Proactive Middleware for Fault Detection and Advanced Conflict Handling in Sensor Fusion

Gilles Neyens and Denis Zampunieris
{gilles.neyens, denis.zampunieris}@uni.lu
University of Luxembourg

Problem statement

- Sensor fusion used in robotics systems and other IT systems to combine data coming from different sensors
- Also used to reduce the uncertainty the information would have
- Existing solutions try to reduce the noise in the sensor, even the one that is caused by external factors
- External factors that cause noise for some sensors are often known
- Context of the system could be used to identify situations in which some sensors malfunction
- Using this knowledge, the system could try to circumvent failing or malfunctioning sensors and calculate estimates based on other sensors

Related Work

- IMU enabled GPS
- Proactive engine developed at the University of Luxembourg
- Information fusion under consideration of conflicting input signals
- A Rule-Based Approach for Self-Optimisation in Autonomic EHealth Systems

Contribution

- Two layer architecture for fault detection and conflict handling in sensor fusion
- Context-based conflict detection and handling process using a rule engine
- Enhancement of final information and attribution of sensor confidence values to ease the decision-making process of an external system

Scenario flow

- Flow data
- Improved data and confidence
- Context building scenarios
- Influening scenarios
- Conflict handling scenarios
- Transmitting scenarios
- Information and confidence level
- Robot

Architecture

- The data from sensors is passed to a two-layer system
- On the first layer, classifiers attribute a confidence value to sensors. A low confidence means that the sensor is likely malfunctioning.
- The rule-based proactive engine uses these confidence values to first build the context for the current situation, and then it decides which sensors can be trusted and updates the confidence values.
- Finally, for malfunctioning sensors, the system attempts to take data from similar values or tries to calculate estimates and sends them back to the robot where the robot can then use the enhanced information to make decisions.

References