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ABSTRACT. Informally, Z3-manifolds are ‘manifolds’ with Z%-graded coordinates and a sign rule determined
by the standard scalar product of their Z3-degrees. Such manifolds can be understood in a sheaf-theoretic
framework, as supermanifolds can, but with significant differences, in particular in integration theory. In this
paper, we reformulate the notion of a Z%3-manifold within a categorical framework via the functor of points. We
show that it is sufficient to consider ZZ-points, i.e., trivial Z%-manifolds for which the reduced manifold is just
a single point, as ‘probes’ when employing the functor of points. This allows us to construct a fully faithful
restricted Yoneda embedding of the category of Z%-manifolds into a subcategory of contravariant functors from
the category of Z3-points to a category of Fréchet manifolds over algebras. We refer to this embedding as
the Schwarz—Voronov embedding. We further prove that the category of Z#-manifolds is equivalent to the full
subcategory of locally trivial functors in the preceding subcategory.
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1. INTRODUCTION

Various notions of graded geometry play an important réle in mathematical physics and can often provide
further insight into classical geometric constructions. For example, supermanifolds, as pioneered by Berezin
and collaborators, are essential in describing quasi-classical systems with both bosonic and fermionic degrees
of freedom. Very loosely, supermanifolds are ‘manifolds’ for which the structure sheaf is Zs-graded. Such
geometries are of fundamental importance in perturbative string theory, supergravity, and the BV-formalism,
for example. While the theory of supermanifolds is firmly rooted in theoretical physics, it has since become a
respectable area of mathematical research. Indeed, supermanifolds allow for an economical description of Lie
algebroids, Courant algebroids as well as various related structures, many of which are of direct interest to
physics. We will not elaborate any further and urge the reader to consult the ever-expanding literature.

Interestingly, Z%-gradings (Z3 = Z5", n > 2) can be found in the theory of parastatistics, see for example
[21, 25, 26, 61], behind an alternative approach to supersymmetry [55], in relation to the symmetries of the
Lévy-Lebond equation [2], and behind the theory of mixed symmetry tensors [12]. Generalizations of the super
Schrodinger algebra (see [3]) and the super Poincaré algebra (see [11]) have also appeared in the literature.
That said, it is unknown if these ‘higher gradings’ are of the same importance in fundamental physics as Zo-
gradings. It must also be remarked that the quaternions and more general Clifford algebras can be understood
as Z5-graded Z5-commutative (see below) algebras [4, 5]. Thus, one may expect Z5-gradings to be important in
studying Clifford algebras and modules, though the implications for classical and quantum field theory remain
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as of yet unexplored. It should be further mentioned that any ‘sign rule’ can be understood in terms of a
7-grading (see [16]). A natural question here is to what extent can Z%-graded geometry be developed.

A locally ringed space approach to Z3 -manifolds has been constructed in a series of papers by Bruce, Covolo,
Grabowski, Kwok, Ovsienko & Poncin [20, 16, 17, 18, 19, 40, 12, 14]. Tt includes the ZJ-differential-calculus,
the Z5-Berezinian, as well as a low dimensional Z7-integration-theory. Integration on ZZ5-manifolds turns out
to be fundamentally different from integration on Zi-manifolds (i.e., supermanifolds) and is currently being
constructed in full generality by authors of the present paper.

Loosely, Z4-manifolds are ‘manifolds’ for which the structure sheaf has a Zy-grading and the commutation
rule for the local coordinates comes from the standard scalar product of their Z3-degrees. This is not just a trivial
or straightforward generalization of the notion of a supermanifold as one has to deal with formal coordinates
that anticommute with other formal coordinates, but are themselves not nilpotent. Due to the presence of
formal variables that are not nilpotent, formal power series are used rather than polynomials (for standard
supermanifolds all functions are polynomial in the Grassmann odd variables). The use of formal power series is
unavoidable in order to have a well-defined local theory (see [16]), and a well-defined differential calculus (see
[18]). Heuristically, one can view supermanifolds as ‘mild’ noncommutative geometries: the noncommutativity
is seen simply as anticommutativity of the odd coordinates. In a similar vein, one can view ZZ5-manifolds
(n > 1) as examples of ‘mild’ nonsupercommutative geometries: the sign rule involved is not determined by the
coordinates being even or odd, i.e., by their total degree, but by their Z7-degree.

The idea of understanding supermanifolds, i.e., Z3-manifolds, as ‘Grassmann algebra valued manifolds’ can be
traced back to the pioneering work of Berezin [10]. An informal understanding along these lines has continuously
been employed in physics, where one chooses a ‘large enough’ Grassmann algebra to capture the aspects to the
theory needed. This informal understanding leads to the DeWitt—Rogers approach to supermanifolds which
seemed to avoid the theory of locally ringed spaces altogether. However, arbitrariness in the choice of the
underlying Grassmann algebra is somewhat displeasing. Furthermore, developing the mathematical consistency
of DeWitt—Rogers supermanifolds takes one back to the sheaf-theoretic approach of Berezin & Leites: for a
comparison of these approaches, the reader can consult Rogers [13] or Schmitt [47]. From a physics perspective,
there seems no compelling reason to think that there is any physical significance to the choice of underlying
Grassmann algebra. To quote Schmitt [47]: “However, no one has ever measured a Grassmann number, everyone
measures real numbers”. The solution here is, following Schwarz & Voronov [19, 54, 58], not to fix the underlying
Grassmann algebra, but rather understand supermanifolds as functors from the category of finite-dimensional
Grassmann algebras to, in the first instance, the category of sets. For a given, but arbitrary, Grassmann algebra
A, one speaks of the set of A-points of a supermanifold. It is well known that the set of A-points of a given
supermanifold comes with the further structure of a Ag-smooth manifold. That is we, in fact, do not only have
a set, but also the structure of a finite-dimensional manifold whose tangent spaces are Ag-modules. Moreover,
thinking of supermanifolds as functors, not all natural transformations between the A-points correspond to
genuine supermanifold morphisms, only those that respect the Ag-smooth structure do. The classical roots of
these ideas go back to Weil [60] who considered the A-points of a manifold as the set of maps from the algebra
of smooth functions on the manifold to a specified finite-dimensional commutative local algebra A. Today one
refers to Weil functors and these have long been utilised in the theory of jet structures over manifolds, see for
example [31].

In this paper, we study Grothendieck’s functor of points — from the category opposite to Zy-manifolds to
the category of sets (see [27]) — and restrict it to the category of ZZ-points, i.e., trivial ZZ-manifolds R°/¢ that
have no degree zero coordinates. More precisely we consider the restricted Yoneda functor from the category
of Zy-manifolds to the category of contravariant functors from Z4-points to sets. Dual to Zy-points are what
we will call Z% -Grassmann algebras, which we will also denote as A. The aim of this paper is to generalize and
carefully prove the main results of Schwarz & Voronov [54, 58] to the ‘higher graded’ setting. In particular, we
show that Z%-points are sufficient to act as ‘probes’ when employing the functor of points. However, not all
natural transformations between the sets of A-points correspond to morphisms of the underlying Z5-manifolds.
By carefully analyzing the image of the functor of points, we prove that the set of A-points of a Z5-manifold
comes with the extra structure of an infinite-dimensional Ag-manifold. By Ay we mean the subalgebra of degree
zero elements of the Z5-Grassmann algebra A. Note that we are not trying to define infinite-dimensional Z3-
manifolds, yet infinite-dimensional manifolds, specifically nuclear Fréchet manifolds, are fundamental to the
theory. Moreover, we show that natural transformations between sets of A-points arise from morphisms of
Zy-manifolds if and only if they respect the Fréchet Ag-manifold structures. Thus, by restricting the natural
transformations allowed, we build a full and faithful embedding of the category of Zy-manifolds into the category
of contravariant functors from the category of Z7-points to the category of nuclear Fréchet Ag-smooth manifolds.
This embedding we refer to as the Schwarz—Voronov embedding. We finally study representability of such
contravariant functors and prove that the category of Zy-manifolds is equivalent to the full subcategory of
locally trivial functors in the just depicted subcategory of contravariant functors from Z%-points to nuclear
Fréchet manifolds.

Methodology: As ZJ-manifolds have well defined local models, we work with ZJ-domains and then ‘globalize’
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the results to general Z3-manifolds. We modify the approach of Schwarz & Voronov [54, 58] and draw on
Balduzzi, Carmeli & Fioresi [8, 9] and Konechny & Schwarz [32, 33], making all changes necessary to encompass
Z5-manifolds. The most striking difference between supermanifolds and Z5-manifolds (n > 1) is that we are
forced, due to the presence of non-zero degree even coordinates, to work with (infinite-dimensional) Fréchet
spaces, algebras and manifolds. Nuclearity is not compulsory.

Arrangement: In Section 2 we review the basic tenets of ZL-geometry and the theory of Z5-manifolds. The
bulk of this paper is to be found in Section 3. We rely on two appendices: in Appendix A we recall the notion of
a generating set of a category, and in Appendix B we review indispensable concepts from the theory of Fréchet
spaces, algebras and manifolds.

2. RUDIMENTS OF Z5-GRADED GEOMETRY

2.1. The category of Zj-manifolds. The locally ringed space approach to Zy-manifolds is presented in a
series of papers [20, 16, 17, 18, 19, 40] by Covolo, Grabowski, Kwok, Ovsienko, and Poncin. We will draw upon
these works heavily and not present proofs of any formal statements.

Definition 2.1. A locally Z35-ringed space, n € N, is a pair X := (| X|,Ox), where |X| is a second-countable
Hausdorff space, and a Ox is a sheaf of Z3-graded Z5-commutative associative unital R-algebras, such that the
stalks O,, p € | X|, are local rings.

In this context, Z5-commutative means that any two sections a, b € Ox (|U]), |U| C |X| open, of homogeneous
degrees deg(a) = a € Z3 and deg(b) = b € Z5 commute according to the sign rule

ab = (—1)2Y pq,

where (—, —) is the standard scalar product on Zj. We will say that a section a is even or odd if (a,a) € Zs is
0orl.

Just as in standard supergeometry, which we recover for n = 1, a locally Z3-ringed space is a Z5-manifold
if it is locally isomorphic to a specific local model. Given the central role of (finite dimensional) Grassmann
algebras in the theory of supermanifolds, we consider here Z5-Grassmann algebras.

Remark 2.2. In the following, we order the elements in Z§ lexicographically, and refer to this ordering as the
standard ordering. For example, we thus get

Zg = {(070)7 (Oal)v (150)7 (151)}

Definition 2.3. A Z3-Grassmann algebra AL := R[[{]] is the Z§-graded Z-commutative associative unital
R-algebra of all formal power series with coefficients in R generated by homogeneous parameters £ subject to
the commutation relation
€17 = (-nefeier,

where o := deg(¢*) € Z3\ 0, 0 = (0,...,0). The tuple ¢ = (q1,42, - ,qn), N = 2" — 1, provides the number
q; of generators £*, which have the i-th degree in Z% \ 0 (endowed with its standard order).

A morphism of Z3-Grassmann algebras, v* : A2 — AL, is a map of R-algebras that preserves the Z3-grading
and the units.

We denote the category of Z5-Grassmann algebras and corresponding morphisms by Z5GrAlg.

Example 2.4. For n = 0, we simply get R considered as an algebra over itself.

Example 2.5. If n = 1, we recover the classical concept of Grassmann algebra with the standard supercom-
mutation rule for generators. In this case, all formal power series truncate to polynomials. In particular, the
Grassmann algebra generated by a single odd generator is isomorphic to the algebra of dual numbers.

Example 2.6. The Z3-Grassmann algebra ALY g described by three generators
( § 5 0 N )7
N N
(o,1) (1,0 (@1,1)
where we have indicated the Z3-degree. Note that £ = 0¢, while €2 = 0 and 6% = 0. Moreover, £z = —2€ and
0z = —20, while z is not nilpotent. A general (inhomogeneous) element of A1) is then of the form

[(8,0,2) = f2(2) + £ fe(2) + 0fo(2) + E0e0(2),

where f.(z2), fe(2), fo(2) and feg(2) are formal power series in z. As a subalgebra we can consider A!
generators are £ and 6. A general element of this subalgebra is a polynomial in these generators.

1.0) whose

Within any Z5-Grassmann algebra A := A4, we have the ideal generated by the generators of A, which we
will denote as A. In particular we have the decomposition

A=RaA,
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which will be used later on. Moreover, the set of degree 0 elements, Ag C A, is a commutative associative unital
R-algebra.

Very informally, a Zj-manifold is a smooth manifold whose structure sheaf has been ‘deformed’ to now
include the generators of a Z3-Grassmann algebra.

Definition 2.7. A (smooth) Z5-manifold of dimension plq is a locally Z3-ringed space M := (|M], Oy), which
is locally isomorphic to the locally Zj-ringed space RPI2 := (R?, C22[[€]]). Local sections of Oy are thus formal
power series in the Zj-graded variables £ with smooth coefficients,

Ou(UN) = CEUNIEN =14 > &fa:faeCRAUD ¢,

a€ENXi i

for ‘small enough’ open subsets |U| C |M|. A Z%-morphism, i.e., a morphism between two Z3-manifolds,
say M and N, is a morphism of Z3-ringed spaces, that is, a pair ¢ = (|¢|,¢*) : (|M],Om) — (|N|,On)
consisting of a continuous map |¢| : |M| — |N| and a sheaf morphism ¢* : Oy — |¢].Ohr, i.e., a family of
Zy-graded unital R-algebra morphisms ¢y, : On(|V]) — On(|8]72(|V])) (V| € |N| open), which commute
with restrictions. We will refer to the global sections of the structure sheaf Oy, as functions on M and denote
them as C°(M) := Op(|M]).

Example 2.8 (The local model). The locally Z3-ringed space Uurla .= (Z/{p, @y [[5]]), where UP C RP is open,
is naturally a Z%-manifold — we refer to such Z%-manifolds as Z%-domains of dimension p|lg. We can employ
(natural) coordinates (z%,£%) on any Z3-domain, where the z form a coordinate system on P and the £ are
formal coordinates.

Canonically associated to any Z4-graded algebra A is the homogeneous ideal J of A generated by all ho-
mogeneous elements of A having nonzero degree. If f : 4 — A’ is a morphism of Z}-graded algebras, then
f(J4) C Ja. The J-adic topology plays a fundamental rdle in the theory of ZJ-manifolds. In particular,
these notions can be ‘sheafified’. That is, for any Z5-manifold M, there exists an ideal sheaf Jys, defined by
J(U]) = {f € O (|U]) : deg(f) # 0). The Jps-adic topology on Oy can then be defined in the obvious way.

Many of the standard results from the theory of supermanifolds pass over to Z5-manifolds. For example,
the topological space |M| comes with the structure of a smooth manifold of dimension p and the continuous
base map of any Z4-morphism is actually smooth. Further, for any Zy-manifold M, there exists a short exact
sequence of sheafs of Z%-graded Z5-commutative associative R-algebras

0—>ker5—>0Mi>Cm‘—>0,

such that kere = 7.

The immediate problem with Z5-manifolds is that Jjs is not nilpotent — for supermanifolds the ideal sheaf is
nilpotent and this is a fundamental property that makes the theory of supermanifolds so well-behaved. However,
this loss of nilpotency is compensated by Hausdorff completeness of Oy, with respect to the [Jas-adic topology.

Proposition 2.9. Let M be a Zy-manifold. Then Opr is Jar-adically Hausdorff complete as a sheaf of Z7-
commutative associative unital R-algebras, i.e., the morphism

+—k
naturally induced by the filtration of Ops by the powers of Ty, is an isomorphism.

The presence of formal power series in the coordinate rings of Z%-manifolds forces one to rely on the Hausdorff-
completeness of the [J-adic topology. This completeness replaces the standard fact that supermanifold functions
of Grassmann odd variables are always polynomials — a result that is often used in extending results from smooth
manifolds to supermanifolds.

What makes Z4-manifolds a very workable form of noncommutative geometry is the fact that we have
well-defined local models. Much like the theory of manifolds, one can construct global geometric concepts
via the gluing of local geometric concepts. That is, we can consider a ZJ-manifold as being covered by Z3-
domains together with specified gluing information, i.e., coordinate transformations. Moreover, we have the
chart theorem ([16, Theorem 7.10]) that says that Z5-morphisms from a Z3-manifold (|M|, Opr) to a Z5-domain
(UP, Ceali€]]), are completely described by the pullbacks of the coordinates (z%,£%). In other words, to define a
Z%-morphism valued in a Z%-domain, we only need to provide total sections (s%,s%) € Oy (|M]) of the source
structure sheaf, whose degrees coincide with those of the target coordinates (z%,£%). Let us stress the condition
(...,es% .. )(|M]) C UP, which is often understood in the literature.

A few words about the atlas definition of a Zj-manifold are necessary. Let p|q be as above. A p|g-chart (or
plg-coordinate-system) over a (second-countable Hausdorff) smooth manifold |M| is a Z-domain

urls = P Cr[1E))
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together with a diffeomorphism [+)| : |[U| — UP, where |U] is an open subset of [M|. Given two p|g-charts

| |
(2.1) Ua™, [al) and (U, [v3))
over |M|, we denote by |1)g4| the diffeomorphism

(2:2) [¥pal = [Wsllval™" : Vag = [¥al(Uas)) := [Wal(lUal NUs]) = Vaa := [05|(IUsal) = [951(1Us| N |Ual) -

Whereas in classical differential geometry the coordinate transformations are completely defined by the coordi-
nate systems, in Z§-geometry, they have to be specified separately. A coordinate transformation between two
charts, say the ones of (2.1), is an isomorphism of Z§-manifolds

% | \
(2.3) Vpa = ([Vpal, Vha) 1 U Ivay — Us v

where the source and target are the open Zj-submanifolds
\
Ua " 1voy = (Vag, O, [[€]])

(note that the underlying diffeomorphism is (2.2)). A p|g-atlas over |[M] is a covering (nglg7 |a|)a by charts
together with a coordinate transformation (2.3) for each pair of charts, such that the usual cocycle condition
3y Wya = YPga holds (appropriate restrictions are understood).

Definition 2.10. A (smooth) Z3-manifold of dimension p|q is a (second-countable Hausdorff) smooth manifold
| M| together with a preferred p|g-atlas over it.

As in standard supergeometry, the definitions 2.7 and 2.10 are equivalent [35]. For instance, if M = (|M|, Oxr)
is a Z5-manifold of dimension plg in the sense of Definition 2.7, there are Zj-isomorphisms (isomorphisms of
Z5-manifolds)

* | oo
ha = (hal,13) : Ua = (Ual, Onrliv,)) = Ua™ = (UE, Ci2luz [[€])

such that (|Uq|)o is an open cover of |M|. For any two indices «, 3, the restriction hq|y,, of ha to the open
Zg-submanifold Uspg = (|Uagl; Omliv. 1), [Uasl = [Ua| N [Ugl, is a Zz-isomorphism between U, and

|
Us 1oy = (Vass CRolvas lIE]Ds Vas = hal(IUagl) -
Therefore, the composite
(24) ,libﬂa = hB|Uﬁaho‘|l_]ig
is a Zy-isomorphism

YBa :uglg Vas —>Ug|2|v,3a ,

such that the cocycle condition is satisfied. As a matter of some formality, Z5-manifolds and their morphisms
form a category. The category of ZJ-manifolds we will denote as ZiMan. We remark this category is locally
small. Moreover, as shown in [14, Theorem 19], the category of Z%-manifolds admits (finite) products. More
precisely, let M;, i € {1,2}, be Zj-manifolds. Then there exists a ZJ-manifold M; x My and Z3-morphisms
i+ My x My — M; (with underlying smooth manifold |M; x Ms| = |Mi| x |Ms| and with underlying smooth
morphisms |m;| : |M7| x |Ma| — |M;| given by the canonical projections), such that for any ZZ-manifold N and
Zy-morphisms f; : N — M;, there exists a unique morphism h : N — M; x M, making the obvious diagram
commute. It follows that, if ¢ € Homzyyan (M, M’) and ¢ € Homzzyan (I, N'), there is a unique morphism
¢ x b € Homzpyan (M x N, M’ x N').

Remark 2.11. It is known that an analogue of the Batchelor—-Gawedzki theorem holds in the category of (real)
Z5-manifolds, see [17, Theorem 3.2]. That is, any Z5-manifold is noncanonically isomorphic to a Z5\ {0}-graded
vector bundle over a smooth manifold. While this result is quite remarkable, we will not exploit it at all in this
paper.

2.2. The functor of points. Similar to what happens in classical supergeometry, a Z3-manifold M is not
fully described by its topological points in |[M|]. To remedy this defect, we broaden the notion of ‘point’, as was
suggested by Grothendieck in the context of algebraic geometry.

More precisely, set V = {z € C" : P(z) = 0} € Aff, where P denotes a polynomial in n indeterminates
with complex coefficients and Aff denotes the category of affine varieties. Grothendieck insisted on solving the
equation P(z) = 0 not only in C”, but in A™, for any algebra A in the category CA of commutative (associative
unital) algebras (over C). This leads to an arrow

Solp : CA> A Solp(A) ={a € A" : P(a) =0} € Set

which turns out to be a functor
Solp ~ Home, (C[V], —) € [CA, Set]
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where C[V] is the algebra of polynomial functions of V. The dual of this functor, whose value Solp(A) is the
set of A-points of V, is the functor
HomAff(f,V) S [AffOP,Set] y
whose value Homy¢: (W, V) is the set of W-points of V.
The latter functor can be considered not only in Aff, but in any locally small category, in particular in
Z%Man. We thus obtain a covariant functor (functor in e)

(2.5) o (—) =Hom(—,e):ZyMan > M + M(—) = Homzgyan(—, M) € [Z3Man®?, Set] .

As suggested above, the contravariant functor Hom(—, M) (we omit the subscript Z5Man) (functor in —) is
referred to as the functor of points of M. If S € Z5Man, an S-point of M is just a morphism g € Hom(S, M).
One may regard an S-point of M as a ‘family of points of M parameterised by the points of S’. The functor
o(—) is known as the Yoneda embedding. For any underlying locally small category C (here C = Z3Man), the
functor e(—) is fully faithful, what means that, for any M, N € Z}Man, the map

oy, n(—) : Hom(M,N) 3 ¢ — Hom(—, ¢) € Nat(Hom(—, M), Hom(—, N))

is bijective (here Nat denotes the set of natural transformations). It can be checked that the correspondence
oy n(—) is natural in M and in N. Moreover, any fully faithful functor is automatically injective up to
isomorphism on objects: M(—) ~ N(—) implies M ~ N. Of course, the functor e(—) is not surjective up
to isomorphism on objects, i.e., not every functor X € [Z5Man®P,Set] is isomorphic to a functor of the type
M(—). However, if such M does exist, it is, due to the mentioned injectivity, unique up to isomorphism and it
is called ‘the’ representing Z%-manifold of X. Further, if X, Y € [Z3Man®P, Set] are two representable functors,
represented by M, N respectively, a morphism or natural transformation between them, provides, due to the
mentioned bijectivity, a unigue morphism between the representing Zy-manifolds M and N. It follows that,
instead of studying the category Z5Man, we can just as well focus on the functor category [Z5Man®P, Set] (which
has better properties, in particular it has all limits and colimits). A generalized Z%-manifold is an object in
the functor category [Z5Man®P, Set| and morphisms of such objects are natural transformations. The category
[Z5Man®P, Set] of generalised Z%-manifolds has finite products. Indeed, if F,G are two generalized manifolds,
we define the functor F' x G, given on objects S, by (F x G)(S) = F(S) x G(S), and on morphisms ¥ : S — T,
by
(FxG)(¥)=F(¥)xGW): F(T)x G(T) — F(S) x G(S) .

It is easily seen that F' x G respects compositions and identities. Further, there are canonical natural transfor-
mations 71 : X G — Fand e : FxG — G. If now (H, a1, a2) is another functor with natural transformations
from it to F' and G, respectively, it is straightforwardly checked that there exists a unique natural transformation
B8 :H — F x G, such that a; = n; 0 3.

One passes from the category of Z5-manifolds to the larger category of generalised Z5-manifolds in order to
understand, for example, the internal Hom objects. In particular, there always exists a generalised Z5-manifold
such that the so—called adjunction formula holds

Hom 7 gan (M. N)(~) := Homzgyaa(— x M, N).
This internal Hom functor is defined on ¢ € Homzpyan (P, S) by
7Hom ZgMan(M7 N) (¢) : 7H0m ZgMan(M7 N)(S) — LomZgMan(M? N) (P) ’
\I’S — \Ilso(¢>< ]]-M)

In general, a mapping Z4-manifold Hom Z;Man(M , V) will not be representable. We will refer to ‘elements’ of a
mapping Z5-manifold as maps reserving morphisms for the categorical morphisms of Z5-manifolds.
Composition of maps between Z5-manifolds is naturally defined as a natural transformation

(2.6) o:Hom(M, N) x Hom(N, L) — Hom(M, L),
defined, for any S € Z5Man, by
(2.7) Hom(S x M, N) x Hom(S x N,L) — Hom(S x M, L)

(\1’5,(1)5) — (@9@)3 = <I>S o (]]-S X \I/S> ] (A X ]].]\/[)7

where A : S — S x S is the diagonal of S and 1g: S — S is its identity.

Similarly to the cases of smooth manifolds and supermanifolds, morphisms between ZZ5-manifolds are com-
pletely determined by the corresponding maps between the global functions. We remark that this is not, in
general, true for complex (super)manifolds. More carefully, we have the following proposition that was proved
in [14, Theorem 9.].

Proposition 2.12. Let M = (|M|,Op) and N = (|N|,On) be Z%-manifolds. Then the natural map
HomZ;Man(M, N) — HomZgAlg(O(\ND, O(\M|)) ,

where Z5Alg denotes the category of Z%-graded Z% -commutative associative unital R-algebras, is a bijection.
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The fact that the functor Homzpyan (S, —) respects limits and in particular products directly implies that
(2.8) (M X N)(S) ~ M(S) x N(S).

The latter result is essential in dealing with Z3-Lie groups. A (super) Lie group can be defined as a group
object in the category of smooth (super)manifolds. This leads us to the following definition.

Definition 2.13. A Zy-Lie group is a group object in the category of Z5-manifolds.

A convenient fact here is that, if G is a ZJ-Lie group, then the set G(S) is a group (see (2.8)). In other
words, G(—) is a functor from Z5Man®® — Grp.

Remark 2.14. We leave details and examples of Z3-Lie groups for future publications. However, we will remark
at this point that the idea of “colour supergroup manifolds” has already appeared in the physics literature, albeit
without a proper mathematical definition (see [1, 3, 41, 42], for example). Another approach to Z5-Lie groups
is via a generalisation of Harish-Chandra pairs (see [39] for work in this direction).

3. Z5-POINTS AND THE FUNCTOR OF POINTS

In view of (2.5), we need to ‘probe’ a given Z%-manifold M ~ M(—) with all ZZ-manifolds. We will show
that this is however not the case, since, much like for the category of supermanifolds, we have a rather convenient
generating set that we can employ, namely the set of Z§-points.

3.1. The category of Zy-points.

Definition 3.1. A Z3-point is a Z5-manifold RO™ with vanishing ordinary dimension. We denote by Z5Pts
the full subcategory of Z5Man, whose collection of objects is the (countable) set of ZJ-points.

Morphisms ¢ : RO™ — ROIZ of Z2_points are exactly morphisms ¢* : A% — A™ of Z%-Grassmann algebras:
Proposition 3.2. There is an isomorphism of categories
Z5Pts ~ Z5GrAlg® .

We can think of Z%-points as formal thickenings of an ordinary point by the non-zero degree generators. The
simplest Z3-point is the one with trivial formal thickening, ROl := (R, R):

Proposition 3.3. The Z3-point RY2 = RO is a terminal object in both, ZiMan and Z5Pts.

Proof. The unique morphism M — R0 corresponds to the morphism R > 7 -1 — r -1, € Oum(|M]), where
1,/ is the unit function. O

Proposition 3.4. The object set Ob(Z5Pts) ~ Ob(Z5GrAlg) is a directed set.

Proof. Given any m = (mqy,my,---,my) and n = (n1,n1,--+ ,ny), we write A < AZ if and only if m; < n;,
for all 4. This preorder makes the non-empty set of Z3-Grassmann algebras into a directed set, since, any A™
and A admit A2 where p; = sup{m;,n;}, as upper bound. a

We will need the following functional analytic result in later sections of this paper. See Definition B.1 and
Definition B.5 for the notion of Fréchet space and Fréchet algebra, respectively.

Proposition 3.5. The algebra of functions of any Z%-point is a Z%-graded Zy-commutative nuclear Fréchet
algebra.

The proposition is a special case of the fact that the structure sheaf of any Zy-manifold is a nuclear Fréchet
sheaf of Z3-graded Zj-commutative algebras [13, Theorem 14].

Moreover, as a direct consequence of [14, Theorem 19, Definition 13], we observe that the category of Z5-
points admits all finite categorical products; in particular: RO x ROI2 ~ ROIm+2 - By restricting attention to
elements of degree 0 € Z7, we get the following corollary. See Definition B.7 for the concept of Fréchet module.

Corollary 3.1. The set Ay of degree 0 elements of an arbitrary Zy-Grassmann algebra A is a commutative
nuclear Fréchet algebra. Moreover, the algebra A can canonically be considered as a Fréchet Ag-module.

Remark 3.6. Specialising to the n = 1 case, we recover the standard and well-known facts about superpoints
and their relation with Grassmann algebras.
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3.2. A convenient generating set of ZiMan. It is clear that studying just the underlying topological points
of a Z%-manifold is inadequate to probe the graded structure. Much like the category of supermanifolds, where
the set of superpoints forms a generating set, the set of Z3-points forms a generating set for the category of
Z5-manifolds. For the classical case of standard supermanifolds, see for example [15, Theorem 3.3.3]. For the
general notion of a generating set, see Definition A.1.

Theorem 3.7. The set Ob (ZgPts) constitutes a generating set for Z5Man.

Proof. Let ¢ = (|¢|,¢*) and ¢ = (|¢],¢*) be two distinct ZJ-morphisms ¢, : M — N between two Zj-
manifolds M = (|M],Op) and N = (|N|, On). These morphisms have distinct smooth base maps
|91, [ = [M] — |NT,
or, if |¢| = ||, they have distinct pullback morphisms of sheaves of algebras
", 9" On = |90

If |¢| # |¢|, there is at least one point m € |M]|, such that |¢|(m) # [¢|(m). Let now s : R°® — M be
the Z%-morphism, which corresponds to the Z5Alg morphism s* : Oy (|[M]) 3 f — (ef)(m) € R, where ¢ is
the sheaf morphism € : Oy — Cy, . It follows from the reconstruction theorem [14, Theorem 9] that the base
morphism |s| : {x} = | M| maps * to m. Hence, the Zj-morphisms ¢ o s and 1 o s have distinct base maps.

Assume now that |¢| = |1|, so that there exists |V| C |N|, such that Py * ¥y, 1-e., such that ¢jy, f + iy S

for some function f € On(|V]). A cover of |V| by coordinate patches (V;);, induces a cover |U;| := |¢|~1(V;) of
|U| == |¢|71(JV]). Tt follows that

for some fixed i, i.e., that
o, (flv) # ¥y, (flv)
so that ¢3, # vy, .
recall that, for any open subset |X| C |M]|, there is a ZZ-morphism
vx (| X] Onlixy) = (IM], Onr)
whose base map |¢x| is the inclusion and whose pullback ¢% is the obvious restriction. Further, any Z5-morphism
¢ : M — N, whose base map |¢| : |[M| — |N| is valued in an open subset Y| of |N|, induces a Z5-morphism
oy (IM[,On) = (IY], Onljyy) 5

whose base map |¢y| is the map [¢| : [M| — |Y'| and whose pullback ¢3- is the pullback ¢* restricted to On/|jy|-.
In view of the above, if (U;); is a cover of |U;| by coordinate domains, we have

(3.1) (@9, (Flv )l # W3, (Flv )l
for some fixed j. This implies that the Zj-morphisms (¢ o 1y, )y, and (¢ o i)y, from the Z5-domain U; =
U;, C[[€]]) to the Zj-domain V; = (V;, C3[[0]]) are different. More precisely, they have the same base map
|¢| = |9| : U; — V;, but their pullbacks are distinct. Indeed, these sheaf morphisms’ algebra maps at V; are the
maps ¢, 11, © ¢, and iy 0y, from CF7 W)[16]] to CF (x)[[¢]], where y runs through V; and x through U,
and the values of these algebra maps at f|y, are different (see Equation (3.1)).

In view of Lemma 3.8, there is a Z%-morphism s : ROl U;, such that

(¢0Luj)vi os# (,(/Jol’uj)vi os.

However, then the Zj-morphism ¢y, o s : RO s M separates ¢ and 1), since the algebra maps at V; of the
pullbacks (5% o4 )o¢™ and (s* oy ) oo™ differ. Indeed, as the Z3-morphisms (¢ouy, )y, and (ouy, )y, are fully
determined by the pullbacks of the target coordinates, their pullbacks at V; differ for at least one coordinate
y®, 0B Tt follows from the proof of Lemma 3.8 that the pullback 57, © (LZ’;],"UI_| o ¢y, ) at V; of (¢ oy, )y, os and
the similar pullback for ¢ differ for the same coordinate. However, the pullback at V; considered is also the
algebra map at V; of the pullback (s* o LZ{j) o ¢*, so that the pullbacks (s* o L;:{j) o ¢* and (s* o Lljj) o™ are
actually distinct. (I

It remains to prove the following
Lemma 3.8. The statement of Theorem 3.7 holds for any two distinct Z%-morphisms between Zy-domains.
Proof. We consider two Z2-domains UP!4 and V"I# together with two distinct ZJ-morphisms
@
Urla j yris.
P
As in the general case above, there are two cases to consider: either |@| # ||, or |¢| = || and ¢* # ¢*. In the

proof of Theorem 3.7, we showed that in the first case, the maps ¢ and ¢ can be separated. In the second case,
since a Z5-morphism valued in a Z§-domain is fully defined by the pullbacks of the coordinates, these global
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Zz-functions ¢35, (Y4), 0%, (Y?) € O (2)[[€]] differ for at least one coordinate Y = y® or Y = 6B. Let B be
an index, such that

P (07) = Y oB(x)e
|a|]=1

e (08) = > B (x)e”
|a]=1

where we denoted the coordinates of P2 by (z%,&4) and used the standard multi-index notation, differ. This
means that the functions ¢Z(z) and 12 (z) differ for at least one o and at least one x € UP, say for a = a and
r =1 €UP C RP. From this, we can construct the separating Z3-morphism

@
ROlg 5 14pla :; yris
P

Let us denote the coordinates of Rl by x4. We then define the ZJ-morphism s by setting
sipx® =1 € R[[x]], deg(z?) = deg(z?) ,
si€” = x" € R[[\]], deg(x™) = deg(¢?) -
It is clear that ¢ o s # 1) o s, since
S GBN = s (65 (07) # 50 5507 = 3 B
la|=1 la|=1

The case where ¢, (Y?) # ¢35, (Y?) for Y = y® is almost identical. In particular, we then have

& (y") = |6/ (= Z b (x

=2
Ui 0) = [P + Y vhie
|a]=2
Since we know that |¢| = ||, we can proceed as for Y = §5. O

In view of Proposition A.3, we get the
Corollary 3.2. The restricted Yoneda functor
Vippes : LyMan > M HomZ;Man(f, M) € [ZSPtsOp, Set},
18 faithful.

Above, we wrote M (—) € [Z5Man®P, Set]| for the image of M € ZJMan by the non-restricted Yoneda functor.
If no confusion arises, we will use the same notation M(—) for the image Vzzpes(M) € [Z5Pts®P, Set] of M by
the restricted Yoneda functor.

Definition 3.9. Let M be an object of Z5iMan and A ~ R°™ an object of Z§GrAlg ~ Z5Pts°?. We refer to
the set

(3.2) M(A) := Homzpyan (R, M) o Homzg 1 (O(|M]), A)
as the set of A-points of M.

Proposition 3.10. Let
m* e HomZ;Alg(OﬂM\),A)
be a A-point of M and let s € O(|M]). The A-point m* can equivalently be viewed as a Z%-morphism
m = (|m],m*) € HomZSMan(Rolm,M)

and therefore it defines a unique topological point x := |m|(x) € |M|. If |U| C |M]| is an open neighbourhood of
x, such that s|jy = 0, then m*(s) = 0.

Proof. We have
m*(s) = m*(s)|{xy = MLy (8)|jmi-1(u)) = My (sljr) = 0.
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Lemma 3.11. There is a 1:1 correspondence
M(A) = U HomZgAlg (OM,xaA)
z€| M|
between the set of A-points of M and the set of morphisms from the stalks of Oy to A. The set
MI(A) = HongAlg(OM)x,A)
1s referred to as the set of A-points near .
Proof. Any A-point m* or m = (Jm|,m*) defines a topological point = = |m|(x) € |M], as well as a Z5Alg-
morphism ¢, € Homzzag(Onre, A) between stalks. This morphism is given, for any ty € O(|U|) defined in
some neighborhood |U| of z in |M]|, by
bzltu]e = miftu]. = [m\*U\tU]* = mTU|tU .
Conversely, any morphism 1, € Homzzpag(Onry, A) (y € [M]|) between stalks defines a A-point p* €
Homzzag (O(|M]), A). It suffices to set
wt =ty € A,
for all t € O(|M]).
It remains to check that the composites m* — ¢, — p* and ¢, — p* — ¢, are identities. In the first case,

for any t € O(|M]), we get u*t = @,[t]l, = m*t, so that u* = m*. In the second case, we need the following
reconstruction results. Let |U| C |M| be an open subset and set

Sy ={s € O°(|M]): (es)|;y| is invertible in C(|U|)} .
Then the localization map Ay : O(|M]) - S;;' — O(|U]) is an isomorphism in Z3Alg. More precisely, for any
ty € O(|U]), there is a unique Fs~ € O(|M]|)- S;;*, such that ty = F||U‘s|‘_U1| (if s € Sy, then s|jy| is invertible
in O(|U])), and we identify Fs~! with t;;. For the proof of these statements or more details on them, see [14].

It is further clear from the results of [14] that 2 = |u|(x) is the topological point y.
We now compute the second composite above. For any ¢ty defined in a neighborhood |U| of x, we get

altule = iy (Fs™1) = p(F) p(s) ™" =
where the second equality is part of the reconstruction theorem of Z5-morphisms [14]. O

Let us consider an open cover (|Ur|)re4 of the smooth manifold |M]|, as well as the open Zj-submanifolds
U := (|U1], Omlju,) of the Z3-manifold M (which need not be coordinate charts).

Proposition 3.12. For any Z%-Grassmann algebra A and Z%-manifold M = (|M|,(’)M), we have a natural
1:1 correspondence

M(A) =~ | Ur(n),
IcA
so that the family of sets (Ur(A))reca is a cover of the set M(A).

Proof. Since it is clear from the definition of a stalk that Oy, » = O, for any o € Uy, it follows from Lemma
3.11 that

U Urn)~ () |J Homzzng(Onra,A) = | J Homzyug(Onras A) = M(A) .

IcA IeAze|Uy| x€| M|

Recall that
Homzpuan(—, —) € [Z5Man, [Z5Pts®P, Set]]
so that,
(i) any Z5-morphism ¢ = (|¢], ¢*) : M — N is mapped (injectively) to a natural transformation

¢ =~ Homzpyan(—, @) : Homzzyan (—, M) — Homzpyan(—, N) |

whose A-component (A ~ RO™) is the Set-map given by
(3.3) ¢ = Homzpuan(A, @) : M(A) = Homzpuan (R*™, M) ~ Homzpag (O(|M]),A) > m* —

m* o ¢* € Homzga1g(O(IN]), A) =~ Homzpyan(R*™, N) = N(A) , and ,
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(ii) for any fixed M € Z3Man, given a morphism ¢ = (|¢], ¢*) : RO 5 ROIm of Z3-points, or, equivalently,
a morphism ¢* : A — A’ of Z3-Grassmann algebras, we get the induced Set-map

(3.4) M (1) == Homzgyan (¥, M) : M(A) = Homzgyan (RO, M) =~ Homzy ng(O(|M]), A) 5 m*
$* om* € Homzgmg(O(|M|), A') = Homzguan (RO M) = M(A') .

When reading the maps ¢ and M (1)*) through the 1:1 correspondence
M(A) > m* — (z,m}) € U Homzz g (Onrys A)
yEIM|
where z = |m|(*), we obtain
(3.5) op: M(A) — N(A)

(x, my) = (|ol(x), miod;), and,

(3.6) M(*) : M(A) — M(A")
(x, m) — (z, Y* omj).

3.3. Restricted Yoneda functor and fullness. The Yoneda functor from any locally small category C into
the category of Set-valued contravariant functors on C, is fully faithful. This holds in particular for C = Z5Man.
When we restrict the contravariant functors to the generating set Z5Pts, the resulting restricted Yoneda functor
is automatically faithful. In the following, we show that it is not full, i.e., that not all natural transformations
are induced by a Z5-morphism.

Naturality of any transformation ¢ : M(—) — N(—) between Set-valued contravariant (resp., covariant)
functors on Z5Pts (resp., Z3GrAlg), means that the diagram

M(A) o N(A)
M(y*) N (")
(3.7) M(A) N(A)
b

commutes, for any morphism ¥* : A — A’ of Z%-Grassmann algebras.

A A-point of a ZZ-manifold M is denoted by m* or m = (Jm/|,m*). If the manifold is a ZZ-domain 4”17, we
use the notation x* or x = (|x|,x*). If (2%, &) are the coordinates of UP!9, a A-point x* in UP!? is completely
determined by the degree-respecting pullbacks

(23, 68) = (x"(2),x"(€")) -

Since z§ € Ag =R & 10\0, we write z§ = (xﬁ, 2%). Hence, any A-point x* in UP!Z can be identified with

" va oA . . .
(3.8) x* o~ (2%, &4) = (xﬁ,x%,@\) ERP x Al x A2 x - x AN
where
J)H = (l‘ﬁ) = (...,J}‘a‘,...) S Z/[p s

and where 71, ...,y denote the non-zero Z3-degrees in standard order. Here the 2% (resp., the 5;{‘) are formal
power series containing at least 2 (resp., at least 1) of the generators () of the ZJ-Grassmann algebra A.

As mentioned above, any Z3-morphism, in particular any morphism ¢ : U? 14— Yrls between Z5-domains,
naturally induces a natural transformation, with A-component

da - UPM(A) 3 X" = x* 0 ¢* € VTIE(A).

If (y°,n?) are the coordinates of V"2, the morphism ¢ reads

(3.9a) () =D dh(x)E”,
[a]>0
(3.9b) " (") =Y ol(x) €™,

|| >0
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where the right-hand sides have the appropriate degrees and where ¢o(UP) C V". Further, the image A-point
x* 0 ¢* in V'I2 by ¢, of the A-point x* ~ (X*(m“);x*(gA)) = (xﬁ,if\;ff) in 4”9, is given by

1 B o
(3.10a) = > @(35%)(%):5&&’
|| =0 [B8]=0
1 o
(3.10b) mw=>_ > E(afabf)(ﬂ«“u)xf&-
la|>0 (8]0
Let us recall that there is no convergence issue with terms in z) [I6]. Thus the components of a natural

transformation implemented by a Z5-morphism between Z5-domains, are very particular formal power series
in the formal variables 2§ and fjé, which are themselves formal power series in the generators (<) of A.

We are now able to prove that not all natural transformations between the restricted functors M(—), N(—) €
[Z5Pts, Set] associated with M, N € ZjMan, arise from a Z§-morphism M — N. Since it suffices to give one
counter-example, we choose M = N = RPIO = RP.

Example 3.13. Consider an arbitrary diffeomorphism ¢ : RP — RP. The A-component of the associated
natural transformation is

da : RPIO(A) — RPIO(A)

1

5 (28" @) 3, 0

(245,0) = [ ¢" () + >

[8]>0
From this data we obtain another natural transformation
ap : RPIG(A) — RPIO(A)
(2%,0) = (¢"(2)),0) .

The natural transformation « is not implemented by a morphism i : RP? — RP. Indeed, otherwise ay = ¥, for
all A. This means that

(6 (@),0) = |00+ 3 = (@24 ()i, 0] |

1
18]>0 p

for all A and all A-points. Since ¢°(z) = (), we have 92¢® = 9. Take now any 8 : |8] = 1, so that
B = 1, for some fixed a € {1,...,p}. As we can choose A and 2%, for all b € {1,...,p}, arbitrarily, we can
choose x?\ =0, for all b # @, and 24 = OP0F  where O and 6% are two different generators of A that have the
same degree. The coefficient of 9% in the sum over all 8 is then (9,.4°)(|), hence dpe ¢’ = 0pat)® = 0. The
latter observation is a contradiction, since the Jacobian determinant of ¢ does not vanish anywhere in RP.

We now generalise a technical result [58, Theorem 1] to Z3-domains U” 9. Let
Bp\g(up) = ]:(Z/IP,R)[[X, E]]’

be the Zy-graded Zj-commutative associative unital R-algebra of formal power series in p parameters X* of
7Z3-degree 0 and ¢, . .., qy parameters Z4 of non-zero Zj-degree 1, ..., vy, and with coefficients in arbitrary
R-valued functions on UP, i.e., we do not ask that these functions be continuous let alone smooth. Following
[49, 54, 58], we will refer to this algebra as a Z3-Berezin algebra. Any element of this algebra is of the form

(3.11) F=Y Y Fapx)X’E",

|a|>0(B8|>0
where the x® are coordinates in UP.

Theorem 3.14. For any ZY-domains UPIL and V15| there is a 1:1 correspondence

Nat(UP9, V) = (B UP))"12

between
- the set of natural transformations in [Z5Pts°P, Set] between UP!9(—) and V''5(—), and
- the set of ‘vectors’ F with r (resp., with si1,...,sn ) components F° of degree 0 (resp., components FE of

degrees Y1, ...,y ) of the type (3.11), such that the r-tuple (F%,) made of the coefficients Fb(x) of the r series
F* satisfies

(Foo)U?) c V"
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Proof. Let F be such a ‘vector’. For any A, we define the map
Ba :UPII(A) 3 (af, 2%, 61) = (YR, mR) € VTI5(A)
where

(3.12) vhi= D ) Flg(aih ey and nf =Y Y Flh(w) ik &x

|20 8|20 lo|20]B]20

Since 4, fj{‘ have the same degrees as X%, =4, the right-hand sides of (3.12) have the same degrees as Fb FB
hence, ¥4, n¥ have the degrees required to be a A-point in Vls. Moreover, we have

so that y; € V". The target of the map S is thus actually V’“|§(A). The naturalness of S under morphisms

of Z3-Grassmann algebras is obvious: f is a natural transformation in [Z3PtsP, Set] between UP!4(—) and
Vrls(—). Finally, we defined a map

T: (Bmg(up))?"\i RN Nata/{p,g’])r,ﬁ) )

We will explain now that any natural transformation § : UP14(—) — V"I5(—) is the image by Z of a unique
‘vector’ F. We first show that, for any A ~ R%/™ the image B4 (x*) € V"I5(A) of any A-point

* o~ a sa ¢A P AP A1 A aN
X _(./L'H,.’L'A,é-/\)eu XAOXA’le XA'YN

in UP'9, has components y% and n¥ of the type (3.12).

Step 1. We prove that any A-point in UP'? is the image by a Z5-Grassmann algebra map ¢* : ' — A of a
N -point in UP'2, some of whose defining series are series in formal pairings.

Let () be the generators of A. The A-point x* then reads

A A
X" (aff, 0707 Ky € S

where the degree of K¢, € A is the sum of the degrees of 6> and 6%. Recall that a (resp., A) runs through
{1,...,p} (vesp., through {1,...,|q|}), and that A, run through {1,...,|m|}. Consider now the set S of
generators

0 = (™, ¢, v*),

where b has the same range as a, and define their (non-zero) Z3-degrees by

deg(n™) = deg(6"), deg(¢) = deg(6"), deg(y”) = deg(€X) = deg(€”) .
Let A’ be the Z%-Grassmann algebra defined by S, and set
(3.13) X"~ (xﬁ,n‘mgi, PA) e UP x AP x f\;qll X oo X i\;q]y

(no sum over a in the formal pairings 7%*({). The degree-respecting equalities
P (") = 0%, P (Cr) = K3, e () =&

define a morphism of Z5-Grassmann algebras ¢* : A’ — A. Tt suffices to set
o ( Z r0'%) = Z re(p*0')° .

Indeed, any term of the right-hand side is a series in # whose terms contain at least |e| generators. Hence,
for any €, only the terms |¢| < |e| can contribute to ¢, and therefore there is no convergence issue with the
coefficient of #¢. Since the A-point ©* o x’* in UP!4 reads

©* ox* ~ p* (mﬁ,n“’\g‘g, PpA) = (xﬁﬁ’\@”Kg)\,{f) ~x*
naturality of the transformation 3 : U?14(—) —s V"I£(—) implies that
(3.14)
(R, nX) =2 Ba(x") = Balp” o x) = Ba(UP2(0") (")) = V(") (Bar (X)) = 9" 0 (Bar (X)) = @™ (ypr 1K)
where y}, and 7% are series in the generators of A’.
Step 2. We define formal rotations under which the formal pairings are invariant. Moreover, we show that
any formal series that is invariant under the formal rotations is a series in the formal pairings.

The formal part of each degree 0 component of x"* can be viewed as a formal pairing n® - (¢ = 7%*(§, which
is stable under formal rotations R*. More precisely, we set

R*(5") =" (0%),}, R*(G2) = (0") X, R* () = v,
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where O and Ot are any (my + ...+ my) x (mq + ... +my) block-diagonal matrices with entries in R that
satisfy

(3.15) (O MO ) =6, .
Since, for any fixed a (resp., b), the components 7?* (resp., (%) are ordered such that the m; first components
have degree 1, the next mo degree -5, and so on, these equalities are degree-preserving. Hence, they define a
Z5-Grassmann algebra morphism R* : A’ — A’ via
R (D reb) = R (Y ragy n°C707) i= 3 Sragy (Rn)*(R°Q)°07 .

e afy afy
Since the images R*(n®") (resp., R*(¢?)) are linear in the 7% (resp., ¢}) (of the same degree), the term indexed
by afv is a homogeneous polynomial of order |a| + |3] + || in the generators 6’. Hence, for any e, only the
terms |a| 4+ |8] + || = |€| can contribute to 6¢; so that no convergence problems arise. In view of (3.15), it is
clear that, as mentioned above, the formal pairing n®-{* = 17“/\(31\ is invariant under R*. As any Zy-Grassmann

algebra morphism, the formal rotation R* induces maps U” ‘Q(R*) and V"5(R*), and due to naturality of 3, we
find

Vr|§(R*)(ﬁA/XI*) = BA/(UP‘Q(R*)(X/*)) = ﬂA’(R* OX/*) ~ BA' (R* ((L‘lal,’l’]akcg, wA)) ~ BA/X/* ,
so that Ba/x’* is invariant under rotations.
We are now prepared to continue the computation (3.14). Since

(3.16) B (x"*) = (yars ) = (W]} G )

is invariant under the rotations R*, the series 7%,,7% in the generators §’ are invariant. More explicitly, for
each series, we have an equality of the type

S Y PP =3 (3 Y Fasy (RI)HRQO)YT,

Ykt |al=k,|B8]=¢ T kL o=k, |Bl=t
which is equivalent to
> Fapy ™G = Y Fagy ¢ =
la|=E, |B|=¢ la|=k,|B|=¢
S Fapy (B (RO = Y Fapy o 0(0M) " (0N (04,7 G
la|=k, |81=¢ |a|=k, 8] =¢

and holds for all (!) formal rotations. This is only possible, if the power series considered, i.e., the series g}f\,
and n%,, are series in pairings n% - (¢ = n (¢ [55]. In view of (3.14), we thus get

(98, mK) = Ba(x*) = Balafl, &3, 68) = (Wh, @ (h:), " (k)
where any image by ¢* is of the type
Y Fas’ (- OP) () = D Fapdlén-
(a,8)#(0,0) (a,8)#(0,0)
It is clear from (3.16) and (3.13) that the coefficients

Fls, FE ((0,8) # (0,0)), and Fy = yf
depend (only) on x| € UP. Hence, the image

(WA, mx) = Ba(x*) = (F*(), &a, &), FP (), &a, €0))
is actually of the type (3.12). Since Ba(x*) is a A-point in V'l$, the r series Fb(xH,j':A,fA) and the s; se-
ries F'B(x),2a,€) are of degree 0 and degree v;, respectively, i.e., the r series F’(z, X,E) and the s; series
FB(z,X,Z) are of degree 0 and degree ;, respectively. For the same reason, we have Fyg (m)) € V", for all
x| € UP, so that we constructed a ‘vector’ F € (Bp,q(up))rlé, whose image by Z is obviously .
Step 3. We show that F is unique (which concludes the proof ). If there is another ‘vector’ F', such that
Z(F') = 8, we have

(3.17) Y. Ella)ii&r= Y. Flle)iie,
|a|>0,]8]>0 |a|>0,]8]>0

for all b € {b, B}, all A, and all x*. Notice first that any &% (resp., any £3') is a series of degree 0 (resp., of
degree deg(¢4) = v4) in the -s that contains at least two parameters 6<9°’ (resp., at least one parameter
90”). Hence, both sides are series in 0, and the left-hand side and right-hand side coefficients of any monomial
¢° coincide. A term («, 3) # (0,0) cannot contribute to the independent term 6°. Hence F§(z)) = Fy(x)).
We now show that F2g(z)) = F%(x)), for an arbitrarily fixed (e, 8) # (0,0). Since A is arbitrary, we can
choose as many different generators 6 in each non-zero degree as necessary, and, since x* is arbitrary, we can
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choose x| arbitrarily in 4” and we can choose the coefficients of the series 2§ and §f arbitrarily (except that we
have to observe that the coefficient of a monomial 6°, which does not have the required degree, must be zero).
Let now a1, ...,®, and B1,..., 3, be the non-zero components in the fixed o and 3. For each factor fj{‘"’ of
A Au
ER = (&)™ - (&4 ™,
we choose a monomial in one generator % of degree .4, , set its coefficient 7¢, to 1, and all the other coefficients
in the series ffi to zero. Further, for different §j§"', we choose different generators §. Similarly, for each factor
&y of
xﬁ _ ('%7\1)51 (iiu)ﬁy ’
we choose monomials 0Pi0Fix (k € {1,...,8;}) in two generators of the same odd degree (for all n > 1, there
is at least one odd degree), set their coefficient rp,, g, to 1, and all the other coefficients in the series &y’ to
zero. Further, we choose the generators so that all generators 8¢, #Pi% and §Fi* are different. When setting
v w
v = H gPi1gEin  pPis; gFis; H(gci)ai £0,
j=1 i=1
the terms indexed by (the fixed) («, ) in both sides of (3.17), read
b b
B 5 (x))0 and BIF5(x)))0 .

For any term (o, ) # (a, ), we either get a new series £4 or &%, or we get an old series a different number of
times. In the second case, the term (o', ') does not contribute to the coefficient of 6“; in the first, we set all
the coefficients of the new series to 0, so that the term (o, 4’) vanishes. Finally, we obtain F2s(x)) = F/%(z)),
for any x| € UP.

We now show that RPI9(A) is a Fréchet space and that UP/4(A) is an open subset of RPIZ(A). This means
that we have a notion of directional derivative, as well as a notion of smoothness of continuous maps between
the A-points of ZZ-domains. For more details on Fréchet objects, we refer the reader to Appendix B.

Proposition 3.15. For any A € Z3GrAlg, the set Rplﬂ(A) is a nuclear Fréchet space and a Fréchet Ao-module.
Moreover, the set Z/IP‘Q(A) is an open subset of Rplg(/\).

Proof. Let A € Z5GrAlg. As explained above, there is a 1:1 correspondence between the A-points x* of RP la
(resp., of UP!?) and the (p + lq|)-tuples
X" o (2§, €8) € A x AZ x- o x AIN

(resp., the same (p+ |g|)-tuples, but with the additional requirement that the p-tuple (xﬁ) made of the indepen-
dent terms of (z%) be a point in AP C RP). Note now that A is the Z-graded Z5-commutative nuclear Fréchet
R-algebra of global Z%-functions of some R, Hence, all its homogeneous subspaces Ay, (1€0,...,N,v% =0)
are nuclear Fréchet vector spaces. Since any product (resp., any countable product) of nuclear (resp., Fréchet)
spaces is nuclear (resp., Fréchet), the set R? ‘Q(A) of A-points of RP% is nuclear Fréchet. The latter statements
can be found in [13].

As for the second claim in Proposition 3.15, recall that Ag is a (commutative) Fréchet algebra, see Corollary
3.1. The Fréchet Ag-module structure on RPI4(A) is then defined by

(3.18) m: Ao x RPIE(A) 3 (a,x*) = (a- 2%, a-&5) e RPI(A) .
Since this action is defined using the continuous associative multiplication - : A, x A, — A, 4, of the Fréchet

algebra A, it is (jointly) continuous.
As any closed subspace of a Fréchet space is itself a Fréchet space, the space

/r)\oﬁ{O}X/D\()C]RXj\O:AO

is Fréchet. We thus see that
o N o N
(3.19) UPI(A) ~UP x A x T A% C RP x Af x [] A% ~RPI(A)
i=1 i=1

is open. O
Remark 3.16. In the following, we will use the isomorphisms (3.19) (and similar ones) without further reference.

The just described Ag-module structure is vital in understanding the structure of the A-points of any Z3-
manifold. In particular, morphisms between Z5-domains induce natural transformations between the associated
functors that respect this module structure. The converse is also true, that is, any natural transformation
between the associated functors that respects the Ag-module structure comes from a morphism between the
underlying ZZ-domains. More carefully, we have the following proposition.
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Theorem 3.17. Let UP'? and V'Is be Z3-domains. A natural transformation  : UP1I(—) — V"l5(=) comes
from a Z%-manifold morphism UPle — Vrls if and only if By : UP‘E(A) — V'I5(A) is Ag-smooth, for all
A € Z%GrAlg. That is, for all A, the map B must be a smooth map (from the open subset UPIQ(A) of the
Fréchet space Rplﬂ(/\) to the Fréchet space R7I2(A), see Appendiz B) and its Gateauz derivative (see Appendix
B) must be Ag-linear, i.e.,

dx*ﬂA(a ' V) =a- dx*BA(V) )
for all x* € UPIA(A), a € Ay, and v € RPI9(A).

Proof. Part I. Let 8 : UP14(—=) — V"I15(—) be a natural transformation with Ag-smooth components Sy,
A € Z3GrAlg. From Theorem 3.14, we know that 8, is completely specified by the systems

(3.20) vh= Y Flpikey and g = > Fh(x))iiex
|a|>0,|3]>0 |a|>0,|8]>0

where the coefficients F2; (b € {b, B}) are set-theoretical maps from U” to R.

Part Ia. Smoothness of 55 implies that these coefficients are smooth. Indeed, we will show that F (Sﬂ e Co'ur)
and that, if Ff; € C*(UP) (k > 0), then F2; € C*1(UP).

Step 1. Since

N
B s UP'I(A) — Ay x T A%
i=1

is continuous, any of its components

uR UPLA) = As = RO, ~ [T R
7i(b)
is continuous. For simplicity, we wrote y¥ instead of n¥, and we will continue doing so. Moreover, the target
space are the formal power series in ¢ with coefficients in R, all whose terms have the degree ;) of y®, and
this space is identified with the corresponding space of families of reals. For any w such that 8« has the degree
Yi(e), the corresponding real coefficient gives rise to a continuous map

Yo UPIA(A) - R .
Since this joint continuity implies separate continuity with respect to x| € UP, for any fixed (Za,&s) and any
A, we can proceed as at the end of the proof of Theorem 3.14. More precisely, select any (¢, 8) and select (for
an appropriate A) the pair (£, &) such that xifj{ = B!6~, where 6 is now the degree 7;(,) monomial defined
in the proof just mentioned. The real coefficient of this monomial is 5! F(SB (), which, as said, is an R-valued
continuous map on UP, so that F(i’ﬁ € C%(UP), for all b and all (a, B).

Step 2. Since
N

—1 2 i
UPI(A) C R x (RP™! x AB x HA%I_)
i=1
is an open subset of a product of two Fréchet spaces, smoothness of 5 implies (via an iterated application of
Proposition B.4) that, for any b € {b, B}, any ¢ € N and any vy € N? (|y| = ¢), the partial derivative

Ay R UPA) xR = T R
~i(b)
is continuous.

Assume now that FJ; € Ck(UP) (k > 0), for any b and any («, 3), as well as that, for any v € N? (|y| = k)
and any b, the continuous partial Gateaux derivative

A7y (L. 0w = [T R
7i(b)
is given by
(3.21) 47 e VAL 1) = Y (07 F ) () #165 -
af
Observe that for £ = 0, this condition is automatically satisfied. We will now show that, under these assump-
tions, the same statements hold at order k + 1. In view of (3.21), any order k + 1 continuous partial Gateaux
derivative
dee 47 wR (L. 1) s uP2(A) = [ R
vi(b)
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(ae{1,....p}, |7 = k) is given, at any x* ~ (z|,2,8s) € Urla(A), by

(3.22) th_r}r(l) ((8F )(xh7...,xﬁ+t,...,xﬁ)—(8;’F25)(x‘1‘7...wﬁ...,xﬂ))%ﬁéx‘.
ap

When proceeding as in Step 1, we get that the limit is an R-valued continuous function in U4?. In other words,
the partial derivative 9,.0] F2 4 exists and is continuous in U?, i.e., Foljﬁ € C*+L(UP). Moreover, Formula (3.21)
pertaining to order k derivatives, extends to the order k + 1 derivatives, see (3.22).

Part Ib. We examine the further consequences of Ag-smoothness, in particular those of Ag-linearity. Since
By is of class C, its components y8 : UPIZ(A) — IL,. (o) R are of class C'. Further, as

N
UPL(A) C (R x Ag) x (RP! x AB~! s JTA%)
i=1
is an open subset of a product of two Fréchet spaces, the partial Gateaux derivative
deas aq) UR - UPUA) x (R x Ag) — [T R
vi(b)

is continuous. It is given by

dgag, 33,5 YA ) 00) = dag e YR (v))) + dig - YR (64) =

1, .4 . oa . o
|| Z ((9zaF£B x| CL‘AéA + Z of :L‘|| hm ((CL‘A —l-t’UA)B" — (CEA)’B“) H(m?\)ﬂbfl\ =: 'UHTI + %5 .
b#a
As /O\o is a commutative algebra, it follows from the binomial formula that
To = ba Y BaFos(a )iy 5 = 0aTy
ap
where (eq), is the canonical basis of RP. Observe now that, in view of (3.18), the Ag-linearity of the total Gateaux

derivative of y§ with respect to x* is equivalent to the Ag-linearity of all its partial Gateaux derivatives with
respect to the x4 = (xﬁ,xﬁ{) and the fj{‘. Fora=0+0y € Agand v=14+0€ R+ Ay = Ag, this implies that

7Ty = d(xﬁ,ﬁ’cg),x* ysz(@A 1) =1y - d(xﬁ,fcg),x* ysz(l) =0Ty,
i.e., that
oA > (Bat DFS gy (@)ERER =0a Y vaFl, (x))a} = p Z (0ue F25) () )ERER -
ap a7, 70

Since A € ZLGrAlg, v € /o\o, and x* € uplg(A) are arbitrary, we can repeat the #“-argument used above.
More precisely, we select («, 8), select (Z,&x) such that xifﬁ = B!16“, and select 0p = P9F € Ay such that
OPOF G~ £ 0. The coefficients of the latter monomial in the left and right hand sides do coincide, which means
that

. 1
(3.23) (Ba +1)FS Bre. (X)) = (820 F25) (2)), or, equivalently, Fo'f,y(xn) = 7—(8xaF§’776a)(x||) ,

a

for all b, a, a, all v : 7, # 0, and all x| € UP. For any b, o, and x|, we now set
da () == Fiolz)) € C°UP) .
An iterated application of (3.23) shows that

F2 (z))) = %(3%2)(%\\) :

Hence, the y§ have the form (3.10a) and (3.10b). This means that the natural transformation 3 is implemented
by the ¢, which define actually a ZZ-morphism from U” 9 to Vrls. Indeed, the property (#8)(UP) C V" follows
from the similar property of (F},). On the other hand, the pullback

°) =) oh(x)¢

must have the same degree as y°. However, if deg(¢%) # deg(y®), then deg(£) # deg(y), whatever &5. Tt
follows therefore from (3.20) that ¢8 = F8 =

Part II. The proof of the converse implication is less demanding. Let § : UP14(—) — Vls(—) be a natural
transformation that is induced by a ZZ-morphism ¢ : UP!2 — V"ls e, that is of the form (3.10a) and (3.10b).
For any A € Z35GrAlg, the map 35 is smooth and its derivative is Ag-linear if and only if its components y%
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have these properties. The total derivative of y§ with respect to x* exists, is continuous, and is Ag-linear if and
only if its partial derivatives with respect to the z§ and the E/‘é exist, are continuous, and are Ag-linear. When
computing the derivative y§ with respect to ff\“' €A, atx* e UP‘Q(A) in the direction of wy € A,,, we get

A\g\ )a\g\ .

1 . A L1 a, . Ao
> (0205) () &R (68 lim (4 + )™ = (€4)™) - (

B! t—0 ¢

af

If ~; is odd, the exponent «; is 0 or 1. In the first (resp., the second) case, the limit vanishes (resp., is wp). If
7 is even, the multiplication of vectors in A, is commutative and the binomial formula shows that the limit is
WA (ff’i)ai’l . The derivative thus exists, is continuous, and is Ag-linear. Similarly, the derivative of y% with
respect to x4 exists if and only if its derivatives with respect to acﬁ and with respect to 2% exist. The (standard)
computation of the derivative with respect to { at x* in the direction of

VA = (U||,1D)A) € R x j\o

thus leads to the sum of the terms

1
o1 D 5 (08 08) () a3 €8
aB

and
, 1 b oy—eq o 1 b .
on Y —(0300) (@) v i) ER =4 Y @(05“%&)(3:”)& &R -
o, yva#0 T ap 7’
The derivative considered does therefore exist, is continuous, and is Ap-linear (note that it is essential that the
derivative is the series over a8 multiplied by vy — as a € Ag does not act on vy)). O

Remark 3.18. The Ag-linearity is a strong constraint that takes us from the category of generalized Z7-
manifolds to the one of Z§-manifolds. A similar phenomenon exists in complex analysis. Indeed, for any real
differentiable function f = u+iv:Q C C ~ R? — C ~ R?, the Jacobian is an R-linear map J; : R? — R2
However, if we further insist that the Jacobian be C-linear, then we see that f must be holomorphic, that is, it
must satisfy the Cauchy—Riemann equations on 2. Imposing C-linearity thus greatly restricts class of functions
and takes us from real analysis to complex analysis.

It will also be important to understand what happens to the A-points of a given Z5-domain under morphisms
of Z5-Grassmann algebras.

Proposition 3.19. Let UP'2 be a 75 -domain and let v* : A — A be a morphism of Z%-Grassmann algebras.
The induced map (see (3.4))

W= UPIE(Y*)  UPIL(A) D X" = (24, €4) > " o x* = ¢ (2p,€n) € UPIL(A)

is a smooth map from the open subset MP‘Q(A) of the Fréchet space and Fréchet Ag-module R”lﬂ(A) to the open
subset UPIL(A') of the Fréchet space and Fréchet Ay-module RPI4(A"), such that

de=T(a-v) =9*(a) - de=T(v)
for all x* € UPIA(A), v € RPIZ(A) and a € Ay .
Proof. Since A = Ogoim ({x}), so that
" € Homzy g (Opotn ({£}), Opova ({£})) 5
there is a unique morphism
® = (|¢], ") € Hompyen (RO ROI) |

such that ¢* = ¢7,,. Hence, the morphism ¢ is continuous from A = R[[¢]] to A" = R[[#]] endowed with their
standard locally convex topologies [13], and so are its restrictions 1)*[5, from A,, to A’ . We thus see that the
induced map

N
U= (¥*[a,)" x [J(W"|a,,)*"
i=1
is continuous.

At x* ~ (zp,67) =: up € UPIY(A) and v ~ vy € RPI4(A), the derivative

dW : UPII(A) x RPIZ(A) — RPIZ(A)
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is defined as

e W(v) = lim LT H )T

t—0 t
(- VORI
= (¥ (0h), )
= (¥7(v}))
where a is the label a € {1,...,p} or A € {1,...,|q|} of any coordinate in RPI4(A), and where we used the

R-linearity of the Z3-algebra morphism * : A — A’. Hence, for any a € Ay, we get
deetp(a-v) = (¢*(a-v})) = (¥ (a) - ¥*(v})) = ¢"(a) - dx=p(v) -

Since the higher order derivatives of ¥ vanish, all its derivatives exist and are continuous, hence, the map ¥ is

actually smooth. O

3.4. The manifold structure on the set of A-points. The next theorem generalizes Propositions 3.15 and
3.19. For information about Fréchet manifolds, we refer to Appendix B. We recall that the A-points M (A) of
a ZZ-manifold M can be equivalently viewed as the maps m = (|m|,m*) € HomZ;Man(]RO@7 M), as the global
pullbacks m* = mj,, € Homzya1g(On (|M]), A), or as the induced morphisms

mi S HOmZ;"Alg(OM,aHA) y
where 2 = |m|(x) € |[M|. If M = UP'? is a ZZ-domain, we often write x instead of m and we can identify

x ~ x* ~ x* with the pullbacks
(), up, pa) € UP X f\g X HA%
i

by x* of the coordinate functions (u, p) in UP 19 Recall as well that Z3-morphisms ¢ : M — N are mapped
injectively to natural transformations ¢ : M (—) — N(—) with A-component

(3:24) on : M(A) 3 (x,m3) = (|¢|(x), mio¢y) € N(A),
and that, for any fixed M, a Z3-Grassmann algebra morphism ¢* : A — A’ induces a map
M@*): M(A) > (z,m}) — (z,9* om}) € M(A').

Theorem 3.20. Let M be a Z5-manifold, and let A and A’ be Z3-Grassmann algebras. Then

(i) M(A) has the structure of a nuclear Fréchet Ag-manifold, and,

(ii) given a morphism of Z%-Grassmann algebras v* : A — A’ the induced mapping M (¢¥*) is ¥*-smooth.
Proof.

(i) Let p|g be the dimension of the Z3-manifold M. The local Z3-isomorphisms

* | oo
ha = (|halsh3) : Ua = (Ual, Omliv.)) = Ua ™ = (UE, CR5 luz[lel]) +

where « varies in some A and where |U,| C |M] is open, provide an atlas on M (see paragraph below
Definition 2.10). As recalled above, the Zj-isomorphisms

ho U — U

implement natural isomorphisms h, with A-components

(3.25) haon s Ua(A) 3 (2,m2) = (Jhl(@),m? o (ha)3) € UAL(A)
whose inverses are the similar maps defined using

ha'l = 1hal™ and  (hg')y = ((ha)fp, 1))~ (W €UR).

The family (Ua(A), ho,a) (o € A) is an atlas that endows M(A) with a nuclear Fréchet Ag-manifold

structure. Indeed:

(a) Any haa @ Us(A) — Z/{(I;IQ(A) is a bijection valued in the open subset US‘Q(A) of the nuclear
Fréchet vector space RP ‘Q(A), which is also a Fréchet module over the nuclear Fréchet algebra Ag.
Moreover, as the |U,| are an open cover of | M|, we have

M) = [ Ua(n)
acA

in view of Proposition 3.12.
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(b) The image ha a(Ua(A) N Ug(A)) is open in RPIZ(A). To see this, set [Uns| = |Ua| N |Us| C [Ua|
and consider the open Zy-submanifold Uss = (|Uagl, Omlju, ) of Ua. The Z3-isomorphism A,
restricts to a Z5-isomorphism

plg
ha : Uag — Uaﬂ s

where the target is the open Z5-subdomain Z/{plg of uﬁ‘g defined over the open subset
Uss = |ha|([Uagl) C UZ

obtained as the image of the open subset |U,g| C |Uy| by the diffeomorphism |h,|. The restricted
Zy-isomorphism h,, induces a natural isomorphism h,,, whose A-component is a bijection

haon : Uas(A) = UZL(A) .

Further, we have
Uap(A) = U Homzpn1g(Onr ey A) =

:EG‘UQB‘
J Homzpmg(Ona,A) () | Homzzug(Onrar A) = Ua(A) N U(A) .
z€|Uq| z€|Ug|
. \ .
Hence, the image ha a(Ua(A) NUg(A)) = L{gﬁg(A) C RPI2(A) is open.

(c) We have still to prove that the transition bijections
_ | |
ha(han) ™ Usg (B) = Ugi/(A)
are Ag-smooth. In view of Theorem 3.17, the Z-isomorphism
_ p\q plg
hght — Uy
induces a natural isomorphism hgh, ' with a Ag-smooth A-component
(hshi)a = ULE () = UELA)
In view of Equations (3.24) and (3.25), we get
(haha )a(u,x3) = (|hsha (), x5 o (hg o h')y) =
(Ihsl(1hal =1 (), x5 0 ((ha) o ~1(u) ~H © (B8) -1 () = ha((han) ™ (u,X0))

for any (u,x%) € UPL(A) . Tt follows that s a (haa) ™" = (hshy!

A 1s Ag-smooth.

)
) € M(A), let (Ua(A)
(A'), such that M (¢*

be
)

(ii) The statement of part (ii) is purely local, see Appendix B. Let (z,m}
chart of M(A) around (z,m%), and let (UB (A’), hg,a+) be a chart of M
Us(A'). We must show that the local form

hgao M(¥") 0 (han)™

of M(¢*) is ¢*-smooth. Actually, we can choose (Uy(A’), ha,a/) as second chart, since the image by
M (¢*) of a point (y,n¥) in Uy(A), i.e., a point

A

,han) be a
)(Ua(A)) C

(y? ni) € HomZgAlg(OM7ya A)
with y € |U,]|, is the point
(y7¢* o nj:) € HomZgAlg(OM,yy A/) )

i.e.,in Uy(A). From here, we omit subscript . Since h : U(—) — UP!9(—) is a natural transformation,
the diagram

U(A) _MeY U(A)

N [

UPI9(A) UPIL(A)

ura(yr)

commutes. Since h is in fact a natural isomorphism, we get that
haro M(4%) o (ha) ™ =UP9(y) .

From Proposition 3.19 we conclude that this local form is indeed *-smooth.
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In view of (3.8), the local model RP!9(A) of M(A) is infinite-dimensional, due to the non-zero degree even
coordinates in A. Further, we have the

Corollary 3.3. For any Z5-manifold M, the associated functor
M(—) € [Z5Pts®P, Set]
can be considered as a functor
M(—) € [Z5Pts®P, A(N)FMan] ,
where the target category is either the category AFMan of Fréchet manifolds over a Fréchet algebra or the category

ANFMan of nuclear Fréchet manifolds over a nuclear Fréchet algebra, see Appendix B. Therefore, the faithful
restricted Yoneda functor Vgzps, see Corollary 5.2, can be viewed as a faithful functor

ngPtS . ZgMan — [ZgPtSOp7A(N)FMan] .

The latter statement requires that the natural transformation ¢ : M (—) — N(—) induced by a ZJ-morphism
¢ : M — N have components ¢ : M(A) — N(A) that are morphisms in A(N)FMan between the Fréchet Ag-
manifolds M(A) and N(A), i.e., that the ¢ be p-smooth for some morphism p : Ag — Ag of Fréchet algebras.
We will show in the next subsection that this condition is satisfied for p = ida,, i.e., we will show that:

Proposition 3.21. Any natural transformation ¢ : M(—) — N(—) that is implemented by a Z%-morphism
¢ : M — N has Ag-smooth components ¢p : M(A) = N(A).

Theorem 3.22. Let M € ZyMan be of dimension plq and let A € Z5GrAlg.
(i) The nuclear Fréchet Ag-manifold M (A) is a fiber bundle in the category ANFMan. Its base is the nuclear

Fréchet R-manifold M(R), i.e., the smooth manifold |M|, and its typical fiber is the nuclear Fréchet
Ag-manifold

N
(3.26) APlg = AP T A%
i=1
(ii) The topology of M(A), which is defined, as in the case of smooth manifolds, by the atlas providing the
nuclear Fréchet Ag-structure, is a Hausdorff topology, so that M(A) is a genwine Fréchet manifold.

Proof. (i) We think of fiber bundles in ANFMan exactly as of fiber bundles in the category of smooth manifolds.
Of course, in such a fiber bundle, all objects and arrows are ANFMan-objects and ANFMan-morphisms.
Let p* : A — R be, as above, the canonical Z3GrAlg-morphism. The induced map

mi=M(@p"): M(A) > (x,m}) — (z,p"om]) ¥~z € M(R) ~ |M|

is p*-smooth, i.e., is a morphism in the category ANFMan.

We will show that 7 is surjective and that the local triviality condition is satisfied.

Let z € |M|. There is a Zj-chart (U,h) of M, such that |U| C |M| is a neighborhood of z. The Zj-
isomorphism h : U — UP!4 induces a natural isomorphism h, whose A-components are Ag-diffeomorphisms, i.e.,
Ap-smooth maps that have a Ag-smooth inverse. We have the following commutative diagram:

ha
U(A) UPIL(A) ~ UP x A2
Up*) = lua UP(p*) ~ prj;
UR) ~ |U| UPI(R) ~ P
PR—TY (R)

where prj; is the canonical projection. Let us explain that Z/lp‘ﬂ(p*) ~ prj;, when read through b : UP x AP
ur ‘Q(A). We need a more explicit description of the equivalent views on A-points of a Z5-domain, see beginning
of Subsection 3.4. As elsewhere in this text, we denote a ZJ-morphism R — /P14 by x = (|x|,x*) and we

denote the morphism it induces between the stalks O, 54 x| A by x*. The morphism b is the succession of

identifications
(3.27) UP x APl2 5 (;z;”,g%/\,@\) ~x = (x|, x*) ~ (]x|(%),x}) € UP‘Q(A) ,

where the components of the base morphism |x| are obtained (see [16]) by applying the base projection ¢, :
A — R of RO™ ie. the canonical morphism p*, to the components 2% = (xﬁ, %) € Ag. Hence, we get

(3.28) () = x| = (oo, p* (@0), ) = 2 -
Therefore, we actually obtain that

UPL(p) (0, &a, €n)) = (Ix](%), p* 0x5) 2 x| (%) = 2 = prjy (2, &, €n) -
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Since 7[y(p) = |h| =1 o prj; o hy, the local projection 7|y(a) is surjective, so that z is in the image of 7, which
is thus surjective as well.

As just mentioned, we started from z € |M|] and found a neighborhood |U| of z and a Ay-diffeomorphism hjy.
When identifying |U| with 4P via |h| (which then becomes id), we get the Ag-diffeomorphism

(3.29) ha :a H(JU|) = U(A) 3 (y.mi) — (y,miohl) € |U| x APIZ.

Observe that in Equation (3.29) we used b~! defined in Equations (3.27) and (3.28), thus identifying
(y,m} o h) € Homzypg(Opypeia ,, A) CUP'L(A)

with hom € HomZSMan(Rom7L{plﬂ)7 and then with
(4, pra(m* (0" (2))),m* (h*(€))) € [U] x APIZ |

where we denoted the projection of Ag onto Ao by pry. Notice also that the conclusion that AP!9 is a nuclear
Fréchet Ag-manifold comes from the facts that any subspace (resp., any closed subspace) of a nuclear (resp., a
Fréchet) space is a nuclear (resp., a Fréchet) space.

Hence, the trivialization condition is satisfied as well, and M (A) is a fiber bundle in ANFMan, as announced.

(ii) Now consider two different A-points m* = (z,m?%) and n* = (y,nl) in M(A). If x # y, then, as |M]| is
Hausdorfl, there exist open neighborhoods |U| of z and |V| of y, such that |[U| N |V| = . When denoting the

corresponding open Zj-submanifolds by U and V', respectively, we get open neighborhoods U(A) and V(A) of
m* and n*, such that U(A) NV (A) = (. We have of course to check that, for any ZJ-chart (U,, hy), the image

haa(Ua(A) NU(A))

is open in Rplﬂ(A), and similarly for V' (A). To see this, it suffices to proceed as in the proof of Theorem 3.20.
Next, consider the situation where x = y =: z € | M|, use the trivialization constructed in (i), and denote the
canonical projection from U x API2 onto AP!9 by prj,. As m* # n*, we have hp(m*) # ha(n*), ie.,

(1hl(2), priz(ha(m?))) # (|hl(2), prig(ha(n®))) .
Since prj,(ha(m*)) # prjy(ha(n*)) are points in the Hausdorff space API2, there are open neighborhoods V-
and V,,~ of these projections that do not intersect. The preimages U,,» and U,,« of V,,,» and V,,» by the continuous
map
prjgohy : U(A) — APl
are then open neighborhoods of m* and n* that do not intersect.
Finally, the space M(A) is indeed a Hausdorff topological space. (|

3.5. The Schwarz—Voronov embedding. In order to get a fully faithful functor, hence, to embed the category
Z5Man as full subcategory into a functor category, we need to replace the target category [Z5Pts°P, A(N)FMan]
by a subcategory that we denote by [Z5Pts®P, A(N)FMan] and that we define as follows:

Definition 3.23. The category [Z5PtsP, A(N)FMan] is the subcategory of the category [ZPts®P, A(N)FMan],

(i) whose objects are the functors F, such that, for any A € ZJPts®P, the value F(A) is a (nuclear) Fréchet
Ap-manifold, and
(ii) whose morphisms are natural transformations n : F — G, such that, for any A, the component

na 2 F(A) = G(A) is Ag-smooth.
Proposition 3.24. The restricted Yoneda functor Yzyps can be considered as a faithful functor
S : ZiMan — [Z5Pts°?, A(N)FMan] .

Proof. The image Vzrpes (M) of an object M € ZyMan is a functor M(—) € [Z5Pts®P, A(N)FMan], such that, for
any A, the value M(A) is a (nuclear) Fréchet Ag-manifold. Further, the image Vzypis(¢) of a Z5-morphism
¢ : M — N is a natural transformation ¢ : M(—) — N(—), such that, for any A, the component ¢, : M (A) —
N(A) is Ag-smooth.

The proof of Ag-smoothness uses the following construction, which we will also need later on. Let M, N €
Z3Man be manifolds of dimension p|g and r|s, respectively, let [¢| € C°°(|M|,|N]), and let (|V3])s be an open
cover of |N| by Z%-charts

g5 : Vg — Vglé, where Vi = (|V,6’|’ON|\VM) .
The open subsets |Ug| := |¢|~1(|V3|) C |M| cover |M]|, and each |Ug| can be covered by Z%-charts

la

hﬁa : Uﬁa — Uga, where Uﬁa = (|U6a|;0M||Uﬁa|) .

The Z4-morphism ¢ : M — N restricts to a Zj-morphism ¢|u,, : Uga — Vp. In particular, the composite

- plg
95 © ¢|us, © (hga) b Usy — V;‘ﬁ
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is a Zy-morphism.

We now show that ¢ is Ag-smooth. Therefore, let (x,m}) € M(A). There is a Z5-chart (Vs, gg) of N such
that |¢|(z) € |V3|, and there is a Z5-chart (Ugy, hga) of M such that € |Ug,|. These charts (we omit in the
following the subscripts 8 and «) induce charts (U(A), hy) of M(A) around (x,m%), and (V(A),ga) of N(A)
such that ¢a(U(A)) C V(A). It suffices to show (see Appendix B) that the local form

grodao(ha)™t = (godluoh™)a
is Ag-smooth. This is the case in view of Theorem 3.17. This completes the proof. O

We will prove that the functor S is fully faithful, hence, injective (up to isomorphism) on objects. There-
fore, it embeds the category ZiMan of Zj-manifolds as full subcategory into the larger functor category
[Z5Pts®P, A(N)FMan].

Definition 3.25. We refer to the faithful functor
S : Z5Man — [Z5PtsP, A(N)FMan]
as the Schwarz—Voronov embedding.

Theorem 3.26. The Schwarz—Voronov embedding S is a fully faithful functor. That is, given two Z5-manifolds
M and N, the injective map

Sm,N HomZgMan<M7 N) — Hom[Z;Ptsop,A(N)FMan]] (M(_)aN(_))

18 bijective.

Proof. Notice first that it follows from the results of [14] and Lemma 3.11 that there is a 1:1 correspondence
| M| ~ Homzpng (Onr (IM[),R) ~ | | Homzyug(Onra, R) = M(R)
z€| M|

which is given by

T e (T,65),
where €, is the evaluation map e, (f) = (ef)(x) (f € Onm(|M])) and where € is the base map ¢ : On — CPy-
Hence, any (z,m}) € M(R) is equal to (z,e;) and can be identified with z. In view of (3.25), this 1:1-
correspondence identifies the nuclear Fréchet R-manifold structure on M (R) with the smooth manifold structure
on |M|.

Let now

n:M(=) = N(=)
be a natural transformation in the target set of Sys n, i.e., a natural transformation such that, for any A, the
A-component 7, is Ag-smooth. In particular, the map

|p| :=nr : |M| — |N|,
is a smooth map between the reduced manifolds.
As in the proof of Proposition 3.24, let (Vj3,gs3)s be an open cover of |N| by Z5-charts, and, for any S, let

(Ua, hga)a be an open cover of |Ug| := |p|~1(|V3|) by Z5-charts. When denoting the canonical Z%-Grassmann
algebra morphism A — R by p*, we get the commutative diagram

e Usa() —— 2, V()
M (p*) N(p*)
(3.30) Uga Usal " Ug Vsl

which shows that, for any 3, a, we get the Ag-smooth map
(MM)|0ga )  Usa(A) = Vs(A) .
Indeed, if, for (x,m}) € Upa(A), we set na(x, mf) = (y,nk), the commutativity of the diagram implies that
y =~ (y,p" ony) = (N(p") oma)(x,m3) = (e o M(p*))(z, my) = nr(z,p* o ml) ~ |¢|(x) € [Vp] .
Therefore, the restriction
Musa (- Upa(=) = V(=)
is a natural transformation with Ag-smooth components.

Note that
hga : Uga — ngg and gg: Vg — Vg|§
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are Zy-isomorphisms and induce natural isomorphisms, also denoted by hg, and gg, whose components are
chart diffeomorphisms

han : Usa(A) = USS(A) and  gga : Vi(A) = V52(A)

of nuclear Fréchet Ag-manifolds. The local form

9.0 © (M) U (a) © (hgan)™H : US(A) = V5IE(A)

of 1 is thus Ag-smooth. In other words, any A-component of the natural transformation

_ plg r
(3.31) OB = 95 0 Mupa () © Mz 1 Use (=) = Vi(=)
between functors associated to Zjy-domains, is Ag-smooth. It therefore follows from 3.17 that g, is implemented
by a Z%-morphism

P|q T8
Yo 1 Ugy — VBL ,

so that the composite
(3.32) PBa 1= gB_1 0 pga ©hga : Uga =+ N

is a Z5-morphism that is defined on an open Z-submanifold of M. The question is whether we can patch
together these locally defined Z45-morphisms, which are inherited from 7, and get a globally defined Z%-morphism
¢ : M — N that induces 7.

Let ¢palvs,.,, and ¢uulu,, . be the Zi-morphisms obtained by restriction to the open Zj-submanifold
UBa,vp with base manifold |Uga,upu| := [Uga| N |Uypu|. They coincide as Z5-morphisms, if they do as associated
natural transformations, i.e., if all A-components of those transformations coincide. This is the case since both
A-components are equal to 77A|U5a,,,u(A)~ It follows that the Z7-algebra morphisms

P8alUs0 1 PrulUsa ., ON(IND) = On(|Usa,upl)

coincide. This implies that we can glue the Zj-algebra morphisms ¢, : On(IN|) = Oum(|Usa|) and get a
Zy-algebra morphism

9" ON(IN|) = Onm(IM]) -
Indeed, for any f € On(|NJ), the ¢%,(f) € Om(|Upa|) are a family of Zj-functions on an open cover of [M|,
which do coincide on the intersections. To see this, note that

(D80 (N 0sanul = ¢8alU50 ., (F) = Guplis, . (F) = (0. (FD1Usanl -

Hence, there is a unique global section F' € Op(|M]) of the sheaf Oy, such that Fliy,,| = ¢5,(f). The
Set-morphism, which is defined by

O ON(IN]) 2 f = F € Om(|M]),
is actually a morphism of Z7-algebras. Indeed, note that
M| s
PUsal © PN = PBa
(p is the restriction) and observe that, for any element |Ug,| of the open cover of |M| considered, we have
(DN (- I sal = Palf) - P5al(9) = (Dn|(f) - Bin) (9|50 -
The Zj-algebra morphism ¢y, fully characterizes a Zj-morphism ¢ = (l1#l], ¢*) : M — N . We will show that
¢ induces the natural transformation 7, which then completes the proof.

Since ¢ is glued from the Z%-morphisms ¢go, we get, in view of Equations (3.31) and (3.32), in particular
that

(3.33) el [10sal = D8l = MRlUsa @) = 0]l jUsal »
so that ||@|| = |¢|. Further, for any |Vj3],
U, * *
(3.34) P 0 Oy = Gy : ON(IVB]) = Oni([Upal) -

Let now A be any Z%-Grassmann algebra and let (x,m}) € Uga(A). As x € |Ugq| and |§|(z) € |V3], it follows
from Equations (3.33), (3.34), (3.31), and (3.32), that the image of (z,m}) by the A-component of the natural
transformation induced by ¢ is

oa(z,m3) = (|9|(x), my 0 67) = (|9pal(x), My © Pa ) = (Ppa)alz, my) = nalz,m3) .

The following theorem is of importance in the study of Z3-Lie groups.

Theorem 3.27. The Schwarz—Voronov embedding S sends Z%-Lie groups G to functors S(G) = G(—) from the
category Z5Pts®P of Z5-Grassmann algebras to the category ANFLg of nuclear Fréchet Lie groups over nuclear
Fréchet algebras.
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Proof. The proof is not entirely straightforward and will be given in a paper on ZZ-Lie groups, which is currently
being written down. (I

3.6. Representability and equivalence of categories. As the Schwarz—Voronov embedding is fully faithful,
the category Z5Man can be viewed as a full subcategory of the category [Z5Pts®P, A(N)FMan]. Functor categories
are known to be well-suited for geometric constructions. Hence, when trying to build a Z-manifold M (possibly
from other Z3%-manifolds M,), it is often easier to build a functor F in [Z5Pts®P, A(N)FMan] (from the given
Zy-manifolds interpreted as functors M,(—)). However, one has then to show that F can be represented by a
Z%-manifold M, i.e., that there is a Z%-manifold M, such that M(—) ~ F.

Definition 3.28. A functor
F € [Z3Pts°P, A(N)FMan]
is said to be representable, if there exists a ZJ-manifold M € Z3Man (which is then unique up to unique

isomorphism), such that
M(=)~F in [Z3Pts°P, A(N)FMan] .

We define the restriction F||y| of a functor F € [Z5Pts®P, A(N)FMan] to an open subset |U| C F(R) € (N)FMan.
For any A € Z5GrAlg, let
pr:A—R
be the canonical projection, let
F(pa) : F(A) — F(R)
be the corresponding smooth map. The preimage
(3.35) Flioj(8) = (F(p3)) " (1U])

is an open (nuclear) Fréchet Ag-submanifold of F(A).
Consider now a morphism ¢* : A — A’ in Z5GrAlg. As p}, o ¢* = p}, we get the restriction

(3.36) Flune") == F ) rp, 0 Flon(d) — Floy(A)
which is a morphism in A(N)FMan.

Definition 3.29. For any functor
F € [Z5Pts®P, A(N)FMan]
and any open subset |U| C F(R), the restriction of F to |U| is the functor
Fliu| € [ZyPts®P, A(N)FMan]
that is defined by Equations (3.35) and (3.36).

Example 3.30. Let M € Z3iMan, let M(—) be the corresponding functor, and let |U| C |M| ~ M(R) be an
open subset. The restriction M (—)|jy| is given:

(i) on objects A, by
(3.37) M(=)|ju|(A) := {(z,m]) € M(A) : (x,p om}) ~z e |U|} =U(A),
where U = (|U], On|jv)) is the open Z3-submanifold of M over |U], and
(ii) on morphisms ¢* : A — A’, by
(3.38) M (=)l (¢") == M(e")|u@n) =Ule"),
since both maps are given by
U(A) 3 (z,m]) = (z,¢" om}) e UN) .
Let F be representable, let M be ‘its’ representing Ziy-manifold, and let
(3.39) n:F — M(-)

be the corresponding natural isomorphism in [Z5Pts°P, A(N)FMan]. The maps na and nXl are then Ag-smooth,
i.e., np is a Ag-diffeomorphism, for any A. In particular, the map ng : F(R) — M(R) is a diffeomorphism
of (nuclear) Fréchet manifolds. This means that the (nuclear) Fréchet structures on F(R) ~ M(R) coincide.
Further, if one identifies F(R) ~ M (R) with |M]|, the (nuclear) Fréchet structure on F(R) ~ M (R) coincides
with the smooth structure on |M|. We can therefore view F(R) as being the smooth manifold |M|. Consider now
a Z5-atlas (Uy, ha)o of M. If we denote the dimension of M by p|g, the Z§-chart map h, is a ZJ-isomorphism

ha : Up — US
valued in a Zj-domain of dimension p|g, which implies that

(3.40) ho  Ua(—) = US%(—)
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is a natural isomorphism in [Z5Pts°P, A(N)FMan]. In view Equations (3.39), (3.37), (3.38), and (3.40), the family
(|[Ual)w is an open cover of |[M| ~ F(R), such that, for any a, we have

Flivn) = M(=)|jv.) = Ua(=) = UL4(~)
in [Z5Pts®P, A(N)FMan].

Theorem 3.31. A functor F € [Z5Pts®P, A(N)FMan] is representable if and only if there exists an open cover
([Ua)a of F(R), such that, for each «, we have

(3.41) Flia| =~ U (-
|

in [Z5Pts°P, A(N)FMan], where Un" is a Z5-domain in a fized RP12.

Proof. We showed already that the condition is necessary. Assume now that Condition (3.41) is satisfied, i.e.,
that we have natural isomorphisms
plq
ke : ]:||UQ| — Ua *(—)
in [Z5PtsP, A(N)FMan]. This means that the A-components

ko Flio, (A) = U24(A)

are Ag-diffeomorphisms.
In particular, we have a diffeomorphism

hal = haz : Flip, (R) = (F) "M (Ual) = [Ua| — UL (R) ~ U2

Notice that (|Uyl, |ha|)a can be interpreted as a smooth atlas on |M| := F(R). The direct image of the structure
sheaf O, ,i, over U by the continuous map |ho| ™t : UP — |U,| is a sheaf over |U,|, which we denote by Oy, :
_ ~1
Ou,, = (|hal )*Oug\g :
The Z3-ringed space
Ua := ([Ual, Ov,,)

is isomorphic to the Zj-domain uﬁi‘? The isomorphism is hy := (|hal, k), where k% is the identity map (a

composite of direct images is the direct image by the composite). In other words, we have an isomorphism of
Z5-manifolds

ho s U — UBY.
Consider now an overlap |U,g| := |Ua| N |Ug| # 0. Omitting restrictions, we get that kgk_! is a natural
isomorphism (in [Z5Pts°P, A(N)FMan])
— plg plg
kg = kigha "+ Ung (=) = Ugy (—)

between functors corresponding to Z35-domains (defined as usual). In view of Theorem 3.17, the natural iso-
morphism kg, is implemented by a Zf-isomorphism

ko UL — DS
o U .

(03

It follows that
Vpa = by kpaha : Usp — Upa

is an isomorphism of Zj-manifolds, where Uap := (|Uag|, Ov, ||v..5|)- The Zz-manifolds U, can thus be glued and
provide then a Z3-manifold M over |M| = F(R), such that there are Z3-isomorphisms (|Us|, Onm|iv,|) = Uas
if the 1g, satisfy the cocycle condition.

Since the Schwarz—Voronov embedding is fully faithful, we have that 1,3134 = ¥y as Zy-morphisms if and
only if the induced natural transformations coincide. However, for any A, we get

(rptpa)n = (hya) ™ By a(kpa) " hga(hsn) " kg (kan) " han = Ysan -

It remains to show that M actually represents F, i.e., that we can find a natural isomorphism 7 : M(—) — F
in the category [Z5Pts®P, A(N)FMan], i.e., that, for any A € Z}GrAlg, there is a Ag-diffeomorphism np : M (A) —
F(A) that is natural in A. As (|U,|)w is an open cover of |M], the source decomposes as

M) = JUa ),

the U, (A) being open (nuclear) Fréchet Ag-submanifolds. On any U, (A), we define na by setting
lu,ay = (kap) than : Us(A) — Fliu, (M) C F(A) .
These restrictions provide a well-defined map
na : M(A) = F(A) .
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Indeed, if (x,m}) € Uy (A) NUg(A), we have
(ko) (haa(z,m))) = (ksa) " (hpa(e,m])) if and only if  ¢ga,n(z,m)) = (z,m]) .

However, since we glued M from the U,, the gluing Z7-isomorphisms 3, became identities and so did the
induced natural isomorphisms. The definition of 5, ' is similar. The source F(A) decomposes as

F) =JFloa ),

the F|p7.|(A) being open (nuclear) Fréchet Ag-submanifolds. On any JF|y,|(A), we define ;' by setting

M3 F v 8) = (Pan) " ket Fliog () = Ua(A) € M(A) .
The condition for these restrictions to give a well-defined map
myt s F(A) = M(A)

is equivalent to the condition for 1. Clearly, the maps 1, and 77X1 are inverses. Naturality and Ag-smoothness
are local questions and are therefore consequences of the naturality and the Ag-smoothness of (kq ) 'ha 4 and
of (hm/\)ilka,/\- O

We are now prepared to show that the category Z5Man is equivalent to a functor category.

Theorem 3.32. The category ZiMan of 23 -manifolds (defined as Z%-ringed spaces that are locally isomorphic to
75 -domains) and Z%-morphisms (defined as morphisms of Z3 -ringed spaces) is equivalent to the full subcategory
[Z5Pts°P, A(N)FMan] e, of representable functors in [Z5Pts®P, A(N)FMan].

In other words, the category ZjMan is equivalent to the category of locally trivial functors in the subcategory of
the functor category [Z5Pts®P, A(N)FMan], whose objects F have values F(A) in (nuclear) Fréchet Ag-manifolds
and whose morphisms are the natural transformations with Ag-smooth components.

Remark 3.33. This result is reminiscent of the identification of schemes with those contravariant functors
from affine schemes to sets that are sheaves (for the Zariski topology on affine schemes) and have a cover by
open immersions of affine schemes.

Proof. The Schwarz—Voronov embedding viewed as functor valued in [Z5Pts®P, A(N)FMan],e, is obviously fully
faithful and essentially surjective. It thus induces an equivalence of categories. O

APPENDIX A. GENERATING SETS OF CATEGORIES

We will freely use Mac Lane’s book [36] as our source of categorical notions and proofs of general statements.
For completeness, we recall the concept of generating set of a category.

Definition A.1 ([30], page 127). Let C be a category. A set S = {S; € Ob(C) : i € I}, where [ is any index
set, is said to be a generating set of C, if, for any pair of distinct C-morphisms

o, A— B,
i.e., ¢ # 1, there exists some ¢ € I and a C-morphism
$:58;, — A s
such that the compositions
s ¢
Si— A= B,
P

are distinct, i.e., ¢ o s # 1 o s. In this case, we say that the object S; separates the morphisms ¢ and 1, and
that the set S generates the category C.

Example A.2. The set {R} is a generating set of the category of finite dimensional real vector spaces. This
is easily seen, as, if we have two distinct linear maps ¢, : V. — W, then there exists a vector v € V (v # 0),
such that ¢(v) # 1 (v). Thus, the two linear maps differ on the one dimensional subspace generated by v. Now
let z be a basis of R. Then, the linear map s : R — V given by s(z) = v, keeps ¢ and 1) separate.

Proposition A.3. For any locally small category C, a set S C Ob(C) generates C if and only if the restricted
Yoneda embedding

Vs :C— [S°P Set],
where S is viewed as full subcategory of C, is faithful.
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Proof. The restricted embedding is defined on objects by
Ys(A) = Home(—, A) € [S°P, Set]

and on morphisms by
Ys(¢) = Home(—, ) : Ys(A) = Vs(B)
where
(Vs())s, : Home(S;, A) 5 s — ¢ os € Home(S;, B) .

The embedding Vs is faithful if and only if, for any different ¢,v : A — B, the corresponding natural transfor-
mations are distinct, i.e., there is at least one ¢ € I and one s € Hom¢(.S;, A), such that gpos#os. O

APPENDIX B. FRECHET SPACES, MODULES AND MANIFOLDS

Manifolds over algebras A, also known as A-manifolds, are manifolds for which the tangent spaces are
endowed with a module structure over a given finite-dimensional commutative algebra. For details, the reader
may consult Shurygin [51, 52, 53], and for a discussion of the specific case of (the even part of) Grassmann
algebras one may consult Azarmi [7]. A comprehensive introduction to the subject can be found in the book by
Vishnevskii, Shirokov, and Shurygin [57] (in Russian). The concept needed in this paper is a infinite-dimensional
generalisation of an A-manifold to the category of Fréchet algebras and Fréchet manifolds. For an introduction
to locally convex spaces, including Fréchet vector spaces, we refer the reader to Conway [15, Chapter IV], Treves
[56, Part I], or Rudin [44, Chapter 1]. A brief introduction to Fréchet algebras can be found in Waelbroeck [59,
Chapter VII]. For Fréchet manifolds, the reader can consult Saunders [46, Chapter 7] and Hamilton [29, Part
1.4].

Definition B.1. A Fréchet (vector) space is a complete Hausdorff metrizable locally convex topological vec-
torspace.

There exist a few other, equivalent, definitions of Fréchet spaces. The topology on a locally convex space is
metrizable if and only if it can be derived from a countable family of semi-norms || — ||, & € N. The topology
is Hausdorff if and only if the family of semi-norms is separating, i.e., if ||x||x = 0, for all k, implies x = 0.
Given such a family of semi-norms, one defines a translationally invariant metric that induces the topology by
setting

d(x,y) zz2fk HX*YHIC

= 1FIx=vll’
for all x and y.
Example B.2. Let M = (|M|,O) be a Zj-manifold. For any open subset U C |M]|, the space O(U) of

Zy-functions f on U is a Fréchet space. An inducing family of semi-norms is given by

Iflle.p = supzec [e(D(f))()] ,

where ¢ is the projection € : O(U) — C*(U) of Zj-functions to base functions, where C' is any compact subset
of U, and where D is any Zj-differential operator over U [13].

Given two Fréchet spaces (F, (|| — [|[F')ken) and (G, (|| = ||§)ren), a linear map
o F— G,
is continuous if and only if, for every semi-norm || — ||, there exists a semi-norm || — ||F and a positive real

number C' > 0, such that
eGIIF < ClIxIIi"

for every x € F'. A similar result holds for continuous bilinear maps

¢p: FxG—H.

The morphisms of Fréchet spaces are the continuous linear maps, so that the category of Fréchet spaces is a full
subcategory of the category of topological vector spaces.

What makes Fréchet spaces interesting, is the fact that they have just enough structure to define a derivative
of a mapping between such spaces. This leads to a meaningful notion of a smooth map between Fréchet spaces,
and so much of finite dimensional differential geometry can be transferred to the infinite dimensional setting,
using Fréchet spaces as local models. The well known Gdteaux (directional) derivative is defined as follows.
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Definition B.3. Let F' and G be Fréchet spaces and U C F be open, and let ¢ : U — G be a (nonlinear)
continuous map. Then the derivative of ¢ in the direction of v € F at x € U is defined as
dx¢(v) := lim Pt tv) — 6(x)
t—0 t
provided the limit exists. We say that ¢ is continuously differentiable, if the limit exists for allx € U and v € F',
and if the mapping
dp:Ux F — G

is (jointly) continuous.

Higher order derivatives are defined inductively, i.e.,

dk O(V1, Vo, .o, Vi —dkd)vv ey Vi
d’;+1¢(V1,vz,...,Vk+1):: Jim Ve (v, v2, .-, Vi) x(V1 V2, o Vi)

t—0 t

A continuous map ¢ : U — G is then said to be k times continuously differentiable or to be of class C*, if
d*¢ .U x F** — @
is continuous (or, more explicitly, if all its derivatives of order < k exist everywhere and are continuous). If ¢

is of class C*, its derivative di(b(vl, Va, ..., V) is multilinear and symmetric in F** [50]. Furthermore, we say
that ¢ is smooth, if it is of class C*, for all k.

Proposition B.4. Let Fi, Fy5 be Fréchet spaces and let U C Fy x Fy be an open subset. A continuous map
¢ : U — G valued in a Fréchet space G is of class C' if and only if its (total) derivative

d¢: U x (F1 x F2) 3 ((f1, f2), (vi,v2)) = d(p, 1) @ (V1,v2) €G

s continuous, which is the case if and only if the naturally defined partial derivatives

df1¢ZUXF1 = ((fhfg),vl)»—)dfl’(fl7f2)¢(v1) eG and df2qf):U><F2 = ((fl,fQ),Vz)’_>df27(fl’f2)¢(v2) eqG

are continuous. In this case, we have

d(fhfz) ¢ (V17V2) = dfly(f17f2) ¢ (Vl) + df27(f17f2) ¢ (V2) .

The Gateaux or Fréchet—Géateaux derivative gives a rather weak notion of differentiation, however, most of
the standard results from calculus in the finite dimensional setting remain true. Specifically, the fundamental
theorem of calculus and the chain rule still hold. However, the inverse function theorem is in general lost. For
a special class of Fréchet spaces, known as ‘tame’ Fréchet spaces, there is an analogue of the inverse function
theorem known as the Nash—-Moser inverse function theorem, see Hamilton [29] for details.

A nuclear space is a locally convex topological vector space F', such that, for any locally convex topological
vector space G, the natural map F®,G — F®,G from the projective to the injective tensor product of F
and G is an isomorphism of locally convex topological vector spaces. In particular, a nuclear Fréchet space is
a locally convex topological vector space that is a nuclear space and a Fréchet space. Loosely, if a space F' is
nuclear, then, for any locally convex space G, the complete topological vector space F® G is independent of the
locally convex topology considered on F' ® GG. Because of this, and their nice dual properties, nuclear spaces
provide a reasonable setting for infinite dimensional analysis. All the Fréchet spaces we encounter in this paper
are in fact nuclear.

The following definition is standard.

Definition B.5. A Fréchet algebra is a Fréchet vector space A, which is equipped with an associative bilinear
and (jointly) continuous multiplication - : A x A — A. If (p;)ier is a family of semi-norms that induces the
topology on A, (joint) continuity is equivalent to the existence, for any i € I, of j € I, k € I, and C > 0, such
that

pi(z-y) < Cp;j(z) prly), Yo,y € A.
We can always consider an equivalent increasing countable family of semi-norms (|| — ||)nen. The preceding
condition then requires that, for any n € N, there is r € N (r > n) and C > 0, such that

lz - ylln < Cllzll [lyllr Yo,y € A

In particular, the topology can be induced by a countable family of submultiplicative semi-norms, i.e., by a
family (g, )nen that satisfies

Gn(x-y) < qn(@) qn(y), Yn e N\Va,y € A

Note that many authors define a Fréchet algebra simply as a Fréchet vector space, which carries an associative
bilinear multiplication, and whose topology can be induced by a countable family of submultiplicative semi-
norms. This latter definition is equivalent to the former.

In general, a Fréchet algebra need not be unital, and, if it is, one does not require p;(14) = 1, in contrast to
what is usually required for Banach algebras.
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Example B.6 (Formal power series). Consider the space
R[z1, 22, ..., 24]]

of formal power series in ¢ parameters and coefficients in reals. We set j := (j1,42,...,7q) € N*? and |j| :=
J1+J2+ -+ jg. A general series x now reads

_ J, . — J1 ,J2 Jag. . .
X = E Za; = E 21250 20, ey
J J

with no question on the convergence. The algebra structure is the standard multiplication of formal power
series. The topology of coordinate-wise convergence is metrizable and given by the family of semi-norms

Ixlle ==Y lajl, VkeN.
1<k

This algebra is unital with the obvious unit, and it is submultiplicative.

Let us denote the category of Fréchet algebras (resp., commutative Fréchet algebras) as FAlg (resp., CFAlg).
Morphisms in this category are defined to be continuous algebra morphisms. If we restrict attention to nuclear
Fréchet algebras (resp., commutative nuclear Fréchet algebras), then we work in the full subcategory NFAlg
(resp., CNFAlg).

Definition B.7. Fix A € FAlg. A Fréchet A-module is a Fréchet vector space F', together with a continuous
action

AxF 5 F
(a,v) = pla,v),
which we will write as u(a,v) := a-v (and which is of course compatible with the multiplication in A).
We give a short survey on Fréchet manifolds.

Definition B.8. Let M be a set. An F-chart of M is a bijective map ¢ : U — ¢(U) C F, where U C M and
¢(U) is an open subset of a Fréchet space F.

A Fréchet atlas can be defined using charts valued in various Fréchet spaces. For our purposes, it is sufficient
to consider a fixed Fréchet model.

Definition B.9. Let M be a set. A smooth F-atlas on M is a collection of F-charts (U, ¢a))aca , such that

(i) the subsets U, cover the set M,
(ii) the subsets ¢ (U, NUg) are open in F,
(iii) the transition maps

¢ﬁa =¢po ¢;1 : ¢a(Ua N Uﬂ) CF— d)ﬂ(Uﬂ N Ua) CF
are smooth.

A new F-chart (U, ¢) on M is compatible with a given smooth F-atlas, if and only if their union is again a
smooth F-atlas, i.e., the subsets ¢(U NU,) C F and ¢, (U, NU) C F are open, and the transition maps

a0t p(UNUy) — ¢a(UsNU) and ¢od ' : ¢o(Us NU) — ¢(UNUy)

are smooth (for every o € A). Similarly, two smooth F-atlases are compatible provided their union is also a
smooth F-atlas. Compatibility is an equivalence relation on all possible smooth F-atlases on M.

Definition B.10. A smooth F-structure on a set M is a choice of an equivalence class of smooth F-atlases
on M. We say that M is a Fréchet manifold modelled on the Fréchet space F, if M comes equipped with a
smooth F-structure. If the model vector space F' is nuclear, we speak of a nuclear Fréchet manifold.

A smooth F-atlas on a Fréchet manifold M allows us to define in the obvious way a topology on M, which
is independent of the atlas considered in the chosen equivalence class. The domain U of an F-chart (U, ¢) is
open in this topology and the bijective map ¢ : U C M — ¢(U) C F is a homeomorphism for the induced
topologies. Most authors confine themselves to Fréchet manifolds, whose topology is Hausdorff.

Morphisms between two Fréchet manifolds are the smooth maps between them, where smoothness is defined,
just as in the finite dimensional case of smooth manifolds, in terms of charts and smoothness of local repre-
sentatives of the maps. We denote the category of Fréchet manifolds and the morphisms between them by
FMan.

Further, the tangent space Ty M to a Fréchet manifold M at a point f € M can be defined as usual, using
the tangency equivalence relation for the smooth curves of M that pass through f at time 0. One can easily see
that T M is a Fréchet space. The concept of Fréchet vector bundle is the natural generalization of the notion
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of smooth vector bundle to the category of Fréchet manifolds. The tangent bundle TM of a Fréchet manifold
M is an example of a Fréchet vector bundle.

In general, we must make a distinction between the (kinematic) tangent bundle as defined here and the
operational tangent bundle defined in terms of derivations of the algebra of functions of a Fréchet manifold.
Indeed, the two notions do not, in general, coincide, there are derivations that do not correspond to tangent
vectors. However, it is known that for nuclear Fréchet manifolds the two concepts do coincide.

Let § : M — N be a smooth map between Fréchet manifolds modelled on Fréchet spaces F' and G,
respectively. There is a tangent map T§ of §, which is a smooth map

TF: TM — TN,
and restricts, for any f € M, to a linear map
Tf& : Tf./\/l — Tg(f)./\[.

As in the finite dimensional case, the local representative of T';§ is the derivative d f)(d)&b*l) of the corre-
sponding local representative

Yo' p(U)C F -G
of § at the point ¢(f).

Fundamental to the work in this paper are Fréchet manifolds with a further module structure on their tangent
bundle.

Definition B.11. Let M be a Fréchet manifold, whose model Fréchet space F' is a module over a Fréchet
algebra A. We say that M is a Fréchet A-manifold, if and only if all transition maps are A-linear, i.e.,

dga(p)Ppala-v) =a-dg, (5)Ppalv) ,
forall fe Uy, NUg,a€ A, and v € F.

Morphisms between Fréchet A-manifolds M and N are the A-smooth maps between them, i.e., are the smooth
maps § : M — N that are A-linear at every point. This means that, for any point f € M, there is an M-chart
(U, ¢) around f and an N-chart (V,+) around §(f) that contains F(U), such that the local representative

dg(py (T )

of the derivative T;§ is an A-linear endomorphism of the A-module F'. The requirement actually means that
the derivative T;§ must be A-linear at any point f € M. In this way, we obtain the category of Fréchet
A-manifolds, which we denote as AFMan.

In this paper, we will use the category AFMan, whose objects are the Fréchet A-manifolds, where A is not a
fixed Fréchet algebra, but any Fréchet algebra. The definition of AFMan-morphisms generalizes the definition of
AFMan-morphisms. Suppose that M is a Fréchet A-manifold modelled on an A-module F' and N is a Fréchet
B-manifold modelled on a B-module G. The AFMan-morphisms from M to A are the A-smooth maps between
them, i.e., those smooth maps § : M — A that are at any point compatible with the module structures of F
and G. This means that there is a Fréchet algebra morphism p : A — B, and, for any f € M, there exist charts
(U, ¢) and (V, 1) as above, such that

do(p) (WF0 ) (a-v) = pla) - dp(p) (V™) (V)
for any a € A and v € F. This requirement actually means that, for any f, the derivative T ;g is compatible
with the induced actions on the tangent spaces. We will refer to an A-smooth map with associated Fréchet
algebra morphism p, as a p-smooth map. If we restrict our attention to nuclear objects, i.e, the model Fréchet
vector space and the Fréchet algebra are both nuclear, then we denote the corresponding category as ANFMan.
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