ”dial-up connections” from the ”customer apps”, like an internet
provider would provide internet services by accepting a dial-up connection from a home internet
dial-up modem. As such, they function as Interledger Service Providers (ILSPs). ’An ILSP,
[depicted in Figure 27], is a connector that accepts unsolicited incoming peering requests. It will
have multiple child nodes connect to it and will assign them each an address and then route ILP
packets back and forth for them onto the network. (It’s modelled on the idea of an ISP that
provides customers access to the Internet)’ [4]. When opening payment channels and routing
payments for their customers, depending on the number of customers, a connector could bound
significant amounts of money. They assume some risks and expect to make small profits in
exchange for providing the service.

Customer apps are the third component of the infrastructure, and they provide end-users
access to the Interledger payment system. Examples of customer apps are Moneyd or Switch
API. Figure 1 shows the different layers for end-users, i.e. participants willing to generate a
payment.

4.2 The Money transfer system.

The system of money transfer over ILP involves recording and manipulating money at different
levels:

• The Bilateral Balance kept between two peers

• Settlement on the payment channel (paychan), which involves signing claims that are
recorded on the payment channel opened between the two peers. The claims concern the
transactions between the two peers resulting from adjusting the Bilateral Balance above.

• On-Ledger recorded transactions, resulted, for example, from redeeming the previous claims
submitted on the payment channel. On-Ledger transactions can also be submitted, for
example, by using the Ripple API.

8

4.2.1 The Bilateral Balance.

Two directly connected peers hold a balance between them, for the ILP packets of value they
exchange. The balance is maintained real-time and it can increase or decrease, according to the
value they exchange.

The balance parameters are:

balance: {

maximum: ’20000000000’, //maximum amount that the other party can owe

settleThreshold: ’-50000000’, //the balance value that triggers an automatic

settlement

settleTo: ’0’ //balance value after settlement

}

Concerning Figure 2, if for example at one given moment, according to the total balance,
Alice owes Bob 20 XRP, Alice’s balance with Bob will be -20 XRP, while Bob’s balance with
Alice will be 20. Their balances will offset each other. This balance can be seen in the Moneyd-
GUI (Graphical User Interface). Concerning Figure 2, this is the ”ILP Balance”, and it is a
not-yet-settled balance.

Underlying Ledger (the Ripple XRP main Ledger)

Alice Bob
ILP transactions

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

Fig. 2: The money transfer system.

9

Maximum Balance. Peers can set the maximum balance they are willing to trust (or risk) in
relation to each other in the plugins configuration (for the reference js connectors and Moneyd).

Settle Threshold. The ILP peer balance can be settled manually or automatically. The
connector plugins can be set to automatically settle this balance on the paychan by using the
”settleThreshold” flag. If, for example, Alice has configured a settlement threshold of -15, this
means that she will settle with Bob as soon as she owes him 15 XRP or more.

”In a correctly configured peering the additive inverse (negation) of the settlement threshold
of one peer will be less than the maximum balance of the other peer.” [5]

settleTo. The automatic Settlement process should attempt to re-establish the ILP balance
to this amount. This is done through a paychan claim.

4.2.2 Payment channels.

Payment channels, or in short ”paychans”, are an important feature of nowadays Interledger.
Some distributed ledgers are defining their own payment channel concept. Therefore, it is
important to keep in mind the definition of the Payment Channel agreed in the documentation
of Interledger20.

Payment channels are opened only between direct peers. Settlement, presented in Section
4.2.3, also occurs only between direct Interledger peers. When two peers connect over ILP,
they open a payment channel. Their bilateral transactions will afterwards be carried on to the
paychan. Paychans are a solution for faster, cheaper and more secure transactions, especially
when the ledger involved is slow or expensive.

Below is an explained example of an Interledger paychan details [6]:

{

account: ’rLR52VSZG3wqSrkcpfkSnaKnYoYyPoJJgy’, //the payer’s XRP account address

amount: ’100000’, //size of the payment channel

balance: ’0’, //the amount the payee expects to have already received from the channel

destination: ’rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj’, //the payee’s XRP address

publicKey: ’ED6AF48DB11D68CDF37B22D594DC18B7C1AF2D4157A7F9A487481469A7A7C91AE2’,

//public key used for the channel. Can be the payer’s master key pair. Necessary

to verify and redeem claims.

settleDelay: 3600, //(in seconds) provides time for payee to redeem outstanding claims

sourceTag: 2100406056,

previousAffectingTransactionID:

’8D8FF4F2AD33FAB476CFBD7256D6138419BAAC6EFDAF16ECEEFAC704752B330A’,

previousAffectingTransactionLedgerVersion: 201538

}

When two nodes connect over ILP they negotiate the paychan details according to their
business needs. The main characteristic of a paychan is its size, which is the largest claim
one can sign before they need to add more money. The paychan and its corresponding details,
including size, is recorded on the ledger. This is a guarantee that obligations will be eventually
settled, according to the channel size, with the help of the underlying ledger. The trust invested

20https://github.com/interledger/rfcs/blob/master/0027-interledger-protocol-4/0027-interledger-protocol-
4.md, accessed June 2019

10

https://github.com/interledger/rfcs/blob/master/0027-interledger-protocol-4/0027-interledger-protocol-4.md
https://github.com/interledger/rfcs/blob/master/0027-interledger-protocol-4/0027-interledger-protocol-4.md

in the ledger regarding the paychan is implicit, because the ledger was already trusted when
opening the main accounts.

When transacting on a paychan, the two parties hold a Bilateral Ledger, which records
the transactions performed in-between the two, and the balance. Most of the transactions are
performed off-ledger, thus improving the speed and transaction costs also. Only when the peers
redeem their recorded paychan claims, the specific transaction is recorded on-ledger. On the
payment channel each claim is recorded individually, but they can be later redeemed individually
or in bulk on the ledger [6].

4.2.3 Settlement.

Settlement is a core concept used in ILP, which is part of the larger system of money transfer
over ILP. In practice, settling is encountered for example while setting up plugins or in relation
to payment channels. The main concept, illustrated in Figure 2 [7], in practice usually involves
a system of Interledger balances and paychan claims.

In relation to paychans, settlement involves signing a claim for the money owed. Claims do
not need to be directly submitted to the ledger, but for the case of the Ripple ledger which is
fast and cheap, they can [8, 6]. The process will be reflected in the paychan balance in Figure 2.
Multiple claims can be signed on the paychan, and the paychan balance will update accordingly.
Note that at this point, no amount or transaction has been yet recorded on-ledger (except the
initial channel creation and funding), so the ledger accounts for Alice and Bob still show the
same balances as before (except for cheap and fast ledgers like the Ripple ledger which makes
it possible to submit claims individually if desired, to make the money available faster).

Claims can be redeemed out of the paychan and into the user ledger account in bulk or
individually. The paychan can be closed or reused.

4.2.4 On-Ledger transfers.

On-ledger transfers can be initiated in different ways. The most relevant in ILP is redeeming
the claims submitted on the paychan. Only at this point, the money will show up in the user
wallet. Another possible way to initiate an on-ledger transaction is for example directly using
the Ripple-API.

Note: If Alice and Bob are end-users, or customers, running an ILP customer module to connect to
ILSPs (connectors), the situation presented in Figure 2 will never happen, because Alice and Bob can
never have a direct peering and settlement relationship. Their peering and settlement relationships
are with their direct peers, respectively their parent connectors. So in this case, ”Bob” should be in
fact a ”Connector” such that Figure 2 is correct with respect to real-life situations. As such, a real-life
scenario would look in fact as shown in Figure 3: If Alice wants to send Bob 10 USD, the money will
end up at Connector 1 and she will settle with Connector 1. In its turn, Connector 1 will pay 10 USD
to Connector 2. Connectors 1 and 2 will settle between each other. Further, Connector 2 will forward
the 10 dollars to Bob, and settle with Bob. By means of this chain, Alice has in fact sent Bob 10
USD.

4.3 The Interledger protocol suite

The Interledger architecture is often compared with the Internet architecture, as in Table 1. As
a matter of fact, they adopt the same layered approach [9]. It involves multiple protocols, but
the most important are BTP, ILP, STREAM and SPSP, which are presented below.

11

ILP transactions

Underlying Ledger (the Ripple XRP main Ledger)

Alice Connector 1ILP transactions

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

Connector 2 Bob

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

ILP transactions

Redeem claims

Record claims

Paychan

Paychan balance

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Fig. 3: The money transfer system in practice.

Table 1: A parallel between the Internet and Interledger architectures. [9]

Internet architecture Interledger architecture

L5 Application HTTP SMTP NTP L5 Application SPSP HTTP-ILP Paytorrent
L4 Transport TCP UDP QUIC L4 Transport IPR PSK STREAM
L3 Internetwork IP L3 Interledger ILP
L2 Network PPP Ethernet WiFi L2 Link BTP
L1 Physical Copper Fiber Radio L1 Ledger Blockchains, Central Ledgers

4.3.1 The Simple Payment Setup Protocol

The Simple Payment Setup Protocol (SPSP) is a protocol for exchanging the required infor-
mation in order to set-up an Interledger payment between a payee and a payer. It is the most
widely used Interledger Application Layer Protocol today [10]. SPSP makes use of the STREAM
protocol to generate the ILP condition and for data encoding.

Because STREAM does not specify how to exchange the required payment details, some other
protocol and app have to implement this. SPSP is a protocol that uses HTTP for exchanging
payment details between the sender and the receiver, such as the ILP address or shared secret
[11]. In other words, SPSP is a means for exchanging the server details needed for a client
to establish a STREAM connection. It is intended for use by end-user applications, such as a
digital wallet with a user interface to initiate payments. The SPSP Clients and Servers make use
of the STREAM module in order to further process the ILP payments. SPSP messages MUST
be exchanged over HTTPS.

Payment pointers can be used as a persistent identifier on Interledger. They are a stan-
dardized identifier for accounts that are able to receive payments [12]. Payment pointers can
also be used as a unique identifier for an invoice to be paid or for a pull payment agreement.
The main characteristics of the payment pointers are:

• Unique and Easily Recognizable

• Simple Transcription: It should be easy to exchange the payment pointer details with a
payee

12

• Flexible: avoid being strongly connected to a specific protocol

• Widely Usable: should be easy to implement and use.

The syntax is: ”$ host path-abempty” [12].

The SPSP Endpoint is a URL used by the SPSP Client to connect to the SPSP Server,
obtain information about it, and set up payments. The payment pointer automatically resolves
to the SPSP endpoint by means of a simple algorithm. If ”path-abempty” is not specified, it is
replaced with ”/.well-known/pay” [12]. Table 2 also explains how a Payment pointer is resolved
to an SPSP endpoint.

Table 2: Payment pointer to Endpoint conversion. [12]

Payment pointer SPSP endpoint

$example.com https://example.com/.well-known/pay
$example.com/invoices/12345 https://example.com/invoices/12345
$bob.example.com https://bob.example.com/.well-known/pay
$example.com/bob https://example.com/bob

Technically, payments could be performed without the use of payment pointers / SPSP
endpoints. However, for ease of use, for the practical reasons explained above, the payment
pointers and SPSP have been introduced on top of the existing technology.

In conclusion, there are multiple forms of identification, associated to different levels of the
system:

• Ripple account address or Ripple wallet address, used at ledger level to identify your user
account holding the money on the ledger. It is analog to your bank account number

• ILP address, used at ILP level to uniquely identify your ILP node in the global network.
Could be compared to an IP address.

• SPSP endpoint, used by the SPSP protocol/app to set-up an ILP payment

• payment pointer used by humans as an easy-to-handle unique payment identifier, in the
same fashion as an email account address. It is also used in association with SPSP.

Example 1. Concerning the Figure 4:

- Suppose each Alice and Bob have their own accounts in XRP on the XRP Ledger.
- Alice wants to pay Bob in XRP.
- Bob already has his own payment pointer, $example.com/bob, which he easily shares to Alice
verbally. This information is easy for Alice to remember and use. (step (1) in Figure 4)
- Supposing the machine already set-up, at her computer, Alice starts up Moneyd, and is able to
pay Bob just by introducing his payment pointer address ”$example.com/bob” and the amount
paid in Moneyd-GUI, or from a terminal, by using a single line:

”ilp-spsp send –receiver $example.com/bob –amount 100”

Behind the scenes:

13

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP serverSPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer

4. Interledger payment

1. Bob shares his payment pointer

Fig. 4: Example 1: SPSP payment.

Alice’s SPSP client:
- resolves the payment pointer ”$example.com/bob” to https://example.com/bob
- connects over HTTPS to Bob’s SPSP server, at the address ”https://example.com/bob” (2)
- queries the SPSP server for Bob’s ILP address and a unique secret (2)
Bob’s SPSP server sends Bob’s ILP address and a secret to Alice’s SPSP client (3)
Using this information, Alice’s SPSP client starts an ILP payment to Bob over Interledger (4).

The usage of public endpoints involves employing HTTP, TLS, DNS, and the Certificate
Authority system for the HTTPS request that SPSP makes. However, the alternatives leave
much to be desired. Few people outside of the cryptocurrency world want cryptographic keys as
identifiers and, as of today, there is no alternative for establishing an encrypted connection from
a human-readable identifier that is anywhere nearly as widely supported as DNS and TLS [10].

4.3.2 The Streaming Transport for the Realtime Exchange of Assets and Messages

The Streaming Transport for the Realtime Exchange of Assets and Messages (STREAM)
is a Transport Protocol working with ILPv4. Application level protocols like SPSP make use of
the STREAM protocol to send money. STREAM splits payments into packets, sends them over
ILP, and reassembles them automatically. It can be used to stream micropayments or larger

14

discrete payments and messages. It is a successor of the Pre-Shared Key V2 (PSK2) Transport
Protocol and is inspired by the QUIC Internet Transport Protocol.

Fig. 5: STREAM is a logical, bidirectional channel over ILP. [9]

As illustrated in Figure 5 with green, a STREAM connection establishes a two-ways, virtual
channel of data and money between the payer and payee. STREAM packets are encoded,
encrypted, and sent as the data field in ILP Prepare (type 12 ILP packet), Fulfill (type 13
ILP packet), or Reject packets (type 14 ILP packet). The logical connection is used to send
authenticated ILP packets between the ”client” and ”server” (the blue connections in Figure 5).
Either the payer or the payee can be the server or the client. STREAM provides authentication,
encryption, flow control (ensure one party doesn’t send more than the other can process), and
congestion control (avoid flooding the network over its processing power).

STREAM servers are waiting for clients to connect over ILP. The servers connect to a spe-
cific plugin on the local machine and wait for the ILP packets. Usually, ilp-plugin is used to
connect to Moneyd. The server generates a unique ILP address and shared secret, which will
be used to encrypt data and generate fulfillments for ILP packets in relation to a specific client.
The request for the address and secret, and the response, are not handled by STREAM, but
for example by SPSP. After a client has the ILP address and secret (obtained with SPSP for
example), it can connect to the STREAM server by using these credentials [13, 14].

Example 2. We now provide a more advanced explanation regarding the same situation pre-
sented in Example 1. We will refer to Figure 6, and extend the explanation from Example
1:

• Alice’s SPSP client:

– resolves the payment pointer ”$example.com/bob” to https://example.com/bob

– connects over HTTP to Bob’s SPSP server at address https://example.com/bob (2)

– queries the SPSP server for Bob’s ILP address and a unique secret (2). The SPSP
server forwards the request to the STREAM server module and fetches the answer

• Bob’s SPSP server sends Bob’s ILP address and the secret to Alice’s SPSP client (3)

• Alice’s SPSP client passes the credentials to the STREAM client module which initiates
a logical STREAM connection over ILP, using the ILP modules (4)

• Bob receives his payment over the Interledger (5).

Further details on the STREAM protocol are illustrated in the finite state machine diagram
of the STREAM protocol, presented in Figure 7.

15

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query SPSP server
SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer

5. Interledger payment

1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module ILP module

Fig. 6: Example 2: STREAM payment.

4.3.3 The Interledger Protocol

The Interledger Protocol (ILP), currently at version 4, is the main protocol facilitating the Inter
Ledger money transfers. It provides a solution to route payments across disconnected ledgers
while minimizing the sender and receiver’s risk of losing funds. What makes it different from
previous versions is that it is optimized for sending many low value packets:

”We talked about the idea of streaming payments, where if you make payments so efficient
that you could pay for like a milliliter of beer or a second of video. That’s the way we think
about efficiency of payments.”[15]

It is made for payment channels, which means faster and cheaper payments, while also
accommodating any type of ledger.

ILPv4 involves Hashed Time Lock Agreements (HTLA) [17], and makes use of three packet
types:

• Prepare, corresponding to request, with the following fields:

– destination - ILP address,

– amount - UInt64,

– condition - UInt256,

– expiration - timestamp,

16

Fig. 7: STREAM protocol: FSM diagram.

17

Fig. 8: ILP packet flow. [16]

– end-to-end (sender-receiver) data - OCTET STRING.

Example of an ilp-prepare packet:

{

amount= 69368000,

executionCondition= fHII9adb3JY3D5drSNSoquLTIUJJhNLMeiiADnW4li0=,

expiresAt= 2019-06-19T11:04:18.149Z,

destination= g.conn1.ilsp_clients.mduni.local.viby9ZjztwCVMtptFjaueqsdlIxWSUba

y7Jo3BxJyGc.elrqFEKZEc8BMcZ4PDUiPEAF,

data= t6lmRiiFZecXhltYNsnyPYSgPld+Itmn+NefM5ytnFJiFDuMieyF9b2vB

o2HPiNm34GpCBlU/HoGaCAsOQ==

}

• Fulfill, corresponding to response, and carrying the following fields:

– execution condition fulfillment - UInt256,
This is the proof that the receiver has been paid, so the fulfill packets are relayed back
by the connectors from the receiver to the sender. It consists of a simple pre-image
of a hash, and only the receiver can know this information.

– end-to-end (sender-receiver) data - OCTET STRING.

The components of the prepare and fulfill packets concerning HTLA are:
- amount, time (expiration), and condition for Prepare, and
- the execution condition fulfillment (the hash) for the Fulfill packet, which must be re-
ceived before expiration. This implies that the machines involved in the process should be
time-synchronized. This is not an absolute enforcement, but any time offsets will packet
rejection chances.

• Reject, corresponding generally to error messages. They can be returned either by the
receiver or the connectors in specific conditions and consist of:

– a standardized error code,

– triggered by: - ILP address;
is the identifier of the participant that originally generated the error,

– user-readable error message - UTF8String,

– machine readable error data - OCTET STRING.

The connectors forward the prepare packets from the sender to the receiver, and relay back
the response or the reject from the receiver to the sender, as shown in Figure 8. As such, ILP v4
uses a chaining of HTLAs to achieve an end-to-end transfer [17]. In ILP v4, HTLAs are mainly

18

supported over Simple Payment Channels. Simple Payment Channels are generally supported
by today’s major blockchains like BTC, ETH, XRP,.. [18, 19].

Concerning Figure 8 and ILP v4: even if the original ILP packet is prepared by the Sender
and addressed for the Receiver (end-to-end), the transfer from the Sender to the Receiver will
be in fact a chaining of transfers between the directly connected (and trusted) peers. Each
pair of directly connected peers generally uses a dedicated, separate Payment Channel to settle
their obligations [17, 18, 19]. Other means are possible [19], but not really used or supported [18].

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP server

SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer
1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module
Moneyd

ILP module
Moneyd

Alice’s ILP address Bob’s ILP address

INTERLEDGER

Money (XRP)

Connector

5. ILP transfer

Fig. 9: Example 3: ILP.

Example 3. We will further expand on the Examples 1 and 2, using the Figure 9.

• Alice’s SPSP client:

19

Fig. 10: ILPv4 flow diagram.

20

– resolves the payment pointer ”$example.com/bob” to https://example.com/bob

– connects over HTTP to Bob’s SPSP server at address https://example.com/bob (2)

– queries the SPSP server for Bob’s ILP address and a unique secret (2). The SPSP
server forwards the request to the STREAM server module and fetches the answer

• Bob’s SPSP server sends Bob’s ILP address and the secret to Alice’s SPSP client (3)

• Alice’s SPSP client passes the credentials to the STREAM client module which initiates
a logical STREAM connection over ILP, using the ILP module, in our case, Moneyd (4)

• The ILP module, Moneyd, sends the ILP packets corresponding to the STREAM virtual
connection towards its upstream parent connector, which further routes them to its child,
Bob’s Moneyd module (5).

The STREAM module is able to break the payment into multiple packets, which would be
sent over ILP using prepare-fulfill-error packets. The STREAM module at the receiver’s end
will finally reassemble the payment.

Wrapping-up ILP, Figure 10 presents the finite state machine diagram of an ILP packet and
the protocol flow chart.

4.3.4 The Bilateral Transfer Protocol

The Bilateral Transfer Protocol (BTP) emerged as a necessity, due to a combination of ILP
goals (fast and cheap transactions) and the realities of some ledgers (expensive and/or slow
settlements). With BTP, two parties can send funds directly to each other, up to a maximum
amount they are willing to trust before settlement. BTP is used between connectors (Moneyd
included) for transferring ILP packets and messages necessary to exchange payments, settlement,
configuration and routing information.

BTP packet

ILP packet

STREAM packet

Application packet

Fig. 11: Packet data structure. [20, 21]

As shown in Figure 11, BTP is a ”carrier” for ILP packets and as such, for other protocols
like STREAM for example. BTP establishes the ”link” between connectors, on top of which the
ILP packets are being sent. When setting-up the connector plugins, one also generally sets-up a
BTP connection. The data is sent over web socket connections. One of the peers acts as a server
while the other is connected as a client. It implements a Bilateral Ledger, where the two peers
keep track of their (yet) un-settled accounts and balances. The Bilateral Ledger, a micro-ledger

21

kept by the two peers in-between them, is not to be confused with the Underlying Ledger - the
main ledger where all accounts and transactions are stored, e.g. the Ripple ledger. With regards
to Figure 14, it is to be noted that ILP can still work without BTP [22].

With regards to the current state of BTP, the following post by Ewan Schwartz is worth
mentioning: ”BTP is a binary request/response protocol implemented over WebSockets. It orig-
inally included message types for Prepare, Fulfill, Reject and Transfer, but BTP 2.0, which is
used today, stripped out nearly everything except request/response semantics, authentication, and
”sub-protocol” naming”. [10]

Example 4. We can now complete our diagrams presented in Examples 1, 2 and 3 with the
BTP protocol, which is illustrated in Figure 12.

In order to connect to Interledger, each Alice and Bob’s ILP modules establish a BTP
connection over wss with the parent connector. As long as they are connected to Interledger,
this connection will be live. The ILP packets will travel over BTP. While opening the BTP
connection, both of them also negotiate a unique paychan with their direct peer, the connector.

It is to be noted that while we made this choice for clarity, the order we presented SPSP,
STREAM, ILP and BTP is not necessarily the real temporal order of events. This will be further
explained in Examples 5, 6, and 7.

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP server

SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer
1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module
Moneyd

ILP module
Moneyd

Alice’s ILP address Bob’s ILP address

INTERLEDGER

Money (XRP)

Connector

5. ILP transfer

Fig. 12: Example 4: BTP. [20, 21]

22

Fig. 13: BTP: the finite state machine diagram.

The finite state machine of the BTP protocol is presented in Figure 13.
The relationship between protocols, and especially the STREAM protocol, can be best un-

23

derstood by referring to Figure 28 at the end and reading the thorough explanations provided
by [20, 21].

Other protocols examples are the Interledger Dynamic Configuration Protocol (ILDCP),
or the Route Broadcasting Protocol (RBP). DCP is built over ILP and used to exchange
node information such as ILP address, while RBP is used to transfer routing information. Both
use the data field in the ILP packets [20].

In the examples that follow, we are going to make use of BTP, ILP, STREAM and SPSP, a
protocol suite also depicted in Figure 14.

Application

Transport

Interledger

Link

Ledger

SPSP

STREAM

...

ILPv4

...

BTP ...

... ...

Fig. 14: The protocol suite. [16]

5 Customer apps for money transfer

5.0.1 A customer environment comprising Moneyd, Moneyd-GUI and SPSP client/server.

Moneyd: ’Moneyd provides a quick on-ramp as the ”home router” of the Interledger, giving
apps on your computer access to send and receive money. Although Moneyd can just as easily
connect to the production Interledger, it is not currently designed for heavy production use, so it
lacks features like budgeting that would let you give apps different spending limits and permissions
levels.’ [23]

Moneyd connects to the Interledger and sends and receives ILP packets for you. It is a
simplified, end-user version of a connector, and as such, it will not send or receive routes as a
regular connector does. Apps running on your machine that require access to ILP will connect
to the Interledger through Moneyd.

When you fire-up Moneyd:

• Moneyd loads ˜/.moneyd.json and instantiates an ILP Connector

• The connector (i.e. ”Moneyd”) opens a web socket connection to its parent connector
(configured in ˜/.moneyd.json) and creates a payment channel, which can be in XRP,
Ethereum,.. depending on the uplink connection

24

• The connector (i.e. ”Moneyd”) listens on the local port 7768 to process ILP payments.
All your local apps (like SPSP) will connect here for ILP.

To install Moneyd for XRP21, just type the following into the terminal:

npm install -g moneyd moneyd-uplink-xrp

The best way to understand it is to configure it in advanced mode and start in DEBUG
mode.

Configure it using: ’moneyd xrp:configure –advanced’. A configuration file will be created
in the user root folder, as ˜/.moneyd.json. If needed, this file can be inspected and manually
updated afterwards.

Start in DEBUG mode using: ’DEBUG=* moneyd xrp:start –admin-api-port 7769’. The op-
tion ’–admin-api-port 7769’ will open the port 7769 as Moneyd admin port, such that Moneyd-
GUI can connect to it and administration can be performed in a web browser.

Moneyd-GUI is a frontend for Moneyd (or the reference js connector), which displays
statistics, sends and receives money, and helps with troubleshooting 22. Running on the same
machine with Moneyd or with the js reference Connector, it can be installed with23:
npm install -g moneyd-gui.
It will connect automatically to the port above, after being started with:
’npm start’ in ’/home/user/moneyd-gui’.
In a web browser, it can be accessed by default at http://127.0.0.1/7770.

SPSP: Another business case illustrating the way SPSP and Moneyd/ILP are working to-
gether (because Moneyd is implementing ILP for settlement) was well illustrated in Figure 15.
Both Alice’s and BigCompany’s SPSP client and server are connected to ILP through Moneyd.
Alice’s SPSP client connects to BigCompany’s SPSP server which exposes an HTTPS endpoint
abstracted as a payment pointer [24].

Fig. 15: SPSP and Moneyd [24]. Between the two Moneyd instances there are usually multiple
connectors providing the ILP service.

The protocol follows like below [24]:

21https://github.com/interledgerjs/moneyd, accessed June 2019
22https://medium.com/interledger-blog/use-interledger-with-moneyd-gui-21dee0dc8ba0, accessed June 2019
23https://github.com/interledgerjs/moneyd-gui, accessed June 2019

25

http://127.0.0.1/7770
https://github.com/interledgerjs/moneyd
https://medium.com/interledger-blog/use-interledger-with-moneyd-gui-21dee0dc8ba0
https://github.com/interledgerjs/moneyd-gui

• Alice queries her customer payment pointer (1), and

• receives the ILP destination account and a shared secret (2)

• Using the data obtained, Alice’s SPSP client starts a STREAM connection and sends the
money to BigCompany (3).

’The SPSP module calls the Interledger module with the address and other parameters in
the Interledger packet to send a payment. The Interledger module would send a transfer to
the next connector or destination account along with the Interledger packet and according to
the parameters given. The transfer and Interledger packet would be received by the next host’s
Interledger module and handled by each successive connector and finally the destination’s SPSP
module’ [25].

As a side note, SPSP first started with PSK and was later upgraded to STREAM.

Using the below procedure, one can send and receive money by writing a single line in the
terminal. An SPSP server24 and a client25 should be installed on the recipient’s and sender’s
machines, respectively. They work in pair and have as pre-requisite Moneyd but can also work
alongside the reference connector.

The following lines are provided for the case of a private independent network using IPs as
payment address identifiers. For real-life situations where addresses in the form of ’$sharafian.com’
can be provided, the original github guidelines can be used.

In order to transfer money, we should first have a receiver address, i.e. start the server
which listens for an incoming payment. Using ’DEBUG’ will provide more info on what happens
behind.

SPSP ’server’ listening for an incoming transfer
Install the server with:
’DEBUG=* ilp-spsp-server –localtunnel false –port 6000’
’–localtunnel false’ : forces the use of IP as the address instead of creating a tunnel and obtaining
an address like ’$mysubdomain.localtunnel.me’ (analogue to ”$example.com/bob”).
’–port 6000’ : the server will listen for incoming payment from an SPSP ’client’ on this port.

An SPSP ’client’ sending money to the server
The money can be then sent by another user/machine having a similar setup, with:
’DEBUG=ilp* ilp-spsp send –receiver http://192.168.1.116:6000 –amount 100’.
Where ’http://192.168.1.116:6000’ is the receiving server’s IP and port.

To conclude this section we provide the following very nice explanation on SPSP, ILP,
Moneyd by Ben Sharafian on the ILP forum, which we feel helps consolidate and clarify the
larger picture:

In Interledger, the sender and receiver don’t have any settlement relationship nor do they
have any trust relationship.

The only relationship is to your direct peer. If you’re connecting to Interledger through
Moneyd, we would call this peer your ”upstream connector” or ”uplink”. When you send packets
through your upstream connector, Moneyd keeps track of the amounts and settles them.

24https://github.com/interledgerjs/ilp-spsp-server, accessed June 2019
25https://github.com/interledgerjs/ilp-spsp, accessed June 2019

26

https://github.com/interledgerjs/ilp-spsp-server
https://github.com/interledgerjs/ilp-spsp

SPSP isn’t doing any of the tracking for settlements, that all lies at the Interledger layer.
This lets you save a lot of headache when implementing high level protocols: settlement is always
abstracted away.

Moneyd does settle on-ledger. The configuration that Moneyd uses to connect to its upstream
connector determines the currency that this happens in. (for XRP, moneyd-uplink-xrp).

The currency that SPSP pays in depends on what currency is used by the Moneyd it connects
to. If you use a Moneyd uplink in XRP, then the currency will be XRP [26].

Example 5. XRP payment using Moneyd, SPSP and a connector.

We consider Figure 16 a good starting example because while involving a relatively simple
structure, it still illustrates the main structural components of the Interledger ecosystem:

• A ledger, i.e. the Ripple ledger

• A connector

• Customers:

– Alice, operating Machine A with Moneyd-XRP and SPSP

– Bob, operating Machine B with Moneyd-XRP and SPSP

• The main protocols: BTP, ILP, STREAM and SPSP.

Bob
Machine B

using Bob’s XRP account

Alice
Machine A

using Alice’s XRP account

XRP ledger

Connector
Machine C

rate backend:
« one-to-one »

SPSP

BTP+ws BTP+wsws(s)

Fig. 16: Example 5: XRP payment.

Alice, Bob and the Connector are connecting to the ledger over a web socket connection
to settle their obligations and exchange ledger-related data with the ledger. In order to access
ILP, Alice and Bob are also connecting to the Connector through BTP+ws connections. The
Connector works like an ILP and payment bridge between them, and because everything happens
in XRP, the exchange rate applied is 1, and the backend used by the connector is ”one-to-one”.

27

Further, Alice and Bob can initiate exchanges of value, i.e. XRP payments, in this case by using
SPSP.

The case is detailed in Figure 17, where we can identify:

• The Interledger Service Provider (ILSP) machine, containing:

– The connector, where we can identify:

∗ The connector core

∗ Plugins

∗ The rate backend, set as ”one-to-one”

– Moneyd-GUI

– A web browser connecting locally to Moneyd-GUI as a visual admin interface on
http://127.0.0.1:7770

• The XRP ledger, accessible over a web socket connection, usually at port 51233

• Alice’s machine, comprising:

– Moneyd-XRP:

∗ Moneyd-core

∗ XRP plugin

∗ XRP uplink

– Visual admin interface:

∗ Moneyd-GUI

∗ Web browser

– SPSP client and server

• Bob’s machine, with a similar setup.

Using Moneyd-XRP, Alice ”dials-up” to, and opens a paychan with the Connector, thus en-
abling ILP access on her machine. The connection with the Connector is made over BTP+ws.
Between other functions, BTP acts as a ”carrier” for ILP. The paychan is recorded on the ledger.
Alice is able to administer Moneyd through a web browser, using Moneyd-GUI. The SPSP app
running on her machine will get ILP access through Moneyd. Bob’s situation is similar.

The ledger holds Alice’s, Bob’s and ILSP’s XRP accounts, and the paychans corresponding
to the pairs Alice - ILSP (Connector) and Bob - ILSP (Connector).

When Alice sends a payment addressed to Bob, what happens is that the connector pays
Bob on behalf of Alice (if Bob is able to provide the payment condition), and this transaction is
recorded between the Connector and Bob. Further, the Connector presents to Alice the payment
condition he just got from Bob, and Alice pays the Connector in exchange. This transaction is
also recorded between Alice and the Connector. The value has moved from Alice to Bob, and
in turn, two transactions have been recorded: Alice to Connector, and the Connector to Bob.
Further, it is up to these pairs (Alice-Connector and Connector-Bob) to settle these transactions
according to conditions agreed between each other (using the pay channels).

From a technical point of view, the sequence is illustrated in Figure 18, and follows like
below:

28

“Moneyd XRP” “Moneyd XRP”

Moneyd core

Connector core

XRP uplink XRP uplink

XRP plugin XRP plugin

Alice: 192.168.1.116 Bob: 192.168.1.35

XRP plugin

Js connector
ILP-plugin-miniaccounts Rates backend:

one-to-one

Alice <-> connector:
XRP pay channel
BTP+ws, port 7442

Bob <-> connector:
XRP pay channel
BTP+ws, port 7442

SPSP server
port 6000

SPSP client

Moneyd GUI

Moneyd GUI

Moneyd core

SPSP client

SPSP server
port 6000

Alice PAYS Bob

Bob PAYS Alice

Web browser
localhost:7770

Web browser
localhost:7770

7769

7769

ILSP

Moneyd-GUI

Web browser
localhost:7770

ws://192.168.1.98: 51233

192.168.1.146

XRP ledger

Alice XRP account

Bob XRP account

ILSP XRP account

Alice – ILSP
paychan

Bob – ILSP
paychan

Fig. 17: Example 5: XRP payment, advanced.

Paychan using BTP

Virtual STREAM initiated between Alice and Bob over ILP, using ILP address and secret

MoneydMoneyd
SPSP

STREAM
module

STREAM
module

SPSP

Paychan using BTP

SPSP server connects to Moneyd

Alice’s SPSP client queries Bob’s SPSP server for the ILP address and a secret

Alice’s SPSP client receives ILP address and secret from Bob’s SPSP server

ILP Prepare
ILP Fulfill

STREAM over ILP

STREAM finished. End balance on paychan.

ALICE BOB

SPSP client app SPSP server app
Connector

btp
port
7768

btp
port
7768

btp
7442

btp
7442

SPSP client connects to Moneyd

Fig. 18: Example 5: Protocol sequence. BTP, ILP, STREAM and SPSP are being used.

• Alice and Bod start-up and connect their Moneyd instances to the ILP connector. Each
of them opens dedicated payment channels with the connector. Their transactions will be
performed on the payment channels through Moneyd and ILP.

29

This is an example of a BTP packet sent between Moneyd and the Connector in order to
open a paychan:

btpPacket: { type: 6,

requestId: 1890145753,

data: { protocolData: [[Object], [Object], [Object]] } } ; data: {

protocolData:

[{ protocolName: ’channel’,

contentType: 0,

data:

<Buffer 15 8b 1c 3d a9 97 e5 b6 af 10 2d 90 51 b2 cd 3d 8c 58 96 55 02

ec dc 3a 07 02 f9 2c b7 88 61 1b> },

{ protocolName: ’channel_signature’,

contentType: 0,

data:

<Buffer 62 68 63 4c af b5 72 0f 2f 38 58 4a 81 03 cc 68 5a 62 ef 9a 43

91 80 73 40 31 03 8f 49 f8 f5 ae 88 64 fd 7f 14 39 39 d7 5b c3 a2 17

e1 7f c7 d2 49 a4 ... > },

{ protocolName: ’fund_channel’,

contentType: 1,

data:

<Buffer 72 70 4e 33 55 50 6a 59 61 45 72 74 34 52 57 34 67 41 69 71 75

63 4d 43 66 4c 35 6e 4a 4a 43 34 59 7a> }] } ;

• Bob starts his SPSP server application, which connects to his local Moneyd instance and
starts listening for incoming connections from an SPSP client.

• Using her SPSP client, Alice queries the HTTP payment pointer presented by Bob.

• Alice receives an ILP address to use as destination account for the transaction and a shared
secret.

• Using this information, Alice pays Bob by starting a STREAM payment over ILP. The
ILP service is provided by Moneyd. The shared secret is used by STREAM to authenticate
and encrypt multiple packets, as well as to generate the conditions and fulfillments.

• STREAM divides the larger payments into packets and reassembles them. The packets
are encapsulated inside, and sent along with, ILP packets in the data field, and will be
retrieved by the STREAM endpoint. During the STREAM connection, one of the parties
acts as a client (the initiator) and the other acts as a server (the one accepting the con-
nection). As STREAM is implemented by the SPSP application, the STREAM server will
be already listening for a STREAM client connection.

Below is an example of a STREAM prepare packet carried by an ILP packet sent over
BTP:

ILP-PLUGIN-BTP: handleIncomigWsMessage: binaryMessage:

<Buffer 06 1f 9d 97 68 81 e9 01 01 03 69 6c 70 00 81 e0 0c 81 dd 00 00 00 00 95

02 f9 00 32 30 31 39 30 36 31 39 30 39 34 33 30 31 35 30 39 45 04 2b e1 cd

98 ... >

ILP-PLUGIN-BTP: handle incoming packet from: ; btpPacket: { type: 6,

requestId: 530421608,

30

data: { protocolData: [[Object]] } } ; data: { protocolData:

[{ protocolName: ’ilp’,

contentType: 0,

data:

<Buffer 0c 81 dd 00 00 00 00 95 02 f9 00 32 30 31 39 30 36 31 39 30 39

34 33 30 31 35 30 39 45 04 2b e1 cd 98 68 71 95 50 c5 de 4a f2 1c f1

eb 4e 79 6e 95 cb ... > }] } ;

ilp-plugin-xrp-paychan: received btp packet. type=TYPE_MESSAGE

requestId=530421608 info=ilp-prepare

ILP_PACKET: binary: <Buffer 0c 81 dd 00 00 00 00 95 02 f9 00 32 30 31 39 30 36

31 39 30 39 34 33 30 31 35 30 39 45 04 2b e1 cd 98 68 71 95 50 c5 de 4a f2

1c f1 eb 4e 79 6e 95 cb ... >

ILP_PACKET: type: 12

ILP_PACKET: contents: <Buffer 00 00 00 00 95 02 f9 00 32 30 31 39 30 36 31 39 30

39 34 33 30 31 35 30 39 45 04 2b e1 cd 98 68 71 95 50 c5 de 4a f2 1c f1 eb

4e 79 6e 95 cb d8 f6 5a ... >

ILP_PACKET: deserializeIlpPrepare:

{

amount= 2500000000 ,

executionCondition= RQQr4c2YaHGVUMXeSvIc8etOeW6Vy9j2WlDZYKIZUbM= ,

expiresAt= 2019-06-19T09:43:01.509Z ,

destination= g.conn1.ilsp_clients.mduni.local.NL8f2khL-VmasfzfA-

w_ds5F15J063Tn4oxDwoXTjGw.gHvuhB1r5GN0UQikoCGahPsj ,

data= YFwVZXQYK7pDTrprLcFOYbyt9qGQm+0APnOaBw5w5iUvvEggyB4Le0J8Bjbav7FKGyJ6Ih95xT8

lss4BCQ==

}

The first byte ”06” of the BTP packet is the BTP packet type, 6 in this case.
The next 4 bytes ”1f 9d 97 68”, are the request id in hex - 530421608 in this case.
We can also infer from the ILP-packet header that ”0c” is the packet type - 12 in this case,
and from the body, that ”95 02 f9 00” represents the amount = 2500000000.
This confirms the packet type as STREAM, because it is type 12 [14, 22].

Below is a second example of a BTP packet carrying a STREAM fulfill:

{ type: 1,

requestId: 1054375881,

data: { protocolData: [[Object]] } } ; data: { protocolData:

[{ protocolName: ’ilp’,

contentType: 0,

data:

<Buffer 0d 5e 78 d3 d3 3e 33 27 b9 44 a1 45 92 f8 d8 98 28 8c 96 e2 20

00 af 8f bd eb 0d a3 24 04 79 0f 9b 75 3d 12 ef 89 a6 79 c1 a5 cc 53

ef c6 0f c1 60 8a ... > }] } ;

The first byte ”0d” is the packet type - 13, meaning fulfill. The packet structure is like
below:

{

type: 13,

typeString: ’ilp_fulfill’,

data:

{ fulfillment:

<Buffer 78 d3 d3 3e 33 27 b9 44 a1 45 92 f8 d8 98 28 8c 96 e2 20 00 af 8f

31

bd eb 0d a3 24 04 79 0f 9b 75>,

data:

<Buffer 12 ef 89 a6 79 c1 a5 cc 53 ef c6 0f c1 60 8a 71 38 b5 72 70 a8 f7

54 16 1c 30 65 f5 f1 9e fd 8f ee a6 d0 63 85 36 49 fd ab 5e 18 a6 d9

40 04 d4 5a 61 ... > }

}

• when the transfer is finished, the STREAM connection is closed.

• at this moment the balances are updated on the payment channels opened between the
parties involved, accordingly. The value can be redeemed out of each payment channel by
each participant.

• after claiming the funds, the payment channel can be either closed or used for other
transactions.

The Interledger balance between Alice and Bob is continuously updated. If for some reason
the STREAM connection is interrupted before the total amount is transferred, the amounts
already transferred are not lost.

”Once peered, the two connectors both track the Interledger account balance and adjust it for
every ILP Packet successfully routed between them.” [5]

Regarding the setup and configuration, for this example, we are going to consider the XRP
Ledger and the connector black boxes, and provide instructions for Moneyd and SPSP.

• On both Alice’s and Bob’s machines:

– If not already installed, install node.js

– Install Moneyd, Moneyd-GUI, SPSP server and SPSP client apps:

∗ ”npm install -g moneyd moneyd-uplink-xrp”

∗ ”npm install -g moneyd-gui”

∗ ”npm install -g ilp-spsp-server ilp-spsp”

– Configure Moneyd:

∗ ”moneyd xrp:configure –advanced”
There will be four questions:

· ? BTP host of parent connector:
We are going to use the IP:port(7442) of the connector.

· ? Name to assign to this channel:
Can keep the autogenerated proposal or enter custom name.

· ? XRP secret:
Alice’s/Bob’s XRP account secret: ”sXXXXXXXXXXXXXXXXXXXXXXXX”

· ? Rippled server:
The IP:port of the local Ripple server (ws://192.168.1.98:51235) or for ex-
ample, ”wss://s1.ripple.com”.

– Start Moneyd, Moneyd-GUI and the browser interface:

∗ Start Moneyd:
”DEBUG=* moneyd xrp:start –admin-api-port 7769”

32

∗ Start Moneyd-GUI by issuing:
”npm start” in /home/user/moneyd-gui

∗ Start a web browser and go to:
http://127.0.0.1:7770
In order for all Moneyd-GUI’s graphical interface elements to load, you should
also have internet access.

• On Bob’s machine, start the SPSP server:
DEBUG=* ilp-spsp-server –localtunnel false –port 6000

• From Alice’s machine initiate the SPSP transfer:
DEBUG=ilp* ilp-spsp send –receiver http://192.168.1.116:6000 –amount 100
Obviously, the above IP is just an example and you should use here Bob’s machine’s IP,
according to your network setup.

Additional information and useful commands for Moneyd can be found on Moneyd’s github
page. We provide the Table 3 below, for general reference.

Table 3: Useful Moneyd commands.

command effect

moneyd xrp:configure –advanced configure Moneyd in advanced mode
moneyd xrp:start –admin-api-port 7769 enable the admin api port for Moneyd-GUI use
moneyd start –unsafe-allow-extensions allow web browser payments
moneyd xrp:info XRP account balance and outstanding paychans
moneyd xrp:cleanup close paychans (get the money back from paychans)
moneyd help list of Moneyd flags
moneyd help <command> info on a specific command

For reference, we also provide an example of a Moneyd-XRP configuration file, .moneyd.json:

{

"version": 1,

"uplinks": {

"xrp": {

"relation": "parent",

"plugin":

"/home/user/.nvm/versions/node/v10.15.3/lib/node_modules/moneyd-uplink-xrp

/node_modules/ilp-plugin-xrp-asym-client/index.js",

"assetCode": "XRP",

"assetScale": 9,

"balance": {

"minimum": "-Infinity",

"maximum": "20000000000",

"settleThreshold": "50000000",

"settleTo": "1000000"

},

"sendRoutes": false,

"receiveRoutes": false,

"options": {

"currencyScale": 6,

33

"server":

"btp+ws://mduni:85941fd308ac69bfe7a4f6b9726430ea9ee6e6e654bb19b40a419c7a029b6fa7

@192.168.1.146:7443",

"secret": "ssVe1jBi2SUU5HQX6YPoTpRdRDG69",

"address": "rpN3UPjYaErt4RW4gAiqucMCfL5nJJC4Yz",

"xrpServer": "ws://192.168.1.98:51233"

}

}

}

}

Example 6. XRP-ETH ILP payment using Moneyd, SPSP and a connector

We will discuss the configuration presented in Figure 19. It is comprised of:

• The XRP ledger, or the XRP network, made up of servers running the ”Rippled” software.
Mainly, the ledger holds the account balances for all users and validates the transactions
performed in-between users.

• The ETH ledger, with a similar function.

• Alice, holding an account on the XRP ledger, operating Machine A, and running a user-
level ILP XRP app, in this case Moneyd-XRP and SPSP.

• Bob, holding an account on the ETH ledger, operating Machine B, and running a user-level
ILP Ethereum app, in this case Moneyd-ETH and SPSP.

• A Connector, having 2 accounts - one on each ledger. The connector will act as a facilitator
- an intermediary between the two users. It will accept XRP from Alice and will forward
the corresponding value, denominated in ETH, applying its exchange rate, to Bob.

Bob
Machine B
ETH wallet

Alice
Machine A
XRP wallet

XRP ledger
Paychan-enabled

ETH ledger
connector’s XRP wallet connector’s ETH wallet

Connector
Machine C

Exchange

STREAM connection
using SPSP

BTP + ws(s) connection

ws(s) ws(s)

BTP + ws(s) connection

ws(s) ws(s)

Fetch from www :
“ecb” plus “coinmarketcap”

Fig. 19: Example 6: Interledger payment.

A more advanced representation of the same setup is provided in Figure 20 and explained
below. In order to be able to settle the payments in ETH, Machinomy smart contract has to be
deployed on the ETH ledger.

34

“Moneyd XRP” “Moneyd ETH”

Moneyd core

Connector core

XRP uplink ETH uplink

XRP plugin ETH plugin

Alice: 192.168.1.116 Bob: 192.168.1.35

XRP plugin ETH plugin

Rates backend
« ecb-plus-coinmarketcap »

Alice <-> connector
XRP pay channel
btp+ws, port 7442

Bob <-> connector
ETH pay channel
btp+ws, port 7442

SPSP server
port 6000

SPSP client

Moneyd GUI Moneyd GUI
Moneyd core

SPSP client

SPSP server
port 6000

Alice PAYS Bob

Bob PAYS Alice

Web browser
localhost:7770

Web browser
localhost:7770

7769 7769

ws://192.168.1.98: 51233

XRP ledger

Alice XRP account

ILSP XRP account

Alice – ILSP
paychan

Machinomy

Bob – ILSP 2
paychan

192.168.1.87:8545

ETH ledger
PoA / Ganache

Machinomy
contract
account

ILSP 2 ETH
account

Bob’s ETH
account

Js connector 2

Ilp-plugin-miniaccounts

ILSP 2

Moneyd-GUI

Web browser
Localhost:7770

192.168.1.131

Internet:
Fetch conversion rate

Fig. 20: Example 6: Interledger payment, advanced.

• Alice negotiates and opens a paychan denominated in XRP with the connector

• Bob negotiates and opens a paychan denominated in ETH with the connector

• Alice and Bob’s machines comprise the following:

– Moneyd-XRP (Alice) or ETH (Bob), comprising of:

∗ Moneyd-core

∗ XRP/ETH plugin, providing the settlement means

∗ XRP/ETH uplink, providing the uplink to the connector

– Moneyd-GUI, providing a visual admin interface

– SPSP modules:

∗ SPSP server: listens for connections from SPSP clients and receives payments

∗ SPSP client: connects to SPSP servers and sends payments

• The connector, comprising of:

– Connector core

– Different plugins:

∗ XRP plugin

∗ ETH plugin

∗ Possibly, ”ilp-plugin-mini-accounts” - to make use of Moneyd-GUI as a visual
admin interface

∗ Possibly other plugins

35

– The rates backend, which fetches the exchange rates from the internet. We will be
using ”ecb-plus-coinmarketcap”. Other possibilities are: ecb, ecb-plus-xrp, , one-
to-one. ”One-to-one” applies an exchange rate of 1 to everything and is used by
connectors operating in a single currency environment.

Receiver Sender

Node A

Ledger A

Node C

Ledger B

(15) SPSP Server Node B

Application

(C) SPSP over HTTPS

(B) Ledger specific connection

(A) BTP over WebSocket

Fig. 21: Perspective: connections. [20]

Into perspective, the situation can be represented as in Figure 21, where:

• Sender and Receiver are Alice and Bob

• Node B, Node C are Moneyd

• Node A is the connector

• Application is the SPSP client

• Ledger A and B are the XRP and ETH ledgers

• Moneyd connects to the connector over BTP (A) and also has a ledger specific connection
(B) for settlement.

The protocol interactions are the same as in Example 1, and also Alice’s machine is the same
as in Example 1. The main differences are that on the ETH ledger, for settlement, Machinomy
smart contract must be deployed, and that the paychan between Bob and the ILSP (Connector)
is recorded there instead of the XRP ledger. As such, on the XRP ledger we find:

• Alice’s XRP account

• ILSP (the connector) XRP account

• Alice - ILSP paychan,

while on the ETH side:

• Bob’s ETH account

• ILSP (connector) ETH account

• Bob - ILSP paychan

• The Machinomy smart contract account, deployed in order to help manage the paychans
and settlements on Ethereum.

36

An advanced diagram of connections and protocols interactions is provided by Ripple in [21].
The explanations are extensive and beyond the scope of this paper, but they can be retrieved
by the interested readers by following the link to the reference.

For orientation, we provide as example a Moneyd-ETH configuration file:

{

"version": 1,

"uplinks": {

"eth": {

"relation": "parent",

"plugin": "/home/user/node_modules/ilp-plugin-ethereum/index.js",

"assetCode": "ETH",

"assetScale": 9,

"sendRoutes": false,

"receiveRoutes": false,

"options": {

"role": "client",

"ethereumPrivateKey":

"0x72f3b5a36a6719492913f6480b8b5036bf5cc5f312152351886c8e216fc63288",

"ethereumProvider": "kovan",

"outgoingChannelAmount": "50000000",

"balance": {

"maximum": "1000000",

"settleTo": "0",

"settleThreshold": "300000"

},

"server":

"btp+ws://ASDG:294a4788a4b0a7a048332c7d2390e6ce06bcd63e59585493f50e8738650

a948a@192.168.1.131:7442"

}

}

}

}

5.0.2 @Kava-Labs: Switch API

Switch API26 has been built mostly for cryptocurrencies trading like from XRP to ETH or
Lightning. This means that the accounts involved in the currency swap belong to the same
user. It ’streams money’, meaning that for example, a 20 units transfer would be split into
small chunks and each of these chunks would be separately sent on the paychan until the whole
amount is sent [27, 28].

Switch API handles multiple uplinks, with dedicated plugins for each currency - XRP, ETH
and Lightning. We investigated XRP and ETH. For communicating with the XRP connector we
set up a dedicated XRP plugin27, while for the Ethereum uplink we use a dedicated Ethereum
plugin28.

To handle the ETH settlement, Machinomy contracts have to be deployed on the ETH
network, as explained in Section 7.2. We have tested a stream payment between XRP and ETH

26https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md, accessed June 2019
27https://github.com/Kava-Labs/ilp-plugin-xrp-paychan, accessed June 2019
28https://github.com/interledgerjs/ilp-plugin-ethereum, accessed June 2019

37

https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md
https://github.com/Kava-Labs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-ethereum

using Ganache29 as ETH provider.
Some particular aspects of running Switch API - as of May 2019:

• The modules ”ethers” and ”ilp-plugin-ethereum” must be updated to the last version on
the connector machine and Switch API machine.

• When setting up Switch API the credentials must be lowercase.

• After each run, it creates a config file in /home/user/.switch/config. If run with the same
credentials (for tests), this file must be manually deleted or would output the warning
”can not create duplicate uplink”.

• When using a private ETH network, Ganache included, the network ID and the Machinomy
contract address should be set. We have used the Kovan network ID, 42, which we have
set in Ganache, while in the following files, we have changed the address to the Machinomy
contract address deployed on the ETH network (Ganache):

– ’/home/user/node modules/ilp-plugin-ethereum/build/utils/channel.js’ on the refer-
ence node.js connector handling the ETH uplink - the ILSP 2 connector in
Figure 27, AND

– in the same file on the machine running the Switch API app

42: {

unidirectional: {

abi: Unidirectional_testnet_json_1.default,

address: ’0xa711d0a8b93faacd0f0f1897c11a1d7286d29720’

}

}

The Machinomy contract address is the ”Unidirectional contract” address deployed
by Machinomy.

• Settings regarding settlement, on the machine running Switch API, when running
Switch API on private XRP and ETH networks:

– File: ’switch-api/build/settlement/machinomy.js’ :

remoteConnectors: {

local: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘ // Reference ETH

connector IP:port. ILSP 2 in Figure 26.

},

testnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘ // Reference ETH

connector IP:port. ILSP 2 in Figure 26.

},

mainnet: {

29https://truffleframework.com/ganache, accessed June 2019

38

https://truffleframework.com/ganache

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘

}

}

– File: ’switch-api/build/settlement/xrp-paychan.js’ :

const getXrpServerWebsocketUri = (ledgerEnv) => ledgerEnv === ’mainnet’

? ’ws://192.168.1.98:51233’ // XRP validator IP

: ’ws://192.168.1.98:51233’; // XRP validator IP

.

remoteConnectors: { //XRP parent connector

local: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

},

testnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

},

mainnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

}

}[ledgerEnv],

• Additional settings on the machine running Switch API. The ”Ethers” module pro-
vides support for setting up different providers 30.

– file: /home/user/node modules/ethers/utils/networks.js:

kovan: {

chainId: 42,

name: ’kovan’,

_defaultProvider:

etcDefaultProvider(’http://192.168.1.87:8545’) // set ETH

provider IP and port (Ganache)

}

– in file /home/user/node modules/ethers/ethers.js, set network to kovan:

function getDefaultProvider(network) {

console.log(’ETHERS.js get default provider (network): network:’,

network);

if (network == null) {

network = ’kovan’; //set kovan

30https://docs.ethers.io/ethers.js/html/api-providers.html, accessed June 2019

39

https://docs.ethers.io/ethers.js/html/api-providers.html

}

– in file /home/user/node modules/ilp-plugin-ethereum/build/index.js, set provider to
kovan:

class EthereumPlugin extends eventemitter2_1.EventEmitter2 {

constructor({ role = ’client’, ethereumPrivateKey, ethereumProvider =

’kovan’, getGasPrice, outgoingChanne

• Additional setting on the machine running the connector providing the ETH link:

– in file /home/user/node modules/ethers/utils/networks.js:

kovan: {

chainId: 42,

name: ’kovan’, _defaultProvider:

etcDefaultProvider(’http://192.168.1.87:8545’) //ETH provider

IP:port (Ganache)

}

• Example script which can be used for streaming XRP-ETH using Switch API [27]:

const { connect } = require(’@kava-labs/switch-api’)

const BigNumber = require(’bignumber.js’)

async function run() {

// Connect the API

console.log(’*** example-js ***: adding API’)

const api = await connect()

//Add new uplink with an account

console.log(’**** example-js ****: addING uplink machinomy’)

const ethUplink = await api.add({

settlerType: ’machinomy’,

privateKey:

’6da09c0a78255932210aaf5b9f61046a00e9e3ab389c7357e388c4b35682342e’

}) //switch Api wallet ETH

console.log(’*** example-js ***: addED uplink eth’)

// Add new uplink with an XRP testnet credential

console.log(’*** example-js ***: addING uplink XRP’)

const xrpUplink = await api.add({

settlerType: ’xrp-paychan’,

secret: ’sasa3hrRUndoxAMoXEc3MMyZHNL3W’ //switch API wallet XRP

})

console.log(’*** example-js ***: addED uplink XRP’)

// Display the amount in client custody, in real-time

xrpUplink.balance$.subscribe(amount => {

console.log(’XRP Interledger balance:’, amount.toString())

})

ethUplink.balance$.subscribe(amount => {

console.log(’ETH Interledger balance:’, amount.toString())

40

})

// Deposit 20 XRP into a payment channel

console.log(’EXAMPLE.js: start depositing 20XRP’)

await api.deposit({

uplink: xrpUplink,

amount: new BigNumber(20)

})

console.log(’EXAMPLE.js: depositED 20xrp’)

// Deposit 0.05 ETH into a payment channel

console.log(’EXAMPLE.js: start depositing 0.05ETH’)

await api.deposit({

uplink: ethUplink,

amount: new BigNumber(0.05)

})

console.log(’EXAMPLE.js: depositED 0.05ETH’)

// Stream 10 XRP to ETH, prefunding only $0.05 at a time

// If the connector cheats or the exchange rate is too low, your funds are

safe!

await api.streamMoney({

amount: new BigNumber(10),

source: xrpUplink,

dest: ethUplink

})

await api.disconnect()

}

run().catch(err => console.error(err))

This file can be placed in Switch API home directory and run with:
DEBUG=* node –inspect ./file-name.js

On top of this, Kava Labs has built an app for swapping the BTC, ETH and XRP cryp-
tocurrencies just in a matter of seconds31.

6 The connectors

Connectors are transaction ’intermediaries’ lying in-between the payer and the payee, connecting
them and facilitating the transaction. They are the ’market makers’ or ’liquidity providers’, and
their role is especially evident when the sender’s and receiver’s wallets hold different currencies,
as depicted in Figure 22. A connector would take the sender’s money in the sender’s currency
and pay the receiver with the receiver’s currency while charging a small fee for the service. In
order to be able to do this, a connector owns two wallets, one on each currency involved in the
transaction.

’A connector is a host holding a balance on two or more ledgers. Connectors trade a debit
against their balance on one ledger for a credit against their balance on another as a means of

31https://github.com/Kava-Labs/switch, accessed June 2019

41

https://github.com/Kava-Labs/switch

Fig. 22: A connector (money maker) holding two wallets on two different networks.

facilitating the payment between the two ledgers.’ [29]
While providing their services, the connectors act as an internet service provider would. In

Interledger, the entities running the connectors are known as Interledger Service Providers or
ILSPs. For example, the ILP reference connector written in js32 can be run by an ILSP. An
ILSP can run one or more connectors. Moneyd is a stripped version of a connector which is
not sending or receiving routes, and is used as a ”home router”, by end-users or customers in
order to dial-up and connect to the ILSPs running a connector. As such, Moneyd33 or Switch
API34 are examples of ’customer’ apps connecting to their preferred ILSP and sending requests,
as shown in Figure 27.

’Connectors implement the Interledger protocol to forward payments between ledgers and
relay errors back along the path. Connectors implement (or include a module that implements)
the ledger protocol of the ledgers on which they hold accounts. Connectors also implement the
Connector to Connector Protocol (CCP) to coordinate routing and other Interledger control
information.’ [25]

Currently, the connectors rely on plugins to settle the transactions (new architectures are
currently being considered or implemented, e.g. the Rafiki connector).

Making the analogy to a real-life example, swiping a credit card at a cashier’s desk is con-
sidered a payment. The settlement occurs when the money is debited from the card holder’s
bank and credited to the merchant’s bank. When you swipe the credit card and introduce your
PIN you create and sign an irrevocable obligation for payment. On an Interledger paychan, this
signed obligation for payment is known as a ”claim”. A redeemed claim would translate to a
bank transaction which has been ”cleared” or ”went through” (the money completely left the
payer’s bank account, and are visible and available in the payee’s account; or analogously, the
money completely left the sender’s wallet/ledger and have shown up on the receiver’s wallet,
ledger and currency).

Concerning the plugins, they are installed on the same machine with the connector and con-

32https://github.com/interledgerjs/ilp-connector, accessed June 2019
33https://github.com/interledgerjs/moneyd, accessed June 2019
34https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md, accessed June 2019

42

https://github.com/interledgerjs/ilp-connector
https://github.com/interledgerjs/moneyd
https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md

figured according to purpose. This architecture is illustrated in Figure 23.

Fig. 23: Architecture overview. [30]

Some plugin examples would be:

• ilp-plugin-xrp-paychan35 creates a direct peer relation with other connectors. It is an
Unconditional Payment Channel plugin, where one has to trust his peer for the in-flight XRP
amounts.

• ilp-plugin-xrp-asym server36 enables the ILSP server to accept new client connections and
creates an internal ILP account for each of them. It is the plugin appropriate for provider -
customer relationships. This service will be exposed publicly and ’customers’ will connect to
it.

• ilp-plugin-xrp-asym-client37 will be used by a ’customer’ to connect to his provider’s plu-
gin, i.e the ilp-plugin-xrp-asym-server above.

• moneyd’s uplink-xrp plugin38 makes use of ilp-plugin-xrp-asym-client.
• ilp-plugin-mini-accounts39 can be used to connect Moneyd-GUI to Moneyd or to the ref-

erence ILSP connector, for example.
• Kava Labs has been involved in the development of @kava-labs/ilp-plugin-xrp-paychan40

and ilp-plugin-ethereum41. Both can be used in conjunction with Switch API. Ilp-plugin-
ethereum settles Interledger payments with ether and is powered by Machinomy smart con-
tracts for unidirectional payment channel.

Another way to illustrate a payment chain forwarding the payment through the connectors
with the use of SPSP, the ILP protocol, some of the plugins above and the servers from Section
7.1 which form the XRP ledger for example, is provided in Figure 24, with some other ledger
examples being the ETH or Lightning server networks. It is worth being noted that PSK was
upgraded to STREAM. As such, the sender can pay in XRP and the receiver can get his money
in BTC.

35https://github.com/interledgerjs/ilp-plugin-xrp-paychan, accessed June 2019
36https://github.com/interledgerjs/ilp-plugin-xrp-asym-server, accessed June 2019
37https://github.com/interledgerjs/ilp-plugin-xrp-asym-client/, accessed June 2019
38https://github.com/interledgerjs/moneyd-uplink-xrp, accessed June 2019
39https://github.com/interledgerjs/ilp-plugin-mini-accounts, accessed June 2019
40https://github.com/Kava-Labs/ilp-plugin-xrp-paychan, accessed June 2019
41https://github.com/interledgerjs/ilp-plugin-ethereum, accessed June 2019

43

https://github.com/interledgerjs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-xrp-asym-server
https://github.com/interledgerjs/ilp-plugin-xrp-asym-client/
https://github.com/interledgerjs/moneyd-uplink-xrp
https://github.com/interledgerjs/ilp-plugin-mini-accounts
https://github.com/Kava-Labs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-ethereum

Fig. 24: The protocol stack in the payment chain.

Below we reproduce a nice explanation on payment channels that we found worth adding:
’In order to avoid having to go through the consensus process for each and every transaction,
only the summary of several transactions is validated on the blockchain. The intermediate trans-
actions are conducted outside of the Ripple Ledger, off-chain. Ripple Labs has said that with
Payment Channels (introduced in summer 2017), several thousand transactions per second can
be processed. This number is approaching the transaction capacity of the VISA network. Because
of the increased efficiency, Payment Channels are a feasible micro-payment alternative.’ [31]

Also, payment channels are worth being used with expensive or slow ledgers. The two par-
ties’ transactions are being performed on the paychan under the limits established. Sometimes
they offset each other. When the conditions for settlement are met, the settlement can occur.
This lowers the cost and time involved by the overall process.

Example 7. An advanced XRP-ETH setup using two connectors

Alice, having an XRP account, connects to the ILSP 1 connector and establishes a paychan
using the XRP plugin and uplink. Bob, having an Ethereum account, connects to the ILSP
2 Ethreum enabled connector using an Ethereum plugin and uplink. The two connectors are
peered over XRP and establish a paychan with the ilp-plugin-xrp-paychan. When Alice sends
money to Bob, the payment goes through ILSP 1 and ILSP 2. Alice will settle her balance with
ILSP 1; ILSP 1 will settle its balance with ILSP 2, and ILSP 2 will settle with Bob.

Because ILSP 1 works exclusively in XRP, its exchange rate will always be 1, so the backend
used will be ”one-to-one”. On the other hand, ILSP 2 works on two ledgers and performs ”the
currency exchange” so the backend will make use of the ”ecb-plus-coinmarketcap” option, and
the rate will be fetched from the internet.

On the XRP ledger we find Alice’s, ILSP 1 and ILSP 2’s accounts, together with the XRP
paychans established between the pairs Alice - ILSP1 and ILSP1 - ILSP2. Accordingly, on the
ETH network we find ILSP2’s and Bob’s accounts along with the paychan Bob - ILSP2.

For this configuration, we will assume the ledgers are already up and running on the same
Local Area Network hardwired or Wi-Fi. Also, internet access is available. Then, the deployment
sequence is:

• Start the connectors, one by one, and wait for them to establish a payment channel between

44

“Moneyd XRP” “Moneyd ETH”

Moneyd core

Connector core

XRP uplink ETH uplink

XRP plugin ETH plugin

Alice: 192.168.1.116 Bob: 192.168.1.35

ILP-plugin-xrp-paychan ETH plugin

Js connector 2

Ilp-plugin-miniaccounts Rates backend
« ecb-plus-coinmarketcap »

Internet:
Fetch conversion rate

Alice <-> connector:
XRP pay channel
BTP+ws, port 7442

Bob <-> connector:
ETH pay channel
Btp+ ws, port 7442

SPSP server
port 6000

SPSP client

Moneyd GUI Moneyd GUI
Moneyd core

SPSP client

SPSP server
port 6000Alice PAYS Bob

Bob PAYS Alice

Web browser
localhost:7770

Web browser
localhost:7770

7769 7769

Connector core

XRP plugin

ILSP 1

Ilp-plugin-miniaccounts Rates backend
« one-to-one »

Js connector 1

ILSP 2

Moneyd-GUI Moneyd-GUI

Web browser
Localhost:7770

Web browser
Localhost:7770

ILP-plugin-xrp-paychan
peer

Btp + ws

XRP ledger

Alice – ILSP 1 paychan

ILSP 1 – ILSP 2 paychan

Machinomy

Bob – ILSP 2
paychan

192.168.1.87

Alice’s XRP account

ILSP 1 XRP account

ILSP 2 XRP account

ETH ledger
PoA / Ganache

port 8545

Machinomy
smart

contract
account

ILSP 2 ETH
account

Bob’s ETH
account

ws://192.168.1.98:51233

192.168.1.146 192.168.1.131

Fig. 25: Example 7: advanced Interledger payment.

them. This will be shown in the connector logs. If using pm2, logs can be enabled with
”pm2 logs connector”.

• Start the Moneyd instances for Alice and Bob and wait for each to establish paychans with
the corresponding connector.

• Start Bob’s SPSP server.

• From Alice’s terminal, use the SPSP client to initiate an SPSP transaction.

• Optionally, Moneyd-GUI and a web browser can be used to administer Moneyd and the
connectors.

The diagram presented in Figure 26 further illustrates how the nodes and protocols interact.

Paychan using BTP

SPSP server connects to Moneyd

Paychan using BTP

Paychan using BTP

btp
7442

Virtual STREAM initiated between Alice and Bob over ILP, using ILP address and secret

MoneydMoneyd
SPSP

STREAM
module

STREAM
module

SPSP

Alice’s SPSP client queries Bob’s SPSP server for the ILP address and a secret

Alice’s SPSP client receives ILP address and secret from Bob’s SPSP server

ILP Prepare
ILP Fulfill

STREAM over ILP

STREAM finished. End balance on paychan.

ALICE BOB

SPSP client app SPSP server app
Connector

btp
port
7768

btp
port
7768

btp
7442

SPSP client connects to Moneyd

Connector

btp
peering
10666

Fig. 26: Example 7: interaction diagram.

45

The setup for Alice and Bob’s machines is similar to Examples 1 and 2.
In regards to installation and set-up of connectors, a new guide42,43 from Strata Labs has just

been released, so you can try the bundle they propose if you want to hit the ground running.
The tutorial44 provided by Adrian Hope-Bailie is a very good and thorough step-by-step

guide. Inspired from his guide on installing the reference connector, a faster and easier minimal
set-up and a few tips are provided below. This procedure will miss some features in the original
guide. For the advanced set-up, the original post can be followed. For convenience, the Step #
has been kept the same as in the original tutorial.

• Step 5: install node

- curl -o-

https://raw.githubusercontent.com/creationix/nvm/v0.34.0/install.sh | bash

- Restart terminal

- nvm install v10.15.3

• Step 7: install ”redis”45

• Step 8: install pm2

• Step 10: get and fund an XRP Ledger address. Alternative to ’ripple-wallet-cli’, it is also
possible to generate a wallet directly, using the ’wallet propose’ method:
’user@saintmalo: /rippled/ccabuild$./rippled –conf /home/user/rippled/cfg/rippled-example.cfg
wallet propose’.

• Step 12: pick an ILP Address. The format should be ’g.somethingunique’. For an inde-
pendent private network, we also used the ’production’ settings and ’g’ as address prefix.
Any of the others (private, local, ..) did not seem to work right.

• Step 13: create your config file using ’pm2 init’. A file named ’ecosystem.config.js’ will be
created, possibly in the folder ’home/user’. Check it, update as needed, and move it to
’/home/user/ilp-connector/’.

• Step 14: start it with:
’cd /home/user/ilp-connector: $ pm2 start ecosystem.config.js’
Use ’pm2 stop ecosystem.config.js’ to stop it, ’pm2 restart ecosystem.config.js –update-
env’ for restart, and ’pm2 logs connector’ to see the logs. The log files are located in
’/home/user/.pm2/logs/connector-out.log’.

How to setup a connector:
First of all the following example is deployed in Ubuntu bionic (kernel 4.15 but not important).

sudo apt-cache madison npm - at the time of writing 3.5.2.
sudo apt-cache madison nodejs - at the time of writing version 8.10.
sudo apt-get install nodejs npm build-essential

42https://www.stratalabs.io/mainnet, accessed June 2019
43https://github.com/d1no007/easy-connector-bundle, accessed June 2019
44https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a, accessed June 2019
45https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04, ac-

cessed June 2019

46

https://www.stratalabs.io/mainnet
https://github.com/d1no007/easy-connector-bundle
https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04

npm config get prefix This will return the path for packages installed with -g. In our case,
we will install the packages locally in the folder jsilp.

npm install memdown. We will use memdown for this example but for production, you
should use another type of databases.

pm2 restart launch.config.js

The connector will be much easier to admin and understand using an interface, at this
moment Moneyd-GUI. Installed on the same machine as the connector, it will provide UI access
in a browser at http://127.0.0.1/7770. For the graphical interface, Moneyd-GUI loads some
resources from online.

Below we provide an example configuration for the ILSP1 Connector from Figure 27. For
our use-case we used ws, but in a real scenario wss is used.

’use strict’

const path = require(’path’)

const address = ’rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj’ // <YOUR RIPPLE ADDRESS>

const secret = ’shjZQ2E3mYzxHf1VzYBJCQHqLvt7Y’ // <YOUR RIPPLE SECRET>

const peer1 = {

relation: ’peer’, // establish a ’peer’ relationship.

plugin: ’ilp-plugin-xrp-paychan’, //peer with another ILSP connector over XRP

assetCode: ’XRP’,

assetScale: 9, //"Interledger amounts are integers, but most currencies are

typically represented as fractional units, e.g. cents. This property defines

how many Interledger units make up one regular units. For dollars, this would

usually be set to 9, so that Interledger amounts are expressed in nanodollars."

balance: {

maximum: ’1000000000’,

settleThreshold: ’-5000000000’,

settleTo: ’0’

},

options: {

listener: { //If you want your peer to connect to you as a ws client (which

doesn’t change the nature of the liquidity relationship) set the

‘listener‘ argument in the constructor.

port: 10666, //this ws server listens for ws clients on port 10666

secret: ’2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2eb’ //

this is the token that your peer must authenticate with.

},

//server: ’btp+ws://:its_a_secret@192.168.1.146:10666’, //this connector would

be a ws client connecting to its peer ws server at port 10666

//It should be possible to use it without credentials like this, also: server:

’btp+ws://:@192.168.1.146:10666’

// You may specify both the server and client options; in that case it is not

deterministic which peer will end up as the ws client.

rippledServer: ’ws://192.168.1.98:51233’, //the server that you submit

XRP transactions to //MAINNET - wss://s2.ripple.com

peerAddress: ’rLR52VSZG3wqSrkcpfkSnaKnYoYyPoJJgy’, //<PEER RIPPLE ADDRESS>

address,

secret

}

}

47

const ilspServer = { //MoneyD XRP clients

relation: ’child’, //Moneyd apps will be ’children’

plugin: ’ilp-plugin-xrp-asym-server’, //plugin that exposes the ILSP server

to downstream clients

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7443, //port on which to listen to client

apps

xrpServer: ’ws://192.168.1.98:51233’, //MAINNET - wss://s2.ripple.com

address,

secret

}

}

const SwitchAPIServer = {

relation: ’child’, //Switch API connects as a ’child’

plugin: ’@kava-labs/ilp-plugin-xrp-paychan’,

assetCode: ’XRP’,

assetScale: 6,

options: {

role: ’server’,

port: 7444, //Switch API will connect on this port

xrpSecret: ’shjZQ2E3mYzxHf1VzYBJCQHqLvt7Y’, //this connector’s secret

xrpServer: ’ws://192.168.1.98:51233’,

// Very asymmetric... you fund a channel for $0.50 in XRP, we’ll open one to

you for $10!

outgoingChannelAmount: ’32658000’, // ~= 10$ in XRP drops

minIncomingChannelAmount: ’1632900’, // ~= 0.5$ in XRP drops

// Use plugin maxPacketAmount (and not connector middleware) so F08s occur

before T04s

maxPacketAmount: ’653200’ // ~= 0.2$ in XRP drops

}

}

const moneydGui = { //MoneyD GUI for this connector

relation: ’child’,

plugin: ’ilp-plugin-mini-accounts’,

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7768 //MoneyD GUI will connect on this port

}

}

const connectorApp = {

name: ’connector’,

env: {

DEBUG: ’ilp*,connector*’,

CONNECTOR_ENV: ’production’,

CONNECTOR_ADMIN_API: true,

CONNECTOR_ADMIN_API_PORT: 7769, //this should not conflict with

moneydGUI, set here on 7768

48

CONNECTOR_ILP_ADDRESS: ’g.conn1’, //<YOUR ILP ADDRESS>

CONNECTOR_BACKEND: ’one-to-one’,

CONNECTOR_SPREAD: ’0’,

CONNECTOR_STORE: ’memdown’, //comment this if using the store below

//CONNECTOR_STORE: ’ilp-store-redis’, //if using a store

//CONNECTOR_STORE_CONFIG: JSON.stringify({

// prefix: ’connector’,

// port: 6379

//}),

CONNECTOR_ACCOUNTS: JSON.stringify({

conn2: peer1, //arbitrary names easy to remember

ilsp_clients: ilspServer,

moneyd_GUI: moneydGui,

switchXRP: SwitchAPIServer

})

},

script: path.resolve(__dirname, ’src/index.js’)

}

module.exports = { apps: [connectorApp] }

Further, we reproduce an example configuration for the ILSP2 Connector in Figure 27, which
is peered with the ILSP1 Connector. This connector has two wallets, one in XRP and one in
ETH, so it is able to provide cross payments between XRP and ETH. This use case fits the
architecture illustrated in Figure 23. It is also equipped with Moneyd-GUI for easier admin-
istration through a Chrome browser (recommended), and can as well perform SPSP payments
given SPSP is installed. More on SPSP in Section 5.0.1.

’use strict’

const path = require(’path’)

const address = ’rLR52VSZG3wqSrkcpfkSnaKnYoYyPoJJgy’ // <YOUR RIPPLE ADDRESS>

const secret = ’ssrnzXKsJKWDh9cFpmZSLWHN3D5HM’ // <YOUR RIPPLE SECRET>

//to get the gas price

const { convert, usd, gwei } = require(’@kava-labs/crypto-rate-utils’)

const axios = require(’axios’)

const getGasPrice = async () => {

const { data } = await axios.get(

’https://ethgasstation.info/json/ethgasAPI.json’

)

return convert(gwei(data.fast / 10), wei())

}

//

const peer1 = {

relation: ’peer’,

plugin: ’ilp-plugin-xrp-paychan’, //peer with other connector/node over XRP

assetCode: ’XRP’,

assetScale: 9,

balance: {

maximum: ’1000000000’,

settleThreshold: ’-5000000000’,

49

settleTo: ’0’

},

options: {

//listener: { //this connector would be a server listening on port 10666

//port: 10666,

//secret: ’2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2ea’

// this is the token that your peer must authenticate with.

//},

server:

’btp+ws://yourcustomsequence:2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2eb@192.168.1.146:10666’,

//this connector is a ws client connecting to its ws server at port 10666

rippledServer: ’ws://192.168.1.98:51233’, //PORT? //wss://s2.ripple.com //

?Specify the server that you submit XRP transactions to?

peerAddress: ’rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj’, //<PEER RIPPLE ADDRESS>

address,

secret

}

}

const peerETH = {

relation: ’child’,

plugin: ’ilp-plugin-ethereum’,

assetCode: ’ETH’,

assetScale: 9,

options: {

role: ’server’,

port: 7442,

ethereumPrivateKey:

’0x43c50a578883922df30a33eb74418fb568c0081c40256e4675df02dcc28b6ef6’,

//this connector’s ETH address; different from machinomy contract address

ethereumProvider: ’kovan’, //goes to ETH plugin as identifier

getGasPrice: getGasPrice, //’20000000000’,

outgoingChannelAmount: ’71440000’, //10 usd

minIncomingChannelAmount: ’3570000’, // 0.5usd

// In plugin (and not connector middleware) so F08s occur before T04s

maxPacketAmount: ’1430000’ // 0.2USD

}

}

const ilspServer = {

relation: ’child’,

plugin: ’ilp-plugin-xrp-asym-server’, // ILSP server for downstream clients

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7443, //port on which to listen to client apps

xrpServer: ’ws://192.168.1.98:51233’, //MAINNET wss://s2.ripple.com

address,

secret

}

}

const moneydGui = {

relation: ’child’,

50

plugin: ’ilp-plugin-mini-accounts’,

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7768

}

}

const connectorApp = {

name: ’connector’,

env: {

DEBUG: ’ilp*,connector*’,

CONNECTOR_ENV: ’production’,

CONNECTOR_ADMIN_API: true,

CONNECTOR_ADMIN_API_PORT: 7769,

CONNECTOR_ILP_ADDRESS: ’g.conn2’, //<YOUR ILP ADDRESS>

CONNECTOR_BACKEND: ’one-to-one’,

CONNECTOR_SPREAD: ’0’,

CONNECTOR_STORE: ’memdown’,

//CONNECTOR_STORE: ’ilp-store-redis’,

//CONNECTOR_STORE_CONFIG: JSON.stringify({

// prefix: ’connector’,

// port: 6379

//}),

CONNECTOR_ACCOUNTS: JSON.stringify({

conn1: peer1,

ilsp_clients: ilspServer,

moneyd_GUI: moneydGui,

peer_ETH: peerETH

})

},

script: path.resolve(__dirname, ’src/index.js’)

}

module.exports = { apps: [connectorApp] }

This connector supports SPSP client-server. This is explained in Section 5.0.1.

Other connectors, functional but still in development, are the Rafiki46 connector and the
Rust47 connector. A basis for a Java connector is also in the works, as Quilt48.

Rafiki is a modular connector which is meant to improve on the ”reference” js connector
in regards to practical aspects like cloud deployment, more manageable and ’hot’ changes of
configuration, etc [32].

The Rust connector is meant to be a faster connector for high traffic. One important update
is the new concept of ”Settlement engine” and the elimination of the plugins. Official informa-
tion on the Settlement Engines’ architecture can be found in the new RFC on the Interledger
website49. Also because of the modular architecture, at least in the case of Rust and at the
present moment, in order to run a connector, the user needs to separately start 3 processes:
the connector itself, the settlement engine, and in some cases the Redis database. Separate

46https://github.com/interledgerjs/rafiki, accessed June 2019
47https://github.com/emschwartz/interledger-rs/tree/master, accessed June 2019
48https://www.hyperledger.org/projects/quilt, accessed July 2019
49https://interledger.org/rfcs/0038-settlement-engines/, accessed January 2020

51

https://github.com/interledgerjs/rafiki
https://github.com/emschwartz/interledger-rs/tree/master
https://www.hyperledger.org/projects/quilt
https://interledger.org/rfcs/0038-settlement-engines/

configuration need to be provided50.

7 The ledgers

7.1 The Ripple ledger

The Rippled XRP ledger is made up of two types of servers: ”trackers” (or stock servers) and
”validators”. They run the same piece of software [33], just with a different configuration. Al-
though they can answer user queries, validators should ideally just process the transactions they
receive from the trackers.

’Ideally, validating nodes are clustered with at least two stock nodes, to prevent DoS attacks
and to preserve availability while updating the stock nodes. This configuration enables the vali-
dating node to be cut off from the internet, except for messages to/from other trusted nodes in the
cluster and SSH connections via a LAN connection. Using two stock nodes provides redundant
communication to the validating node, which is useful in case one of the stock nodes crashes or
goes offline. However, this means a validating node has 3x the cost, 3x the monitoring, and 3x
the time commitment of a stock node. Production validating nodes should have at least 32 GB
of memory as well as a 50 GB+ solid state drive. I encourage operator to refrain from making
API calls (monitoring excepted) on validating nodes’. [34]

Validators participate in the consensus process and vote on fees and amendments. Trackers
are meant to be placed in-between validators and the rest of the network, pick-up traffic and
forward it to the validators. They work as relays, protecting the validators. They also can hold
the full history of the ledger and answer queries about old ledgers. On the other hand, the
validators can work with minimal stored history.

Below is the procedure to build and cold-start an independent local validators cluster. One
aspect to keep in mind is that ’there is no rippled setting that defines which network it uses.
Instead, it uses the consensus of validators it trusts to know which ledger to accept as the truth.
When different consensus groups of rippled instances only trust other members of the same
group, each group continues as a parallel network. Even if malicious or misbehaving computers
connect to both networks, the consensus process overrides the confusion as long as the members
of each network are not configured to trust members of another network in excess of their quorum
settings.’ [35]

7.1.1 Preparation

To build a parallel Rippled servers (validators, trackers) network, which, in its entirety is also
called the ”Rippled Ledger”, the minimal required hardware resources51 need to be planned
in advance. Depending on the available resources, each Rippled server can be deployed on a
different physical machine or not. However, for high traffic use-cases, in order to streamline I/O,
each server could have its own physical SSD.

To install the pre-packaged Rippled server, the instructions on the Ripple developer portal
should be followed52. Then, another guide is disseminated on the developer portal to install

50https://github.com/interledger-rs/interledger-rs/tree/master/examples, accessed January 2020
51https://developers.ripple.com/system-requirements.html, accessed June 2019
52https://developers.ripple.com/install-rippled.html, accessed June 2019

52

https://github.com/interledger-rs/interledger-rs/tree/master/examples
https://developers.ripple.com/system-requirements.html
https://developers.ripple.com/install-rippled.html

Rippled from the source code53. After that, the following steps must be followed:

• Build the validators keys and tokens, using the published documentation54 and code55.

– Create keys:

~/validator-keys-tool/build/gcc.debug$./validator-keys create_keys

– Create tokens:

~/validator-keys-tool/build/gcc.debug$./validator-keys create_token --keyfile

/home/user/.ripple/validator-keys.json

• Add generated [validator token] to ’rippled.cfg’.
• Add generated [validators] public keys to ’validators.txt’. Comment the rest of ’valida-

tors.txt’.
• In ’rippled.cfg’, add the peer validators’ IPs in the field [ips fixed] in the form of IP:port

(51235).
• Check that ’validator.txt’ file name is the same with the name referenced by ’rippled.cfg’.
• Configure clustering as per the Ripple documentation56, using the validation create57 method:

~/rippled/ccabuild$./rippled --conf /home/user/rippled/cfg/rippled-example.cfg

validation_create

7.1.2 Start up

In the case when Docker images have been used, after creating the Docker image of the Rippled
server, this can be loaded and started on each physical/virtual server machine with the following:

- ’sudo docker load -i /path/to/your_docker_image.tar’

- ’sudo docker images’ - to check the image name

- ’sudo docker run -ti -u root --network host --name <container_name> <image_name>’

- ’sudo docker exec -ti -u root <container_name> bash’. To open a second terminal

to the container, just run the command again into a fresh terminal window.

With the docker images loaded on each Rippled server machine, the actual Rippled validators
servers network can be cold-started as follows:

• Start the first Rippled server with ’quorum 1’ and wait a few minutes for it to stabilize:

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg --quorum 1

• Start the remaining servers with the same command, waiting for each to stabilize, first.

• Restart the servers in the same order, waiting a few minutes for each to stabilize before
starting the next, with ’quorum 2’:

53https://developers.ripple.com/build-run-rippled-ubuntu.html, accessed June 2019
54https://developers.ripple.com/run-rippled-as-a-validator.html#enable-validation-on-your-rippled-server, ac-

cessed June 2019
55https://github.com/ripple/validator-keys-tool, accessed June 2019
56https://developers.ripple.com/cluster-rippled-servers.html, accessed June 2019
57https://developers.ripple.com/validation create.html, accessed June 2019

53

https://developers.ripple.com/build-run-rippled-ubuntu.html
https://developers.ripple.com/run-rippled-as-a-validator.html#enable-validation-on-your-rippled-server
https://github.com/ripple/validator-keys-tool
https://developers.ripple.com/cluster-rippled-servers.html
https://developers.ripple.com/validation_create.html

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg --quorum 2

In a new terminal window handling the Docker container, use the ”stop” command in
Table 4 to gracefully stop the servers before restart.

In this minimal set-up though, if any of the servers is restarted, it will lose previously
kept ledger history - even with full history enabled. This won’t stop it working after restart, as
validators do not need full history to work properly. To be able to access previous ledger history,
tracking servers should be also set up. Data API58 is a useful history tool which could also be
set-up if desired, although setting it up on a private network seems not too obvious.

’Ripple API’59 provides the means to interact with the server. For example, in Ripple, all
the money are created in the beginning, and stored in an account with a hard-coded address,
called the ”Genesis account’. One can check the ’Genesis account’ with:

./rippled --conf /home/user/rippled/cfg/rippled-example.cfg account_info

rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh

Some other useful server commands are provided in Table 4. These can be entered from a
separate terminal window handling the docker container.

Table 4: Useful Rippled server commands.

command effect

wallet propose create a new wallet with random seed credentials (inactive until funded)
stop gracefully stop the server
restart restart the server
server info various easy-to-read info about the server
server state almost same info as above, but easier-to-process instead of easy-to-read
peers info on peer validators: connected? ledger sequences available? ...

Immediately after creating and starting the validators cluster network (which form the XRP
ledger), one can open a few accounts with the ’wallet propose’ command above, and fund them
using for example the following simple procedure. Regarding the wallets, they can be sometimes
classified as ’hot’ or ’cold’ wallets. The difference is that ’hot’ wallets are connected to the
internet, while ’cold’ wallets are not. ’Hot’ wallets provide the advantage of quick access but
lower security, like anything connected to the internet. ’Cold’ wallets are slower to access (need
to connect) but more secure due to generally not being online. It is generally recommended to
hold only the amounts necessary for daily operation in the ’hot’ wallet, while the bulk of the
money would be kept offline.

• Install Ripple-API for javascript60.
• Place the two example scripts in the app folder: ’/home/user/ripple api/get-account-info.js’.
• Run them with ’./node modules/.bin/babel-node get-account-info.js’. The code should run on

one of the Ripple servers.

Example script - get account info:

58https://developers.ripple.com/data-api.html, accessed June 2019
59https://developers.ripple.com/rippleapi-reference.html, accessed June 2019
60https://developers.ripple.com/get-started-with-rippleapi-for-javascript.html, accessed June 2019

54

https://developers.ripple.com/data-api.html
https://developers.ripple.com/rippleapi-reference.html
https://developers.ripple.com/get-started-with-rippleapi-for-javascript.html

//GET ACCOUNT INFO

’use strict’;

const RippleAPI = require(’ripple-lib’).RippleAPI;

const api = new RippleAPI({

server: ’ws://localhost:6006’

});

api.connect().then(() => {

/* begin custom code ------------------------------------ */

const testAddress = ’rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh’;

console.log(’getting account info for’, testAddress);

return api.getAccountInfo(testAddress);

}).then(info => {

console.log(info);

console.log(’getAccountInfo done’);

/* end custom code -------------------------------------- */

}).then(() => {

return api.disconnect();

}).then(() => {

console.log(’done and disconnected.’);

}).catch(console.error);

Example script - fund an account:

//Account funding

const RippleAPI = require(’ripple-lib’).RippleAPI

// SENDER - ADDRESS 1

const ADDRESS_1 = "rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh"

const SECRET_1 = "snoPBrXtMeMyMHUVTgbuqAfg1SUTb"

// RECEIVER - ADDRESS 2

const ADDRESS_2 = "rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj"

const instructions = {maxLedgerVersionOffset: 5}

const currency = ’XRP’

const amount = ’20000000’ // this is not ’drops’ but XRP

const payment = {

source: {

address: ADDRESS_1,

maxAmount: {

value: amount,

currency: currency

}

},

destination: {

address: ADDRESS_2,

amount: {

value: amount,

55

currency: currency

}

}

}

const api = new RippleAPI({

//server: ’wss://s1.ripple.com’ //MAINNET

//server: ’wss://s.altnet.rippletest.net:51233’ // TESTNET

server: ’ws://localhost:6006’ // Localhost

})

api.connect().then(() => {

console.log(’Connected...’)

api.preparePayment(ADDRESS_1, payment, instructions).then(prepared => {

const {signedTransaction, id} = api.sign(prepared.txJSON, SECRET_1)

console.log(id)

api.submit(signedTransaction).then(result => {

console.log(JSON.stringify(result, null, 2))

api.disconnect()

})

})

}).catch(console.error)

The known amendments seem not to be automatically enabled after cold starting a pri-
vate network. In order to force them, we added the [features] stanza in each validator’s config
file. Otherwise, the validators would apparently work, but, when trying to open for example a
paychan, would throw the error ”logic not enabled’ - because the paychan amendment is not
enabled. According to documentation61, for an amendment to become enabled, it needs the
support of 80% of validators’ votes for two weeks. If it loses this support, the amendment is
temporarily disabled, and it can be re-enabled after it re-gains this support.

[features]
PayChan
Escrow
CryptoConditions
fix1528
.......

Below is an example config file for a private network cluster of 3 validators. The file is located
in ’home/user/rippled/cfg’. We used a docker container with a compiled version of Rippled.

[server]

port_rpc_admin_local

port_peer

port_ws_admin_local

port_ws_public

port_public

[port_rpc_admin_local]

61https://developers.ripple.com/amendments.html, accessed June 2019

56

https://developers.ripple.com/amendments.html

port = 5005

ip = 127.0.0.1

admin = 127.0.0.1

protocol = http

[port_peer] //talk to other validators

port = 51235

ip = 0.0.0.0

protocol = peer

[port_ws_admin_local]

port = 6006

ip = 127.0.0.1

admin = 127.0.0.1

protocol = ws

[port_ws_public]

port = 6005

ip = 127.0.0.1

protocol = wss

[port_public] //connectors, moneyd, switch API will connect here

ip = 0.0.0.0

port = 51233

protocol = ws

[node_size] //required for full history

huge

This is primary persistent datastore for Rippled. This includes transaction

metadata, account states, and ledger headers. Helpful information can be

found here: https://ripple.com/wiki/NodeBackEnd

delete old ledgers while maintaining at least 2000. Do not require an

external administrative command to initiate deletion.

[node_db] //NuDB type required for full history

type=NuDB

path=/var/lib/rippled/db/nudb

#open_files=2000 //these are not needed for NuDB

#filter_bits=12

#cache_mb=256

#file_size_mb=8

#file_size_mult=2

#online_delete=2000

#advisory_delete=0

[ledger_history] //although enabled, full history seems not to work

//correctly for validators, will need trackers for this.

full

[database_path]

/var/lib/rippled/db

This needs to be an absolute directory reference, not a relative one.

Modify this value as required.

57

[debug_logfile]

/var/log/rippled/debug.log

[sntp_servers] // servers for time sync

time.windows.com

time.apple.com

time.nist.gov

pool.ntp.org

File containing trusted validator keys or validator list publishers.

Unless an absolute path is specified, it will be considered relative to the

folder in which the rippled.cfg file is located.

[validators_file]

validators-example.txt

Turn down default logging to save disk space in the long run.

Valid values here are trace, debug, info, warning, error, and fatal

[rpc_startup]

{ "command": "log_level", "severity": "trace" } //verbose logging

If ssl_verify is 1, certificates will be validated.

To allow the use of self-signed certificates for development or internal use,

set to ssl_verify to 0.

[ssl_verify]

0

[ips_fixed]

192.168.1.97 51235 //IPs and ports of the other 2 peer validators

192.168.1.132 51235

[peer_private]

1

[node_seed]

shEm9dGAs2aq6MMe9XsXYXKrPmqft

[cluster_nodes]

n9LPJFoTLxVbTtdWADZzPpCwACwC3aLAYGhFcNNR61fD9DTc2w5L ripdbg1

n9KUMms9ZrDgHU7rN9pRTRGMKEWy5Ghk3qj53aCPAbJRur2sTqwp ripdbg3

[validator-token]

eyJtYW5pZmVzdCI6IkpBQUFBQUZ4SWUwYkVlUVp1bGNsKzRadk44cGhXUWJNNWhlV3RKY0hN

YUVKcUpadWVRWm9jWE1oQXYvVWY3MmlaQ0VQZndPZTd0TjNaY0V1UnFDd2Q3U2JkU3hPTnJq

TXlsNWlka2N3UlFJaEFKc3IzL3g2U0RiRGprOHc0Mks2eU91M1FPbW4vNjVIeTM4bkxjbnJa

c1ROQWlBSnRlRTRpdjVqSjRJMytvS0VseEFjTmFUL3VoQnRlSVFyK29RdmVoemJESEFTUU53

RnpLN21kV3lUaTZoTWY4SUJTRUxmZHI1cjhuMFdIeE5BSGNHSXJURDV1N09BK3FKZWZLMzkw

Smx3aE5ydGVLL09LWS8rQldDUHo0ejQ4VXptaHd3PSIsInZhbGlkYXRpb25fc2VjcmV0X2tl

eSI6IkJGMTcyRjJBMzNGQTZDOTdBQ0JBODhBNTA0NThGQzZFRURENzBCNjEwMzdEMjcwNjgz

RTQ3MzRBNUY2OURGRkMifQ==

[features]

PayChan

Escrow

CryptoConditions

58

fix1528

DepositPreauth

FeeEscalation

fix1373

MultiSign

TickSize

fix1623

fix1515

TrustSetAuth

fix1513

fix1512

fix1571

Flow

fix1201

fix1523

fix1543

SortedDirectories

EnforceInvariants

fix1368

DepositAuth

fix1578

7.2 The ETH ledger. Connecting the XRP and ETH ledgers through ’Machinomy’

For the scope of this work, we will assimilate the ETH network to a black-box holding the ETH
wallet accounts, executing commands and providing immediate response. For testing purposes,
such a friendly ’black-box’ can be ’Ganache’62, previously called ’TestRPC’. After download,
Ganache can be started directly:

cd /Downloads

./ganache-1.3.1-x86_64.AppImage

’Machinomy’63 is used to connect the XRP and ETH ledgers. It achieves this by deploying a
specific contract on the ETH ledger. One contract manages all the channels for Ether micropay-
ments (all the sender-receiver pairs). Thus, Machinomy creates the settlement capability when
ILP payment interacts with the ETH ledger.

’Machinomy is a micropayments SDK for Ethereum platform. State channels is a design
pattern for instant blockchain transactions. It moves most of the transactions off-chain. As
transactions do not touch the blockchain, fees and waiting times are eliminated, in a secure
way.’ [36]

Machinomy should be installed64 on the same machine with the ETH provider, in this case,
Ganache. After installing Machinomy, a contract can be deployed on the ETH network using
the following:

cd machinomy/node_modules/@machinomy/contracts

yarn truffle migrate --reset

62https://truffleframework.com/docs/ganache/quickstart, accessed June 2019, accessed June 2019
63https://machinomy.com/, accessed June 2019
64https://github.com/machinomy/machinomy, accessed June 2019

59

https://truffleframework.com/docs/ganache/quickstart
https://machinomy.com/
https://github.com/machinomy/machinomy

Checking back in Ganache after Machinomy contract deployment, you will notice that a small
amount of ETH has been subtracted from the first account, and in the Transactions tab, the
contract has been deployed.

After a Ganache restart, the ’–reset’ option has to be used because Ganache is not persistent.
The contract will be deployed on the first Ganache account. The other accounts can be used by
ETH client wallets.

After deploying the Machinomy contract on the ETH network, apps like Switch API can be
used to exchange XRP and ETH back and forth. The plugins should be set to access Ganache
using http://ganache IP:ganache port. A detailed explanation on Switch API is provided in
Section 5.0.2.

8 Evaluation and discussion

In this paper, we have provided the details on how to set-up a private ILP network comprising of
two ledgers - XRP and ETH, ILP service providers (connectors), and customer apps (Moneyd,
SPSP, Switch API). The payments can be streamed from one ledger to the other with the Switch
API app, making use of Machinomy smart contracts deployed on the ETH ledger. Time (the
time on the machines must be synchronised), conversion rates and gas price are fetched from
the internet.

In our opinion, at the present moment, as one moves from the core - the Rippled servers
making-up the ledger, to the periphery - the customer apps, the support and availability of apps
decreases. The most information to be found concerns the Rippled servers, while in regards to
customer apps we have tried so far, at present only Moneyd-XRP seems fairly supported. Some
of the plugins are undergoing changes (e.g. ETH plugin), and with the advent of connectors
like Rafiki, they may be, at least partially, replaced with new approaches like the ”settlement
engine”. Intuitively this is the way the ecosystem should be built and we are confident the future
will bring many improvements.

9 Conclusions and future work

Sometimes abstract concepts are explained separately from the actual implementation, making
it difficult to make the connections. This work fills a hole in the documentation regarding a
lack of a comprehensive high level view of the ecosystem and how the different pieces are joined
together.

We are currently studying the all-new @Coil/Rafiki which is still in beta and will soon
provide the results.

Acknowledgements

This work was supported by the Luxembourg National Research Fund (FNR) through grant
PRIDE15/10621687/SPsquared. In addition, we thankfully acknowledge the support from the
RIPPLE University Blockchain Research Initiative (UBRI) framework for our research.

60

Acronyms

API Abstract Programming Interface. 4, 8, 11, 37–43, 52, 54, 60, 61

BTP Bilateral Transfer Protocol. 11, 21–24, 27–32, 36

FSM Finite State Machine. 2, 17

GUI Graphical User Interface. 13, 25, 28, 32, 33, 35, 43, 45, 47, 49

ILP Interledger Protocol. 4–12, 14–16, 18, 19, 21, 22, 24–30, 32, 34, 42, 43, 46, 59, 60

ILSP Interledger Service Provider. 8, 11, 28, 36, 38, 42–44, 47, 49

SPSP Simple Payment Setup Protocol. 11–15, 19, 21, 22, 24–30, 32–36, 43, 45, 49, 51, 60

Glossary

Moneyd An ILP provider, allowing all applications on an end-user computer to use funds on
the live ILP network. 4, 8, 10, 13, 15, 21, 24–30, 32–37, 42, 43, 45, 60

Proof of Work (PoW) A consensus protocol introduced by Bitcoin, known as mining, which
involves answering to a mathematical problem that requires considerable work to solve,
but is easily verified once given the answer. 6

Switch API A SDK for cross-chain trading between BTC, ETH, DAI and XRP with In-
terledger Streaming. 4, 8, 37–43, 60

XRP Ripple’s digital payment asset which is used for Interledger payments. 3–7, 9, 10, 13, 19,
24, 25, 27–29, 32–38, 40, 41, 43, 44, 46, 49, 54, 59, 60

References

[1] Dr. Demetrios Zamboglou. ripple |Explained, [Online] Accessed: June 6, 2019. https://medium.com/

datadriveninvestor/ripple-explained-4df46678e0bd.

[2] Ripple. ILP Connector, [Online] Accessed: June 6, 2019. https://github.com/interledgerjs/

ilp-connector#what-is-this.

[3] Ripple. ILP Addresses - v2.0.0, [Online] Accessed: June 21, 2019. https://interledger.org/rfcs/

0015-ilp-addresses/.

[4] Adrian Hope-Bailie. Running your own ILP connector, [Online] Accessed: April 10, 2019. https://medium.
com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a.

[5] Ripple. Peering, Clearing and Settling, [Online] Accessed: June 18, 2019. https://interledger.org/rfcs/
0032-peering-clearing-settlement/.

[6] Ripple. Payment Channels, [Online] Accessed: June 17, 2019. https://xrpl.org/payment-channels.html.

[7] Adrian-Hope Bailie. Settlement Architecture, [Online] Accessed: June 18, 2019. https://forum.

interledger.org/t/settlement-architecture/545.

[8] Ben Sharafian. Moneyd - payment channels explanation, [Online] Accessed: June 20, 2019. https://forum.
interledger.org/t/moneyd-payment-channels-explanation/374/3.

[9] Evan Schwartz. Protocol Stack Deep Dive - Boston Interledger Meetup, [On-
line] Accessed: June 6, 2019. https://www.slideshare.net/Interledger/

interledger-protocol-stack-deep-dive-boston-interledger-meetup.

61

https://medium.com/datadriveninvestor/ripple-explained-4df46678e0bd
https://medium.com/datadriveninvestor/ripple-explained-4df46678e0bd
https://github.com/interledgerjs/ilp-connector#what-is-this
https://github.com/interledgerjs/ilp-connector#what-is-this
https://interledger.org/rfcs/0015-ilp-addresses/
https://interledger.org/rfcs/0015-ilp-addresses/
https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a
https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a
https://interledger.org/rfcs/0032-peering-clearing-settlement/
https://interledger.org/rfcs/0032-peering-clearing-settlement/
https://xrpl.org/payment-channels.html
https://forum.interledger.org/t/settlement-architecture/545
https://forum.interledger.org/t/settlement-architecture/545
https://forum.interledger.org/t/moneyd-payment-channels-explanation/374/3
https://forum.interledger.org/t/moneyd-payment-channels-explanation/374/3
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup

[10] Evan Schwartz. Thoughts on Scaling Interledger Connectors, [Online] Accessed: June 14, 2019. https:

//medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f.

[11] Ripple. Simple Payment Setup Protocol (SPSP), [Online] Accessed: June 6, 2019.
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/

0009-simple-payment-setup-protocol.md.

[12] Ripple. Payment Pointers and Payment Setup Protocols , [Online] Accessed: June 14, 2019. https://

github.com/interledger/rfcs/blob/master/0026-payment-pointers/0026-payment-pointers.md.

[13] Evan Schwartz. STREAMing Money and Data Over ILP, [Online] Accessed: June 11, 2019. https://

medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e.

[14] Ripple. STREAM: A Multiplexed Money and Data Transport for ILP, [Online] Accessed: June 11, 2019.
https://interledger.org/rfcs/0029-stream/.

[15] Ripple. Ripple InterLedger Protocol’s role in realizing the Internet of
Value [IoV], [Online] Accessed: June 11, 2019. https://bcfocus.com/news/

ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/.

[16] Ripple. Install Rippled, [Online] Accessed: June 6, 2019. https://developers.ripple.com/

install-rippled.html.

[17] D. Appelt, A. Hope-Bailie, M. de Jong, E. Schwartz, B. Sharafian, S. Thomas, and B. Way. ILP v4:
Version 4 of the Interledger protocol, April 2018, [Online] Accessed: June 13, 2019. https://github.com/

interledger/rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf.

[18] Evan Schwartz. Trustlines Explanation, [Online] Accessed: June 13, 2019. https://forum.interledger.

org/t/trustlines-explanation/358.

[19] Ripple. Hashed-Timelock Agreements (HTLAs), [Online] Accessed: June 11, 2019. https://interledger.

org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels.

[20] Ripple. Relationship between Protocols, [Online] Accessed: June 14, 2019. https://interledger.org/rfcs/
0033-relationship-between-protocols/.

[21] Ripple. Interledger Architecture, [Online] Accessed: June 6, 2019. https://interledger.org/rfcs/

0001-interledger-architecture/#protocol-layers.

[22] Ripple. The Bilateral Transfer Protocol, [Online] Accessed: June 11, 2019. https://interledger.org/rfcs/
0023-bilateral-transfer-protocol/draft-2.html.

[23] Ripple. Interledger Check-in, [Online] Accessed: April 15, 2019. https://developers.ripple.com/blog/

2019/interledger-checkin.html.

[24] Sabine Bertram. Introducing Pull Payments to the Interledger Protocol, [On-
line] Accessed: June 6, 2019. https://medium.com/interledger-blog/

introducing-pull-payments-to-the-interledger-protocol-d763e21af6ec.

[25] Ripple. Interledger Protocol (ILP), [Online] Accessed: April 10, 2019. https://interledger.org/rfcs/

0003-interledger-protocol/.

[26] Ben Sharafian. SPSP payments, [Online] Accessed: June 6, 2019. https://forum.interledger.org/t/

spsp-payments/310/7.

[27] Kincaid O’Neil Kava Labs. Lightning fast, non-custodial trades - in 20 lines of code, [Online] Accessed: June
13, 2019. https://medium.com/kava-labs/fast-non-custodial-trading-using-layer-2-ddeb2283f71b.

[28] Kevin Davis Kava Labs. Kava Development Update #3, [Online] Accessed: June 13, 2019. https://medium.
com/kava-labs/kava-development-update-3-69e20f88b4c9.

[29] S. Thomas, E. Schwartz, and A. Hope-Bailie. The Interledger Protocol, July. 2016. [Online] Accessed: April
10, 2019. https://tools.ietf.org/html/draft-thomas-interledger-00.

[30] Adrian Hope-Bailie. Interledger Community Group Call, Nov. 2018. [Online] Accessed: April 10, 2019. https:
//zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?

continueMode=true.

[31] HowToToken Team. How Is Ripple Different From All Other Cryptocurrencies? An Ul-
timate Guide, [Online] Accessed: April 10, 2019. https://howtotoken.com/explained/

ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels.

[32] Adrian Hope-Bailie. Introducing Rafiki, [Online] Accessed: June 24, 2019. https://medium.com/

interledger-blog/introducing-rafiki-e3de4710d3de.

62

https://medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f
https://medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/0009-simple-payment-setup-protocol.md
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/0009-simple-payment-setup-protocol.md
https://github.com/interledger/rfcs/blob/master/0026-payment-pointers/0026-payment-pointers.md
https://github.com/interledger/rfcs/blob/master/0026-payment-pointers/0026-payment-pointers.md
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://interledger.org/rfcs/0029-stream/
https://bcfocus.com/news/ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/
https://bcfocus.com/news/ripple-interledger-protocols-role-in-realizing-the-internet-of-value-iov/19033/
https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/install-rippled.html
https://github.com/interledger/rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf
https://github.com/interledger/rfcs/blob/2052575084cdeeb94c0e9bd2e3c37960b732fa2d/whitepaper/interledger.pdf
https://forum.interledger.org/t/trustlines-explanation/358
https://forum.interledger.org/t/trustlines-explanation/358
https://interledger.org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels
https://interledger.org/rfcs/0022-hashed-timelock-agreements/#simple-payment-channels
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/draft-2.html
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/draft-2.html
https://developers.ripple.com/blog/2019/interledger-checkin.html
https://developers.ripple.com/blog/2019/interledger-checkin.html
https://medium.com/interledger-blog/introducing-pull-payments-to-the-interledger-protocol-d763e21af6ec
https://medium.com/interledger-blog/introducing-pull-payments-to-the-interledger-protocol-d763e21af6ec
https://interledger.org/rfcs/0003-interledger-protocol/
https://interledger.org/rfcs/0003-interledger-protocol/
https://forum.interledger.org/t/spsp-payments/310/7
https://forum.interledger.org/t/spsp-payments/310/7
https://medium.com/kava-labs/fast-non-custodial-trading-using-layer-2-ddeb2283f71b
https://medium.com/kava-labs/kava-development-update-3-69e20f88b4c9
https://medium.com/kava-labs/kava-development-update-3-69e20f88b4c9
https://tools.ietf.org/html/draft-thomas-interledger-00
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://howtotoken.com/explained/ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels
https://howtotoken.com/explained/ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels
https://medium.com/interledger-blog/introducing-rafiki-e3de4710d3de
https://medium.com/interledger-blog/introducing-rafiki-e3de4710d3de

[33] Ripple. Install Rippled, [Online] Accessed: April 10, 2019. https://developers.ripple.com/

install-rippled.html.

[34] Rabbit. The Interledger Protocol, July. 2018. [Online] Accessed: April 10, 2019. https://xrpcommunity.

blog/rippled/.

[35] Ripple. Parallel Networks and Consensus, [Online] Accessed: April 10, 2019. https://mduo13.github.io/

ripple-dev-portal/tutorial-rippled-setup.html.

[36] Sergey Ukustov, Andrei Riaskov, Alexander Burtovoy, and Matthew Slipper. Machinomy, [Online] Accessed:
April 10, 2019. https://machinomy.com/.

63

https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/install-rippled.html
https://xrpcommunity.blog/rippled/
https://xrpcommunity.blog/rippled/
https://mduo13.github.io/ripple-dev-portal/tutorial-rippled-setup.html
https://mduo13.github.io/ripple-dev-portal/tutorial-rippled-setup.html
https://machinomy.com/

“M
o

n
ey

d
X

R
P

”
“M

o
n

ey
d

ET
H

”

M
o

n
ey

d
co

re

C
o

n
n

ec
to

r
co

re

X
R

P
 u

p
lin

k
ET

H
 u

p
lin

k

X
R

P
 p

lu
gi

n
ET

H
 p

lu
gi

n

A
lic

e
: 1

9
2

.1
6

8
.1

.7
6

B
o

b
:

1
9

2
.1

6
8

.1
.3

5

X
R

P
 p

lu
gi

n
ET

H
 p

lu
gi

n
 k

av
a

IL
SP

 2

ET
H

 le
d

ge
r

P
o

A

In
te

rn
et

:
Fe

tc
h

 c
o

n
ve

rs
io

n
 r

at
e

A
lic

e
 <

->
 C

o
n

n
e

ct
o

r
2

:

X
R

P
 p

ay
ch

an
B

TP
, p

o
rt

 7
4

4
2

B
o

b
 <

->
 C

o
n

n
e

ct
o

r
2

:

ET
H

 p
ay

ch
an

B
TP

, p
o

rt
 7

4
4

2

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

SP
SP

 c
lie

n
t

M
o

n
ey

d
G

U
I

M
o

n
ey

d
G

U
I

M
o

n
ey

d
co

re

SP
SP

 c
lie

n
t

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

M
ac

h
in

o
m

y

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

7
7

6
9

7
7

6
9

C
o

n
n

ec
to

r
co

re

X
R

P
 p

lu
gi

n

IL
SP

 1

Ilp
-p

lu
gi

n
-m

in
ia

cc
o

u
n

ts
R

at
es

 b
ac

ke
n

d
“o
n
e

-t
o

-o
n
e”

ET
H

 p
lu

gi
n

 k
av

a
X

R
P

 p
lu

gi
n

 k
av

a

“M
o

n
e

yd
X

R
P

”

X
R

P
 u

p
lin

k

X
R

P
 p

lu
gi

n

C
h

ar
lie

: 1
9

2
.1

6
8

.1
.1

1
6

C
h

ar
lie

 <
->

 C
o

n
n

e
ct

o
r

1
:

X

R
P

 p
ay

ch
an

B
TP

, p
o

rt
 7

4
4

2

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

SP
SP

 c
lie

n
t

M
o

n
ey

d
G

U
I

M
o

n
ey

d
co

re

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

7
7

6
9

In
te

rn
et

:
Fe

tc
h

 c
o

n
ve

rs
io

n
 r

at
e

D
av

e
, t

ra
d

in
g

w
it

h
 “

Sw
it

ch
 A

P
I”

D
av

e
 <

->
 C

o
n

n
ec

to
r

1
:

X

R
P

 p
ay

ch
an

B
TP

D
av

e
 <

->
 C

o
n

n
e

ct
o

r
2

:

ET
H

 p
ay

ch
an

B
TP

p
e

e
r

B
TP

IL
P

-p
lu

gi
n

-x
rp

-p
ay

ch
an

IL
P

-p
lu

gi
n

-x
rp

-p
ay

ch
an

X
R

P
 p

lu
gi

n
 k

av
a

w
s(

s)
:/

/1
9

2
.1

6
8

.1
.9

8
:

5
1

2
3

3
1

9
2

.1
6

8
.1

.8
7

:8
5

4
5

M
o

n
ey

d
G

U
I

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

R
at

es
 b

ac
ke

n
d

“e
cb

-p
lu

s-
co

in
m

ar
ke

tc
ap

”
IL

P
-p

lu
gi

n
-m

in
ia

cc
o

u
n

ts

M
o

n
ey

d
G

U
I

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

C
o

in
ca

p
A

P
I

R
ip

p
le

 L
e

d
ge

r

Tr
ac

ke
rs

V
al

id
at

o
rs

Js
C

o
n

n
e

ct
o

r
1

:
1

9
2

.1
6

8
.1

.1
4

6
Js

C
o

n
n

e
ct

o
r

2
:

1
9

2
.1

6
8

.1
.1

3
1

Sw
it

ch
 A

P
I c

o
re

Fig. 27: Ecosystem overview. The machines involved are time-synchronized using time servers.
The ETH gas price and the currency rates are fetched from online. To keep the diagram readable
we didn’t illustrate all plugin connections to the ledgers; each plugin provides for connection to
the appropriate ledger using wss or ws.

64

Sender

Node A: g.node-a

(13) Routing Table Module

Routing Table

Account for Ledger B

(11) Account Module

(12) Bilateral Ledger

IP layer connection (e.g. WebSocket)

Interaction between programs

Explanation of something

Node B: g.node-a.child-b

Routing Table Module

Routing Table

Account for Ledger B

Account Module

Bilateral Ledger

(A) BTP over WebSocket

(C) SPSP over HTTPS

The identifier of nodes (g.xxx) is (3) ILP address

Packet Data Structure

BTP Packet

ILP Packet

(7) DCP Packet

BTP Packet

ILP Packet

(8) RBP Packet

The details (order, value type, length) are defined as (9) ASN.1 .
The ASN.1 structure is encoded in binary by (10) Canonical OER rule.

(1) BTP Packet

(2) ILP Packet

(4) STREAM Packet

(5) Application Packet

Application

Account for Ledger A

Account Module

Bilateral Ledger

(
4
)

 S
T
R
E
A
M

P
a
c
k
e
t

(14) Configuration Module

(
7
)

 D
C
P

P
a
c
k
e
t

(6) SPSP information

(8) RBP Packet

Ledger B

Account for Node A

Account for Node B

Payment Channel
for Node A and B

(B) Ledger specific connection

(to receiver SPSP server)

(1) BTP Packet (to Node C)

(to Ledger A)

Fig. 28: Protocols and details. Advanced diagram. [20, 21]

65

	What this document covers
	Who this document is for
	The Interledger community
	The Interledger ecosystem
	Main components of a unified payment infrastructure
	The Money transfer system
	The Bilateral Balance
	Payment channels
	Settlement
	On-Ledger transfers

	The Interledger protocol suite
	The Simple Payment Setup Protocol
	The Streaming Transport for the Realtime Exchange of Assets and Messages
	The Interledger Protocol
	The Bilateral Transfer Protocol

	Customer apps for money transfer
	Moneyd, Moneyd-GUI and SPSP
	@Kava-Labs: Switch API

	The connectors
	The ledgers
	The Ripple ledger
	Preparation
	Start up

	The Ethereum ledger

	Evaluation and discussion
	Conclusions and future work

