

PhD-FSTC-2019-32

Faculty of Sciences, Technology and Communication

DISSERTATION

Presented on 23/04/2019 in Luxembourg

to obtain the degree of

DOCTEUR DE L'UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE

by

Kamil GRZYB

Born on 5th of February 1988 in Warsaw, Poland

THE EFFECT OF ATP INDUCED CALCIUM DYNAMICS ON EPITHELIAL TO MESENCHYMAL TRANSITIONS

Dissertation defense committee

Dr. Alexander Skupin

University of Luxembourg

Prof. Dr. Rejko Krüger, Chairman

University of Luxembourg

Prof. Dr. Jens Schwamborn, Vice Chairman

University of Luxembourg

Prof. Dr. Ursula Kummer

University of Heidelberg

Dr. Carsten Marr

Helmholtz Zentrum München

AFFIDAVIT

I hereby confirm that the PhD thesis entitled "The effect of ATP induced calcium dynamics on epithelial to mesenchymal transition" has been written independently and without any other sources than cited.

Esch-sur-Alzette, March 2019

Kamil Grzyb

ACKNOWLEDGMENTS

The work for this dissertation was carried out in the “Integrative Cell Signalling group” at the Luxembourg Centre for Systems Biomedicine (LCSB) at the University of Luxembourg.

First of all, I would like to thank my supervisor, Dr. Alexander Skupin, for giving me the opportunity to work on this project. I am grateful for all your support and for his motivating, optimistic and always curious view on science, especially during these low sugar intake days. One of the first, and the most memorable phrases addressed to science “Lets rock it”!

I would like to thank the members of my CET committee, Prof. Dr. Rejko Krüger, Prof. Dr. Jens Schwamborn. I thank my fellow labmates in for the stimulating discussions, for the sleepless nights we were working together in the cell culture, and for the laugh and fun we have had in the last four years: Aymeric, Olga, Tomasz, Stefano, Luis, David, Guadalupe, Gabriela, Rashi, Dimitrios, Suresh, Mahsa, Niko, Francoise, Michela, Silvia, Marina, Patrick, Alice, Corrado and Sonja. Also I thank my friends in the ISB institute in Seattle: Irit Rubin, Xu Zhou, Michael Strasser. In particular, I am grateful to MD, Dr. Sui Huang for long, but always interesting discussions about science.

Moreover, I want to thank Gabriela Novak and Paul Antony for reviewing my thesis manuscript. I also thank the Fonds National de la Recherche Luxembourg (FNR) for providing the funding for this project (CaSCAD). I would also like to thank my family: my parents Urszula and Józef. Thank you for your support.

ABSTRACT

Cells respond to a multitude of external triggers by a limited number of signaling pathways activated by receptors on plasma membrane, such as receptor tyrosine kinases (RTKs) or G protein-coupled receptors (GPCRs). These pathways do not simply convey the downstream signal, but instead the signal is very often processed by encoding and integrated with the current state of the cell.

A traditional transcriptional analysis tends to provide an averaged output measured in a population, what often masks the behavior of individual cells. However, with recent single cell techniques developments, it is possible to investigate transcription in individual living cells. This contributed tremendously to the understanding of development and progression of many diseases including cancer. The more we understand about this high complexity of signaling mechanisms and multitude of cellular safety countermeasures, the more we see cancer as a microevolution state of “rebellious cells” (cells entering the fate opposite to the one intended) following a patch through a discreet system.

This thesis specifically focused on the temporal aspect of signaling in the context of the epithelia-to-mesenchymal transition (EMT) by combining single cell experiments and bioinformatics analysis. We investigated cellular signaling changes in response to different dynamical profiles of the stimuli. In particular, we used the HMLER cell line, which is a metastatic breast cancer model for the epithelial to mesenchymal transition. By applying stochastic or oscillatory pulses of extracellular ATP-induced Ca^{2+} signals with different interspike intervals, we were investigating different transcription states from those evoked by constant ATP-induced Ca^{2+} dose responses. In order to precisely apply those stimulation profiles, we have developed and established a perfusion system. This device allows to treat population of cells simultaneously with the exact same dynamical profiles. Cells treated by these well controlled signals were subsequently processed by the single cell RNA-seq technique Drop-seq for transcriptional analysis. The resulting high dimensional digital gene expression matrices were analyzed by a developed

high-throughput computational analysis pipeline. This analysis includes the identification of differentially expressed genes and cellular clusters (states) by dimensionality reduction methods (PCA, t-SNE) and pathway analysis. We evaluated changes and trends of genes from difference dynamical profiles by investigating their involvement in stress, stemness and regulation of motility.

First, we confirmed that oscillatory stimulation with extracellular ATP (eATP) tends to lower the burden of cellular stress and apoptosis related pathways while maintaining its other effector functions compared to constant eATP stimulation. Interestingly, stochastic spiking of extracellular ATP in our setup led to a massive (~80%) increase in overall differential gene expression compared to deterministic oscillatory stimulation with the same period. Consequentially, stochastic signaling seems to activate a much wider range of biological pathways, which indicates the much higher complexity in information processing capability of producing rebellious cells during cancer progression and metastasis. On the other hand, our findings suggests that oscillatory eATP stimulation could contribute to EMT by lowering *ID3* expression compared to stochastic stimulation where we observed a stronger upregulation of *IRS2*. Finally, we integrated the DEGs into biological processes involved in each conditions and put these new insights into the context of the eATP-induced Ca^{2+} induced epithelial to mesenchymal transition.

Overall, this thesis has applied recent single cell technologies to characterize underlying principles of cellular heterogeneity induced by cell signaling and specifically investigated the complex mechanisms of cell fate in the context of EMT

Table of Contents

1	Introduction	15
2	Biological background	18
2.1	Breast cancer	18
2.1.1	HMLER model	20
2.2	Epithelial-mesenchymal transition	21
2.2.1	EMT in embryogenesis	23
2.2.2	Wound healing and fibrosis	24
2.2.3	EMT in Cancer	27
2.3	Cellular heterogeneity	28
2.3.1	Epigenetic landscape and cell fate	28
2.3.2	Population dynamics	30
2.4	Calcium as secondary messenger	31
2.4.1	Calcium dynamics machinery	33
2.4.2	Purinergic receptors and ATP ligand	34
3	Aims	36
4	Materials and Methods:	38
4.1	Cell Culture and passaging	38
4.1.1	Cell freezing and reculturing	38
4.1.2	Oscillatory and stochastic effect of ATP simulation on cell fate	39
4.1.3	HMLER subpopulation balance analyses	40
4.2	Perfusion system	40
4.2.1	Perfusion software	40
4.2.2	Experimental setups	41
4.3	Single cell imaging	41
4.3.1	Life cell microscopy	41
4.3.2	FACS analysis	42
4.3.2.1	Antibody preparation and cell labeling	42
4.4	Single cell transcriptomics experiments	43
4.4.1	Drop-seq	43
4.4.1.1	Chip fabrication	43
4.4.1.2	Drop-seq experimental setup	46
4.4.1.3	Drop-seq run	48
4.4.1.4	Single cell library preparation	49
4.4.1.5	Buffers and reagents	51
4.4.2	Chromium (10x Genomics)	53
4.4.2.1	Dose-response effect of ATP on HMLER cell fate	54
4.4.3	Targeted qPCR using Juno/C1 Fluidigm	54
4.5	Processing of sequenced data	54
4.6	Single cell transcription analyses	55
4.6.1	Data normalization	55
4.6.2	Correlation analyses	56
4.6.3	Differential Gene Expression analyses	56
4.6.4	Dimensionality reduction with PCA and t-SNE	57

5 Results	58
5.1 Characterization of the HMLER based EMT model.....	58
5.1.1 HMLER subpopulation balance investigation	58
5.1.2 eATP effect on Epithelial and mesenchymal subpopulation dynamics	59
5.1.3 HMLER calcium profiles upon stimulation	61
5.1.4 Gene splicing variants investigation using real-time qPCR (C1)	63
5.2 Breast cancer cell fate modulation by eATP dose response.....	65
5.3 Cell fate modulation by inducing distinct Ca^{2+} profiles by eATP..	69
5.3.1 Oscillatory and stochastic Ca^{2+} profiles applied using perfusion system.....	69
5.3.2 Single cell analyses of cells with different Ca^{2+} (eATP) imposed profiles	70
5.3.2.1 DGE analyses of data from cells with different calcium profiles	71
5.3.2.2 Correlation analyses of E and M states after eATP stimulation.	74
5.3.3 Analyses of biological processes.....	80
6 Discussion	83
7 Outlook	92

GLOSSARY

1mO – 1 minute oscillation
2mO – 2 minute oscillation
6mO – 6 minute oscillation
6mS – 6 minute stochastic oscillation
AB – antibody
ARC - anti-reflective coating
ARID5B - AT-Rich Interactive Domain-Containing Protein 5B
ATP - adenosine 5'-triphosphate
BEAM - branched expression analysis modeling
BMP - Bone morphogenetic protein
BMPR2 – Bone morphogenetic protein receptor type 2
CD – critical dimension
CD44 – CD44 Molecule (Indian Blood Group)
CD55 - complement decay-accelerating factor
CITED2 – Cbp/P300-Interacting Transactivator 2
CLEC2D - C-type lectin domain family 2 member D
Ct - cycle threshold
CXCL1 - chemokine (C-X-C motif) ligand 1
CYR61 – Cellular Communication Network Factor 1
DEG - differentially expressed genes
DGE - digital gene expression
DMSO - dimethyl sulfoxide
DST – Dystonin
DUSP10 - Dual specificity protein phosphatase 10
DVL2 - Segment polarity protein dishevelled homolog DVL-2
eATP – extracellular ATP
EGFR - epidermal growth factor receptor
ENDOG - Endonuclease G
ERG1 - Early Growth Response 1
Ex/Em – excitation/emission (nm)
FBS - fetal bovine serum

FDTs – perfluorodecyltrichlorosilane
FGF - Fibroblast Growth Factor
FOSL2 - Fos-related antigen 2
FST – Follistatin
FTH1 – Ferritin Heavy Chain 1
GEMs - Gel Bead-In Emulsion
HDAC5 - Histone deacetylase 5
HES1 – Hes Family BHLH Transcription Factor 1
ID3 - DNA-binding protein inhibitor ID-3
IER3 - Radiation-inducible immediate-early IEX-1
IL-6 - Interleukin 6
IP- isopropanol
IP3R - Inositol trisphosphate receptor
IRS2 - Insulin receptor substrate 2
ITRIP - inositol 1,4,5-trisphosphate receptor interacting protein
LGALS1 – Galectin 1
min – minutes
MMP – Matrix Metallopeptidase family
MT1G - Metallothionein-1G
NFATc4 – Nuclear Factor Of Activated T Cells 4
PBS - phosphate-buffered saline
PCA - Principal component analysis
PCOLCE – Procollagen C-Endopeptidase Enhancer
PPP5C – Protein Phosphatase 5
Q-val – False Discovery Rate corrected p-value.
RF – radiofrequency
ROS - reactive oxygen species
RT – room temperature
S100A6 – S100 Calcium Binding Protein A6
sec - seconds
SL – soda lime glass
SOX9 - Transcription factor SOX9
SU-8 - permanent epoxy negative photoresist
t-SNE - t-Distributed Stochastic Neighbor Embedding

TGF- β 1 - Transforming growth factor beta 1
TIMP1 – TIMP Metallopeptidase Inhibitor 1
TJP1 – Tight Junction Protein 1
TMSB4X – Prothymosin Beta-4
TOB1 – Transducer Of ErbB-2 1
TXNIP - Thioredoxin Interacting Protein
ZFAS1 – Long non-coding ZFAS1

1 Introduction


Complex life is based on multicellularity and the finely tuned spatiotemporal interaction between different cell types. To form ordered and specialized structures of a higher organism, such as building up organs from the same DNA content, cells have to sense their environment and adapt to it. For this they tailor gene expression for different cell types using epigenetic mechanisms. Epigenetic adaptation is, therefore, the essential foundation of complex life and perturbations of underlying processes can be linked to diseases such as non-genetically induced cancers. While intensive research during the last decades has identified different adaptation mechanisms, including methylation of the DNA, splicing of mRNAs or regulation of translation by microRNAs, our mechanistic understanding how cellular regulation is organized by cell signaling is still rather limited. The main reason for this lack in understanding are the complex cellular regulatory mechanisms and the accompanied large cellular heterogeneity, rendering systematic investigations problematic (Komin & Skupin, 2017). The present work is addressing this challenge of cell signaling by applying recently established single cell transcriptomics methods to a well-controlled *in vitro* model system for the epithelial-to-mesenchymal transition (EMT), which is an essential process during development and metastasis of cancer.

In general, signal dynamics encodes information, which can be defined by distinct features such as robustness to noise and high information capacity. In biology, an increasing number of studies highlights the functional importance of cell signaling dynamics at the single cell level (Wiley, 2017), (Handly, Yao, & Wollman, 2017). Only recently, we began to better understand how “dynamic signal encoding” applies to a multicellular context including developmental processes, wound healing or cancer metastasis (J. M. Yang et al., 2018). Multicellular organisms often use temporal modulation of specific signaling pathways like oscillations or signaling gradients to precisely control cell fate decisions and pattern formation (Sonnen & Aulehla, 2014).

Starting from a single cell, the development of a complex organism does not only require tight regulation in space but also in time. This

multitude of complex information also needs to be precisely and fully received by the cell. It is especially important during orchestrated processes such as those involved in ontogenesis (Abdallah et al., 2013).

Theoretical considerations of signaling dynamics might offer additional properties and layers of information of the system (Michael J Berridge, Lipp, & Bootman, 2000). Signaling dynamics, in contrast to a more static perspective, describes the temporal evolution of a signaling system. Perturbing and visualizing intracellular signaling with new technologies enable us to investigate the significance of dynamics at the signaling level (Handly et al., 2017). Growing experimental evidence suggests that upstream stimuli can be encoded in the dynamic properties of signals such as duration, delay, fold-change or frequency (Michael J Berridge et al., 2000; Bootman, 2006; Sonnen & Aulehla, 2014). Multicellular organisms often utilize temporal modulation of specific signaling pathways like oscillations or signaling gradients to robustly control cell fate decisions and pattern formation (Nelson, 2004) (**Figure 1**).

Figure 1. Information transmission and its underlying dynamics. Stimuli can be encoded in a specific intracellular signaling pattern as a result of cellular events. Next, the signal is decoded to activate a cellular response. The figure exemplifies absolute signaling levels and signaling dynamics (signal duration, rate of change or frequency) representing different readouts. Extracting features of this signal dynamics separately can result in qualitatively and quantitatively different responses. The differences are visible when two signals with the same amplitude but different durations result in the same response. But in case that the duration of the signal is critical, the responses could be different based on the absolute signal values. Another example shows that even if two signals have the same slope, the variation in stimulation may come from the fact that absolute levels of the signal could be different. Finally, we can have critical information encoded in oscillation frequency, therefore signals with different absolute levels and identical frequency may induce a similar cellular effect (Sonnen & Aulehla, 2014).

It is known that different cell types can respond to stimuli in very different ways (Whitaker, 2006; Zhu et al., 2008). When investigating even further the same population, we can still see a range of different responses (Ashall et al., 2009). Unfortunately, most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been typically considered as noise that needs to be eliminated (Abdallah et al., 2013; Komin & Skupin, 2017). This perspective may represent an oversimplification, and there are many reasons why genetically identical cells can be different, even if they share the same immediate environment. Given a distinct number of molecules interacting with cell receptors and a different number of functional receptors, these differences could be caused and further amplify by complex cellular states based on e.g. nuclear retention, transport of transcripts, stress or cell cycle (Battich, Stoeger, & Pelkmans, 2015; Legewie et al., 2017). This level of diversity may not be easy to correlate or characterize, but nevertheless it is important for a better understanding of cellular signaling. Fortunately, recent single cell analysis methods have significantly improved in their capacity to investigate cell heterogeneity, especially when coupled to unbiased profiling technique such as high throughout RNA sequencing (Goldman et al., 2019; Klein et al., 2015).

Another important property of information processing inside cells is frequency encoding as proven for e.g. Ca^{2+} spikes, cAMP or p54 (Purvis & Lahav, 2013; Smedler & Uhlén, 2014). It has been reported that even when individual cells varied with stimulus intensity, cell signaling on the population level still can be robust against perturbations (Parekh, 2011). When statistical properties of Ca^{2+} signals were evaluated, it became clear that more information could be transmitted by spike sequences than only by the frequency and that particularly the variability of spike timing is cell type and pathway specific (Thurley et al., 2014).

Based on these observations, the aim of the present work is to investigate if and how this potential variability signaling mechanism can have a physiological effect. Since the underlying subtle and complex mechanisms can be disguised by the epigenetically related cellular heterogeneity, such an

investigation relies on the comprehensive characterization of individual cells. For this purpose, this work combines recently established single cell RNA sequencing (sc-RNAseq) methods with well-defined and controlled stimulation protocols to systematically investigate the interplay of specific stimuli (activation) patterns and resulting cell states. This methodology was applied to a biomedical relevant model system of breast cancer metastasis by epithelial-to-mesenchymal transition (EMT).

Therefore, the thesis will first give a detailed introduction into the biological background (Chapter 2) including breast cancer, cellular heterogeneity and Ca^{2+} signaling followed by the definition of the specific aims (Chapter 3). In Chapter 4, the used material and applied methods are introduced before the results are presented in Chapter 5 and discussed in Chapter 6. Finally, Chapter 7 will summarize the findings and give an outlook of future research directions.

2 Biological background

2.1 Breast cancer

Breast cancer is the most commonly occurring cancer in women worldwide according to Global Health Estimates, WHO 2015 (Press Release, 2018). Despite significant progress in diagnostics and treatment, breast cancer still remains a major unresolved clinical and scientific problem. Breast cancer comprise of a group of biologically and molecularly heterogeneous diseases originated from the breast tissue. While the risk factors linked with this cancer differ with respect to other cancer types, individual genetic predisposition like mutations in the *BRCA1* or *BRCA2* gene are often still an important causative agent for this malignancy. Tumor can originate from different areas of the breast, such as the lobules, the ducts, or from the tissue between them. Breast cancers differ based on their invasiveness relative to the primary sites of origin. It is critical to distinguish between various types of malignancies because each of them presents different prognoses and specific treatment options.

Unfortunately, normal development and breast cancer progression seems to be remarkably parallel, at least at the molecular level. It is believed within the scientific community that breast cancer may be derived from mammary cancer stem cells. Mammary stem cells and normal breast development are regulated by the same signaling pathways such as Wnt/β-catenin signaling pathways, estrogen receptors and the receptor tyrosine-protein kinase erbB-2 (HER2), which control stem cell proliferation, cell differentiation, cell death and cell motility. Moreover, emerging evidence are pointing out that epigenetic regulations and noncoding RNAs may play key roles in breast cancer development and progression. These different mechanisms may be also the reason for such high cellular heterogeneity and metastatic aspects of the tumor, especially in case of a triple-negative breast cancer (Polyak, 2007).

While the exact etiology of this malignancy is unknown, family history is one of the strongest risk factor. Germline mutations in a high-penetrance cancer susceptibility genes including *BRCA1*, *BRCA2* and *TP53*, account for less than 25% of tumors, whereas variations in low- and moderate-penetrance genes are likely to explain the majority of cases. Other factors strongly correlated with clinical cases of breast cancer include allele variants and SNPs in *FGFR2* (fibroblast growth factor receptor 2), *MAP3K1* (mitogen-activated kinase kinase kinase 1), *TNRC9* (thymocyte selection-associated high mobility group box 9), *CASP8* (caspase 8), *LSP1* (lymphocyte-specific protein) and *TGFB1* (Cox et al., 2007). In spite of large efforts from many laboratories to unravel this complexity, the mechanism by which these variants may influence breast tumorigenesis is still largely unknown. Hence, despite all the technological improvements in the treatment of advanced-stage tumors, early diagnosis and prevention are still the deciding factor in overall outcome (Stacey et al., 2007).

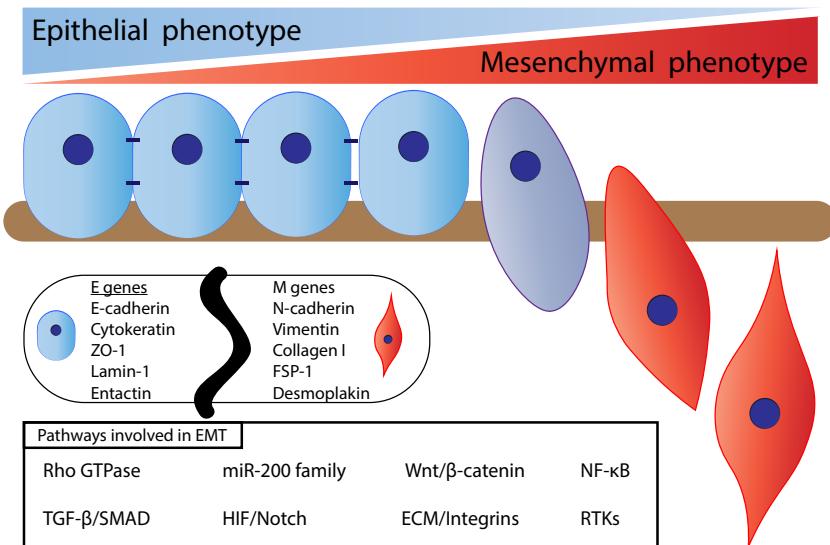
Therefore, an elusive goal in breast cancer oncology has been to improve the detection of tumors and correct identification of subtypes of cancer prior to empirical clinical testing. Ongoing approaches to tackle this obstacle focus on comprehensive sequencing of tumors, which is now possible due to high throughput sequencing. Several such studies have recently been published, some exclusively focusing on kinases (Greenman et al., 2007), others sequencing the whole transcriptome (Sjöblom et al., 2006). Results from

those studies clearly point out very high number of genes mutated in breast cancer, in particular signaling pathway of the PI3KCA/AKT/PTEN, TP53, and NF- κ B were affected. Interesting here was the fact that in case of sporadic tumors the frequency of mutations in any given gene stayed relatively low.

Breast cancer evolution seems to follow defined pathological and clinical stages, starting with ductal hyperproliferation, later continuing into *in situ* and invasive carcinomas, and eventually progressing into metastatic disease. The microenvironment of breast tissue is primarily build by fibroblasts, leukocytes, myoepithelia, endothelial cells and myofibroblasts surrounded by extracellular matrix (ECM) molecules. *In vivo* and *in vitro* studies have shown that, in case of transformed breast cancer cells, paracrine signaling of the environment has a strong effect on cellular growth, survival, polarity, and invasive behavior (Bissell & Radisky, 2001) (Elenbaas & Weinberg, 2001). Experimental studies have shown that deletion of the type II TGF- β receptor in mice fibroblasts and mammary fat pad stroma in rats treated with carcinogen were able to induce formation of tumors and their progression (Cheng et al., 2005) (Bhowmick et al., 2004). These observations are highlighting the importance of stromal signals in cancerogenesis.

Chronic inflammation is a stromal inflammatory condition driven by the microenvironment, and is associated with a higher risk of developing cancer. According to human epidemiological data, prolonged usage of nonsteroidal anti-inflammatory drugs (NSAIDs) are significantly lowering this risk (Ulrich, Bigler, & Potter, 2006). From all tumor-associated leukocytes, macrophages have been the most extensively researched cells in progression of breast cancer. Many model systems have pointed out macrophages as the main players in promoting invasion, angiogenesis and metastatic spreading of cells (Lin & Pollard, 2007) (Lewis & Hughes, 2007).

2.1.1 HMLER model


To investigate the microenvironment of breast cancer and the interplay between epithelial and mesenchymal cells, a HMLER cell line was engineered by immortalization of primary human mammary epithelial cells (HMECs) (Elenbaas et al., 2001).

This model was created with minimal genetic alterations, by transforming primary human mammary epithelial cells (HMECs) to carcinoma cells through the introduction of three specific genes, the H-Ras oncogene, the telomerase catalytic subunit and the SV40 large-T antigen. The cell line was used to elucidate both the genetic and cell biological requirements for the development of breast cancer *in vivo* (Elenbaas et al., 2001). The cell line was further intensively investigated for so-called “cancer stem cells” (CSC) and their role in tumor initiation, as well as for the involvement of EMTs in the metastatic dissemination. By using this mammary tumor progression model, it was shown that cells can possess both stem and tumorigenic characteristics of “cancer stem cells” and that acquisition of these stem and tumorigenic characteristics was a consequence of EMT induction (Morel et al., 2008). In many cancerous breast cell lines with epithelial phenotype, such as HMLE, HMLER, and MCF7 cell lines (L. Chen et al., 2012), the CSC population was consistently associated with high expression of mesenchymal genes, whereas in cell lines with mesenchymal morphology, such as 4T07, BT-549, MDA-MB231, the CSC population expressed more epithelial genes. It was speculated that just by undergoing the transition cells could activate the stemness markers (Patsialou et al., 2012).

2.2 Epithelial-mesenchymal transition

Stationary epithelial cells are characterized by an apical-basal polarity, tight junctions, and expression of cell-cell adhesion markers such as E-cadherin. Until around ~600 million years ago, two-dimensional sheets of those cells were the main building blocks of multicellular eukaryotic life. Mesenchymal cells arise as the result of epithelial cell delamination through a reprogramming process, the EMT, an epithelial-to-mesenchymal transition. EMT is a reversible cellular process in which cells lose their cell-cell adhesion and cell polarity, and gain migratory and invasive properties of mesenchymal cells. The reverse to this process is called mesenchymal-to-epithelial transition (MET) where mesenchymal cells do not make mature cell-cell contacts, but can invade tissue through the extracellular matrix, and express markers such as vimentin, fibronectin, N-cadherin (Baum, Settleman, & Quinlan, 2008).

The EMT is triggered in response to pleiotropic signaling factors that induce the upregulation of specific transcription factors, such as Zeb, Snail, Twist and miRNAs together with post-translation and epigenetic regulators, many of which are involved in development, wound healing, fibrosis, and cancer metastasis (**Figure 2**) (Nieto, Huang, Jackson, & Thiery, 2016).

Figure 2. Most important hallmarks of epithelial-to-mesenchymal transition. Many pathways are able to trigger EMT including tyrosine kinase receptors (fibroblast growth factor, epidermal growth factor, connective tissue growth factor, insulin-like growth factor, platelet-derived growth factor, etc), integrins, Wnt, transforming growth factor β pathways, and nuclear factor NF- κ B. Many of these pathways are linked by activation of master transcription factors (Twist-1, Snai-1/2, Slug, Zeb-1, Ovol-1/2, Prrx-1), which induce the EMT program in epithelial cells by downregulating E-cadherin expression and other genes characteristic for the epithelial phenotype and upregulating mesenchymal phenotype genes. The canonical TGF- β /SMAD signaling pathway is probably the most characteristic cause of tissue fibrosis. Activation of the canonical Wnt signaling pathway and β catenin changes epithelial cells to be more susceptible to EMT by inhibiting the growth arrest created by TGF- β . The extracellular matrix (ECM) is also modulating TGF- β signaling by integrin signaling, which further contributes to EMT. NF- κ B activated through inflammatory cytokines is also involved in EMT associated with fibrosis (Fernandez & Eickelberg, 2012).

The classic description of EMT as the transformation of epithelial cells into mesenchymal cells is being perceived as a shift between two alternative states, mesenchymal or epithelial. However, recent work highlights a greater flexibility in this transitional process, where cells are no longer thought to oscillate between the a full mesenchymal and full epithelial states, but rather cover a continuous spectrum of intermediary steps. This purported plasticity means that cells could linger in intermediary phases and may undergo a partial EMT program. Identification of hybrid intermediate EMT states during organ fibrosis and in circulating tumor cells provides evidence that the spectrum of

EMT previously described in cell culture also reflects *in vivo* observations (Nieto et al., 2016)

2.2.1 EMT in embryogenesis

Mesenchymal cells are multipotent stromal cells that can differentiate into a variety of different cell types. Therefore, transition of epithelial cells into mesenchymal cells via EMT is essential for numerous developmental processes, including neural tube formation and mesoderm formation. EMT processes ongoing in embryogenesis are named “EMT Type I”. Since mesenchymal cells are free to migrate through the body cavity, the evolution of the mesenchyme opened up new avenues for morphological plasticity. As these cells acquired the ability to take up new positions within the embryo and establish novel cell-cell interactions, new types of internal tissues and organs such as bones and muscles can be formed. After migrating to a suitable site, mesenchymal cells adhere to each other and re-polarize to form secondary epithelia by the MET process. These switches between mesenchymal and epithelial states are present during gastrulation and neural crest formation (Baum et al., 2008).

Emigration of the first neural crest (NC) cells becomes apparent at levels opposite the epithelial somite. Furthermore, when the somite dissociate, NC cells continue exiting the neuroepithelium and simultaneously begin to invade the somite in a segmental fashion. NC formation still requires better understanding, although the zinc finger gene *Slug* has been identified to be involved in specifying EMT competence. Furthermore, also the activity of integrins in the extracellular matrix seems to play a very important role in EMT. Additionally, it had been reported that removal of $\beta 1$ -integrin from the neural crest in mouse cells is completely blocking colonization of the gut, leading to an aganglionosis of the descending colon, which seems to be similar phenotypically to the human Hirschsprung's disease (Breau, 2006). Changes in cell motility and cell shape occur at the same time as changes in the cytoskeleton. These concerted changes seem to be triggered by TGF β family growth factors, of which TGF β 1 appears to be particularly important. Additionally in the trunk region, interplay between BMP4 and noggin was

observed. Downregulation of noggin progressively relieves inhibition of BMP, which consequently triggers cell migration by upregulation of Wnt1 transcription and Wnt-dependent canonical signaling (Fernandez & Eickelberg, n.d.). On top of this, timing of EMT seems to be additionally controlled by opposing gradients of fibroblast growth factor (FGF) and retinoic acid in the paraxial mesoderm where local low expression of FGF seems to be required for noggin downregulation. When noggin activity is downregulated, but high BMP activity is preserved, N-cadherin is proteolytically degraded via a BMP and ADAM10-dependent manner with no apparent change at the transcriptional level (Kalcheim, 2015) (Bartis, Mise, Mahida, Eickelberg, & Thickett, 2014).

A consequence of this process is the formation of the soluble fragment CTF2, which is the end product of N-cadherin degradation. Next, CTF2 translocates into the nucleus and stimulates transcription of cyclinD1, an important protein for G1/S phase transition, and promotes together with CDK4/6 cell cycle progression, and eventually inducing EMT. An additional opposing player in this signaling system is overexpressed Cad6B, which leads to a disruption in NC migration and aggregation of cells adjacent to the NT (Kalcheim, 2015).

Rho GTPases are a family of well-documented contributors to EMT and cell motility as they control the dynamics of the actin cytoskeleton, gene transcription, cell polarity and cell cycle progression. Rho signaling has been shown to promote cell migration but surprisingly is also responsible for maintaining the epithelial state. It seems that blocking endogenous Rho or Rac activity will selectively remove cadherin complexes from junctions. The consequence of low cadherins protein levels is a decrease of CD44 and integrins expression, which normally are associated with migratory mesenchymal cells. This highlights the complexity of EMT regulation (Braga, Machesky, Hall, Hotchin, & Hotchin, 2013).

2.2.2 Wound healing and fibrosis

EMT is particularly important during wound healing where signaling mistakes could also lead to pathology. “EMT type II” is linked to regeneration

and fibrosis (scarring) of the tissue. Fibroblasts and inflammatory cells mediate the process of EMT. These cells secrete inflammatory molecules able to interact with proteins of the extracellular matrix (ECM) like collagens, elastin, laminins, and tenacins (Volk, Iqbal, & Bayat, 2013). Tissue wound healing progresses in three steps: the inflammatory, proliferative and maturation phases. The goal of inflammation is to limit tissue deterioration through phagocytosis. The second step leads to formation of granulation tissue, deposition of new ECM, angiogenesis and then re-epithelialization.

The most important phase of wound healing is the re-epithelialization. Keratinocytes acquire mobility and travel from the edges to the area of the wound. Fibroblasts and keratinocytes communicate with each other via double paracrine signaling loops, known as dynamic reciprocity. In healthy tissue the epithelial layer of keratinocytes goes through differentiation of progenitor cells until they reach cell death. This procell leads to the formation of the epidermis outer layer containing a mixture of lipids and cytokeratin skeleton. This mechanical barrier protects and hydrates the underlying tissue. The re-epithelialization is carried out by conversion of cells from stationary state to a migratory one. Within the wound, fibroblasts subsequently secrete paracrine factors such as keratinocyte growth factor (KGF/FGF-7), basic fibroblast growth factor (bFGF/FGF-2), insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor A (VEGF-A). These signals further activate adjacent keratinocytes, which synthesize collagen and perform cross-linking in order to form an ECM, and differentiate into a myofibroblastic state to facilitate wound closure (Wojtowicz et al., 2014).

High expression of TGF β have been detected in granulation tissue during healing of thermal burn wounds and is correlated with high expression of TGF β receptors in fibroblasts involved in repair process. This indicates that the high levels of TGF β can exceed the required quantity and in consequence creates hypertrophic scars (Rorison et al., 2010).

Another important player in this wound healing system is osteopontin (OPN), which is the Secreted Phosphoprotein 1. This protein is able to bind different integrin receptors and several transcription factors, which are regulated by TGF β . Thus, OPN seems to play a central role in TGF β -

dependent signaling and is involved in TGF β dependent EMT (El-Tanani, Platt-Higgins, Rudland, & Campbell, 2004).

The most complete fibrosis model depicted in clinical pathology is renal interstitial fibrosis. Different factors like urinary tract obstruction, diabetes, chronic inflammation makes it a progressive and lethal disease (Border & Noble, 1997). EMT plays a key role in the progress of renal tubular fibrosis and synthesis of extracellular matrix. TGF β upstream regulates many pathways in this pathology. Many of them include MAPK-PI3k signaling as well as Smad where TGF β receptor kinase phosphorylates Smad 2 and 3. In consequence, Smad4 is activated and undergoes nucleus translocation for subsequent transcription regulation of TGF β target genes. For the pathology of fibrosis TGF β /Smad3 regulation is essential since loss of Smad3 function blocks EMT and attenuates development of fibrotic sequelae (Roberts et al., 2006).

Patients with renal tubulointerstitial fibrosis show a progressive decline in renal function over time. Eventually, fibrosis leads to an end-stage renal failure. This process is also associated with ECM deposition, infiltration of inflammatory cells and fibroblasts accumulation with disappearance of tubular epithelial cells. As a result, tubular cells undergo EMT and drive this pathology with cells acquiring classical markers of this involved pathway where the transformation is again driven by TGF β . When the factors stimulating EMT have been counteracted by BMP-7, the fibroblasts proliferation and deposition of ECM in the cortical interstitium was also hindered (Zeisberg et al., 2003). On the other hand, triggering hedgehog signaling induces TGF β expression and has profibrogenic effects in the tissue (Syn et al., 2009). This activation is performed by binding of the ligands, such as sonic hedgehog (SHH) to membrane receptor patched 1 (PTCH1). Signal transduction by Smoothened (SMO), allows translocation of the transcription factor GLI1 to the cell nucleus. Hence, hedgehog can induce EMT driven fibrogenesis.

The involvement of EMT markers was also documented in signaling pathway leading to kidney failures (Galichon & Hertig, 2011). Experienced histopathologists have stated that among EMT markers used in immunohistochemistry, the markers associated with the highest EMT progression rate were vimentin and β -catenin. Additionally, they excluded that E-cadherin and fibroblast-specific protein (FSP1), as being not very reliable in

diagnosis based on their observations on allografts after three months post-transplantation (Hertig et al., 2008).

Another way by which TGF β promotes fibrosis and tissue repair is through the noncanonical focal adhesion kinase (FAK) pathway. This pathway is also known for myofibroblast differentiation. By further investigating the FAK pathway and small non-coding RNAs like e.g. miR222HG a potential major target to treat fibrosis disease could be established. Silencing or blocking this pathway could analogously stop excessive scarring of the tissue (Sun et al., 2018).

2.2.3 EMT in Cancer

EMT associated with migration of cancer metastatic cells is referred to as “EMT Type III”. EMT modification of the cellular phenotype is clearly beneficial opposite to changes that occur in a tumor. Similarities between cancer and EMT re-epithelialization have clinical implications. Effectively, this similarity can give rise to conflict between cancer therapies and wound healing. It has been known for a long time that EMT can trigger dissociation of carcinoma cells from primary carcinomas, which subsequently migrate and disseminate to other parts of the body. It is believed that the MET process is the dangerous trigger, which terminates migration and induces cells to proliferate and seed new tumors at new locations.

There is a close connection between EMT, circulating tumor cells (CTC) and appearance of metastatic tumors. The activation of EMT often endows tumor cells with new features such as resistances to radio and chemotherapy. For this reason, it is particularly important to break this deleterious cycle present in cancer by targeting EMT. Then, after EMT, mobile cells invade the ECM and migrate along a newly formed matrix of type I collagen and fibronectin (Kalluri & Weinberg, 2009). Thereby cells can move individually or be part of a collective migration in clusters. Interestingly, the clusters are often made of mixed cellular phenotypes (epithelial-mesenchymal), which allow them to avoid anchorage-dependent cell death (anoikis) and far more likely lead to metastasis (Aceto et al., 2014) since mesenchymal cells are protecting epithelial cells from anoikis but also forming a kind of an “ark”, which can travel

through the body. In order to do so, cells cross the ECM to reach vessels and by extravasation they colonize specific niche in a distant organ. The cells surviving this migration are dormant micrometastatic tumor cells with a potential to grow into a macrometastasis. The success of growth in a new location is dependent on the MET and the degree of this process (Barriere, Fici, Gallerani, Fabbri, & Rigaud, 2015). Different degrees of epithelial-to-mesenchymal transitions have been found to occur in colon, breast and ovarian carcinoma, among others.

From an epithelial tumor, cancer cells can reach vessels leading to circulating tumor cells (CTC). Many factors induce EMT and the shedding of cancer cells as described above. Transcription factors acting on gene regulatory pathways are able to promote loss of cell-cell adhesions. As a result, there is a shift in cytoskeletal anatomy and a switch on of a signaling pathway dependent on TGF β , NOTCH, BMP, WNT/ β -catenin, receptor tyrosine kinases and hedgehog. Additionally, there is a range of micro RNAs that regulates EMT by interacting with ZEB1 and ZEB2 or EMT-associated kinase switch (Cano, Diaz-Lopez, & Moreno-Bueno, 2014). Decrease in the expression of tight junction such as ZO-1 (tjp1) and occludin and cytokeratins and overexpression of mesenchymal markers are the hallmark of EMT (Barrière, Riouallon, Renaudie, Tartary, & Rigaud, 2012). Furthermore, an abnormal cancer epigenome is also strongly involved in the control of stemness and state transitions. Epigenetic deregulation guided by a complex signaling machinery evidently needs to be investigated to understand profoundly the intricacy of those processes (Czerwinska & Kaminska, 2015).

2.3 Cellular heterogeneity

2.3.1 Epigenetic landscape and cell fate

Waddington's epigenetic landscape is a conceptual metaphor frequently used to describe how different cell types arise from the same DNA. It depicts the relationship between cell fates and gene activity during processes like development, reprogramming or transdifferentiation. Recently, it also became a convenient framework for interpreting results from single-cell transcriptomics

experiments. The Waddington's landscape visualizes how, during fate transitions, cells undergo smooth, continuous progressions or discontinuous, stochastic jumps throughout transcriptional activity. Consequently, this can be described as pseudo-temporal dynamics in a quasi-energy landscape where fate decision events are often modulated by a corresponding probability (Moris, Pina, & Arias, 2016).

The degree of this association in e.g. *Caenorhabditis elegans* is extreme as the outcome of every cell division is predictable in terms of fate, identity and position of emerging cells. This high reproducibility points out the existence of an underlying protocol as a well-defined sequence of processes towards an end point of development. These programs are perfectly orchestrated functions of gene regulatory networks, which generate and maintain functional tissues by activating sequential, and largely irreversible, patterns of transcription that link genes to cellular lineages (Mathis & Nicolas, 2002). By describing the epigenetic landscape, Conrad Waddington highlighted the importance of single cells and tried to conceptualize the emergence of developmental choices as the outcome of intrinsic constraints (such as regulatory interactions), which were shaped during evolution (Nishida, 2005).

Recent technological advancements in single cell transcriptomics, together with the accompanying computational and statistical analysis tools, now offer the remarkable opportunity to unravel some of the complexity of cell fate decisions and to question some of the longstanding paradigms. The assumption is that the decisions about fate are stochastic and that many cells rolling down the Waddington landscape might choose one lineage or another independently. When the decision is made, cell become restricted in its subsequent decisions by the chosen route, which consequently represents decreased cellular potential with each further step down the diagram (Lüer & Technau, 2009).

2.3.2 Population dynamics

Cells receive diverse signals to proliferate but how population growth rates and densities are controlled is still not well understood. High complexity of auto- and paracrine signaling together with specificity of microenvironment makes it difficult to predict dynamic growth of a cell population. Furthermore, a widespread feature of signaling in cell circuits is a paradoxical pleiotropy. Often the same secreted signaling molecule can evoke an opposite effects in the responding cells. It has been reported that a single secreted molecule establishes a bistable response by promoting both proliferation and death in lymphocytes. As a consequence, the population is driven to either extinction or growth to achieve a homeostatic density (Hart et al., 2014). In biology, there are many examples of stimuli that can have dramatically different outcome when the surrounding environment is changing (Coffey, 1992). By using a mathematical model for alternative ways to maintain homeostasis, it has been proven in T-cells that a single molecule is not necessary but it ensures robustness of the homeostasis against perturbations such as sudden changes in IL-2 levels. When a cell uses a single signaling pathway and makes an “error” in secreting, consuming, or responding to it, this “error” will likely affect only the proliferation and death rates in a proportional rate, which still preserve the crucial balance required for population homeostasis. When, on the other hand, the cell would use two distinct signaling pathways that independently control two opposing activities, the proportion between both rates could be disrupted in many ways because the two stimuli are uncoordinated (Youk et al., 2014).

Epithelial and mesenchymal cells that can undergo EMT and MET processes are present during cancer metastasis, as mentioned in section 2.2. These transitions are also associated with the potential to renew subpopulation of cancer stem cells (CSCs). Additionally, recent investigations have demonstrated that an E/M hybrid phenotype of a cell was recorded after EMT process, whereas it was not found in the reverse MET process (at least not in cancer cells which originate from epithelial tissue) (Grosse-Wilde et al., 2015)

2.4 Calcium as secondary messenger

Cellular heterogeneity of cell signaling is intensively studied in the context of intracellular Ca^{2+} signaling. Calcium is a ubiquitous intracellular signal responsible for controlling many cellular processes in dependence on extracellular stimuli. This versatility of the Ca^{2+} signaling mechanism is enabled by a large dynamic spectrum including properties such as amplitude, speed and spatio-temporal patterning.

Since persistent high cytosolic Ca^{2+} concentration have toxic effects, Ca^{2+} signals are often presented as brief cytoplasmic spikes lasting for tens of milliseconds or for a few seconds in dependence on the physiological context. In some cellular events, individual spikes are sufficient to activate a cellular response such as neurotransmitter release or skeletal muscle contraction. For some pathway activations, longer periods of signaling are required and spikes are repeated to generate a sequence of different frequencies, ranging from 1 to 60 seconds like in liver or pancreas cells up to 24 hours like in mitosis initiation of the cell cycle (M J Berridge, Lipp, & Bootman, 2000).

Cells often respond to changes in stimulus intensity by modulating the interspike intervals (ISI) of Ca^{2+} oscillations. In order to control such a frequency-modulated signaling system, cells have developed a sophisticated molecular system for decoding frequency-encoded Ca^{2+} signals. Two main Ca^{2+} -sensitive proteins that are involved in decoding those patterns are protein kinase C and Ca^{2+} /calmodulin-dependent protein kinase II (CAMKII). Some of the processes known to be frequency coded are oocyte fertilization, T-cell activity, liver metabolism, smooth muscle contractility and differential gene transcription, especially during development (M J Berridge et al., 2000).

It has been reported in astrocytoma cells that Ca^{2+} spikes can initiate gene expression more effectively than a steadily sustained concentration of the same average calcium concentration (Wen-hong, Llopis, Whitney, Zlokarnik, & Tsien, 1998). Moreover, a slow frequency of spiking activates the transcription factor NF- κ B, whereas higher frequencies are required to switch on the NF-AT transcription factor (Dolmetsch, Xu, & Lewis, 1998). Calcium plays also an important role in orchestrating the circadian clock in the suprachiasmatic

nucleus and Ca^{2+} release from RYR-sensitive or InsP_3R -sensitive stores can delay or reset the cell cycle (Ding et al., 1998), (Hamada et al., 1999).

Ca^{2+} also controls cell proliferation through activation of transcription factors either in the cytoplasm (NF κ B, NF-AT) or within the nucleus (cAMP response element-binding protein). The dynamics of Ca^{2+} stimulation in gene transcription of lymphocytes is similar to the one in neurons during learning. Another Ca^{2+} function reported in human endocardial cells is its ability to activate Ca^{2+} -sensitive protein phosphatase (calcineurin) to dephosphorylate NF-AT, which induces transport to nucleus (Crabtree, 1999). When calcium activation stops, kinases in the nucleus rapidly phosphorylate NF-AT, which subsequently exits the nucleus leading to termination of the transcription of NF-AT-responsive genes. Therefore prolonged period of Ca^{2+} signaling is necessary to induce proliferation, which further maintains NF-AT in its activated form. Breaking this signaling cascade at any point decreases gene transcription and cell division.

Mutants with defective store operated channels (SOCs) are not able to sustain Ca^{2+} signaling which terminates downstream gene transcription in T-cells (Luika A. Timmerman, Neil A. Clipstone, Steffan N. Ho, 1996). Similar effects have the immunosuppressants cyclosporin A and FK506, which prevent transcription by inhibiting the activity of calcineurin. Activating Ca^{2+} is also one of the impulses, which can trigger the inhibitory $\text{I}\kappa\text{B}$ subunit proteolysis allowing the active NF- κ B subunit to access the nucleus. CREB-TF, in contrast to the mechanisms discussed above, is a nuclear Ca^{2+} -responsive transcription factor, which can be phosphorylated by CAMKII and CAMKIV. Moreover, Ca^{2+} sensitive transcriptional co-activator CREB-binding protein (CBP) can be activated by the presence of calcium in the nucleus (Chawla, Hardingham, Quinn, & Bading, 1998), (Hardingham, Chawla, Cruzalegui, & Bading, 1999). Another protein regulated by calcium is CAM inhibitory peptide, which can terminate DNA synthesis, cell-cycle progression and proliferation when translocated to the nucleus.

Overall, these examples of Ca^{2+} -sensitive transcription factors that mobilize a cascade of downstream genes emphasize the central role that Ca^{2+} plays in cell fate. Some of the induced pathways switch on DNA synthesis like in case of interleukin 2, whereas others take part in apoptosis by production of

components such as Fas and the Fas ligand. Together with controlling of NF- κ B, Ca^{2+} seems to play an important role in deciding about growth and death of the cell (Jiahong Wang, Moreira, Campos, Kaetzel, & John, 1996).

2.4.1 Calcium dynamics machinery

The versatility of calcium signaling is a result of a complex interplay between activation and inactivation of extracellular and intracellular calcium channels and receptors. This complexity is evident from the pattern of calcium signals detected by stimulating cells with modest physiological concentrations of calcium-mobilizing agonists. The resulting activity can be often perceived as sequential regenerative discharges of stored calcium, an occurrence referred to as calcium oscillations (Dupont, Combettes, Bird, & Putney, 2011).

Calcium ions participate in a variety of physiological and pathological processes. One of the most important ones is the role of Ca^{2+} in cellular signal transmission. Increase in cytoplasmic Ca^{2+} triggers a plethora of cellular responses, from extremely rapid events such as neurosecretion or muscle contraction to slower and more subtle effects like differentiation, cell division or apoptosis. Fortunately, in contrast to most cellular messengers, it is a relatively simple to observe changes in cytoplasmic Ca^{2+} in living cells in real time by fluorescent microscopy. Many laboratories examine the effects of various stimulants on Ca^{2+} signaling by employing activating agonists, which produce a rapid, robust, and often sustained elevation in cytoplasmic Ca^{2+} . It has been intriguing for scientist for many years that these signals are an outcome of a coordinated release of intracellular stores and an increased Ca^{2+} influx across the plasma membrane (Putney, Poggioli, & Weiss, 1981).

The intracellular Ca^{2+} release often results from activation of the phospholipase C-derived messenger, inositol 1,4,5-trisphosphate (InsP_3) and release of Ca^{2+} from the endoplasmic reticulum (ER) through receptor channels (IP_3 Rs or RyRs). The entry of Ca^{2+} into the cell is triggered by the activation of store-operated channels on the plasma membrane (Thevenod, Streb, Ullrich, & Schulz, 1986).

The IP_3 Rs channels open in a Ca^{2+} dependent fashion inducing Ca^{2+} induced Ca^{2+} release (CICR) (Bootman, Berridge, & Lipp, 1997). If a

single channel opens, Ca^{2+} is released into the cytosol and diffuses to adjacent channels and increases their probability to be open in a concentration dependent manner. This cascade of calcium release may spread into the entire cell and lead to a global cytosolic spike of calcium (Skupin, Kettenmann, & Falcke, 2010).

Additionally, it is becoming apparent that these large sustained elevations rarely occur with physiological levels of stimulation. Rather the more common pattern of Ca^{2+} action, in both excitable and non-excitable cells, is a periodic discharge and entry of Ca^{2+} into the cytosol. In excitable cells, like in the case of heart muscles, these may be initiated by plasma membrane channel activation, the Ca^{2+} action potential with amplification by intracellular Ca^{2+} release (Agonists, Tsien, & Beant, 1986). In non-excitable cells, these spikes of Ca^{2+} arise from regenerative discharge of stored Ca^{2+} leading to Ca^{2+} oscillation (N. M. Woods, K.S. Cuthbertson, 1986). The period of oscillations often represents the strength of the stimuli but it is not the only factor that is involved in this phenomena. It has been reported in many human cell lines that even if some cells respond to a stimuli with same oscillation frequency of average interspike interval (ISI), there may still be a significant difference in the relation to standard deviation of signal ISI in a given population of cells (Skupin et al., 2010) (Thurley et al., 2014). These differences in the relationship between average ISI and standard deviation of ISI are likely to encode for an additional level of complexity of the signaling system. The presence of this linear relation has been proven to be surprisingly robust. It stays true even if we increase the single channel current by an order of magnitude. The slope of this relation characterizes individual cell types and activation pathways, and indicates the response to stimulation changes (Skupin et al., 2010). Despite the solid characterization of this relation, its physiologic function is not yet well understood.

2.4.2 Purinergic receptors and ATP ligand

Purinergic receptors are a family of plasma membrane molecules that are found in most of mammalian tissues. Some of the main functions for which these receptors are responsible include learning and memory formation, sleep,

locomotor behavior and feeding behaviors. Adenosine triphosphate (ATP) is one of the main stimuli, which can activate P2Y and P2X subtypes of those receptors. ATP is a multifunctional molecule that acts not only intracellularly as the primary energy source for living cells but also extracellularly as a signal messenger that regulates diverse cellular events including synaptic transmission, apoptosis, nociception, ion transport, secretion, and bladder contraction (Novak, 2003), (Cooke, Wunderlich, & Christofi, 2019). ATP is an abundant molecule in the cell cytoplasm (3–5 mM) and can be released outside the cell by several mechanisms, such as exocytosis of ATP-containing vesicles transported by nucleoside transporters (Knight, Bodin, Groat, & Burnstock, 2019). Extracellular molecules of ATP act by binding to purinergic receptors on the cell-surface of the P2 class (including the 8 transmembrane P2Y receptors (P2Y₁, P2Y₂, P2Y₄, P2Y₆, P2Y₈, P2Y₁₁, P2Y₁₂, P2Y₁₃) and the ligand-gated ion-conducting P2X receptors, which include 7 described subunits (P2X₁–P2X₇) (North, 2019). Both P2Y and P2X purine receptors can mediate mitogenic responses.

3 Aims

The aim of this thesis was to understand how individual cells reacts to external signals and how they process that information. A significant part of our knowledge is based on independently acquired measurements on a population level. However, we need to keep in mind that cell-to-cell differences are always present in populations, and that the average cell state may only barely reflect the particular behavior of any individual cell. The goal of my research was to investigate this heterogeneity of cell signaling in depth and to extract generic features, which would support the development of a mechanistic understanding of this large variability in information encoding. For this purpose, we investigated a medically relevant model, the epithelial to mesenchymal transition in the breast cancer cell line HMLER, at single cell resolution. In particular, the thesis focuses on the following 4 main aims:

1. Establishing a methodology to synchronize cell cultures using well-defined stimuli and developing a pipeline for in-depth single cell characterization by capturing individual cells and performing RNAseq analysis (Section 4.4.1).
2. Establishing a robust model system for trans-differentiation characterization by investigating the stability of the epithelial and mesenchymal subpopulations of HMLER cells in normal and ATP stimulated conditions (Sections 5.1.).
3. Evaluating the effects of ATP-induced Ca^{2+} signaling on the epithelial-to-mesenchymal transition and stress related pathways. In this investigation we are analyzing the identified 10 clusters of defined HMLER subpopulations in does response experiments (Section 5.2).
4. Exploring the physiological effect of Ca^{2+} variability encoding and causality of its dynamics. My goal was to describe the relationship between external ATP stimulation, different Ca^{2+} signaling profiles and resulting gene expression states. This analysis evaluates the true potential of stimuli on

cell fate and transdifferentiation (Section 5.3.1).

By addressing these aims, we will better understand the dynamics of the epithelial niche and the underlying gene regulatory networks that maintain cell identity and, as a result, we advanced our understanding of breast cancer metastasis. These new insights into the microenvironment and paracrine regulation of cancer stem cell behavior indicate the existence of characteristic cell signaling features involved in epithelial to mesenchymal transition, however this information may also lead to future clinical applications.

4 Materials and Methods:

The first part of the methods (Section 4.4) focuses on the experimental model system and on characterization of laboratory assays and their chemistry. Section 4.5 describes the data processing pipeline and setup used during computational analysis.

4.1 Cell Culture and passaging

The human breast cancer epithelial cell line HMLER was grown in MEGM (1:1) with 25 mM HEPES (RPMI medium 1640, Gibco) supplemented with 2 mM L-glutamine, penicillin (100 U/mL, Gibco) and streptomycin (100 µg/mL, Gibco). MEGM is a mammary epithelial cell growth, serum-free medium supplemented with insulin, hydrocortisone, GA-1000, hEGF, BPE (CC-3150, Lonza). All adherent cells were grown in a humidified incubator at 37°C under 5% CO₂ condition and passaged every 3-4 days in subcultivation ratio depending on the confluence level. Cell monolayers were dissociated by TrypLE Express Enzyme (Cat. 12604013, Gibco) for 7-12 minutes at 37°C in humidified incubator. After culture media removal by centrifugation and one washing step with Dulbecco's phosphate-buffered saline 1X (Cat. 14190250, Gibco). Diluting with complete culture medium neutralized TrypLE, cells were re-suspended and seeded at the appropriate confluence depending on the experiment; all steps were conducted under sterile conditions.

4.1.1 Cell freezing and reculturing

Cells from one T75 Flasks (Nunc EasYFlask, Thermo Scientific) were grown to ~80% confluence as described above and transferred into a 15 ml falcon tube. Centrifugation at 250 g for 5 min followed to pellet the cells. The supernatant was aspirated and cells were resuspended into 1 ml of pre-cooled freezing solution (MEGM medium with 10% DMSO). Afterwards cells were transferred into a cryotube and placed directly in a freezing box (Coolcell, Biocision). After 24-48h in -80 °C, tubes were transferred in the liquid nitrogen cell storage (-170°C). For recovery of frozen cells, the frozen cells were directly

thawed and transferred to T75 Flasks with 10 ml fresh complete MEGM medium. Cells were allowed to attach for one day and then their medium was exchanged. Cell count with life/dead identification was performed using the cell counter Vi-Cell (Beckman Coulter) or C-Chip counting chambers (Incyto).

4.1.2 Oscillatory and stochastic effect of ATP simulation on cell fate

The goal of this experiment was to investigate the complexity of the relationship between the calcium signaling pathway and cell fate. In order to investigate this relationship, we used the HMLER cell line, which is a breast cancer model and carry on different stochastic and oscillatory patterns of stimulation. Cells were prepared as described in section 4.1, the ratio of epithelial to mesenchymal cells have been estimated with FACS as described in section 4.3.2. Two days before the experiment, 0.5×10^6 cells per well have been seeded on 12-well plate. During the experiment cells have been treated with ATP using the perfusion system (Section 4.2.2). As visualized in **Table 1**, we perturbed the signaling system with 5 different patterns. After 1h of stimulation cell, medium has been exchange to 1:1 MEGM (Section 4.1) and incubated for 1h at 37°C. Finally, cell were harvested (Section 4.1), their cell count and viability measured (Section 4.1.1), and processed with the Drop-seq pipeline (Section 4.4.1.3). Digital data from sequencing were further processed as described in section 4.5.

	Exp 1	Exp 2
Control	✓	✓
Constant		✓
Oscillation	1 min	2 min, 6 min
Stochastic		6 min

Table 1. Stimulation of cells, by applying different ATP patterns. Study have been performed during 2 independent experiments (Exp1, Exp2.). Constant stimulation was done with 100 μ M ATP.

4.1.3 HMLER subpopulation balance analyses

Experiment have been performed to investigate the stability of a ratio between epithelial and mesenchymal subpopulation. In which for the duration of 15 days different HMLER subpopulation have been seeded in T25 flasks and measured every 2-3 days, as described in section 4.1. Cell culture was maintained at low concentration $\sim 5 \times 10^4 - 1 \times 10^5$ per flask. During each passage 10-15% of cells were labeled (Section 4.3.2.1) and analyzed using FACS (Section 4.3.2).

4.2 Perfusion system

In order to apply and control temporal effects of a range of well-defined stimuli on cell cultures, I have established an in-house perfusion system. The system uses a programmable perfusion system (PPS, Scientifica), which consist of ten pinch valves and a high-performance peristaltic pump. Nylon flexible tubing connects the device to different cellular media from one side and to the culture plate with cells from the other side. Inside the corresponding well plate, a syringe delivers medium from one side of the well, while its aspiration happens on the other side to maintain the liquid level at $\sim 5 \mu\text{m}$. Cells with perfusion medium were located in an incubating chamber on the stage of an Eclipse Ti-E inverted microscopes (Nikon Instruments) equipped for live cell imaging. Temperature conditions within the chamber were maintain at 37°C and pressurized with a mixture of 95% air and 5% CO_2 . Temperature of tubes entering the chamber from the peristaltic pump have been maintained at 37°C by longer tubs submerged in water batch within the chamber.

4.2.1 Perfusion software

I have developed a computer-controlled solenoid valve to switch rapidly between medium containing stimulating factors and regular medium flowing over the cells in the chamber. The computational interface allows for modification of the medium flow rates. With this setup, I was able to define the timing of a spike, ISIs and its duration together with the total number of cycles per run. If needed, I was also able to generate and induce a well-characterized

stochastic spiking dynamics. Software and user interface have been developed using Matlab 2016 (MathWorks).

4.2.2 Experimental setups

Cells (0.5×10^6) have been re-plated in each well of adherent Nunclon Delta surface treatment 12-well plate (Cat. 140675, Thermo Fisher) 24h prior to the experiment. Medium was left inside the incubating chamber one hour prior to the experiment in order to equilibrate its temperature. After the software settings have been set, cells were placed on the stage of the Eclipse Ti-E inverted microscope, the suction was started and the top coverlid connected with tubing was placed, before starting the device. For most of the runs, a flow rate of 2 ml/min has been used to allow the exchange of the total stagnating medium volume in the well plate within ~ 4 sec (4 cm^2 of well surface). While testing the flow with colorized solutions, I observed that keeping the liquid level at $\sim 5 \mu\text{m}$ height allowed us to minimize turbulences of the medium within the well. HBS (Hepes buffered saline) medium was prepared with 137mM NaCl, 4.9 KCl, 1.5 CaCl, 1.2 MgSO₄, 1.2 Na₂HPO₄, 15 mM D-glucose, 20 mM HEPES with pH of 7.4. Excitation medium additionally contained 20-100 μM ATP or 1-100 μM histamine.

4.3 Single cell imaging

4.3.1 Life cell microscopy

In order to evaluate cell shape and motility of the epithelial and mesenchymal subpopulations in the HMLER cell line, the Eclipse Ti-E inverted microscope (Nikon Instruments) was used. Besides the phonotypical morphology differences, dynamic measurements of the cytosolic calcium concentration have been implemented. To investigate the calcium dynamics, one hour prior to imaging (Subsection 4.1), cells have been incubated with a fluorescence dye, such as Fluo-4 -AM (Ex/Em of Ca²⁺-bound form: 494/506 nm; Cat. F10471) or Fura-2 (Cat. F1221). Fura-2 as a ratiometric dye is excited at 340 nm and 380 nm, and the ratio of the emissions at those wavelengths is directly related to the amount of intracellular calcium. Image acquisition and

automatic microscope stage control were done using the OptoMorph version of MetaMorph software.

4.3.2 FACS analysis

Investigation of cell surface protein levels and cell sorting according to their presence have been done using a LSRFortessa and a FACSAria III (BD), respectively. The devices have been calibrated each time before the use by performing standardised protocol for “Cytometer Setup And Tracking” (CS&T) using research beads (BD) and drop delay using Accudrop beads (BD). Prior to the experiment, cells were usually labeled with fluorescent antibody (Section 4.3.2.1), washed with PBS and re-suspended in PBS with 1-2% FBS. Before being loaded into the flow cytometer, cells were filtered using a 40 µm Nylon strainer (Corning) and kept at 4°C. Data analyses after each experiment has been performed using FlowJo software version 10.5.3 (FlowJo LLC).

4.3.2.1 Antibody preparation and cell labeling

Antibodies “Anti-CD24” and “Anti-CD44” (BD Pharmingen) have been used in order to investigate surface proteins associated with epithelial and mesenchymal subpopulations of the HMLER cell line. Those molecules have been fluorescently labeled with 405(Ex 400, Em 420) and 488(Ex 493, Em 518) DyLight fluorescent dyes (Dyomics). Linking reaction have been performed by combining 100 µl of AB (0.5 g/L), 8 µl of Borate Buffer (0.67 M) and 70 µl of DyLight NHS Esters in DMF (10 mg/mL). After pipetting, the reaction was incubated in dark at room temperature for 60 min. Labeled AB were purified using Pro-Spin column (Thermo Scientific) and could be safely stored in 4°C in a dark container. For most experiments, a CD24:DL488-Green, CD44:DL405-Blue antibody combination was used.

After trypsinization and washing steps (Section 4.1), cells were incubated with antibody (pre-diluted 1:50 in PBS per ~10⁵ cells). Hybridization took place at 4°C for around 30 min. Cells were subsequently washed, re-suspended in PBS/medium and kept on ice until measurement.

4.4 Single cell transcriptomics experiments

To investigate cell states and cellular responses to stimuli, several single cell methods have been implemented. All approaches focus to measure and quantify information encoded in cellular mRNA by different manners.

4.4.1 Drop-seq

By using single-cell transcriptomics detection method like Drop-seq I was able to characterize cell identity and function. Drop-seq based strategies allow for rapid mRNA profiling of thousands individual cells while simultaneously remembering which cell the sequences have originated from. The microfluidics based method was first published by McCarroll lab at the Harvard Medical School (Macosko et al., 2015) and subsequently established at the LCSB. In brief, Drop-Seq allows to isolate individual cells into oil droplets together with beads having a unique barcode and polyA-tails to capture mRNAs. Hence, cells are loaded into droplets by a microfluidics device, are lysed and mRNAs are captured by the beads. Subsequent paired-end sequencing identifies mRNAs and corresponding barcodes.

4.4.1.1 Chip fabrication

The core of the Drop-Seq methods is the microfluidics chip allowing for the separation of individual cells into droplets together with barcoded beads. For the generation of the microfluidics chip, I first had to produce a master mold which can subsequently be used for the generation of the actual PDMS based chip used in the experiments.

4.4.1.1.1 SU-8 processing on silicon wafer

To create the Drop-Seq master mold, I was using 100 mm diameter, SSP polished, 500-650 μm thick, mechanical grade crystalline silicon slices based on SU-8 2050 substrate. It is a high contrast, epoxy based photoresist, and was used to get a thick chemically and thermally stable layer of $\sim 88 \mu\text{m}$. Before processing, wafers have been cleaned using plasma cleaning (Harrick Plasma) for 5 min followed by Piranha solution for 5 min and subsequently

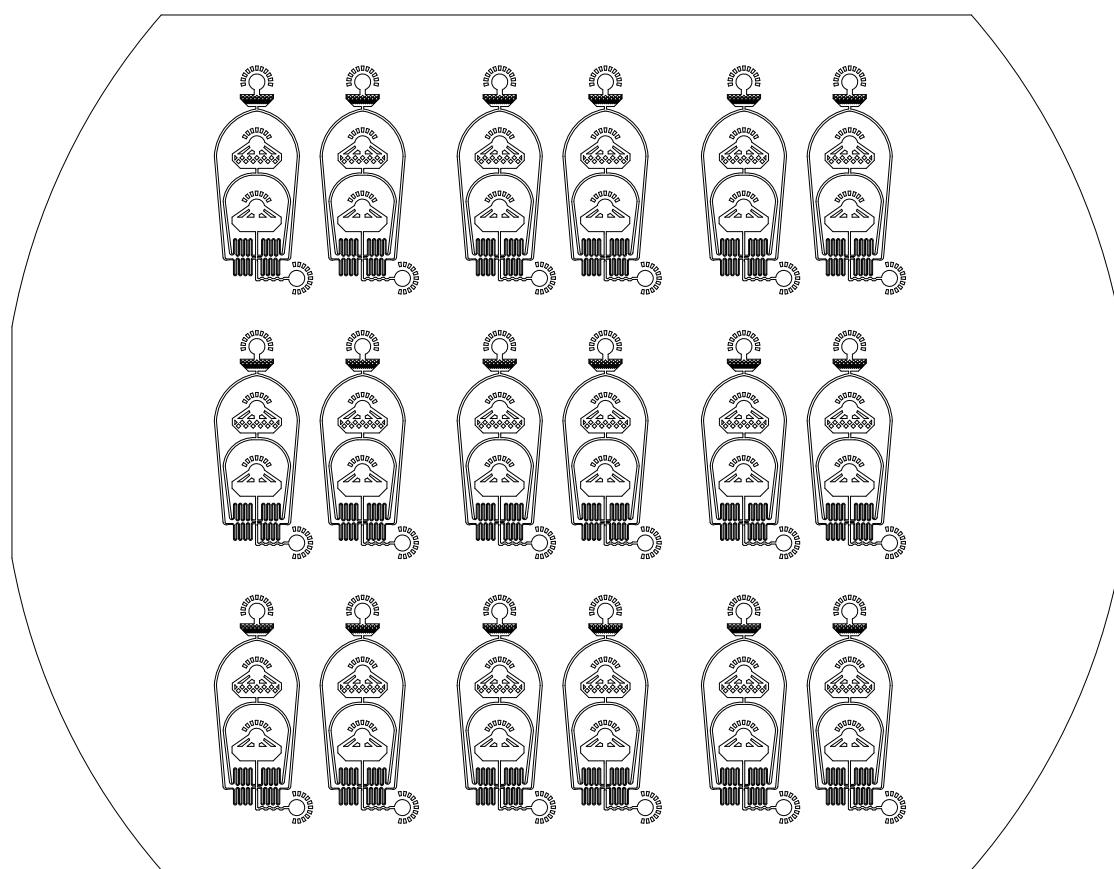
gently dried with compressed air. Optionally, cycles of 5 min IP and 2 min water cleaning were performed in Spin Coater (WS-650MZ-23NPPB, Laurell). The prepared wafers were baked for 20 min on a 200°C hot plate and placed inside the spin coater. From this step on, all SU-8 processing was done in 550 nm wavelength light. After ensuring that the wafer is in the center, vacuum was turned on. Using a 10 ml pipet with wide-end tips, 5 ml of thick SU-8 resin was slowly pipet into the center of the wafer. In order to get the desired thickness of the layer, the spin coater was set first to run for 10 sec at 500 rpm followed by 40 sec on 1450 rpm. Next, the wafer was removed from the spinner using dedicated SU-8 tweezers, and allocated on hotplates covered with aluminum with a temperature increase from 65°C to 75°C for 12 min of “pre-bake”. When the temperature droped to RT and no bubbles built on the surface, I could proceed to the photolithography step (Section 4.4.1.1.2).

4.4.1.1.2 Photolithography

To manage more efficiently the surface of the silicon wafer, the original design of the microfluidics chip was modified using the AutoCAD software what allowed us to acquire 18 chips from one PDMS mold. The photomask was then ordered with the following specifications: 5"x5"x0.090" (dimensions in inches) ARC SL with a CD of 40 μm +/- 0.50 μm from Micro Lithography Services Limited (**Figure 3**). Photomask was then used to generate features on the surfaces of “pre-baked” wafers (Section 4.4.1.1.1). This was enabled by an UV-LED mask aligner (UV-KUB 2). In this device, the mask was placed on top of the wafer with 525/2 mm gap setting, and UV was then set for 15 sec of continuous illumination. In this process, strong acids are formed in the exposed areas, which initializes the activation of these regions. For stress relaxation and cross-link the epoxy areas a “post-bake” time of 8 min in 65°C to 75°C turned out to be optimal. During the first 60 sec, the image of the mask in the SU-8 photoresist coating should be visible. The next step focuses on removal of not activated SU-8 resin. For this purpose, I deep the wafer in SU-8 developer using metal tweezers and gently rotate the glass container. Best results have been observed with 3 cycles of 4-1-1 min washing. After each washing step, gentle drying of the developer from the wafer features was performed with compressed air. In order to stop and wash off the remaining

residue of the developer, an additional 20 sec wash with IP and dry pressurized air was performed. To ensure that SU-8 properties do not change when exposed to thermal processing, a final “hard bake” in 150°C was done for 10 min. Final strengthening of the master mold features was ensured by coating its surface with a single layer of organofunctional alkoxy silane molecules. The silanization process was performed by putting ~2 drops of chlorotrimethylsilane on aluminium foil and enclosing it with the wafer in vacuume chamber for 30 min. This procedure was followed by 10 min incubation on a 150°C hotplate to cure and evaporate excessive silane.

4.1.1.1.3 PDMS molding process

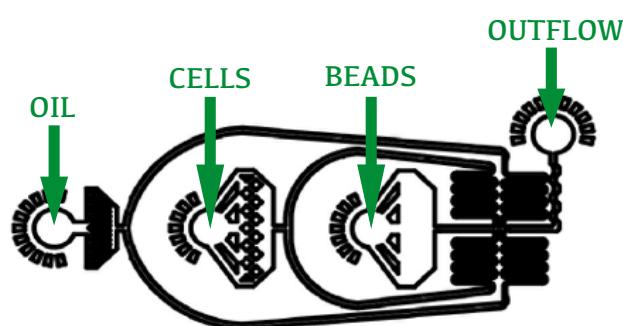

Once the quality of master mold and its features was validated under the microscope, I could proceed to fabricate PDMS molds. The desired thickness was achieved by mixing curing agent/PDMS in a 1:10 ratio. A total volume of 30 ml was enough to get the desired mold thickness of 7 mm. The solution was then mixed for 2 min and defoamed for 10 min in vacuum. Next, the liquid was poured into a 150x15 mm aluminum covered petri dish and place in vacuum for another 30 min. Vacuum pushed remaining bubbles to the surface of the plate where they could be gently popped with compressed air. Curing of PDMS was carried out in a laboratory oven for a duration of 2 h at 60°C and followed by cooling down in RT. After PDMS hardening, 3 strips (each of them containing 6 chips) were cut out of the block and covered with adhesive tape from the side.

4.1.1.1.4 PDMS bonding and hydrophobic coating

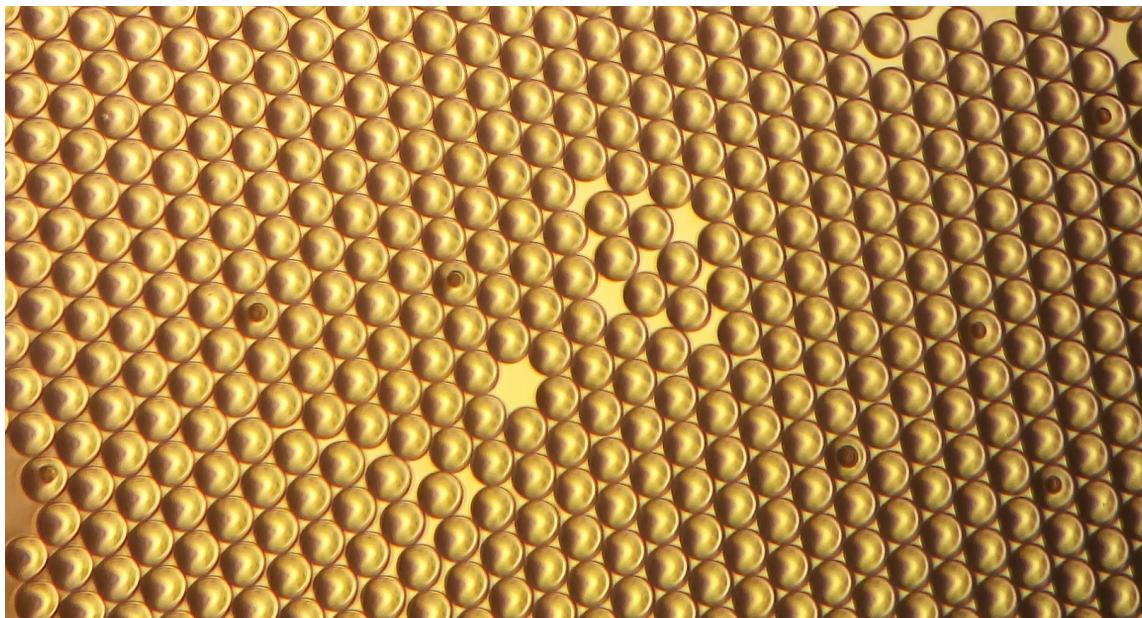
After acquiring a PDMS mold (4.4.1.1.3), holes were punched in each inlet and outlet marked on the chip by using 1.2 mm PDMS Microfluidic Chip Biopsy Puncher Kit.

The PDMS layer was then cleaned together with a plain microscope slide (Corning) using IP and gently wiped with foam-cotton swabs. Next they were rinsed with Milli-Q water and dried with compressed air. Both components were then placed inside a plasma etcher (Harrick Plasma) with their bonding surfaces facing up. The vacuum pump was turned on, and when the pressure inside the chamber reached 0.17-0.35 Torr, I also switched the radiofrequency

power on “HI” (29.9 W). After 15 sec of plasma treatment RF and pump were switched off, followed by venting to the chamber with vent toggle switch. When the pressure inside and outside of chamber was equilibrated, both surfaces were taken out and gently aligned with their activated sides. To enhance the bond, newly formed chips were placed in a 65°C oven for 20 min. The strength of the bond was tested by trying to separate both components. Good quality chips were then injected with 1.8 % of FDTs in FC-40 oil (Fluorinert) solution for 3 h to ensure hydrophobic coating of the microfluidics channels inside the chip. The oil inside the chip was then blown out with compressed air and baked in a 65°C oven for 20 min.


Figure 3. AutoCAD design of the modified Drop-Seq microfluidics chip used as a photomask.

4.4.1.2 Drop-seq experimental setup


Drop-Seq is one of the most popular setups of the emerging scRNA-seq methodologies. The strategy of generating droplets in microfluidic devices

gives unprecedented access to the transcriptomes of thousands of single cells and enables researchers to understand complex interactions and track identities of individual cells. As mentioned above, the core of this method involves encapsulating single cells with single barcoded beads in nanoliter-sized droplets. Good bead quality is one of the most important factors in each experiment since it ensures high amounts of captured mRNA. Beads were generated by split-pool oligo synthesis approach (Chemgenes), which resulted in large numbers of unique barcodes. The beads arrived as dry resin and were washed with 30 ml EtOH, and twice with 30 ml TE-TW buffer. Next, they were re-suspended in 20 ml TE-TW and passed through a 100 μ m strainer. Finally they were counted with a Neubauer counting chamber (C-chip) and stored at 4°C for up to 6 months.

The droplet generation set-up consists of 2 syringe pumps (Legato) next to an inverted microscope. Syringe of 20 ml located on the first pump supply droplet generating oil to the device at a flow rate of 15 ml/h. Syringes of 3 ml with cells and beads are located on the second pump and run at a flow rate of 4 ml/h. Nylon flexible tubing of 0.5 ID connecting all syringes to the inlets of the microfluidics device (**Figure 4**). Outlets from the setup had a tube leading to a 50 ml falcon collecting encapsulated beads. Beads suspended in lysis buffer were kept at a concentration of 120-160 beads/ μ l, while cells suspended in PBS-BSA were at 100-144 cells/ μ l. During experiments, a magnetic stirrer was placed right next to syringe containing beads in order to keep the beads in suspension. Concentrations of 120 beads/ μ l have been used for most of the experiments, which generated around 5% beads doublets.

Figure 4. Single drop-seq chip-tubs connections order, or droplets quality control

Picture 1. Uniform size droplets (around 125 μm) generated through drop-seq chip. Each droplet contains almost exactly 1 nl of buffer mixture.

4.4.1.3 Drop-seq run

Trypsinised and PBS-BSA re-suspended cells (4.1) were prepared and loaded into the syringe just before the run. Connecting tubes were inserted into the device in the following order: cells, beads, oil. A run was started with the oil pump and then beads and cells pumps followed. The stream usually stabilizes after 30 sec, and if the droplet size and uniformity (**Picture 1**) was in the correct range, the outflow was collected for approximately 1h for a typical experiment. During that time, it was crucial to monitor the stream behavior. Once I stop the run, the transparent bottom oil layer was discarded. The remaining “milky” phase contained droplets with beads and lysed cells. To release the beads containing the cellular RNA from droplets, I added 30 ml of RT 6X SSC buffer and 1ml of perfluorooctanol. Droplets were then broken by 3-4 forceful vertical shakes, and centrifugation for 1 min at 1000g. The top volume of ~29 ml was carefully discarded (without kicking out the beads) and another wash with 30 ml of 6X SSC was performed. Next, I removed the supernatant until 1 ml above the oil layer, and subsequently I used a 1 ml pipet to gently re-suspend the beads and transfer this volume to a fresh low-binding 1.5 ml tube. I centrifuged the sample and performed two 6X SSC washes, followed by one wash with Maxima H Minus Reverse Transcriptase buffer.

4.4.1.4 Single cell library preparation

Tubes with beads (Section 4.4.1.3) were centrifuged and as much supernatant as possible was discarded. The pellet with a maximum of 90,000 beads was re-suspended in 200 μ l of Reverse Transcriptase mix. The reaction was incubated for 30 min with rotation at RT, followed by 90 min incubation in a 42°C oven. Reaction was stopped by TE-SDS wash, followed by two washing steps in TE-TW. When proceeding to Exoluclease1 treatment, I washed the beads one more time in 1 ml of 10 mM Tris pH 8.0. The pellet was re-suspended in 200 μ l exonuclease mix and incubated in a 37°C oven for 45 min with rotation. Reaction was stopped using one TE-SDS wash, followed by two TE-TW washes. For PCR reaction, two additional washes with 1 ml ddH₂O were performed. Next beads were counted using C-Chip counting chambers, and for each 50 μ l PCR reaction volume I used a maximum of 10,000 beads. Using standard cells and beads concentrations during experiments allowed us to generate ~500 STAMPs (Single-cell Transcriptomes Attached to MicroParticles) in each PCR reaction. After adding 50 μ l of PCR mix to the beads, the volume was well mixed and placed into a thermocycler with the following settings (**Table 2**).

Temperature (°C)	Time (min)	Cycles
95	3	<u>x1</u>
98	20 sec	<u>x4</u>
65	45 sec	
72	3	
98	20 sec	
67	45 sec	<u>X9</u>
72	3	
72	5	<u>x1</u>
4	∞	

Table 2. PCR setting for STAMP cDNA amplification.

Products of the PCR reactions (50 μ l) were purified using AMPure XP beads with 30 μ l resin and a 0.6 beads to sample ratio. Purification was performed according to the manufacturers instructions. The final product was eluted in 10 μ l ddH₂O. The quality and quantity of the PCR product was evaluated by using BioAnalyzer High Sensitivity Chips according to the

manufacturer's instructions. As a sample input 1 μ l was used and an acceptable readout was a smooth distribution peak of 1300-2000 bp. When 13 cycles were set during the PCR reaction, I was able to get on average 2000-5000 pg/ μ l for each of the 5000 beads.

When the satisfactory quality of the library was confirmed, I could perform fragmentation reactions preparing the samples for sequencing. For each sample, 600 pg of purified cDNA was combined with ddH₂O in a total volume of 5 μ l. Next, I added to each tube 10 μ l of Nextra TD buffer (Illumina) and 5 μ l of Amplicon Tagment enzyme. The sample was then centrifuged and incubated for 5 min in a 55°C heat block. Further, I added 5 μ l of Neutralization Buffer and centrifuged the sample again. Finally I added the Nextera PCR master mix and run the sample on a thermocycler with the following program (**Table 3**).

Temperature (°C)	Time (min)	Cycles
95	30 sec	x1
95	10 sec	
55	30 sec	
72	30 sec	
72	5	x1
4	∞	

Table 3. PCR program for amplification of the tagmented library.

The products of the PCR reactions were purified twice using AMPure XP beads with a beads to sample ratio of 0.6. Purification was performed according to manufacturer's instructions. The final product was eluted in 10 μ l ddH₂O. The quality and quantity of the PCR product was evaluated by using the BioAnalyzer High Sensitivity Chip according to the manufactures instructions. As a sample input 1 μ l was used, acceptable readout was a smooth distribution peak of 400-700 bp. Additionally, the Qubit Fluorometric Quantification kit was used for more accurate DNA quantity measurement. Knowing the correct weight and length distribution, I was able to better estimate volumes needed for correct clustering on Illumina SOLiD sequencing chips. Samples were then diluted and denatured with NaOH to a final concentration of ~0.05 N. Samples were finally sequenced using a 500/550 High Output Kit v2 (75 cycles) on a NextSeq 500 sequencer. For most libraries

sequencing following settings were used: Read1- 20 bp, read2- 50 bp, Read1Index- 8 bp and a Custom Read 1 primer (Illumina) (Section 4.1.1.5).

4.4.1.5 Buffers and reagents

- Reverse Transcriptase Mix (for 200 µl)
 - o 75 µl H₂O
 - o 40 µl Maxima 5x RT Buffer
 - o 40 µl 20 % Ficoll PM-400
 - o 20 µl 10 mM dNTPs (Clontech)
 - o 5 µl RNase Inhibitor (Lucigen)
 - o 10 µl 50 µM Template Switch Oligo
 - o 10 µl Maxima H- RTase
- Exonuclease mix (for 200 µl)
 - o 10 µl 10x Exo I buffer
 - o 170 µl ddH₂O
 - o 10 µl Exo I
- PCR mix (per 50 µl)
 - o 24.6 µl ddH₂O
 - o 0.4 µl 100 µM SMART PCR primer
 - o 25 µl 2x Kapa HiFi Hotstart Readymix
- PBS-BSA
 - o 1X PBS
 - o 0.01% UltraPure BSA)
- Lyses Buffer (1 ml)
 - o 500 µl ddH₂O
 - o 300 µl 20% Ficoll PM-400 (GE)
 - o 10 µl 20% Sarkosyl (Sigma)
 - o 40 µl 0.5 M EDTA (Life Technologies)
 - o 100 µl 2 M Tris pH 7.5 (Sigma)
 - o 50 µl 1M DTT

- Nextera PCR master mix
 - o 15 µl of Nextera PCR mix
 - o 8 µl ddH₂O
 - o 1 µl of 10 µM New-P5-SMART PCR hybrid oligo
 - o 1 µl of 10 µM NexteraN7xx oligo (added accordingly to sample)
- Droplet generation oil (Bio-Rad)
- Perfluorooctanol (Sigma)
- 6X SSC (prepare 20X SSC)
 - o 3 M sodium chloride
 - o 300 mM trisodium citrate)
- TE-SDS
 - o 10 mM Tris pH 8.0 + 1 mM EDTA
 - o 0.5% SDS
- TE-TW solution
 - o 10 mM Tris pH 8.0 + 1 mM EDTA
 - o 0.001% Tween-20
- 10 m Tris pH 8.0

Primer name	Sequence
Barcoded Bead SeqB	5'-Bead-Linker-TTTTTTTAAGCAGTGGTATCAACGCAG AGTACJJJJJJJJJJNNNNNNNNNTTTTTTTTTTTTTTT TTTTTTTTT-3'
TSO	AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG
SMART PCR primer	AAGCAGTGGTATCAACGCAGAGT
New-P5-SMART PCR hybrid oligo	AATGATAACGGCGACCACCGAGATCTACACGCCTGTCCGCG GAAGCAGTGGTATCAACGCAGAGT*A*C
Custom Read 1 primer	GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC
NFATc1	5'-GCCGCAGCACCCCTACCAGT-3' 3'-GAGACGGACATCGGGAGGAAGAA-5'
NFATc2	5'-GAAACTCGGCTCCAGAATCC-3' 5'-AAAAACAAACATGAGGGCAACCA-3'
NFATc3	3'-ACCAGCCGGAGACTTCAATAGA-5' 5'-CCAGTATTGATTGTGCAGGTATTT-3'
NFATc4	3'-TCAGAAGACACGGCGGACTTCC-5' 5'-CCACTGACCCTACAGATGTTCA-3'
NFAT5	3'-GCTTTCTCAGCTTACCAACGG-5' 5'-CAACGACTCTGGACGAGTGA-3'
CD49F (ITGA6)	5'-ACCAACACAGGTTCTCAAGG-3' 3'-CCTGATGTTGCTGTTGGT-5'
CDH1	5'-TGCCCAGAAAATGAAAA-3' 3'-GAACGCATTGCCACATACAC-5'
PCOLCE	5'-CTCCTCCGAAGGGAATGAAC-3' 3'-CTGAGCCTAAAGTCAAGCTG-5'
ERK2	5'-GCGCGGGCCGGAGATGG TC-3' 3'-AAAAATCTTACTGCGCTTCA-5'
ACTB	5'-GGATGCAGAAGGAGATCACTG-3' 3'-CAAGTACTCCGTGTGGATCG-5'

Table 4. List of primers designed and ordered for single cell experiments; where N=random oligo, J=split-pool oligo.

4.4.2 Chromium (10x Genomics)

Some experiments have been performed using “Chromium Controller” technology, which is a single cell device commercialized by 10x Genomics. This technology is similar to Drop-seq, but based on the In-Drop method (Klein et al., 2015), where hydrogel microspheres are shielding revers transition reaction from the environment within generated droplets with GEMs (Gel Bead-In EMulsions).

4.4.2.1 Dose-response effect of ATP on HMLER cell fate

One of the experiments performed with this method has been used to investigate ATP dose response on fate transition of the HMLER cell population. Cells were prepared as described in section 4.1, the ratio of epithelial to mesenchymal cells has been estimated again by FACS as described in section 4.3.2. Two days before the experiment, 0.5×10^6 cell per well have been seeded on 12-well plate. For the experiment 1 ml medium has been exchanged with medium containing 20 μ M, 50 μ M, 100 μ M of ATP and a control with no ATP. After one hour of incubation at 37°C the medium was exchanged to one without ATP for another hour. After that time, cells were trypsinized and cell count and viability was measured. When ensuring that the viability is above 90% and cell concentration was adjusted to 700 cells/ μ l, cells were loaded using the “chromium single cell reagent kit” and libraries were generated according to the manufacturer’s protocol. Libraries were subsequently sequenced with NextSeq 500/550 High Output Kit v2 (150 cycles) and the digital data results were then further processed as described in section 4.5.

4.4.3 Targeted qPCR using Juno/C1 Fluidigm

In order to investigate presence of alternative splicing variants in the HMLER cell line subpopulations, custom primers for a set of genes were designed (including NFATc1, NFATc2, NFATc3, NFATc4). Cells were prepared as described in section 4.1. Targeted single cell libraries have been created using Juno device according to the manufacturer’s protocol. Libraries were then transferred on another chip and processed on the C1 device with custom primers (**Table 4**). After the run, the device generated a digital matrix of qPCR Ct values for each gene in each cell. Analyses have been performed by the “Fluidimg Real-Time PCR Analyses” and R packages.

4.5 Processing of sequenced data

Single cell libraries were sequenced using NextSeq 500 (Illumina), and BCL files were transferred on our local HPC clusters (Gaia, Iris). Using Illumine

“BclToFastq” script I combined per-cycle BCL files and separated multiplexed samples. Drop-seq and 10x libraries produced paired-end reads. Read 1 contains in both cases the cell barcode and the molecular barcode as unique molecular identifier (UMI), while Read 2 is aligned to the reference genome (hg38). The goal of the following processing steps is to convert sequencing reads to a digital gene expression matrix (DGE) containing mRNA counts for each barcode. Next, I used the Picard script “FastqToSam” in order to acquire queryname-sorted BAM files. Further, I align reads into BAM files, which are suitable to produce the DGE results. The creation of the final BAM file included a set of operations such as: tagging barcodes, trimming primers, removal of PolyA fragments, correcting synthesis errors, add gene/exon annotation and mapping sequences onto the desired library. For some experiments 1 or 2 mismatches during aligning were allowed. For processing of 10X FASQ files into DGE, a standardized automated script was used, which was provided by the Chromium device vendor.

4.6 Single cell transcription analyses

4.6.1 Data normalization

In order to perform meaningful analyses, datasets had to be normalized. The first step was to estimate “true” number of captured cells. A rough estimation of captured cells was known from the number of STAMPS of GEMs used for processing (Section 4.4.1.4). For further confirmation of “true” captured barcodes representing cells, I estimated inflection points from cumulative distribution plot of the DGE. Normalization of single-cell RNA sequencing data was necessary to eliminate cell-specific biases prior to downstream analyses. For most of the data, I applied the global-scaling normalization methods. This method calculates cell-specific “scaling factor” which is a transcript count of a single cell divided by mean of total transcripts count divided by all cells. Next I divided all gene counts in a single cell by this factor leading to

$$\tilde{X}_{ij} = \frac{X_{ij}}{\hat{S}_j}$$

where X_{ij} represents the read count of gene i in cell j. \hat{S}_j is the estimated scaling factor, while \tilde{X}_{ij} is a normalized expression (Vallejos, Risso, Scialdone, Dudoit, & Marioni, 2017).

A general challenge during data processing was the so-called “zero inflation” in DGE. For this reason we typically discarded genes with less than 15 transcripts in the dataset.

4.6.2 Correlation analyses

Correlation is a bivariate analysis that estimates the strength of association between two elements and the direction of this relationship. In terms of the strength of relationship, the value of the correlation coefficient varies from +1 to -1. In order to investigate gene-gene and cell-gene relationships within a cell line subpopulations, correlation analyses of scRNA dataset was implemented. All performed analyses were done using Python and R packages, which include Pearson or Spearman correlation methods.

4.6.3 Differential Gene Expression analyses

A common method to estimate a difference between populations of cells from scRNA-seq data, is differential gene expression. For DEG selection, one of the most conservative method was used: One-way ANOVA, t-test, Kruskal–Wallis or mutual information. Genes from Monocle “differentialGeneTest” above 0.05 or 0.001 Q-val (for better control of “false discovery rate” script applies multiple test correction by Benjamini-Hochberg method) probabilities were selected for further steps. For in depth analyses of specific genes (**Figures 13, 14, 18, 19**) Q-values were not higher than 10^{-17} .

These lists of genes were next used to define cluster identities in PCA and t-SNE plots (Section 4.6.4), as well as fed into the online “Go enrichment analyses” (PANTHER website) tool. Enrichment analyses provided us with common functions of the resulted gene sets. The categories used for the evaluation were: molecular functions, biological processes and cellular

components. The lists of up-regulated and down-regulated DEG were analyzed separately. Computing the genes and plotting results were done using Monocle package (Trapnell & Cacchiarelli, 2017) and customized Python scripts.

4.6.4 Dimensionality reduction with PCA and t-SNE

Single-cell RNA-sequencing visualization has a great potential to identify cell states, discover cell types, trace trans-differentiation or reconstruct spatial organization of cells. However, interpretation of the structure in single-cell sequencing data still remains a challenge. For that reason, I perform correction for some technical biases, such as mitochondrial genes omission in some dimensionality reduction calculations.

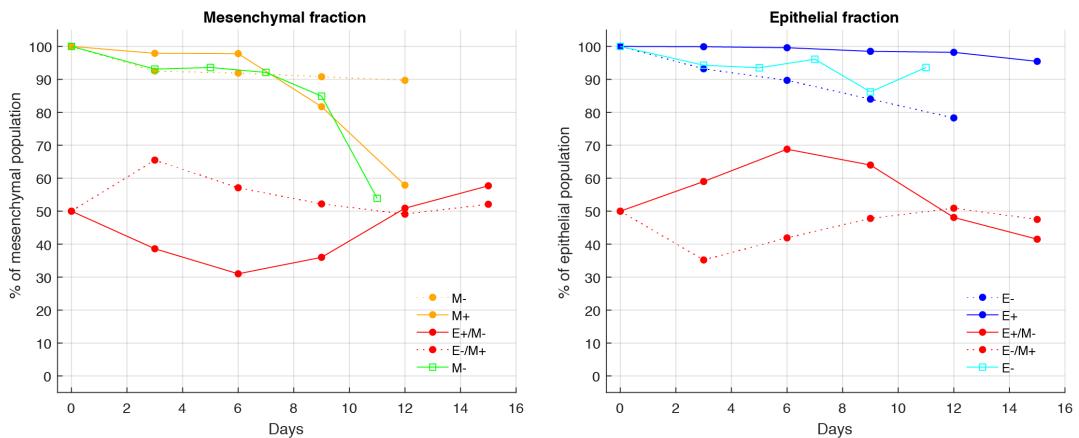
Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables. This linear dimensionality reduction method was used to identify subpopulations in DGE by summarizing data into 2 or 3 dimensions enabling visual clusters identification.

Another method used to visualize data was t-Distributed Stochastic Neighbor Embedding (t-SNE). It is a non-linear dimensionality reduction method, which is well suited for the visualization of high-dimensional datasets. t-SNE keeps local distances and is increasing larger dissimilarities which allows for clearer visual representation of cell similarities and cell types. I perform t-SNE analyses using the `sklearn.manifold.TSNE` (Python) or the `Rtsne` package (R).

5 Results

Following the specific aims (Section 3), we first established the HMLER cell line as a robust model for trans-differentiation by EMT (Section 5.1) and subsequently used this model to investigate the effect of ATP-induced Ca^{2+} signaling on EMT (Section 5.2) and how signal variability is affecting cell fate (Section 5.3). The results will be discussed in detail in Chapter 6.

5.1 Characterization of the HMLER-based EMT model


Up to 90% of cancer cases related to its appetite and mortality can be connected with metastasis (Section 2.1). This shifted the focus of scientists towards the tumor microenvironment, its related signaling machinery, and the process of neoplastic progression in the direction of metastasis. As a useful model system, the breast cancer cell line HMLER has been used to understand some general properties of the role of the underlying microenvironment due to the coexistence of epithelial and mesenchymal subfractions within the parental population (Grosse-Wilde et al., 2015).

5.1.1 HMLER subpopulation balance investigation

In order to investigate first the stability of the epithelial and mesenchymal subpopulations of the HMLER cell line (Section 2.1.1), a 15 day cell culture experiment protocol was carried out (Section 4.1.3). For these experiments, each subpopulation was sorted for purity using FACS as described in Section 4.3.2 for which cells have been labeled with fluorescent antibody (Section 4.3.2.1).

It has been reported previously that the HMLER cell subpopulation $\text{CD44}^{\text{High}}$ corresponding to the mesenchymal (M) subfraction and the CD44^{Low} corresponding to the epithelial (E) subfraction grow at similar rates and are able to recover the missing population after subfraction separation by FACS sorting (Morel et al., 2008). Furthermore, it also has been documented that in epithelial origin cell lines such as HMLER, the CSC-enriched cells are more associated with the mesenchymal subpopulation (Grosse-Wilde et al., 2015).

To validate this repopulation dynamics towards the parental population, first experiments were performed to evaluate the stability of the ratio between E and M subpopulations at low cell density (**Figure 5**). In red we can see the population ratio fluctuating around 50% (with ~17% deviation). When experiments were started with a pure CD44^{Low} (epithelial) population (blue), the other CD44^{High} (mesenchymal) population was able to recover. Similar conclusions were observed when starting from pure CD44^{High} (mesenchymal) population (orange, green). The only population difference we observed was that the pure M population was dominating in high cell density conditions and exhibited very low growth rates at low cell densities.

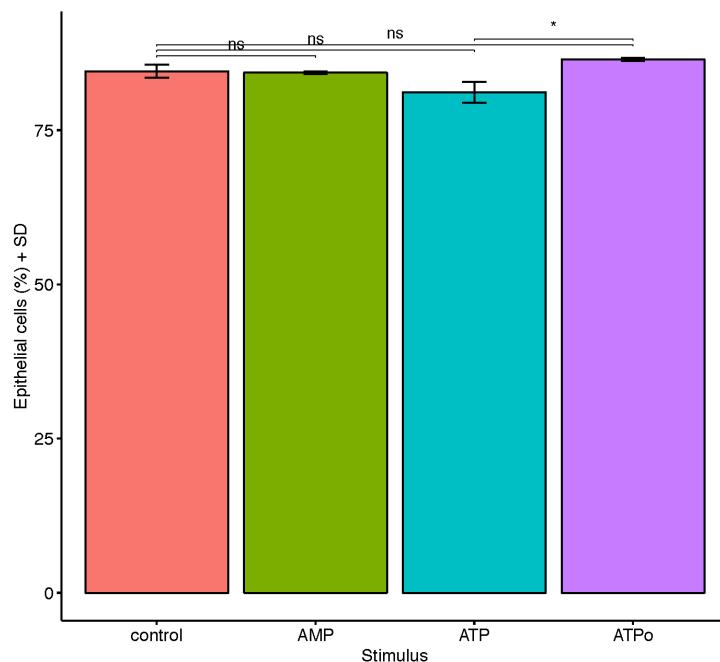
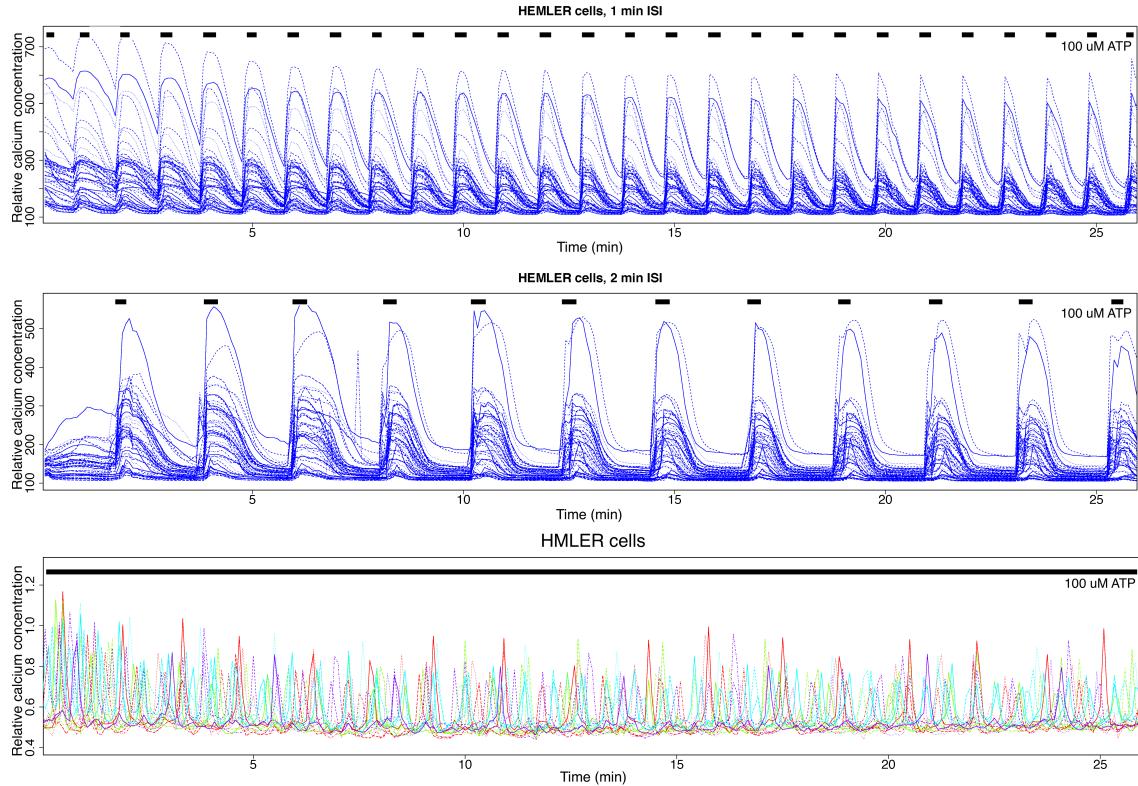


Figure 5. Diagram presents the balance between mesenchymal (M) and epithelial (E) fractions of the HMLER cells line. Identification of the subpopulations has been done using anti-CD44 staining. Orange and green samples are different passages of pure mesenchymal subpopulation sorted by FACS. Light and dark blue represent different passages of pure epithelial subpopulation sorted by FACS. Red samples are parental HMLER populations, which at day 0 were an equal mixture of two subpopulations (1.2×10^4 cells of each). Symbol (+) indicates different genetic background (cells transformed with YFP and mCheery reporters). Last measurements with low cell counts were excluded.

5.1.2 eATP effect on Epithelial and mesenchymal subpopulation dynamics

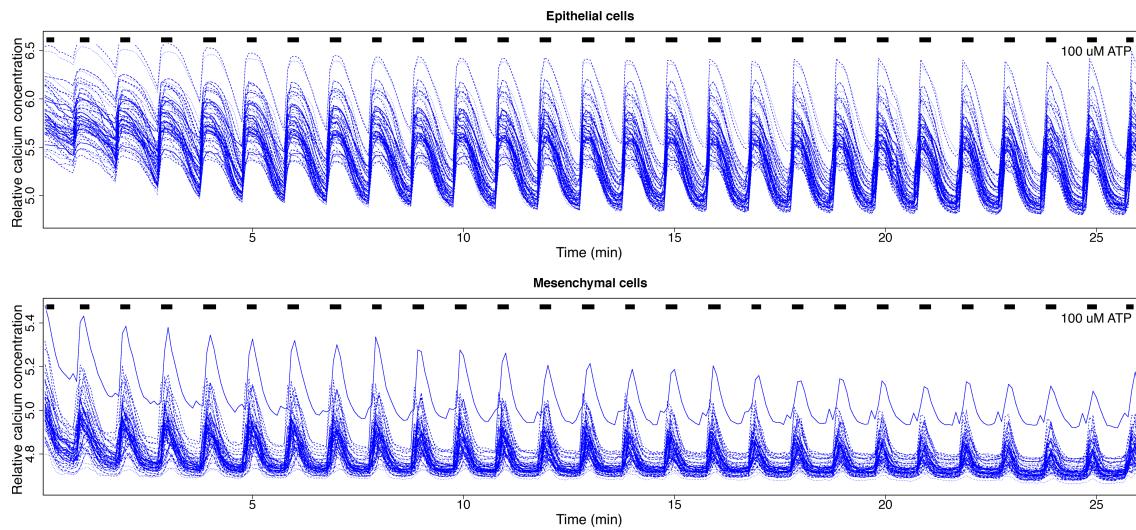
Extracellular adenosine triphosphate (eATP), which is the main intracellular energy currency, often accumulates within the tumor microenvironment. It takes part in cancer cell metabolism as well as in antitumor immunity. The well-known role of eATP as a growth modulator and a pro-inflammatory factor makes eATP and other purines important players in signaling between host and tumor. Recently it has been reported that eATP stimulate human cancer invasion in *in vitro* experiments where an increase of

migration and invasive ability was observed in human carcinoma cell lines (prostate, colon, breast, melanoma and lung) (Feng Wei-gang, 2017). Pro-invasive effects of eATP were also observed in nude mice experiments. eATP stimulation is carried out through P2Y2/P2X7 receptors, which are acting as mediators in eATP-induced EMT and invasiveness of cancer cells. In order to test this hypothesis, cells growth conditions have been evaluated (**Figure 6**).


Figure 6. HMLER subpopulation stability (Epithelial fraction). Cells were treated with corresponding compounds (AMP - 100 μ M of AMP, 48 h before the experiment, ATP - 100 μ M of ATP, 48 h before the experiment; ATPo - 100 μ M of ATP, twice 1 h treatment with 24 h intervals and medium exchange). Each condition was carried out in 3 replicates. Significant difference was only observed between ATP and ATPo (significance calculated using t-test, ns = not significant, * = $p < 0.05$).

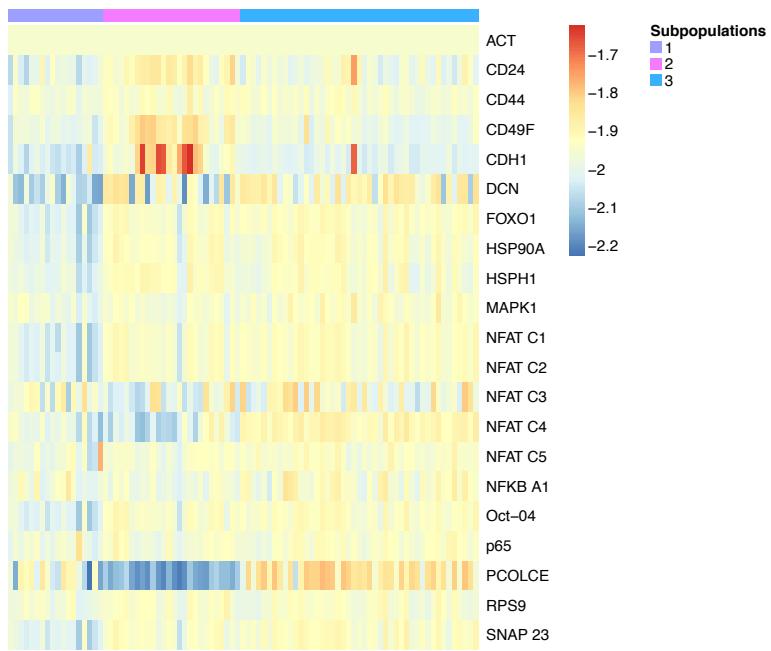
Pure subpopulations were seeded on 6-well plates (0.5×10^6 cells in each well), and stimulated the next day. After 48 hours of stimulation, the ratios between epithelial and mesenchymal cells were determined by FACS (Section 4.3.2). The same experiment was carried out on pure mesenchymal populations, but no significant differences were found between the conditions. The results indicate that the treatments did not alter significantly the recovery of missing epithelial fraction through MET or through growth modulation of mesenchymal cells. If similar percentage of newly formed epithelial fraction would be affected, the differences would not be visible because of the small size of the fraction.

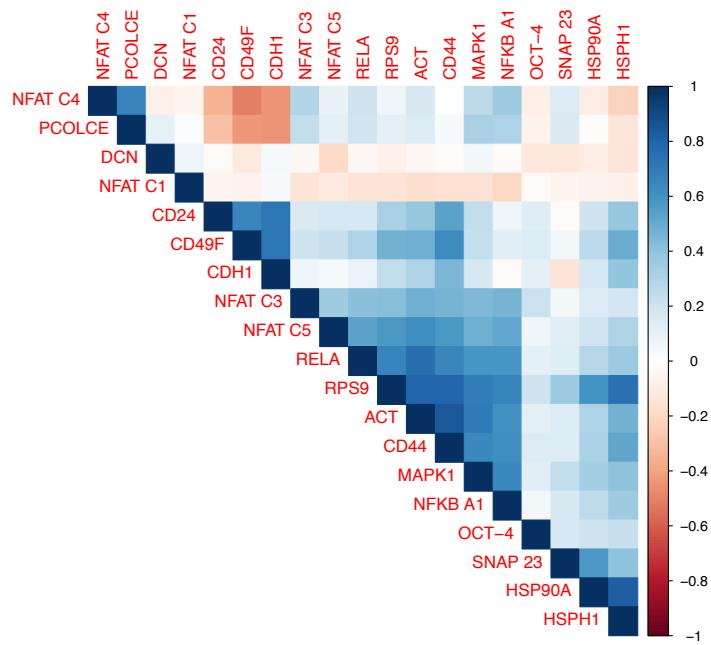
Therefore, treatment with ATP seems not to have a significant effect on the ratio. In Epithelial fraction, prolonged eATP treatment seems to reduce the dividing potential of epithelial (through induction of apoptosis with Ca^{2+} induced oxidative stress and ROS production) or undergo enhanced EMT. During the short stimulations with a recovery period, we noticed increased epithelial growth which would be consistent with observations on wound healing and eATP-induced sustained EGFR activation (Jia Yin, Keping Xu, Jing Zhang, Ashok Kumar, 2007). While prolonged eATP stimulation could induce apoptosis through Ca^{2+} induced oxidative stress and ROS production. To investigate further those processes and how the decision-making takes place, single cell transcriptomics experiments have been employed (Section 5.3).


5.1.3 HMLER calcium profiles upon stimulation

In order to investigate how calcium-signaling pathways are processing information from the environment, we design a perfusion system (Section 4.2). With our in-house developed software, we were enforcing well-controlled temporal patters of calcium on the cells (**Figure 7**). This way treated cell were further processed using scRNA-seq methods (Section 4.1.1.2) and analyzed further using our computational pipeline (Section 5.2).

Figure 7. Three examples of calcium spiking traces extracted from HMLER cells (Section 4.3.1). Equal ratio of E and M cells were grown on 12-well plate and treated with our perfusion system. By repetitive changing of medium from regular HBS medium to stimulating medium (HBS + 100 μ M ATP) intracellular calcium spikes were generated. **Top:** Ca^{2+} traces were extracted from 50 cells treated with 10 sec of ATP and 60 sec ISI (inter-spike interval) periods. **Middle:** Ca^{2+} traces were extracted from 50 cells treated with 10 sec of ATP and 120 sec ISI period. **Bottom:** Ca^{2+} traces were extracted from 20 cells treated with constant concentration of ATP. Treatment was carried out for 1 h, and followed by 1h of incubation (Section 4.1.2).


It is important to mention that eATP is affecting epithelial and mesenchymal subpopulations differentially (Figure 8), suggesting that, in each subpopulation, different components in the Ca^{2+} machinery processes signals from the external environment into intracellular responses. We noticed (Figure 8, Bottom) that mesenchymal cells recover from a spike much faster; they do not have prolonged calcium response for the full duration of the excitation, as observed in epithelial cells (Figure 8, Top). These differences could also be associated with different subpopulations behavior visible in Section 5.1.2.


Figure 8. Calcium spiking patterns extracted from epithelial cells (**Top**) and mesenchymal cells (**Bottom**) stimulated with 60 sec ATP period, 10 sec pulse. Traces extracted as described in Section 4.3.1.

5.1.4 Gene splicing variants investigation using real-time qPCR (C1)

To obtain a better understanding of perturbed signaling pathway, a targeted single cell real time qPCR was performed using the Fluidigm C1 and Juno devices (Section 4.4.3). Calcium downstream genes have been investigated by custom-design primers (**Table 4**). The results are shown as an unsupervised clustered heatmap (**Figure 9**) where Ct values were normalized according to the housekeeping gene *ACTB* levels. With the high expression of genes like *PCOLCE* and low expression of *CDH1*, we can identify mesenchymal (subpopulation 3), and with opposite expression patterns we can map epithelial cells (subpopulation 2). Subpopulation 1 could be a combination of cells between both states. It is interesting to mention that as most of *NFAT* gene variants were present in the entire population (*NFATc1*, *NFATc2*, *NFATc3*, *NFATc4*, *NFATc5*), only *NFATc4* variant seems to be specifically expressed in the mesenchymal fraction. Furthermore, by analyzing the correlation matrix (**Figure 10**), we observed that the expression of the calcium binding *CD49F* protein is highly correlated with the epithelial genes *CD24* and *CDH1*. Surprisingly, gene expression of *CD44* does not seem to be specifically correlated with the mesenchyme fraction.

Figure 9. Unsupervised hierarchical clustered heatmap of HMLER single cell qPCR analysis. Epithelial cells represented by subpopulation 2 and mesenchymal cells by subpopulation 3. Ct values were generated by targeted real-time qPCR. Red colored cells represent low Ct and blue represents high Ct values, respectively. X-axis: genes, Y-axis: cells; analyses carried out using 80 cells.

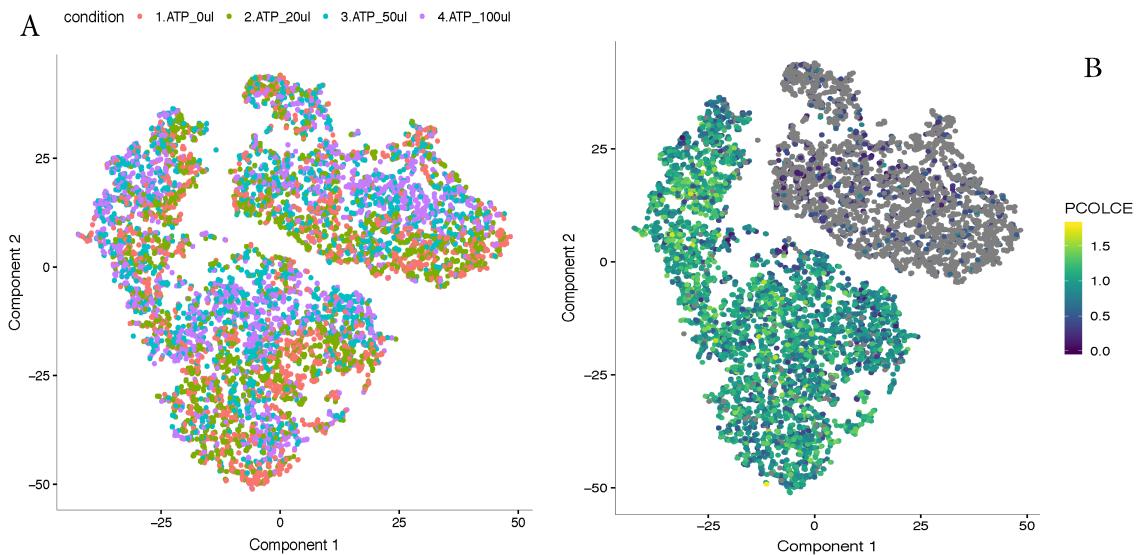


Figure 10. Clustered pairwise correlation matrix of Ct values generated from targeted real-time qPCR data; analyses carried out using 80 HMLER cells.

5.2 Breast cancer cell fate modulation by eATP dose response.

As mentioned above, extracellular ATP “eATP” is very often part of the cancer microenvironment as an important signaling regulator. The reasons for its release and diverse distribution in tissues are: inflammation and stress-related cell death, hypoxia, mechanical stress and non-targeted therapies. These conditions consequentially trigger series of cellular signaling events, which generate intracellular secondary messengers like high variable Ca^{2+} fluxes (Virgilio, Ben, Sarti, Giuliani, & Falzoni, 2017) (Kroemer, Galluzzi, Kepp, & Zitvogel, 2013) (Lohman, Billaud, & Isakson, 2012).

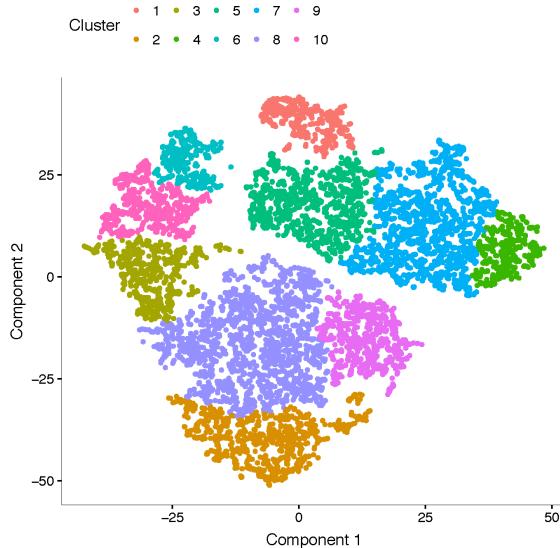
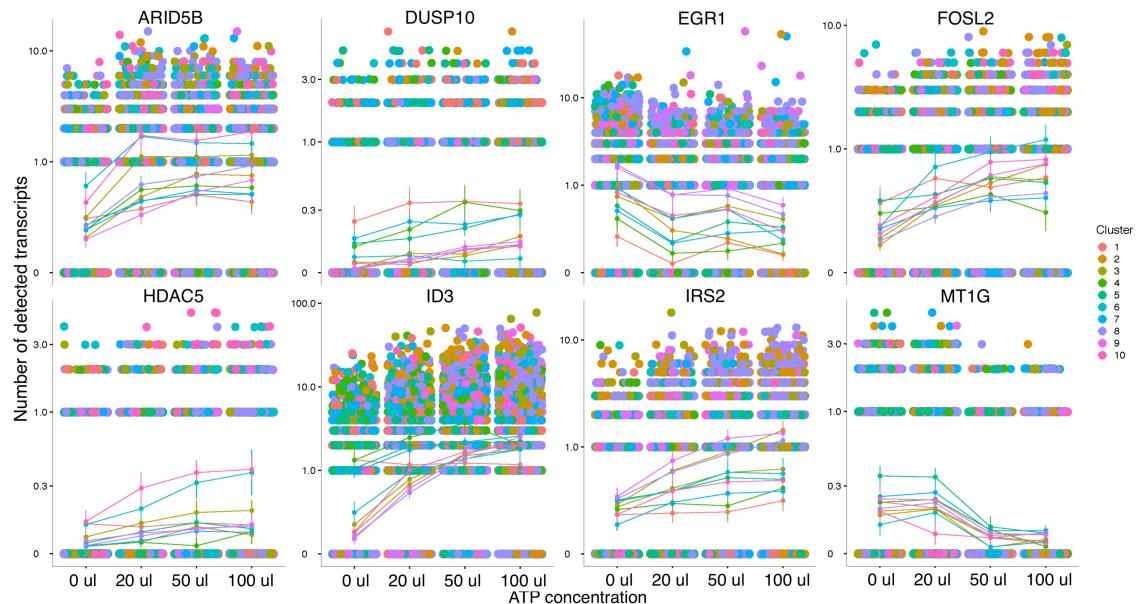

In order to investigate downstream changes in gene expression caused by spatiotemporal modulation of calcium dynamics triggered by eATP, we performed a first dose response experiment by applying medium with different levels of eATP (Section 4.4.2.1). To characterize the resulting cell fate, we generated single cell transcriptomics data as described in Section 4.5. The resulting DropSeq single cell data from 4 conditions are shown in **Figure 11A** and consist of 8400 cells with 33538 genes expressed. On the **Figure 11B** expression of gene *PCOLCE* is shown, which is associated with the mesenchymal state. This and other E-M state specific genes allowed us to identify mesenchymal “M” (*PCOLCE*, *VIM*, *S100A4*) and epithelial “E” (*CD24*, *CDH1*, *ITGB4*) cell populations.

Figure 11. t-SNE plots showing 4 populations of cells, which were treated with 0 μ M, 20 μ M, 50 μ M, 100 μ M of eATP (Section 4.4.2.1). Each dot represents one cell. The closer the cells are to each other, the more similar their transcriptoms are. (A) The different applied ATP conditions indicated by color do not exhibit a very specific pattern in the t-SNE space. (B) PCOLCE expression values indicative for the mesenchymal state were normalized and presented as percentage of total cellular mRNA; analyses carried out using 2000 cells per condition (8000 cells).


On the **Figure 11A**, the distributions of cells from each condition within the subpopulations are shown by color-coding. To investigate shifts in the location of cells between different conditions on the tSNE plot in more detail, we next quantified changes in genes expression by performing the *“DifferentialGeneTest”* from our adapted Monocle pipeline. This approach generated a list of differentially expressed genes (DEGs). Applying a threshold of $Q\text{-val} < 0.001$ we acquired 2707 significantly expressed genes. The top 1000 genes can be found in the Supplementary Material (**Table S1**).

As expect, at least 2 subpopulations are visible in the data and we clustered cells according to cell-cell proximities visible on the tSNE plots (**Figure 12**). Higher cluster number on tSNE plot allowed us to track the differences of trends in genes between conditions in relation to the clustered subgroups. Additionally we were able to identify and exclude differences, which come from cell cycling genes, such as Aurora Kinase A (*AURKA*), Cyclin-dependent kinase 1 (*CDK1*) or Centromere Protein F (*CENPF*).

Figure 12. t-SNE plot of 4 different experimental conditions (Figure 11). Data have been divided into 10 clusters according to the differences in gene expression. Clusters associated with “E” subpopulation: 1,4,5,7, and clusters associated with “M” subpopulation: 2,3,6,8,9,10; analyses carried out using 2000 cells per condition (8000 cells).

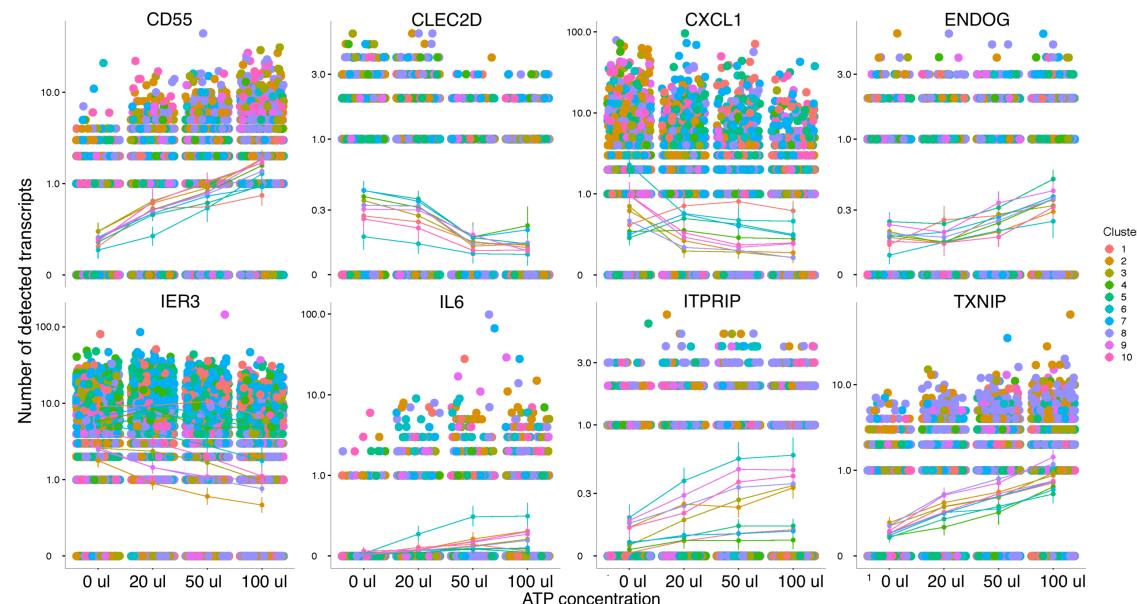
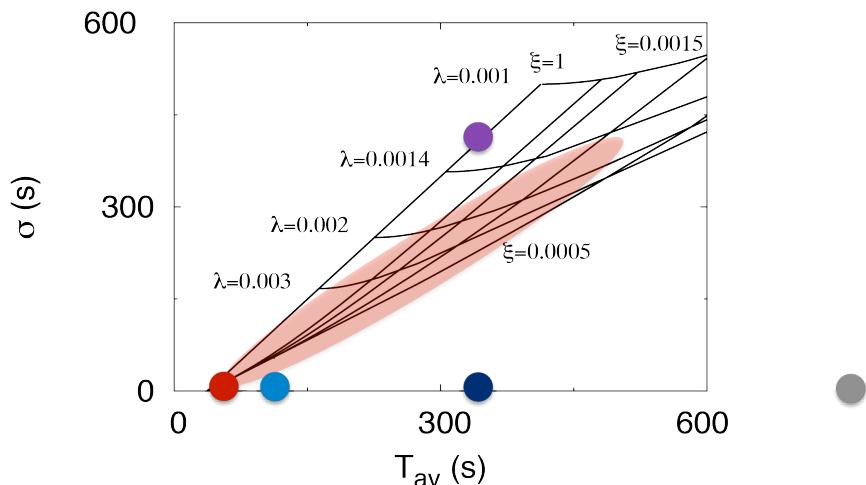

For this purpose, we analyzed the expression dynamics from the top DEG list. Based on this list and in the literature reported genes (Lauren Averett Byers, Lixia Diao, Jing Wang, 2011) involved in motility and EMT, we first focused on the 8 genes shown in **Figure 13** which exhibited a Q-value smaller than 0.01.

Figure 13. Jitter plots of the 4 eATP stimulated conditions exemplify 8 important genes, which are known to be involved in EMT process. Each dot represents a number of “true” captured RNA transcripts from a specific condition in a specific cluster (color-coded). Trendlines are tracking average expression of gene across the horizontal axis indicate a coherent dose-response behavior across all clusters; analyses carried out using 2000 cells per condition. (“E” subpopulation: clusters 1,4,5,7 and “M” subpopulation: clusters 2,3,6,8,9,10)

When analyzing gene expression trends we have often seen clusters belonging to subpopulations “E” and “M” being affected differentially, as we can see with AT-Rich Interactive Domain-Containing Protein 5B (*ARID5B*), Histone deacetylase 5 (*HDAC5*), DNA-binding protein inhibitor (*ID3*) or Insulin Receptor Substrate 2 (*IRS2*).

Another set of genes we wanted to evaluate, were genes involved in stress related responses. This would allow us to connect EMT to the potential burden of constant eATP treatment (**Figure 14**). We can see genes with steady dose response curve like complement decay-accelerating factor (*CD55*) or thioredoxin interacting protein (*TXNIP*). Other genes like C-type lectin domain family 2 member D (*CLEC2D*) or Endonuclease G (*ENDOG*) seems to be more responsive with higher eATP concentration. We could also notice some genes having opposing expression trends like C-X-C motif chemokine ligand 1 (*CXCL1*).


Figure 14. Jitter plot for 8 DEGs involved in stress related signaling for the 4 eATP stimulated conditions; analyses carried out using 2000 cells per condition.

5.3 Cell fate modulation by inducing distinct Ca^{2+} profiles by eATP

Based on these observations how ATP stimulation can induce EMT specific signaling and the central role Ca^{2+} may play for some key players, we were next investigating the activation pattern in dependence on specific eATP induced Ca^{2+} signals.

5.3.1 Oscillatory and stochastic Ca^{2+} profiles applied using perfusion system

Driven by the curiosity to unravel full the potential and capacity of signaling molecules such as the Ca^{2+} secondary messenger, we decided to perturb the signaling system in a well-controlled manner. Previous studies have highlighted that some genetic profiles can be significantly altered by a difference in the dynamics of the stimuli (Dolmetsch et al., 1998). For this purpose, we established a perfusion system as described in Section 4.2. This macrofluidics setup allowed us to robustly induce precise patterns of calcium dynamics to the entire population of cells. Experimental details are described in Section 4.1.2, while the visualization of perturb conditions are shown on **Figure 15**.

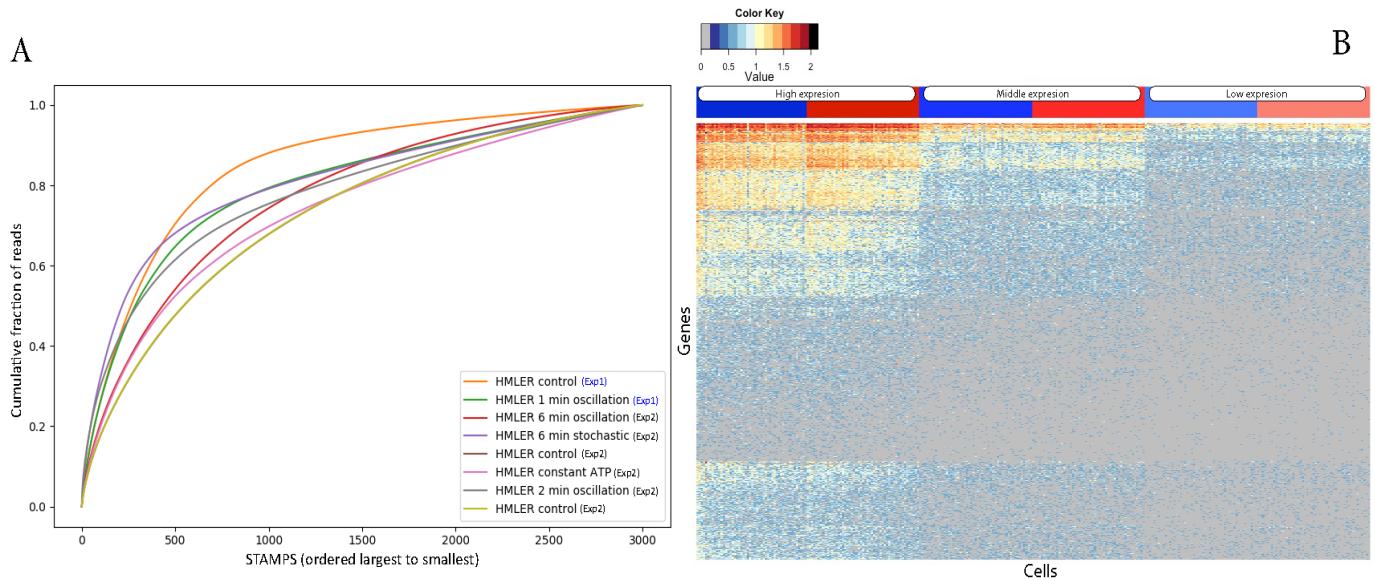
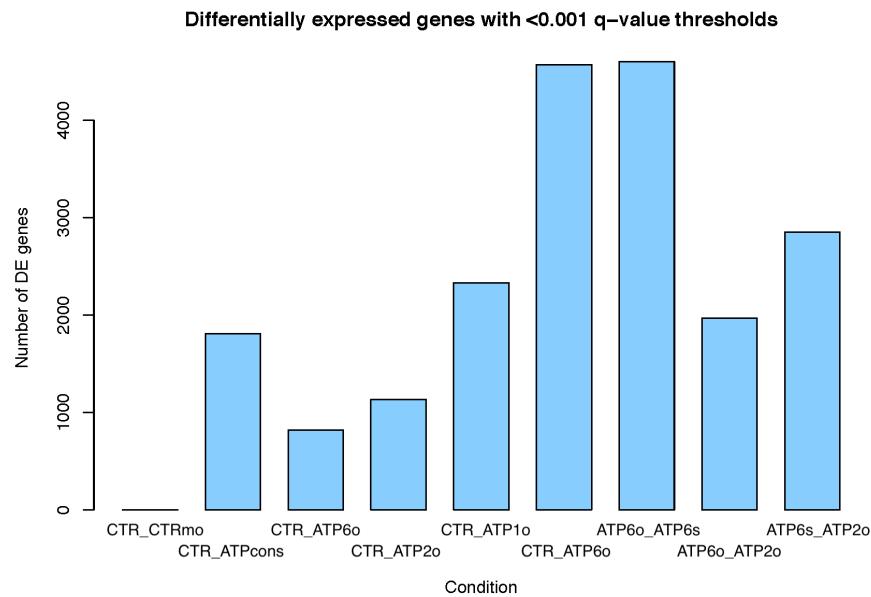


Figure 15. Plot exhibits the experimental setup of 5 conditions with different patterns of applied Ca^{2+} dynamics. T_{av} on X-axis represents average interspike interval between calcium spikes, while σ on Y-axis is the standard deviation of the corresponding spike train. Red corresponds to deterministic oscillations with a 10 sec spike of ATP and a period of 1 min; light blue to deterministic oscillations with 10 sec spike and a period of 2 min; dark blue to oscillation with 10 sec spike and a period of 6 min; purple describe stochastic spiking with a 10 sec spike of ATP and an average period of 6 min; grey correspond to control condition without ATP stimulation.

While previous studies have focused on the frequency dependence of gene expression, the design of our experiment was inspired by previous investigations on the stochasticity of Ca^{2+} oscillation (Skupin et al., 2010), where potentially additional information could be encoded in the variability of spiking. In order to do so, we treated cells with 1,2 and 6 min of deterministic Ca^{2+} oscillation and a 6 min stochastic spiking pattern. Calcium traces of constant, 1 min and 2 min periods of ATP-induced Ca^{2+} spikes were shown on **Figure 7**. After treatment, cells were subsequently processed with our established Drop-seq pipeline (Section 4.4.1). The generated digital gene expression matrices (DGEM) were further analyzed using our bioinformatics pipeline (Section 4.6).


5.3.2 Single cell analyses of cells with different Ca^{2+} (eATP) imposed profiles

After generating the digital gene expression matrices, we evaluate the quality of the sequenced libraries by looking at the “knee plots” (**Figure 16A**) and the quantity of captured genes could be estimated from the heatmap (**Figure 16B**). For most of the downstream analyses, typically around 800 cells per condition passed the quality check with respect to total RNA content.

Figure 16. (A) Knee plot generated for all conditions by plotting the cumulative frequency and looking for an inflection point (knee). (B) Heatmap representation of DGEM from experiment 1 (Exp1 in Section 4.1.2). Blue bar represents control; red bar represents 1 min oscillations.

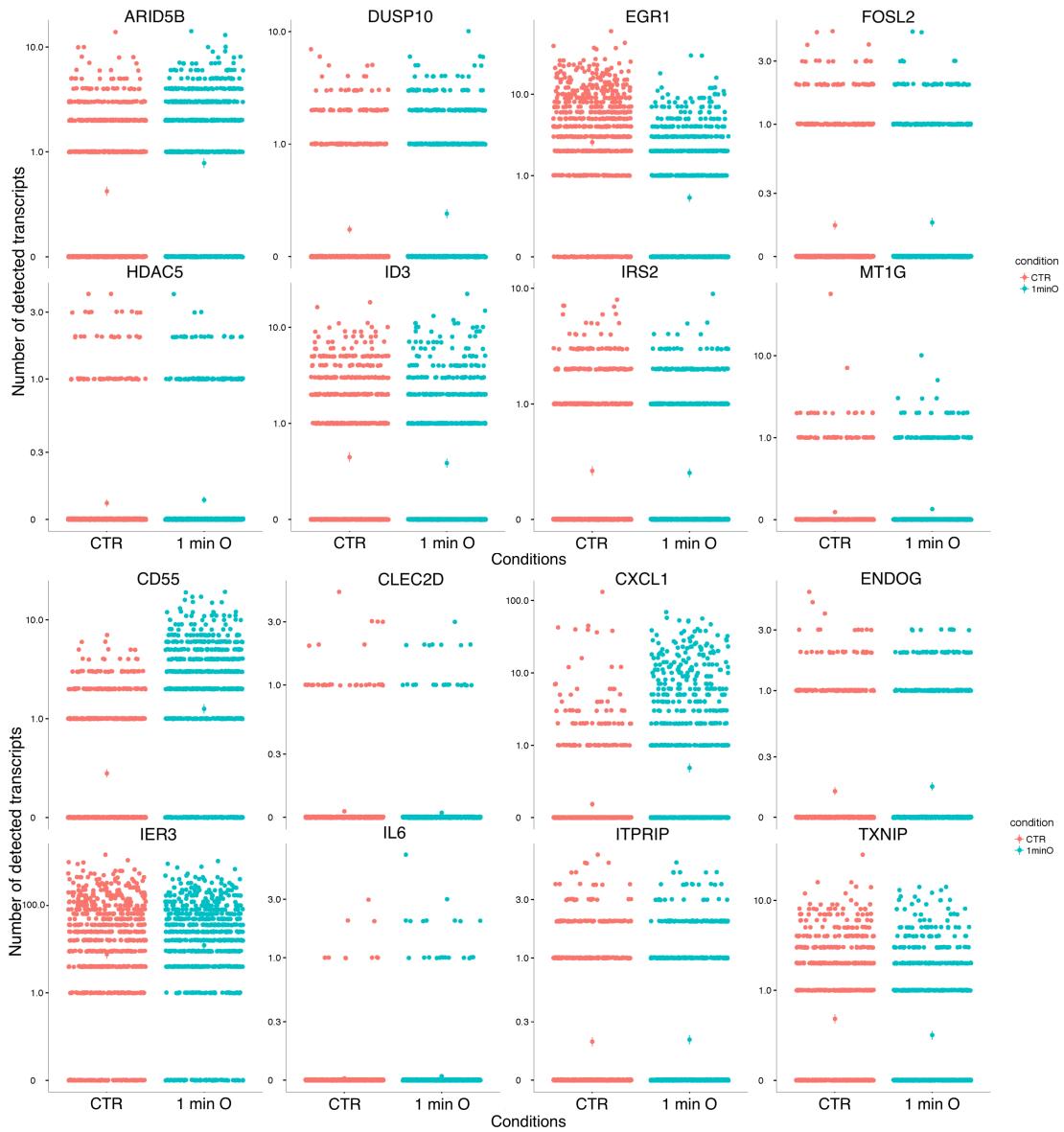

Next the digital gene expression matrices for all 6 conditions were used to perform DGE analysis by the “*differentialGeneTest*” of the Monocle package. For this purpose, each perturbation condition was first compared to the control condition without any activation stimuli. The numbers of DEGs are shown on **Figure 17**.

Figure 17. Bar plot showing the number of DEGs when compared between conditions. Samples from experiment 1: CTR – control, ATP1o – 1 min ATP oscillation. Experiment 2: CTRc, CTRmo – controls; ATPcons – constant ATP, ATP2o – 2 min ATP oscillations, ATP6o – 6 min ATP oscillations, ATP6s – 6 min ATP stochastic oscillations.

5.3.2.1 DGE analyses of data from cells with different calcium profiles

In the first experiment (Exp1) we wanted to evaluate first if we can observe similar differences in gene expression as those generated in the dose response experiment (Section 5.2). Jitter plots comparing control condition (no ATP stimulation) to 1 min oscillation of ATP are shown in **Figure 18**.

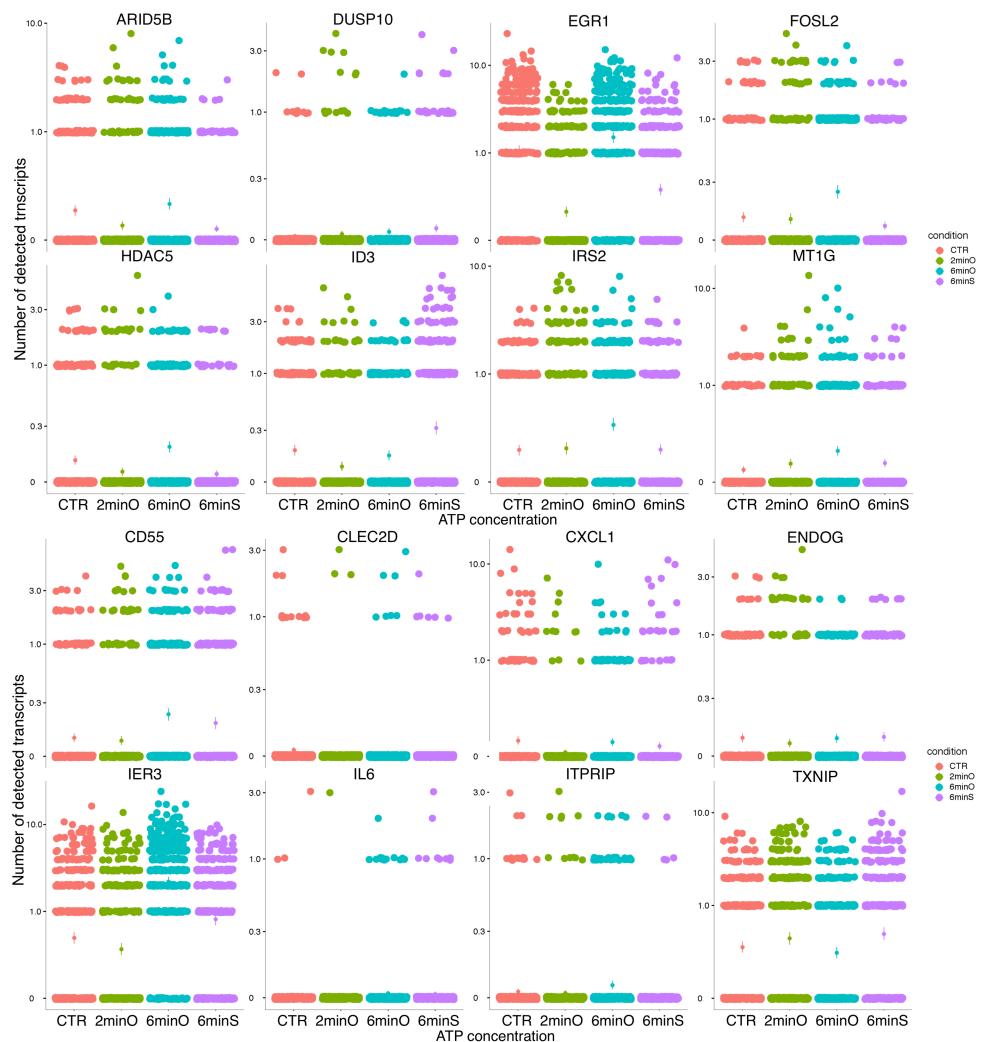


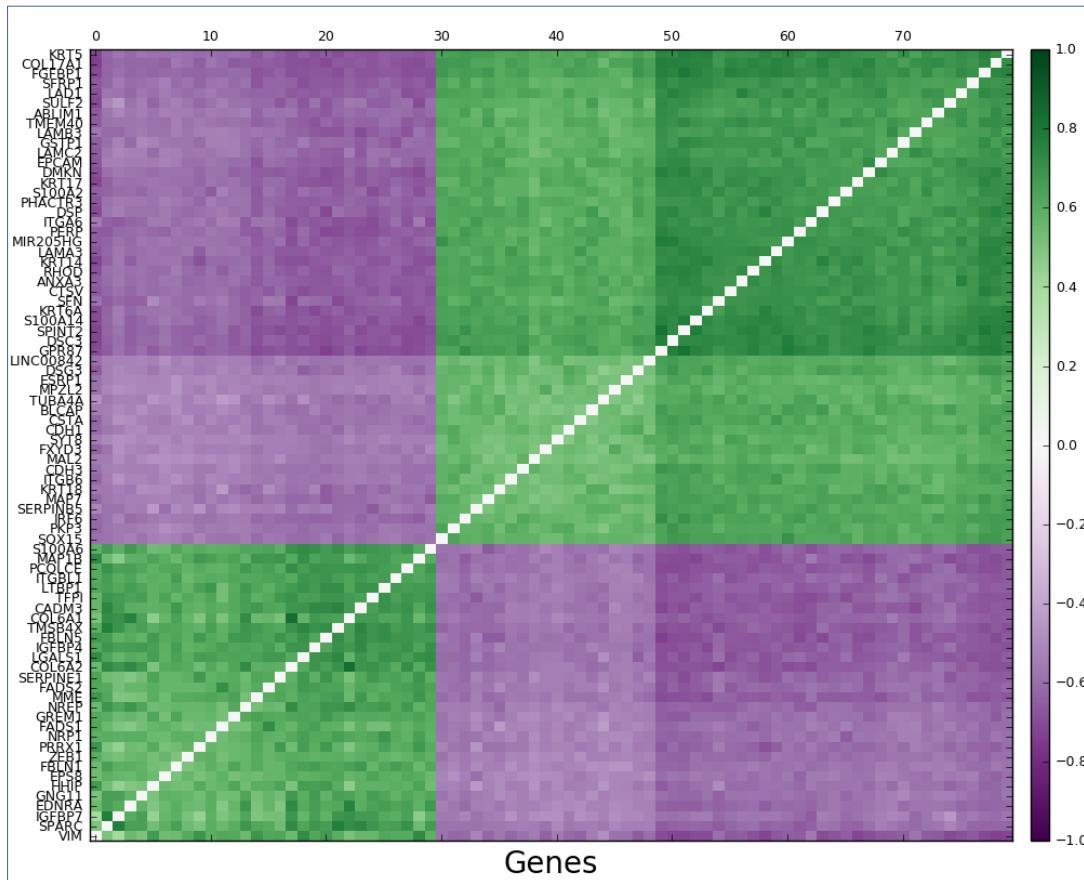
Figure 18. Jitter plot of 16 gene expression profiles between 2 conditions: Control (CTR) and 1min oscillatory eATP (1minO). The upper 8 genes are involved in EMT processes and the lower 8 genes are involved in stress response; analyses carried out using 800 cells per condition.

Expression of genes like *ARID5B*, *EGR1* and *DUSP10* seems to have similar trend when compared to constant ATP stimulation (**Figure 13**). Genes like *FOSL2*, *ID3*, *IRS2*, *MT1G* on the other hand seem not to be significantly affected when applying 1 min oscillations of eATP.

For genes related to stress responses we can also see same significant increase in *CD55* expression, while genes like *CLEC2D*, *ENDOG*, *IER3*, *IL6* or *ITPRIP* seems either not to be affected or the response is similar to the level of 20 μ M ATP stimulation from the dose response experiment (**Figure 14**). Surprisingly *CXCL1* and *TXNIP* genes expression seems to have opposite trends as in had in dose response.

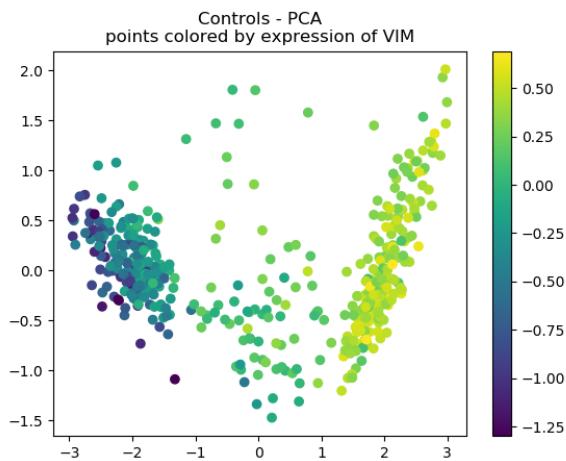
To investigate whether the signaling regulation by oscillation of stimuli can have a significant different effect on the cells, we next designed an additional experimental setup (Exp2) to quantify the effect of oscillation frequency and on variability of spiking. For this purpose, we tested two more oscillation frequencies (2min and 6 min) and one stochastic oscillation conditions of eATP as described in **Figure 17**. The resulting expression data for the previously highlighted genes are shown on **Figure 19**.

Figure 19. Jitter plot of the previously described 16 genes involved in EMT and stress response for the 4 additional conditions performed in experiment 2 with control (CTR), 2 min deterministic oscillations (2minO), 6 min oscillation (6minO) and 6 min of stochastic spiking (6minS). Dots with error bars represent average expression; analyses carried out using 700 cells per condition.


When analyzing gene expression data from these different ATP patterns, we observed some interesting properties for specific genes. For

instance, the expression of *ARID5B*, *HDAC5*, *FOSL2* and *ID3* behave similarly by decreasing expression for shorter stimuli periods and increasing expression for the longer period of 6 min. Interestingly, when we apply stochastic spiking with an average period of 6 min, the expression of these genes drops again, except for *ID3*, which is being upregulated. Analysis of the full gene sets has shown that there are a number of genes responding similarly as evaluated by DEG analysis (**Figure S1**). These types of dynamical regulation of gene expression could potentially lead to a completely new understanding of cell signaling.

When looking at the stress associated genes, we observed a similar trend for the shorter oscillation periods (1 or 2 min) and 6 min stochastic spiking with genes like *IER3*, but then we can see significant upregulation during 6 min oscillation. On the other hand, we found genes, which exhibited a completely opposite trend like *TXNIP* where expression is higher in constant eATP, then seems to be decreasing with increasing deterministic period, and finally increases in 6 min stochastic spiking.


5.3.2.2 Correlation analyses of E and M states after eATP stimulation

To investigate changes in expression profiles of the epithelial and mesenchymal subpopulations, we first used correlation analyses. By plotting values of Spearman correlation of all captured genes in the controls sample, we were able to extract genes correlated and anticorrelated with the “E” and “M” subpopulations (**Figure 20**).

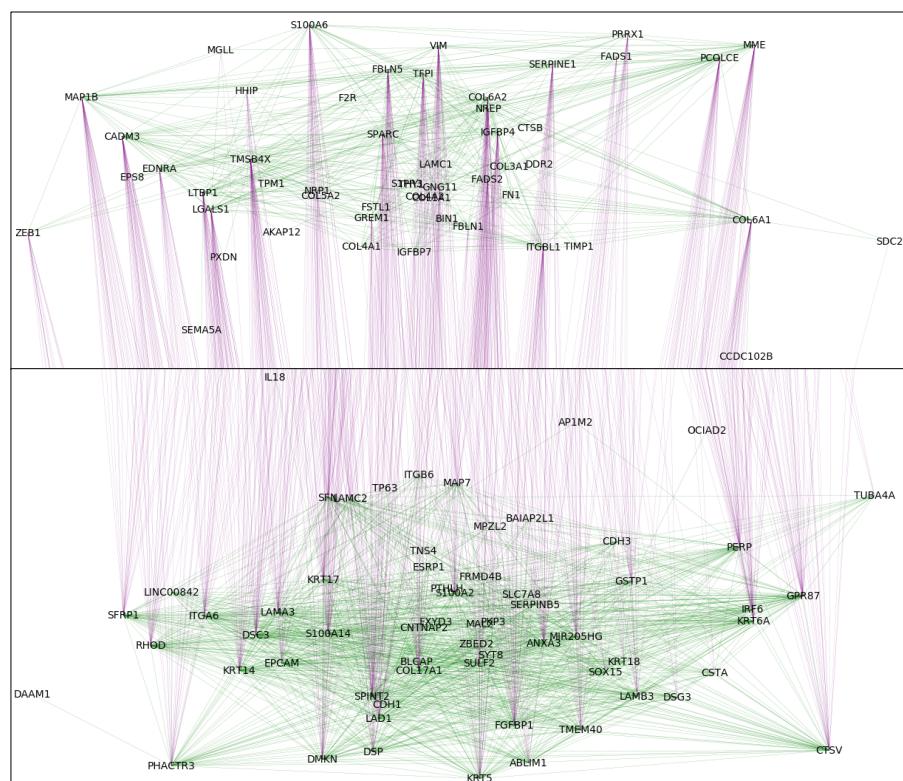


Figure 20. Zoom into highly correlated and anticorrelated gene clusters of HMLER cells, which contain E and M genes. Upper gene group correlates with E cells specific genes and lower group of genes correlates with M cells specific genes.

Because we suspect some level of heterogeneity and transition in the parental HMLER population, we perform analysis of the “pure” E and M subpopulations. For this analysis, we used the Principle Component Analysis (PCA) of the control condition and selected cells from the endpoints of the epithelial-mesenchymal spectrum (**Figure 21**) to separate pure E and M cells for the subsequent analyses (**Figure 23**). Additionally, we generated a correlation network from the correlation matrix with a threshold of 0.6 to identify core regulatory interactions (**Figure 22**).

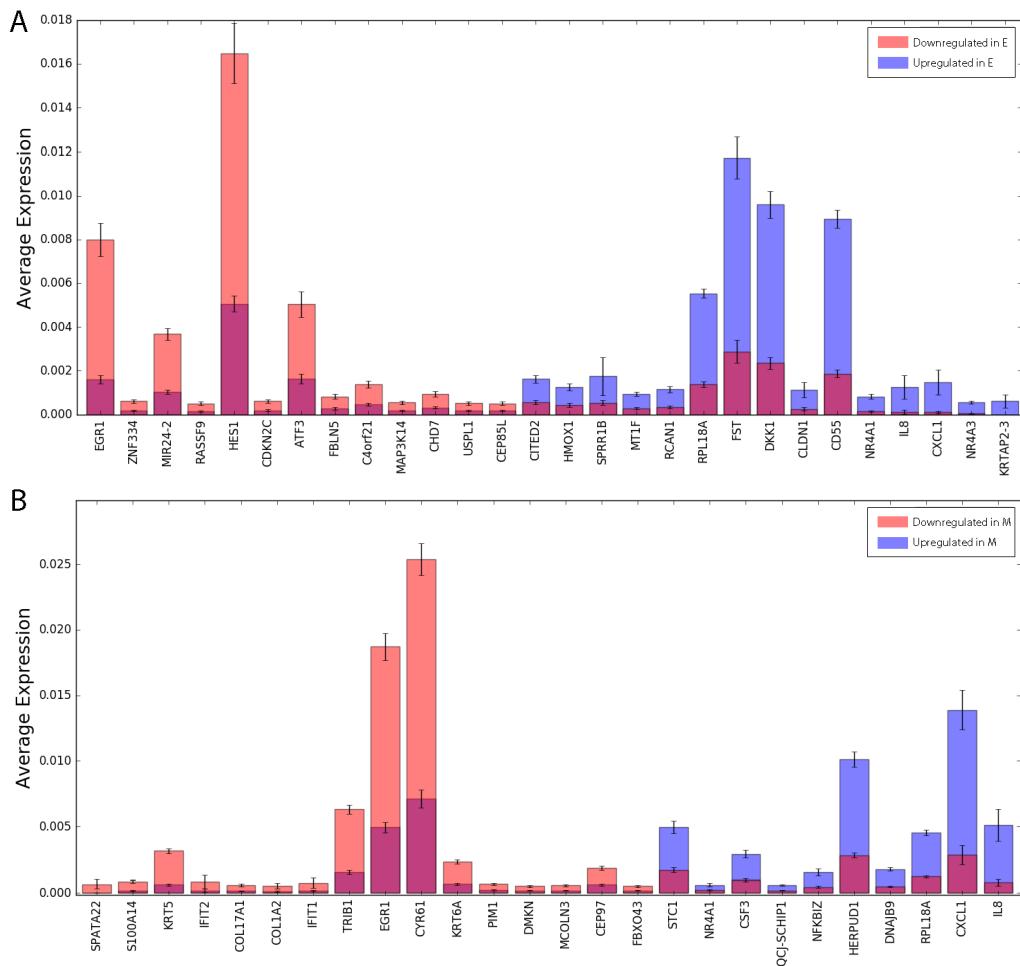


Figure 21. PCA plot generated with genes from the correlation cluster (**Figure 20**) for HMLER cell populations under control condition. For cell identity, the expression level of the mesenchymal marker VIM is color coded.

Figure 22. Correlation network analyses of E and M genes from the correlation matrix (X15). Top figure represents epithelial gene interactions, bottom represent mesenchymal genes. Green lines connect positively correlated genes and purple lines connect anticorrelated genes, respectively. Correlation cut-off was set to $|0.6|$.

Further, we investigated the differences in gene expression between control and stimulation condition of epithelial and mesenchymal subpopulations separately. By evaluating cells with the most E and M phenotype, we could point out most susceptible genes to treatment in a given subpopulation (**Figure 23**).

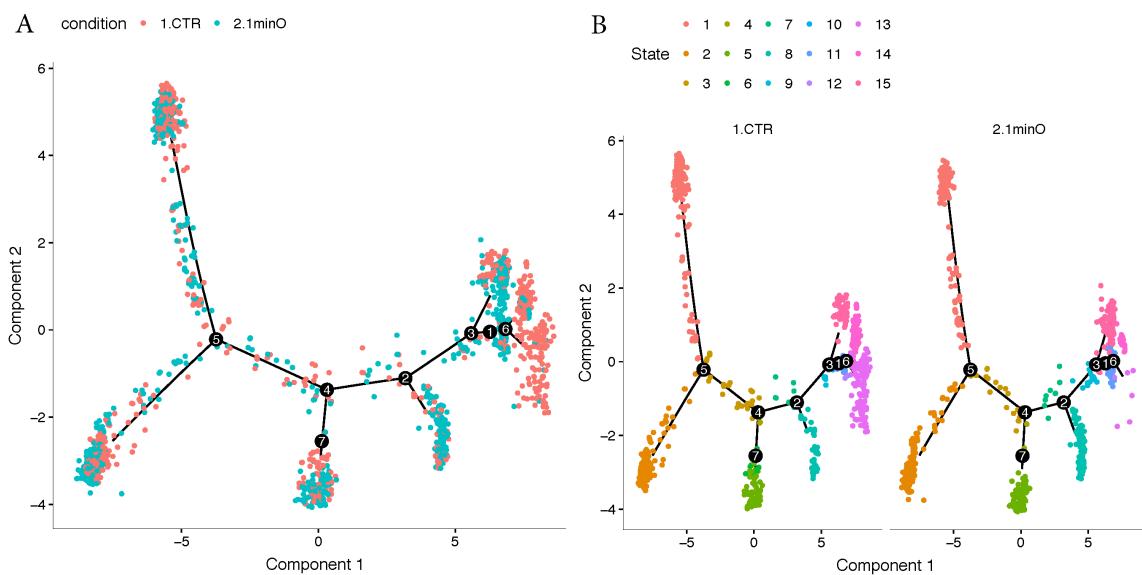


Figure 23. Comparison of average gene expression between untreated cells and after treatment with 1 min ATP oscillations. Plot (A) compares epithelial cells “E”, plot (B) compares mesenchymal cells “M”. Purple bar represent average of upregulated genes after stimulation; orange bar represent average of downregulated genes after stimulation.

The analysis exhibited a subpopulation-specific response to treatment. For example, the upregulation of the *CD55* gene due to treatment is mainly associated with pure E cells, while upregulation of the *CXCL1* gene is associated with M cells. We can also see significant decrease in *HES1* expression, coming mostly from E cells.

5.3.2.3 BEAM analyses and EMT “states” identification.

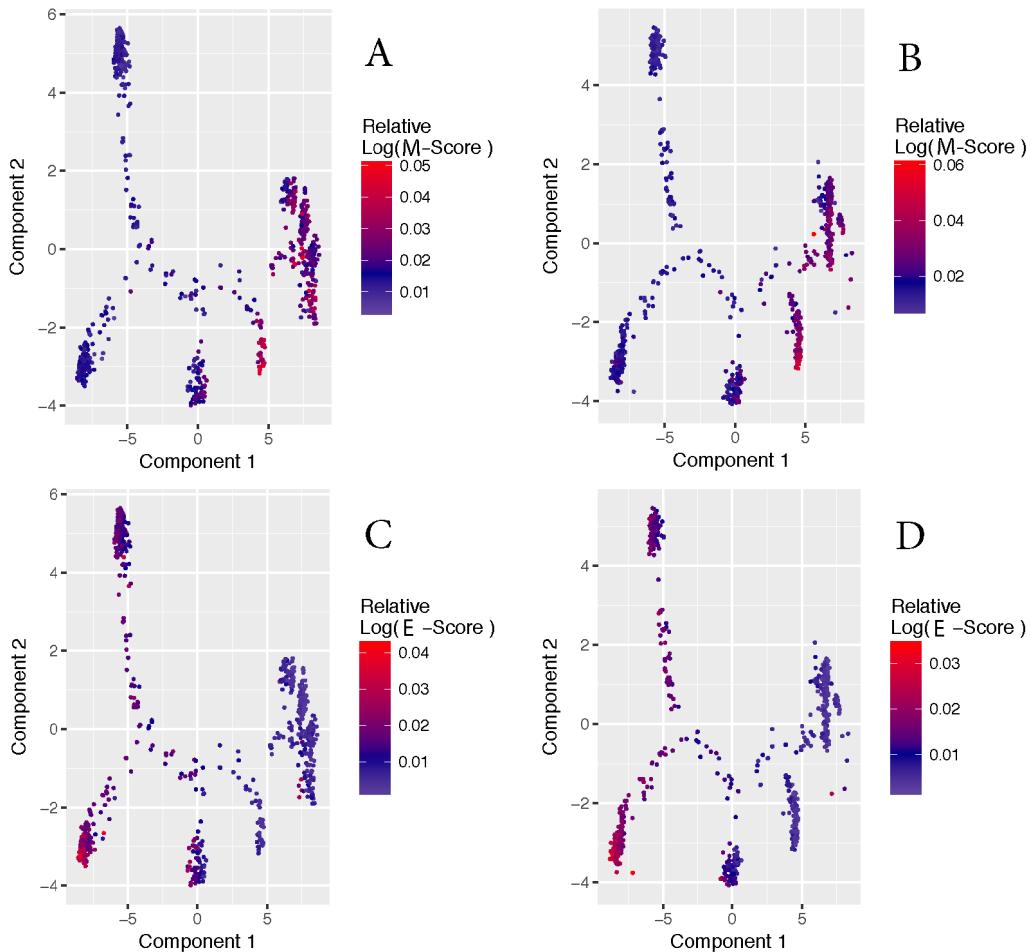

Besides the pure “E” and “M” populations shown in Section 5.3.2.2, we already know from the dose response cluster analyses (Section 5.2) that the cellular EMT spectrum is more complex in agreement with similar conclusions from recent papers on hybrid states in EMT (Grosse-Wilde et al., 2015). To investigate this theory, we employ branched expression analysis modeling (BEAM) analyses. This method tries to assign cells to a “dynamic state” on a transitioning state space (**Figure 24**).

Figure 24. BEAM analysis graph showing HMLER cells from control and 1 min ATP oscillation condition (EXP1). Graph (A) exhibits involvement of cells from difference conditions into each dynamical state. Graph (B) shows the “state” identities on the transitioning state space. Numbers indicate the possible branching points of the process.

In the BEAM trajectory analyses, we observed some apparent differences in the cell state space occupation. Cell after stimulation tend to disappear from state 13 and 14 to populate states 8, 10 and 15. In order to characterize these states, we quantified the E-gene and M-gene scores for each state as shown in **Figure 25**. This analysis indicates that cells shifting between states originate from the mesenchymal subfractions. Next we determined the genes, which define the separate identity of states 13 and 14 from 8, 10 and 15 to be a high expression of Thymosin Beta 4 X-Linked (*TMSB4X*) (low in state 8 and 15), S100 Calcium Binding Protein A6 (*S100A6*)

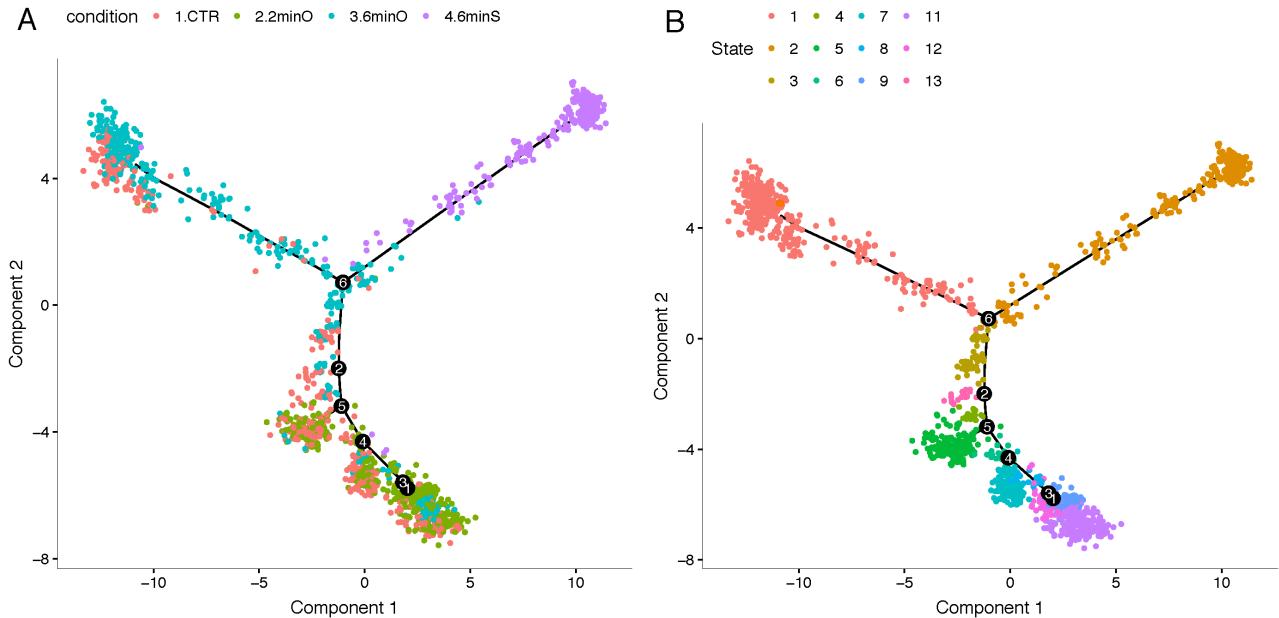

(downregulated in state 8 and 15), Tissue Inhibitor Of Metalloproteinases 1 (*TIMP*) (downregulated in state 15), *EGR1* (downregulated in state 8 and 10), and Galectin-1 (*LGALS1*) (downregulated in state 15).

Figure 25. BEAM analysis graph showing scores of cumulative “M” and “E” genes from control (**A** and **C**) and 1 min eATP oscillation (**B** and **D**) condition. Genes used for the score were identified by the correlation analyses (**Figure 20**) and subsequent validation with literature reports.

Finally, we analyzed in more detail the differences in gene expression induced by 6 min deterministic oscillation or stochastic spiking with an average period of 6 min by comparing their “*dynamic states*” in the BEAM branching analyses. These different activation patterns clearly induce distinct cell states as shown in **Figure 26** and by the DEGs given in the Supplementary Material (**Figure S2**) since the stochasticity in eATP stimulation generates a separate branch for the 6 min stochastic oscillation. Most distinct genes between state 1 and 2 are e.g. *FTH1* (upregulation of ferritin heavy chain 1 in state 2), *EIF1*

(upregulation of Eukaryotic translation initiation factor in state 2), *MRPS6* (upregulation of 28S ribosomal protein S6 in state 2), *ZFAS1* (upregulation of *ZNFX1* antisense RNA 1 in state 2).

Figure 26. BEAM analysis graph showing eATP stimulated HMLER cells from control, 2 min oscillation, 6 min oscillation and 6 min stochastic oscillation condition (EXP2). Graph A exhibits involvement of cells from different conditions into each dynamical state. Graph B shows the “state” identities on the transitioning state space. Numbers indicate the possible branching points of the process.

5.3.3 Analyses of biological processes

In order to better understand the biological implications of these changes in gene expression, we used the “Go Enrichment Analyses” tool (<http://geneontology.org>) considering separately up- and downregulated sets of DEGs (with their corresponding q-value) between conditions. This allowed us to extract lists of different biological processes with their significance scores. Obtained processes per condition are shown in Supplementary Material (**Table S2**).

When comparing all eATP stimulated samples to the control condition, we can observe high involvement of “cell cycle” (GO:0007049, 0022402, 1903047) and “chromosome and organelle organization” (GO: 0051276, 0006996) processes in each condition indicating that even with the 6 min intervals between spikes, we are able to maintain those functions on a

significant level (Erlinge, 1998). In similar fashion we observed downregulation of genes involved in “protein transport, metabolism and targeting” (GO: 0006810, 0070972, 0006614, 0072599, 0006613, 0045047, 0006518, 0006612). Additionally, we found downregulation of processes involved in “cell death” (GO:0008219, 0012501, 0010941, 0043067).

As further interesting observations when investigating “regulation of cell cycle arrest” (GO:0071156) and “positive regulation of cell cycle arrest” (GO: 0071158), we detected upregulation in constant, 1 min and 2 min eATP oscillations, but no significant difference for 6 min eATP oscillations. However, in 6 min stochastic spiking we found again significant upregulation. “Cellular component assembly” (GO:0022607) and “cellular response to stress” (GO:0033554) exhibited the same response pattern.

A number to processes are only upregulated in the 1 min oscillation and 6 min stochastic oscillation conditions, such as "protein acetylation", "protein acylation", "internal protein amino acid acetylation", "positive regulation of histone ubiquitination", "type I interferon production" (GO:0006473, 0043543, 0006475, 0033184, 0032479). Additionally, we notice that "protein autophosphorylation" (GO: 0046777) was present in cells from 2 min oscillations and 6 min stochastic spiking.

On top of that we noticed that some of the processes were uniquely upregulated in the 6 min stochastic spiking condition like: "androgen receptor signaling pathway", "histone exchange", "positive regulation of histone phosphorylation" (GO:0030521, 0043486, 0033129). Another interesting process is “microtubule-based movement” (GO:0007018), which is only present when we stimulate cells with slow oscillations of 2 min and 6 min periods and stochastic spiking with an average period of 6 min.

When investigating epithelial processes, we noticed downregulation of “epithelial cell differentiation” and “epithelium development” processes in all conditions after stimulation (GO:0030855, 0060429) with a high confidence p-value. Surprisingly, we found upregulation of “epithelial cell differentiation” and “response to epidermal growth factor” (GO:0009913) in for the 2 min oscillations. Other epithelial processes were present also in 1 min oscillation and 6 min stochastic oscillation conditions showing upregulation of

"endodermal cell differentiation" (GO:0035987), while no significant MET-related processes were detected.

For mesenchymal processes, the GO analysis identified upregulation of "mesenchymal cell proliferation" (GO:0060916) for constant eATP stimulation and upregulation of "mesenchymal cell differentiation" (GO: 0048762) for the 2 min oscillation condition.

Additionally, we noticed changes in the "Wnt signaling pathway" (GO:0016055), which is significantly upregulated for 2 min oscillation and 6 min stochastic spiking condition. Furthermore, the 6 min stochastic spiking has also activated a "non-canonical Wnt signaling pathway" (GO:0035567).

I have performed all laboratory experiments and data analyses presented in the result section (Section 5). Methods developed by me have been specified in the methods section (Section 4).

6 Discussion

Signal transduction is the key mechanism by which cells sense their environment and adapt to it. Hence it is not only a fundamental aspect of cellular function but also the foundation of multicellularity because it allows cells to develop into specialized cell types building organs and to coordinate a complex organism. For these epigenetic mechanisms, a plethora of spatiotemporal stimuli are interpreted and translated into orchestrated cell fates.

Single cell RNA-seq technology allows us now to decipher subtle cell signaling implications in a more untargeted way. We are able to evaluate changes in the whole transcriptome on a population level. Having this in mind we developed a perfusion setup, by which we have challenged cellular signaling system and engage in attempt to understand dynamics of those changes.

The goal of this thesis was to investigate the importance of concrete stimuli dynamics in information transduction. Since it is becoming more and more apparent that population averaged readouts tend to inadequately illuminate the complex dynamics and heterogeneity of cellular responses (Longo & Hasty, 2006), we investigated a specific signal transduction model of cell fate transition at the single-cell level. As a model system we used the HMLER cell line, as it accurately reflects the transition interplay between epithelial and mesenchymal cells in breast cancer. To perturb and study this trans-differentiation process, we investigated the effect of well-controlled extracellular ATP-driven Ca^{2+} signaling on cell fate dynamics by single-cell transcriptome measurements. From this high-dimensional data, we were able to define in detail the “dynamical states” in the spectrum of the epithelial and mesenchymal subpopulations (Grosse-Wilde et al., 2015). Interestingly, current findings indicate that cells undergoing partial EMT, which express stem markers in an epithelial context, are the major contributors to cancer metastasis (Saitoh, 2018). Therefore, we focused our analysis particularly on genes and pathways related to EMT, MET, stress, immunity and cell cycle, as

these are often connected in cell signaling of developing cancer (Suarez-carmona, Lesage, Cataldo, & Gilles, 2017; Wesley, Bove, McCarthy, & Der, 2007; Y. Yang, Pan, Lei, Wang, & Song, 2006).

By investigating changes of the HMLER cell line gene expression pattern after perturbations, we first confirmed the stability of the E and M subpopulations, and the recovery of the missing subpopulation after separation by measuring the expression of the CD44 receptor (Section 5.1.1). Although we have observed some variation in the balance between E and M subpopulations in cell culture, the 1:1 ratio tends to be recovered in the used condition. Furthermore, the recovery dynamics of the subpopulations could be explained by the paracrine signaling interplay between E and M cells.

Many publications describe ATP as a life-death signal (Valladares et al., 2013). Under normal conditions, ATP is present at high concentrations (5–10 mM) within cells and at very low concentrations in the extracellular healthy tissue (10–100 nM). However, within tumor microenvironments, extracellular ATP (eATP) concentrations can reach hundreds of micromoles and this is being read by cells as a “danger signal” (Allard, Longhi, & John, 2017).

When evaluating the effect of eATP in HMLER cells after 48 h, we observed a higher ratio of CD44+ fraction. Surprisingly, when cells were treated with periodically transient eATP, we noticed a lower ratio of the CD44+ fraction (Section 5.1.2). This finding indicates that epithelial subpopulation is more sensitive to longer eATP treatment. This is further supported by the observation of longer duration of Ca^{2+} spikes in epithelial cells after each eATP pulse (Section 5.1.3).

An important pathway regulated by Ca^{2+} dynamics is the P2X/P2Y- Ca^{2+} -calmodulin-calcineurin pathway, which consequentially activates proteins of the NFAT family. By using our targeted single-cell approach (Section 5.1.4), we were able to evaluate the presence of *NFATc4* transcription variant and its association to the mesenchymal fraction by its correlation to the *PCOLCE* gene and the anti-correlation to *CDH1*. Gene expression of the Protein Phosphatase 5 (*PPP5C*) is one of the downstream targets of *NFATc4*, which has been shown to participate in the response to hormones and cellular stress. Elevated

levels of this protein seem to be associated with hypertrophy, breast cancer development and modulation of TGF β responses (Bruce, Macartney, Yong, Shou, & Sapkota, 2012). In our data, the expression levels of *PPP5C* (**Figure S1B**) are higher in the M subpopulations in a dose response dependent manner, as we observed its downregulation in 20 μ M eATP and significant upregulation at 100 μ M. Expression of *NFATc4* is also controlled by *CITED2*, which governs migration and invasiveness (Jayaraman, Doucet, Lau, & Kominsky, 2016; Qiang Li, Diana L. Ramírez-Bergeron, Sally L. Dunwoodie, 2012), and we detected a corresponding upregulation in the M subpopulations (especially in clusters 6 and 10 in **Figure S1B**) for 20 μ M and 50 μ M constant eATP stimulation.

We further tested expression of other genes significantly changed by various constant concentrations of eATP in the medium (Section 4.2). From these genes, the *ARID5B*, which is a novel transcriptional co-regulator for *Sox9* (Hata et al., 2013), exhibits a consistent increase with increasing eATP concentration (**Figure 13**). Knockdown of *SOX9* seems to inhibits proliferation, invasion and EMT (Huang & Guo, 2019) whereas the increase of *ARID5B* (**Figure 13**, Cluster 6 and 10) together with increased *SOX9* expression could lead to Notch1-induced mesenchymal features of cells. *DUSP10* is another gene identified as a critical factor involved in the metastatic progression through phosphatase-mediated activation of the ERK pathway (Ng et al., 2017).

When expression of Early Growth Response 1 (ERG1) protein drops, it has been reported that non-small-cell lung cancer tissue cells acquire mesenchymal phenotype and migration capabilities (Shan et al., 2015). Gene *FOSL2* seems to positively regulate EMT, inducing TGF- β 1 pathway in the same lung cancer type (Junfeng Wang et al., 2014). Our data shows highest expression and expression increase in Clusters 6 and 10.

Next we identified the *HDAC5* gene, which seems to be upregulated in dependence on eATP, and according to literature promotes malignancy through a *miRNA-589/HDAC5* pathway (Liu, Lv, Li, & Zhang, 2017). Similar to *ARID5B*, the highest response is visible in Clusters 6 and 10. *ID3* is a particularly interesting gene in EMT as it defines the potency of cell

differentiation and proliferation. Knockdown of *ID3* in epithelial cells is sensitizing cells to BMP, which consequently leads to robust growth inhibition and induction of transdifferentiation (Kowanetz, Valcourt, Bergstro, & Heldin, 2004). In our study, *ID3* expression seems to be steadily growing with increasing eATP concentration (especially in M subpopulations, **Figure 13**), which could lower M cell migration and the probability of EMT.

IRS2 interacts with DVL2 and stabilizes it by suppressing its degradation, leading to promotion of Wnt/β-catenin-mediated EMT and cell proliferation (Geng et al., 2014).

It was recently documented that Metallothionein-1G (MT1G) suppressed tumor invasion and EMT through regulating the expression of matrix metalloproteinase family (MMP) (Zeng et al., 2018). In our case eATP seems to downregulate *MT1G*, and consequentially could promote EMT.

We also focused on DEG, which could contribute to cellular oxidative stress, apoptosis or are involved in immunological responses. We noticed that stimulation with eATP causes expression of Interleukin 6 (*IL-6*) gene in a concentration-dependent manner (**Figure 14**) in agreement with findings in the literature (Ihara, Hirukawa, Goto, & Togari, 2005). Consequentially IL-6 drives expression of *CD55*. Translation of this protein prevents excess complement activation and is a way to protect cells from damage (Dho, Lim, Kim, & Kim, 2018). Gene *CLEC2D* encodes for the receptors for KLRB1 protein, and protects against natural killer cell-mediated lysis. *CLEC2D* downregulation in our data would make cells susceptible to NK-cells (Mathew, Chaudhary, Powers, Jamboor, & Mathew, 2016). Another factor, which triggers immune cells to tumor microenvironment is CXCL1, a protein that exhibits neutrophil chemoattractant activity and additionally is also associated with migration inhibition (Wen et al., 1997). Interestingly, already at intermediate eATP concentration, we observe that the M population having this gene downregulated whereas E cells seems to have opposite trend.

We further detected many genes, which are more directly involved in apoptosis regulation, such as *ENDOG*, *IER3*, *ITRIP* or *TXNIP*. In case of *ENDOG*, it induces caspase-independent apoptosis via DNA degradation or oxidative stress. It is believed to be an important constituent implicated in cancer, aging, and neurodegenerative diseases such as Parkinson's disease

(Büttner et al., 2013; Pote, 2012). In our data we can see significant upregulation only when we apply 50 or 100 μ M eATP treatment. Radiation-inducible immediate-early IEX-1 gene (*IER3*) on the other hand protects cells from induced apoptosis caused by Fas or tumor necrosis factor type alpha. Inositol 1,4,5-Trisphosphate Receptor Interacting (*ITPRIP*) is another gene involved in cell death when downregulated. This mechanism is performed by enhancing Ca^{2+} -mediated inhibition of Ca^{2+} release form IP_3R (Kwon et al., 1978; Simino et al., 2017). In our data, we observed upregulation in all cells, especially in all E clusters and Cluster 3 from the M population. Another important protein, which regulates cellular redox signaling and protects cells from oxidative stress, is TXNIP (G. Xu, Chen, Jing, & Shalev, 2012). Expression of this gene strongly influences cytoplasmic Ca^{2+} increase (Gab Seok Kim, Joo Eun Jung, Purnima Narasimhan, Hiroyuki Sakata, 2013). In our data, upregulation of *TXNIP* expression strongly correlates with an increase of eATP concentration (**Figure 14**), as well as with shortening of ISI for oscillatory treatment. This downregulation in gene expression with longer ISI in deterministic oscillations (6mO) is opposed by eATP stochastic spiking (6mS) (**Figure 19**).

When imposing different calcium profiles on HMLER cells (**Figure 15**), we observed an increasing number of DEGs compared to the control conditions for decreasing oscillatory periods of Ca^{2+} spikes. This might have been expected because cells can interact with more stimuli in the same treatment period (**Figure 17**) (Zhu et al., 2011). It has also been reported that with different periods different signaling pathways can be activated (Smedler & Uhlén, 2014) and that some pathways are more precisely activated by oscillations (Dolmetsch et al., 1998; Hogan, Hogan, Chen, & Chen, 2003; Nelson, 2004).

Interestingly, we found dramatic changes in the number of DEGs when changing from a deterministic oscillation pattern to a stochastic spiking behavior with the same average period of eATP activation. This finding suggests an additional layer of information encoding in the dynamics of signaling molecules like Ca^{2+} (Skupin et al., 2010). Although there are many interesting genes and pathways modulated by this stochastic dynamics (**Table**

S2), the focus was put on those related to breast cancer development and EMT. The gene *ID3* is a tumor suppressor, which promotes cell adhesion (Nair, Teo, Mittal, & Swarbrick, 2014). In our data, we found that *ID3* expression is steadily increasing with higher persistent concentration of eATP. This tendency seems to be abolished or even expression downregulated when applying 1, 2 or 6 min oscillatory stimulation (**Figure 18, 19**). Surprisingly, for 6 min stochastic stimulation, we observed a recovery of *ID3* expression. It is further interesting that some genes like *IER3* have the highest expression with long oscillatory ISI periods (6minO) and a similar trend can be observed for *HDAC5*, *IRS2* and *CD55* genes.

By comparing pure E and M populations for 1 min deterministic oscillations, we identified that the upregulation of *CD55* expression is mainly coming from the enriched E fraction (**Figure 23**), while upregulation of the *CXCL1* chemoattractant gene is induced mostly from the enriched M fraction. Another interesting gene strongly downregulated in the E fraction is the Hes Family BHLH Transcription Factor 1 (*HES1*). *HES1* is a transcription repressor (downstream of the Notch pathway) and also inhibits proliferation and migration under oxidative stress (L. Xu et al., 2017). Surprisingly, the eATP dose response had no effect on its expression, but when we triggered 1 min deterministic oscillations, we found a significant downregulation in the E fraction. This type of stimuli dynamic could potentially contribute to EMT phenotype under stress. Another gene strongly downregulated in the 1 min oscillatory condition in M cells is the Cellular Communication Network Factor 1 (*CYR61*). This protein promotes adhesion, matrix deposition, stemness, but also promotes EMT by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling (Hou, Lin, Hou, & Liu, 2014). In dose response experiments, we observed a consistent decrease in *CYR61* expression when eATP constant concentration was increasing. A significant downregulation is also visible in 1, 2 min oscillatory and 6 min stochastic oscillation conditions (**Figure S3A**) whereas 6 min oscillation seems not to suffer from downregulation. Another highly upregulated protein in the E subpopulation in 1 min oscillation condition is Follistatin (*FST*), which is hindering proliferation as an Activin antagonist (Antsiferova et al., 2009). Again, dose response did not affect significantly *FST* expression,

but for increasing oscillation periods we identified a dramatic increase in *FST* expression, which could consequentially slow down proliferation of E cells (Figure S3B).

Similar increases in expression levels in dependence on increasing ISI periods were found for other genes as shown in the Supplementary Material including the bone morphogenetic protein receptor type 2 (BMPR2), which promotes metastasis by RhoA-ROCK-LIMK2 pathway (S. Wang, Ren, Jiao, Huang, & Bao, 2017). The Tight Junction Protein 1 (TJP1) also follows exactly the same trend, and its upregulation is associated with TGF- β induced migration (Yoon, Kim, Lee, & You, 2015). Also, the Transducer Of ErbB-2 1 (TOB1) as a proliferation inhibitor (Jiao et al., 2011) exhibited a similar trend, even if the dose response experiments showed a steady increase with eATP concentrations.

In the branching analyses of 1 min deterministic oscillation (Figure 24, 25), we notice a change in the distribution of mesenchymal cells between different “dynamical states”. Characterizations of those states were based on the “*differentialGeneTest*”, and we found downregulation of genes, such as TIMP, which is a inhibitor of the matrix metalloproteinases (MMPs), a group of peptidases involved in degradation of the extracellular matrix. Also downregulation of TMSB4X would potentially slow down proliferation and migration. Additionally, we observed downregulation of S100A6, which is a Ca^{2+} binding dependent protein promoting proliferation and migration of tumors by β -catenin signaling (X. Chen et al., 2015). Those observations would suggest that 1 min oscillation with eATP could carry some potential protective processes slowing down metastatic development.

Another interesting difference of expression profiles were identified between the 6 min deterministic oscillatory and 6 min stochastic eATP stimulations. The shift between state 1 and 3 (mostly in the 6 min oscillation condition) and state 2 (mostly in the 6 min stochastic oscillation condition) can be characterized by expression of genes such as *DST*, which governs assembly of hemidesmosomes of epithelial cells (downregulated in state 2).

Downregulation of *FTH1* seem to be associated with state 2 and has been linked in the past to inhibition of apoptosis (Y. Chen et al., 2016). *ZFAS1* is a lncRNA upregulated in state 2, it promotes tumor development through regulation of miR-150 (He, He, Li, & Zhou, 2019). Additionally, many ribosomal-related genes seem to be upregulated in state 2 (**Figure S1**).

For a more systematic investigation, we then used GO pathway analyses to integrate the different DEGs into a coherent perspective (Section 5.3.3). In particular, we observed distorted signaling in histone modifications and in the canonical and non-canonical Wnt signaling pathways for the stochastic spiking with 6 min average period compare to other conditions. We also observed significant upregulation of pathway involved in androgen receptor signaling (GO:0030521), which in clinical breast tumor studied is often associated with motility and progression of the diseases (Giovannelli, Donato, Galasso, Zazzo, & Bilancio, 2018). Hence, stochastic eATP-induced Ca^{2+} signaling seems to be harmful in breast cancer if our HMLER model system reflects the *in vivo* physiology.

As we can see from this data, timing does matter when constant, oscillatory or stochastic stimulation with eATP is applied. Additionally, we could also notice that EMT related genes are uniquely modulated with those different dynamic setting. Cells associated with a particular state or cluster have been defined as risk genes. Oscillatory treatment seems to partially lift the expression burden of stress related genes by decreasing expression of some genes like *ENDOG* or by upregulating protective genes like *IER3*. But on the other hand, 6 min stochastic spiking induces larger diversification of the cell when compare to 6 min deterministic oscillation. Stochastic dynamics seems to induce larger diversification of responses and expresses 80% more DEG than 6 min deterministic oscillations when compared to the control condition.

I believe that 6 min deterministic oscillation with its eATP induced Ca^{2+} profile would be interesting conditions to test for tumor initiating potential. The reasoning for this hypothesis would be based on the observation of a lower number of upregulated apoptotic genes, and the upregulation of some key stemness and EMT genes such as e.g. *CYR61*. On the other hand, 6 min

stochastic oscillation with its eATP induced Ca^{2+} profile induce wide range of genes expressed, and might promote cells to become a melting pot in tumor microevolution processes such as immune evasion.

7 Outlook

Cell signaling is a way to control epigenetic modifications, which are responsible for the establishment, maintenance and reversal of transcriptional states. Epigenetic modifications are fundamental for the development of multicellularity, adjustments to external environment or the cell's ability to "remember" past events. They have been reported in many disorders related to behavior plasticity, immunity, memory, cancer, addictions as well as psychological and neurodegenerative disorders (Moosavi & Ardekani, 2016). Hence, cellular signaling is a complex system which is not only governed by the number of components moving towards one pathway, but also by timing at which each of these components are interacting with one another.

As future steps, I would focus more on de-convoluting input signals by using stimuli that trigger a narrower downstream signal (such as specific high K_d (Dissociation constant) receptor antagonist, or modulating membrane action potential). This would allow for a better definition of the input-output relationship. Additionally, it would allow me to better describe the interactions between the components throughout the signaling pathways.

Although investigating transcriptomes offers enormous amount of information we need to keep in mind that not all genes will be translated into functional proteins. Having this in mind we plan to link gene expression profiles with measurement of cellular surface protein markers by using recently established Cite-seq technology in our lab (Mimitou et al., 2018). I believe that surface protein information will allow us to add additional dimension in understanding differentiation and transition processes. With the protein information we could get much better understanding of the state of the cell required for some transition processes to occur.

Generated stimuli-response data in this thesis could be used to highlight and link "dangerous states" of cancerous tissue, which are at risk of EMT in a particular environmental condition. Further, this knowledge could be evaluated *in vivo* (e.g. mouse model) by targeting or blocking those "dynamic states". Guiding transcription in a more refined manner could potentially also contribute to improvements in protocols used in iPSCs differentiation or transdifferentiation. By involving stochastic or oscillatory dynamics in cell

simulation by potentially modulating pathway responses of critical factors like e.g. c-Myc, Oct-3/4, SOX2 or KLF4.

Although there is still a lot of effort needed in order to understand and decode this dense machinery of cellular signaling, I believe that the result of this thesis on the specific EMT model demonstrates that this is a promising approach to take if one wants to tackle complex diseases like breast cancer or neurodegenerative diseases.

Appendix

Supplement table S1.

(Top 1000 DEG in eATP dose response experiment)

Gene short name	P-val	Q-val	Number cells expressed
AREG	>1xE-350	>1xE-350	8232
AVP1	>1xE-350	>1xE-350	5232
CD55	>1xE-350	>1xE-350	5052
CHMP1B	>1xE-350	>1xE-350	6280
CTGF	>1xE-350	>1xE-350	6069
CXCL1	>1xE-350	>1xE-350	3128
DUSP1	>1xE-350	>1xE-350	6336
DUSP6	>1xE-350	>1xE-350	4285
ID3	>1xE-350	>1xE-350	5742
NBEAL1	>1xE-350	>1xE-350	8160
NR4A1	>1xE-350	>1xE-350	2397
SPN	>1xE-350	>1xE-350	7660
STC1	>1xE-350	>1xE-350	3749
TSC22D1	>1xE-350	>1xE-350	7885
TXNIP	>1xE-350	>1xE-350	4251
ZNF90	>1xE-350	>1xE-350	7878
AL136454.1	>1xE-350	>1xE-350	5676
PDE4D	2,18E-319	4,06E-316	3900
UCQLRH	3,62E-294	6,39E-291	4172
ETS2	3,18E-284	5,32E-281	6109
CEBPB	7,36E-279	1,18E-275	7964
NACA2	1,27E-270	1,93E-267	3802
NHSL2	1,41E-267	2,06E-264	2806
PTX3	2,11E-248	2,95E-245	4570
HAS2	1,09E-242	1,46E-239	3004
TOB1	5,85E-237	7,54E-234	5125
CEBD	1,75E-213	2,18E-210	5575
GADD45A	6,17E-209	7,39E-206	7142
ACTB	1,61E-207	1,86E-204	8321
EGR1	5,72E-198	6,39E-195	4180
IL11	5,30E-195	5,73E-192	2215
IER3	1,42E-191	1,49E-188	7138
ZFP26L1	1,92E-190	1,96E-187	7650
RPL36	6,13E-185	6,05E-182	8321
ARID5B	6,79E-184	6,50E-181	4943
CDC42EP3	5,21E-183	4,85E-180	7633
CYR61	5,95E-177	5,39E-174	7795
PHLDA1	3,44E-172	3,04E-169	7003
SLC7A2	5,26E-170	4,52E-167	3560
MALAT1	7,36E-169	6,17E-166	6321
NEAT1	3,14E-167	2,57E-164	8142
HOXB2	3,01E-150	2,41E-147	5815
ATP5F1D	7,71E-148	6,01E-145	8314
LY6E	4,88E-145	3,72E-142	8278
IGFBP4	9,09E-144	6,78E-141	5659
JUN	1,10E-142	8,01E-140	6100
IL6	4,47E-142	3,19E-139	771
IRS2	5,93E-141	4,15E-138	4581
IER2	9,41E-141	6,44E-138	7035
CLEC2D	1,53E-139	1,03E-136	2801
MT1G	2,23E-137	1,47E-134	1903
KLF6	6,63E-136	4,28E-133	7846
FST	3,18E-135	2,01E-132	3031
MYC	5,54E-135	3,44E-132	7156
MIR222HG	5,11E-123	3,11E-120	3897
BCL7A	3,14E-122	1,88E-119	3443
RGS4	9,63E-117	5,67E-114	1508
AKAP12	4,09E-114	2,37E-111	6583
RGS2	2,90E-113	1,65E-110	1088
HMG2A2	3,51E-113	1,96E-110	8078
UQCRC1	4,34E-113	2,39E-110	8135
RPS26	5,94E-108	3,21E-105	8321
TSC22D3	1,94E-107	1,03E-104	4792
FOSL2	2,43E-106	1,38E-103	4273
FNDCA3A	7,82E-104	4,03E-101	6906
SLC26A2	3,15E-100	1,60E-97	7589
FOX51	1,15E-99	5,75E-97	1325
NR4A2	4,11E-98	2,03E-95	548
TGIF1	6,17E-96	3,00E-93	5801
AP151	6,12E-89	2,93E-86	7666
ELOB	4,02E-88	1,90E-85	8320
B3GNT5	1,74E-87	8,11E-85	6222
GAPDH	2,68E-87	1,23E-84	8321
PABPC3	9,48E-84	4,30E-81	1395
DUSP4	5,05E-82	2,26E-79	7174
CXCL8	3,34E-80	1,47E-77	839
KRT14	2,82E-79	1,23E-76	7801
CLIC1	2,76E-78	1,19E-75	8321
KRT17	9,93E-78	4,22E-75	8000
SRM	2,31E-77	9,70E-75	8191
FRMD6	2,63E-77	1,09E-74	6963
NR4A3	4,50E-77	1,84E-74	437
DRAP1	6,22E-77	2,51E-74	8296
AL161421.1	1,53E-75	6,11E-73	2592
B4GALT1	5,73E-75	2,26E-72	5439
ZFP26L2	9,37E-75	3,65E-72	8261
IRX3	8,92E-74	3,44E-71	2298
RPL28	6,11E-73	2,33E-70	8321
BRI3	5,43E-71	2,05E-68	7613
PNRC1	1,94E-70	7,23E-69	5527
NDUFS2	6,99E-70	2,58E-67	5683
CITED2	5,34E-69	1,95E-66	3374
ITPRIP	2,07E-68	7,45E-66	2472
PTOV1	3,49E-68	1,25E-65	4538
CCNB1	7,16E-68	2,53E-65	7001
PTP4A1	1,04E-67	3,64E-65	7755
SWAHC	1,83E-67	6,32E-65	4770
IRX2	3,18E-67	1,09E-64	5767
WDR66	3,60E-67	1,22E-64	2918
SET5P	9,84E-67	3,30E-64	722
BANF1	3,09E-66	1,03E-63	8072
RPS29	3,32E-66	1,09E-63	8321
PFN1	6,18E-66	2,01E-63	8321
BRIX1	8,77E-66	2,83E-63	6855
PER1	9,57E-66	3,06E-63	2963
ATF4	2,52E-65	7,99E-63	8214
S100A7	2,89E-65	9,06E-63	196
AL161431.1	3,30E-64	1,03E-61	4315
FIS1	4,79E-64	1,47E-61	8173
FKBP8	6,79E-64	2,07E-61	6911
CDC44	1,14E-63	3,44E-61	6679
ID1	4,09E-63	1,22E-60	5499

FAM83D	4.98E-63	1.48E-60	3517
SOC53	2.29E-62	6.74E-60	2187
AURKA	4.67E-62	1.36E-59	6041
ARHGAP29	4.79E-62	1.39E-59	7974
HSPA8	1.05E-61	3.01E-59	8320
MED24	1.29E-61	3.64E-59	3184
CAV1	1.62E-61	4.56E-59	8321
INHBA	4.07E-61	1.14E-58	5649
ENDOG	5.34E-61	1.48E-58	3005
RERP1	7.89E-61	2.17E-58	6353
EIL2	8.42E-61	2.30E-58	4923
SERPINE2	1.78E-60	4.81E-58	6201
MIDIN	3.89E-60	1.04E-57	4183
PPP1R14B	5.40E-60	1.44E-57	8277
EMP1	7.76E-60	2.05E-57	7446
EREG	1.26E-59	3.29E-57	3996
CREM	4.36E-59	1.13E-56	5956
SGK1	2.75E-58	7.08E-56	6219
CALM2	4.86E-58	1.24E-55	8321
RHOB	1.12E-57	2.84E-55	5124
BDNF	1.57E-56	3.95E-54	1698
PLPP3	2.72E-56	6.82E-54	998
SNHG25	3.13E-56	7.77E-54	5183
AC006058.1	5.42E-56	1.34E-53	3234
RAB5C	7.00E-56	1.71E-53	7793
CENPA	2.32E-55	5.63E-53	4793
SERPINB2	2.92E-55	7.05E-53	433
ZNF428	3.28E-55	7.81E-53	6421
FOS	3.28E-55	7.81E-53	4040
S100A13	8.42E-55	1.99E-52	8310
STUB1	1.48E-54	3.48E-52	8223
VAMP2	3.16E-54	7.37E-52	4718
FGF5	7.18E-54	1.64E-51	3934
PHF20	8.26E-54	1.90E-51	7688
CREB5	1.10E-53	2.50E-51	2097
IGFBP2	6.63E-53	1.50E-50	3346
ARF5	7.04E-53	1.58E-50	3459
POLR2L	1.38E-52	3.09E-50	8320
BAX	1.69E-51	3.76E-49	8181
CRCT1	2.96E-51	6.54E-49	171
RGCC	4.36E-51	9.56E-49	1114
TIPARP	1.42E-50	3.09E-48	5258
RPS28	1.63E-50	3.54E-48	8321
ARL6IP4	1.93E-50	4.14E-48	8321
RP510	4.36E-50	9.31E-48	8321
CAPG	6.80E-50	1.44E-47	6490
ATG101	1.45E-49	3.05E-47	7370
IL24	1.18E-48	2.47E-46	716
BCL7C	1.67E-48	3.48E-46	7489
ANKRD37	1.73E-48	3.57E-46	2465
ZBTB38	2.86E-48	5.89E-46	7177
KPNA2	2.96E-48	6.06E-46	7612
MT_C02	4.26E-48	8.66E-46	8321
DDIT4	5.07E-48	1.02E-45	7880
HERPUD1	6.01E-48	1.21E-45	7278
MRPL2	1.03E-47	2.06E-45	5072
CTS2	2.01E-47	3.99E-45	7863
TKT	2.21E-47	4.35E-45	8317
MT_C01	2.59E-47	5.08E-45	8321
AL355596.1	3.40E-47	6.64E-45	477
SPHK1	1.38E-46	2.67E-44	8026
NFIL3	4.76E-46	9.17E-44	1773
RPS3	7.93E-46	1.52E-43	8321
OSBP2	1.90E-45	3.61E-43	1282
CARHSP1	5.46E-45	1.03E-42	8013
INSIG1	1.67E-44	3.14E-42	8134
PKM	2.43E-44	4.56E-42	8321
CXCL3	4.62E-44	8.61E-42	1666
ATP5MF	7.28E-44	1.35E-41	8308
AC004817.3	9.52E-44	1.75E-41	565
UBE2S	1.01E-43	1.84E-41	8041
HIST1H4C	2.24E-43	4.09E-41	7515
PGM2L1	2.52E-43	4.56E-41	3317
ANXA1	3.82E-43	6.89E-41	8309
PIK3R1	6.08E-43	1.09E-40	6008
PPP1R3B	7.21E-43	1.29E-40	1204
KLF5	1.52E-42	2.71E-40	3276
HJURP	3.02E-42	5.33E-40	2493
MT2A	3.50E-41	6.14E-39	8321
PLAU	4.79E-41	8.37E-39	6372
DUSP10	4.96E-41	8.63E-39	1744
SFRP1	5.48E-41	9.47E-39	3052
EVA1C	1.57E-40	2.70E-38	4105
ZBTB16	3.30E-40	5.64E-38	2531
HS5P90AA1	5.20E-40	8.85E-38	8320
ADPRHL1	5.59E-40	9.47E-38	765
LDLR	9.44E-40	1.59E-37	6637
MCL1	1.49E-39	2.48E-37	7965
CDC48	2.44E-39	4.07E-37	3612
SLC2A3	3.17E-39	5.26E-37	2331
ATP1A1	3.23E-39	5.23E-37	7056
LDHB	4.28E-39	7.03E-37	8321
MT1E	4.51E-39	7.37E-37	8314
NNMT	8.85E-39	1.44E-36	8256
PID1	1.23E-38	1.99E-36	3000
KIF23	1.94E-38	3.13E-36	4887
ADIRF	2.48E-38	3.98E-36	7779
NOV	2.94E-38	4.69E-36	2866
TUBA1C	2.97E-38	4.73E-36	8298
PAXX	3.92E-38	6.19E-36	6309
GRAMD1B	6.65E-38	1.05E-35	210
ERF	8.13E-38	1.27E-35	2975
PLK2	9.15E-38	1.43E-35	3545
NPTX1	1.72E-37	2.67E-35	131
MGST1	1.90E-37	2.94E-35	8319
TFAP2C	2.14E-37	3.30E-35	2812
MFGE8	2.39E-37	3.66E-35	5537
VMP1	3.51E-37	5.35E-35	8078
ADAMT51	4.73E-37	7.18E-35	1057
BSG	7.50E-37	1.13E-34	8288
STIP1	8.98E-37	1.35E-34	7463
ATP5ME	1.08E-36	1.62E-34	8280
NR3C1	1.19E-36	1.74E-34	7444
ARHGDI1	1.76E-36	2.61E-34	8134
HHIP_A51	2.13E-36	3.15E-34	3864
THUMPD3_A51	3.33E-36	4.89E-34	7317
NDUFA3	5.13E-36	7.51E-34	6710
EDARADD	5.29E-36	7.72E-34	1115
ARL4D	6.36E-36	9.24E-34	3269
HDAC5	9.99E-36	1.44E-33	1401
ASPM	1.06E-35	1.53E-33	5220
YWHAH	1.09E-35	1.57E-33	8201
PSRC1	2.34E-35	3.34E-33	2750
CHD9	3.15E-35	4.48E-33	7145
PDIA3	3.54E-35	5.01E-33	8294
RGS17	8.98E-35	1.27E-32	5329
USP53	9.72E-35	1.36E-32	4530
SMURF2	1.00E-34	1.40E-32	4734
HIPK2	1.25E-34	1.74E-32	5836

FHL3	1.73E-34	2.40E-32	6679
DGCR6L	2.06E-34	2.84E-32	6840
PDE7B	2.24E-34	3.08E-32	1220
LAMB3	2.86E-34	3.92E-32	5807
MRPL23	2.98E-34	4.06E-32	7707
TRAF4	5.54E-34	7.52E-32	6294
NUPR1	9.53E-34	1.29E-31	3798
EPN1	9.69E-34	1.30E-31	5527
PFDN2	1.04E-33	1.42E-31	9283
YTHDF2	1.20E-33	1.61E-31	7291
CENPE	1.31E-33	1.74E-31	4722
PGK1	1.39E-33	1.84E-31	6292
C19ORF33	1.63E-33	2.15E-31	8118
KR17	1.91E-33	2.51E-31	8318
G6PD	2.25E-33	2.95E-31	6432
SDFL2L	2.49E-33	3.25E-31	8160
RPL10	2.50E-33	3.25E-31	8321
BCL3	3.95E-33	5.12E-31	990
F3	8.26E-33	1.06E-30	7015
DEPD1	8.31E-33	1.06E-30	3901
ATP2B1	8.32E-33	1.06E-30	8275
ZEB1	8.88E-33	1.13E-30	3629
SGO2	8.93E-33	1.13E-30	4290
PSMA3	9.33E-33	1.18E-30	8233
JUND	9.52E-33	1.20E-30	1892
TPX2	1.06E-32	1.33E-30	6869
IRX1	1.28E-32	1.61E-30	1255
RIN2	1.55E-32	1.93E-30	4372
KLF9	1.72E-32	2.13E-30	1571
TUBB2A	2.54E-32	3.14E-30	7428
RGMB	3.82E-32	4.72E-30	2886
H1FX	7.26E-32	8.92E-30	5176
TRIB1	9.11E-32	1.11E-29	2185
ALDOA	9.28E-32	1.13E-29	4782
RPS9	1.39E-31	1.49E-29	9221
TPPT	2.54E-31	3.08E-29	4405
FN1	3.11E-31	3.76E-29	8319
KIF20B	3.26E-31	3.92E-29	6168
CD99	4.97E-31	5.95E-29	8066
ZNF331	5.01E-31	5.98E-29	1554
OTUB1	7.32E-31	8.71E-29	6299
CKS2	1.43E-30	1.70E-28	8284
FOSL1	1.96E-30	2.31E-28	5327
S100A4	2.64E-30	3.10E-28	6385
MDH1	3.26E-30	3.82E-28	8067
PRDX1	3.61E-30	4.22E-28	8321
GADD45B	4.12E-30	4.80E-28	5833
NA2A20	6.41E-30	7.44E-28	8287
CD63	7.44E-30	8.60E-28	8321
RAN	9.53E-30	1.10E-27	8321
MAD2L1	1.30E-29	1.49E-27	6664
SRSF2	2.01E-29	2.30E-27	8282
HMGCS1	2.06E-29	2.35E-27	7100
SERPINE1	2.59E-29	2.94E-27	7943
LINC00707	3.50E-29	3.97E-27	3284
SCAND1	3.73E-29	4.21E-27	8269
HMRR	3.98E-29	4.48E-27	4430
PRDX2	4.00E-29	4.49E-27	8227
PRSS23	4.90E-29	5.48E-27	8264
EMD	9.76E-29	1.09E-26	7631
SLC3A2	1.08E-28	1.20E-26	7874
TNS4	1.51E-28	1.67E-26	3537
EEF1E1	1.72E-28	1.90E-26	8091
PPAN	2.96E-28	3.26E-26	5856
DMBT1	3.73E-28	4.09E-26	375
REL	4.99E-28	5.45E-26	3397
NM4	6.09E-28	6.63E-26	6346
SDC4	8.13E-28	8.82E-26	5136
AC008491.3	8.89E-28	9.62E-26	2722
THBS1	9.01E-28	9.71E-26	8059
PSMC3	1.54E-27	1.66E-25	8140
ERGIC3	1.64E-27	1.75E-25	8178
PRRX1	1.86E-27	1.99E-25	4770
NDUF58	1.93E-27	2.05E-25	8307
WDR43	2.18E-27	2.31E-25	7200
MARCKS	2.53E-27	2.68E-25	6226
DCAF13	2.94E-27	3.10E-25	7754
MKI67	3.11E-27	3.27E-25	6712
ERGIC1	3.12E-27	3.27E-25	7047
TECR	3.55E-27	3.70E-25	7942
SMOX	3.65E-27	3.80E-25	1116
RAB31	4.92E-27	5.11E-25	6154
TIMP1	5.24E-27	5.42E-25	8316
DCXR	5.31E-27	5.48E-25	7236
GPX4	5.36E-27	5.51E-25	8279
BNC1	6.76E-27	6.93E-25	4863
JARID2	7.04E-27	7.20E-25	3919
KLF3	7.07E-27	7.21E-25	4927
KRT8	7.19E-27	7.30E-25	5027
PLAUR	8.51E-27	8.62E-25	5951
KRTCAP2	8.73E-27	8.82E-25	5747
IL1R1	1.09E-26	1.10E-24	1467
HHIP	1.13E-26	1.13E-24	5313
MT.CYB	1.45E-26	1.45E-24	8321
GDF15	1.91E-26	1.90E-24	1113
MFSD2B	2.12E-26	2.11E-24	1269
MRLP50	2.17E-26	2.16E-24	7923
NDUF9B	2.23E-26	2.20E-24	8321
AC006480.2	2.29E-26	2.26E-24	1618
KNSTRN	2.90E-26	2.85E-24	6084
ATP5MGL	3.16E-26	3.10E-24	1408
CREB3L2	3.79E-26	3.71E-24	4232
TOMM5	4.39E-26	4.28E-24	5939
TPGS1	4.76E-26	4.63E-24	4055
ATP1B3	6.10E-26	5.91E-24	8256
IRF1	7.04E-26	6.80E-24	2946
RCE1	7.40E-26	7.13E-24	2291
CADM3	8.75E-26	8.40E-24	5257
MAZ	9.95E-26	9.53E-24	4365
TOB2	1.01E-25	9.64E-24	5068
ARF4	1.02E-25	9.75E-24	8153
ASNA1	1.18E-25	1.12E-23	7281
TRAPPC1	1.69E-25	1.60E-23	7944
TIPIN	1.80E-25	1.70E-23	5242
PRR15	1.94E-25	1.83E-23	4180
SLC25A3	2.16E-25	2.03E-23	8321
HM13	2.26E-25	2.11E-23	7463
MRPL13	2.26E-25	2.11E-23	8272
RPL36A	3.06E-25	2.85E-23	8320
PRSS3	4.44E-25	4.13E-23	8278
DUSP5	4.58E-25	4.24E-23	2633
PTPN1	5.58E-25	5.16E-23	7871
APOE	6.56E-25	6.04E-23	675
RALY	8.55E-25	7.86E-23	8157
TRMT10C	8.98E-25	8.22E-23	6817
KLF4	9.72E-25	8.89E-23	3265
COL4A2	1.05E-24	9.55E-23	7250
ID11	1.22E-24	1.11E-22	8114
SERPINB6	1.41E-24	1.28E-22	6759

ATP5PB	1.58E-24	1.43E-22	8318
MCAM	1.79E-24	1.61E-22	885
CSRP1	1.84E-24	1.65E-22	6930
SPDL1	1.98E-24	1.77E-22	6481
RPL22L1	2.12E-24	1.89E-22	8307
SLC30A1	2.19E-24	1.95E-22	2548
ERCC6	2.44E-24	2.17E-22	5460
PTMS	2.44E-24	2.17E-22	8244
HNRPNA1L2	2.51E-24	2.23E-22	1256
UBA1	3.35E-24	2.95E-22	6132
SF3B6	3.52E-24	3.10E-22	6320
CDA	3.70E-24	3.25E-22	6436
ANKRD1	3.85E-24	3.37E-22	818
AES	3.90E-24	3.41E-22	6662
C20ORF27	6.27E-24	5.46E-22	7743
SNHG9	8.34E-24	7.24E-22	2551
CPNE7	8.67E-24	7.52E-22	1833
CAPN51	9.83E-24	8.49E-22	7100
MYL12A	1.12E-23	9.68E-22	8316
E2F1	1.18E-23	1.01E-21	2330
PIP4P1	1.35E-23	1.16E-21	3905
ODC1	1.36E-23	1.17E-21	8193
S100A11	1.47E-23	1.26E-21	8321
TUBA1B	1.57E-23	1.33E-21	8320
SRP19	2.14E-23	1.82E-21	8262
PSMA2	2.76E-23	2.34E-21	8281
PYURF	3.32E-23	2.80E-21	8239
UBE2T	4.21E-23	3.55E-21	6792
GRINA	4.32E-23	3.63E-21	5333
PTP4A2	4.71E-23	3.95E-21	7629
SERTAD1	4.85E-23	4.05E-21	4645
KDELR1	4.99E-23	4.16E-21	8084
SNRNP70	7.14E-23	5.94E-21	7768
HSP90AB1	8.00E-23	6.65E-21	8321
MT.ND4L	9.01E-23	7.44E-21	5924
EIF3E	9.57E-23	7.90E-21	8321
CCL20	9.78E-23	8.06E-21	750
ZWINT	9.90E-23	8.14E-21	6960
RNF145	1.34E-22	1.10E-20	7462
C11ORF96	1.51E-22	1.24E-20	125
YTHDC1	1.76E-22	1.44E-20	6177
LAPTM4A	2.46E-22	2.00E-20	8252
KCNQ1OT1	2.55E-22	2.07E-20	3151
CSF3	2.79E-22	2.26E-20	2188
PNN	3.52E-22	2.85E-20	7870
NAB2	3.73E-22	3.01E-20	3658
MEG3	3.82E-22	3.07E-20	1136
PA2G4	4.07E-22	3.26E-20	8279
CD151	4.62E-22	3.69E-20	8267
MT.ND6	4.75E-22	3.79E-20	7951
DBF4	4.78E-22	3.81E-20	6329
SNHG15	5.79E-22	4.60E-20	6362
ROMO1	6.28E-22	4.98E-20	8250
ZC3H12C	7.69E-22	6.08E-20	2231
DKK1	8.11E-22	6.40E-20	7361
CFL1	9.49E-22	7.47E-20	8321
CBX8	1.02E-21	7.98E-20	1301
CEP170	1.07E-21	8.34E-20	4876
H1ST1H1D	1.08E-21	8.45E-20	3972
LSM6	1.14E-21	8.89E-20	7852
PHLDA3	1.15E-21	8.98E-20	6318
SIGMAR1	1.18E-21	9.14E-20	6452
PUF40	1.19E-21	9.15E-20	8018
ANKRD11	1.33E-21	1.03E-19	7869
FOXF1	1.59E-21	1.22E-19	304
COL6A2	1.59E-21	1.22E-19	4746
PPDPF	1.61E-21	1.24E-19	8320
HIVEP3	1.66E-21	1.27E-19	1934
AP2B1	1.71E-21	1.30E-19	7091
PRKCSH	1.71E-21	1.31E-19	5431
DENND3	1.86E-21	1.41E-19	1664
CBLB	1.91E-21	1.45E-19	1135
H2AFZ	2.01E-21	1.52E-19	8321
ARRDC4	2.02E-21	1.53E-19	656
RAC1	2.17E-21	1.63E-19	8321
ESD	2.44E-21	1.83E-19	8161
STXBp2	2.45E-21	1.84E-19	1731
TIMM17A	2.88E-21	2.16E-19	8280
CDK2AP2	3.29E-21	2.46E-19	6245
CALM5	3.38E-21	2.52E-19	75
DCTN6	3.60E-21	2.68E-19	7072
C16ORF74	3.66E-21	2.71E-19	6734
NIFK	4.00E-21	2.95E-19	7918
NAXE	4.00E-21	2.95E-19	7591
HGSNAT	4.37E-21	3.22E-19	2467
BCAS4	4.48E-21	3.30E-19	5938
CNBP	4.66E-21	3.42E-19	8307
GPRC5A	5.14E-21	3.74E-19	4024
B2M	5.41E-21	3.94E-19	8321
PBLN5	5.69E-21	4.15E-19	6278
EMP3	5.85E-21	4.26E-19	8305
EIF2S1	6.02E-21	4.37E-19	7900
FRMD4A	6.65E-21	4.81E-19	4897
RNF167	6.82E-21	4.93E-19	5973
PSMA1	7.27E-21	5.24E-19	8309
SPRY2	8.78E-21	6.32E-19	2480
LBH	1.25E-20	8.97E-19	550
RP515	1.26E-20	9.04E-19	8321
ZNF580	1.35E-20	9.62E-19	6286
JUNB	1.36E-20	9.68E-19	7119
MLXIP	1.63E-20	1.16E-18	4673
FSTL3	1.82E-20	1.29E-18	6713
LMF2	1.96E-20	1.39E-18	4158
NQO1	2.02E-20	1.43E-18	8293
RHOV	2.03E-20	1.44E-18	324
REEP4	2.31E-20	1.63E-18	5000
TAGLN2	2.45E-20	1.73E-18	8321
THY1	2.60E-20	1.82E-18	6719
LDHA	2.73E-20	1.91E-18	8321
EEF1D	2.74E-20	1.92E-18	8321
BCAP31	2.81E-20	1.96E-18	8165
F2D8	2.85E-20	1.98E-18	1391
UOCRFS1	2.96E-20	2.05E-18	8317
AS51	3.23E-20	2.24E-18	2020
PAICS	3.35E-20	2.31E-18	8054
FOXC2	3.59E-20	2.48E-18	3612
MED30	4.23E-20	2.91E-18	5571
CCDC88C	4.53E-20	3.12E-18	475
TSTA3	5.08E-20	3.49E-18	8005
IRF6	5.93E-20	4.06E-18	2463
SMC4	6.02E-20	4.11E-18	7624
DYNL1T1	6.03E-20	4.11E-18	8288
C120RF75	6.11E-20	4.15E-18	8290
FABP5	6.27E-20	4.26E-18	8198
PCNA	7.17E-20	4.85E-18	6971
SLC25A39	8.05E-20	5.45E-18	7756
ARPC3	9.43E-20	6.37E-18	8321
FADS2	9.54E-20	6.42E-18	4703
BPGM	9.62E-20	6.47E-18	5672

EXOSC3	1.15E-19	7.72E-18	7549
DDX5	1.27E-19	8.51E-18	8311
PRPF31	1.28E-19	8.55E-18	7559
FKBP1A	1.35E-19	9.03E-18	8318
CSAR1	1.37E-19	9.11E-18	252
PRDX3	1.45E-19	9.62E-18	8105
BAK1	1.69E-19	1.12E-17	4228
SSBP1	1.74E-19	1.15E-17	8317
SKP1	1.79E-19	1.19E-17	8321
CSENK2B	1.87E-19	1.23E-17	8213
CCT2	1.93E-19	1.27E-17	8266
HMGCB2	2.01E-19	1.32E-17	7072
LRWD1	2.12E-19	1.39E-17	2420
PYGB	2.32E-19	1.52E-17	6088
PEL1	2.71E-19	1.77E-17	768
UAP1	2.78E-19	1.81E-17	7916
PHGDH	2.84E-19	1.85E-17	6183
RRBP1	3.67E-19	2.38E-17	8205
SELENOW	3.91E-19	2.53E-17	8305
LUZP1	3.98E-19	2.57E-17	7965
CDK17	4.26E-19	2.75E-17	3458
POLR2F	4.28E-19	2.76E-17	8260
TUBA1A	4.56E-19	2.93E-17	6853
EIF4E	4.81E-19	3.08E-17	7828
RCAN1	5.42E-19	3.47E-17	2363
HNRPNA2B1	6.00E-19	3.83E-17	8321
SPC52	6.47E-19	4.13E-17	8224
IGF1R	6.53E-19	4.16E-17	3197
TUBB4B	7.90E-19	5.02E-17	8279
CPM	9.22E-19	5.84E-17	732
CCTS	1.00E-18	6.34E-17	8247
MTRNR2L1	1.02E-18	6.45E-17	371
DEPP1	1.07E-18	6.77E-17	481
CYP51A1	1.12E-18	7.07E-17	2060
KLC3	1.16E-18	7.24E-17	2316
MIF	1.19E-18	7.48E-17	8294
RPS17	1.24E-18	7.75E-17	8321
FADS3	1.27E-18	7.93E-17	4937
MZT1	1.49E-18	9.28E-17	7222
MCRIP1	1.63E-18	1.02E-16	6046
PSMC4	1.64E-18	1.02E-16	7695
MAP2K3	1.72E-18	1.06E-16	6120
SUB1	1.74E-18	1.08E-16	8321
CCT8	1.78E-18	1.10E-16	8267
LEPROT	1.81E-18	1.11E-16	7985
NCL	1.84E-18	1.13E-16	8311
TMPO	1.88E-18	1.15E-16	7070
SPRR2D	2.05E-18	1.25E-16	96
CCND1	2.24E-18	1.37E-16	8052
SSB	2.24E-18	1.37E-16	8273
UGP2	2.41E-18	1.47E-16	8047
C7ORF50	2.99E-18	1.82E-16	7878
PSMC2	3.29E-18	2.00E-16	7388
YDJC	3.75E-18	2.27E-16	7467
C10orf216	4.23E-18	2.56E-16	2369
AC006064.4	4.33E-18	2.62E-16	1275
KRT10	4.52E-18	2.72E-16	8319
SELENOF	5.04E-18	3.04E-16	8184
CSTB	5.09E-18	3.06E-16	8320
KLF7	5.51E-18	3.31E-16	2340
PHAX	5.72E-18	3.42E-16	7989
RRAGA	6.41E-18	3.83E-16	7536
CD68	6.68E-18	3.99E-16	4674
LAMTOR2	6.99E-18	4.16E-16	8049
RCN1	7.66E-18	4.55E-16	7107
TRPV3	7.73E-18	4.59E-16	491
NDC80	8.10E-18	4.80E-16	3894
B3GNT2	8.19E-18	4.85E-16	3668
ZNF703	8.24E-18	4.86E-16	1263
C1QBP	8.46E-18	4.99E-16	8319
AC016831.1	8.50E-18	5.00E-16	916
VPS29	1.13E-17	6.63E-16	8289
NDUF56	1.13E-17	6.63E-16	8316
TAF7	1.19E-17	6.95E-16	8107
PLAT	1.20E-17	7.02E-16	3507
RING1	1.25E-17	7.31E-16	3304
SRSF7	1.40E-17	8.16E-16	8224
IFI27L2	1.43E-17	8.29E-16	6682
AC011603.2	1.46E-17	8.49E-16	1448
OSR1	1.64E-17	9.49E-16	715
PPPIR10	1.66E-17	9.62E-16	4783
CD82	1.75E-17	1.01E-15	6710
MRFP1	1.90E-17	1.09E-15	8310
BGN	2.05E-17	1.18E-15	1916
RPS27L	2.36E-17	1.35E-15	8309
B3GAT3	2.37E-17	1.36E-15	4393
MT_C03	2.40E-17	1.37E-15	8321
ATPSMC2	2.45E-17	1.40E-15	8319
CAV2	2.48E-17	1.42E-15	6215
SNU13	2.49E-17	1.42E-15	6320
BEST1	2.66E-17	1.51E-15	2007
EIF4A3	2.96E-17	1.68E-15	7078
EIF1B	3.04E-17	1.72E-15	7447
HSPE1	3.05E-17	1.73E-15	8320
EID1	3.18E-17	1.80E-15	8305
PSMA4	3.29E-17	1.85E-15	8299
PIM3	3.36E-17	1.89E-15	3170
PSMC6	3.55E-17	1.99E-15	7756
SHISA4	3.93E-17	2.20E-15	2504
PMAIP1	3.99E-17	2.24E-15	6382
UBE2C	4.03E-17	2.25E-15	6806
KIF2C	4.21E-17	2.35E-15	3667
GTPBP4	4.42E-17	2.46E-15	7296
TGFB1	4.45E-17	2.47E-15	6437
LAMP1	4.71E-17	2.62E-15	7466
EIF3A	5.18E-17	2.87E-15	8290
AJUBA	5.35E-17	2.96E-15	4221
F2R	5.79E-17	3.20E-15	5754
TMEM219	6.01E-17	3.32E-15	7036
TUBB	9.04E-17	4.98E-15	8319
RPL15	9.33E-17	5.13E-15	8321
PSAT1	9.57E-17	5.25E-15	6325
CSNK1E	1.04E-16	5.81E-15	5216
KRT5	1.04E-16	5.81E-15	5927
MRPS30	1.10E-16	6.02E-15	6158
MEDAG	1.17E-16	6.39E-15	80
GNAI2	1.19E-16	6.50E-15	8104
PTTG2	1.22E-16	6.63E-15	358
DCN	1.29E-16	7.02E-15	3116
GRN	1.30E-16	7.05E-15	6948
NUF2	1.45E-16	7.83E-15	4402
AKR1B1	1.47E-16	7.92E-15	8263
FAM50A	1.48E-16	7.95E-15	6963
UBE2V1	1.59E-16	8.54E-15	1899
NOL11	1.67E-16	8.95E-15	5027
TSPO	1.69E-16	9.05E-15	8321
IGFBP6	1.71E-16	9.17E-15	5120
ARL6IP1	1.82E-16	9.73E-15	6173
FMNL1	2.00E-16	1.07E-14	1205

CCM2	2,03E-16	1,08E-14	7380
BRI3BP	2,04E-16	1,09E-14	4249
NUSAP1	2,27E-16	1,21E-14	6243
SNAPC1	2,34E-16	1,24E-14	4624
SRI	2,83E-16	1,50E-14	8243
UBC	3,10E-16	1,64E-14	8315
ARCA1	3,33E-16	1,75E-14	2560
ACTN4	3,38E-16	1,78E-14	7681
AXL	3,69E-16	1,93E-14	7178
KHDRBS1	3,94E-16	2,07E-14	6280
SH2B3	4,05E-16	2,12E-14	3994
GASAL1	4,14E-16	2,16E-14	1923
ZNF205	4,42E-16	2,31E-14	1549
POLR2I	4,50E-16	2,35E-14	8149
GSTP1	4,66E-16	2,43E-14	8321
ATP5F1A	5,15E-16	2,68E-14	8317
CHCHD5	5,56E-16	2,89E-14	6870
HAT1	5,60E-16	2,90E-14	6909
TXND9	6,01E-16	3,11E-14	7917
EIF4A1	6,24E-16	3,23E-14	8292
MAP1LC3A	6,34E-16	3,27E-14	1753
TANK	6,46E-16	3,33E-14	6367
AL049629.2	7,10E-16	3,65E-14	2363
CBX4	7,26E-16	3,73E-14	1372
IRF2BP1	7,75E-16	3,97E-14	751
DYNLRB1	8,02E-16	4,11E-14	8276
IRF3	8,04E-16	4,11E-14	5049
ARHGP11A	9,11E-16	4,65E-14	4625
CHPT1	9,32E-16	4,75E-14	6538
MRPL14	9,79E-16	4,98E-14	8314
PHACTR3	1,05E-15	5,33E-14	2884
FAM89B	1,07E-15	5,42E-14	3369
AC004262.2	1,12E-15	5,64E-14	621
LCE3D	1,33E-15	6,72E-14	262
RBM39	1,52E-15	7,45E-14	8209
CCNL1	1,56E-15	7,84E-14	5839
AP153	1,62E-15	8,17E-14	4020
ARL6IP5	1,66E-15	8,36E-14	7932
LAMA3	1,85E-15	9,27E-14	4095
LTB	1,85E-15	9,27E-14	501
MRP56	1,97E-15	9,85E-14	8231
SCAMP3	2,02E-15	1,01E-13	5074
PRMT2	2,05E-15	1,02E-13	7858
TIMM13	2,19E-15	1,09E-13	8317
COX8A	2,25E-15	1,12E-13	8321
CENPF	2,34E-15	1,16E-13	5826
CERCAM	2,35E-15	1,17E-13	2622
SMARCE1	2,49E-15	1,23E-13	4314
KRTAP2.3	2,71E-15	1,34E-13	433
PPA1	2,76E-15	1,36E-13	8318
IKBIP	2,81E-15	1,39E-13	8055
C19ORF53	2,95E-15	1,45E-13	8320
PSMC5	3,17E-15	1,56E-13	8294
KRT81	3,32E-15	1,63E-13	4702
EBP	3,32E-15	1,63E-13	8190
LRRC59	3,33E-15	1,63E-13	8279
PRMT1	3,49E-15	1,71E-13	8016
CDC42	3,73E-15	1,82E-13	3506
CDKN3	3,81E-15	1,86E-13	7289
CSAR2	4,49E-15	2,18E-13	314
SLC9A3R2	4,54E-15	2,21E-13	1559
UBE2V2	4,55E-15	2,21E-13	8178
SPC51	4,59E-15	2,23E-13	8321
ZFAND5	4,67E-15	2,26E-13	5990
ELK3	5,00E-15	2,41E-13	6635
PSMAS	5,01E-15	2,42E-13	8238
ZFP36	5,08E-15	2,45E-13	4820
RHBDD2	5,59E-15	2,69E-13	4360
TRMT1	6,10E-15	2,93E-13	3775
NAA38	6,54E-15	3,14E-13	8129
TLE1	6,74E-15	3,23E-13	2924
OSTC	7,35E-15	3,51E-13	8312
ILF2	7,67E-15	3,67E-13	8163
RPL37A	7,69E-15	3,67E-13	8321
GADD45GIP1	8,05E-15	3,84E-13	8320
ANKRD9	8,34E-15	3,97E-13	2051
RPL41	8,36E-15	3,97E-13	8321
NMT1	9,09E-15	4,31E-13	5370
PRR34.A51	9,17E-15	4,34E-13	6403
SLC1A5	9,53E-15	4,51E-13	5960
ISG20	9,69E-15	4,58E-13	3557
NIP7	1,01E-14	4,75E-13	7034
CTSB	1,09E-14	5,13E-13	8253
RBM26	1,12E-14	5,27E-13	6050
SNHG7	1,14E-14	5,35E-13	7878
TMSB10	1,21E-14	5,67E-13	8321
BOP1	1,23E-14	5,78E-13	7164
CLPTM1	1,25E-14	5,86E-13	5234
MIR4425.2HG	1,28E-14	5,94E-13	8220
METRNL	1,36E-14	6,34E-13	905
SERPINF1	1,44E-14	6,73E-13	1390
LCE1B	1,53E-14	7,14E-13	53
PHB2	1,67E-14	7,74E-13	8203
SLC25A5	1,73E-14	8,04E-13	8319
SHARPIN	1,79E-14	8,30E-13	6991
MINOS1	1,80E-14	8,35E-13	8321
BCAM	1,83E-14	8,43E-13	2612
TPBG	1,86E-14	8,59E-13	7883
GABARAP	1,98E-14	9,11E-13	1825
EPN3	2,13E-14	9,82E-13	2517
CLDN4	2,17E-14	9,96E-13	128
YRDC	2,24E-14	1,03E-12	3001
SETD1B	2,44E-14	1,12E-12	1394
MCOLN1	2,61E-14	1,20E-12	2585
CDKN1A	2,71E-14	1,24E-12	6672
CXCL2	2,80E-14	1,28E-12	1197
ILK	3,12E-14	1,42E-12	7713
IL6R	3,24E-14	1,47E-12	2622
SC5D	3,26E-14	1,48E-12	6157
AP2A1	3,32E-14	1,51E-12	3592
TM4SF1	3,35E-14	1,52E-12	8041
ATP5MC3	3,58E-14	1,62E-12	8320
MED28	3,60E-14	1,63E-12	7797
SLC27A5	3,73E-14	1,69E-12	5243
TYMS	4,13E-14	1,86E-12	7544
FKBP10	4,24E-14	1,91E-12	5907
GTSE1	4,42E-14	1,99E-12	4998
GA56	4,56E-14	2,05E-12	7159
GA51	4,67E-14	2,09E-12	182
GD11	4,73E-14	2,12E-12	3770
TCF25	5,19E-14	2,32E-12	7657
UBE2L3	5,29E-14	2,36E-12	8318
DDX21	5,41E-14	2,41E-12	8170
KLK5	5,70E-14	2,54E-12	1366
COL7A1	6,16E-14	2,74E-12	4924
CKAP2	6,30E-14	2,80E-12	6124
RACGAP1	6,60E-14	2,93E-12	3725
PCLAF	6,75E-14	2,99E-12	7853
ASAP1	7,28E-14	3,22E-12	7697

GSK3A	7.28E-14	3.22E-12	3635
YIF1A	7.29E-14	3.22E-12	8160
RABGGTB	7.32E-14	3.23E-12	7736
TRIR	7.75E-14	3.41E-12	8306
SDHC	8.34E-14	3.46E-12	8253
DUSP11	8.66E-14	3.80E-12	6399
C19ORF48	8.71E-14	3.82E-12	7979
ADAM15	8.82E-14	3.86E-12	5822
CCDC124	8.85E-14	3.87E-12	7717
ANXA2	9.19E-14	4.01E-12	8321
KCNJ15	9.53E-14	4.16E-12	4593
XAB2	9.70E-14	4.23E-12	1077
ZNF207	9.72E-14	4.23E-12	7958
TMED10	9.93E-14	4.31E-12	8127
ARL2	1.01E-13	4.36E-12	7469
ICAM3	1.01E-13	4.36E-12	4350
ITGA2	1.02E-13	4.41E-12	3427
RPL27A	1.02E-13	4.42E-12	8321
HNRRNP	1.06E-13	4.58E-12	8144
SEMA7A	1.13E-13	4.89E-12	1786
ATP1B1	1.15E-13	4.97E-12	6999
PCBP1	1.17E-13	5.03E-12	8300
H3F3A	1.18E-13	5.05E-12	8319
SLC38A2	1.24E-13	5.32E-12	7517
EBNA1BP2	1.25E-13	5.37E-12	8286
ANAPC10	1.26E-13	5.38E-12	4882
EEF1A1	1.26E-13	5.38E-12	8321
SINHCAF	1.27E-13	5.42E-12	5327
CYCS	1.33E-13	5.65E-12	8317
SOC52	1.33E-13	5.68E-12	5624
PEG10	1.38E-13	5.88E-12	5879
RPL34	1.51E-13	6.40E-12	8321
LY6K	1.53E-13	6.48E-12	6481
ADAMTSL4	1.54E-13	6.51E-12	566
CDK16	1.62E-13	6.83E-12	5977
ADRB2	1.71E-13	7.22E-12	2856
IRX4	1.72E-13	7.25E-12	2223
FKBP3	1.77E-13	7.46E-12	8221
NFKBID	1.82E-13	7.64E-12	4153
OAT	1.87E-13	7.84E-12	7755
VP54A	1.95E-13	8.15E-12	6783
SNX3	1.97E-13	8.26E-12	8320
C17orf53	2.01E-13	8.39E-12	923
PRPSAP1	2.12E-13	8.83E-12	6104
FADS1	2.12E-13	8.83E-12	7826
PPP1R15A	2.17E-13	9.03E-12	4904
NDUFB6	2.33E-13	9.71E-12	8275
N4BP2L2	2.51E-13	1.04E-11	7475
HISTH2H2AC	2.60E-13	1.08E-11	4519
PKMYT1	2.64E-13	1.09E-11	4812
MAP15	2.69E-13	1.11E-11	1661
WRAP53	2.73E-13	1.13E-11	2864
DNAJ1	2.80E-13	1.16E-11	8266
CYP1B1	2.82E-13	1.16E-11	1103
PKP3	2.91E-13	1.20E-11	3698
PARYB	3.23E-13	1.33E-11	2339
ZNF706	3.24E-13	1.33E-11	8317
PLP2	3.42E-13	1.40E-11	8318
SUSD6	3.42E-13	1.40E-11	1719
RPL8	3.59E-13	1.47E-11	8321
ISCA2	3.67E-13	1.50E-11	4979
RAB1A	3.73E-13	1.52E-11	8285
RP54X	3.94E-13	1.61E-11	8321
SAP18	4.09E-13	1.67E-11	6315
CBorf82	4.56E-13	1.86E-11	3655
DNAE2	4.68E-13	1.90E-11	4130
PCDH9	4.92E-13	2.00E-11	2446
CDKN2B	5.00E-13	2.03E-11	2614
PCOLCE	5.15E-13	2.09E-11	5315
UX51	5.34E-13	2.16E-11	4775
TXNRD2	5.55E-13	2.24E-11	5961
S100A8	5.79E-13	2.34E-11	1231
S100A2	6.08E-13	2.45E-11	8321
MDF1	6.29E-13	2.53E-11	3446
ATP6AP2	6.51E-13	2.62E-11	6817
POLR2K	6.74E-13	2.71E-11	8276
SFXN5	6.80E-13	2.73E-11	3659
GNPDA1	6.98E-13	2.80E-11	6880
HIVEP2	7.10E-13	2.84E-11	1494
SMARC1	7.38E-13	2.95E-11	7691
RAB11A	7.53E-13	3.01E-11	8049
CDC43	7.94E-13	3.16E-11	5285
H3F3C	8.12E-13	3.24E-11	687
TAF10	8.18E-13	3.26E-11	6696
ANGPTL4	8.41E-13	3.34E-11	5667
COPS8	8.54E-13	3.39E-11	8259
BAG3	8.76E-13	3.47E-11	6101
SARS	8.80E-13	3.49E-11	7749
RPL35	9.19E-13	3.64E-11	8321
PGAM1	9.44E-13	3.73E-11	8321
UMPS	9.73E-13	3.84E-11	5547
ANP32A	1.01E-12	3.96E-11	6628
CCPG1	1.04E-12	4.07E-11	4376
ZC3H12A	1.04E-12	4.07E-11	2018
ANXA5	1.04E-12	4.08E-11	8320
FLNA	1.06E-12	4.16E-11	7722
UBB	1.08E-12	4.24E-11	8321
CYC1	1.15E-12	4.49E-11	8318
ZSWIM6	1.16E-12	4.52E-11	2519
SERPINA1	1.16E-12	4.55E-11	740
MED31	1.22E-12	4.76E-11	6940
CSF2	1.23E-12	4.81E-11	824
OXSR1	1.24E-12	4.81E-11	6308
SDHB	1.29E-12	5.00E-11	8266
NECTIN2	1.31E-12	5.08E-11	4292
MVD	1.33E-12	5.14E-11	7267
ADH5	1.38E-12	5.35E-11	7995
TRAPPC4	1.41E-12	5.46E-11	7725
CHID1	1.51E-12	5.84E-11	4621
FDPS	1.53E-12	5.90E-11	8311
VGLL3	1.62E-12	6.24E-11	520
PNPLA2	1.65E-12	6.34E-11	2293
SAR1B	1.69E-12	6.47E-11	7807
C12orf45	1.74E-12	6.69E-11	7148
GTF3C6	1.78E-12	6.82E-11	6306
GHITM	1.78E-12	6.83E-11	8276
SNHG8	1.84E-12	7.04E-11	8102
EIF5	1.85E-12	7.08E-11	8295
SMS	1.98E-12	7.57E-11	8286
NUDCD1	2.00E-12	7.64E-11	6604
QTRT1	2.01E-12	7.67E-11	4754
NUP37	2.03E-12	7.75E-11	6306
DSP	2.06E-12	7.83E-11	3849
MRPS23	2.25E-12	8.54E-11	8083
NOP53	2.27E-12	8.61E-11	8108
GPCPD1	2.30E-12	8.73E-11	1644
USP5	2.42E-12	9.17E-11	4720
STX1A	2.47E-12	9.34E-11	1090
OTUD1	2.54E-12	9.60E-11	428

PI3	2.72E-12	1.03E-10	316
MRPL3	2.73E-12	1.03E-10	8188
COMM1	2.94E-12	1.11E-10	6939
SFXN3	3.08E-12	1.16E-10	2885
SLC19A2	3.09E-12	1.16E-10	4318
SLC25A10	3.11E-12	1.17E-10	3576
ARGLU1	3.12E-12	1.17E-10	8074
HPCAL1	3.14E-12	1.18E-10	7442
RPL30	3.15E-12	1.24E-10	8321
LINC02043	3.34E-12	1.25E-10	229
ZBTB21	3.45E-12	1.34E-10	2377
PLA2R1	3.45E-12	1.35E-10	1867
GABARAPL1	3.65E-12	1.36E-10	967
ZNF217	3.73E-12	1.39E-10	3515
TMEM60	3.77E-12	1.40E-10	5711
AC004816.1	3.92E-12	1.45E-10	3587
METTL23	3.94E-12	1.46E-10	7222
PMEP1	4.14E-12	1.53E-10	5438
EIF4H	4.16E-12	1.54E-10	8198
WDR61	4.28E-12	1.58E-10	6353
IGF2BP2	4.34E-12	1.60E-10	7951
PITPN	4.52E-12	1.67E-10	4327
ZMYND19	4.56E-12	1.68E-10	1882
BUB1	4.59E-12	1.69E-10	3848
NDRG1	4.68E-12	1.72E-10	4617
NOB1	4.86E-12	1.78E-10	7406
BCAS2	4.94E-12	1.81E-10	7476
CHTOP	5.17E-12	1.89E-10	6996
CKS1B	5.19E-12	1.90E-10	8154
EEF1B2	5.21E-12	1.90E-10	8321
VIM	5.22E-12	1.90E-10	8309
SMC3	5.33E-12	1.94E-10	7720
DDX17	5.54E-12	2.02E-10	7727
AL133453.1	5.68E-12	2.07E-10	3693
PTPNB	5.80E-12	2.11E-10	7200
ARPC5	5.90E-12	2.14E-10	6308
CHMP5	6.02E-12	2.19E-10	7820
TTK	6.08E-12	2.20E-10	2456
PTPN12	6.23E-12	2.23E-10	6599
MTMR14	6.64E-12	2.40E-10	3438
TMEM126B	6.70E-12	2.42E-10	7692
CPEB4	6.71E-12	2.42E-10	2884
DLGAP1.A51	6.79E-12	2.45E-10	1202
GSN	6.83E-12	2.46E-10	6149
ZBED2	6.87E-12	2.47E-10	3206
NDUFB11	7.08E-12	2.54E-10	8292
GABARAPL2	7.19E-12	2.58E-10	8271
SPARC	7.22E-12	2.59E-10	8242
SUMO1	7.42E-12	2.65E-10	8319
MAFF	7.66E-12	2.74E-10	3338
AUP1	7.76E-12	2.77E-10	8119
ARHGP21	7.81E-12	2.79E-10	4751
ATP13A2	8.19E-12	2.92E-10	4236
RHOG	8.40E-12	2.99E-10	7039
SYMPK	8.59E-12	3.05E-10	2502
CDKN2A	8.64E-12	3.07E-10	8239
GPC1	8.73E-12	3.10E-10	4567
DNM1BP	8.82E-12	3.13E-10	2179
S100A10	8.93E-12	3.16E-10	8321
ACAT2	9.94E-12	3.52E-10	8099
NDUFA4	1.03E-11	3.65E-10	8321
DYRK2	1.04E-11	3.64E-10	2956
SIK1	1.07E-11	3.74E-10	229
CTSL	1.07E-11	3.78E-10	7211
HACD3	1.08E-11	3.79E-10	7237
C10orf116	1.09E-11	3.84E-10	1516
DYTMK	1.15E-11	4.02E-10	8143
PGP	1.18E-11	4.14E-10	8182
TMEM141	1.25E-11	4.37E-10	7748
SCD	1.27E-11	4.43E-10	8291
HMOX2	1.27E-11	4.46E-10	6948
RTN4	1.32E-11	4.61E-10	8320
PLIN3	1.46E-11	5.10E-10	7798
RFC2	1.47E-11	5.12E-10	5989
IL32	1.51E-11	5.25E-10	985
PNRC2	1.51E-11	5.25E-10	7316
CXorf40B	1.54E-11	5.36E-10	2385
OST4	1.55E-11	5.39E-10	8320
WAPL	1.56E-11	5.40E-10	7101
DNAJC1	1.58E-11	5.47E-10	7664
CHPF2	1.68E-11	5.81E-10	2978
UCHL1	1.68E-11	5.81E-10	203
PTGES3	1.69E-11	5.85E-10	8316
SNRPA	1.71E-11	5.90E-10	6233
MRPL36	1.74E-11	5.99E-10	8294
PCMT1	1.74E-11	6.00E-10	8288
MTRNR2L3	1.81E-11	6.24E-10	269
TOMM7	1.83E-11	6.29E-10	8321
FAM3A	1.92E-11	6.43E-10	3948
CCNE2	1.95E-11	6.70E-10	2260
MVK	2.02E-11	6.91E-10	4874
HIST1H1B	2.02E-11	6.92E-10	3370
LSM5	2.05E-11	7.01E-10	8312
SNX9	2.09E-11	7.15E-10	6360
CHRNA9	2.10E-11	7.15E-10	130
CHAC2	2.20E-11	7.48E-10	4564
ELOF1	2.21E-11	7.52E-10	7671
CDK6	2.31E-11	7.86E-10	6850
SEC61B	2.31E-11	7.86E-10	8321
VAC14	2.32E-11	7.86E-10	1771
ZMYM4	2.43E-11	8.23E-10	5672
MYL12B	2.49E-11	8.43E-10	8320
SIL1	2.50E-11	8.48E-10	6048
TCEAL4	2.55E-11	8.62E-10	8118
RPL3	2.62E-11	8.86E-10	8321
HGH1	2.66E-11	8.97E-10	2227
PARK7	2.68E-11	9.03E-10	8321
CCDC107	2.70E-11	9.08E-10	6901
ATP5PF	2.74E-11	9.21E-10	8321
CSTF3	2.79E-11	9.37E-10	6556
ZRANB2	2.80E-11	9.38E-10	7479

Supplement table S2.

(Significantly downregulated biological pathways in 1 min oscillatory condition).

Category	Overrepresented p-value	numDEInCat	Term
GO:0007049	6.55353292145036e-33	283	cell cycle
GO:0000278	6.74562388019394e-31	185	mitotic cell cycle
GO:1903047	4.04784203269682e-29	164	mitotic cell cycle process
GO:0022402	6.07450615059027e-29	221	cell cycle process
GO:0051276	2.44155362566763e-26	202	chromosome organization
GO:0010564	5.7832483058676e-26	144	regulation of cell cycle process
GO:0090304	2.26961790443797e-23	543	nucleic acid metabolic process
GO:0051726	3.3742489734685e-23	188	regulation of cell cycle
GO:0007346	5.32096264804285e-23	122	regulation of mitotic cell cycle
GO:0007059	3.0322570379425e-21	81	chromosome segregation
GO:0098813	2.60887813084557e-20	71	nuclear chromosome segregation
GO:0080090	6.71336373728417e-20	598	regulation of primary metabolic process
GO:0000819	1.12420116818081e-19	59	sister chromatid segregation
GO:1901987	1.20833399847538e-19	87	regulation of cell cycle phase transition
GO:1901990	1.71289241986604e-19	83	regulation of mitotic cell cycle phase transition
GO:0043170	2.25531528164929e-19	827	macromolecule metabolic process
GO:0044772	4.91542778977299e-19	101	mitotic cell cycle phase transition
GO:0044770	7.8438916730491e-19	105	cell cycle phase transition
GO:0051171	8.61198720814212e-19	580	regulation of nitrogen compound metabolic process
GO:0006139	1.0408547916832e-19	565	nucleobase-containing compound metabolic process
GO:0044683	2.137719111154469e-18	573	heterocycle metabolic process
GO:0031323	2.585073737340463e-18	600	regulation of cellular metabolic process
GO:1400114	2.67515843716393e-18	73	mitotic nuclear division
GO:1901360	3.45238229480322e-18	588	organic cyclic compound metabolic process
GO:0006996	3.99887674745249e-18	426	organelle organization
GO:0014070	4.986439003268372e-18	478	RNA metabolic process
GO:0000280	5.7230961256347e-18	89	nuclear division
GO:0019222	1.424415636952134e-17	633	regulation of metabolic process
GO:0010467	1.60724687534794e-17	536	gene expression
GO:0006725	1.99921013656534e-17	572	cellular aromatic compound metabolic process
GO:0044260	2.41466578898426e-17	745	cellular macromolecule metabolic process
GO:0034641	3.5889751530572e-17	602	cellular nitrogen compound metabolic process
GO:0050794	6.06862820188644e-17	888	regulation of cellular process
GO:0060255	9.4237273662998e-17	593	regulation of macromolecule metabolic process
GO:0051301	1.09371747227545e-16	109	cell division
GO:0048285	1.26985001885028e-16	92	organelle fission
GO:0044237	5.55811208328377e-16	882	cellular metabolic process
GO:0019219	6.88375379939769e-16	430	regulation of nucleobase-containing compound metabolic process
GO:0016071	7.33013974746366e-16	118	mRNA metabolic process
GO:0000070	8.02743367658327e-16	49	mitotic sister chromatid segregation
GO:0006807	1.03535806525648e-15	843	nitrogen compound metabolic process
GO:0008380	1.0537434036256e-15	80	RNA splicing
GO:0006397	3.3104372497731e-15	87	mRNA processing
GO:0006974	1.5188388050951e-14	128	cellular response to DNA damage stimulus
GO:0000075	1.6272286144538e-14	54	cell cycle checkpoint
GO:0051252	1.6565199549244e-14	401	regulation of RNA metabolic process
GO:0044238	1.7129867281671e-14	866	primary metabolic process
GO:0071840	2.0459808316605e-14	634	cellular component organization or biogenesis
GO:0007052	2.8041811742655e-14	39	mitotic spindle organization
GO:0050789	4.35242325203138e-14	915	regulation of biological process
GO:0016043	4.6209723297402e-14	621	cellular component organization
GO:1902850	5.76227515477333e-14	43	microtubule cytoskeleton organization involved in mitosis
GO:0010468	6.73869594645416e-14	452	regulation of gene expression
GO:1902749	1.21352546379566e-13	47	regulation of cell cycle G2/M phase transition
GO:0009898	1.24972612458788e-13	433	regulation of biosynthetic process
GO:1901991	1.45013806306445e-13	46	negative regulation of mitotic cell cycle phase transition
GO:0044839	1.796208094013e-13	54	cell cycle G2/M phase transition
GO:0006259	1.8119851094597e-13	139	DNA metabolic process
GO:0000226	2.25964477948896e-13	103	microtubule cytoskeleton organization
GO:0033044	2.5297086805694e-13	71	regulation of chromosome organization
GO:0007093	2.60426178802875e-13	44	mitotic cell cycle checkpoint
GO:0008152	3.015656039362447e-13	914	metabolic process
GO:0033043	3.2776186031264e-13	178	regulation of organelle organization
GO:0009987	3.76251496155782e-13	1158	cellular process
GO:0010605	3.94063676088256e-13	295	negative regulation of macromolecule metabolic process
GO:2000112	4.91135728109213e-13	406	regulation of cellular macromolecule biosynthetic process
GO:0007017	5.04216193332047e-13	128	microtubule-based process
GO:1901988	5.1307556712216e-13	47	negative regulation of cell cycle phase transition
GO:0071704	5.49085964821229e-13	884	organic substance metabolic process
GO:0007051	5.56287414602672e-13	47	spindle organization
GO:0000375	6.06966021218696e-13	63	RNA splicing, via transesterification reactions
GO:0009892	6.0815331660906e-13	313	negative regulation of metabolic process
GO:0010556	1.11298904771549e-12	413	regulation of macromolecule biosynthetic process
GO:0033554	1.17732649225748e-12	228	cellular response to stress
GO:0000377	1.38079381202901e-12	62	mRNA splicing, via transesterification reactions with bulged adenosine as nucleophile
GO:0003098	1.38079381202901e-12	62	mRNA splicing, via spliceosome
GO:0031326	1.55631350082129e-12	421	regulation of cellular biosynthetic process
GO:0010389	1.62564433193645e-12	43	regulation of G2/M transition of mitotic cell cycle
GO:0000084	1.63702310047033e-12	50	G2/M transition of mitotic cell cycle
GO:0010948	2.50441764149413e-12	59	negative regulation of cell cycle process
GO:0006325	2.5595255483337e-12	120	chromatin organization
GO:0000077	3.16668524093129e-12	40	DNA damage checkpoint
GO:0031570	3.20874270102109e-12	42	DNA integrity checkpoint
GO:0045786	3.39833788907443e-12	93	negative regulation of cell cycle
GO:0051172	3.70466796540263e-12	265	negative regulation of nitrogen compound metabolic process
GO:0031324	3.8582998524686e-12	278	negative regulation of cellular metabolic process
GO:0010629	4.01080615164309e-12	217	negative regulation of gene expression
GO:0006396	8.0100306806849e-12	121	RNA processing
GO:1901362	8.4693233138823e-12	428	organic cyclic compound biosynthetic process
GO:0051983	9.3300730500772e-12	34	regulation of chromosome segregation
GO:0034645	1.0248384289891e-11	466	cellular macromolecule biosynthetic process
GO:0044267	1.0501158582061e-11	481	cellular protein metabolic process
GO:0044271	1.33051786402715e-11	459	cellular nitrogen compound biosynthetic process
GO:0051128	1.52630537089331e-11	291	regulation of cellular component organization
GO:0007062	1.73382716515126e-11	23	sister chromatid cohesion
GO:0044403	1.94723502700419e-11	111	symbolic process
GO:0048523	2.16146016839729e-11	453	negative regulation of cellular process
GO:0045930	2.2414649727551e-11	54	negative regulation of mitotic cell cycle
GO:0006351	2.2488770712601e-11	371	transcription, DNA-templated
GO:0097659	2.353986985617e-11	374	nucleic acid-templated transcription
GO:0009059	2.9445069511133e-11	474	macromolecule biosynthetic process
GO:0016032	3.4975861755497e-11	105	viral process
GO:0032774	3.70040128061062e-11	274	RNA biosynthetic process
GO:0018130	4.5267685367859e-11	415	heterocycle biosynthetic process
GO:0044419	4.96539366858972e-11	111	interspecies interaction between organisms
GO:0048522	5.19938907151533e-11	494	positive regulation of cellular process
GO:2001251	5.22246464987398e-11	39	negative regulation of chromosome organization
GO:0045787	6.80051474467932e-11	68	positive regulation of cell cycle
GO:0019438	9.19332543445617e-11	414	aromatic compound biosynthetic process
GO:0010558	1.00628582670526e-10	183	negative regulation of macromolecule biosynthetic process
GO:0034654	1.01463336487955e-10	409	nucleobase-containing compound biosynthetic process
GO:0048519	1.05288553085862e-10	490	negative regulation of biological process
GO:2000113	1.2720078275132e-10	176	negative regulation of cellular macromolecule biosynthetic process
GO:1903311	1.94422312091558e-10	54	regulation of mRNA metabolic process
GO:0006355	2.04310602677134e-10	354	regulation of transcription, DNA-templated
GO:1903506	2.1136083201382e-10	358	regulation of nucleic acid-templated transcription
GO:2001141	2.42856286083139e-10	358	regulation of RNA biosynthetic process
GO:0048518	2.48913892916694e-10	538	positive regulation of biological process
GO:0007088	2.73722465372307e-10	43	regulation of mitotic nuclear division

GO:0045934	3.10611091347499e-10	178	negative regulation of nucleobase-containing compound metabolic process
GO:0009890	3.15587554438368e-10	187	negative regulation of biosynthetic process
GO:0031327	3.56189273422718e-10	185	negative regulation of cellular biosynthetic process
GO:0065007	3.79415802879704e-10	938	biological regulation
GO:0090068	3.8743269089432e-09	54	positive regulation of cell cycle process
GO:0016064	4.19360013533443e-10	334	positive regulation of macromolecule metabolic process
GO:0051173	6.21130421234675e-10	318	positive regulation of nitrogen compound metabolic process
GO:0006281	9.48059650011939e-10	81	DNA repair
GO:0016569	1.32393485021494e-09	82	covalent chromatin modification
GO:0042770	1.32647639175947e-09	34	signal transduction in response to DNA damage
GO:0044265	2.05040795717402e-09	137	cellular macromolecule catabolic process
GO:0031325	3.278156234372e-09	325	positive regulation of cellular metabolic process
GO:0006950	3.34492585862514e-09	344	response to stress
GO:0043412	3.5389328142752e-09	413	macromolecule modification
GO:1901576	3.55355383125041e-09	534	organic substance biosynthetic process
GO:0016570	3.62590695715244e-09	80	histone modification
GO:0030345	3.7797765648154e-09	26	regulation of sister chromatid segregation
GO:0044774	4.28089219855582e-09	29	mitotic DNA integrity checkpoint
GO:0006464	5.20821453722555e-09	399	cellular protein modification process
GO:0036211	5.20821453722555e-09	399	protein modification process
GO:0030347	5.96106597560291e-09	24	regulation of mitotic sister chromatid segregation
GO:0051783	7.71629191628861e-09	43	regulation of nuclear division
GO:0007010	8.14414335105258e-09	180	cytoskeleton organization
GO:0044773	8.74707682851377e-09	27	mitotic DNA damage checkpoint
GO:0019538	8.95903925753909e-09	502	protein metabolic process
GO:0009893	1.06452142341937e-08	347	positive regulation of metabolic process
GO:0010628	1.23488108474967e-08	215	positive regulation of gene expression
GO:0007098	1.26548728991111e-08	33	centrosome cycle
GO:0033046	1.33897247635644e-08	18	negative regulation of sister chromatid segregation
GO:0051985	1.33897247635644e-08	18	negative regulation of chromosome segregation
GO:0031023	1.35260815968944e-08	35	microtubule organizing center organization
GO:0008283	1.36081893938957e-08	207	cell proliferation
GO:0009058	1.38426877537997e-08	535	biophysic process
GO:0019884	1.5387099945583e-08	29	antigen processing and presentation of exogenous antigen
GO:0044249	1.99828501409964e-08	522	cellular biosynthetic process
GO:0051641	1.98847123272531e-08	303	cellular localization
GO:0009057	2.26001757524135e-08	155	macromolecule catabolic process
GO:0071103	2.33545034745023e-08	45	DNA conformation change
GO:0030348	3.31885444074773e-08	17	negative regulation of mitotic sister chromatid segregation
GO:0070727	3.51989802722091e-08	208	cellular macromolecule localization
GO:0072401	4.26677162370684e-08	22	signal transduction involved in DNA integrity checkpoint
GO:0072422	4.26677162370684e-08	22	signal transduction involved in DNA damage checkpoint
GO:0032268	4.555628846164e-08	255	regulation of cellular protein metabolic process
GO:0045935	4.86203709097485e-08	206	positive regulation of nucleobase-containing compound metabolic process
GO:0071310	5.28371960378748e-08	254	cellular response to organic substance
GO:0034613	5.62556794050498e-08	206	cellular protein localization
GO:0051246	6.696847458227908e-08	269	regulation of protein metabolic process
GO:0051304	7.25297231654303e-08	25	chromosome separation
GO:0051254	7.87262133735965e-08	190	positive regulation of RNA metabolic process
GO:0006366	8.15067238312735e-08	286	transcription by RNA polymerase II
GO:0072395	8.34062930073305e-08	22	signal transduction involved in cell cycle checkpoint
GO:0051253	9.05720022275471e-08	155	negative regulation of RNA metabolic process
GO:1905818	9.31405414400387e-08	20	regulation of chromosome separation
GO:0002478	9.3411892308601e-08	27	antigen processing and presentation of exogenous peptide antigen
GO:0045841	1.06794348282583e-07	15	negative regulation of mitotic metaphase/anaphase transition
GO:1902100	1.06794348282583e-07	15	negative regulation of metaphase/anaphase transition of cell cycle
GO:2000045	1.113349364843e-07	31	regulation of G1/S transition of mitotic cell cycle
GO:1902806	1.15188420870543e-07	33	regulation of cell cycle G1/S phase transition
GO:0070647	1.29580241676458e-07	129	protein modification by small protein conjugation or removal
GO:0031571	1.32932598439114e-07	20	mitotic G1 DNA damage checkpoint
GO:0044919	1.32932598439114e-07	20	mitotic G1/S transition checkpoint
GO:0044085	1.42734311235748e-07	320	cellular component biogenesis
GO:0044943	1.4534148025569e-07	45	cell cycle G1/S phase transition
GO:1905819	1.59978192550503e-07	15	negative regulation of chromosome separation
GO:2000816	1.59978192550503e-07	15	negative regulation of mitotic sister chromatid separation
GO:0000862	1.6559837312266e-07	43	G1/S transition of mitotic cell cycle
GO:0044783	1.77685107294886e-07	20	G1 DNA damage checkpoint
GO:2000134	2.03340245193677e-07	25	negative regulation of G1/S transition of mitotic cell cycle
GO:0070507	2.20997814174987e-07	40	regulation of microtubule cytoskeleton organization
GO:0009719	2.24235212051671e-07	179	response to endogenous stimulus
GO:0051310	2.28297013257656e-07	18	metaphase plate congression
GO:0008608	2.98418810092003e-07	13	attachment of spindle microtubules to kinetochore
GO:1902807	3.45925018723333e-07	25	negative regulation of spindle microtubule-based process
GO:0044257	3.610252608619e-07	96	cellular protein catabolic process
GO:0030330	3.6542584505674e-07	26	DNA damage response, signal transduction by p53 class mediator
GO:0007094	3.85233865311139e-07	14	mitotic spindle assembly checkpoint
GO:0031577	3.85233865311139e-07	14	spindle checkpoint
GO:0071173	3.85233865311139e-07	14	mitotic spindle checkpoint
GO:0071174	3.85233865311139e-07	14	spindle assembly
GO:0051225	4.0676869400458e-07	27	meiotic chromosome segregation
GO:0045132	5.03237442406168e-07	21	negative regulation of mitotic nuclear division
GO:0045839	5.48358084981163e-07	17	DNA replication
GO:0006260	6.06116253391708e-07	47	regulation of chromatin organization
GO:1902275	6.16937948785181e-07	37	metaphase/anaphase transition of mitotic cell cycle
GO:0070701	6.20877269849013e-07	301	regulation of microtubule-based process
GO:0032886	6.498246465911228e-07	43	positive regulation of transcription, DNA-templated
GO:0045893	7.04527802322285e-07	170	metaphase/anaphase transition of cell cycle
GO:0030143	7.50943701411705e-07	110	protein catabolic process
GO:0048002	7.79302329619069e-07	27	antigen processing and presentation of peptide antigen
GO:0010965	7.98880599138065e-07	18	regulation of mitotic sister chromatid separation
GO:0022607	8.48398701688712e-07	177	cellular component assembly
GO:1903508	9.33607714973185e-07	177	positive regulation of nuclear acid-templated transcription
GO:1902680	9.665099294242428e-07	14	positive regulation of RNA biosynthetic process
GO:0007080	1.13401675207285e-06	143	mitotic metaphase plate congression
GO:1903507	1.15868879065536e-06	143	negative regulation of nucleic acid-templated transcription
GO:1902679	1.18925563180651e-06	143	negative regulation of RNA biosynthetic process
GO:0051493	1.19689689948467e-06	79	regulation of cytoskeleton organization
GO:0010033	1.50262822764593e-06	288	response to organic substance
GO:0051306	1.50732903939396e-06	18	mitotic sister chromatid separation
GO:0071495	1.59072900140197e-06	157	cellular response to endogenous stimulus
GO:0045892	1.61570990156496e-06	138	negative regulation of transcription, DNA-templated
GO:0006333	1.62706042084745e-06	28	chromatin assembly or disassembly
GO:0051303	1.63113412789702e-06	19	establishment of chromosome localization
GO:0019882	1.68982653945721e-06	30	antigen processing and presentation
GO:0140013	1.800000296111669e-06	30	meiotic nuclear division
GO:0033365	1.83779782043915e-06	107	protein localization to organelle
GO:0031056	1.84829170305351e-06	31	regulation of histone modification
GO:0000910	2.119185741175e-06	33	cytokinesis
GO:0050000	2.31419955871989e-06	19	chromosome localization
GO:0051129	2.3661518538597e-06	92	negative regulation of cellular component organization
GO:0051236	2.37829278840319e-06	38	establishment of RNA localization
GO:0050684	2.44676317901869e-06	27	regulation of mRNA processing
GO:0006403	2.54827891430549e-06	41	RNA localization
GO:0051784	2.6395101544177e-06	17	negative regulation of nuclear division
GO:0043484	2.731988608625569e-06	28	regulation of RNA splicing
GO:1903046	2.834296600391556e-06	32	meiotic cell cycle process
GO:0032446	2.95444063586537e-06	102	protein modification by small protein conjugation
GO:0034502	3.2127508587166e-06	20	protein localization to chromosome
GO:0010638	3.42986146205341e-06	83	positive regulation of organelle organization
GO:0093037	3.445744973181317e-06	18	mitotic spindle assembly
GO:0043933	3.7062687371035e-06	215	protein-containing complex subunit organization
GO:0006357	3.77088253558547e-06	267	regulation of transcription by RNA polymerase II
GO:0070887	4.41358696495289e-06	282	cellular response to chemical stimulus
GO:0031124	4.44717509577254e-06	21	mRNA 3'-end processing
GO:0071156	4.45597166545963e-06	22	regulation of cell cycle arrest
GO:0006302	4.70647381354997e-06	39	double-strand break repair
GO:0006323	4.76280181061532e-06	30	DNA packaging
GO:0030071	4.96517163023312e-06	16	regulation of mitotic metaphase/anaphase transition

GO:0018205	5.63806672568273e-06	55	peptidyl-lysine modification
GO:1902099	5.82873800405362e-06	16	regulation of metaphase/anaphase transition of cell cycle
GO:0010639	6.04120343312335e-06	57	negative regulation of organelle organization
GO:0019886	6.82906535977699e-06	21	antigen processing and presentation of exogenous peptide antigen via MHC class II
GO:0051603	7.09346546991038e-06	87	proteolysis involved in cellular protein catabolic process
GO:0051298	7.1532684867932e-06	19	centrosome duplication
GO:0050657	7.32374922967023e-06	36	nucleic acid transport
GO:0050658	7.32374922967023e-06	36	RNA transport
GO:0043488	7.367128583509e-06	26	regulation of mRNA stability
GO:0071824	7.54039871440603e-06	38	protein-DNA complex subunit organization
GO:0071158	7.92531731302359e-06	19	positive regulation of cell cycle arrest
GO:0097711	8.057633439111413e-06	24	ciliary basal body-plasma membrane docking
GO:0001944	8.41902079069703e-06	93	vasculature development
GO:0010608	9.16989546201959e-06	70	posttranscriptional regulation of gene expression
GO:0045944	9.53842610342663e-06	134	positive regulation of transcription by RNA polymerase II
GO:0051169	9.9274414868692e-06	55	nuclear transport
GO:0051321	9.95206075770174e-06	38	meiotic cell cycle
GO:0032269	1.00035743198008e-05	114	negative regulation of cellular protein metabolic process
GO:0002495	1.0231103995881e-05	21	antigen processing and presentation of peptide antigen via MHC class II
GO:0072331	1.056323910171004e-05	36	signal transduction by p53 class mediator
GO:0000079	1.06804796198814e-05	18	regulation of cyclin-dependent protein serine/threonine kinase activity
GO:0051248	1.0940965126884e-05	120	negative regulation of protein metabolic process
GO:0006303	1.11599620166784e-05	19	double-strand break repair via nonhomologous end joining
GO:0001568	1.18997021599714e-05	90	blood vessel development
GO:0072431	1.22720471221241e-05	16	signal transduction involved in mitotic G1 DNA damage checkpoint
GO:1902400	1.22720471221241e-05	16	intracellular signal transduction involved in G1 DNA damage checkpoint
GO:0019941	1.36875540478445e-05	77	modification-dependent protein catabolic process
GO:0006915	1.37163759230459e-05	187	apoptotic process
GO:0002504	1.37927402024204e-05	21	antigen processing and presentation of peptide or polysaccharide antigen via MHC class II
GO:0009725	1.42559491178379e-05	107	response to hormone
GO:0072358	1.51439391940861e-05	93	cardiovascular system development
GO:0072413	1.53068034451856e-05	16	signal transduction involved in mitotic cell cycle checkpoint
GO:1902402	1.53068034451856e-05	16	signal transduction involved in mitotic DNA damage checkpoint
GO:1902403	1.53068034451856e-05	16	signal transduction involved in mitotic DNA integrity checkpoint
GO:0032429	1.5620382730458e-05	31	negative regulation of cellular amide metabolic process
GO:0031328	1.5821079670041e-05	197	positive regulation of cellular biosynthetic process
GO:0009891	1.58509469268494e-05	199	positive regulation of biosynthetic process
GO:0032465	1.72261072583454e-05	20	regulation of cytokinesis
GO:0042127	1.73644044707609e-05	156	regulation of cell proliferation
GO:0006913	1.76185491713944e-05	54	nucleocytoplasmic transport
GO:0032508	1.77841757107162e-05	18	DNA duplex unwinding
GO:0006511	1.79937205279424e-05	76	ubiquitin-dependent protein catabolic process
GO:0016567	1.94219848807905e-05	94	protein ubiquitination
GO:0043632	1.94689317761253e-05	77	modification-dependent macromolecule catabolic process
GO:0065004	1.95907568013073e-05	32	protein-DNA complex assembly
GO:0048024	2.08380309636177e-05	20	regulation of mRNA splicing, via spliceosome
GO:0051052	2.2136545366265e-05	57	regulation of DNA metabolic process
GO:0006977	2.21427890185798e-05	15	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest
GO:0010557	2.3096341170035e-05	190	positive regulation of macromolecule biosynthetic process
GO:0043487	2.40123179728932e-05	26	regulation of RNA stability
GO:0046605	2.46390259781783e-05	16	regulation of centrosome cycle
GO:1904029	2.66452114713536e-05	18	regulation of cyclin-dependent protein kinase activity
GO:0002029	2.82926094584384e-05	44	protein polyubiquitination
GO:0032392	2.84832680441308e-05	19	DNA geometric change
GO:0018193	2.85705547165679e-05	134	peptidyl-amino acid modification
GO:0017148	2.91486593203432e-05	28	negative regulation of translation
GO:000726	2.98740520288197e-05	19	non-recombinational repair
GO:0065003	2.99520308006481e-05	185	protein-containing complex assembly
GO:0066310	3.13714318288308e-05	41	DNA recombination
GO:0002475	3.1467532220874e-05	6	antigen processing and presentation via MHC class Ib
GO:0000122	3.157204745545563e-05	102	negative regulation of transcription by RNA polymerase II
GO:0008150	3.42429075095867e-05	1204	biological process
GO:009224	3.60730105299567e-05	14	regulation of spindle organization
GO:0015931	3.78513850738691e-05	38	nucleobase-containing compound transport
GO:0045931	3.98180427778168e-05	28	positive regulation of mitotic cell cycle
GO:0031399	3.999603020788805e-05	180	regulation of protein modification process
GO:0051053	4.084911038743011e-05	27	negative regulation of DNA metabolic process
GO:0008104	4.57677361786621e-05	264	protein localization
GO:0051716	4.59317068420894e-05	569	cellular response to stimulus
GO:0007064	4.6126922587247e-05	10	mitotic sister chromatid cohesion
GO:2001020	4.87129932935024e-05	33	regulation of response to DNA damage stimulus
GO:0051383	5.02381477041386e-05	9	kinetochore organization
GO:0001101	5.03011694734388e-05	46	response to acid chemical
GO:0051168	5.13411938047963e-05	34	nuclear export
GO:0062036	5.385231911774e-05	13	regulation of mitotic spindle organization
GO:0051028	5.4824610809345e-05	29	mRNA transport
GO:0006473	5.493831524866e-05	33	protein acetylation
GO:1901564	5.5016975526454e-05	538	organonitrogen compound metabolic process
GO:0051130	5.5715286325684e-05	140	positive regulation of cellular component organization
GO:0032270	5.6728863730423e-05	154	positive regulation of cellular protein metabolic process
GO:00066338	5.70474100344123e-05	29	chromatin remodeling
GO:0061013	5.74454504192368e-05	28	regulation of mRNA catabolic process
GO:0008219	5.84671105559322e-05	203	cell death
GO:0071230	6.82399414806032e-05	17	cellular response to amino acid stimulus
GO:0022406	7.66441732650335e-05	32	membrane docking
GO:0012501	7.66830900381976e-05	191	programmed cell death
GO:0031239	8.49041582771317e-05	93	regulation of cellular catabolic process
GO:0006411	8.541220415985e-05	31	protein export from nucleus
GO:0009894	8.89824827345193e-05	104	regulation of catabolic process
GO:0003280	9.99960469070763e-05	14	alternative mRNA splicing, via spliceosome
GO:0034622	0.000100108527580588	114	cellular protein-containing complex assembly
GO:0002376	0.00010624222677036	233	immune system process
GO:0050793	0.000106680345280364	250	regulation of developmental process
GO:0010212	0.000106739301159573	26	response to ionizing radiation
GO:0043200	0.000108873375115343	22	response to amino acid
GO:0070192	0.000110624703513661	14	chromosome organization involved in meiotic cell cycle
GO:0000281	0.0001119353373001	19	mitotic cytokinesis
GO:0044248	0.000114057127242024	202	cellular catabolic process
GO:0070848	0.000117496302360817	86	response to growth factor
GO:0071426	0.00012354888392438	24	ribonucleoprotein complex export from nucleus
GO:0070925	0.000124409497755283	103	organelle assembly
GO:1905508	0.000125793661429964	12	protein localization to microtubule organizing center
GO:0051247	0.000130975655471179	160	positive regulation of protein metabolic process
GO:0071166	0.000134405005697858	24	ribonucleoprotein complex localization
GO:0006406	0.000137370157844131	22	mRNA export from nucleus
GO:0071427	0.000137370157844131	22	mRNA-containing ribonucleoprotein complex export from nucleus
GO:0071478	0.000146021933604946	29	cellular response to radiation
GO:0064405	0.0001574413783297	25	RNA export from nucleus
GO:2001252	0.000157412848887437	29	positive regulation of chromosome organization
GO:0071897	0.000163228048448993	30	DNA biosynthetic process
GO:0072359	0.000173778227378294	127	circulatory system development
GO:0007099	0.000173881127336506	11	centriole replication
GO:1400564	0.000179870039992864	30	organelle localization by membrane tethering
GO:0032034	0.0001816468084046232	287	macromolecule localization
GO:0061440	0.000187171550134635	20	cytoskeleton-dependent cytokinesis
GO:007063	0.00019301470287498	9	regulation of sister chromatid cohesion
GO:0032870	0.000196105178024187	80	cellular response to hormone stimulus
GO:0002476	0.000196313745109504	4	antigen processing and presentation of endogenous peptide antigen via MHC class Ib
GO:0030198	0.000197518144627081	54	extracellular matrix organization
GO:0043967	0.000199034070679956	16	histone H4 acetylation
GO:0044380	0.000209369013442645	16	protein localization to cytoskeleton
GO:0010824	0.000212971050305769	12	regulation of centrosome duplication
GO:0016573	0.000213727073731331	27	histone acetylation
GO:1901698	0.0002157077594866	110	response to nitrogen compound
GO:1902750	0.000216754353370595	13	negative regulation of cell cycle G2/M phase transition
GO:0034728	0.000229852648293785	22	nucleosome organization
GO:1901700	0.000232535333625837	150	response to oxygen-containing compound
GO:0071459	0.000241437128008931	7	protein localization to chromosome, centromeric region
GO:0031123	0.000250152231062823	21	RNA 3'-end processing

GO:0072698	0.000256665488856693	15	protein localization to microtubule cytoskeleton
GO:0051495	0.000257671057351717	34	positive regulation of cytoskeleton organization
GO:200026	0.000258216168175533	201	regulation of multicellular organismal development
GO:0034501	0.000258944327946004	6	protein localization to kinetochore
GO:0006261	0.000259581379761717	25	DNA-dependent DNA replication
GO:0071363	0.000264095549613935	81	cellular response to growth factor stimulus
GO:0044319	0.0002643670740851023	10	wound healing, spreading of cells
GO:0090505	0.0002646370740851023	10	epiboly involved in wound healing
GO:0046907	0.000271049022044608	183	intracellular transport
GO:0002428	0.000271239817860848	4	antigen processing and presentation of peptide antigen via MHC class Ib
GO:0030518	0.000273783470343621	26	intracellular steroid hormone receptor signaling pathway
GO:0018393	0.000278434652631349	27	internal peptidyl-lysine acetylation
GO:0051704	0.000284312489192651	202	multi-organism process
GO:0044087	0.000288012019370253	110	regulation of cellular component biogenesis
GO:0098534	0.000292927163851333	11	centriole assembly
GO:0002480	0.000294838032822446	4	antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent
GO:0031497	0.000297224294930042	19	chromatin assembly
GO:0066886	0.000300638869176192	115	intracellular protein transport
GO:0034340	0.0003056372979755914	15	response to type I interferon
GO:0051315	0.000307417171809838	6	attachment of mitotic spindle microtubules to kinetochore
GO:0070482	0.000321704502508301	46	response to oxygen levels
GO:0048514	0.000322946275427496	74	blood vessel morphogenesis
GO:0018394	0.000328049887483704	28	peptidyl-lysine acetylation
GO:1901565	0.000328310211196406	124	organonitrogen compound catabolic process
GO:0006508	0.000336825773912282	158	proteolysis
GO:0051649	0.000337016037517708	216	establishment of localization in cell
GO:1901699	0.000347106425565836	76	cellular response to nitrogen compound
GO:0048545	0.000349161304433353	49	response to steroid hormone
GO:0018023	0.0003501264884472277	12	peptidyl-lysine trimethylation
GO:0031058	0.000351522723945104	18	positive regulation of histone modification
GO:0010243	0.000361079250364584	103	response to organonitrogen compound
GO:0071539	0.000362672822052129	11	protein localization to centrosome
GO:0032502	0.000374590441111037	521	developmental process
GO:0019080	0.000383789562421025	14	viral gene expression
GO:0046890	0.000388051073271205	26	regulation of lipid biosynthetic process
GO:0051302	0.000392518883836767	24	regulation of cell division
GO:0031334	0.000395190603161437	37	positive regulation of protein complex assembly
GO:0006475	0.000396310272118786	27	internal protein amino acid acetylation
GO:1902905	0.000407527946326846	31	positive regulation of supramolecular fiber organization
GO:0031401	0.000407823796525036	120	positive regulation of protein modification process
GO:1901701	0.000407856831287168	113	cellular response to oxygen-containing compound
GO:1903827	0.000409398207749247	66	regulation of cellular protein localization
GO:0048856	0.000410385056124	492	anatomical structure development
GO:0080135	0.000410989766917928	77	regulation of cellular response to stress
GO:0042176	0.000415504104063499	49	regulation of protein catabolic process
GO:0099314	0.000417474718348945	54	response to radiation
GO:0050792	0.000426372130161097	25	regulation of viral process
GO:0006268	0.00046054495752858	5	DNA unwinding involved in DNA replication
GO:0043062	0.000462679744572111	57	extracellular structure organization
GO:0002520	0.000476762836251195	93	immune system development
GO:1905269	0.0004921996440475099	19	positive regulation of chromatin organization
GO:0010972	0.000503975352642845	11	negative regulation of G2/M transition of mitotic cell cycle
GO:1903312	0.000503911438094065	15	negative regulation of mRNA metabolic process
GO:0071214	0.000506810456002137	41	cellular response to abiotic stimulus
GO:0010404	0.000506810456002137	41	cellular response to environmental stimulus
GO:0002011	0.000507314046284021	15	morphogenesis of an epithelial sheet
GO:0034097	0.000521138632434748	101	response to cytokine
GO:009628	0.000522879400485705	117	response to abiotic stimulus
GO:0034248	0.00052959803716687	51	regulation of cellular amide metabolic process
GO:0043254	0.000534585585617184	57	regulation of protein complex assembly
GO:0042981	0.000543764047051658	144	regulation of apoptotic process
GO:0010498	0.000550013877301586	54	proteasomal protein catabolic process
GO:0048869	0.000550167553068047	373	cellular developmental process
GO:0032693	0.0005641560351081428	43	response to decreased oxygen levels
GO:0005054	0.000577941901662158	10	epiboly
GO:0043044	0.00058042000316365	15	ATP-dependent chromatin remodeling
GO:0016579	0.000585457315457368	37	protein deubiquitination
GO:0006418	0.000587887180387186	10	tRNA aminoacylation for protein translation
GO:0006417	0.0005953997930286059	45	regulation of translation
GO:0043067	0.00060317405565402	145	regulation of programmed cell death
GO:0030261	0.000607087167302363	11	chromosome condensation
GO:0050896	0.000614055825687512	656	response to stimulus
GO:0051101	0.000620602269475759	20	regulation of DNA binding
GO:0070601	0.00063792799975168	5	centromeric sister chromatid cohesion
GO:0032479	0.000642576225456332	20	regulation of type I interferon production
GO:0051338	0.000643391809529283	100	regulation of transferase activity
GO:007569	0.0006462891687876525	19	cell aging
GO:0032606	0.000677010766593042	20	type I interferon production
GO:0007050	0.000677410807168303	34	cell cycle arrest
GO:0006378	0.000678769703971201	11	mRNA polyadenylation
GO:0043631	0.000678769703971201	11	RNA polyadenylation
GO:0034968	0.00068205082687099	22	histone lysine methylation
GO:0007044	0.00069674739626576	23	cell-substrate junction assembly
GO:0050810	0.000699282913495040	16	regulation of steroid biosynthetic process
GO:0018022	0.000725405451644453	23	peptidyl-lysine methylation
GO:0032467	0.00073455787722608	9	positive regulation of cytokinesis
GO:0030097	0.000743484772974741	84	hemopoiesis
GO:0003818	0.00074495115393573	13	regulation of alternative mRNA splicing, via spliceosome
GO:0010941	0.00075043932307215	154	regulation of cell death
GO:0071453	0.000771247227108441	28	cellular response to oxygen levels
GO:0097435	0.000776914710284371	84	supramolecular fiber organization
GO:0071496	0.00080295845119289	42	cellular response to external stimulus
GO:1902903	0.000812744355848812	47	regulation of supramolecular fiber organization
GO:0071407	0.000812805160429757	66	cellular response to organic cyclic compound
GO:0031572	0.00082394214898347	9	G2 DNA damage checkpoint
GO:0031503	0.00084597363428622	40	protein-containing complex localization
GO:0031060	0.00086114120393887	15	regulation of histone methylation
GO:0001706	0.00088184631572239	13	endoderm formation
GO:0071774	0.00088835437344977	23	response to fibroblast growth factor
GO:0070646	0.000897907427855622	38	protein modification by small protein removal
GO:0032436	0.000941433967013046	15	positive regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:0019218	0.000945176746049528	18	regulation of steroid metabolic process
GO:0043543	0.000953718869773284	34	protein acylation
GO:0043039	0.00095722216993451	10	tRNA aminoacylation
GO:0018105	0.000970354197318333	41	peptidyl-serine phosphorylation
GO:0043903	0.0009759391974692	26	regulation of symbiosis, encompassing mutualism through parasitism
GO:0030952	0.000988350143837568	6	establishment or maintenance of cytoskeleton polarity
GO:0031057	0.00101787331683996	11	negative regulation of histone modification
GO:0031145	0.00102277886068494	8	anaphase-promoting complex-dependent catabolic process
GO:0006412	0.00102969819956207	60	translation
GO:0090169	0.0010302453098097	9	regulation of spindle assembly
GO:0071417	0.00103204345769645	69	cellular response to organonitrogen compound
GO:0046599	0.00104850046700888	7	regulation of centriole replication
GO:0033157	0.001071580469322954	35	regulation of intracellular protein transport
GO:1905288	0.00108869114432783	5	vascular associated smooth muscle cell apoptotic process
GO:1905459	0.00108869114432783	5	regulation of vascular associated smooth muscle cell apoptotic process
GO:1902115	0.00109220695431123	31	regulation of organelle assembly
GO:0014070	0.00111035966547322	93	response to organic cyclic compound
GO:0048731	0.00112098602674947	414	system development
GO:1905268	0.00112326575873205	13	negative regulation of chromatin organization
GO:0042221	0.00112403523563029	344	response to chemical
GO:0045595	0.00113112514074848	176	regulation of cell differentiation
GO:0036294	0.001135793446536042	26	cellular response to decreased oxygen levels
GO:0064602	0.00114133120205899	36	mRNA catabolic process
GO:0016571	0.001157953069994907	24	histone methylation
GO:0001932	0.00116747715195976	135	regulation of protein phosphorylation
GO:0034086	0.00117623022788298	6	maintenance of sister chromatid cohesion
GO:0034088	0.00117623022788298	6	maintenance of mitotic sister chromatid cohesion
GO:0043038	0.0011877541738906	10	amino acid activation

GO:0060548	0.00119174810238984	99	negative regulation of cell death
GO:0040029	0.0011938791247338	43	regulation of gene expression, epigenetic
GO:0035987	0.0012177038057661	12	endoermal cell differentiation
GO:0043161	0.00122162531929346	46	proteasome-mediated ubiquitin-dependent protein catabolic process
GO:0044344	0.00124084651202513	22	cellular response to fibroblast growth factor stimulus
GO:0030522	0.001246777716363	39	intracellular receptor signaling pathway
GO:0071357	0.00124974844196043	13	type I interferon signaling pathway
GO:0030705	0.00125773393267802	31	cellular response to type I interferon
GO:0071383	0.00130726112078497	36	cytoskeleton-dependent intracellular transport
GO:0019083	0.001314442567112164	11	cellular response to steroid hormone stimulus
GO:0007275	0.00132956085881453	454	viral transcription
GO:0006334	0.00139292925479726	15	multicellular organism development
GO:0006695	0.00143904404601761	14	nucleosome assembly
GO:1902653	0.00143904404601761	14	cholesterol biosynthetic process
GO:0035295	0.00144160942444616	114	secondary alcohol biosynthetic process
GO:0034508	0.001450949486660131	10	tube development
GO:0007127	0.00145329936705858	17	centromere complex assembly
GO:0051640	0.00152426806284364	83	meiosis I
GO:1905461	0.00152701730649123	4	organelle localization
GO:0031062	0.0015680618871302	10	positive regulation of vascular associated smooth muscle cell apoptotic process
GO:0006468	0.00158538330673482	184	positive regulation of histone methylation
GO:0043687	0.00159448613738264	41	protein phosphorylation
GO:0071229	0.00161066785086599	30	post-translational protein modification
GO:1901800	0.00164037794889439	17	cellular response to acid chemical
GO:0022618	0.00165928374542523	32	positive regulation of proteasomal protein catabolic process
GO:0051754	0.00166866618176663	3	ribonucleoprotein complex assembly
GO:0051701	0.00167952332854568	28	meiotic sister chromatid cohesion, centromeric
GO:0048193	0.00168281245207105	49	interaction with host
			GoGi vesicle transport

(Significantly upregulated biological pathways in 1 min oscillatory condition).

Category	Overrepresented p-value	numDEInCat	
GO:0006614	3.01515891680528e-39	61	SRP-dependent cotranslational protein targeting to membrane
GO:0006613	2.01407774823939e-38	61	cotranslational protein targeting to membrane
GO:0045047	1.08981605108091e-37	62	protein targeting to ER
GO:0072599	3.47543626728856e-37	62	establishment of protein localization to endoplasmic reticulum
GO:000184	9.3611259880462e-37	61	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:0070972	1.68623137511771e-35	63	protein localization to endoplasmic reticulum
GO:0006402	7.6076223183375e-32	72	mRNA catabolic process
GO:0009596	8.949812708434556e-32	66	nuclear-transcribed mRNA catabolic process
GO:0006413	2.55640283003708e-31	64	translational initiation
GO:0006401	3.90913891113886e-31	73	RNA catabolic process
GO:0006612	6.23668808638686e-30	62	protein targeting to membrane
GO:0090150	6.39634645009975e-29	70	establishment of protein localization to membrane
GO:0044265	7.73968746092614e-28	109	cellular macromolecule catabolic process
GO:0064412	1.04277804130156e-26	97	translation
GO:0042043	1.27244960035784e-26	98	peptide biosynthetic process
GO:0006518	8.12380964152126e-26	104	peptide metabolic process
GO:0009057	1.83326606732697e-25	113	macromolecule catabolic process
GO:0034604	1.29709126359466e-24	100	amide biosynthetic process
GO:0034655	2.32473649970438e-24	77	nucleobase-containing compound catabolic process
GO:0072657	7.0474848224167e-24	78	nucleobase-containing compound catabolic process
GO:0072594	1.93739356688381e-23	77	protein localization to membrane
GO:0046700	3.23562425080563e-23	78	establishment of protein localization to organelle
GO:0044270	3.52551817955561e-23	78	heterocycle catabolic process
GO:0016071	5.19357255628974e-23	88	cellular nitrogen compound catabolic process
GO:0019439	8.38025737013012e-23	78	mRNA metabolic process
GO:0006605	1.11261432260123e-22	70	aromatic compound catabolic process
GO:1901361	1.10953404420864e-21	78	protein targeting
GO:0043603	2.73681718273444e-21	106	organic cyclic compound catabolic process
GO:0044271	9.25015485269217e-21	222	cellular amide metabolic process
GO:0033365	2.14829837610596e-20	85	cellular nitrogen compound biosynthetic process
GO:0034645	1.01564684603617e-19	215	protein localization to organelle
GO:0044267	1.022878459564682e-19	235	cellular macromolecule biosynthetic process
GO:0046907	1.49841072136092e-19	121	cellular protein metabolic process
GO:1901564	2.119166683399597e-19	282	intracellular transport
GO:0044260	4.13202123899259e-19	304	organonitrogen compound metabolic process
GO:0009059	6.7998161516944e-19	217	cellular macromolecule metabolic process
GO:1901566	8.37798765760509e-19	128	organonitrogen compound biosynthetic process
GO:0048519	1.25015536438109e-18	234	negative regulation of biological process
GO:0009892	1.947936367010574e-18	167	negative regulation of metabolic process
GO:0010605	2.507492362890942e-18	160	negative regulation of macromolecule metabolic process
GO:0019538	6.563016400233567e-18	245	protein metabolic process
GO:0051449	2.83609479419973e-17	127	establishment of localization in cell
GO:0044249	3.2958503154961e-17	242	cellular biosynthetic process
GO:0006986	3.55607241297996e-17	91	intracellular protein transport
GO:0051179	4.06553591855603e-17	246	localization
GO:0034613	4.90372191932284e-17	114	cellular protein localization
GO:0070727	7.16201767556797e-17	114	cellular macromolecule localization
GO:1901576	1.14851897035306e-16	243	organic substance biosynthetic process
GO:0009058	1.18862600271048e-16	245	biosynthetic process
GO:0044248	1.77034498502021e-16	129	cellular catabolic process
GO:0051641	1.81106220482141e-16	144	cellular localization
GO:0060255	2.3510143970666e-16	243	regulation of macromolecule metabolic process
GO:0019222	5.00794019125885e-16	256	regulation of metabolic process
GO:0010629	6.65110014201858e-16	126	negative regulation of gene expression
GO:0015031	1.52420619474238e-15	118	protein transport
GO:0015833	1.80314474240233e-15	119	peptide transport
GO:0006810	2.33849054649978e-15	202	transport
GO:0051234	4.0186345490776e-15	204	establishment of localization
GO:0042886	4.1947357890297e-15	119	amide transport
GO:0045184	4.4939073841542e-15	120	establishment of protein localization
GO:0009056	2.286917182717795e-14	132	catabolic process
GO:0008104	2.8376772409979e-14	135	protein localization
GO:1901575	2.9062891913921e-14	117	organic substance catabolic process
GO:0010468	5.07331343564006e-14	190	regulation of gene expression
GO:0034641	1.81614084879842e-13	270	cellular nitrogen compound metabolic process
GO:0010033	2.2142653218986e-13	143	response to organic substance
GO:0071705	3.53038256339701e-13	122	nitrogen compound transport
GO:0033034	5.4035641845233e-13	142	macromolecule localization
GO:0042221	1.03280732595627e-12	178	response to chemical
GO:0070867	1.23730107983119e-12	142	cellular response to chemical stimulus
GO:0006807	1.24494484825218e-12	352	nitrogen compound metabolic process
GO:0071345	1.87921422958185e-12	70	cellular response to cytokine stimulus
GO:0051246	9.40365538391233e-12	127	regulation of protein metabolic process
GO:0044237	1.0547664746654e-11	364	cellular metabolic process
GO:0034097	1.37006313345464e-11	71	response to cytokine
GO:0071310	1.73459634404644e-11	118	cellular response to organic substance
GO:1901701	1.85662459176765e-11	63	cellular response to oxygen-containing compound
GO:0071702	5.03079273594998e-11	127	organic substance transport
GO:0032268	5.04644540548082e-11	119	regulation of cellular protein metabolic process
GO:0044238	5.0818942406038e-11	355	primary metabolic process
GO:0060548	7.66209611093361e-11	63	negative regulation of cell death
GO:0042254	9.67388711326776e-11	39	ribosome biogenesis
GO:0071840	1.2549710017253e-10	234	cellular component organization or biogenesis
GO:0043069	1.27074903766454e-10	59	negative regulation of programmed cell death
GO:0043066	1.75256765169182e-10	58	negative regulation of apoptotic process
GO:0022613	1.84954444946531e-10	48	ribonucleoprotein complex biogenesis
GO:0006139	3.41036646232124e-10	233	nucleobase-containing compound metabolic process
GO:0006725	3.8342755758621e-10	238	cellular aromatic compound metabolic process
GO:0002181	7.84606452009325e-10	23	cytoplasmic translation
GO:0042273	8.2638327317986e-10	20	ribosomal large subunit biogenesis
GO:0051247	9.6767652737356e-10	82	positive regulation of protein metabolic process
GO:0046483	1.05043910412609e-09	235	heterocycle metabolic process

GO:0008219	1.28416512772112e-09	104	cell death
GO:1901700	1.34351563510791e-09	77	response to oxygen-containing compound
GO:001360	1.8018706062431e-09	241	organic cyclic compound metabolic process
GO:0012501	1.90376169956377e-09	99	programmed cell death
GO:0043933	2.1966284395489e-09	118	protein-containing complex subunit organization
GO:0051173	2.30731216087608e-09	122	positive regulation of nitrogen compound metabolic process
GO:0050789	2.81985276437744e-09	336	regulation of biological process
GO:0032270	4.1467519941813e-09	77	positive regulation of cellular protein metabolic process
GO:0043067	4.19511699531071e-09	79	regulation of programmed cell death
GO:0008152	4.50274239464485e-09	377	metabolic process
GO:0010941	5.24381503975997e-09	83	regulation of cell death
GO:0016070	5.57492278854018e-09	192	RNA metabolic process
GO:0042981	6.20199345844758e-09	78	regulation of apoptotic process
GO:0010467	6.57383506181973e-09	229	gene expression
GO:0019221	7.94853052213398e-09	51	cytokine-mediated signaling pathway
GO:0070498	8.32750935264262e-09	12	interleukin-1-mediated signaling pathway
GO:0042255	8.42870905073744e-09	18	ribosome assembly
GO:0009893	8.43576162444535e-09	133	positive regulation of metabolic process
GO:0048522	8.9889303714641e-09	179	positive regulation of cellular process
GO:0009304	1.0906062142129e-09	205	nucleic acid metabolic process
GO:0031325	1.10498044402351e-08	123	positive regulation of cellular metabolic process
GO:0010604	1.1942720941715e-08	124	positive regulation of macromolecule metabolic process
GO:0033554	1.59879918156675e-08	89	cellular response to stress
GO:0043170	1.66858736194902e-08	322	macromolecule metabolic process
GO:0044085	1.70173588458342e-08	139	cellular component biogenesis
GO:0051171	2.11479637534447e-08	193	regulation of nitrogen compound metabolic process
GO:0016043	2.25913405792733e-08	217	cellular component organization
GO:0080134	2.505363079185127e-08	68	regulation of response to stress
GO:0048518	2.80739981272423e-08	195	positive regulation of biological process
GO:0009636	3.1873125403042e-08	41	response to toxic substance
GO:0002376	3.49385732084924e-08	119	immune system process
GO:0080090	3.53415960342446e-08	196	regulation of primary metabolic process
GO:0006955	3.9992057974083e-08	89	immune response
GO:0033993	4.56586734718402e-08	49	response to lipid
GO:0009987	4.6542678034497e-08	454	cellular process
GO:0002684	5.17507799752876e-08	53	positive regulation of immune system process
GO:0071704	5.83843645817211e-08	359	organic substance metabolic process
GO:0065009	5.86872375566408e-08	127	regulation of molecular function
GO:0009628	5.8862946501243e-08	57	response to abiotic stimulus
GO:0045321	6.11133056743955e-08	62	leukocyte activation
GO:0048523	7.19392197129409e-08	166	negative regulation of cellular process
GO:0001775	7.23046515151893e-08	66	cell activation
GO:0006915	7.35483091626166e-08	88	apoptotic process
GO:0060429	7.8198483362138e-08	58	epithelium development
GO:0034975	7.8222307259675e-08	6	protein folding in endoplasmic reticulum
GO:0050790	9.06544102816879e-08	97	regulation of catalytic activity
GO:0009605	9.27181226820333e-08	97	response to external stimulus
GO:0031323	9.27471640870789e-08	198	regulation of cellular metabolic process
GO:0071222	9.31786843236375e-08	21	cellular response to lipopolysaccharide
GO:0071347	9.51395938223716e-08	17	cellular response to interleukin-1
GO:0042775	1.6548177204487e-07	20	mitochondrial ATP synthesis coupled electron transport
GO:0031399	1.6584711910989e-07	77	regulation of protein modification process
GO:0071219	1.70414221907739e-07	21	cellular response to molecule of bacterial origin
GO:0071216	1.7240252674443e-07	22	cellular response to biotic stimulus
GO:0042773	1.7918427971771e-07	20	ATP synthesis coupled electron transport
GO:0071396	2.00651288142082e-07	35	cellular response to lipid
GO:0065007	2.16494064785783e-07	342	biological regulation
GO:002618	2.2828133708875e-07	28	ribonucleoprotein complex assembly
GO:0098609	2.396052224644826e-07	40	cell-cell adhesion
GO:0016310	2.6813040998819e-07	92	phosphorylation
GO:0048585	2.8959070229688e-07	69	negative regulation of response to stimulus
GO:0002237	3.23123460918391e-07	27	response to molecule of bacterial origin
GO:0070555	3.28315290306036e-07	18	response to interleukin-7
GO:0022407	3.46742106587827e-07	27	regulation of cell-cell adhesion
GO:0031224	4.05668914470376e-07	103	negative regulation of cellular metabolic process
GO:0071826	4.5914479932888e-07	28	ribonucleoprotein complex subunit organization
GO:0065003	4.96632214225649e-07	96	protein-containing complex assembly
GO:0042592	5.05919968003706e-07	82	homeostatic process
GO:0031098	5.52132197943971e-07	23	stress-activated protein kinase signaling cascade
GO:0097193	5.6083407744915e-07	27	intrinsic apoptotic signaling pathway
GO:0051403	6.03150643685239e-07	22	stress-activated MAPK cascade
GO:0032496	6.51411717593322e-07	26	response to lipopolysaccharide
GO:0019725	6.85657140957997e-07	50	cellular homeostasis
GO:0051240	7.39122731310679e-07	73	positive regulation of multicellular organismal process
GO:1902531	9.12778543021765e-07	78	regulation of intracellular signal transduction
GO:0097190	1.0169854791614e-06	41	apoptotic signaling pathway
GO:0022904	1.04248196421673e-06	20	respiratory electron transport chain
GO:0002252	1.06783166997125e-06	57	immune effector process
GO:0080135	1.1109352533454e-06	39	regulation of cellular response to stress
GO:0022900	1.24829860050647e-06	27	electron transport chain
GO:0009607	1.46857252391648e-06	51	response to biotic stimulus
GO:0001817	1.49399643595988e-06	37	regulation of cytokine production
GO:0019058	1.58703473797179e-06	24	viral life cycle
GO:0043207	1.69470856558908e-06	50	response to external biotic stimulus
GO:0051707	1.69470856558908e-06	50	response to other organism
GO:2001233	1.9052462100027e-06	31	regulation of apoptotic signaling pathway
GO:0097237	2.247609929139e-06	23	cellular response to toxic substance
GO:0051338	2.29444249489886e-06	47	regulation of transferase activity
GO:0004935	2.42277447474492e-06	37	chemotaxis
GO:0014070	2.43963959589734e-06	43	response to organic cyclic compound
GO:0006119	2.48109349122053e-06	20	oxidative phosphorylation
GO:0069969	2.53841983856073e-06	142	organelle organization
GO:0010243	2.59405322181508e-06	45	response to organonitrogen compound
GO:0069590	2.64973705975118e-06	140	response to stress
GO:0030155	2.6545304986512e-06	35	regulation of cell adhesion
GO:0042330	2.69205233055905e-06	37	taxis
GO:0001816	2.76805222983926e-06	39	cytokine production
GO:0051172	3.1289559486784e-06	96	negative regulation of nitrogen compound metabolic process
GO:1901698	3.41964303187333e-06	47	response to nitrogen compound
GO:0010257	3.57815910038093e-06	16	NADH dehydrogenase complex assembly
GO:0032981	3.57815910038093e-06	16	mitochondrial respiratory chain complex I assembly
GO:0048870	3.57940603765437e-06	68	cell motility
GO:0051674	3.57940603765437e-06	68	localization of cell
GO:0016477	3.96283028858111e-06	63	cell migration
GO:0040011	4.20508759300705e-06	74	locomotion
GO:0051094	4.67064101538977e-06	59	positive regulation of developmental process
GO:0002682	4.73693261449199e-06	66	regulation of immune system process
GO:1903039	4.81087978453299e-06	18	positive regulation of leukocyte cell-cell adhesion
GO:0007159	4.89003009984911e-06	23	leukocyte cell-cell adhesion
GO:0050778	4.9193817442468e-06	37	positive regulation of immune response
GO:0048584	5.10694038069565e-06	89	positive regulation of response to stimulus
GO:0006986	5.3576479742238e-06	16	response to unfolded protein
GO:0070482	5.40553232778204e-06	24	response to oxygen levels
GO:0065008	5.74282230222767e-06	133	regulation of biological quality
GO:0002764	5.78516408245617e-06	27	immune response-regulating signaling pathway
GO:0032693	5.8438216848309e-06	23	response to decreased oxygen levels
GO:0002274	5.94788231974669e-06	39	myeloid leukocyte activation
GO:0035966	6.11650515354302e-06	17	response to topologically incorrect protein
GO:0045859	6.7831475745808e-06	39	regulation of protein kinase activity
GO:0009617	6.8743059208187e-06	37	response to bacterium
GO:0022409	6.890156079242165e-06	19	positive regulation of cell-cell adhesion
GO:0009888	6.97977902422216e-06	75	tissue development
GO:0022607	6.99922299516083e-06	119	cellular component assembly
GO:0006928	7.25682094728754e-06	80	movement of cell or subcellular component
GO:0001932	7.298502626446662e-06	60	regulation of protein phosphorylation
GO:0043405	7.365078444779e-06	22	regulation of MAP kinase activity
GO:0043588	8.11751250411921e-06	26	skin development
GO:1903037	8.58684116961651e-06	21	regulation of leukocyte cell-cell adhesion
GO:0048732	8.61560084609267e-06	25	gland development

GO:0006457	8.63307926510805e-06	21	protein folding
GO:0071900	8.89697992088414e-06	29	regulation of protein serine/threonine kinase activity
GO:0069797	9.3874706302294e-06	30	response to oxidative stress
GO:0060326	1.01267477560543e-05	24	cell chemotaxis
GO:0070423	1.02625241913964e-05	7	nucleotide-binding oligomerization domain containing signaling pathway
GO:0030595	1.06580276405043e-05	20	leukocyte chemotaxis
GO:1902532	1.0998364988558e-05	30	negative regulation of intracellular signal transduction
GO:0050776	1.1116815592491e-05	43	regulation of immune response
GO:2000027	1.1627592058753e-05	16	regulation of animal organ morphogenesis
GO:0044419	1.17388070490814e-05	44	interspecies interaction between organisms
GO:0044092	1.17705159405932e-05	54	negative regulation of molecular function
GO:0002366	1.18224720234134e-05	39	leukocyte activation involved in immune response
GO:0043085	1.19889228034944e-05	59	positive regulation of catalytic activity
GO:0034622	1.22446725324987e-05	68	cellular protein-containing complex assembly
GO:0002263	1.23890156439719e-05	39	cell activation involved in immune response
GO:0001666	1.26282202938733e-05	22	response to hypoxia
GO:0035872	1.28144309566476e-05	7	nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway
GO:0045333	1.29855832645103e-05	22	cellular respiration
GO:0019220	1.40821120800256e-05	68	regulation of phosphate metabolic process
GO:0009966	1.44705099911253e-05	113	regulation of signal transduction
GO:0044093	1.45131357217039e-05	69	positive regulation of molecular function
GO:0051174	1.45159536041322e-05	68	regulation of phosphorus metabolic process
GO:0016072	1.55421004104e-05	25	rRNA metabolic process
GO:0002253	1.56052120362344e-05	28	activation of immune response
GO:0071417	1.622773342545334e-05	28	cellular response to organonitrogen compound
GO:0009968	1.62291279680150e-05	53	negative regulation of signal transduction
GO:0002757	1.64733511965371e-05	25	immune response-activating signal transduction
GO:0042325	1.66850595012948e-05	62	regulation of phosphorylation
GO:0030855	1.721897532545252e-05	38	epithelial cell differentiation
GO:0051252	1.80243298304323e-05	120	regulation of RNA metabolic process
GO:0007050	1.8338776333568e-05	19	cell cycle arrest
GO:0050863	2.21169652336147e-05	20	regulation of T cell activation
GO:0007155	2.29454854133474e-05	52	cell adhesion
GO:0001819	2.34433220420024e-05	25	positive regulation of cytokine production
GO:0044267	2.35100349339732e-05	39	cellular protein catabolic process
GO:0071496	2.379441446512879e-05	21	cellular response to external stimulus
GO:0042119	2.48522701399249e-05	32	neutrophil activation
GO:2000112	2.50122232413905e-05	127	regulation of cellular macromolecule biosynthetic process
GO:0051347	2.58629141869186e-05	32	positive regulation of transferase activity
GO:0026160	2.59407383567038e-05	52	biological adhesion
GO:0006160	2.61616336538096e-05	13	mitochondrial electron transport, NADH to ubiquinone
GO:0098754	2.81347436884798e-05	18	detoxification
GO:0007005	2.84647110286127e-05	37	mitochondrion organization
GO:0015980	2.94171392921825e-05	24	energy derivation by oxidation of organic compounds
GO:0051704	3.16751137035838e-05	94	multi-organism process
GO:0048513	3.19435223270558e-05	115	animal organ development
GO:0031401	3.25543828315302e-05	51	positive regulation of protein modification process
GO:0006364	3.32104395312045e-05	23	rRNA processing
GO:0043435	3.5132121658431e-05	3	response to corticotropin-releasing hormone
GO:0071376	3.5132121658431e-05	3	cellular response to corticotropin-releasing hormone stimulus
GO:0036230	3.51750746260772e-05	32	granulocyte activation
GO:0026121	3.60381225183501e-05	11	gland morphogenesis
GO:0010648	3.6518075798489e-05	55	negative regulation of cell communication
GO:0016032	3.72778063699925e-05	38	viral process
GO:1901699	3.749328300644831e-05	29	cellular response to nitrogen compound
GO:0051249	3.79582585776444e-05	24	regulation of lymphocyte activation
GO:0023057	3.798679367709386e-05	55	negative regulation of signaling
GO:0048583	3.92669415110469e-05	136	regulation of response to stimulus
GO:0044403	4.01594479357686e-05	40	symbiont process
GO:2001234	4.05933891020916e-05	19	negative regulation of apoptotic signaling pathway
GO:0019219	4.15582862498421e-05	126	regulation of nucleobase-containing compound metabolic process
GO:0043549	4.29864923223758e-05	39	regulation of kinase activity
GO:0002694	4.345370591138404e-05	27	regulation of leukocyte activation
GO:0063551	4.3682951340503e-05	116	transcription, DNA-templated
GO:0000112	4.39521436678939e-05	47	regulation of locomotion
GO:0000027	4.39680498196918e-05	9	ribosomal large subunit assembly
GO:0050870	4.40818673604653e-05	16	positive regulation of T cell activation
GO:0034599	4.42089197893735e-05	21	cellular response to oxidative stress
GO:0051248	4.4423009767946e-05	54	negative regulation of protein metabolic process
GO:2000145	4.61067691343167e-05	45	regulation of cell motility
GO:0030163	4.7803379753198e-05	43	protein catabolic process
GO:0051017	4.80774257475021e-05	12	actin filament bundle assembly
GO:0051253	4.98934548001332e-05	55	negative regulation of RNA metabolic process
GO:0023014	4.99654042899455e-05	42	signal transduction by protein phosphorylation
GO:0019438	5.41820101175634e-05	135	aromatic compound biosynthetic process
GO:0023051	5.4305500718883e-05	119	regulation of signaling
GO:0098989	5.49923208087065e-05	136	regulation of biosynthetic process
GO:0010556	5.52431318703686e-05	129	regulation of macromolecule biosynthetic process
GO:0051270	5.5696938913404e-05	47	regulation of cellular component movement
GO:1903311	5.62843007517924e-05	17	regulation of mRNA metabolic process
GO:0061572	5.63031002125055e-05	12	actin filament bundle organization
GO:0051603	5.65202804297342e-05	36	proteolysis involved in cellular protein catabolic process
GO:0010646	5.92692934868505e-05	118	regulation of cell communication
GO:0030216	6.12809768479959e-05	20	keratinocyte differentiation
GO:0097529	6.21000119340359e-05	18	myeloid leukocyte migration
GO:0006366	6.40809838299651e-05	89	transcription by RNA polymerase II
GO:0010628	6.41801625008107e-05	71	positive regulation of gene expression
GO:0045860	6.46974902091753e-05	27	positive regulation of protein kinase activity
GO:0007144	6.76377467099111e-05	100	cell surface receptor signaling pathway
GO:0003032	6.8437351043723e-05	19	response to reactive oxygen species
GO:0071453	6.86641539793059e-05	15	cellular response to oxygen levels
GO:0023056	6.8827870053899e-05	70	positive regulation of signaling
GO:0071450	7.10062760775207e-05	7	cellular response to oxygen radical
GO:0071451	7.10062760775207e-05	7	cellular response to superoxide
GO:1901362	7.11165594581895e-05	139	organic cyclic compound biosynthetic process
GO:0032649	7.16165312456497e-05	10	regulation of interferon-gamma production
GO:0043299	7.19367045011333e-05	32	leukocyte degranulation
GO:0000165	7.43069041191943e-05	41	MAPK cascade
GO:0018130	7.50694144768685e-05	134	heterocycle biosynthetic process
GO:0051272	7.61354746230227e-05	31	positive regulation of cellular component movement
GO:097659	7.64440587684817e-05	116	nucleic acid-templated transcription
GO:0035556	7.6550883804396e-05	96	intracellular signal transduction
GO:0042542	7.86556926251284e-05	14	response to hydrogen peroxide
GO:0030593	7.92589875460802e-05	13	neutrophil chemotaxis
GO:0042326	7.9465343883188e-05	25	negative regulation of phosphorylation
GO:0006355	8.0719228862045e-05	109	regulation of transcription, DNA-templated
GO:0006793	8.11972982135549e-05	111	phosphorus metabolic process
GO:0034654	8.17846226935194e-05	132	nucleobase-containing compound biosynthetic process
GO:0045934	8.30948018558161e-05	58	negative regulation of nucleobase-containing compound metabolic process
GO:0046916	8.3824935258008e-05	15	cellular regulation of metal ion homeostasis
GO:0045785	8.461173573309e-05	23	positive regulation of cell adhesion
GO:0071621	8.6434395382702e-05	14	granulocyte chemotaxis
GO:0010035	8.71201675334173e-05	32	response to inorganic substance
GO:0007275	8.7439460123543e-05	160	multicellular organism development
GO:0051492	8.76740472069184e-05	9	regulation of stress fiber assembly
GO:0008406	8.87243557788226e-05	15	gonad development
GO:0002275	8.97230392553069e-05	32	myeloid cell activation involved in immune response
GO:0050582	9.03643746355764e-05	38	cellular chemical homeostasis
GO:0009205	9.06703510650753e-05	24	purine ribonucleoside triphosphate metabolic process
GO:0006796	9.08388023760027e-05	110	phosphate-containing compound metabolic process
GO:0030334	9.43577692550638e-05	42	regulation of cell migration
GO:0043312	9.64748907164831e-05	30	neutrophil degranulation
GO:0050900	9.98203343780423e-05	25	leukocyte migration
GO:0046677	0.0001919363400765	22	response to antibiotic
GO:0032774	0.00010492359224571	116	RNA biosynthetic process
GO:0008544	0.000104636130140185	26	epidermis development
GO:0002283	0.000105276239808933	30	neutrophil activation involved in immune response
GO:0030968	0.000105304106820299	11	endoplasmic reticulum unfolded protein response
GO:0010647	0.000105304106820299	69	positive regulation of cell communication

GO:0051402	0.000105775692425002	17	neuron apoptotic process
GO:0036294	0.000107483987185419	14	cellular response to decreased oxygen levels
GO:0033108	0.000109282229000503	16	mitochondrial respiratory chain complex assembly
GO:0045137	0.000115228533338761	15	development of primary sexual characteristics
GO:0032502	0.000113075109727771	183	developmental process
GO:0003003	0.000116450387859993	7	response to superoxide
GO:0055114	0.000117300645599116	52	oxidation-reduction process
GO:0009199	0.000117417165450696	24	ribonucleoside triphosphate metabolic process
GO:0050865	0.00011761079641312	27	regulation of cell activation
GO:0002444	0.000118995087856043	32	myeloid leukocyte-mediated immunity
GO:0042274	0.00012142763898226	12	ribosomal small subunit biogenesis
GO:0040017	0.000121772652857065	31	positive regulation of locomotion
GO:0008283	0.000125053078635381	78	cell proliferation
GO:2000147	0.000125493507389183	30	positive regulation of cell motility
GO:0030335	0.000126438151598798	29	positive regulation of cell migration
GO:0032609	0.000129662463943336	10	interferon-gamma production
GO:0071407	0.000129825756888597	25	cellular response to organic cyclic compound
GO:0048731	0.000133121766312413	144	system development
GO:0001933	0.000134937564512146	23	negative regulation of protein phosphorylation
GO:0003005	0.000137954918855158	7	response to oxygen radical
GO:0009913	0.000141576981732712	21	epidermal cell differentiation
GO:0009141	0.000144492172601902	25	nucleoside triphosphate metabolic process
GO:1990266	0.0001460925478112	13	neutrophil migration
GO:0009144	0.000149149018123362	24	purine nucleoside triphosphate metabolic process
GO:0006414	0.000151585188608199	19	translational elongation
GO:0031329	0.000152658595282159	36	regulation of cellular catabolic process
GO:0002446	0.00015343768354873	30	neutrophil mediated immunity
GO:0098869	0.000155308375147904	13	cellular oxidant detoxification
GO:0097530	0.000155806013230967	14	granulocyte migration
GO:1903506	0.000158932568435065	109	regulation of nucleic acid-templated transcription
GO:0002443	0.000159983114894594	39	leukocyte mediated immunity
GO:0006357	0.00016020606022534	82	regulation of transcription by RNA polymerase II
GO:0110020	0.000160378232034021	9	regulation of actomyosin structure organization
GO:0032269	0.000164457410335438	50	negative regulation of cellular protein metabolic process
GO:0000123	0.0001646275878499726	35	negative regulation of transcription by RNA polymerase II
GO:0032101	0.000171160297584187	38	regulation of response to external stimulus
GO:0010562	0.000172183711938084	45	positive regulation of phosphorus metabolic process
GO:0045937	0.000172183711938084	45	positive regulation of phosphate metabolic process
GO:0042110	0.000173369205946468	23	T cell activation
GO:1902105	0.000174241536467526	16	regulation of leukocyte differentiation
GO:0010557	0.00017677486084795	66	positive regulation of macromolecule biosynthetic process
GO:0071902	0.000178982489708562	19	positive regulation of protein serine/threonine kinase activity
GO:0001934	0.00018196549069597	42	positive regulation of protein phosphorylation
GO:0033674	0.000181979175589903	27	positive regulation of kinase activity
GO:2001141	0.00019302733724534	109	regulation of RNA biosynthetic process
GO:2006030	0.000199514697949626	3	positive regulation of miRNA metabolic process
GO:0031424	0.000202527393135096	16	keratinization
GO:0009967	0.000202472760017306	63	positive regulation of signal transduction
GO:0006508	0.0002025020781712923	70	proteolysis
GO:0030038	0.000206957756543233	9	contractile actin filament bundle assembly
GO:0031419	0.000206957756543233	9	stress fiber assembly
GO:0002753	0.000207621401020347	7	cytoplasmic pattern recognition receptor signaling pathway
GO:0009894	0.000210213457866093	39	regulation of catabolic process
GO:0034976	0.00021404904759709	17	response to endoplasmic reticulum stress
GO:0031326	0.000221230144866389	130	regulation of cellular biosynthetic process
GO:0031328	0.000222489447468796	68	positive regulation of cellular biosynthetic process
GO:0032231	0.000223682595261399	9	regulation of actin filament bundle assembly
GO:0045055	0.000227261395356027	38	regulated exocytosis
GO:0032872	0.000234960728472945	15	regulation of stress-activated MAPK cascade
GO:1990748	0.00024556903167064	13	cellular detoxification
GO:0043406	0.000247106346689194	16	positive regulation of MAP kinase activity
GO:0045936	0.000249744160798346	28	negative regulation of phosphate metabolic process
GO:0070302	0.000250085745471074	15	regulation of stress-activated protein kinase signaling cascade
GO:0002224	0.000252755964557853	11	toxin receptor signaling pathway
GO:0035967	0.000255526258879799	12	cellular response to topologically incorrect protein
GO:0010563	0.00025644133718873	28	negative regulation of phosphorus metabolic process
GO:0071456	0.000257334796205588	13	cellular response to hypoxia
GO:0046034	0.000259919589519933	21	ATP metabolic process
GO:0006468	0.000263152579517143	66	protein phosphorylation
GO:0034620	0.00026697781652338	11	cellular response to unfolded protein
GO:0002262	0.00027011135323996	13	myeloid cell homeostasis
GO:0006123	0.000270712381097744	5	mitochondrial electron transport, cytochrome c to oxygen
GO:0019646	0.000270712381097744	5	aerobic electron transport chain
GO:0070997	0.000276752191614986	20	neuron death
GO:0009719	0.000276948145437026	59	response to endogenous stimulus
GO:0019430	0.0002788488314086	6	removal of superoxide radicals
GO:0006954	0.000283382867472514	35	inflammatory response
GO:0030260	0.000284043424587799	11	entry into host cell
GO:0044409	0.000284043424587799	11	entry into host
GO:0051806	0.000284043424587799	11	entry into cell of other organism involved in symbiotic interaction
GO:0051828	0.000284043424587799	11	entry into other organism involved in symbiotic interaction
GO:0031668	0.00029404778306032838	16	cellular response to extracellular stimulus
GO:0045935	0.000294736029343331	64	positive regulation of nucleobase-containing compound metabolic process
GO:0009123	0.000295085178410366	24	nucleoside monophosphate metabolic process
GO:0098981	0.00029527816133274	69	positive regulation of biosynthetic process
GO:0034614	0.000305518218914604	14	cellular response to reactive oxygen species
GO:0045597	0.000307479677149443	39	positive regulation of cell differentiation
GO:2001242	0.0003142158748046466	16	regulation of intrinsic apoptotic signaling pathway
GO:0035400	0.0003204300479369895	20	cellular response to drug
GO:0002218	0.000320622606182595	15	activation of innate immune response
GO:0045944	0.000324425097636488	43	positive regulation of transcription by RNA polymerase II
GO:0006091	0.000338784159168084	31	generation of precursor metabolites and energy
GO:0030901	0.000342534008342881	9	midbrain development
GO:1903573	0.000342767341211803	6	negative regulation of response to endoplasmic reticulum stress
GO:0045444	0.000344197083222524	14	fat cell differentiation
GO:0031400	0.000344374659018455	29	negative regulation of protein modification process
GO:0000028	0.000348788667584805	7	ribosomal small subunit assembly
GO:0043065	0.000352598785204427	34	positive regulation of apoptotic process
GO:0042327	0.000364199018258015	42	positive regulation of phosphorylation
GO:0043068	0.00037334618044733	34	positive regulation of programmed cell death
GO:0030003	0.000376393834950288	31	cellular cation homeostasis
GO:0043408	0.0003807010241804	34	regulation of MAPK cascade
GO:0002520	0.000381935980498879	41	immune system development
GO:0008150	0.000384899136621362	471	biological process
GO:0002758	0.000384907279967727	14	innate immune response-activating signal transduction
GO:0042493	0.000391318594555951	42	response to drug
GO:0009167	0.000415385252552898	22	purine ribonucleoside monophosphate metabolic process
GO:0045730	0.00042646940808793623	6	respiratory burst
GO:0055076	0.000431578557385727	15	transition metal ion homeostasis
GO:0002521	0.000432893595179884	24	leukocyte differentiation
GO:0030162	0.00043701012783337	39	regulation of proteolysis
GO:0031349	0.00044228534493646	23	positive regulation of defense response
GO:0002696	0.000442379173759104	19	positive regulation of leukocyte activation
GO:0014469	0.000442851650008916	3	regulation of type B pancreatic cell proliferation
GO:0002221	0.000451639485449029	12	pattern recognition receptor signaling pathway
GO:006873	0.000452580202050772	31	cellular iron homeostasis
GO:0009126	0.000462995415027794	22	purine nucleoside monophosphate metabolic process
GO:0015949	0.0004632785260999513	6	nucleobase-containing small molecule interconversion
GO:0043086	0.000464640431607544	39	negative regulation of catalytic activity
GO:0046683	0.000468928070022426	10	response to organophosphorus
GO:1902533	0.000476594035769113	47	positive regulation of intracellular signal transduction
GO:0032233	0.000479269243471649	7	positive regulation of actin filament bundle assembly
GO:0006875	0.000483151234546458	29	cellular metal ion homeostasis
GO:1903507	0.000491372890299454	49	negative regulation of nucleic acid-templated transcription
GO:0051251	0.000498305077871743	17	positive regulation of lymphocyte activation
GO:1902679	0.000502012431184629	49	negative regulation of RNA biosynthetic process
GO:0071901	0.000509987202377363	11	negative regulation of protein serine/threonine kinase activity
GO:0036498	0.000530827214100669	7	IRE1-mediated unfolded protein response
GO:0034101	0.000576911031015525	11	erythrocyte homeostasis

GO:0050867	0.000584163998255527	19	positive regulation of cell activation
GO:0042127	0.000591337783858227	63	regulation of cell proliferation
GO:0046649	0.000617431619320537	29	lymphocyte activation
GO:0050801	0.000627182575284007	35	ion homeostasis
GO:0032147	0.000635840091168555	18	activation of protein kinase activity
GO:0048878	0.0006397133932864	47	chemical homeostasis
GO:0031396	0.000643447664890942	14	regulation of protein ubiquitination
GO:0010558	0.00064858633540109	59	negative regulation of macromolecule biosynthetic process
GO:1903320	0.000646012047624757	15	regulation of protein modification by small protein conjugation or removal
GO:0048534	0.000646402416581422	39	hematopoietic or lymphoid organ development
GO:0007254	0.0006482201498767384	13	JNK cascade
GO:0038011	0.0006487018451193735	10	NIK/NF-kappaB signaling
GO:0006879	0.000669554433635648	8	cellular iron ion homeostasis
GO:0051130	0.000692782478885093	46	positive regulation of cellular component organization
GO:0009161	0.000697305861446351	22	ribonucleoside monophosphate metabolic process
GO:0014074	0.000700779724105164	10	response to purine-containing compound
GO:0046718	0.0007037567084472	10	viral entry into host cell
GO:0010942	0.000712659856098641	35	positive regulation of cell death
GO:0040589	0.000717370582303021	17	positive regulation of innate immune response
GO:0032873	0.00072994942756765	6	negative regulation of stress-activated MAPK cascade
GO:0070303	0.00072994942756765	6	negative regulation of stress-activated protein kinase signaling cascade
GO:0030154	0.000740572112232138	123	cell differentiation
GO:0079295	0.000750673652191942	99	regulation of multicellular organismal process
GO:0051239	0.0007512196915999	3	regulation of miRNA metabolic process
GO:2000628	0.0007530452164743	2	negative regulation of IRE1-mediated unfolded protein response
GO:1903895	0.000755078779777024	6	positive regulation of stress fiber assembly
GO:0051496	0.00075754828572443	12	epithelial cell development
GO:0002064	0.000761752221457781	57	positive regulation of RNA metabolic process
GO:0051254	0.000766987873156706	7	positive regulation of interferon-gamma production
GO:0032729	0.00077124214156546	9	cytokine biosynthetic process
GO:0042089	0.000771377784510492	49	cellular response to endogenous stimulus
GO:0071495	0.000771999176852328	47	negative regulation of transcription, DNA-templated
GO:0045892	0.000773716695672325	9	cell redox homeostasis
GO:0045454	0.000782200083736781	8	regulation of response to endoplasmic reticulum stress
GO:1905897	0.00078208488219648	47	regulation of cell cycle
GO:0051724	0.0007867078184276611	5	response to fluid shear stress
GO:0034405	0.000799724850994674	11	cellular response to antibiotic
GO:0071236	0.000819561064055107	6	ER-nucleus signaling pathway
GO:0006984	0.000825283055312304	9	cytokine metabolic process
GO:0042107	0.000835105105895624	6	regulation of alternative mRNA splicing, via spliceosome
GO:0003081	0.0008365131057378561	41	positive regulation of cell proliferation
GO:0008284	0.000840174013671324	128	cellular developmental process
GO:0048869	0.000849334093611112	10	negative regulation of intrinsic apoptotic signaling pathway
GO:2001243	0.000855338659261272	19	maintenance of location
GO:0051235	0.0008634687184497	16	homeostasis of number of cells
GO:0048872	0.000872331308238986	32	regulation of defense response
GO:0031347	0.000873757272856003	8	regulation of cytokine biosynthetic process
GO:0042035	0.000886589282909423	14	regulation of neuron apoptotic process
GO:0043523	0.000901016885386135	6	negative regulation of myeloid leukocyte differentiation
GO:0002762	0.0009098173765630341	23	epithelial cell proliferation
GO:0050673	0.0009195364956985675	15	sex differentiation
GO:0007548	0.00092885632206672	65	cell cycle
GO:0007049	0.000924223575600227	21	nuclear transport
GO:0051169	0.000943852754822424	37	hemopoiesis
GO:0030097	0.000946483074979027	10	interleukin-6 production
GO:0032635	0.000967518282299167	32	cation homeostasis
GO:0055080	0.000971220009480831	245	response to stimulus
GO:0050896	0.000977662118317364	18	cellular response to abiotic stimulus
GO:0071214	0.000991521859513135	18	cellular response to environmental stimulus
GO:0104004	0.000991521859513135	8	positive regulation of plasma membrane bounded cell projection assembly
GO:0120034	0.00101500841200354	50	cell cycle process
GO:0022402	0.00103021538597273	3	respiratory burst involved in defense response
GO:0002679	0.00105079388370436	126	cellular protein modification process
GO:0006444	0.001051532082950542	126	protein modification process
GO:0032111	0.001051532082950542	56	negative regulation of cellular macromolecule biosynthetic process
GO:2000113	0.00105821604683771	26	regulation of endopeptidase activity
GO:0052548	0.00106817835396403	35	animal organ morphogenesis
GO:0009987	0.00106936528092373	8	female gonad development
GO:0008585	0.00108229169988766	29	negative regulation of cell cycle
GO:0045786	0.00109788217873738	8	negative regulation of leukocyte differentiation
GO:1902106	0.00110958626468386	5	MyD88-dependent toll-like receptor signaling pathway
GO:0002755	0.0011103060846947	16	extrinsic apoptotic signaling pathway
GO:0097191	0.00112019383126098	8	response to leukemia inhibitory factor
GO:1990823	0.00113201369762847	8	cellular response to leukemia inhibitory factor
GO:1990830	0.00113201369762847	2	Golgi to plasma membrane CFTR protein transport
GO:0043000	0.00113914978105146	68	vesicle-mediated transport
GO:0016192	0.0011438756315963	21	regulation of inflammatory response
GO:0050727	0.00114905186456268	32	inorganic ion homeostasis
GO:0098771	0.00115532214240555	22	RNA splicing, via transterification reactions with bulged adenosine as nucleophile
GO:0003077	0.001164967999860703	22	mRNA splicing, via spliceosome
GO:0003938	0.001164967999860703	3	positive regulation of non-canonical Wnt signaling pathway
GO:2000052	0.0011653626506644	5	positive regulation of ubiquitin-protein transferase activity
GO:0051443	0.00118121574409507	24	negative regulation of immune system process
GO:0026883	0.00118267956930927	54	positive regulation of nucleic acid-templated transcription
GO:1903508	0.00118572644689224	54	positive regulation of RNA biosynthetic process
GO:1902680	0.00119783584553723	17	negative regulation of transferase activity
GO:0051348	0.00120092424244283	30	metal ion homeostasis
GO:0050545	0.00121730055949295	51	positive regulation of transcription, DNA-templated
GO:0045973	0.00123105859714272	12	cellular response to acid chemical
GO:0071229	0.00125194485487844	61	negative regulation of biosynthetic process
GO:0009980	0.00126888802710217	5	macrophage derived foam cell differentiation
GO:0010742	0.00127578080968865	5	foam cell differentiation
GO:0090077	0.00127578080968865	25	response to extracellular stimulus
GO:0009991	0.00128270945664372	7	lipopolysaccharide-mediated signaling pathway
GO:0031663	0.00128291754597076	8	animal organ regeneration
GO:0031100	0.00130485390452436	14	negative regulation of protein kinase activity
GO:0006469	0.00131017469289836	30	cellular component disassembly
GO:0022411	0.00133790094497493	22	RNA splicing, via transterification reactions
GO:0003075	0.00135948717023314	16	I-kappaB kinase/NF-kappaB signaling
GO:0007249	0.0013629073385377	8	development of primary female sexual characteristics
GO:0046545	0.0013895824728864	11	negative regulation of neuron apoptotic process
GO:0043524	0.00138989632627405	59	defense response
GO:0006952	0.00140514136378553	9	negative regulation of immune response
GO:0050777	0.00143951021874528	4	negative regulation of cAMP-mediated signaling
GO:0043951	0.00147504298316249	16	immune response-regulating cell surface receptor signaling pathway
GO:0002768	0.0014949772501581	7	negative regulation of MAP kinase activity
GO:0043407	0.00152326503531631	10	liver development
GO:0001889	0.00155424216361034	7	regulation of ubiquitin-protein transferase activity
GO:0051438	0.00156292351437279	165	signal transduction
GO:0071765	0.00157197722366486	13	cellular response to nutrient levels
GO:0031669	0.00159449774952413	58	secretion
GO:0045088	0.00163911151513271	18	regulation of innate immune response
GO:0051336	0.00164540942881355	50	regulation of hydrolase activity
GO:0021762	0.0016517236088654	6	substantia nigra development
GO:0019941	0.00168468790635901	28	modification-dependent protein catabolic process
GO:0006887	0.00169160129122906	38	exocytosis
GO:0048856	0.00171057238208749	165	anatomical structure development
GO:0061013	0.00172428428029264	10	regulation of mRNA catabolic process
GO:0061008	0.00174335127095608	10	hepatobiliary system development
GO:0043488	0.00175047353843619	9	regulation of mRNA stability
GO:2000095	0.00175640381741915	3	regulation of Wnt signaling pathway, planar cell polarity pathway
GO:0033043	0.00176455132028015	47	regulation of organelle organization
GO:0071230	0.00176855980802778	6	cellular response to amino acid stimulus
GO:0035722	0.00177340024910103	7	interleukin-12-mediated signaling pathway
GO:0007154	0.0017801498866104	175	cell communication
GO:0048729	0.0017848494193932	24	tissue morphogenesis
GO:0007568	0.0017889772582481	18	aging
GO:2001235	0.00182563969434096	14	positive regulation of apoptotic signaling pathway

GO:1903900	0.00187092676257607	12	regulation of viral life cycle
GO:0034660	0.00187583695477146	31	ncRNA metabolic process
GO:0060071	0.00188888675585567	6	Wnt signaling pathway, planar cell polarity pathway
GO:0048147	0.00189892255299485	5	negative regulation of fibroblast proliferation
GO:0006913	0.0019072900373477	20	nucleocytoplasmic transport
GO:0043497	0.00192992096495358	3	regulation of protein heterodimerization activity
GO:0032680	0.00196236717868749	10	regulation of tumor necrosis factor production
GO:0071349	0.00196388112002811	7	cellular response to interleukin-12
GO:0032501	0.00197276710470065	200	multicellular organismal process

(Significantly upregulated biological pathways in 6 min oscillatory condition).

Category	Overrepresented p-value	numDEInCat	Term - biological processes downregulated
GO:0048519	6.53730708762544e-36	210	negative regulation of biological process
GO:0006950	9.4977494937120751e-36	173	response to stress
GO:0042221	4.7916605310596e-34	180	response to chemical
GO:0008219	4.48957909873772e-32	126	cell death
GO:0050896	5.63452858612644e-32	260	response to stimulus
GO:0012501	3.2872638176437e-30	119	programmed cell death
GO:0070887	1.24831271097848e-29	146	cellular response to chemical stimulus
GO:0010033	3.119390414487838e-29	146	response to organic substance
GO:0010941	1.88139360082511e-28	103	regulation of cell death
GO:0009888	8.03796009890965e-28	108	tissue development
GO:0048523	2.233851781417705e-27	181	negative regulation of cellular process
GO:0006915	2.3171717237283e-27	110	apoptotic process
GO:0043067	3.73438964138458e-27	97	regulation of programmed cell death
GO:0032502	5.83693359563238e-27	206	developmental process
GO:0042981	7.48832699449348e-27	96	regulation of apoptotic process
GO:0051716	9.59390497023453e-27	224	cellular response to stimulus
GO:0048856	2.0442923960331e-26	197	anatomical structure development
GO:0048583	1.0271966770318e-24	160	regulation of response to stimulus
GO:0007275	1.70008303996631e-24	183	multicellular organism development
GO:0097190	6.64243708750349e-24	58	apoptotic signaling pathway
GO:0071310	2.87477320481274e-23	120	cellular response to organic substance
GO:0007154	8.85197335808426e-23	197	cell communication
GO:0032501	1.00636436119289e-22	212	multicellular organismal process
GO:0048513	1.22602355484243e-22	138	animal organ development
GO:0008283	1.71208377577303e-22	103	cell proliferation
GO:0050789	2.01114572762762e-22	285	regulation of biological process
GO:0048869	2.42158351210269e-22	156	cellular developmental process
GO:0030154	1.31722739986207e-21	150	cell differentiation
GO:0048731	2.73257128505314e-21	165	system development
GO:0007165	4.4705730284572e-21	183	signal transduction
GO:0060548	4.87817178955677e-21	69	negative regulation of cell death
GO:0065007	6.075495632323562e-21	292	biological regulation
GO:0048518	7.68944399529941e-21	192	positive regulation of biological process
GO:0046509	9.5521224401393e-20	130	regulation of molecular function
GO:0009648	1.725033753434224e-20	73	response to abiotic stimulus
GO:0023052	1.82151339244257e-20	191	signaling
GO:0014070	2.35126553019964e-20	63	response to organic cyclic compound
GO:0051246	3.88487845612818e-20	120	regulation of protein metabolic process
GO:0042127	4.39107863890767e-20	86	regulation of cell proliferation
GO:0001775	5.25332781248837e-20	78	cell activation
GO:0010604	5.5233408847791e-20	133	positive regulation of macromolecule metabolic process
GO:0048585	5.81173768223313e-20	86	negative regulation of response to stimulus
GO:0048522	7.30948764038783e-20	176	positive regulation of cellular process
GO:0019222	1.02895256595909e-19	207	regulation of metabolic process
GO:0033554	1.22675528312579e-19	99	cellular response to stress
GO:0060429	1.32293828587028e-19	72	epithelium development
GO:0002376	1.7654099552937e-19	118	immune system process
GO:0080090	2.66799042516422e-19	192	regulation of primary metabolic process
GO:0009966	3.1318790564185e-19	127	regulation of signal transduction
GO:0097193	4.59941884701693e-19	37	intrinsic apoptotic signaling pathway
GO:0050793	7.53282316328623e-19	109	regulation of developmental process
GO:0007166	8.16169494044453e-19	118	cell surface receptor signaling pathway
GO:0009605	1.17521144307474e-18	100	response to external stimulus
GO:0010464	1.30079129892284e-18	134	regulation of cell communication
GO:0051173	1.5805157482762e-18	126	positive regulation of nitrogen compound metabolic process
GO:0060255	1.59749830383624e-18	194	regulation of macromolecule metabolic process
GO:0043069	1.60693592108775e-18	62	negative regulation of programmed cell death
GO:0009892	2.68318811918375e-18	122	negative regulation of metabolic process
GO:0043066	2.95291123174117e-18	61	negative regulation of apoptotic process
GO:0023051	3.13119411614215e-18	134	regulation of signaling
GO:0010605	3.22443930584476e-18	116	negative regulation of macromolecule metabolic process
GO:0010942	3.8603587478994e-18	53	positive regulation of cell death
GO:0032238	3.88535335675307e-18	111	regulation of cellular protein metabolic process
GO:0080134	4.1363287917301e-18	76	regulation of response to stress
GO:0031325	4.43441192384431e-18	128	positive regulation of cellular metabolic process
GO:0030855	5.65311047723418e-18	52	epithelial cell differentiation
GO:0050794	1.19152412620712e-17	264	regulation of cellular process
GO:1901700	1.31692580948179e-17	80	response to oxygen-containing compound
GO:0009893	1.3718472614194e-17	134	positive regulation of metabolic process
GO:0051171	2.24284807725696e-17	184	regulation of nitrogen compound metabolic process
GO:0010648	2.41791321155405e-17	74	negative regulation of cell communication
GO:0023057	2.7837538984895e-17	74	negative regulation of signaling
GO:0035556	3.19533505372852e-17	114	intracellular signal transduction
GO:2001233	4.40376933587251e-17	40	regulation of apoptotic signaling pathway
GO:0031323	5.55961084585821e-17	189	regulation of cellular metabolic process
GO:1902531	6.32409248858281e-17	88	regulation of intracellular signal transduction
GO:0043065	8.39468619402128e-17	49	positive regulation of apoptotic process
GO:0048584	8.87934662947454e-17	97	positive regulation of response to stimulus
GO:0043068	1.01758539019593e-16	49	positive regulation of programmed cell death
GO:0065008	1.0220191065853e-16	137	regulation of biological quality
GO:2000026	1.15123445404771e-16	90	regulation of multicellular organismal development
GO:0034097	1.20999025001619e-16	65	response to cytokine
GO:0051239	2.35362123423046e-16	115	regulation of multicellular organismal process
GO:0051172	2.76942861583303e-16	102	negative regulation of nitrogen compound metabolic process
GO:0009968	3.31231707016365e-16	69	negative regulation of signal transduction
GO:0051248	6.29738510377931e-16	64	negative regulation of protein metabolic process
GO:0031324	8.239464020147814e-16	105	negative regulation of cellular metabolic process
GO:0009411	1.77470723571688e-15	46	response to wounding
GO:0045321	3.18303488597929e-15	65	leukocyte activation
GO:0097197	3.79643086948096e-15	77	response to endogenous stimulus
GO:0008544	4.30175508684671e-15	36	epidermis development
GO:0051247	6.82561350824534e-15	79	positive regulation of protein metabolic process
GO:2001234	1.23657047431265e-14	28	negative regulation of apoptotic signaling pathway
GO:0051094	1.4178792184528e-14	68	positive regulation of developmental process
GO:0050790	1.47710944761898e-14	95	regulation of catalytic activity
GO:0042325	2.00414777159828e-14	73	regulation of phosphorylation
GO:0045595	2.00623148919168e-14	79	regulation of cell differentiation
GO:0071345	2.37845555202183e-14	58	cellular response to cytokine stimulus
GO:0032270	2.39474575541494e-14	75	positive regulation of cellular protein metabolic process
GO:0042493	4.23678136611419e-14	56	response to drug
GO:0033993	4.28265819967168e-14	53	response to lipid
GO:0009725	4.3264521841442e-14	55	response to hormone
GO:0032879	4.93669277713487e-14	102	regulation of localization
GO:0031399	5.298208205852142e-14	81	regulation of protein modification process
GO:0001944	7.50456349718199e-14	47	vasculature development
GO:0032269	1.002562855858565e-13	58	negative regulation of cellular protein metabolic process
GO:0019220	1.15260873938266e-13	77	regulation of phosphate metabolic process
GO:0072358	1.18736527031422e-13	47	cardiovascular system development
GO:0051174	1.23912723717838e-13	77	regulation of phosphorus metabolic process
GO:0001932	1.36859764469109e-13	68	regulation of protein phosphorylation
GO:0044092	1.870531127272079e-13	58	negative regulation of molecular function
GO:0009636	1.91317235313017e-13	38	response to toxic substance

GO:0007155	2.22119812062468e-13	66	cell adhesion
GO:1901698	2.2367208834439e-13	56	response to nitrogen compound
GO:0022610	2.933510823506081e-13	66	biological adhesion
GO:0010035	3.03544388591288e-13	40	response to organic substance
GO:0006955	3.10487778862507e-13	80	immune response
GO:0040011	3.41245557355134e-13	77	locomotion
GO:0051240	4.0054391980754e-13	71	localization of cell
GO:008870	4.233165554890803e-13	21	response to heat
GO:0051674	4.233165554890803e-13	53	response to organonitrogen compound
GO:0009408	4.54955462421994e-13	31	skin development
GO:0010243	4.70436103475308e-13	46	regulation of proteolysis
GO:0043588	4.88257480029101e-13	45	cytokine-mediated signaling pathway
GO:0030162	6.27418507103693e-13	47	cell-cell adhesion
GO:0019221	7.67192568151455e-13	44	blood vessel development
GO:0098609	1.012581677554026e-12	90	multi-organism process
GO:0001568	1.02710594592241e-12	66	cell migration
GO:0051704	1.37800863326238e-12	46	negative regulation of catalytic activity
GO:0016477	1.406794937545394e-12	71	positive regulation of signal transduction
GO:0040386	1.471795891558588e-12	52	positive regulation of immune system process
GO:0009967	1.71158964925255e-12	96	anatomical structure morphogenesis
GO:0002684	1.85268101989961e-12	24	response to temperature stimulus
GO:0009653	1.91598474513763e-12	75	positive regulation of cell communication
GO:0009266	2.1467645598357e-12	77	homeostatic process
GO:0010647	2.29498106272713e-12	37	wound healing
GO:0042592	2.43466536761438e-12	75	positive regulation of signaling
GO:0042060	2.548441434027591e-12	43	negative regulation of cell proliferation
GO:0023056	2.8944692443709e-12	27	epidermal cell differentiation
GO:0008285	4.34254515615146e-12	327	cellular process
GO:0009913	4.35476781386006e-12	54	tube development
GO:0009987	5.67297181420363e-12	141	regulation of gene expression
GO:0035295	6.60845651172842e-12	14	intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
GO:0010468	8.58016119475984e-12	34	response to oxidative stress
GO:0070059	8.7781401066338e-12	22	cellular response to metal ion
GO:0006979	9.97716260875681e-12	43	regulation of cellular response to stress
GO:0071248	1.14924536123956e-11	30	response to metal ion
GO:0008135	1.20903046503237e-11	39	blood vessel morphogenesis
GO:0010038	1.22045763843102e-11	53	positive regulation of intracellular signal transduction
GO:0048514	1.9042500079453e-11	134	regulation of biosynthetic process
GO:1902533	2.24137535038107e-11	77	protein phosphorylation
GO:0009889	2.36836133224506e-11	78	negative regulation of gene expression
GO:0006468	2.47712312133117e-11	14	response to cadmium ion
GO:0010629	3.54569221994169e-11	28	cellular response to external stimulus
GO:0046686	3.76342047250781e-11	21	response to unfolded protein
GO:0071496	4.24927292863902e-11	78	positive regulation of gene expression
GO:0006986	4.62386671324624e-11	20	regulation of extrinsic apoptotic signaling pathway
GO:0010628	4.98099773380043e-11	22	response to topologically incorrect protein
GO:2001236	5.28201152576608e-11	33	response to nutrient levels
GO:0035966	5.55408392187682e-11	131	regulation of cellular biosynthetic process
GO:0031667	5.80417150086083e-11	62	regulation of immune system process
GO:0031326	5.97388738074788e-11	48	regulation of cell motility
GO:0002682	6.396695656565048e-11	35	negative regulation of intracellular signal transduction
GO:2001045	6.79323391338488e-11	62	defense response
GO:1902532	6.9081879516401e-11	33	response to peptide
GO:0006952	7.19118765588644e-11	23	keratinocyte differentiation
GO:1901652	7.388656200264802e-11	34	response to extracellular stimulus
GO:0030216	7.8611525141494e-11	14	regulation of transcription from RNA polymerase II promoter in response to stress
GO:0009991	8.04447927061346e-11	29	positive regulation of proteolysis
GO:0043618	8.58268607620974e-11	49	positive regulation of cell differentiation
GO:0045862	9.1574159181989e-11	50	regulation of locomotion
GO:0045597	9.65486813664373e-11	46	regulation of cell migration
GO:00040012	9.659464237979646e-11	78	movement of cell or subcellular component
GO:0030334	9.78107941092959e-11	50	regulation of cellular component movement
GO:0006928	1.01152912483717e-10	22	cellular response to inorganic substance
GO:0051270	1.32433513260794e-10	16	cellular response to heat
GO:0071241	1.48146298352380e-10	153	cellular protein metabolic process
GO:0034605	1.5749562737053e-10	175	localization
GO:0044267	1.63459554315874e-10	21	epithelial cell development
GO:0051179	1.82235600977566e-10	52	cellular response to oxygen-containing compound
GO:0002064	1.85644483609566e-10	38	regulation of cytokine production
GO:1901701	1.87536998218919e-10	32	negative regulation of phosphorylation
GO:0001817	1.94090231718521e-10	44	hemopoiesis
GO:0042326	1.9427937571924e-10	23	extrinsic apoptotic signaling pathway
GO:0030097	1.95812324543217e-10	34	angiogenesis
GO:0097191	2.10454614895735e-10	14	regulation of DNA-templated transcription in response to stress
GO:0001525	2.44735681524543e-10	29	cytokine production
GO:0043620	2.54517843552462e-10	45	hematopoietic or lymphoid organ development
GO:0001816	2.71272180993746e-10	78	cell development
GO:0048534	3.17004537240251e-10	163	protein metabolic process
GO:0048468	3.43313993114642e-10	32	leukocyte differentiation
GO:0019538	3.49229749483065e-10	51	circulatory system development
GO:0002521	4.38820560469302e-10	21	response to mechanical stimulus
GO:0072359	4.72928164709798e-10	211	cellular macromolecule metabolic process
GO:0009612	5.75905474154235e-10	53	negative regulation of multicellular organism process
GO:0044260	6.416978771765269e-10	51	anatomical structure formation involved in morphogenesis
GO:0051241	7.9296013347409e-10	42	regulation of protein kinase activity
GO:0048646	8.36391944471597e-10	44	tube morphogenesis
GO:0045859	8.41302323393059e-10	8	detoxification of inorganic compound
GO:0032539	9.08276237845168e-10	83	phosphorylation
GO:0061687	9.6598953623492e-10	44	regulation of kinase activity
GO:0016310	1.11529078931077e-09	124	regulation of macromolecule biosynthetic process
GO:0043549	1.17210106378004e-09	47	positive regulation of protein phosphorylation
GO:0010556	1.2157889395116e-09	58	cellular response to endogenous stimulus
GO:0001934	1.25906976627006e-09	36	lymphocyte activation
GO:0071495	1.279363644874389e-09	19	positive regulation of angiogenesis
GO:0046649	1.50301423063679e-09	20	positive regulation of vasculature development
GO:0045766	1.5368523906326e-09	69	positive regulation of molecular function
GO:1904018	1.5777863491423e-09	45	immune system development
GO:0044093	1.64898108087082e-09	8	stress response to metal ion
GO:0002520	1.71099790458423e-09	45	signal transduction by protein phosphorylation
GO:0097501	1.74262105451467e-09	14	extrinsic apoptotic signaling pathway via death domain receptors
GO:0023014	1.92078834179932e-09	33	cellular response to organic cyclic compound
GO:0008625	2.07638929510555e-09	32	regulation of cell activation
GO:0071407	2.0967892623236367e-09	47	regulation of transferase activity
GO:0050865	2.10291154703441e-09	53	positive regulation of protein modification process
GO:0051338	2.11963031142964e-09	26	response to oxygen levels
GO:0031401	2.61670730603234e-09	15	negative regulation of extrinsic apoptotic signaling pathway
GO:0070048	2.73038527612068e-09	120	regulation of cellular macromolecule biosynthetic process
GO:2001237	2.85841124293841e-09	34	negative regulation of phosphate metabolic process
GO:2000112	2.89861405390471e-09	44	MAPK cascade
GO:0045936	3.10839442978313e-09	19	positive regulation of apoptotic signaling pathway
GO:0001615	3.17039471058716e-09	34	negative regulation of phosphorus metabolic process
GO:2001235	3.19483061058759e-09	44	positive regulation of cell proliferation
GO:0010563	3.274302645059544e-09	53	regulation of cell cycle
GO:0008284	3.415799872337921e-09	48	regulation of anatomical structure morphogenesis
GO:0051726	3.43499345686244e-09	9	cellular response to copper ion
GO:0022603	3.50048004811588e-09	62	negative regulation of macromolecule biosynthetic process
GO:0071280	3.61786799583933e-09	35	negative regulation of protein modification process
GO:0010558	3.68728281703429e-09	24	regulation of angiogenesis
GO:0031400	3.93039829921255e-09	74	positive regulation of biosynthetic process
GO:0045765	4.19209145006371e-09	87	regulation of cellular component organization
GO:0009891	4.22631821288479e-09	27	response to steroid hormone
GO:0051128	4.74596484785745e-09	47	positive regulation of phosphorylation
GO:0048545	4.99014602288376e-09	63	negative regulation of cellular biosynthetic process
GO:0042327	5.41026160802753e-09	23	response to endoplasmic reticulum stress
GO:0031327	5.35495318436982e-09	10	response to copper ion
GO:0034976	6.45143025852922e-09	18	regulation of intrinsic apoptotic signaling pathway
GO:0046688	6.58728404531762e-09	16	regulation of epithelial cell differentiation
GO:2001242	7.22921087379732e-09		
GO:0030856	8.24755123771878e-09		

GO:0001933	8.32979426603345e-09	28	negative regulation of protein phosphorylation
GO:0002274	8.60746454224867e-09	36	myeloid leukocyte activation
GO:0044271	9.36982739503557e-09	141	cellular nitrogen compound biosynthetic process
GO:0030155	9.66860408577485e-09	36	regulation of cell adhesion
GO:0031328	1.12020146611841e-08	72	positive regulation of cellular biosynthetic process
GO:0046685	1.1459315422547e-08	9	response to arsenic-containing substance
GO:0009890	1.16488489818256e-08	63	negative regulation of biosynthetic process
GO:0048608	1.26983267476761e-08	28	reproductive structure development
GO:0022008	1.2829627553831e-08	61	neurogenesis
GO:0010542	1.29003771015923e-08	48	positive regulation of phosphorus metabolic process
GO:0045937	1.29003771015923e-08	48	positive regulation of phosphate metabolic process
GO:0043434	1.3161976539382e-08	27	response to peptide hormone
GO:0036293	1.3726180743345e-08	24	response to decreased oxygen levels
GO:0006810	1.41653426353661e-08	139	transport
GO:0061458	1.51684344069183e-08	28	reproductive system development
GO:0019219	1.64608659332202e-08	120	regulation of nucleobase-containing compound metabolic process
GO:1903506	1.69026004543463e-08	108	regulation of nucleic acid-templated transcription
GO:1901564	1.73426509820746e-08	178	organonitrogen compound metabolic process
GO:2001141	1.8902244648993e-08	108	regulation of RNA biosynthetic process
GO:1903708	1.92250459248304e-08	18	positive regulation of hemopoeisis
GO:0031669	1.93915263499896e-08	20	cellular response to nutrient levels
GO:0002252	1.94875746584799e-08	49	immune effector process
GO:0044419	1.974124986864512e-08	41	interspecies interaction between organisms
GO:0043085	2.0961108575489e-08	57	positive regulation of catalytic activity
GO:1903706	2.097807597717418e-08	27	regulation of hemopoiesis
GO:0010273	2.16249189123392e-08	7	detoxification of copper ion
GO:1990169	2.16249189123392e-08	7	stress response to copper ion
GO:0040007	2.16873265945496e-08	45	growth
GO:0042594	2.195526464338543e-08	18	response to starvation
GO:0006954	2.46337512207606e-08	35	inflammatory response
GO:0009058	2.48791152138517e-08	166	biosynthetic process
GO:1902041	2.58487720665083e-08	11	regulation of extrinsic apoptotic signaling pathway via death domain receptors
GO:0002694	2.68253092334037e-08	29	regulation of leukocyte activation
GO:0006355	2.77330694305037e-08	106	regulation of transcription, DNA-templated
GO:0032040	2.82446176444054e-08	15	entry into host cell
GO:0044409	2.92446176444054e-08	15	entry into host
GO:0051804	2.92446176444054e-08	15	entry into cell of other organism involved in symbiotic interaction
GO:0051828	2.92446176444054e-08	15	entry into other organism involved in symbiotic interaction
GO:1901342	3.04164140638819e-08	24	regulation of vasculature development
GO:0031668	3.07623108210535e-08	21	cellular response to extracellular stimulus
GO:0044403	3.09240199101589e-08	40	symbiont process
GO:0045935	3.24363594310251e-08	69	positive regulation of nucleobase-containing compound metabolic process
GO:1900034	3.27847106773647e-08	10	regulation of cellular response to heat
GO:0031331	3.33075435710377e-08	25	positive regulation of cellular catabolic process
GO:0030335	3.49860725011939e-08	30	positive regulation of cell migration
GO:0051234	3.5289625299604e-08	140	establishment of localization
GO:0042089	3.60419657518014e-08	13	cytokine biosynthetic process
GO:0030330	3.7246501675302e-08	14	DNA damage response, signal transduction by p53 class mediator
GO:0052547	3.7864799498528e-08	27	regulation of peptidase activity
GO:0050673	3.78991244171075e-08	26	epithelial cell proliferation
GO:0052548	3.99025505146892e-08	26	regulation of endopeptidase activity
GO:0042107	4.19327448453597e-08	13	cytokine metabolic process
GO:0010557	4.64799908401253e-08	68	positive regulation of macromolecule biosynthetic process
GO:0098754	4.9822755324003e-08	14	detoxification
GO:0031960	5.04525785837413e-08	16	response to corticosteroid
GO:0051252	5.088497700369757e-08	112	regulation of RNA metabolic process
GO:0061077	5.166434579002505e-08	11	chaperone-mediated protein folding
GO:0051093	5.25623174827404e-08	42	negative regulation of developmental process
GO:00200113	5.38116831013783e-08	57	negative regulation of cellular macromolecule biosynthetic process
GO:0002237	5.55859116603005e-08	23	response to molecule of bacterial origin
GO:0043408	5.9857818530711e-08	37	regulation of MAPK cascade
GO:0002443	6.04683214072074e-08	38	leukocyte mediated immunity
GO:2001047	6.1840898578801e-08	30	positive regulation of cell motility
GO:1901576	6.29477752643976e-08	163	organic substance biosynthetic process
GO:1901214	6.39235734098752e-08	22	regulation of neuron death
GO:0044249	6.682901852696e-08	161	cellular biosynthetic process
GO:0040017	7.18046387727079e-08	31	positive regulation of locomotion
GO:2000116	7.21741042556457e-08	20	regulation of cysteine-type endopeptidase activity
GO:0051049	7.24804867554179e-08	63	regulation of transport
GO:0043281	7.69634879043524e-08	19	regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0051254	8.0018556422258e-08	63	positive regulation of RNA metabolic process
GO:2001243	8.13129271147717e-08	13	negative regulation of intrinsic apoptotic signaling pathway
GO:0006796	8.1671869104499e-08	99	phosphate-containing compound metabolic process
GO:0070848	8.74955406543439e-08	36	response to growth factor
GO:0071363	8.89285782475753e-08	35	cellular response to growth factor stimulus
GO:0977659	9.63046495039886e-08	109	nucleic acid-templated transcription
GO:0042035	9.44586400985117e-08	12	regulation of cytokine biosynthetic process
GO:0007568	9.79631942911315e-08	22	aging
GO:0096007	1.01873392815218e-07	40	response to biotic stimulus
GO:0032436	1.03822314102364e-07	12	positive regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:0051272	1.08290581107714e-07	30	positive regulation of cellular component movement
GO:0051348	1.11416472007531e-07	21	negative regulation of transferase activity
GO:0044706	1.1254982096021e-07	18	multi-macellar organism process
GO:0071276	1.13911190457167e-07	9	cellular response to cadmium ion
GO:0043207	1.15118222613741e-07	39	response to external biotic stimulus
GO:0051707	1.15118222613741e-07	39	response to other organism
GO:0032774	1.16320522034897e-07	109	RNA biosynthetic process
GO:0032940	1.2398757179345e-07	56	secretion by cell
GO:0005793	1.25000741100598e-07	99	phosphorus metabolic process
GO:0070997	1.29009442546817e-07	23	neuron death
GO:0009057	1.29319462902088e-07	55	macromolecule catabolic process
GO:001666	1.34639718216289e-07	22	response to hypoxia
GO:0007399	1.35529770166314e-07	76	nervous system development
GO:0051249	1.36033335705235e-07	25	regulation of lymphocyte activation
GO:0007167	1.36910807692123e-07	44	enzyme linked receptor protein signaling pathway
GO:0045596	1.3829028946792e-07	34	negative regulation of cell differentiation
GO:0009059	1.39274284656388e-07	139	macromolecule biosynthetic process
GO:0048871	1.444591133208655e-07	27	multicellular organismal homeostasis
GO:0002366	1.4654941406446e-07	35	leukocyte activation involved in immune response
GO:1903507	1.48340208337162e-07	51	negative regulation of nucleic acid-templated transcription
GO:0043535	1.50183055377678e-07	13	regulation of blood vessel endothelial cell migration
GO:0050878	1.57031906611704e-07	27	regulation of body fluid levels
GO:1902679	1.57221176126338e-07	51	negative regulation of RNA biosynthetic process
GO:0002263	1.62058573883822e-07	35	cell activation involved in immune response
GO:0001819	1.6336965120437e-07	25	positive regulation of cytokine production
GO:0034109	1.66471165621713e-07	11	homotypic cell-cell adhesion
GO:0006351	1.71014847779198e-07	107	transcription, DNA-templated
GO:0008637	1.75706985231241e-07	14	apoptotic mitochondrial changes
GO:0010469	1.80120701659749e-07	27	regulation of signaling receptor activity
GO:0045598	1.80578303711492e-07	14	regulation of fat cell differentiation
GO:0009896	1.81340945890193e-07	26	positive regulation of catabolic process
GO:0009267	1.97356003370284e-07	15	cellular response to starvation
GO:0045926	2.20542705409079e-07	20	negative regulation of growth
GO:0036499	2.30878008859008e-07	7	PERK-mediated unfolded protein response
GO:0006464	2.40215285921888e-07	118	cellular protein modification process
GO:0036211	2.40215285921888e-07	118	protein modification process
GO:0008150	2.62980800816709e-07	335	biological process
GO:0033673	3.0904245159394e-07	19	negative regulation of kinase activity
GO:0035690	3.34185585051884e-07	23	cellular response to drug
GO:0040008	3.44396429677306e-07	34	regulation of growth
GO:0001667	3.54874479812395e-07	25	ameboid-type cell migration
GO:0009894	3.57799419692432e-07	41	regulation of catabolic process
GO:0016032	3.74365838922222e-07	36	viral process
GO:0071260	3.79587045866107e-07	11	cellular response to mechanical stimulus
GO:0051384	3.82515296168933e-07	14	response to glucocorticoid
GO:0045892	3.85422674139307e-07	49	negative regulation of transcription, DNA-templated
GO:0046718	3.89689322164016e-07	13	viral entry into host cell
GO:0034645	4.2215166214013e-07	134	cellular macromolecule biosynthetic process
GO:0000122	4.40528897176431e-07	39	negative regulation of transcription by RNA polymerase II

GO:0019058	4.40881050619736e-07	21	viral life cycle
GO:0042770	4.41238700540793e-07	14	signal transduction in response to DNA damage
GO:009617	4.42662461629816e-07	29	response to bacterium
GO:007565	4.55769248916237e-07	16	female pregnancy
GO:0045682	4.72725704964622e-07	11	regulation of epidermis development
GO:0002526	4.75619830756159e-07	13	acute inflammatory response
GO:0043170	5.07237882561761e-07	223	macromolecule metabolic process
GO:0003158	5.18065947522326e-07	13	endothelium development
GO:0032870	5.3008307475445e-07	33	cellular response to hormone stimulus
GO:0045944	5.5108247498464e-07	47	positive regulation of transcription by RNA polymerase II
GO:0032496	5.61908229774747e-07	21	response to lipopolysaccharide
GO:0061041	5.7503615838281e-07	13	regulation of wound healing
GO:2000060	5.76634212434618e-07	12	positive regulation of ubiquitin-dependent protein catabolic process
GO:0090559	5.81257951732056e-07	11	regulation of membrane permeability
GO:0071294	5.86358019045141e-07	7	cellular response to zinc ion
GO:0061061	6.21646496295806e-07	31	muscle structure development
GO:0050817	6.80110780576677e-07	21	coagulation
GO:0010467	6.9425796387641e-07	148	gene expression
GO:0031329	6.9549172898813e-07	37	regulation of cellular catabolic process
GO:0072657	7.00832593396634e-07	32	protein localization to membrane
GO:0042176	7.05132500193625e-07	24	regulation of protein catabolic process
GO:0010632	7.17807940046201e-07	18	regulation of epithelial cell migration
GO:0042119	7.31123489187153e-07	28	neutrophil activation
GO:0070527	7.35132038617559e-07	9	platelet aggregation
GO:0048878	7.41694289852097e-07	44	chemical homeostasis
GO:0050730	7.43690230809186e-07	18	regulation of peptidyl-tyrosine phosphorylation
GO:0072331	7.74404997394911e-07	18	signal transduction by p53 class mediator
GO:0034620	7.87827835355468e-07	14	cellular response to unfolded protein
GO:0022407	7.90679483994789e-07	23	regulation of cell-cell adhesion
GO:0045446	8.179441145527981e-07	12	endothelial cell differentiation
GO:0036003	8.20227664884295e-07	7	positive regulation of transcription from RNA polymerase II promoter in response to stress
GO:0045934	8.4124032722102e-07	55	negative regulation of nucleobase-containing compound metabolic process
GO:0006882	9.01943516939196e-07	8	cellular zinc ion homeostasis
GO:0036230	9.15210159227787e-07	28	granulocyte activation
GO:0055074	9.241041012399472e-07	14	transition metal ion homeostasis
GO:0046903	9.76223810990349e-07	57	secretion
GO:1903344	9.84560562131474e-07	14	positive regulation of cellular protein catabolic process
GO:0061028	1.05737885386945e-06	8	establishment of endothelial barrier
GO:0006508	1.11673232675457e-06	61	proteolysis
GO:0055069	1.11868893801531e-06	8	zinc ion homeostasis
GO:0045861	1.130712812804047e-06	21	negative regulation of proteolysis
GO:0030183	1.28762548985562e-06	12	B cell differentiation
GO:0032101	1.31152194109433e-06	34	regulation of response to external stimulus
GO:1901800	1.34982449147654e-06	12	positive regulation of proteasomal protein catabolic process
GO:1903037	1.36835327815215e-06	19	regulation of leukocyte cell-cell adhesion
GO:0043523	1.44070291807989e-06	16	regulation of neuron apoptotic process
GO:0034599	1.44569200531554e-06	20	cellular response to oxidative stress
GO:0003006	1.47964448585578e-06	31	developmental process involved in reproduction
GO:0032434	1.516529852801e-06	13	regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:0019725	1.52316675163275e-06	38	cellular homeostasis
GO:0045732	1.52818065160323e-06	17	positive regulation of protein catabolic process
GO:0042149	1.57279992674865e-06	8	cellular response to glucose starvation
GO:1902105	1.61774190555943e-06	18	regulation of leukocyte differentiation
GO:0043534	1.61911848382211e-06	13	blood vessel endothelial cell migration
GO:0019438	1.64852057635379e-06	118	aromatic compound biosynthetic process
GO:0045893	1.72332572910073e-06	55	positive regulation of transcription, DNA-templated
GO:0051253	1.77652543933494e-06	51	negative regulation of RNA metabolic process
GO:0001885	1.78541003571678e-06	9	endothelial cell development
GO:00706461	1.78979877056444e-06	18	leukocyte proliferation
GO:0050867	1.79838664467105e-06	20	positive regulation of cell activation
GO:0051402	1.80816994414621e-06	17	neuron apoptotic process
GO:0071243	1.84239758108194e-06	6	cellular response to arsenic-containing substance
GO:0042110	1.84370377852312e-06	24	T cell activation
GO:0048699	1.861199587923671e-06	53	generation of neurons
GO:0071900	1.87005494396338e-06	27	regulation of protein serine/threonine kinase activity
GO:0007159	1.96219857582149e-06	20	leukocyte cell-cell adhesion
GO:0051051	1.96853569448496e-06	25	negative regulation of transport
GO:0022414	2.00958399392031e-06	50	reproductive process
GO:0008630	2.03238251039784e-06	12	intrinsic apoptotic signaling pathway in response to DNA damage
GO:0006469	2.09098124817724e-06	17	negative regulation of protein kinase activity
GO:0000003	2.16184360814478e-06	50	reproduction
GO:0051050	2.23436159095115e-06	38	positive regulation of transport
GO:0032880	2.24995044617698e-06	40	regulation of protein localization
GO:0007596	2.26176659548233e-06	20	blood coagulation
GO:0045860	2.38381397664937e-06	27	positive regulation of protein kinase activity
GO:0071396	2.39657984295559e-06	29	cellular response to lipid
GO:0048771	2.52222174810313e-06	14	tissue remodeling
GO:0042542	2.69836364799019e-06	13	response to hydrogen peroxide
GO:0071453	2.74089512736267e-06	15	cellular response to oxygen levels
GO:0034654	2.7505635363090e-06	116	nucleobase-containing compound biosynthetic process
GO:1905475	2.94220380127418e-06	15	regulation of protein localization to membrane
GO:0048732	3.00328582524353e-06	24	gland development
GO:0007599	3.0178054654536438e-06	20	hemostasis
GO:0046916	3.0426026134124e-06	12	cellular transition metal ion homeostasis
GO:0051701	3.09704104303122e-06	16	interaction with host
GO:0044265	3.136575528201482e-06	46	cellular macromolecule catabolic process
GO:0050670	3.19966191458301e-06	15	regulation of lymphocyte proliferation
GO:0030998	3.28921622276578e-06	20	lymphocyte differentiation
GO:0035917	3.44347446461101e-06	14	cellular response to topologically incorrect protein
GO:0051085	3.45091566150896e-06	7	chaperone cofactor-dependent protein refolding
GO:0032944	3.45907695354462e-06	15	regulation of mononuclear cell proliferation
GO:0043412	3.51193863271978e-06	119	macromolecule modification
GO:0002275	3.54762435479423e-06	28	myeloid cell activation involved in immune response
GO:0050801	3.61660471042734e-06	33	ion homeostasis
GO:1902107	3.64202467629572e-06	13	positive regulation of leukocyte differentiation
GO:0006820	3.79612408172379e-06	28	anion transport
GO:0072332	3.81847017248867e-06	10	intrinsic apoptotic signaling pathway by p53 class mediator
GO:0007169	3.89614986295495e-06	32	transmembrane receptor protein tyrosine kinase signaling pathway
GO:0050778	4.02429755147451e-06	31	positive regulation of immune response
GO:0018386	4.12813192524621e-06	9	release of cytochrome c from mitochondria
GO:0006807	4.13228232332239e-06	232	nitrogen compound metabolic process
GO:002696	4.18771450157007e-06	19	positive regulation of leukocyte activation
GO:0036294	4.2062425942165e-06	14	cellular response to decreased oxygen levels
GO:1903034	4.39942737143838e-06	13	regulation of response to wounding
GO:0002444	4.638941708087e-06	28	myeloid leukocyte mediated immunity
GO:0032103	4.69126727990077e-06	18	positive regulation of response to external stimulus
GO:0030099	4.7770751088585e-06	23	myeloid cell differentiation
GO:0043536	5.17075829645042e-06	9	positive regulation of blood vessel endothelial cell migration
GO:1903508	5.28473179789443e-06	56	positive regulation of nucleic acid-templated transcription
GO:0045444	5.33073157406328e-06	16	fat cell differentiation
GO:0051090	5.35500465248491e-06	23	regulation of DNA-binding transcription factor activity
GO:1902680	5.4008520194484e-06	56	positive regulation of RNA biosynthetic process
GO:0030192	5.44908744044602e-06	48	neuron differentiation
GO:1903052	5.4963402453518e-06	12	positive regulation of proteolysis involved in cellular protein catabolic process
GO:0071704	5.55118444547855e-06	247	organic substance metabolic process
GO:0050731	5.55354410299739e-06	14	positive regulation of peptidyl-tyrosine phosphorylation
GO:0071214	5.67874377576878e-06	20	cellular response to abiotic stimulus
GO:0104004	5.67874377576878e-06	20	cellular response to environmental stimulus
GO:0045055	5.7268832727206e-06	35	regulated exocytosis
GO:0043154	5.84236395097717e-06	10	negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:1901216	5.8768163933434e-06	10	positive regulation of neuron death
GO:1905898	6.08875227328425e-06	7	positive regulation of response to endoplasmic reticulum stress
GO:0055082	6.14899625546515e-06	32	cellular chemical homeostasis
GO:0006984	6.25108331690176e-06	8	ER-nucleus signaling pathway
GO:0018130	6.26085644024463e-06	116	heterocycle biosynthetic process
GO:0070663	6.27274025105852e-06	15	regulation of leukocyte proliferation
GO:0051129	6.31189227145387e-06	32	negative regulation of cellular component organization
GO:0071417	6.37257807132914e-06	27	cellular response to organonitrogen compound
GO:0010594	6.45506611201121e-06	14	regulation of endothelial cell migration

GO:0010631	6.52087601663682e-06	19	epithelial cell migration
GO:1901362	6.64092247669751e-06	119	organic cyclic compound biosynthetic process
GO:0032354	6.69020623811982e-06	5	response to follicle-stimulating hormone
GO:1903531	6.77025815888958e-06	14	negative regulation of secretion by cell
GO:0006357	6.924245693577789e-06	80	regulation of transcription by RNA polymerase II
GO:0043299	7.0556877919495e-06	27	leukocyte degranulation
GO:0050900	7.09892574492577e-06	22	leukocyte migration
GO:0031571	7.23382777225878e-06	9	mitotic G1 DNA damage checkpoint
GO:0044819	7.23382777225878e-06	9	mitotic G1/S transition checkpoint
GO:0002699	7.23401280462927e-06	15	positive regulation of immune effector process
GO:0006518	7.24088587959078e-06	37	peptide metabolic process
GO:009132	7.24796446489195e-06	19	epithelium migration
GO:0050678	7.6707126723999e-06	20	regulation of epithelial cell proliferation
GO:0044237	7.67704521285199e-06	242	cellular metabolic process
GO:0006935	7.72341235994152e-06	28	chemotaxis
GO:0010043	7.84187927894699e-06	8	response to zinc ion
GO:0097237	7.88621019641672e-06	16	cellular response to toxic substance
GO:0002446	7.99314902072778e-06	26	neutrophil mediated immunity
GO:0002262	8.16614822252323e-06	13	myeloid cell homeostasis
GO:0042330	8.24636341778918e-06	28	taxis
GO:0044783	8.27903557433631e-06	9	G1 DNA damage checkpoint
GO:1903039	8.253020926953302e-06	15	positive regulation of leukocyte cell-cell adhesion
GO:0051251	8.44649803236958e-06	17	positive regulation of lymphocyte activation
GO:0043616	8.92497980984437e-06	7	keratinocyte proliferation
GO:0034698	8.95519085692455e-06	6	response to gonadotropin
GO:0006402	9.18110677423205e-06	20	mRNA catabolic process
GO:0006366	9.36256492764583e-06	83	transcription by RNA polymerase II
GO:0090130	9.57154841996298e-06	19	tissue migration
GO:0098656	9.65645407575602e-06	17	anion transmembrane transport
GO:0090049	9.78096542246325e-06	8	regulation of cell migration involved in sprouting angiogenesis
GO:0033674	9.83198661060492e-06	27	positive regulation of kinase activity
GO:0003002	9.98569115222509e-06	16	response to reactive oxygen species
GO:0051084	1.0019312015381e-05	7	'de novo' posttranslational protein folding
GO:0071456	1.01455549714103e-05	13	cellular response to hypoxia
GO:0045439	1.05482092046574e-05	10	positive regulation of myeloid cell differentiation
GO:0046651	1.049979741992372e-05	16	lymphocyte proliferation
GO:1902042	1.0766324666146e-05	7	negative regulation of extrinsic apoptotic signaling pathway via death domain receptors
GO:0090083	1.10790543118834e-05	5	regulation of inclusion body assembly
GO:0043410	1.13202077261507e-05	26	positive regulation of MAPK cascade
GO:1903362	1.13961039788338e-05	17	regulation of cellular protein catabolic process
GO:2000117	1.17904687244513e-05	10	negative regulation of cysteine-type endopeptidase activity
GO:0050863	1.18484146869798e-05	18	regulation of T cell activation
GO:0032943	1.21213452276028e-05	16	mononuclear cell proliferation
GO:0051336	1.25259570944721e-05	46	regulation of hydrolase activity
GO:0045604	1.28222125910285e-05	8	regulation of epidermal cell differentiation
GO:2000058	1.29739682145098e-05	13	regulation of ubiquitin-dependent protein catabolic process
GO:0050776	1.30970510601714e-05	35	regulation of immune response
GO:0008585	1.31825227295248e-05	10	female gonad development
GO:0038034	1.32208710018685e-05	9	signal transduction in absence of ligand
GO:0097192	1.32208710018685e-05	9	extrinsic apoptotic signaling pathway in absence of ligand
GO:0042129	1.33454677113152e-05	12	regulation of T cell proliferation
GO:0043312	1.4036915376881e-05	25	neutrophil degranulation
GO:0042063	1.40370343220692e-05	17	gliogenesis
GO:0051961	1.41328859459379e-05	18	negative regulation of nervous system development
GO:0006887	1.41937962374278e-05	37	exocytosis
GO:1903827	1.42643343782847e-05	26	regulation of cellular protein localization
GO:0030003	1.44491045682571e-05	27	cellular cation homeostasis
GO:0018108	1.48720426733649e-05	21	peptidyl-tyrosine phosphorylation
GO:0046902	1.49551342542431e-05	9	regulation of mitochondrial membrane permeability
GO:0050671	1.56062938320938e-05	11	positive regulation of lymphocyte proliferation
GO:0002283	1.58241704826731e-05	25	neutrophil activation involved in immune response
GO:0045786	1.59505601650933e-05	28	negative regulation of cell cycle
GO:0045087	1.62443314417517e-05	32	innate immune response
GO:0042098	1.63861051045982e-05	13	T cell proliferation
GO:0034330	1.65833281104128e-05	18	cell junction organization
GO:0018212	1.7033127259544e-05	21	peptidyl-tyrosine modification
GO:0043603	1.70751893785881e-05	43	cellular amide metabolic process
GO:0032946	1.71641442985893e-05	11	positive regulation of mononuclear cell proliferation
GO:0006457	1.73310476148558e-05	16	protein folding
GO:0002456	1.74545953836229e-05	10	T cell mediated immunity
GO:0010951	1.75674616857547e-05	15	negative regulation of endopeptidase activity
GO:0042113	1.78249131717422e-05	15	B cell activation
GO:0006970	1.87124962220312e-05	9	response to osmotic stress
GO:0044344	1.93252888292976e-05	12	cellular response to fibroblast growth factor stimulus
GO:0047403	1.94676420343913e-05	36	multi-organism reproductive process
GO:0045445	1.97047873350459e-05	9	myoblast differentiation
GO:0006873	1.97547335048754e-05	27	cellular ion homeostasis
GO:0007249	1.982362134545456e-05	17	I-kappaB kinase/NF-kappaB signaling
GO:0046545	1.99881173367065e-05	10	development of primary female sexual characteristics
GO:0050818	2.00543929660519e-05	9	regulation of coagulation
GO:0032147	2.01448841701943e-05	19	activation of protein kinase activity
GO:0030163	2.03093572030315e-05	37	protein catabolic process
GO:0034329	2.06298734834792e-05	16	cell junction assembly
GO:0055080	2.07061079096772e-05	29	cation homeostasis
GO:1901215	2.09551836601328e-05	14	negative regulation of neuron death
GO:0050768	2.1375838533787e-05	17	negative regulation of neurogenesis
GO:0045637	2.15262984208589e-05	16	regulation of myeloid cell differentiation
GO:1902684	2.158093771213974e-05	8	mitochondrial outer membrane permeabilization involved in programmed cell death
GO:0006458	2.18275615347632e-05	7	'de novo' protein folding
GO:1901028	2.217738646357017e-05	7	regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
GO:0061136	2.2386431680083e-05	14	regulation of proteasomal protein catabolic process
GO:0051048	2.24688080883461e-05	14	negative regulation of secretion
GO:1902235	2.27128271445965e-05	6	regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
GO:0061024	2.280127121628127e-05	33	membrane organization
GO:0001844	2.3331894237513e-05	6	protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:0045785	2.35297537209425e-05	21	positive regulation of cell adhesion
GO:0070201	2.37959137365375e-05	30	regulation of establishment of protein localization
GO:0006977	2.43754288930542e-05	8	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest
GO:1903829	2.43802880473792e-05	19	positive regulation of cellular protein localization
GO:0043542	2.44364100261105e-05	15	endothelial cell migration
GO:0090050	2.445479513217147e-05	6	positive regulation of cell migration involved in sprouting angiogenesis
GO:0070665	2.47157913251066e-05	11	positive regulation of leukocyte proliferation
GO:0071774	2.62233641644866e-05	12	response to fibroblast growth factor
GO:0010466	2.64439429695930e-05	15	negative regulation of peptidase activity
GO:0098771	2.66717714456215e-05	29	inorganic ion homeostasis
GO:0072431	2.67751069878431e-05	8	signal transduction involved in mitotic G1 DNA damage checkpoint
GO:1902400	2.67751069878431e-05	8	intracellular signal transduction involved in G1 DNA damage checkpoint
GO:0044238	2.68404281272802e-05	237	primary metabolic process
GO:1905897	2.69928428906026e-05	9	regulation of response to endoplasmic reticulum stress
GO:0002573	2.74602364287389e-05	14	myeloid leukocyte differentiation
GO:0035794	2.84410471605377e-05	8	positive regulation of mitochondrial membrane permeability
GO:1903050	3.00290080711483e-05	15	regulation of proteolysis involved in cellular protein catabolic process
GO:0043405	3.01068295789804e-05	19	regulation of MAP kinase activity
GO:0001893	3.04266446023275e-05	6	maternal placenta development
GO:0072413	3.061151595371855e-05	8	signal transduction involved in mitotic cell cycle checkpoint
GO:1902402	3.061151595371855e-05	8	signal transduction involved in mitotic DNA damage checkpoint
GO:1902403	3.061151595371855e-05	8	signal transduction involved in mitotic DNA integrity checkpoint
GO:0046697	3.18195072852025e-05	5	decidualization
GO:0002009	3.21267066571324e-05	24	morphogenesis of an epithelium
GO:0035914	3.21563444567968e-05	8	skeletal muscle cell differentiation
GO:0006401	3.25837499140099e-05	20	RNA catabolic process
GO:1905710	3.28625777216138e-05	8	positive regulation of membrane permeability
GO:0046700	3.31096526738273e-05	28	heterocycle catabolic process
GO:2001239	3.35705548579809e-05	7	regulation of extrinsic apoptotic signaling pathway in absence of ligand
GO:0007050	3.40671813519759e-05	16	cell cycle arrest
GO:0007049	3.43553691329199e-05	60	cell cycle
GO:1901699	3.61933310607315e-05	27	cellular response to nitrogen compound
GO:0090084	3.64902741048248e-05	4	negative regulation of inclusion body assembly
GO:1901575	3.65096864737847e-05	66	organic substance catabolic process

GO:0007566	3.69800403683437e-05	7	embryo implantation
GO:0009790	3.73807297694101e-05	37	embryo development
GO:0013727	3.758935060804084e-05	4	cellular response to follicle-stimulating hormone stimulus
GO:0043491	3.88372252167003e-05	15	protein kinase B signaling
GO:0070841	3.90313960694646e-05	5	inclusion body assembly
GO:0046677	4.0316543422044e-05	18	response to antibiotic
GO:0010721	4.04156048827385e-05	18	negative regulation of cell development
GO:0051347	4.15319742982141e-05	28	positive regulation of transferase activity
GO:0007584	4.22182792341864e-05	14	response to nutrient
GO:0034248	4.29103728606373e-05	22	regulation of cellular amide metabolic process
GO:0051409	4.318246735984826e-05	4	response to nitrosative stress
GO:0098657	4.3511259235987e-05	32	import into cell
GO:0038066	4.39828165152079e-05	7	p38MAPK cascade
GO:0051204	4.41623155980836e-05	6	protein insertion into mitochondrial membrane
GO:1901030	4.416863714952e-05	6	positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
GO:0042108	4.5054667782e-05	7	positive regulation of cytokine biosynthetic process
GO:1901361	4.51148764315201e-05	29	organic cyclic compound catabolic process
GO:1990440	4.74056326823847e-05	4	positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress
GO:0001890	4.76497740921396e-05	12	placenta development
GO:0043525	4.8216425681114e-05	7	positive regulation of neuron apoptotic process
GO:0045646	4.89271838484825e-05	7	regulation of erythrocyte differentiation
GO:0031345	4.95987679481843e-05	13	negative regulation of cell projection organization
GO:0016034	4.97697330738232e-05	12	positive regulation of epithelial cell migration
GO:0019439	5.062977073142714e-05	28	aromatic compound catabolic process
GO:0001101	5.07499681810378e-05	18	response to acid chemical
GO:0046824	5.10537848633017e-05	8	positive regulation of nucleocytoplasmic transport
GO:0072593	5.23928240754745e-05	16	reactive oxygen species metabolic process
GO:0051346	5.31662839820595e-05	21	negative regulation of hydrolase activity
GO:1901099	5.32779567678732e-05	6	negative regulation of signal transduction in absence of ligand
GO:2001240	5.32779567678732e-05	6	negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
GO:0002460	5.37709781288963e-05	15	adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily
GO:0070613	5.79450527923334e-05	9	regulation of protein processing
GO:0090199	5.98350545154015e-05	7	regulation of release of cytochrome c from mitochondria
GO:0045619	6.014326081119062e-05	12	regulation of lymphocyte differentiation
GO:0022409	6.04998237077642e-05	15	positive regulation of cell-cell adhesion
GO:0001655	6.0695857423007e-05	18	urogenital system development
GO:0048464	6.32894089569375e-05	39	neuron development
GO:1901522	6.34284776908121e-05	5	positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus
GO:0046660	6.3437174769323e-05	10	female sex differentiation
GO:0010595	6.63031857948136e-05	10	positive regulation of endothelial cell migration
GO:0006953	6.69050523096549e-05	6	acute-phase response
GO:0048729	6.73418462192803e-05	27	tissue morphogenesis
GO:0001974	6.87143884733321e-05	6	blood vessel remodeling
GO:0002042	6.87374171143535e-05	8	cell migration involved in sprouting angiogenesis
GO:1904951	6.9401923320795e-05	21	positive regulation of establishment of protein localization
GO:1903317	7.03032894756427e-05	9	regulation of protein maturation
GO:0016192	7.18147142693371e-05	62	vesicle-mediated transport
GO:0016070	7.20006953801461e-05	123	RNA metabolic process
GO:0043524	7.29192271573166e-05	11	negative regulation of neuron apoptotic process
GO:0008152	7.30347816187173e-05	251	metabolic process
GO:0050729	7.53972753047152e-05	10	positive regulation of inflammatory response
GO:0061097	7.6397909040348e-05	9	regulation of protein tyrosine kinase activity
GO:0089718	7.69417353157232e-05	5	amino acid import across plasma membrane
GO:0062084	7.9352876772696e-05	34	regulation of cell development
GO:0045665	7.9834180436795e-05	14	negative regulation of neuron differentiation
GO:0034612	8.20032548521749e-05	15	response to tumor necrosis factor
GO:0063026	8.34453824939099e-05	16	cell chemotaxis
GO:0010821	8.42869771966853e-05	13	regulation of mitochondrion organization
GO:0050870	8.74084146932922e-05	13	positive regulation of T cell activation
GO:0097345	8.78358610838555e-05	7	mitochondrial outer membrane permeabilization
GO:0072594	8.838775527274497e-05	26	establishment of protein localization to organelle
GO:0065037	9.16766457233868e-05	19	muscle tissue development
GO:1902339	9.24041672941015e-05	3	positive regulation of apoptotic process involved in morphogenesis
GO:1904747	9.24041672941015e-05	3	positive regulation of apoptotic process involved in development
GO:0044270	9.32242404218881e-05	27	cellular nitrogen compound catabolic process
GO:0030193	9.943626573011585e-05	8	regulation of blood coagulation
GO:1900466	9.94362673011585e-05	8	regulation of hemostasis
GO:0001818	0.00010018866223711	15	negative regulation of cytokine production
GO:0097327	0.00010194596748741	9	response to antineoplastic agent
GO:0007162	0.000102174953062761	15	negative regulation of cell adhesion
GO:0097201	0.000102219813211504	4	negative regulation of transcription from RNA polymerase II promoter in response to stress
GO:0001541	0.000104305623457367	7	ovarian follicle development
GO:0006974	0.00010526883393278	34	cellular response to DNA damage stimulus
GO:0031589	0.000108845037098439	18	cell-substrate adhesion
GO:1903076	0.000114467455011372	9	regulation of protein localization to plasma membrane
GO:0032623	0.000115516387956411	7	interleukin-2 production
GO:0031175	0.000116152732304627	35	neuron projection development
GO:0090068	0.000116535861646255	16	positive regulation of cell cycle process
GO:0072401	0.000121532882658548	8	signal transduction involved in DNA integrity checkpoint
GO:0072422	0.000121532882658548	8	signal transduction involved in DNA damage checkpoint
GO:0045685	0.000121746171408755	7	regulation of glial cell differentiation
GO:0030198	0.0001244892883620278	18	extracellular matrix organization
GO:0150076	0.000125329244040998	6	neuroinflammatory response
GO:0070555	0.000129649063524075	11	response to interleukin-1
GO:1900739	0.000130213527701988	5	regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:1900740	0.000130213527701988	5	positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:1902110	0.000132297048073279	7	positive regulation of mitochondrial membrane permeability involved in apoptotic process
GO:0072395	0.000135227797500492	8	signal transduction involved in cell cycle checkpoint
GO:0010952	0.000135376912240324	13	positive regulation of peptidase activity
GO:0016485	0.000135799198307909	14	protein processing
GO:0006875	0.000136146159377594	23	cellular metal ion homeostasis
GO:0051091	0.000142581716287321	15	positive regulation of DNA-binding transcription factor activity
GO:0048872	0.000143106558575545	15	homeostasis of number of cells
GO:0045577	0.000144740099696723	5	regulation of B cell differentiation
GO:0031347	0.000144832401734082	27	regulation of defense response
GO:0050727	0.000148410543063989	17	regulation of inflammatory response
GO:1903825	0.000148948068966443	10	organic acid transmembrane transport
GO:1905039	0.000148948068966443	10	carboxylic acid transmembrane transport
GO:0043090	0.00015356572395613	5	amino acid import
GO:0099887	0.000155556535012912	35	animal organ morphogenesis
GO:00342402	0.000159010974627377	5	amyloid-beta formation
GO:0034101	0.000159120651931843	10	erythrocyte homeostasis
GO:0009056	0.00015945486465003352	14	nuclear-transcribed mRNA catabolic process
GO:0055065	0.000159496848318601	25	metal ion homeostasis
GO:0034641	0.000159837270031777	160	cellular nitrogen compound metabolic process
GO:0030968	0.000165825761741863	10	endoplasmic reticulum unfolded protein response
GO:00022705	0.000166925890847827	10	positive regulation of leukocyte mediated immunity
GO:0043009	0.000169797470788264	25	chordate embryonic development
GO:0090150	0.000171295010530329	18	establishment of protein localization to membrane
GO:0007346	0.00017177458096129	26	regulation of mitotic cell cycle
GO:0034655	0.000173315799081663	25	nucleobase-containing compound catabolic process
GO:0010977	0.000179223451508033	11	negative regulation of neuron projection development
GO:0032989	0.000180218615319318	38	cellular component morphogenesis
GO:0010837	0.0001834773339527071	5	regulation of keratinocyte proliferation
GO:0010590	0.000184897752948282	12	positive regulation of endopeptidase activity
GO:0072503	0.000186524531838328	20	cellular divalent inorganic cation homeostasis
GO:2001244	0.000187173852492662	7	positive regulation of intrinsic apoptotic signaling pathway
GO:0007519	0.000189483165812409	11	skeletal muscle tissue development
GO:1990000	0.0001892817017944111	4	amyloid fibril formation
GO:0051271	0.000189916817421884	17	negative regulation of cellular component movement
GO:0006521	0.000195807049362464	4	regulation of cellular amino acid metabolic process
GO:0010564	0.000196246712528099	29	regulation of cell cycle process
GO:0001701	0.000197458483693916	17	in utero embryonic development
GO:0010575	0.000198330126745241	5	positive regulation of vascular endothelial growth factor production
GO:0110110	0.000198862727403714	8	positive regulation of animal organ morphogenesis
GO:0099087	0.000198870734156319	27	regulation of peptide transport
GO:0042102	0.000201372325667504	8	positive regulation of T cell proliferation
GO:0043122	0.00020205754460192	14	regulation of I-kappaB kinase/NF-kappaB signaling
GO:2000045	0.000202064031065167	11	regulation of G1/S transition of mitotic cell cycle

GO:1901565	0.000203451399932454	43	organonitrogen compound catabolic process
GO:0043062	0.000208443048446183	19	extracellular structure organization
GO:0090303	0.00020953375662515	6	positive regulation of wound healing
GO:0044773	0.000209737905458028	9	mitotic DNA damage checkpoint
GO:0044070	0.000210896389116449	8	regulation of anion transport
GO:0007176	0.000214146225948637	5	regulation of epidermal growth factor-activated receptor activity
GO:0000077	0.000229186304228635	11	DNA damage checkpoint
GO:0071371	0.000230510927964808	4	cellular response to gonadotropin stimulus
GO:0045600	0.000237557075257384	7	positive regulation of fat cell differentiation
GO:0042024	0.000239111999078636	5	protein folding
GO:1902108	0.000239444907998004	7	regulation of mitochondrial membrane permeability involved in apoptotic process
GO:0045787	0.000240376878307934	19	positive regulation of cell cycle
GO:0002702	0.000245311075490163	8	positive regulation of production of molecular mediator of immune response
GO:0031349	0.000246602054507446	19	positive regulation of defense response
GO:0030336	0.00024946117085297	15	negative regulation of cell migration
GO:0048145	0.000262098389404326	8	regulation of fibroblast proliferation
GO:0009792	0.00026729892344398	25	embryo development ending in birth or egg hatching
GO:0051223	0.00027151096782969	26	regulation of protein transport
GO:2000134	0.00027156246063474	9	negative regulation of G1/S transition of mitotic cell cycle
GO:0032663	0.000277642392778644	6	regulation of interleukin-2 production
GO:0071158	0.0002815629826515546	8	positive regulation of cell cycle arrest
GO:0015711	0.000285944634144769	20	organic anion transport
GO:0048144	0.000288488772188956	8	fibroblast proliferation
GO:0060538	0.000294872423515117	11	skeletal muscle organ development
GO:0050864	0.000296493705787296	9	regulation of B cell activation
GO:1902043	0.000298813285511596	4	positive regulation of extrinsic apoptotic signaling pathway via death domain receptors
GO:1903670	0.00030003003001991409	8	regulation of sprouting angiogenesis
GO:0043200	0.000309861768141132	9	response to amino acid
GO:1903672	0.000312166080215815	6	positive regulation of sprouting angiogenesis
GO:0120036	0.000313454068359935	47	plasma membrane bounded cell projection organization
GO:0010001	0.000314490250554019	12	glial cell differentiation
GO:0030850	0.000317407102099869	6	prostate gland development
GO:0072507	0.000321083869046608	20	divalent inorganic cation homeostasis
GO:0090647	0.0003231368815914665	3	modulation of age-related behavioral decline
GO:0051245	0.000323958402945292	29	positive regulation of hydrolase activity
GO:0002720	0.000330530711798531	6	positive regulation of cytokine production involved in immune response
GO:0066413	0.000331729454672999	13	translational initiation
GO:0045599	0.000344121662214715	6	negative regulation of fat cell differentiation
GO:0090506	0.000345653942814542	72	catabolic process
GO:0043123	0.0003479196866476599	12	positive regulation of I-kappaB kinase/NF-kappaB signaling
GO:0070371	0.0003503545654978373	16	ERK2 cascade
GO:0066750	0.000353117852905658	4	glutathione biosynthetic process
GO:002604	0.0003535467316883944	21	regulation of cell morphogenesis
GO:0015698	0.000357559864944393	11	inorganic anion transport
GO:1901015	0.00036315393650342	4	regulation of nuclear-coding mRNA catabolic process, deadenylation-dependent decay
GO:1901533	0.00036315393650342	4	positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
GO:0051205	0.000363780215755995	6	protein insertion into membrane
GO:0003008	0.000364152679361525	48	system process
GO:0010955	0.000369947543723554	5	negative regulation of protein processing
GO:1903318	0.000369947543723554	5	negative regulation of protein maturation
GO:0026683	0.000370476853074327	19	negative regulation of immune system process
GO:0002250	0.000372443104782146	17	adaptive immune response
GO:0002367	0.000373716204626466	8	cytokine production involved in immune response
GO:0002246	0.000374924310798658	3	wound healing involved in inflammatory response
GO:0090594	0.000374924310798658	3	inflammatory response to wounding
GO:0071230	0.000380606476797791	7	cellular response to amino acid stimulus
GO:0003169	0.0003814367704357644	2	coronary vein morphogenesis
GO:0034105	0.0003840276112046608	5	positive regulation of tissue remodeling
GO:1901653	0.000392221607201667	17	cellular response to peptide
GO:0048641	0.000397643198224492	8	positive regulation of smooth muscle cell proliferation
GO:0070301	0.0003978379468992691	8	cellular response to hydrogen peroxide
GO:0001763	0.000398302854191495	12	morphogenesis of a branching structure
GO:2000379	0.000398458758923835	8	positive regulation of reactive oxygen species metabolic process
GO:0033002	0.000401415316514544	12	muscle cell proliferation
GO:0002012	0.000403167551806538	17	regulation of small molecule metabolic process
GO:00510767	0.000403415848354111	29	regulation of neurogenesis
GO:0044774	0.00041565124968868	9	mitotic DNA integrity checkpoint
GO:0071356	0.000416258643616267	13	cellular response to tumor necrosis factor
GO:0010574	0.00042039034934891	5	regulation of vascular endothelial growth factor production
GO:0008593	0.0004247948598760964	8	regulation of Notch signaling pathway
GO:0048660	0.000431368245977215	10	regulation of smooth muscle cell proliferation
GO:0001570	0.000431720413979539	7	vasculogenesis
GO:0034198	0.000435472785713874	6	cellular response to amino acid starvation
GO:1904375	0.000437978954848669	9	regulation of protein localization to cell periphery
GO:0016049	0.000438023498231673	21	cell growth
GO:1902807	0.000438896608326665	9	negative regulation of cell cycle G1/S phase transition
GO:0010565	0.000442650689217681	9	regulation of cellular ketone metabolic process
GO:0090200	0.000443908783036505	5	positive regulation of release of cytochrome c from mitochondria
GO:0071236	0.000448027718307133	10	cellular response to antibiotic
GO:0043604	0.000450510487690502	32	amide biosynthetic process
GO:0042094	0.000456768173179295	4	interleukin-2 biosynthetic process
GO:0002043	0.0004580414363490904	5	blood vessel endothelial cell proliferation involved in sprouting angiogenesis
GO:0016043	0.000461636062403746	151	cellular component organization
GO:2001046	0.000464567522281467	15	negative regulation of cell motility
GO:0031570	0.000464649040528625	11	DNA integrity checkpoint
GO:0002543	0.000467546139539353	2	activation of blood coagulation via clotting cascade
GO:0045621	0.0004691975910864	8	positive regulation of lymphocyte differentiation
GO:0014706	0.00047233587138513	17	striated muscle tissue development
GO:0097049	0.000472347460704433	2	cellular response to thyroxine stimulus
GO:1904387	0.000472347460704433	2	cellular response to L-phenylalanine derivative
GO:0002697	0.000474203563879993	17	regulation of immune effector process
GO:0061436	0.00048353271241939	4	establishment of skin barrier
GO:0043406	0.000483816394621861	14	positive regulation of MAP kinase activity
GO:0001912	0.000485119838941485	6	positive regulation of leukocyte mediated cytotoxicity
GO:0032868	0.000487609577816936	14	response to insulin
GO:0031394	0.000489935011994154	2	positive regulation of prostaglandin biosynthetic process
GO:0026212	0.0004949287959598726	9	gland morphogenesis
GO:0048659	0.0004960619253565921	10	smooth muscle cell proliferation
GO:0014028	0.000496887157243484	2	notochord formation
GO:0090304	0.00049983409675101	130	nucleic acid metabolic process
GO:0030168	0.000503124591608523	10	platelet activation
GO:0061741	0.000507408632270075	2	chaperone-mediated protein transport involved in chaperone-mediated autophagy
GO:0044257	0.000513743211008641	29	cellular protein catabolic process
GO:0060341	0.000518143468026052	32	regulation of cellular localization
GO:0072659	0.000518287539690955	14	protein localization to plasma membrane
GO:1903036	0.000522822388020648	6	positive regulation of response to wounding
GO:0044248	0.000525618045681266	65	cellular catabolic process
GO:0061394	0.000528774389312199	2	regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance
GO:1902806	0.0005325349691277392	11	regulation of cell cycle G1/S phase transition
GO:1903747	0.000533673741289093	7	regulation of establishment of protein localization to mitochondrion
GO:0051960	0.0005335377186526075	31	regulation of nervous system development
GO:0097084	0.000538170811617319	3	vascular smooth muscle cell development
GO:0071634	0.000542329062152834	5	regulation of transforming growth factor beta production
GO:0030030	0.000542462230798808	47	cell projection organization
GO:1990928	0.000543751827645022	6	response to amino acid starvation
GO:0002718	0.000544653595251974	7	regulation of cytokine production involved in immune response
GO:0000902	0.000546838694575941	34	cell morphogenesis
GO:0001660	0.0005479264459262759	3	fever generation
GO:0031098	0.00054982276149523	16	stress-activated protein kinase signaling cascade
GO:0033043	0.000551463931502741	42	regulation of organelle organization
GO:1905906	0.0005569239643801295	3	regulation of amyloid fibril formation
GO:0045601	0.000563231614406033	5	regulation of endothelial cell differentiation
GO:0044341	0.000566917925046997	3	sodium-dependent phosphate transport
GO:0051130	0.000568580933684681	40	positive regulation of cellular component organization
GO:0019184	0.000569608506281243	4	nonribosomal peptide biosynthetic process
GO:0010573	0.00057284294536098	5	vascular endothelial growth factor production
GO:0061635	0.00057597341017979	3	regulation of protein complex stability
GO:0051403	0.000577737567810797	15	stress-activated MAPK cascade
GO:0070423	0.00058281943597414	5	nucleotide-binding oligomerization domain containing signaling pathway

GO:0043161	0.000583084606133981	19	proteasome-mediated ubiquitin-dependent protein catabolic process
GO:0002700	0.000587232300910443	9	regulation of production of molecular mediator of immune response
GO:0010498	0.000590378179736795	21	proteasomal protein catabolic process
GO:1902003	0.000592328959431884	4	regulation of amyloid-beta formation
GO:0003170	0.0006038519735435	6	heart valve development
GO:2001238	0.000605817052385725	6	positive regulation of extrinsic apoptotic signaling pathway
GO:0006919	0.000615067113067297	8	activation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0043043	0.0006165121091592915	28	peptide biosynthetic process
GO:0098739	0.0006180243088485	8	import across plasma membrane
GO:0007004	0.00062055298184431	9	mitochondrial membrane organization
GO:0031424	0.000620845423088485	10	keratinization
GO:0042987	0.000620845423088485	5	amyloid precursor protein catabolic process
GO:1905477	0.00062448350927675	9	positive regulation of protein localization to membrane
GO:1902221	0.0006252749187422118	3	regulation of amyloid-beta clearance
GO:0002708	0.000663372361278995	8	positive regulation of lymphocyte mediated immunity
GO:0001894	0.0006671476640295095	12	tissue homeostasis
GO:0035872	0.0006679804777357029	5	nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway
GO:0120035	0.000669760153983114	25	regulation of plasma membrane bounded cell projection organization
GO:0050435	0.000701111976098983	5	amyloid-beta metabolic process
GO:1903203	0.00072089772357111	4	regulation of oxidative stress-induced neuron death
GO:0071385	0.000723485249542475	6	cellular response to glucocorticoid stimulus
GO:0071604	0.000725402535103896	5	transforming growth factor beta production
GO:0051603	0.00073518149317046	27	proteolysis involved in cellular protein catabolic process
GO:0010810	0.000738712113268669	12	regulation of cell-substrate adhesion
GO:0033561	0.000747768483936792	4	regulation of water loss via skin
GO:0031343	0.00077512546373731	6	positive regulation of cell killing
GO:0070278	0.000777432823407742	3	extracellular matrix constituent secretion
GO:2001026	0.000778252519694209	4	regulation of endothelial cell chemotaxis
GO:0031663	0.000778984791382212	6	lipopolysaccharide-mediated signaling pathway
GO:0031396	0.000783648265666737	12	regulation of protein ubiquitination
GO:0071702	0.000788822443831597	75	organic substance transport
GO:0040013	0.000793944106470316	16	negative regulation of locomotion
GO:0008360	0.000796607796154551	10	regulation of cell shape
GO:0051092	0.000802735917528393	10	positive regulation of NF-kappaB transcription factor activity
GO:1901988	0.000802898892493272	12	negative regulation of cell cycle phase transition
GO:0002576	0.00081014831113597	9	platelet degranulation
GO:0019195	0.000812417322442584	10	endothelial cell proliferation
GO:0033365	0.000819497311180051	33	protein localization to organelle
GO:0045216	0.000823689739392256	10	cell-cell junction organization
GO:0060135	0.000837515926991732	6	maternal process involved in female pregnancy
GO:0045616	0.000849555676030277	5	regulation of keratinocyte differentiation
GO:0031344	0.0008524345456398	25	regulation of cell projection organization
GO:0007219	0.00086046872117736	11	Notch signaling pathway
GO:1902237	0.00086243479799760484	3	positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
GO:0043903	0.000863486696515698	12	regulation of symbiosis, encompassing mutualism through parasitism
GO:0046683	0.00086491896237411	9	response to organophosphorus
GO:0071470	0.000867922211139424	5	cellular response to osmotic stress
GO:0036475	0.000894880490831263	4	neuron death in response to oxidative stress
GO:1901360	0.00089975546465885	149	organic cyclic compound metabolic process
GO:0006725	0.000905358713081673	145	cellular aromatic compound metabolic process
GO:0090557	0.0009118100135625	3	establishment of endothelial intestinal barrier
GO:0046827	0.000917700704864253	4	positive regulation of protein export from nucleus
GO:0071222	0.000926046403674881	11	cellular response to lipopolysaccharide
GO:0034762	0.000932065869849895	20	regulation of transmembrane transport
GO:0071216	0.000963620543298485	12	cellular response to biotic stimulus
GO:0003333	0.000966880741565135	7	amino acid transmembrane transport
GO:0032677	0.000969854489793108	6	regulation of interleukin-8 production
GO:190182	0.00097844930316267	7	positive regulation of protein localization to nucleus
GO:2001056	0.000986013124039126	10	positive regulation of cysteine-type endopeptidase activity
GO:0045582	0.00010148871030852	7	positive regulation of T cell differentiation
GO:0097435	0.000101039779684247	25	supramolecular fiber organization
GO:0002703	0.00010430293075846	11	regulation of leukocyte mediated immunity
GO:0021544	0.0001045095941733	4	subcellular development
GO:0014013	0.000105322693730281	8	regulation of gliogenesis
GO:0045746	0.001063491099465655	5	negative regulation of Notch signaling pathway
GO:1902004	0.001063516328917181	3	positive regulation of amyloid-beta formation
GO:0007160	0.00107443120839689	12	cell-matrix adhesion
GO:0002449	0.00108505827316356	12	lymphocyte mediated immunity
GO:0070498	0.00111242614970247	6	interleukin-1-mediated signaling pathway
GO:0071384	0.001118520262427	6	cellular response to corticosteroid stimulus
GO:0009299	0.00111958495955366	4	mRNA transcription
GO:0042307	0.00112293458869119	5	positive regulation of protein import into nucleus
GO:0007267	0.00112567090478669	45	cell-cell signaling
GO:0032757	0.0011260883699328	5	positive regulation of interleukin-8 production
GO:0003176	0.00112314692030443	4	aortic valve development
GO:0002761	0.001139735364492931	8	regulation of myeloid leukocyte differentiation
GO:0006897	0.00117961168606543	25	endocytosis
GO:0051222	0.00120502624962973	17	positive regulation of protein transport
GO:0050820	0.00121594587455284	4	positive regulation of coagulation
GO:0050927	0.00122991810598516	4	positive regulation of positive chemotaxis
GO:0015807	0.00123470098372231	6	L-amino acid transport
GO:0071901	0.001234982312511523	9	negative regulation of protein serine/threonine kinase activity
GO:0007548	0.00123548670270705	13	sex differentiation
GO:0042033	0.0012381154016047	3	chemokine biosynthetic process
GO:0050755	0.0012381154016047	3	chemokine metabolic process
GO:0032388	0.00123915219338824	12	positive regulation of intracellular transport
GO:0060948	0.001239258643161932	2	cardiac vascular smooth muscle cell development
GO:0071219	0.00124383894435452	11	cellular response to molecule of bacterial origin
GO:0019752	0.00124464949343578	33	carboxylic acid metabolic process
GO:1901991	0.00124990635822907	11	negative regulation of mitotic cell cycle phase transition
GO:0001558	0.0012500270206207	18	regulation of cell growth
GO:1902263	0.00125934956644094	2	apoptotic process involved in embryonic digit morphogenesis
GO:0036473	0.0012663234276341	7	cell death in response to oxidative stress
GO:0050918	0.00126940979302672	6	positive chemotaxis
GO:0093016	0.00127831499989274	10	positive regulation of intracellular protein transport
GO:0010812	0.0012784541432481	6	negative regulation of cell-substrate adhesion
GO:0051098	0.00128005584575535	17	regulation of binding
GO:0070727	0.0013018263984774	56	cellular macromolecule localization
GO:0042730	0.001320926816464644	4	fibrinolysis
GO:0043010	0.00132514026678765	14	camera-type eye development
GO:0003334	0.0013447437220259	3	keratinocyte development
GO:0002040	0.00134864085428518	9	sprouting angiogenesis
GO:1907044	0.00135272093906844	5	regulation of p38MAPK cascade
GO:0045930	0.0013569498111667	14	negative regulation of mitotic cell cycle
GO:0071156	0.00136301063020583	8	regulation of cell cycle arrest
GO:0010638	0.00137098341650914	24	positive regulation of organelle organization
GO:0071383	0.00137703691073563	13	cellular response to steroid hormone stimulus
GO:0001889	0.00138121852625854	9	liver development
GO:0070426	0.00138822334629491	2	positive regulation of nucleotide-binding oligomerization domain containing signaling pathway
GO:0070434	0.00138822334629491	2	positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway
GO:1902337	0.00139739378185294	3	regulation of apoptotic process involved in morphogenesis
GO:1904748	0.00139739378185294	3	regulation of apoptotic process involved in development
GO:0070837	0.00140524285310922	2	dehydroascorbic acid transport
GO:0076111	0.00140585052105931	12	learning or memory
GO:0071840	0.00140586324277349	152	cellular component organization or biogenesis
GO:0031670	0.00141114757601618	6	cellular response to nutrient
GO:0043619	0.001428184010027686	3	regulation of transcription from RNA polymerase II promoter in response to oxidative stress
GO:0044752	0.00143448870916364	2	response to human chorionic gonadotropin
GO:0034614	0.00143492992027554	10	cellular response to reactive oxygen species
GO:0033387	0.00143688022519787	2	putrescine biosynthetic process from ornithine
GO:1904591	0.00144012781305511	5	positive regulation of protein import
GO:0061740	0.001441389156081	2	protein targeting to lysosome involved in chaperone-mediated autophagy
GO:0050926	0.00144557049148324	4	regulation of positive chemotaxis
GO:0046483	0.00144990087877105	143	heterocycle metabolic process
GO:1990834	0.00145046165957442	2	response to odorant
GO:0050866	0.00145455418519585	10	negative regulation of cell activation
GO:1904580	0.00146203385986148	2	regulation of intracellular mRNA localization
GO:1904582	0.00146203385986148	2	positive regulation of intracellular mRNA localization
GO:0006139	0.0014729309732033	140	nucleobase-containing compound metabolic process

GO:0006811	0.00147841321147566	45	ion transport
GO:0035850	0.00149713391867421	5	epithelial cell differentiation involved in kidney development
GO:1904048	0.00151139145469799	5	negative regulation of cellular response to oxidative stress
GO:1903202	0.00151139145469799	5	negative regulation of oxidative stress-induced cell death
GO:1902991	0.001520731143483354	4	regulation of amyloid precursor protein catabolic process
GO:0070431	0.00152374819622244	3	nucleotide-binding oligomerization domain containing 2 signaling pathway
GO:1903587	0.00153722198378485	4	regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis
GO:0001659	0.00154615858160447	10	temperature homeostasis
GO:0071229	0.001552492325513535	11	cellular response to acid chemical
GO:1903573	0.00155574791014614	5	negative regulation of response to endoplasmic reticulum stress
GO:2000120	0.00155956944201018	2	positive regulation of sodium-dependent phosphate transport
GO:0032990	0.001568335704911397	24	cell morphogenesis
GO:0048710	0.00157364569239245	4	regulation of astrocyte differentiation
GO:0032637	0.00157478616176722	6	interleukin-8 production
GO:0016480	0.00157828601781292	2	negative regulation of transcription by RNA polymerase III
GO:0055094	0.00159031532536958	4	response to lipoprotein particle
GO:0019852	0.00159743110636008	3	L-ascorbic acid metabolic process
GO:0014074	0.001603225877363648	9	response to purine-containing compound
GO:1902445	0.00162162492269049	2	regulation of mitochondrial membrane permeability involved in programmed necrotic cell death
GO:0061008	0.0016237139595181	9	hepatobiliary system development
GO:0060576	0.001635645415477375	3	intestinal epithelial cell development
GO:0014009	0.00163681106525859	5	glial cell proliferation
GO:1999442	0.00165022173852591	2	intrinsic apoptotic signaling pathway in response to nitrosative stress
GO:0070372	0.00165207360221988	14	regulation of ERK1 and ERK2 cascade
GO:0036462	0.0016626218619690573	3	TRAIL-activated apoptotic signaling pathway
GO:0015849	0.00168402248253803	14	organic acid transport
GO:0046942	0.00168402248253803	14	carboxylic acid transport
GO:0043280	0.00168714958774934	9	positive regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0043900	0.00168922490309151	16	regulation of multi-organism process
GO:0071375	0.00170473343278959	14	cellular response to peptide hormone stimulus
GO:0050892	0.00170645965439554	4	intestinal absorption
GO:1904950	0.001716161619752385	10	negative regulation of establishment of protein localization
GO:0030218	0.00174079205247116	8	erythrocyte differentiation
GO:0072182	0.0017521885841558	3	regulation of nephron tubule epithelial cell differentiation
GO:0072080	0.00176449981126359	7	nephron tubule development
GO:1903959	0.00177937785009642	4	regulation of anion transmembrane transport
GO:0030101	0.0017902948166794	6	natural killer cell activation
GO:1902992	0.0017916899000342	3	negative regulation of amyloid precursor protein catabolic process
GO:1903201	0.00179386408050275	6	regulation of oxidative stress-induced cell death
GO:0042036	0.00180797831646611	4	negative regulation of cytokine biosynthetic process
GO:0002673	0.00181514327204422	6	regulation of acute inflammatory response
GO:0006511	0.0018161157003137	23	ubiquitin-dependent protein catabolic process
GO:1901566	0.00182148130285071	54	organonitrogen compound biosynthetic process
GO:0070885	0.00182214493028927	3	negative regulation of calcineurin-NFAT signaling cascade
GO:106057	0.001822214493028927	3	negative regulation of calcineurin-mediated signaling
GO:0051896	0.00182390315151847	11	regulation of protein kinase B signaling
GO:0060742	0.00182412274622739	3	epithelial cell differentiation involved in prostate gland development
GO:0001814	0.00183192361713776	9	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:0051604	0.00185434597983839	14	protein maturation
GO:0030959	0.00186962429240762	11	leukocyte chemotaxis
GO:1902882	0.00188455536516324	7	regulation of response to oxidative stress
GO:0002687	0.00188654196059893	8	positive regulation of leukocyte migration
GO:0045661	0.001891722317745059	5	regulation of myoblast differentiation
GO:1902883	0.00189893970339398	5	negative regulation of response to oxidative stress
GO:0061614	0.00190078951872019	5	pri-miRNA transcription by RNA polymerase II
GO:0061045	0.001911343002360	6	negative regulation of wound healing
GO:0000075	0.00200379201836984	12	cell cycle checkpoint
GO:0006809	0.00201794784635799	6	nitric oxide biosynthetic process
GO:0061326	0.00202253033557215	7	renal tubule development
GO:0061684	0.00206355685292746	3	chaperone-mediated autophagy
GO:0045644	0.002064863626421195	23	regulation of neuron differentiation
GO:0008406	0.00208428592739341	11	gonad development
GO:0019941	0.00209409502043419	23	modification-dependent protein catabolic process
GO:0071560	0.00210397496125158	12	cellular response to transforming growth factor beta stimulus
GO:0070268	0.0021070105379575	8	cornification
GO:0002440	0.00210914316997989	10	production of molecular mediator of immune response
GO:0071364	0.00211990054927223	5	cellular response to epidermal growth factor stimulus
GO:0066989	0.00215010501182127	13	receptor-mediated endocytosis
GO:1904659	0.00215850303071106	7	glucose transmembrane transport
GO:0032102	0.00216098824545712	14	negative regulation of response to external stimulus
GO:0071402	0.0021730391608916	4	cellular response to lipoprotein particle stimulus
GO:0048713	0.002175279262156	4	regulation of oligodendrocyte differentiation
GO:0002285	0.00217925947463806	9	lymphocyte activation involved in immune response
GO:0051591	0.00218337220727983	7	response to cAMP
GO:0043409	0.00218555089109943	10	negative regulation of MAPK cascade
GO:0022617	0.0021889250713005	6	extracellular matrix disassembly
GO:0006614	0.002191646120032721	8	SRP-dependent cotranslational protein targeting to membrane
GO:0051881	0.00219269001321841	6	regulation of mitochondrial membrane potential
GO:0046822	0.00219270498345271	8	regulation of nucleocytoplasmic transport
GO:0001503	0.00219399991879172	16	ossification
GO:0001654	0.0021942333856372	15	eye development
GO:0042271	0.002211230301808483	3	susceptibility to natural killer cell mediated cytotoxicity
GO:0022402	0.0022137484843897	41	cell cycle process
GO:1904589	0.002215375045151	6	regulation of protein import
GO:1903320	0.0022178819234906	12	regulation of protein modification by small protein conjugation or removal
GO:0001892	0.00221957016159843	7	embryonic placenta development
GO:0046427	0.00224159560133862	6	positive regulation of JAK-STAT cascade
GO:0150653	0.00226500127034023	31	visual system development
GO:0044087	0.00229814028950102	11	regulation of cellular component biogenesis
GO:0032869	0.00234066858260882	3	cellular response to insulin stimulus
GO:0060712	0.002341328386239	3	spongiotrophoblast layer development
GO:00050920	0.00235253906636313	11	regulation of chemotaxis
GO:0001822	0.00236578990789571	13	kidney development
GO:0090288	0.0023841691083817	9	negative regulation of cellular response to growth factor stimulus
GO:0010830	0.00238430881242681	5	regulation of myotube differentiation
GO:0061029	0.00238430881242681	3	eyelid development in camera-type eye
GO:1900745	0.0023930658979753	4	positive regulation of p38MAPK cascade
GO:0010746	0.00241650078328479	2	regulation of plasma membrane long-chain fatty acid transport
GO:0010748	0.00241650078328479	2	negative regulation of plasma membrane long-chain fatty acid transport
GO:0007043	0.00241783390214527	8	cell-cell junction assembly
GO:1903589	0.0024181045555313	3	positive regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis
GO:0038061	0.00242439330847826	8	NIK/NF-kappaB signaling
GO:1902993	0.00243682219342956	3	positive regulation of amyloid precursor protein catabolic process
GO:0070373	0.00244570248528774	6	negative regulation of ERK1 and ERK2 cascade
GO:0033036	0.00245461711317458	80	macromolecule localization
GO:0010822	0.00249945073873467	8	positive regulation of mitochondrial organization
GO:0034250	0.00250847162053292	9	positive regulation of cellular amide metabolic process
GO:0007517	0.0025089898537299	16	muscle organ development
GO:0001913	0.00251021382178405	5	T cell mediated cytotoxicity
GO:0060841	0.002528778269772	3	venous blood vessel development
GO:0002685	0.002529332247951	10	regulation of leukocyte migration
GO:0048711	0.002532344220779	3	positive regulation of astrocyte differentiation
GO:0043632	0.00253244660940245	23	modification-dependent macromolecule catabolic process
GO:0002824	0.00253442212530146	7	positive regulation of adaptive immune response based on somatic recombination of immune receptors built from
GO:0030195	0.00253945922737448	5	negative regulation of blood coagulation
GO:1900047	0.00253945922737448	5	negative regulation of hemostasis
GO:0072655	0.0025443822259168	9	establishment of protein localization to mitochondrion
GO:0061013	0.00254663778298991	9	regulation of mRNA catabolic process
GO:0006931	0.00255968202241112	2	substrate-dependent cell migration, cell attachment to substrate
GO:0003332	0.00256840176575522	2	negative regulation of extracellular matrix constituent secretion
GO:0048880	0.0025798522269903	15	sensory system development
GO:0045137	0.002579648799973	11	development of primary sexual characteristics
GO:0002070	0.0025959431735619	3	epithelial cell maturation
GO:0046661	0.00260532560491982	9	male sex differentiation
GO:0061564	0.00261167334706254	19	axon development
GO:0043436	0.00262161385126064	34	oxoadid metabolic process
GO:0036337	0.00263500975218232	2	Fas signaling pathway
GO:0001910	0.00268063854538039	6	regulation of leukocyte mediated cytotoxicity
GO:0090063	0.00268145067539826	2	positive regulation of microtubule nucleation

GO:0071559	0.00268276524425859	12	response to transforming growth factor beta
GO:0090066	0.00268666078274334	19	regulation of anatomical structure size
GO:1902475	0.00268861501548266	5	L-alpha-amino acid transmembrane transport
GO:2001280	0.00269581155325791	2	positive regulation of unsaturated fatty acid biosynthetic process
GO:0006865	0.00269892282306965	8	amino acid transport
GO:0009314	0.00270452174211057	18	response to radiation
GO:0071211	0.00270758953115474	2	protein targeting to vacuole involved in autophagy
GO:1990778	0.00271468940195358	14	protein localization to cell periphery
GO:0071603	0.00271895627350769	2	endothelial cell-cell adhesion
GO:2001027	0.00272044851876531	2	negative regulation of endothelial cell chemotaxis
GO:0071705	0.0027347446764329	64	nitrogen compound transport
GO:0006613	0.0027356430781144	8	cotranslational protein targeting to membrane
GO:0097068	0.0027453299372068	2	response to thyroxine
GO:1904386	0.0027483299372068	2	response to L-phenylalanine derivative
GO:0072160	0.00275926635170878	3	nephron tubule epithelial cell differentiation
GO:0007093	0.00276424314831561	10	mitotic cell cycle checkpoint
GO:1905908	0.00276565836130838	2	positive regulation of amyloid fibril formation
GO:0061138	0.00277749318268217	10	morphogenesis of a branching epithelium
GO:0046209	0.00279158476187938	6	nitric oxide metabolic process
GO:0033598	0.00280116484117557	4	mammary gland epithelial cell proliferation
GO:0001909	0.0028088864576424	7	leukocyte mediated cytotoxicity
GO:0090092	0.00281546699138772	11	regulation of transmembrane receptor protein serine/threonine kinase signaling pathway
GO:0006749	0.00281952884380389	5	glutathione metabolic process
GO:0071347	0.0028211251712398	8	cellular response to interleukin-1
GO:0010718	0.0028796822048739	5	positive regulation of epithelial to mesenchymal transition
GO:0022408	0.00289049941486702	9	negative regulation of cell-cell adhesion
GO:2000554	0.00289175027360453	2	regulation of T-helper 1 cell cytokine production
GO:2000556	0.00289175027360453	2	positive regulation of T-helper 1 cell cytokine production
GO:1904894	0.002897064737154728	6	positive regulation of STAT cascade
GO:1905907	0.0029092091660081	2	negative regulation of amyloid fibril formation
GO:0002763	0.00294378592079372	5	positive regulation of myeloid leukocyte differentiation
GO:2000118	0.002947118406469022	2	regulation of sodium-dependent phosphate transport
GO:0070585	0.0029527980185031	9	protein localization to mitochondrion
GO:0035767	0.0029635764029517	4	endothelial cell chemotaxis
GO:0019216	0.00297978535881657	16	regulation of lipid metabolic process
GO:0007173	0.00299409670444484	8	epidermal growth factor receptor signaling pathway
GO:0032355	0.0030000115096291	8	response to estradiol
GO:0001906	0.00300045704095893	8	cell killing
GO:0042180	0.00303778352034267	10	cellular ketone metabolic process
GO:0007175	0.00304141170419574	3	negative regulation of epidermal growth factor-activated receptor activity
GO:0031099	0.0030500077549636	10	regeneration
GO:0051101	0.00309093310993747	8	regulation of DNA binding
GO:0034613	0.00309184413175125	54	cellular protein localization
GO:0050819	0.00312523689427914	5	negative regulation of coagulation
GO:0070849	0.00313790747608676	5	response to epidermal growth factor
GO:0002317	0.00315091814864934	2	plasma cell differentiation
GO:0014805	0.00315203740622681	2	smooth muscle adaptation
GO:0097443	0.00315427794592121	11	response to carbohydrate
GO:0050921	0.00315906946761695	8	positive regulation of chemotaxis
GO:0007178	0.00320620827020396	14	transmembrane receptor protein serine/threonine kinase signaling pathway
GO:007286	0.003207357479715669	3	iron ion import
GO:0006082	0.00321809420636155	34	organic acid metabolic process
GO:0099173	0.0032236318603263	9	postsynapse organization
GO:0008645	0.00324791261526252	7	hexose transmembrane transport
GO:0032092	0.003256694949202425	7	positive regulation of protein binding
GO:0045076	0.003282026575506201	3	regulation of interleukin-2 biosynthetic process
GO:0006839	0.00328718958058455	12	mitochondrial transport
GO:0043488	0.0033090419834995	8	regulation of mRNA stability
GO:0002253	0.0033331284264708	19	activation of immune response
GO:0010039	0.00334761740950565	4	response to iron ion
GO:0061005	0.00338063152691272	5	cell differentiation involved in kidney development
GO:0034341	0.0033833282699402	10	response to interferon-gamma
GO:0051302	0.00338340434787054	9	regulation of cell division
GO:0045468	0.00342209889196727	4	positive regulation of erythrocyte differentiation
GO:0022607	0.00345655778323802	79	cellular component assembly
GO:0002483	0.003462705224376506	3	antigen processing and presentation of endogenous peptide antigen
GO:0061900	0.00346880523571913	4	glial cell activation
GO:1905314	0.00351368925075091	4	semi-lunar valve development
GO:0002821	0.00351536705614305	7	positive regulation of adaptive immune response
GO:0048568	0.0035247912615262	17	embryonic organ development
GO:0043269	0.00353094142838422	21	regulation of ion transport
GO:2001057	0.00354208282431921	6	reactive nitrogen species metabolic process
GO:0050679	0.00354438549572682	10	positive regulation of epithelial cell proliferation
GO:1903204	0.00354809332217988	10	regulation of viral process
GO:0055085	0.00359885787144142	3	negative regulation of oxidative stress-induced neuron death
GO:2000696	0.0036053309666359	41	transmembrane transport
GO:0007613	0.0036070724279343	3	regulation of epithelial cell differentiation involved in kidney development
GO:0072001	0.003633983161447	7	memory
GO:0090136	0.00364897734863693	13	renal system development
GO:0015749	0.00365933804544334	3	epithelial cell-cell adhesion
GO:0002369	0.00367004449879443	7	monosaccharide transmembrane transport
GO:0061418	0.0036870936616366	4	T cell cytokine production
GO:0060322	0.00370480202786144	4	regulation of transcription from RNA polymerase II promoter in response to hypoxia
GO:0031100	0.0037228476777501	25	head development
GO:0048146	0.00372814436914329	6	animal organ regeneration
GO:2000516	0.00373427083235764	5	positive regulation of fibroblast proliferation
GO:0042982	0.00373790091280399	4	positive regulation of CD4-positive, alpha-beta T cell activation
GO:0045580	0.003770123432108	5	amyloid precursor protein metabolic process
GO:0070265	0.003820885295248	8	regulation of T cell differentiation
GO:0097446	0.00383325418961609	5	necrotic cell death
GO:0015804	0.00385244688318159	10	response to hexose
GO:0043392	0.00385847357624094	4	neutral amino acid transport
GO:0007492	0.0038751560276374	5	negative regulation of DNA binding
GO:0042533	0.00394334255259611	6	endoderm development
GO:0042534	0.00394334255259611	3	tumor necrosis factor biosynthetic process
GO:0031341	0.0039689959509158	3	regulation of tumor necrosis factor biosynthetic process
GO:0071277	0.00397232319251474	6	regulation of cell killing
GO:0031649	0.00397449353893368	6	cellular response to calcium ion
GO:0043604	0.00397449353893368	3	heat generation

(Significantly upregulated biological pathways in 6 min oscillatory condition).

Category	Overrepresented p-value	numDEInCat	Term - biological processes upregulated
GO:0006613	3.433428797027477e-29	38	cotranslational protein targeting to membrane
GO:0006614	2.3516402499915e-28	37	SRP-dependent cotranslational protein targeting to membrane
GO:0045047	3.49367838249089e-28	38	protein targeting to ER
GO:000184	4.9969484931668e-28	38	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:0072599	6.9334543264106e-28	38	establishment of protein localization to endoplasmic reticulum
GO:0070972	2.18260772303435e-27	39	protein localization to endoplasmic reticulum
GO:0006401	5.79433731098037e-26	47	RNA catabolic process
GO:0016071	2.41823201892563e-25	63	mRNA metabolic process
GO:0006402	3.74506584911872e-25	45	mRNA catabolic process
GO:0006413	4.10279526361793e-25	40	translational initiation
GO:0006612	2.10472951258632e-23	38	protein targeting to membrane
GO:0000956	3.37002779081421e-23	39	nuclear-transcribed mRNA catabolic process
GO:0034655	1.27963158023851e-21	50	nucleobase-containing compound catabolic process
GO:0046700	2.1295636697517e-20	50	heterocycle catabolic process
GO:0044270	2.3299070289425e-20	50	cellular nitrogen compound catabolic process
GO:0006412	3.49564768453165e-20	56	translation
GO:0019439	4.83542211434862e-20	50	aromatic compound catabolic process
GO:0090150	5.31063744256766e-20	40	establishment of protein localization to membrane
GO:0043043	1.18467531503358e-19	56	peptide biosynthetic process
GO:1901361	2.09139624255435e-19	50	organic cyclic compound catabolic process
GO:0006518	1.36579422414354e-17	57	peptide metabolic process
GO:0043604	1.85402674140516e-17	56	amide biosynthetic process

GO:0072594	3.10806664570779e-17	45	establishment of protein localization to organelle
GO:0010629	4.03233852078122e-17	80	negative regulation of gene expression
GO:0033365	1.169494183837314e-16	53	protein localization to organelle
GO:0006605	2.50553501281638e-16	40	protein targeting
GO:0042254	2.6010261149849e-16	33	ribosome biogenesis
GO:0072657	4.42605795673457e-16	44	protein localization to membrane
GO:0022613	1.26001564271973e-15	39	ribonucleoprotein complex biogenesis
GO:0044265	2.72769695406772e-15	57	cellular macromolecule catabolic process
GO:0010468	1.27091470812552e-14	118	regulation of gene expression
GO:0016070	1.60091311979184e-14	124	RNA metabolic process
GO:0016072	1.84705491183355e-14	28	rRNA metabolic process
GO:0093034	2.4311216266984e-14	132	nucleic acid metabolic process
GO:0009057	3.167076847996e-14	60	macromolecule catabolic process
GO:0043603	4.68905347905893e-14	57	cellular amide metabolic process
GO:0010605	4.75796230490079e-14	90	negative regulation of macromolecule metabolic process
GO:0010467	5.03770247106906e-14	140	gene expression
GO:0006364	7.71561269974547e-14	26	rRNA processing
GO:0009892	2.78663799702532e-13	92	negative regulation of metabolic process
GO:0034645	3.29907384418324e-13	121	cellular macromolecule biosynthetic process
GO:0042271	3.52233776967913e-13	122	cellular nitrogen compound biosynthetic process
GO:0002181	6.41544079398513e-13	19	cytoplasmic translation
GO:0009059	2.70305131732782e-12	121	macromolecule biosynthetic process
GO:0034641	6.49383756252053e-12	149	cellular nitrogen compound metabolic process
GO:0006725	9.40019536724255e-12	139	cellular aromatic compound metabolic process
GO:0006139	1.09722976035799e-11	136	nucleobase-containing compound metabolic process
GO:1901360	4.90703377678978e-11	140	organic cyclic compound metabolic process
GO:0044683	7.03015427837663e-11	136	heterocycle metabolic process
GO:0062055	8.67733381591723e-11	133	regulation of macromolecule metabolic process
GO:0019222	2.4480647686851e-10	139	regulation of metabolic process
GO:0034470	2.95377126972408e-10	27	ncRNA processing
GO:0048519	3.21742095604207e-10	121	negative regulation of biological process
GO:0008104	3.60042888625236e-10	78	protein localization
GO:0034613	4.17172567569306e-10	62	cellular protein localization
GO:0006886	4.51719968085245e-10	48	intracellular protein transport
GO:0070277	5.1556719968595e-10	42	cellular macromolecule localization
GO:0051276	5.2510514814865e-10	47	chromosome organization
GO:0033034	7.79099911046995e-10	83	macromolecule localization
GO:0006396	1.36034766594684e-09	48	RNA processing
GO:1901576	2.89536014606968e-09	129	organic substance biosynthetic process
GO:0015031	3.95857135310182e-09	63	protein transport
GO:0051641	5.48776191823262e-09	77	cellular localization
GO:0009058	6.23615257585799e-09	129	biosynthetic process
GO:0034660	6.85747302924341e-09	30	ncRNA metabolic process
GO:0015833	6.72108924293597e-09	63	peptide transport
GO:1901566	6.699494234970651e-09	61	organonitrogen compound biosynthetic process
GO:0045184	9.4296359700089e-09	64	establishment of protein localization
GO:0044249	9.73667530336587e-09	126	cellular biosynthetic process
GO:0042886	1.08089709483706e-08	63	amide transport
GO:0042273	1.34857433857583e-08	13	ribosomal large subunit biogenesis
GO:0071840	1.48254061676549e-08	133	cellular component organization or biogenesis
GO:0044085	2.06199081346085e-08	84	cellular component biogenesis
GO:0006996	2.3781890276192e-08	92	organelle organization
GO:0043170	4.79032900961119e-08	175	macromolecule metabolic process
GO:1901575	5.33730640739046e-08	61	organic substance catabolic process
GO:0006325	5.53241292674252e-08	34	chromatin organization
GO:0044260	6.08491984426916e-08	154	cellular macromolecule metabolic process
GO:0034728	9.4897150192952e-08	18	nucleosome organization
GO:0071705	1.0701425344616e-07	45	nitrogen compound transport
GO:0044248	2.22402703031479e-07	62	cellular catabolic process
GO:0051649	3.14390083384502e-07	61	establishment of localization in cell
GO:0042255	3.82889989564814e-07	11	ribosome assembly
GO:0051253	4.408787727202014e-07	41	negative regulation of RNA metabolic process
GO:0050789	4.95354673991793e-07	183	regulation of biological process
GO:0046907	6.6534769052375e-07	55	intracellular transport
GO:0006807	7.08513104746152e-07	179	nitrogen compound metabolic process
GO:0006333	7.83609870973857e-07	17	chromatin assembly or disassembly
GO:0071702	9.50740330864467e-07	69	organic substance transport
GO:0071824	1.24238187925165e-06	20	protein-DNA complex subunit organization
GO:0044238	1.29114589554595e-06	183	primary metabolic process
GO:0009056	1.356723387211307e-06	65	catabolic process
GO:0065007	1.47129207463517e-06	189	biological regulation
GO:0045934	1.75685684382429e-06	42	negative regulation of nucleobase-containing compound metabolic process
GO:0044267	1.7713071654507e-06	109	cellular protein metabolic process
GO:0097194	1.98609702627871e-06	9	execution phase of apoptosis
GO:0042274	2.39223218032938e-06	10	ribosomal small subunit biogenesis
GO:0044237	2.393622199010717e-06	185	cellular metabolic process
GO:0000462	2.8181604084737e-06	7	maturity of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
GO:0022618	3.51637144266867e-06	17	ribonucleoprotein complex assembly
GO:0033044	3.59169244748442e-06	17	regulation of chromosome organization
GO:1902275	4.50953151596396e-06	12	regulation of chromatin organization
GO:0071103	5.68721715040476e-06	18	DNA conformation change
GO:0071826	6.14668821751624e-06	17	ribonucleoprotein complex subunit organization
GO:0008152	8.03630154019737e-06	194	organic substance metabolic process
GO:0000027	9.54550389561743e-06	5	chromatin disassembly
GO:1903311	1.05641667397962e-05	7	maturity of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
GO:0034622	1.17018544434757e-05	14	regulation of mRNA metabolic process
GO:0006337	1.22641880822165e-05	40	cellular protein-containing complex assembly
GO:0016584	1.24052560559858e-05	5	nucleosome disassembly
GO:0071704	1.31098772996158e-05	5	nucleosome positioning
GO:0031498	1.82755784805e-05	187	negative regulation of transcription, DNA-templated
GO:0030490	1.90295810897456e-05	5	protein-DNA complex disassembly
GO:0008380	2.24594842703468e-05	7	maturation of SSU-rRNA
GO:1903507	2.72817761534593e-05	20	RNA splicing
GO:1902679	2.9003001173158e-05	35	negative regulation of nucleic acid-templated transcription
GO:0006323	2.91259023739605e-05	35	negative regulation of RNA biosynthetic process
GO:0032986	3.06316230604949e-05	15	DNA packaging
GO:0045892	3.11631114394726e-05	5	protein-DNA complex disassembly
GO:0019538	3.52698246713825e-05	34	negative regulation of transcription, DNA-templated
GO:0050684	4.11733170828212e-05	112	protein metabolic process
GO:0003777	4.46717322335054e-05	9	regulation of mRNA processing
GO:000398	4.46717322335054e-05	17	RNA splicing, via transterification reactions with bulged adenine as nucleophile
GO:000375	5.12866104932803e-05	17	mRNA splicing, via splicesome
GO:0006259	5.26049405752068e-05	31	RNA splicing, via transterification reactions
GO:0051252	5.32101767572581e-05	74	DNA metabolic process
GO:0051179	5.65890498271484e-05	116	regulation of RNA metabolic process
GO:2001251	6.57945332281635e-05	10	negative regulation of chromosome organization
GO:0000122	7.8500541728375e-05	25	negative regulation of transcription by RNA polymerase II
GO:0063937	8.13666087620771e-05	20	mRNA processing
GO:0035722	8.27067860267276e-05	6	interleukin-12-mediated signaling pathway
GO:0051172	8.79328534426416e-05	55	negative regulation of nitrogen compound metabolic process
GO:2000113	8.86624425301644e-05	38	negative regulation of cellular macromolecule biosynthetic process
GO:0030261	9.1929730317568e-05	6	chromosome condensation
GO:0080090	9.47955727121011e-05	107	regulation of primary metabolic process
GO:0071349	9.9779949481853e-05	6	cellular response to interleukin-12
GO:0031497	0.000109011428738501	13	chromatin assembly
GO:0070671	0.000109310610250661	6	response to interleukin-12
GO:0010558	0.000117897240234675	39	negative regulation of macromolecule biosynthetic process
GO:0045870	0.000137811579435088	2	positive regulation of single stranded viral RNA replication via double stranded DNA intermediate
GO:2000112	0.000141122169992815	76	regulation of cellular macromolecule biosynthetic process
GO:1900118	0.000155597680650446	4	negative regulation of execution phase of apoptosis
GO:0030262	0.000162673006011346	5	apoptotic nuclear changes
GO:0031935	0.00016333207224945	5	regulation of chromatin silencing
GO:0016043	0.00017671474540461	115	cellular component organization
GO:0048024	0.000184890122375165	7	regulation of mRNA splicing, via spliceosome
GO:0080182	0.000189658268485643	4	histone H3-K4 trimethylation
GO:0031324	0.000197723888537645	56	negative regulation of cellular metabolic process
GO:0006334	0.000197730890169389	12	nucleosome assembly
GO:0033043	0.000208626188955896	33	regulation of organelle organization
GO:0006921	0.000211630302643849	5	cellular component disassembly involved in execution phase of apoptosis

GO:0001731	0.000212533063672687	3	formation of translation preinitiation complex
GO:0010557	0.000220362983652061	42	positive regulation of macromolecule biosynthetic process
GO:0065004	0.000228685633946492	15	protein-DNA complex assembly
GO:0051171	0.000244135547837946	103	regulation of nitrogen compound metabolic process
GO:0043933	0.000250922144910616	56	protein-containing complex subunit organization
GO:0031327	0.000258018190883583	39	negative regulation of cellular biosynthetic process
GO:0048524	0.00026120528849289	7	positive regulation of viral process
GO:0003080	0.000270055151621033	6	alternative mRNA splicing, via spliceosome
GO:1903902	0.00029497537328998	6	positive regulation of viral life cycle
GO:0031328	0.000295407737751049	43	positive regulation of cellular biosynthetic process
GO:1905268	0.00030840057824213	6	negative regulation of chromatin organization
GO:0043484	0.000325531516111198	8	regulation of RNA splicing
GO:0019219	0.000332080292468109	75	regulation of nucleobase-containing compound metabolic process
GO:1902369	0.000336632681499514	5	negative regulation of RNA catabolic process
GO:0032784	0.00033992377458792	5	regulation of DNA-templated transcription, elongation
GO:0045935	0.00036392064922975	41	positive regulation of nucleobase-containing compound metabolic process
GO:0044419	0.000365906269871288	25	interspecies interaction between organisms
GO:0043902	0.000372715358505	9	positive regulation of multi-organism process
GO:0009890	0.000374446828961419	39	negative regulation of biosynthetic process
GO:0043487	0.000375807207047208	8	regulation of RNA stability
GO:0033979	0.000411220074066571	2	box H/ACA snoRNA metabolic process
GO:0097010	0.000412342237070883	2	eukaryotic translation initiation factor 4F complex assembly
GO:0010556	0.000415785583161753	76	regulation of macromolecule biosynthetic process
GO:0048523	0.0004451880788378	87	negative regulation of cellular process
GO:0006265	0.000459840339162042	3	DNA topological change
GO:0000447	0.000473467784146807	3	endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA trans
GO:0009891	0.00047511311899594	43	positive regulation of biosynthetic process
GO:0009889	0.000505051235064205	79	regulation of biosynthetic process
GO:0031936	0.00051430262798394	4	negative regulation of chromatin silencing
GO:0034243	0.0005264963424497936	4	regulation of transcription elongation from RNA polymerase II promoter
GO:0098532	0.000523151299213109	3	histone H3-K27 trimethylation
GO:0051234	0.000548841562488442	93	establishment of localization
GO:1903508	0.0005502606576186	36	positive regulation of nucleic acid-templated transcription
GO:1902680	0.0005561744142806457	36	positive regulation of RNA biosynthetic process
GO:0032786	0.0005691516488790539	4	positive regulation of DNA-templated transcription, elongation

(Significantly upregulated biological pathways in 6 min stochastic oscillatory condition).

Category	Overrepresented p-value	numDEInCat	Term
GO:0072599	8.7568119795462e-27	65	establishment of protein localization to endoplasmic reticulum
GO:0006613	2.2438762139419e-26	62	cotranslational protein targeting to membrane
GO:0070972	2.40253647420459e-26	68	protein localization to endoplasmic reticulum
GO:0045047	2.56630650978022e-26	64	protein targeting to ER
GO:0006614	3.40305274155061e-26	61	SRP-dependent cotranslational protein targeting to membrane
GO:0006518	1.86754814472385e-25	144	peptide metabolic process
GO:0006413	1.1129733710946e-24	73	translational initiation
GO:0043603	1.6647438906699e-24	159	cellular amide metabolic process
GO:0000184	7.60397116405913e-24	61	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:1901564	4.96287048204429e-23	461	organonitrogen compound metabolic process
GO:0043604	1.08246775900575e-21	134	amide biosynthetic process
GO:0009596	1.95601343029552e-20	124	peptide biosynthetic process
GO:0042425	2.06377936905486e-20	68	nuclear-transcribed mRNA catabolic process
GO:0006412	7.7740565509799e-20	135	cellular macromolecule catabolic process
GO:0009150	1.5512953154989e-19	120	translocation
GO:0006612	3.44050438911697e-19	78	establishment of protein localization to membrane
GO:0009057	9.43088288443446e-19	65	protein targeting to membrane
GO:1901566	1.89081338206925e-18	144	macromolecule catabolic process
GO:0006402	2.69282835907326e-18	189	organonitrogen compound biosynthetic process
GO:0072594	7.0033106191749e-18	72	mRNA catabolic process
GO:0006401	1.64865986941044e-17	95	establishment of protein localization to organelle
GO:0072657	3.4038089186971e-17	73	RNA catabolic process
GO:0042427	4.2011986802705e-17	93	protein localization to membrane
GO:0042428	1.13848381521416e-16	357	cellular protein metabolic process
GO:0006810	1.8782188367087e-16	193	cellular catabolic process
GO:0033365	3.38983670640183e-16	316	transport
GO:0019538	5.90740508265414e-16	110	protein localization to organelle
GO:0006605	8.04734877148736e-16	377	protein metabolic process
GO:0051234	1.25954055980076e-15	83	protein targeting
GO:0046907	1.81110275385867e-15	318	establishment of localization
GO:0015833	3.1248985971357e-15	165	intracellular transport
GO:0042886	4.42253290368258e-15	177	peptide transport
GO:0045184	5.93472794923267e-15	178	amide transport
GO:0015031	7.9832364356959e-15	180	establishment of protein localization
GO:0034613	8.3843088790033e-15	174	protein transport
GO:0070727	1.38554715941512e-14	161	cellular protein localization
GO:0034455	2.52316877869924e-14	84	nucleobase-containing compound catabolic process
GO:0009894	2.64329904079443e-14	124	intracellular protein transport
GO:0008104	2.89266409773924e-14	204	protein localization
GO:0009056	2.9807789491877e-14	201	catabolic process
GO:0046700	6.07745398435504e-14	87	heterocycle catabolic process
GO:0019439	7.43786677567361e-14	88	aromatic compound catabolic process
GO:0044270	8.3893241656564e-14	87	cellular nitrogen compound catabolic process
GO:0051649	1.92694106834982e-13	175	establishment of localization in cell
GO:1901361	3.16158195343644e-13	89	organic cyclic compound catabolic process
GO:0008519	3.58684635153462e-13	329	negative regulation of biological process
GO:0071705	4.76609602289056e-13	185	nitrogen compound transport
GO:0051641	7.39099304556673e-13	203	cellular localization
GO:0030306	1.15854895733404e-12	215	macromolecule localization
GO:0010033	1.44693156100954e-12	211	response to organic substance
GO:0051179	1.66334295540246e-12	362	localization
GO:1901575	2.9659779753909e-12	171	organic substance catabolic process
GO:0009987	4.89164427184744e-12	755	cellular process
GO:0046034	7.7662382422178e-12	46	ATP metabolic process
GO:0006119	8.79050205416587e-12	36	oxidative phosphorylation
GO:0042221	1.309183877450403e-11	266	response to chemical
GO:0034976	1.76605730836133e-11	39	response to endoplasmic reticulum stress
GO:0071702	1.82071372655503e-11	197	organic substance transport
GO:0002181	2.05141626581062e-11	32	cytoplasmic translation
GO:0009123	2.06117702309532e-11	52	nucleoside monophosphate metabolic process
GO:0008219	2.11017608798963e-11	165	cell death
GO:0010243	2.48036514521538e-11	78	response to organonitrogen compound
GO:0009144	2.501157400464853e-11	50	purine nucleoside triphosphate metabolic process
GO:0016071	2.678120921108234e-11	95	RNA metabolic process
GO:0043933	2.69856265580117e-11	97	protein-containing complex subunit organization
GO:0042773	2.72199200188004e-11	32	ATP synthesis coupled electron transport
GO:0071840	2.78044647271746e-11	369	cellular component organization or biogenesis
GO:0009141	2.81881422026062e-11	52	nucleoside triphosphate metabolic process
GO:0022900	3.38766509147521e-11	46	electron transport chain
GO:0017144	3.72790712200064e-11	85	drug metabolic process
GO:1901698	3.94934299832862e-11	82	response to nitrogen compound
GO:0012501	4.0424859411603e-11	157	programmed cell death
GO:0091611	4.480562584643432e-11	49	ribonucleoside monophosphate metabolic process
GO:0044237	4.68634643258666e-11	582	cellular metabolic process
GO:0092025	7.96887392898487e-11	48	purine ribonucleoside triphosphate metabolic process
GO:0005003	8.89657992464528e-11	162	protein-containing complex assembly
GO:0006915	1.01684444880464e-10	145	apoptotic process
GO:0044260	1.22757129376413e-10	447	cellular macromolecule metabolic process
GO:0044085	1.27041962413455e-10	223	cellular component biogenesis
GO:0009167	1.33876224447366e-10	47	purine ribonucleoside monophosphate metabolic process
GO:0042775	1.48288889752737e-10	31	mitochondrial ATP synthase coupled electron transport
GO:0007005	1.54635763881844e-10	70	mitochondrion organization
GO:0009199	1.55790268565652e-10	48	ribonucleoside triphosphate metabolic process
GO:0009126	1.7879562795603e-10	47	purine nucleoside monophosphate metabolic process
GO:0009892	2.28313942441511e-10	210	negative regulation of metabolic process

GO:0006950	2.9040863156275e-10	243	response to stress
GO:0010605	6.06039603357673e-10	198	negative regulation of macromolecule metabolic process
GO:0022904	1.02660230619726e-09	32	respiratory electron transport chain
GO:0097193	1.21616640960545e-09	44	intrinsic apoptotic signaling pathway
GO:0051246	1.21871015056515e-09	186	regulation of protein metabolic process
GO:0070887	1.2403017679245e-09	202	cellular response to chemical stimulus
GO:0006508	1.273913233333654e-09	132	proteolysis
GO:0009725	1.27760427037019e-09	75	response to hormone
GO:0044419	1.50526232422366e-09	79	interspecies interaction between organisms
GO:0006907	1.995618221991146e-09	547	nitrogen compound metabolic process
GO:0030162	2.08339141525109e-09	78	regulation of proteolysis
GO:0034622	2.37024577193446e-09	116	cellular protein-containing complex assembly
GO:0019725	2.43586672271186e-09	79	cellular homeostasis
GO:0044403	2.50125591458531e-09	74	symbiont process
GO:0008152	2.54630127161263e-09	608	metabolite process
GO:0009917	3.42257843382831e-09	73	nucleotide metabolic process
GO:0016043	3.62509408828785e-09	345	cellular component organization
GO:0016032	3.6741500596153e-09	69	viral process
GO:0009719	3.99199029950981e-09	106	response to endogenous stimulus
GO:0010941	4.04286587841019e-09	125	regulation of cell death
GO:0006753	5.83589468152625e-09	73	nucleoside phosphate metabolic process
GO:0006548	6.78020956221381e-09	85	negative regulation of cell death
GO:0016192	7.41357245280834e-09	131	vesicle-mediated transport
GO:0014070	7.70683874096601e-09	69	response to organic cyclic compound
GO:0043067	8.5745094663313e-09	117	regulation of programmed cell death
GO:0042981	9.9626564235809e-09	116	regulation of apoptotic process
GO:0022607	1.10710512518109e-08	196	cellular component assembly
GO:0050896	1.2859025627553e-08	431	response to stimulus
GO:0030163	1.39291909503623e-08	77	protein catabolic process
GO:0006091	1.58212693736058e-08	58	generation of precursor metabolites and energy
GO:0044257	1.78896253078855e-08	67	cellular protein catabolic process
GO:0032268	1.88452005546123e-08	171	regulation of cellular protein metabolic process
GO:0031329	2.02143358271717e-08	65	regulation of cellular catabolic process
GO:0019222	2.08709505435476e-08	358	regulation of metabolic process
GO:0009636	2.16112310950622e-08	58	response to toxic substance
GO:0033546	2.22718500801792e-08	134	cellular response to stress
GO:0051704	2.308289892212601e-08	160	multi-organism process
GO:0050789	2.3493621273356e-08	531	regulation of biological process
GO:0019693	2.37180631011141e-08	61	ribose phosphate metabolic process
GO:0050866	2.38725685824853e-08	77	nucleobase-containing small molecule metabolic process
GO:0045333	2.54993165576276e-08	37	cellular respiration
GO:0080134	2.62262952671378e-08	102	regulation of response to stress
GO:0009259	2.78957515737306e-08	59	ribonucleotide metabolic process
GO:0034641	2.88721971701727e-08	388	cellular nitrogen compound metabolic process
GO:0055114	2.94953458221965e-08	95	oxidation-reduction process
GO:0044271	3.01380561724458e-08	287	cellular nitrogen compound biosynthetic process
GO:1901700	4.28680896321181e-08	107	response to oxygen-containing compound
GO:0043069	4.3136881496914e-08	77	negative regulation of programmed cell death
GO:0006163	4.51809085909136e-08	60	purine nucleotide metabolic process
GO:0042119	5.19505038347951e-08	56	neutrophil activation
GO:2001242	5.80024920546177e-08	31	regulation of intrinsic apoptotic signaling pathway
GO:0009150	6.205482311185338e-08	57	purine ribonucleotide metabolic process
GO:0010035	7.05077959707674e-08	57	response to inorganic substance
GO:0042592	7.2465550209122e-08	127	homeostatic process
GO:0043066	8.68015719257071e-08	75	negative regulation of apoptotic process
GO:0036230	9.04642133428955e-08	56	granulocyte activation
GO:0072521	1.243677556505024e-07	61	purine-containing compound metabolic process
GO:0035966	1.28792831514476e-07	27	response to topologically incorrect protein
GO:0048522	1.31333982214033e-07	272	positive regulation of cellular process
GO:0051603	1.43243393185882e-07	61	proteolysis involved in cellular protein catabolic process
GO:0071704	1.49677511757897e-07	575	organic substance metabolic process
GO:0048518	1.5219708009257e-07	302	positive regulation of biological process
GO:0006511	1.65840458803292e-07	99	ubiquitin-dependent protein catabolic process
GO:0001775	1.749438389841143e-07	99	cell activation
GO:0097190	1.795653208263e-07	63	apoptotic signaling pathway
GO:0009605	1.80425468912157e-07	145	response to external stimulus
GO:0035967	1.84212945843478e-07	23	cellular response to topologically incorrect protein
GO:0006986	1.85025423707501e-07	25	response to unfolded protein
GO:0048585	1.9226893300304e-07	103	negative regulation of response to stimulus
GO:0071310	1.93665958185173e-07	158	cellular response to organic substance
GO:0044238	1.98544241823838e-07	551	primary metabolic process
GO:0060255	2.12199526188764e-07	328	regulation of macromolecule metabolic process
GO:0043632	2.14176408401763e-07	55	modification-dependent macromolecule catabolic process
GO:0019941	2.38741001237285e-07	54	modification-dependent protein catabolic process
GO:0010629	2.4391395524855e-07	143	negative regulation of gene expression
GO:0008150	2.46673284947424e-07	788	biological process
GO:0030855	2.83467068503159e-07	64	epithelial cell differentiation
GO:0043312	2.87844486546492e-07	53	neutrophil degranulation
GO:0009894	2.9703419915186e-07	68	regulation of catabolic process
GO:0002446	2.97741952394301e-07	54	neutrophil mediated immunity
GO:0034620	2.9907423918618e-07	21	cellular response to unfolded protein
GO:1905897	3.32328649595437e-07	16	regulation of response to endoplasmic reticulum stress
GO:0043161	3.33263526829539e-07	44	proteasome-mediated ubiquitin-dependent protein catabolic process
GO:0022613	3.46704898256151e-07	60	ribonucleoprotein complex biogenesis
GO:0006996	3.51994419059197e-07	226	organelle organization
GO:0045454	3.69796957843423e-07	17	cell redox homeostasis
GO:0051384	4.39820127363192e-07	22	response to glucocorticoid
GO:0002274	5.10557700553534e-07	49	proteasomal protein catabolic process
GO:0002383	5.27258741337253e-07	61	myeloid leukocyte activation
GO:0034097	5.48324752635071e-07	53	neutrophil activation involved in immune response
GO:2001233	5.85715095867373e-07	88	response to cytokine
GO:1901652	7.94411713217858e-07	47	regulation of apoptotic signaling pathway
GO:0055082	8.23787681566708e-07	41	response to peptide
GO:0015980	8.3290166583536e-07	62	cellular chemical homeostasis
GO:0061024	8.39061853508238e-07	38	energy derivation by oxidation of organic compounds
GO:0030968	9.68944324676138e-07	61	membrane organization
GO:0042254	1.00276023779862e-07	19	endoplasmic reticulum unfolded protein response
GO:0044249	1.0094882045216e-06	46	ribosome biogenesis
GO:0043299	1.0613404042892e-06	329	cellular biosynthetic process
GO:0080135	1.14398075842702e-06	55	leukocyte degranulation
GO:0002252	1.15633732286188e-06	57	regulation of cellular response to stress
GO:0032940	1.16114233122602e-06	88	immune effector process
GO:0031960	1.292910170506e-06	101	secretion by cell
GO:1903362	1.30134571151759e-06	23	response to corticosteroid
GO:0006120	1.3063183924542e-06	29	regulation of cellular protein catabolic process
GO:0098754	1.36224809870918e-06	19	mitochondrial electron transport, NADH to ubiquinone
GO:1901565	1.37741845051589e-06	27	detoxification
GO:0045321	1.52565789560031e-06	93	organonitrogen compound catabolic process
GO:0006887	1.5319053108129e-06	90	leukocyte activation
GO:0033108	1.58757904014529e-06	72	exocytosis
GO:0071345	1.7181834730898e-06	26	mitochondrial respiratory chain complex assembly
GO:0002275	1.73546583736102e-06	83	cellular response to cytokine stimulus
GO:0048545	1.80346824012162e-06	55	myeloid cell activation involved in immune response
GO:0002444	2.40121967924814e-06	36	response to steroid hormone
GO:0025933	2.80095595639418e-06	55	myeloid leukocyte mediated immunity
GO:0002443	2.85505859258414e-06	34	reactive oxygen species metabolic process
GO:0002366	3.0682954154978e-06	67	leukocyte mediated immunity
GO:0009058	3.1783347765389e-06	62	leukocyte activation involved in immune response
GO:0002263	3.1926550911871e-06	335	biosynthetic process
GO:0043065	3.1938453740573e-06	62	cell activation involved in immune response
GO:0051099	3.30054754574274e-06	58	positive regulation of apoptotic process
GO:0043068	3.44020857477611e-06	24	positive regulation of binding
GO:0046903	3.48443198342139e-06	58	positive regulation of programmed cell death
GO:0044281	3.64306914837167e-06	105	secretion
GO:0045862	3.66890756701784e-06	137	small molecule metabolic process
GO:1902532	3.77982668801953e-06	38	positive regulation of proteolysis
GO:0002376	3.86518729121958e-06	44	negative regulation of intracellular signal transduction
GO:0097237	4.06187572841837e-06	177	immune system process
		31	cellular response to toxic substance

GO:0010038	4.14426585365196e-06	39	response to metal ion
GO:0006979	4.47095970859393e-06	46	response to oxidative stress
GO:0009607	4.59661026054913e-06	75	response to biotic stimulus
GO:0001732	4.60384693952324e-06	8	formation of cytoplasmic translation initiation complex
GO:0033993	4.62870521370711e-06	66	response to lipid
GO:0009611	5.0250030043728e-06	51	response to wounding
GO:1903573	5.25902493067224e-06	10	negative regulation of response to endoplasmic reticulum stress
GO:0051716	5.35169892347519e-06	349	cellular response to stimulus
GO:0045055	5.51207390235574e-06	65	regulated exocytosis
GO:0045008	5.54681374408472e-06	205	regulation of biological quality
GO:1901576	5.8948707652398e-06	330	organic substance biosynthetic process
GO:0042176	6.19507249065813e-06	37	regulation of protein catabolic process
GO:0032270	6.39675622939003e-06	104	positive regulation of cellular protein metabolic process
GO:0098869	7.05568716134674e-06	20	cellular oxidant detoxification
GO:0030003	8.2235829845453e-06	51	cellular cation homeostasis
GO:0070671	8.23375529264608e-06	12	response to interleukin-12
GO:0051247	8.2683037561373e-06	109	positive regulation of protein metabolic process
GO:0035150	8.41764709566829e-06	16	regulation of tube size
GO:0050880	8.41764709566829e-06	16	regulation of blood vessel size
GO:2000508	8.47656322656386e-06	20	regulation of ubiquitin-dependent protein catabolic process
GO:0031667	8.5290347853736e-06	41	response to nutrient levels
GO:0019058	8.66987918894868e-06	32	viral life cycle
GO:0065007	8.71403207617412e-06	543	biological regulation
GO:0044093	8.85605719941485e-06	107	positive regulation of molecular function
GO:0007568	9.25472767514428e-06	33	aging
GO:0070059	9.75245575951481e-06	12	intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
GO:0006875	9.98352932600858e-06	48	cellular metal ion homeostasis
GO:0043434	1.000448818581763e-05	34	response to peptide hormone
GO:0048878	1.02957081524328e-05	79	chemical homeostasis
GO:0006955	1.03053299704044e-05	129	immune response
GO:0046916	1.08495151788087e-05	22	cellular transition metal ion homeostasis
GO:2001244	1.119598262647767e-05	16	positive regulation of intrinsic apoptotic signaling pathway
GO:0042255	1.12894439408491e-05	19	ribosome assembly
GO:0009991	1.164959367545278e-05	43	response to extracellular stimulus
GO:0042372	1.202899823811231e-05	20	ribosomal large subunit biogenesis
GO:0002183	1.21846019488232e-05	10	cytoplasmic translational initiation
GO:1903050	1.24044999846166e-05	25	regulation of proteolysis involved in cellular protein catabolic process
GO:0006873	1.252466685447713e-05	51	cellular ion homeostasis
GO:0032436	1.34222623518461e-05	13	positive regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:0051173	1.34281473682769e-05	171	positive regulation of nitrogen compound metabolic process
GO:0051098	1.36446245458322e-05	37	regulation of binding
GO:0010942	1.52824423444188e-05	59	positive regulation of cell death
GO:199748	1.53724601429063e-05	20	cellular detoxification
GO:1902600	1.58569709346627e-05	23	proton transmembrane transport
GO:0022618	1.64782073201634e-05	35	ribonucleoprotein complex assembly
GO:0010604	1.6592407139286e-05	178	positive regulation of macromolecule metabolic process
GO:0010648	1.6811281295506e-05	84	negative regulation of cell communication
GO:0052548	1.70225546101149e-05	46	regulation of endopeptidase activity
GO:1901135	1.74828756147578e-05	91	carbohydrate derivative metabolic process
GO:0052547	1.776879174157e-05	48	regulation of peptidase activity
GO:0023057	1.78080823786362e-05	84	negative regulation of signaling
GO:0070498	1.78576672972733e-05	11	interleukin-1-mediated signaling pathway
GO:2000116	1.83682281442361e-05	31	regulation of cysteine-type endopeptidase activity
GO:0006914	2.00066334168327e-05	40	autophagy
GO:0061919	2.00066334168327e-05	40	process utilizing autophagic mechanism
GO:0031325	2.00616739592352e-05	175	positive regulation of cellular metabolic process
GO:0098609	2.01001198947873e-05	50	cell-cell adhesion
GO:0032060	2.01509474484657e-05	17	entry into host cell
GO:0044409	2.01509474484657e-05	17	entry into host
GO:0051806	2.01509474484657e-05	17	entry into cell of other organism involved in symbiotic interaction
GO:0051828	2.01509474484657e-05	17	entry into other organism involved in symbiotic interaction
GO:0010257	2.04053173012249e-05	20	NADH dehydrogenase complex assembly
GO:0032981	2.04053173012249e-05	20	mitochondrial respiratory chain complex I assembly
GO:2001243	2.06770103732073e-05	17	negative regulation of intrinsic apoptotic signaling pathway
GO:0032934	2.10902791270735e-05	17	regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:006984	2.13285542093436e-05	10	ER-nucleus signaling pathway
GO:0051248	2.17680613615613e-05	84	negative regulation of protein metabolic process
GO:0071417	2.20028667148013e-05	38	cellular response to organonitrogen compound
GO:0050790	2.42949412338095e-05	140	regulation of catalytic activity
GO:0034248	2.52490727648558e-05	42	regulation of cellular amide metabolic process
GO:0009968	2.53757376068647e-05	78	negative regulation of signal transduction
GO:0031396	2.58399323075628e-05	23	regulation of protein ubiquitination
GO:0050801	2.59108506850237e-05	58	ion homeostasis
GO:0034645	2.65087437411041e-05	265	cellular macromolecule biosynthetic process
GO:0043281	2.69435282799008e-05	29	regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0009893	2.8120588334084e-05	190	positive regulation of metabolic process
GO:0048523	2.89457881195136e-05	246	negative regulation of cellular process
GO:0043207	3.14744305179032e-05	71	response to external biotic stimulus
GO:0051707	3.14744305179032e-05	71	response to other organism
GO:0055080	3.30354853394053e-05	53	cation homeostasis
GO:0071826	3.390803343463186e-05	35	ribonucleoprotein complex subunit organization
GO:0035722	3.59283125637289e-05	11	interleukin-12-mediated signaling pathway
GO:0055065	3.66910547432119e-05	50	metal ion homeostasis
GO:0009408	3.83224644136996e-05	17	response to heat
GO:2000660	3.87130716184728e-05	13	positive regulation of ubiquitin-dependent protein catabolic process
GO:0009617	3.88059065080036e-05	53	response to bacterium
GO:0009628	3.93749986998146e-05	74	response to abiotic stimulus
GO:0075766	4.01197641575417e-05	11	embryo implantation
GO:0071349	4.17843771923394e-05	11	cellular response to interleukin-12
GO:0046718	4.18419422703922e-05	16	viral entry into host cell
GO:0055076	4.29961501161106e-05	23	transition metal ion homeostasis
GO:1901653	4.38589478639912e-05	29	cellular response to peptide
GO:2001234	4.43948304962401e-05	27	negative regulation of apoptotic signaling pathway
GO:0098771	4.4750266080378e-05	53	inorganic ion homeostasis
GO:0044092	4.94858479017762e-05	81	negative regulation of molecular function
GO:0042274	4.95547559416024e-05	17	ribosomal small subunit biogenesis
GO:0021761	5.16388034721015e-05	13	limbic system development
GO:0009059	5.34832340546808e-05	270	macromolecule biosynthetic process
GO:0032092	5.50354682256687e-05	14	positive regulation of protein binding
GO:0043086	5.60959976346491e-05	64	negative regulation of catalytic activity
GO:0050818	5.94566565520029e-05	12	regulation of coagulation
GO:0060429	6.23084832851845e-05	78	epithelium development
GO:0035296	6.28847503998534e-05	14	regulation of tube diameter
GO:0097746	6.28847503998534e-05	14	regulation of blood vessel diameter
GO:0070647	6.538731103771754e-05	73	protein modification by small protein conjugation or removal
GO:0042060	6.97653292484241e-05	40	wound healing
GO:1903364	7.12998530305735e-05	16	positive regulation of cellular protein catabolic process
GO:0061136	7.35853178340861e-05	21	regulation of proteasomal protein catabolic process
GO:0034975	7.36307333499114e-05	5	protein folding in endoplasmic reticulum
GO:0051128	8.34170420550304e-05	130	regulation of cellular component organization
GO:0009888	8.598081735316e-05	110	tissue development
GO:1901654	8.82421599451515e-05	21	response to ketone
GO:0019637	8.82760310884589e-05	84	organophosphate metabolic process
GO:0071248	9.0630401227263e-05	23	cellular response to metal ion
GO:0032602	9.10674219458155e-05	14	chemokine production
GO:0051186	9.221476368823264e-05	52	cofactor metabolic process
GO:0010506	9.35603288385927e-05	27	regulation of autophagy
GO:0033043	9.39319104285965e-05	78	regulation of organelle organization
GO:0032269	9.52941223612834e-05	78	negative regulation of cellular protein metabolic process
GO:1901701	9.58497762026857e-05	68	cellular response to oxygen-containing compound
GO:2000377	0.00010361962694065	22	regulation of reactive oxygen species metabolic process
GO:0035556	0.000106183866726257	149	intracellular signal transduction
GO:0006364	0.000107870151682348	32	rRNA processing
GO:0016072	0.00010834541382439	34	rRNA metabolic process
GO:0044794	0.000113803117304325	6	positive regulation by host of viral process
GO:0065009	0.00011425876411238	183	regulation of molecular function
GO:1902531	0.000115751190580714	108	regulation of intracellular signal transduction
GO:0097755	0.000118920391608215	10	positive regulation of blood vessel diameter
GO:0008283	0.000122423541502287	121	cell proliferation

GO:0007154	0.000133443854585383	290	cell communication
GO:0045861	0.000137074239829088	37	negative regulation of proteolysis
GO:0046794	0.000139191376719129	7	transport of virus
GO:1901699	0.000140195053286177	39	cellular response to nitrogen compound
GO:0003018	0.000140907850182359	16	vascular process in circulatory system
GO:2001235	0.0001454504157803	24	positive regulation of apoptotic signaling pathway
GO:1903034	0.000151887564402735	17	regulation of response to wounding
GO:1903320	0.000152378758524223	23	regulation of protein modification by small protein conjugation or removal
GO:0061041	0.000158930053770135	15	regulation of wound healing
GO:0010821	0.000164130559630874	21	regulation of mitochondria organization
GO:0050819	0.000166504577074574	9	negative regulation of coagulation
GO:0030193	0.000169538073715041	11	regulation of blood coagulation
GO:1900464	0.000169538073715041	11	regulation of hemostasis
GO:1905898	0.000174513402810912	8	positive regulation of response to endoplasmic reticulum stress
GO:0006457	0.000179132393755896	27	protein folding
GO:0036499	0.000180012887197484	7	PERK-mediated unfolded protein response
GO:0001765	0.000184638708119455	5	membrane raft assembly
GO:0021766	0.000189317628011226	10	hippocampus development
GO:1903409	0.000194632925904035	15	reactive oxygen species biosynthetic process
GO:0006878	0.0002028871072843708	6	cellular copper ion homeostasis
GO:0010468	0.000202362627224546	235	regulation of gene expression
GO:0031639	0.000206559502138492	6	plasminogen activation
GO:0042311	0.000208453542546718	7	vasodilation
GO:009267	0.000228507600575392	15	cellular response to starvation
GO:1903052	0.000234451658192993	14	positive regulation of proteolysis involved in cellular protein catabolic process
GO:0045787	0.000235567864164286	33	positive regulation of cell cycle
GO:0051701	0.000243846939605411	21	interaction with host
GO:1901002	0.0002441382028454643	4	negative regulation of endoplasmic reticulum unfolded protein response
GO:0000422	0.00024601396835119	12	autophagy of mitochondrion
GO:0061726	0.0002502800625983	12	mitochondrion disassembly
GO:0023052	0.000256990006495683	285	signaling
GO:0051130	0.000261675115564855	70	positive regulation of cellular component organization
GO:0007165	0.000270371957639371	270	signal transduction
GO:0046686	0.000272320327471456	15	response to cadmium ion
GO:0031232	0.00027448263713416	295	regulation of cellular metabolic process
GO:0071494	0.000279440971671941	27	cellular response to external stimulus
GO:0043170	0.000283422434529687	83	positive regulation of catalytic activity
GO:0071284	0.000288659181551148	482	macromolecule metabolic process
GO:0097066	0.0002919771403209843	3	cellular response to lead ion
GO:0006749	0.00030200790436628	6	response to thyroid hormone
GO:0071709	0.000310175599242076	12	glutathione metabolic process
GO:0071241	0.0003121286565514	6	membrane assembly
GO:0050878	0.000335050789065647	23	cellular response to inorganic substance
GO:0051336	0.000340072933823793	35	regulation of body fluid levels
GO:1901800	0.000344107068392668	81	regulation of hydrolase activity
GO:0019221	0.000359290776071171	13	positive regulation of proteasomal protein catabolic process
GO:0048584	0.000364874146219905	60	cytokine-mediated signaling pathway
GO:0042594	0.000375806420801437	129	positive regulation of response to stimulus
GO:0031952	0.000376094783519688	17	response to starvation
GO:009266	0.000377028295717352	6	regulation of protein autophosphorylation
GO:0032502	0.000387479009547756	20	response to temperature stimulus
GO:1902533	0.0003876355883610783	285	developmental process
GO:2001056	0.00039313869083226	72	positive regulation of intracellular signal transduction
GO:0071407	0.00039817020753713	20	positive regulation of cysteine-type endopeptidase activity
GO:0071495	0.00040407407440051706	35	cellular response to organic cyclic compound
GO:0046677	0.000408761707684156	73	cellular response to endogenous stimulus
GO:0046688	0.000417499616460975	30	response to antibiotic
GO:0031330	0.00042490047834346	12	response to copper ion
GO:0042542	0.000431568139079226	22	negative regulation of cellular catabolic process
GO:0009060	0.000432889430793643	18	response to hydrogen peroxide
GO:1902235	0.000439505947958918	15	aerobic respiration
GO:0051881	0.0004484657697724211	7	regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
GO:0032446	0.000449647410464787	12	regulation of mitochondrial membrane potential
GO:001077	0.00050306841297300777	55	protein modification by small protein conjugation
GO:0016050	0.0005304894940968366	10	chaperone-mediated protein folding
GO:0042127	0.000538507507420675	26	vesicle organization
GO:0030195	0.000542928827822936	99	regulation of cell proliferation
GO:1900047	0.000542928827822936	8	negative regulation of blood coagulation
GO:0006112	0.00056120930688591	8	negative regulation of hemostasis
GO:0051412	0.000561948549288949	6	mitochondrial electron transport, ubiquinol to cytochrome c
GO:0002684	0.000565246020302936	5	response to corticosterone
GO:0016236	0.000567879805927148	64	positive regulation of immune system process
GO:2003797	0.000569703782959548	25	macroautophagy
GO:1990823	0.000582978254698873	13	positive regulation of reactive oxygen species metabolic process
GO:1990830	0.000582978254698873	11	response to leukemia inhibitory factor
GO:2002071	0.0006008949296846433	11	cellular response to leukemia inhibitory factor
GO:0001919	0.000611813504423175	3	positive regulation of fibroblast apoptotic process
GO:0051726	0.0006182228959363625	5	regulation of receptor recycling
GO:0032227	0.000637954168803471	73	regulation of cell cycle
GO:0016567	0.000638854972913223	2	negative regulation of synaptic transmission, dopaminergic
GO:00064645	0.000662384934509434	51	protein ubiquitination
GO:0043900	0.000678521060873724	5	signal peptide processing
GO:0009895	0.0006817675130486	34	regulation of multi-organism process
GO:0072323	0.000692926724574672	24	negative regulation of catabolic process
GO:0075956	0.000696807774912973	13	intrinsic apoptotic signaling pathway by p53 class mediator
GO:0043154	0.0006994257115745	26	blood coagulation
GO:0051084	0.000715426341646974	13	negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0032059	0.0007174400581104079	7	'de novo' posttranslational protein folding
GO:0071755	0.000744645789554648	70	cellular pigmentation
GO:0032870	0.000770572730998039	41	cellular response to hormone stimulus
GO:0050817	0.000787518381678063	26	coagulation
GO:0006809	0.000793927677004198	10	nitric oxide biosynthetic process
GO:0036500	0.000852668904484266	4	ATF6-mediated unfolded protein response
GO:0022610	0.000856870158785763	70	biological adhesion
GO:0000027	0.000869528203457376	10	ribosomal large subunit assembly
GO:0051172	0.000873922261249832	134	negative regulation of nitrogen compound metabolic process
GO:0031099	0.00086363854091527	19	regeneration
GO:0032642	0.00091154177682398	11	regulation of chemokine production
GO:0031669	0.000921123919338154	19	cellular response to nutrient levels
GO:1901798	0.000935773087421098	7	positive regulation of signal transduction by p53 class mediator
GO:0007599	0.000938182890660176	26	hemostasis
GO:0006900	0.000942131163089813	13	vesicle budding from membrane
GO:0010950	0.000948346581434358	21	positive regulation of endopeptidase activity
GO:0043112	0.0009955096337263309	16	receptor metabolic process
GO:0035633	0.000995270360811959	2	maintenance of permeability of blood-brain barrier
GO:0002237	0.0009964771733221714	29	response to molecule of bacterial origin
GO:0001921	0.000973899484314271	4	positive regulation of receptor recycling
GO:0031324	0.000981930603269444	140	negative regulation of cellular metabolic process
GO:0097501	0.00100586819090925	9	stress response to metal ion
GO:0032101	0.00100703265400784	54	regulation of response to external stimulus
GO:0046209	0.0010241642116998	10	nitric oxide metabolic process
GO:1903578	0.00103397833178647	10	regulation of ATP metabolic process
GO:0021543	0.00104383722159178	14	pallium development
GO:1903019	0.00105195808483567	5	negative regulation of glycoprotein metabolic process
GO:0034660	0.00105949998414404	4	ncRNA metabolic process
GO:0050794	0.0010658441229875	458	regulation of cellular process
GO:0061097	0.00106850162091696	10	regulation of protein tyrosine kinase activity
GO:0001881	0.0010793810615464	6	receptor recycling
GO:0071375	0.00108317388751569	22	cellular response to peptide hormone stimulus
GO:0010638	0.00108632692508392	41	positive regulation of organelle organization
GO:0019065	0.0011713093120958	2	receptor-mediated endocytosis of virus by host cell
GO:0075509	0.0011713093120958	2	endocytosis involved in viral entry into host cell
GO:0045732	0.00117281687741215	19	positive regulation of protein catabolic process
GO:0066417	0.001175636366341088	34	regulation of translation
GO:0009913	0.00117848308556717	31	epidermal cell differentiation
GO:0055070	0.00118244960609265	6	copper ion homeostasis
GO:0035821	0.00119192549237989	20	modification of morphology or physiology of other organism
GO:0034605	0.00120390472859188	11	cellular response to heat

GO:1900101	0.00121160937656554	6	regulation of endoplasmic reticulum unfolded protein response
GO:1902253	0.00121324812925169	8	regulation of intrinsic apoptotic signaling pathway by p53 class mediator
GO:0043280	0.0012208784800476	18	positive regulation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0022411	0.0012374631908227	45	cellular component disassembly
GO:0031668	0.00124352741205911	21	cellular response to extracellular stimulus
GO:0051129	0.00124841972521211	46	negative regulation of cellular component organization
GO:0044091	0.0012942895500812	6	membrane biogenesis
GO:0007565	0.0012949701757209	19	female pregnancy
GO:0032743	0.00129616984164439	5	positive regulation of interleukin-2 production
GO:0072507	0.00130320418553649	34	divalent inorganic cation homeostasis
GO:2001057	0.00131416952302978	10	reactive nitrogen species metabolic process
GO:0010466	0.00131838216215109	27	negative regulation of peptidase activity
GO:1903426	0.00132589503923492	12	regulation of reactive oxygen species biosynthetic process
GO:0055093	0.00136934317509507	5	response to hyperoxia
GO:0040015	0.001375232799035395	4	negative regulation of multicellular organism growth
GO:0051085	0.0013945091792622	6	chaperone cofactor-dependent protein refolding
GO:0031331	0.00139882722681074	25	positive regulation of cellular catabolic process
GO:0007346	0.0014046275232629101	44	regulation of mitotic cell cycle
GO:0010952	0.001428036497245264	22	positive regulation of peptidase activity
GO:0061045	0.00143590834143273	9	negative regulation of wound healing
GO:0099188	0.00144422925443579	3	postsynaptic cytoskeleton organization
GO:0022407	0.00144841109846929	28	regulation of cell-cell adhesion
GO:0043618	0.00145242293365704	10	regulation of transcription from RNA polymerase II promoter in response to stress
GO:0098657	0.00145607685059626	45	import into cell
GO:0030330	0.00149340486078569	13	DNA damage response, signal transduction by p53 class mediator
GO:2000117	0.00151062124944814	13	negative regulation of cysteine-type endopeptidase activity
GO:0043473	0.00153345182302657	11	pigmentation
GO:0021762	0.0015422505634199	8	substantia nigra development
GO:1990440	0.00156381747690839	4	positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress
GO:0010951	0.00158030017625274	26	negative regulation of endopeptidase activity
GO:0072503	0.00160510939009832	35	cellular divalent inorganic cation homeostasis

(Significantly downregulated biological pathways in 6 min stochastic oscillatory condition).

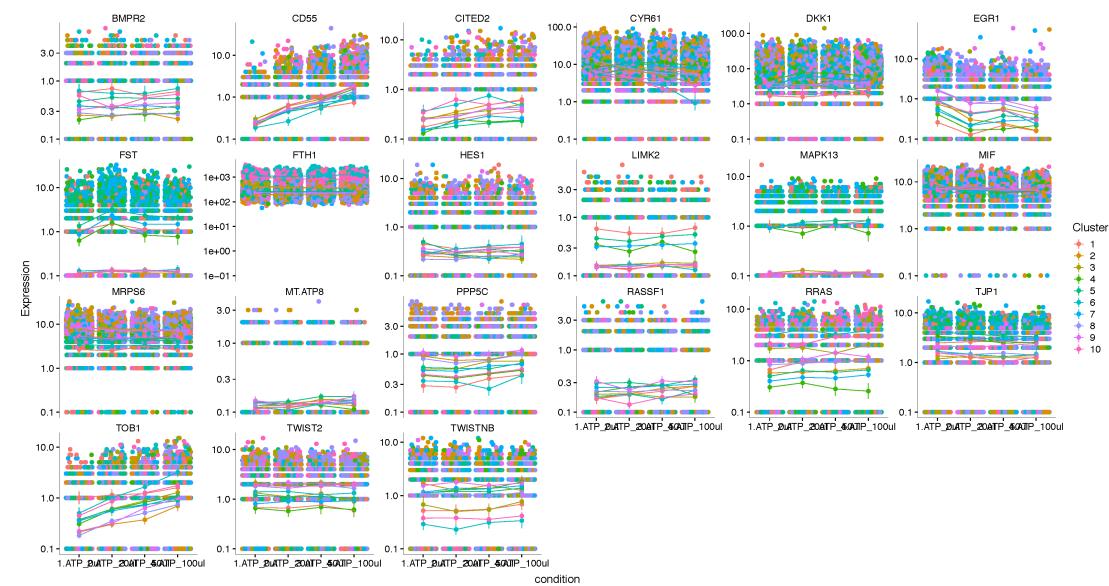
Category	Over represented p-value	numDEInCat	Term
GO:0007049	2.90275351262785e-51	537	cell cycle
GO:0051276	1.01007362603586e-49	397	chromosome organization
GO:0066996	4.58247824220937e-45	924	organelle organization
GO:0022402	7.4552768490117e-44	412	cell cycle process
GO:0071840	4.3352870507767e-43	1366	cellular component organization or biogenesis
GO:0000278	2.33717194119034e-42	330	mitotic cell cycle
GO:1903047	1.5609732159083e-38	287	mitotic cell cycle process
GO:0016043	1.65996314574992e-37	1317	cellular component organization
GO:0090304	1.72047041942808e-35	1090	nucleic acid metabolic process
GO:0014071	2.578214797815117e-34	256	mRNA metabolic process
GO:0006396	3.03477517438944e-32	287	RNA processing
GO:0006397	1.14109994741034e-30	185	mRNA processing
GO:0006259	1.85036854738346e-30	298	DNA metabolic process
GO:0051726	9.88970584428661e-30	337	regulation of cell cycle
GO:0006139	1.24006166168171e-29	1155	nucleobase-containing compound metabolic process
GO:0010564	2.3137573756075e-29	239	regulation of cell cycle process
GO:0008380	3.33207739881544e-27	160	RNA splicing
GO:0046483	3.50377402894593e-27	1164	heterocycle metabolic process
GO:0006725	1.84254620679947e-26	1167	cellular aromatic compound metabolic process
GO:0044772	2.52206207274403e-26	181	mitotic cell cycle phase transition
GO:0007346	1.26594411199036e-25	202	regulation of mitotic cell cycle
GO:0006325	7.43159317333001e-25	242	chromatin organization
GO:0043170	8.85551530703141e-25	1673	macromolecule metabolic process
GO:006974	1.12979348124682e-24	252	cellular response to DNA damage stimulus
GO:1901360	1.7765323009588e-24	1184	organic cyclic compound metabolic process
GO:1901990	1.97834177706072e-24	140	regulation of mitotic cell cycle phase transition
GO:0044770	3.07019185375495e-24	185	cell cycle phase transition
GO:0034641	7.26348033869922e-24	1226	cellular nitrogen compound metabolic process
GO:0016070	8.9734341111787e-24	945	RNA metabolic process
GO:0000375	2.84987275177674e-22	128	RNA splicing, via transesterification reactions
GO:1901987	2.89810606426485e-22	143	regulation of cell cycle phase transition
GO:0098813	4.19972505392276e-22	109	nuclear chromosome segregation
GO:0044085	4.71102174104874e-22	704	cellular component biogenesis
GO:0006281	5.09385632490612e-22	175	DNA repair
GO:0007059	5.15984925548619e-22	124	chromosome segregation
GO:0003777	1.33958913502289e-21	126	RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
GO:0003938	1.33958913502289e-21	126	mRNA splicing, via spliceosome
GO:0008019	2.24655361491694e-21	88	sister chromatid segregation
GO:0071103	2.51479693671229e-21	103	DNA conformation change
GO:0010467	5.48574101975962e-21	1054	gene expression
GO:0006260	1.07982607603046e-20	112	DNA replication
GO:0016032	1.4661093749916e-20	214	viral process
GO:0051301	1.48896789302623e-20	191	cell division
GO:0000280	4.31711627870403e-20	145	nuclear division
GO:0080090	1.23831761410825e-19	1141	regulation of primary metabolic process
GO:0051171	1.66877551712948e-19	1114	regulation of nitrogen compound metabolic process
GO:0031323	1.82348460155531e-19	1161	regulation of cellular metabolic process
GO:0030344	2.15805687327294e-19	127	regulation of chromosome organization
GO:0044419	2.50190960341486e-19	123	interspecies interaction between organisms
GO:0019222	3.04720842698118e-19	1236	regulation of metabolic process
GO:0033043	4.60597111811139e-19	335	regulation of organelle organization
GO:0044260	4.81706738817321e-19	1479	cellular macromolecule metabolic process
GO:0048285	5.45105259244286e-19	153	organelle fission
GO:0044238	7.91842139639589e-19	1786	primary metabolic process
GO:0060255	9.61959611818535e-19	1155	regulation of macromolecule metabolic process
GO:0044403	9.760875909581e-19	220	symbiont process
GO:0044237	1.101644938267471e-18	1805	cellular metabolic process
GO:0016045	1.13924225314245e-18	573	negative regulation of macromolecule metabolic process
GO:0007017	1.24457714666191e-18	230	microtubule-based process
GO:0014014	1.41351037166739e-18	111	mitotic nuclear division
GO:0009892	5.37497987766897e-18	609	negative regulation of metabolic process
GO:00007070	7.90894601124853e-18	74	mitotic sister chromatid segregation
GO:1903311	1.2556028170707e-17	105	regulation of mRNA metabolic process
GO:0008807	1.4803255827254e-17	1715	nitrogen compound metabolic process
GO:0010604	2.28132729081134e-17	680	positive regulation of macromolecule metabolic process
GO:0000226	3.05291145338695e-17	178	microtubule cytoskeleton organization
GO:0051128	5.83804356554847e-17	562	regulation of cellular component organization
GO:0048522	6.93637232802074e-17	996	positive regulation of cellular process
GO:0022607	7.82693575616316e-17	643	cellular component assembly
GO:0051172	9.66804877906865e-17	511	negative regulation of nitrogen compound metabolic process
GO:0031324	1.30624007073426e-16	539	negative regulation of cellular metabolic process
GO:0051173	3.20277083214258e-16	645	positive regulation of nitrogen compound metabolic process
GO:0031235	3.35784612570885e-16	667	positive regulation of cellular metabolic process
GO:0099887	3.42458768005432e-16	2411	cellular process
GO:0045786	4.03058744735046e-16	171	negative regulation of cell cycle
GO:0000075	4.20784802147454e-16	87	cell cycle checkpoint
GO:0098983	4.47010986458824e-16	716	positive regulation of metabolic process
GO:0033554	4.50238529417333e-16	443	cellular response to stress
GO:0009059	1.0930884348549e-15	958	macromolecule biosynthetic process
GO:0071704	1.10723743789775e-15	1822	organic substance metabolic process
GO:0051983	1.24400042600523e-15	54	regulation of chromosome segregation
GO:0010948	1.70960623215688e-15	102	negative regulation of cell cycle process
GO:0032268	1.726455979058084e-15	533	regulation of cellular protein metabolic process
GO:1901991	2.00082972120911e-15	74	negative regulation of mitotic cell cycle phase transition
GO:1902749	2.25491743101709e-15	74	regulation of cell cycle G2/M phase transition
GO:0007093	2.40812288556212e-15	71	mitotic cell cycle checkpoint
GO:0048523	3.6226931708964e-15	895	negative regulation of cellular process
GO:0010389	5.07009271375202e-15	69	regulation of G2/M transition of mitotic cell cycle

GO:0034645	5.1012903147281e-15	931	cellular macromolecule biosynthetic process
GO:0008152	6.50149192687807e-15	1881	metabolic process
GO:0051246	6.97820116564584e-15	560	regulation of protein metabolic process
GO:1901988	7.370403058222e-15	77	negative regulation of cell cycle phase transition
GO:0048519	7.63457394479471e-15	979	negative regulation of biological process
GO:0010638	9.31589301177506e-15	180	positive regulation of organelle organization
GO:0051130	9.89537223929269e-15	306	positive regulation of cellular component organization
GO:0007052	1.08248101617767e-14	56	mitotic spindle organization
GO:1902850	1.21361655367198e-14	63	microtubule cytoskeleton organization involved in mitosis
GO:0048518	1.28452217853659e-14	1082	positive regulation of biological process
GO:0009068	2.50623170245128e-14	97	positive regulation of cell cycle process
GO:0045787	3.56842438511492e-14	122	positive regulation of cell cycle
GO:0019219	3.67487834929814e-14	799	regulation of nucleobase-containing compound metabolic process
GO:0031570	3.69503823714105e-14	68	DNA integrity checkpoint
GO:0007051	6.8598010773229e-14	72	spindle organization
GO:0045935	7.58162880205813e-14	417	positive regulation of nucleobase-containing compound metabolic process
GO:0051641	1.4538554714785e-13	608	cellular localization
GO:0006323	1.52487530682733e-13	66	DNA packaging
GO:0007010	1.6664614243494e-13	338	cytoskeleton organization
GO:0051052	2.7317953743672e-13	125	regulation of DNA metabolic process
GO:2001252	2.8832864945154e-13	70	positive regulation of chromosome organization
GO:0071824	3.15389889020277e-13	85	protein-DNA complex subunit organization
GO:0022613	4.45954951901687e-13	130	ribonucleoprotein complex biogenesis
GO:0016569	4.48810681917468e-13	148	covalent chromatin modification
GO:0050794	4.5356485781668e-13	1732	regulation of cellular process
GO:0010629	4.82086365071318e-13	399	negative regulation of gene expression
GO:0045930	4.87178531193706e-13	92	negative regulation of mitotic cell cycle
GO:0000077	6.81933166010606e-13	62	DNA damage checkpoint
GO:0044839	8.0426573982912e-13	83	cell cycle G2/M phase transition
GO:0050789	1.16474131433296e-12	1817	regulation of biological process
GO:0006333	1.2227468978691e-12	60	chromatin assembly or disassembly
GO:0000086	1.37977651643716e-12	78	G2/M transition of mitotic cell cycle
GO:0050657	1.42647458455619e-12	76	nucleic acid transport
GO:0050658	1.42647458455619e-12	76	RNA transport
GO:0051234	1.8038632325768e-12	77	establishment of RNA localization
GO:0050684	2.2416092443497e-12	58	regulation of mRNA processing
GO:0006403	2.6550856162148e-12	84	RNA localization
GO:0033045	2.74088425927037e-12	42	regulation of sister chromatid segregation
GO:0051254	3.42430217535777e-12	377	positive regulation of RNA metabolic process
GO:0044267	4.12788649217618e-12	940	cellular protein metabolic process
GO:0016570	4.75096056269014e-12	143	histone modification
GO:0051168	4.99530421721924e-12	75	nuclear export
GO:0006338	6.73866470849219e-12	64	chromatin remodeling
GO:0032392	8.41265237095544e-12	41	DNA geometric change
GO:0051028	1.18965309043866e-11	63	mRNA transport
GO:0051169	1.29311389925623e-11	113	nuclear transport
GO:0031399	1.36153086183745e-11	383	regulation of protein modification process
GO:0000082	1.6134132738705e-11	82	G1/S transition of mitotic cell cycle
GO:0045934	1.6219779102997e-11	328	negative regulation of nucleobase-containing compound metabolic process
GO:0034728	1.6525973634146e-11	54	nucleosome organization
GO:0006261	1.65793818458369e-11	60	DNA-dependent DNA replication
GO:0044774	2.01738570366258e-11	48	mitotic DNA integrity checkpoint
GO:0007062	2.0806380390509e-11	31	sister chromatid cohesion
GO:0072401	2.1666724834942e-11	37	signal transduction involved in DNA integrity checkpoint
GO:0072422	2.1666724834942e-11	37	signal transduction involved in DNA damage checkpoint
GO:0043933	2.30238532499467e-11	447	protein-containing complex subunit organization
GO:0010557	2.8816907109704e-11	398	positive regulation of macromolecule biosynthetic process
GO:0031023	2.98634556437284e-11	59	microtubule organizing center organization
GO:2001251	3.61855673275736e-11	58	negative regulation of chromosome organization
GO:0007098	3.65021592179925e-11	55	centrosome cycle
GO:0042770	3.66184910308768e-11	54	signal transduction in response to DNA damage
GO:0006913	4.1467912598457e-11	111	nucleocytoplasmic transport
GO:0045004	4.53798493225331e-11	71	protein-DNA complex assembly
GO:0051252	5.01250048231309e-11	732	regulation of RNA metabolic process
GO:0072395	5.16252822784677e-11	37	signal transduction involved in cell cycle checkpoint
GO:0006950	5.57766926180336e-11	685	response to stress
GO:0010556	6.62920820913379e-11	774	regulation of macromolecule biosynthetic process
GO:0007088	6.92572271064902e-11	67	regulation of mitotic nuclear division
GO:0006611	6.9288086969326e-11	68	protein export from nucleus
GO:0009889	7.180905984162746e-11	805	regulation of biosynthetic process
GO:0044843	8.99437649200003e-11	84	cell cycle G1/S phase transition
GO:0010558	9.26617086993399e-11	329	negative regulation of macromolecule biosynthetic process
GO:0044773	9.40019437421e-11	44	mitotic DNA damage checkpoint
GO:0015931	9.58415759055585e-11	82	nucleobase-containing compound transport
GO:0031497	1.372473280894e-10	48	chromatin assembly
GO:0044265	1.4344890522719e-10	257	cellular macromolecule catabolic process
GO:0065003	1.65082273244982e-10	390	protein-containing complex assembly
GO:0033047	1.6545120204431e-10	36	regulation of mitotic sister chromatid segregation
GO:0034622	1.7009511185741e-10	249	cellular protein-containing complex assembly
GO:0016072	1.8576951503074e-10	73	rRNA metabolic process
GO:1903508	2.01855618532127e-10	350	positive regulation of nucleic acid-templated transcription
GO:0031329	2.09726722998222e-10	199	regulation of cellular catabolic process
GO:1902680	2.18753792662227e-10	350	positive regulation of RNA biosynthetic process
GO:0051649	2.95424353930403e-10	459	establishment of localization in cell
GO:0010468	2.9822488821568e-10	834	regulation of gene expression
GO:2000112	3.0343820784757e-10	750	regulation of cellular macromolecule biosynthetic process
GO:0006302	3.35945864070183e-10	76	double-strand break repair
GO:0051321	4.28008579319841e-10	76	meiotic cell cycle
GO:0010428	4.95954550138996e-10	407	positive regulation of gene expression
GO:0006310	5.02405898674668e-10	85	DNA recombination
GO:2000113	6.0721528197784e-10	312	negative regulation of cellular macromolecule biosynthetic process
GO:0072331	6.31877539122771e-10	72	signal transduction by p53 class mediator
GO:0010608	6.95309424896647e-10	144	posttranscriptional regulation of gene expression
GO:0051704	7.28940227433198e-10	434	multi-organism process
GO:0032508	7.81624154456768e-10	35	DNA duplex unwinding
GO:1902275	8.78261380635266e-10	66	regulation of chromatic organization
GO:0009891	1.0713970778154e-09	407	positive regulation of biosynthetic process
GO:1901576	1.13947141633533e-09	1074	organic substance biosynthetic process
GO:0009057	1.15655546956878e-09	294	macromolecule catabolic process
GO:0031328	1.27882792056835e-09	402	positive regulation of cellular biosynthetic process
GO:0009894	1.3062263479769e-09	217	regulation of catabolic process
GO:0064402	1.4357567055596e-09	86	mRNA catabolic process
GO:0042254	1.49784583195752e-09	77	ribosome biogenesis
GO:0006364	1.59356883149372e-09	62	rRNA processing
GO:0031326	1.60465547108878e-09	782	regulation of cellular biosynthetic process
GO:0009890	1.78512561403552e-09	335	negative regulation of biosynthetic process
GO:0051253	1.817233641039e-09	294	negative regulation of RNA metabolic process
GO:0044271	1.91441091379496e-09	881	cellular nitrogen compound biosynthetic process
GO:0031327	1.92797048011324e-09	331	negative regulation of cellular biosynthetic process
GO:0064401	1.98617823533187e-09	92	RNA catabolic process
GO:0072413	2.06201081279533e-09	30	signal transduction involved in mitotic cell cycle checkpoint
GO:1902402	2.04201081279533e-09	30	signal transduction involved in mitotic DNA damage checkpoint
GO:1902403	2.04201081279533e-09	30	signal transduction involved in mitotic DNA integrity checkpoint
GO:0051225	2.12754322468522e-09	46	spindle assembly
GO:0043412	2.40167920496933e-09	801	macromolecule modification
GO:006444	2.57064403861137e-09	771	cellular protein modification process
GO:0036211	2.57064403861137e-09	771	protein modification process
GO:0044783	2.60726144816249e-09	32	G1 DNA damage checkpoint
GO:1902402	2.64201081279533e-09	998	protein metabolic process
GO:007027	3.09959023894257e-09	397	cellular macromolecule localization
GO:0032774	3.61761923374336e-09	699	RNA biosynthetic process
GO:0031056	3.7315075098463e-09	55	regulation of histone modification
GO:0097659	4.24480778300731e-09	696	nucleic acid-templated transcription
GO:0009058	4.29249945539627e-09	1079	biosynthetic process
GO:0051304	4.9183180364176e-09	40	chromosome separation
GO:0045893	4.93909278464438e-09	326	positive regulation of transcription, DNA-templated
GO:0033046	4.99735514666405e-09	25	negative regulation of sister chromatid segregation
GO:0051985	4.99735514666405e-09	386	negative regulation of chromosome segregation
GO:0046907	5.25520009404052e-09	386	intracellular transport

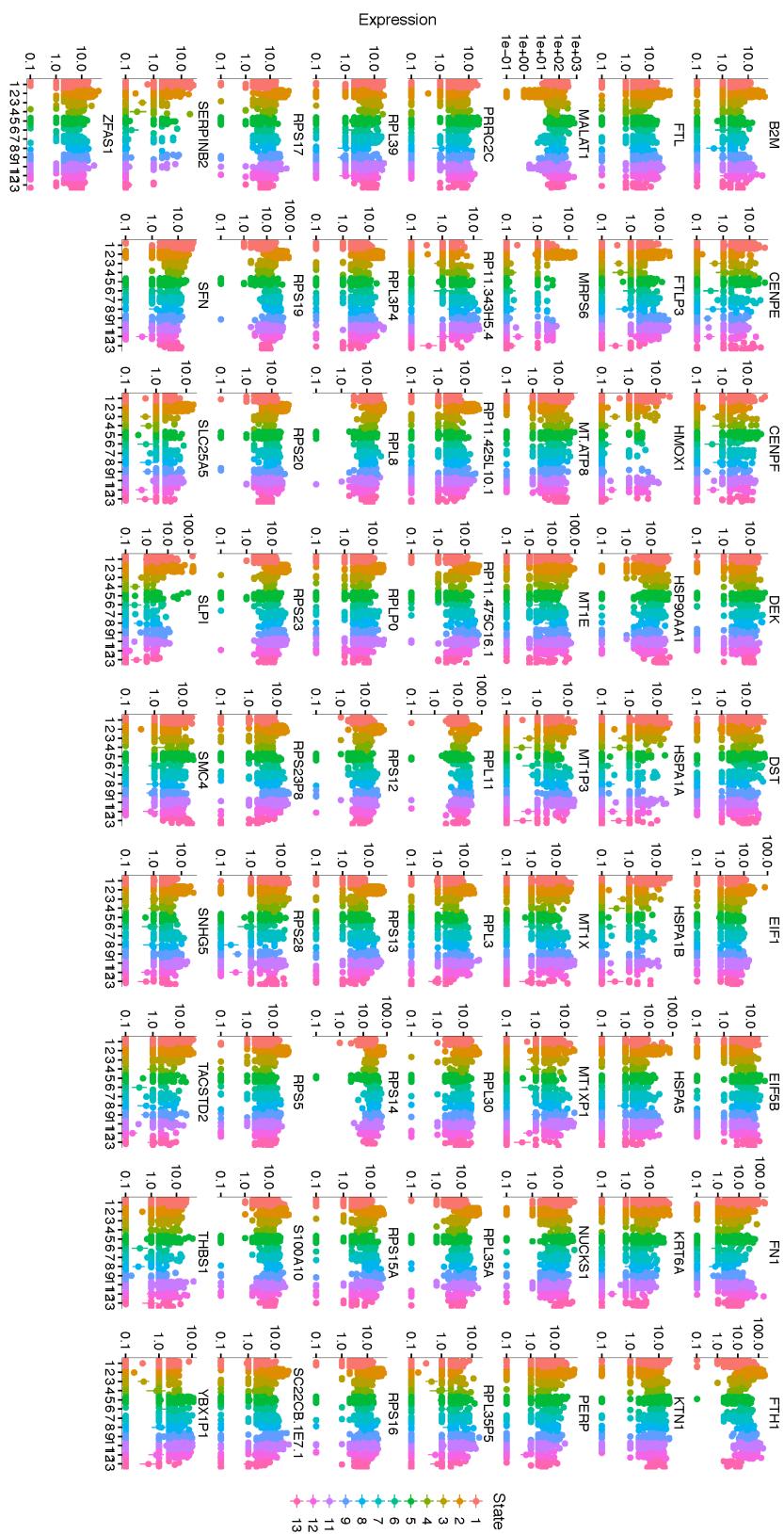

GO:0051783	5.73369652589608e-09	68	regulation of nuclear division
GO:0034654	5.9640421141448e-09	776	nucleobase-containing compound biosynthetic process
GO:0072431	6.16935795242554e-09	29	signal transduction involved in mitotic G1 DNA damage checkpoint
GO:1902400	6.16935795242554e-09	29	intracellular signal transduction involved in G1 DNA damage checkpoint
GO:0034613	6.59471782491486e-09	393	cellular protein localization
GO:0031571	7.1823969786209e-09	31	mitotic G1 DNA damage checkpoint
GO:0044819	7.1823969786209e-09	31	mitotic G1/S transition checkpoint
GO:0097711	8.19634594070853e-09	43	ciliary basal body-plasma membrane docking
GO:0061013	8.42377467149659e-09	55	regulation of mRNA catabolic process
GO:0051304	9.02325370595124e-09	30	mitotic sister chromatid separation
GO:0006977	1.10235405416745e-08	28	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest
GO:0043487	1.1717512991238e-08	50	regulation of RNA stability
GO:006507	1.45283480372778e-08	1880	biological regulation
GO:0051640	1.60718802173885e-08	178	organelle localization
GO:1905818	1.62089425293202e-08	30	regulation of chromosome separation
GO:0044249	1.81480916038553e-08	1048	cellular biosynthetic process
GO:2000045	1.89204585881789e-08	51	regulation of G1/S transition of mitotic cell cycle
GO:0070507	1.97315343312111e-08	65	regulation of microtubule cytoskeleton organization
GO:0019438	2.2176348491815e-08	781	aromatic compound biosynthetic process
GO:0008283	2.38722153454208e-08	385	cell proliferation
GO:0032270	2.50319896290235e-08	318	positive regulation of cellular protein metabolic process
GO:0040029	2.50599050441037e-08	93	regulation of gene expression, epigenetic
GO:0018205	2.5131694720346e-08	103	peptidyl-lysine modification
GO:0070791	2.57756431771556e-08	28	metaphase/anaphase transition of mitotic cell cycle
GO:0018130	2.6433974477992e-08	779	heterocycle biosynthetic process
GO:0030330	2.6885155303372e-08	42	DNA damage response, signal transduction by p53 class mediator
GO:0051716	2.6896943888322e-08	1167	cellular response to stimulus
GO:1903046	2.76830199027002e-08	58	meiotic cell cycle process
GO:1901362	2.96712383452437e-08	798	organic cyclic compound biosynthetic process
GO:0043488	3.05248646700603e-08	47	regulation of mRNA stability
GO:0071158	3.26640992541018e-08	34	positive regulation of cell cycle arrest
GO:0051247	3.70306280601742e-08	334	positive regulation of protein metabolic process
GO:0044784	3.7538842384048e-08	28	metaphase/anaphase transition of cell cycle
GO:0006634	3.85105030018254e-08	38	nucleosome assembly
GO:0007050	3.9023027985397e-08	72	cell cycle arrest
GO:0006405	4.009277512735e-08	51	RNA export from nucleus
GO:0033048	4.0983270499574e-08	23	negative regulation of mitotic sister chromatid segregation
GO:0000723	4.26361524619263e-08	53	telomere maintenance
GO:0008150	4.40900000269748e-08	2542	biological process
GO:2000134	4.51095847278783e-08	40	negative regulation of G1/S transition of mitotic cell cycle
GO:0045841	4.76979986030525e-08	21	negative regulation of mitotic metaphase/anaphase transition
GO:1902100	4.76979986030525e-08	21	negative regulation of metaphase/anaphase transition of cell cycle
GO:0044089	4.87715791614386e-08	136	positive regulation of cellular component biogenesis
GO:0071156	5.09825701290508e-08	39	regulation of cell cycle arrest
GO:0010965	5.30613067411745e-08	28	regulation of mitotic sister chromatid separation
GO:0006351	6.1034579131711e-08	679	transcription, DNA-templated
GO:0070925	7.1037977325694e-08	202	organelle assembly
GO:0007094	8.28426597893865e-08	20	mitotic spindle assembly checkpoint
GO:0031577	8.28426597893865e-08	20	spindle checkpoint
GO:0071173	8.28426597893865e-08	20	spindle assembly checkpoint
GO:0071174	8.28426597893865e-08	20	mitotic spindle checkpoint
GO:0030071	8.9601471869831e-08	26	regulation of mitotic metaphase/anaphase transition
GO:0071166	9.16709081264494e-08	48	ribonucleoprotein complex localization
GO:1905269	9.28890630617743e-08	40	positive regulation of chromatin organization
GO:0051310	9.56022744711383e-08	27	metaphase plate congression
GO:0032269	9.90953938398101e-08	219	negative regulation of cellular protein metabolic process
GO:0034460	1.212499189771e-07	124	ncRNA metabolic process
GO:0140013	1.23785870595765e-07	52	meiotic nuclear division
GO:1905819	1.24911865416635e-07	21	negative regulation of chromosome separation
GO:2000816	1.24911865416635e-07	21	negative regulation of mitotic sister chromatid separation
GO:0051248	1.27746304821136e-07	229	negative regulation of protein metabolic process
GO:1902099	1.29544746504078e-07	26	regulation of metaphase/anaphase transition of cell cycle
GO:0051338	1.32461137648402e-07	210	regulation of transferase activity
GO:0051174	1.360486096526468e-07	340	regulation of phosphorus metabolic process
GO:0040993	1.54423232653157e-07	355	positive regulation of molecular function
GO:1902807	1.5444771641368e-07	40	negative regulation of cell cycle G1/S phase transition
GO:0019220	1.69315097376151e-07	339	regulation of phosphate metabolic process
GO:0120031	1.69586974734927e-07	145	plasma membrane bounded cell projection assembly
GO:0006412	1.69910474958875e-07	137	translocation
GO:0031058	1.77323668918269e-07	37	positive regulation of histone modification
GO:0043044	1.80224785734555e-07	31	ATP-dependent chromatin remodeling
GO:0006417	1.8874839386449e-07	95	regulation of translation
GO:0030031	1.91236057461142e-07	147	cell projection assembly
GO:0032886	1.91566408326888e-07	70	regulation of microtubule-based process
GO:0048024	1.94294858757084e-07	38	regulation of mRNA splicing, via spliceosome
GO:0071426	2.08709631742673e-07	47	ribonucleoprotein complex export from nucleus
GO:0033365	2.16464322122621e-07	200	protein localization to organelle
GO:0031503	2.16578718968077e-07	84	protein-containing complex localization
GO:0032200	2.1708186324176e-07	53	telomere organization
GO:0093037	2.22071121939842e-07	29	mitotic spindle assembly
GO:0051493	2.35636882715623e-07	136	regulation of cytoskeleton organization
GO:0006473	2.62949635218703e-07	63	protein acetylation
GO:0043967	3.00404326441351e-07	30	histone H4 acetylation
GO:0031401	3.11274441564495e-07	248	positive regulation of protein modification process
GO:1902806	3.13241186139518e-07	52	regulation of cell cycle G1/S phase transition
GO:0034248	3.22409449395955e-07	104	regulation of cellular amide metabolic process
GO:0044384	3.2694032119004e-07	49	regulation of RNA splicing
GO:0050000	3.4587247676684e-07	30	chromosome localization
GO:1903507	3.72499706239496e-07	264	negative regulation of nucleic acid-templated transcription
GO:0043543	3.72711298969892e-07	72	protein acylation
GO:0030705	3.98258076111202e-07	62	cytoskeleton-dependent intracellular transport
GO:1902679	4.04406171315359e-07	264	negative regulation of RNA biosynthetic process
GO:0018394	4.39851206505331e-07	56	peptidyl-lysine acetylation
GO:0043043	4.45031378911713e-07	140	peptide biosynthetic process
GO:1903312	4.62205382584437e-07	31	negative regulation of mRNA metabolic process
GO:1903506	5.33370990078178e-07	656	regulation of nuclear acid-templated transcription
GO:0050790	5.55819021048439e-07	432	regulation of catalytic activity
GO:0030522	5.5840720235064e-07	82	intracellular receptor signaling pathway
GO:0051053	6.29740254143001e-07	48	negative regulation of DNA metabolic process
GO:0051303	7.67759755791536e-07	29	establishment of chromosome localization
GO:1400056	7.70970316853818e-07	58	organelle localization by membrane tethering
GO:0007274	8.17035427540444e-07	43	double-strand break repair via homologous recombination
GO:0018393	8.7088085161271e-07	53	internal peptidyl-lysine acetylation
GO:2001141	8.71708196960318e-07	656	regulation of RNA biosynthetic process
GO:0010639	8.90331448261764e-07	100	negative regulation of organelle organization
GO:0022406	9.1273657470222e-07	60	membrane docking
GO:0006884	9.313285714875e-07	238	intracellular protein transport
GO:0007080	1.03268179270214e-06	21	mitotic metaphase plate congression
GO:0007275	1.05947546411981e-06	43	recombinational repair
GO:0016573	1.13048535360043e-06	52	histone acetylation
GO:0003080	1.14247245984522e-06	31	alternative mRNA splicing, via spliceosome
GO:0006406	1.2502995724132e-06	41	mRNA export from nucleus
GO:0071427	1.2502995724132e-06	41	mRNA-containing ribonucleoprotein complex export from nucleus
GO:0009010	1.27142938524378e-06	53	cytokinesis
GO:0045931	1.36380045051474e-06	50	positive regulation of mitotic cell cycle
GO:0066518	1.50240417068622e-06	162	peptide metabolic process
GO:0045005	1.60503987344286e-06	22	DNA-dependent DNA replication maintenance of fidelity
GO:0065009	1.66651750524969e-06	560	regulation of molecular function
GO:0008104	1.76567494247522e-06	525	protein localization
GO:0051383	1.82864140555663e-06	14	kinetochore organization
GO:0051984	1.84430416220859e-06	17	positive regulation of chromosome segregation
GO:0018193	1.87775482238258e-06	258	peptidyl-amino acid modification
GO:1903827	1.93681129113695e-06	130	regulation of cellular protein localization
GO:0012501	2.02667879075979e-06	385	programmed cell death
GO:0071897	2.0750242861648e-06	57	DNA biosynthetic process
GO:0045892	2.31847989113681e-06	253	negative regulation of transcription, DNA-templated
GO:0043085	2.35456597251009e-06	288	positive regulation of catalytic activity
GO:0006475	2.38745109206602e-06	53	internal protein amino acid acetylation
GO:0045132	2.41367922135923e-06	31	meiotic chromosome segregation

GO:0034655	2.57257941834315e-06	122	nucleobase-containing compound catabolic process
GO:0030518	2.85144242767381e-06	48	intracellular steroid hormone receptor signaling pathway
GO:0008608	2.9325529430949e-06	17	attachment of spindle microtubules to kinetochore
GO:0045839	3.53448743603255e-06	23	negative regulation of mitotic nuclear division
GO:0031124	3.54021839053045e-06	35	mRNA 3'-end processing
GO:0044087	3.5485060157545e-06	213	regulation of cellular component biogenesis
GO:0034502	3.73700342910479e-06	31	protein localization to chromosome
GO:0050896	3.83284899119752e-06	1360	response to stimulus
GO:0032784	3.88074202891813e-06	21	regulation of DNA-templated transcription, elongation
GO:0034330	4.33664856419734e-06	88	cell junction organization
GO:0034508	4.4700985933736e-06	21	centromeric complex assembly
GO:0006354	6.58661761724378e-06	161	amide biosynthetic process
GO:0007064	7.4924707031138e-06	21	regulation of spindle organization
GO:0071826	8.19795612000808e-06	42	RNA 3'-end processing
GO:0031400	8.60724340827686e-06	24	negative regulation of nuclear division
GO:0022618	9.507171844716515e-06	98	cilium assembly
GO:0010563	9.39094920252922e-06	32	DNA-templated transcription, elongation
GO:0031331	6.11366304547596e-06	14	mitotic sister chromatid cohesion
GO:0035304	6.12365491662152e-06	70	ribonucleoprotein complex subunit organization
GO:0060271	6.4890985933736e-06	135	negative regulation of protein modification process
GO:0006354	6.58661761724378e-06	67	ribonucleoprotein complex assembly
GO:0007064	7.4924707031138e-06	128	negative regulation of phosphorus metabolic process
GO:0071826	8.19795612000808e-06	95	positive regulation of cellular catabolic process
GO:0031400	8.60724340827686e-06	43	regulation of protein dephosphorylation
GO:0022618	9.507171844716515e-06	20	DNA replication-independent nucleosome organization
GO:0010563	9.39094920252922e-06	25	regulation of centrosome cycle
GO:0031331	6.11366304547596e-06	575	macromolecule localization
GO:0006354	6.12365491662152e-06	14	regulation of sister chromatid cohesion
GO:0007064	7.4924707031138e-06	60	regulation of dephosphorylation
GO:0006289	8.80724340827686e-06	35	nucleotide-excision repair
GO:0006890	9.35228436410777e-05	32	retrograde vesicle-mediated transport, Golgi to ER
GO:0001701	1.438472051863e-05	86	in utero embryonic development
GO:0044782	1.44836676876602e-05	100	cilium organization
GO:0045936	1.4517765330768e-05	127	negative regulation of phosphate metabolic process
GO:0006355	1.4869114482532505e-05	637	regulation of transcription, DNA-templated
GO:0005104	1.526376422909808e-05	61	positive regulation of DNA metabolic process
GO:0019079	1.53531195655328e-05	38	viral genome replication
GO:0031589	1.57202856504444e-05	92	cell-substrate adhesion
GO:0032621	1.64406134535214e-05	19	chromosome condensation
GO:0006270	1.6533288242604e-05	16	DNA replication initiation
GO:1903313	1.78734319364205e-05	29	positive regulation of mRNA metabolic process
GO:0002504	1.82546959750528e-05	33	antigen processing and presentation of peptide or polysaccharide antigen via MHC class II
GO:0031297	1.8467514587953e-05	17	replication fork processing
GO:0019866	1.850373689799764e-05	32	antigen processing and presentation of exogenous peptide antigen via MHC class II
GO:0043009	1.9228765728494e-05	139	chordate embryonic development
GO:0008219	2.11277264138026e-05	401	cell death
GO:0030521	2.17917814276417e-05	28	androgen receptor signaling pathway
GO:0051129	2.3054428181948e-05	158	negative regulation of cellular component organization
GO:0006336	2.32290666269653e-05	19	DNA replication-independent nucleosome assembly
GO:0051347	2.3383488423994e-05	143	positive regulation of transferase activity
GO:1902115	2.50051085855281e-05	58	regulation of organelle assembly
GO:0002376	2.52089742708696e-05	473	immune system process
GO:0032204	2.75279170186314e-05	30	regulation of telomere maintenance
GO:0006282	2.795922776414234e-05	36	regulation of DNA repair
GO:0031060	2.8618575322508e-05	26	regulation of histone methylation
GO:0009792	2.9070713405889e-05	142	embryo development ending in birth or egg hatching
GO:0034470	3.0202649884167e-05	83	ncRNA processing
GO:0043486	3.02219264337933e-05	19	histone exchange
GO:0016458	3.27801943960392e-05	69	gene silencing
GO:0010457	3.3896850414322e-05	11	centriole-centriole cohesion
GO:0002495	3.42158940569616e-05	32	antigen processing and presentation of peptide antigen via MHC class II
GO:0032502	3.49384219304027e-05	1034	developmental process
GO:0043549	3.59192407323419e-05	180	regulation of kinase activity
GO:0051298	3.8355684578175e-05	27	centrosome duplication
GO:0006700	3.8442267574995e-05	124	heterocycle catabolic process
GO:1902750	4.3415454002589e-05	22	negative regulation of cell cycle G2/M phase transition
GO:0045944	4.38076713565752e-05	241	positive regulation of transcription by RNA polymerase II
GO:0034329	4.42451748470104e-05	73	cell junction assembly
GO:0031319	4.5614377770735e-05	7	positive regulation of histone phosphorylation
GO:0061982	4.72657179680216e-05	34	meiosis I cell cycle process
GO:0032870	4.72932223806094e-05	149	cellular response to hormone stimulus
GO:0006915	4.92054922834153e-05	355	apoptotic process
GO:0007044	4.9899513905098e-05	38	cell-substrate junction assembly
GO:0031055	5.03748173851398e-05	16	chromatin remodeling at centromere
GO:0006337	5.1148959626777e-05	11	nucleosome disassembly
GO:0009896	5.11914228215472e-05	104	positive regulation of catabolic process
GO:0032206	5.63719621547354e-05	21	positive regulation of telomere maintenance
GO:0034080	5.66594883681432e-05	15	CENP-A containing nucleosome assembly
GO:0061641	5.66594883681432e-05	15	CENP-A containing chromatin organization
GO:0043401	5.66660560797629e-05	56	steroid hormone mediated signaling pathway
GO:0032465	5.75504243959958e-05	29	regulation of cytokinesis
GO:0042325	5.82079809532084e-05	290	regulation of phosphorylation
GO:0060341	6.04424427008598e-05	194	regulation of cellular localization
GO:0010970	6.07594402499147e-05	50	transport along microtubule
GO:0099111	6.07594402499147e-05	50	microtubule-based transport
GO:0034446	6.18687738761516e-05	31	substrate adhesion-dependent cell spreading
GO:0046777	6.21456462477915e-05	67	protein autophosphorylation
GO:0019080	6.32264811572653e-05	24	viral gene expression
GO:0002478	6.39767953053029e-05	36	antigen processing and presentation of exogenous peptide antigen
GO:0060236	6.40055859011625e-05	18	regulation of mitotic spindle organization
GO:0019884	6.6750261412796e-05	37	antigen processing and presentation of exogenous antigen
GO:0071495	6.72473189271107e-05	274	cellular response to endogenous stimulus
GO:0022616	6.83717120353081e-05	13	DNA strand elongation
GO:0022414	6.85812796741422e-05	251	reproductive process
GO:0000245	6.86011945423991e-05	23	spliceosomal complex assembly
GO:0044270	7.31233521439506e-05	123	cellular nitrogen compound catabolic process
GO:0000003	7.33879531074461e-05	251	reproduction
GO:2001020	7.570476999997e-05	55	regulation of response to DNA damage stimulus
GO:0043603	8.28718371857058e-05	196	cellular amide metabolic process
GO:1901983	8.4715319593089e-05	26	regulation of protein acetylation
GO:0001932	8.870257900915e-05	268	regulation of protein phosphorylation
GO:0017148	8.93065080826453e-05	44	negative regulation of translation
GO:0031572	9.004302129361e-05	15	G2 DNA damage checkpoint
GO:1901800	9.2477390973161e-05	33	positive regulation of proteasomal protein catabolic process
GO:0010810	9.29542873283764e-05	59	regulation of cell-substrate adhesion
GO:0007127	9.41887108853605e-05	32	meiosis I
GO:0032786	9.56877799789015e-05	14	positive regulation of DNA-templated transcription, elongation
GO:0033182	9.68400157358671e-05	8	regulation of histone ubiquitination
GO:0018023	9.87346334628397e-05	19	peptidyl-lysine trimethylation
GO:0000726	9.88855151326826e-05	28	non-recombinational repair
GO:0045815	0.000100472834221416	22	positive regulation of gene expression, epigenetic
GO:0007568	0.000100590433079337	73	aging
GO:1903829	0.000104453850082795	83	positive regulation of cellular protein localization
GO:0016571	0.00011009207104799	43	histone methylation
GO:0090231	0.000112664760621455	9	regulation of spindle checkpoint
GO:0090266	0.000112664760621455	9	regulation of mitotic cell cycle spindle assembly checkpoint
GO:1903504	0.000112664760621455	9	regulation of mitotic spindle checkpoint
GO:0080135	0.000116400400226223	148	regulation of cellular response to stress
GO:0031330	0.000116914082330396	64	negative regulation of cellular catabolic process
GO:0006275	0.000117674232426429	35	regulation of DNA replication
GO:0071459	0.000121448647404852	11	protein localization to chromosome, centromeric region
GO:0006378	0.000121515040220702	19	mRNA polyadenylation
GO:0043631	0.000121515040220702	19	RNA polyadenylation
GO:0097790	0.000123956555020534	209	embryo development
GO:0044380	0.000124342338379255	24	protein localization to cytoskeleton
GO:0051098	0.000126182152745041	87	regulation of binding
GO:0000281	0.000126540097057368	30	mitotic cytokinesis
GO:0031334	0.000126879287287957	66	positive regulation of protein complex assembly
GO:0007018	0.000132514097682255	77	microtubule-based movement

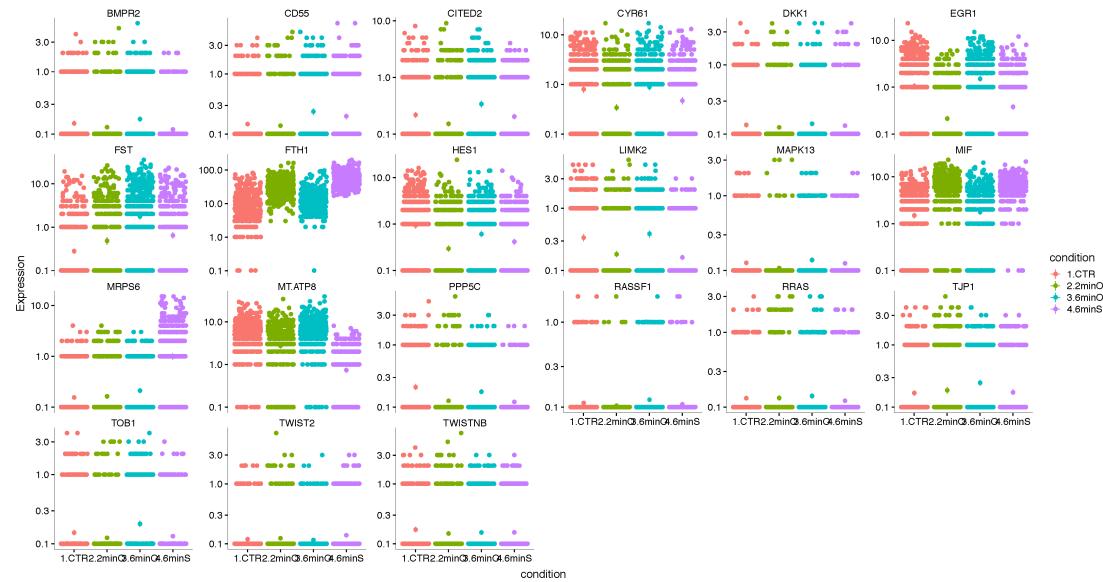
GO:0032986	0.000134195278333164	11	protein-DNA complex disassembly
GO:0048002	0.000135429606009137	38	antigen processing and presentation of peptide antigen
GO:0071383	0.000139613906267907	67	cellular response to steroid hormone stimulus
GO:0019439	0.00014170183936708	123	aromatic compound catabolic process
GO:0006368	0.000144155828076798	26	transcription elongation from RNA polymerase II promoter
GO:0050686	0.000146203484295846	14	negative regulation of mRNA processing
GO:0072359	0.000147580656246585	226	circulatory system development
GO:0045859	0.000149400790784666	162	regulation of protein kinase activity
GO:0071407	0.000150418848249871	123	cellular response to organic cyclic compound
GO:0006457	0.00015502424881660	52	protein folding
GO:1900024	0.000158497033411173	19	regulation of substrate adhesion-dependent cell spreading
GO:0090169	0.000158497033411173	14	regulation of spindle assembly
GO:1902117	0.000164653118259037	28	positive regulation of organelle assembly
GO:0043984	0.000171858421610815	12	histone H4-K16 acetylation
GO:0010033	0.000178738897686078	541	response to organic substance
GO:0043067	0.000188380321922657	285	regulation of programmed cell death
GO:0010972	0.0001884316168881	18	negative regulation of G2/M transition of mitotic cell cycle
GO:0031062	0.000194015816652029	17	positive regulation of histone methylation
GO:2000278	0.000195797183024949	33	regulation of DNA biosynthetic process
GO:0050690	0.000196387589355036	13	regulation of defense response to virus by virus
GO:0034501	0.0001969181110146429	9	protein localization to kinetochore
GO:0001824	0.000198847928057883	21	blastocyst development
GO:0072698	0.00019912847977544	22	protein localization to microtubule cytoskeleton
GO:0043489	0.000200902893480349	17	RNA stabilization
GO:1902369	0.000203183562619727	20	negative regulation of RNA catabolic process
GO:0034249	0.000203559583310801	47	negative regulation of cellular amide metabolic process
GO:0061640	0.000207214012615131	32	cytoskeleton-dependent cytokinesis
GO:0006303	0.000210884969352494	26	double-strand break repair via nonhomologous end joining
GO:0009755	0.000224595867602333	59	hormone-mediated signaling pathway
GO:0031498	0.000237580171272583	11	chromatin disassembly
GO:0010921	0.00023818988030403	48	regulation of phosphatase activity
GO:1905508	0.00023958186925262	16	protein localization to microtubule organizing center
GO:0032880	0.00024187797693098	195	regulation of protein localization
GO:0080182	0.0002446671213584538	10	histone H3-K4 trimethylation
GO:0034323	0.00025234204541524	44	adherens junction organization
GO:0042981	0.00025352245043206	281	regulation of apoptotic process
GO:0010824	0.0002652889690923297	18	regulation of centrosome duplication
GO:2001166	0.00026953064874538	5	regulation of histone H2B ubiquitination
GO:0048856	0.000275022260035626	963	anatomical structure development
GO:1902373	0.000277750435683392	18	negative regulation of mRNA catabolic process
GO:2000779	0.000279114359564171	24	regulation of double-strand break repair
GO:0070192	0.000286517662354685	21	chromosome organization involved in meiotic cell cycle
GO:0033674	0.0002945641677176551	123	positive regulation of kinase activity
GO:0010811	0.000297012719708517	36	positive regulation of cell-substrate adhesion
GO:0043666	0.000297664518794255	34	regulation of phosphoprotein phosphatase activity
GO:0045814	0.000299892525334647	33	negative regulation of gene expression, epigenetic
GO:0000733	0.00030427205627153	7	DNA strand renaturation
GO:0032467	0.000309206434684087	14	positive regulation of cytokinesis
GO:1901361	0.000315467102571094	126	organic cyclic compound catabolic process
GO:1903362	0.000321178249636728	63	regulation of cellular protein catabolic process
GO:0007507	0.000321970858342608	129	heart development
GO:0034968	0.00032594504501577	36	histone lysine methylation
GO:0000018	0.000330334441862008	28	regulation of DNA recombination
GO:0061136	0.0003402747996815322	49	regulation of proteasomal protein catabolic process
GO:0051653	0.000344657591794627	18	spindle localization
GO:0035065	0.00034572620593636	20	regulation of histone acetylation
GO:0007095	0.00034833434706818	11	mitotic G2 DNA damage checkpoint
GO:0019882	0.000348469595043636	43	antigen processing and presentation
GO:0044818	0.000349157946657188	14	mitotic G2/M transition checkpoint
GO:0046825	0.000351130810527219	17	regulation of protein export from nucleus
GO:0032184	0.000353139170901198	5	positive regulation of histone ubiquitination
GO:0006448	0.000353776501514014	359	protein phosphorylation
GO:0130036	0.0003565995974458057	313	plasma membrane bounded cell projection organization
GO:1901030	0.000365512205243301	13	positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
GO:0031267	0.0003658493951852243	8	regulation of histone phosphorylation
GO:0071310	0.00036869138629267	454	cellular response to organic substance
GO:1900266	0.000369674006504883	14	positive regulation of substrate adhesion-dependent cell spreading
GO:0016049	0.000372918021182335	109	cell growth
GO:0009725	0.00039482863013404	187	response to hormone
GO:0032799	0.00039643078644127	11	low-density lipoprotein receptor particle metabolic process
GO:0030010	0.000418232193734632	42	establishment of cell polarity
GO:0000381	0.000420362836253063	23	regulation of alternative mRNA splicing, via spliceosome
GO:0032479	0.0004404172117814135	34	regulation of type I interferon production
GO:0010833	0.00044871739395784	27	telomere maintenance via telomere lengthening
GO:0009719	0.000453673426953012	305	response to endogenous stimulus
GO:0031440	0.000457120301982688	13	regulation of mRNA 3'-end processing
GO:1904356	0.000459049686222047	22	regulation of telomere maintenance via telomere lengthening
GO:1903050	0.000462336758745882	55	regulation of proteolysis involved in cellular protein catabolic process
GO:0006271	0.000464613857232282	9	DNA strand elongation involved in DNA replication
GO:0007143	0.00046849772933971	12	female meiotic nuclear division
GO:0062033	0.000480028177117916	10	positive regulation of mitotic sister chromatid segregation
GO:0032606	0.00049099538245967	34	type I interferon production
GO:0006470	0.00049274869976062	78	protein dephosphorylation
GO:0006366	0.000517231214790589	513	transcription by RNA polymerase II
GO:0050793	0.000521889772452541	464	regulation of developmental process
GO:0071539	0.000522759956071022	15	protein localization to centrosome
GO:0032697	0.000526042177039376	19	interstrand cross-link repair
GO:0000122	0.0005270178551263837	177	negative regulation of transcription by RNA polymerase II
GO:0034504	0.000534118579891427	68	protein localization to nucleus
GO:0000729	0.000537349788372915	12	DNA double-strand break processing
GO:0046822	0.000557187045053933	36	regulation of nucleocytoplasmic transport
GO:0014070	0.000559054016364208	176	response to organic cyclic compound
GO:0044248	0.0005606065153198111	395	cellular catabolic process
GO:0007004	0.000564750758392857	24	telomere maintenance via telomerase
GO:0006283	0.00056617821211006	22	transcription-coupled nucleotide-excision repair
GO:0042127	0.00058911329604199	283	regulation of cell proliferation
GO:0035556	0.0005925224552887	505	intracellular signal transduction
GO:0048545	0.000625111875966376	86	response to steroid hormone
GO:0045876	0.000638589796022781	7	positive regulation of sister chromatid cohesion
GO:0042176	0.0006404117351693188	88	regulation of protein catabolic process
GO:0007076	0.0006440464506772756	10	mitotic chromosome condensation
GO:0048255	0.00065160461489719	15	mRNA stabilization
GO:0016055	0.00066329140254633	111	Wnt signaling pathway
GO:0034333	0.000669580752862463	32	adherens junction assembly
GO:0051293	0.000675143059852719	16	establishment of spindle localization
GO:0007160	0.000689526888462176	61	cell-matrix adhesion
GO:1901992	0.000699284464815375	24	positive regulation of mitotic cell cycle phase transition
GO:0010941	0.0007069355063944091	300	regulation of cell death
GO:0033157	0.0007072011647841186	61	regulation of intracellular protein transport
GO:0035520	0.00071048595654553	7	monoubiquitinated protein deubiquitination
GO:0098534	0.0007271368633123	16	centriole assembly
GO:0030030	0.000731185214513585	316	cell projection organization
GO:0071168	0.000732234887614427	12	protein localization to chromatin
GO:2001235	0.00073575455332322	41	positive regulation of apoptotic signaling pathway
GO:0000389	0.000758775784543696	5	mRNA 3'-splice site recognition
GO:0040007	0.00077255621287557	201	growth
GO:0198738	0.00078674549771424	111	cell-cell signaling by wnt
GO:0070934	0.000787953861772356	5	CRD-mediated mRNA stabilization
GO:0090504	0.000794987628703896	14	epiboly
GO:0045184	0.00080586325942421	381	establishment of protein localization
GO:0009314	0.000817216528560608	96	response to radiation
GO:0000731	0.000819065124907143	18	DNA synthesis involved in DNA repair
GO:1903052	0.000834082547482007	34	positive regulation of proteolysis involved in cellular protein catabolic process
GO:0051382	0.000843180328427903	9	kinetochore assembly
GO:0016310	0.000858253061600724	415	phosphorylation
GO:0006695	0.000879873198659806	22	cholesterol biosynthetic process
GO:1902653	0.000879873198659806	22	secondary alcohol biosynthetic process
GO:0048869	0.000883783056227861	719	cellular developmental process
GO:2000756	0.000889559838128708	21	regulation of peptidyl-lysine acetylation

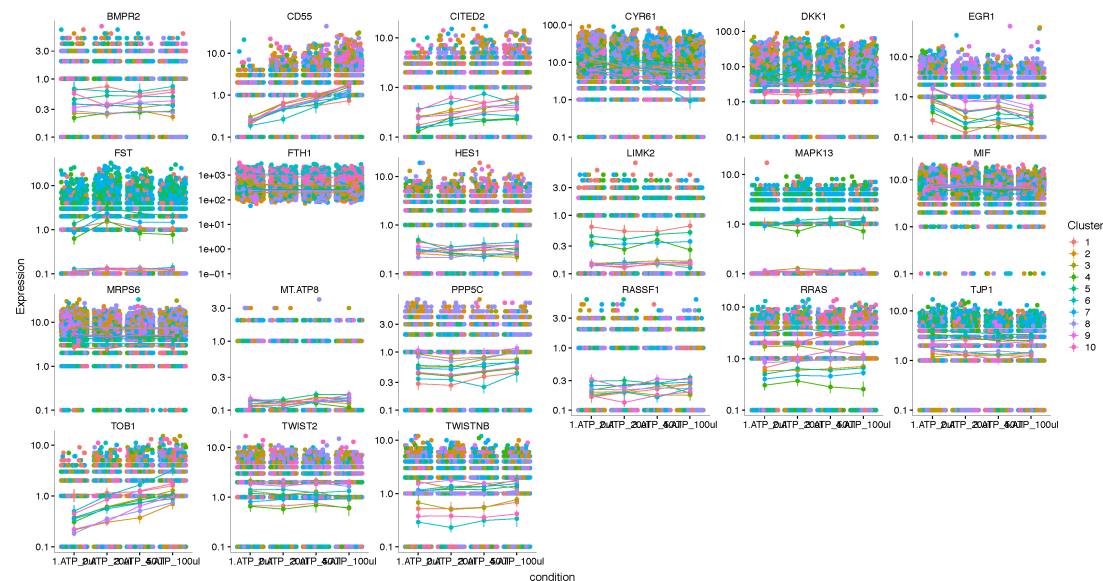

GO:0045540	0.000923697345294782	17 regulation of cholesterol biosynthetic process
GO:0106118	0.000923697345294782	17 regulation of sterol biosynthetic process
GO:0035987	0.00092377976385299	18 endodermal cell differentiation
GO:0051170	0.000940806666880961	47 import into nucleus
GO:0042274	0.000963986325937195	18 ribosomal small subunit biogenesis
GO:0035567	0.00096495126234879	34 non-canonical Wnt signaling pathway
GO:0007045	0.000979758387646312	29 cell-substrate adhesions junction assembly
GO:0008041	0.000979758387646312	29 focal adhesion assembly
GO:0097709	0.000993647949335542	7 connective tissue replacement
GO:0035305	0.001009477475102	31 negative regulation of dephosphorylation
GO:0070446	0.00102382432951278	66 protein modification by small protein removal
GO:0004070	0.00103455448224405	9 maturation of LSU-rRNA
GO:0006278	0.00104973542243381	24 RNA-dependent DNA biosynthetic process
GO:2001233	0.00105510008005066	82 regulation of apoptotic signaling pathway
GO:0007099	0.00108383605949951	15 centriole replication
GO:0019058	0.0011111827715972	67 viral life cycle
GO:0001706	0.001113677779612	19 endoderm formation
GO:1903364	0.00112172465761748	39 positive regulation of cellular protein catabolic process
GO:0007569	0.0011361342368338	31 cell aging
GO:0051571	0.00116292578186662	9 positive regulation of histone H3-K4 methylation
GO:0019081	0.00117097219240829	8 viral translation
GO:1901985	0.00117249010663766	16 positive regulation of protein acetylation
GO:0032147	0.00117261983735405	76 activation of protein kinase activity
GO:0035148	0.00121386883561673	43 tube formation
GO:1903320	0.00121451979937566	55 regulation of protein modification by small protein conjugation or removal
GO:1903646	0.00121498936351705	6 negative regulation of mRNA polyadenylation
GO:0001933	0.00122120550382104	89 negative regulation of protein phosphorylation
GO:0061014	0.00123294262914463	18 positive regulation of mRNA catabolic process
GO:0042326	0.00123346624281334	96 negative regulation of phosphorylation
GO:0120034	0.00123688751194659	30 positive regulation of plasma membrane bounded cell projection assembly
GO:0051302	0.00124979656211642	42 regulation of cell division
GO:1901976	0.00125159263010384	13 regulation of cell cycle checkpoint
GO:1901533	0.00125992995070628	4 negative regulation of hematopoietic progenitor cell differentiation
GO:1901028	0.00129039297610527	14 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
GO:0007275	0.00132107498794919	882 multicellular organism development
GO:0042457	0.0013351504810147	156 cellular protein catabolic process
GO:0032481	0.00138485924047137	22 positive regulation of type I interferon production
GO:0051656	0.00138742916779305	113 establishment of organelle localization
GO:0045724	0.00139643673386337	12 positive regulation of cilium assembly
GO:0045840	0.00139661998280206	18 positive regulation of mitotic nuclear division
GO:1901564	0.0013989415683725	1082 organonitrogen compound metabolic process
GO:0032210	0.0014187371471507	19 regulation of telomere maintenance via telomerase
GO:0035521	0.00141874991763812	4 monoubiquitinated histone deubiquitination
GO:0035522	0.00141874991763812	4 monoubiquitinated histone H2A deubiquitination
GO:0016579	0.0014281252532683	62 protein deubiquitination
GO:0000883	0.00144430950591743	12 regulation of transcription involved in G1/S transition of mitotic cell cycle
GO:0007492	0.00146348630289458	25 endoderm development
GO:0043414	0.00147067166737868	69 macromolecule methylation
GO:0098985	0.00147136174031648	67 negative regulation of catabolic process
GO:0006342	0.00147660711181584	27 chromatin silencing
GO:0090316	0.0014777594365699	44 positive regulation of intracellular protein transport
GO:0044319	0.00149039124343556	13 wound healing, spreading of cells
GO:0090505	0.00149039124343556	13 epiboly involved in wound healing
GO:0006413	0.0015040451132180	38 translational initiation
GO:0002562	0.00154540906075936	18 somatic diversification of immune receptors via germline recombination within a single locus
GO:0016444	0.00154540906075936	35 cholesterol metabolic process
GO:0008203	0.00155216604337783	35 regulation of signal transduction by p53 class mediator
GO:1901796	0.00155819430168844	20 negative regulation of chromatin organization
GO:1905268	0.00156358022225804	46 protein methylation
GO:0006479	0.00159431274092765	46 protein alkylation
GO:0008213	0.00159431274092765	20 intracellular estrogen receptor signaling pathway
GO:0030520	0.0016005649704417	10 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:1900739	0.00160529356860104	10 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:1900740	0.00160529356860104	29 actin cytoskeleton reorganization
GO:0001532	0.0016337858475373	379 movement of cell or subcellular component
GO:0006928	0.00164106539531423	39 epithelial tube formation
GO:0072175	0.00164925797170438	46 cellular response to radiation
GO:0071478	0.00169261610075611	16 intracellular transport involved in cilium assembly
GO:0035735	0.0017173551688356	36 peptidyl-lysine methylation
GO:0018022	0.00172713873859136	26 positive regulation of cell cycle phase transition
GO:1901989	0.00173805326057633	20 somatic diversification of immune receptors
GO:0002200	0.00174169533368867	146 supramolecular fiber organization
GO:0097435	0.00176577063838389	5 protein localization to nuclear envelope
GO:0090435	0.00177946952110391	210 protein modification by small protein conjugation or removal
GO:0070647	0.00178506335746781	93 reproductive system development
GO:0061458	0.00181698413776348	110 positive regulation of protein kinase activity
GO:0045860	0.00181848663288733	13 microtubule anchoring
GO:0034453	0.00187221561717687	4 positive regulation of histone H2B ubiquitination
GO:2001168	0.00187311424606135	100 regulation of protein complex assembly
GO:0043254	0.0018784169062945	367 regulation of multicellular organismal development
GO:2000026	0.00194619301412572	19 regulation of cholesterol metabolic process
GO:0090181	0.00196224776607985	180 protein catabolic process
GO:0030163	0.00197435630997165	11 protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
GO:0001844	0.00201209261421462	4 positive regulation of pinocytosis
GO:0048549	0.0020304286460052	18 histone ubiquitination
GO:0016574	0.00206085562927826	22 sterol biosynthetic process
GO:0016126	0.00206714097760286	328 regulation of cell differentiation
GO:0045595	0.00210322784537447	57 DNA-templated transcription, initiation
GO:0004352	0.00211948218340749	99 proteasomal protein catabolic process
GO:0010498	0.00215840219781258	92 reproductive structure development
GO:0048608	0.00216534023686905	19 intracellular transport
GO:0042073	0.00221040795413558	25 regulation of intracellular steroid hormone receptor signaling pathway
GO:0033143	0.00221321505953609	73 regulation of autophagy
GO:0010506	0.00223802999168914	12 regulation of transcription elongation from RNA polymerase II promoter
GO:0034243	0.00224087084734319	

Supplement Figure S1A:
(expression profiles of 2mO, 6mO, 6mS and control for DEG)



Supplement figure S1B:


(expression profiles of eATP dose response and control for DEG)


Supplement figure S2: (expression profiles of 2mO, 6mO, 6mS and control for DEG)

Supplement figure S3A:
(expression profiles of 2mO, 6mO, 6mS and control for DEG)

Supplement figure S3B:
(expression profiles of eATP dose response and control for DEG)

Bibliography

Abdallah, B. Y., Horne, S. D., Stevens, J. B., Liu, G., Ying, A. Y., Vanderhyden, B., ... Heng, H. H. Q. (2013). Single cell heterogeneity: Why unstable genomes are incompatible with average profiles. *Cell Cycle*, 12(23), 3640–3649.
<http://doi.org/10.4161/cc.26580>

Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., ... Maheswaran, S. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. *Cell*, 158(5), 1110–1122.
<http://doi.org/10.1016/j.cell.2014.07.013>

Agonists, D. C., Tsien, R. W., & Beant, B. P. (1986). Mechanisms of Calcium Channel Modulation by β -Adrenergic Agents and Dihydropyridine Calcium Agonists. *J Mol Cell Cardiol*, 710.

Allard, B., Longhi, S., & John, C. R. (2017). The ectonucleotidases CD39 and CD73 : Novel checkpoint inhibitor targets. *Immunological Reviews*, 276, 121–144.
<http://doi.org/10.1111/imr.12528>

Antsiferova, M., Klatte, J. E., Bodó, E., Paus, R., Jorcano, J. L., Matzuk, M., ... Kögel, H. (2009). Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. *Lab Invest*, 89(2), 131–141.
[http://doi.org/10.1038/labinvest.2008.120.Keratinocyte-derived](http://doi.org/10.1038/labinvest.2008.120)

Ashall, L., Horton, C. a, Nelson, D. E., Paszek, P., Harper, C. V, Sillitoe, K., ... White, M. R. H. (2009). Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. *Science (New York, N.Y.)*, 324(5924), 242–246.
<http://doi.org/10.1126/science.1164860>

Barriere, G., Fici, P., Gallerani, G., Fabbri, F., & Rigaud, M. (2015). Epithelial Mesenchymal Transition: a double-edged sword. *Clinical and Translational Medicine*, 4(1), 4–9. <http://doi.org/10.1186/s40169-015-0055-4>

Barrière, G., Riouallon, A., Renaudie, J., Tartary, M., & Rigaud, M. (2012). Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. *BMC Cancer*, 12. <http://doi.org/10.1186/1471-2407-12-114>

Bartis, D., Mise, N., Mahida, R. Y., Eickelberg, O., & Thickett, D. R. (2014). Epithelial-mesenchymal transition in lung development and disease: Does it exist and is it important? *Thorax*, 69(8), 760–765. <http://doi.org/10.1136/thoraxjnl-2013-204608>

Battich, N., Stoeger, T., & Pelkmans, L. (2015). Control of Transcript Variability in Single Mammalian Cells. *Cell*, 163(7), 1596–1610. <http://doi.org/10.1016/j.cell.2015.11.018>

Baum, B., Settleman, J., & Quinlan, M. P. (2008). Transitions between epithelial and mesenchymal states in development and disease. *Seminars in Cell and Developmental Biology*, 19(3), 294–308. <http://doi.org/10.1016/j.semcd.2008.02.001>

Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. *Nature Reviews*, 1(October).

Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. *Nature Reviews. Molecular Cell Biology*, 1(1), 11–21. <http://doi.org/10.1038/35036035>

Bhowmick, N. A., Gorska, A. E., Dumont, N., Shappell, S., Washington, M. K., Neilson, E. G., & Moses, H. L. (2004). TGF-Beta Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia. *Science*, 303(February), 848–851. <http://doi.org/10.1126/science.1090922>

Bissell, M. J., & Radisky, D. (2001). An innate anticancer mechanism. *Nature Reviews Cancer*, 1(October), 46–54.

Bootman, M. D. (2006). Calcium Signalling and Regulation of Cell Function. *Transfusion Medicine and Hemotherapy*, 32(2), 1–7. <http://doi.org/10.1002/9780470015902.a0001265.pub3>

Bootman, M. D., Berridge, M. J., & Lipp, P. (1997). Cooking with calcium: The recipes for composing global signals from elementary events. *Cell*, 91(3), 367–373. [http://doi.org/10.1016/S0092-8674\(00\)80420-1](http://doi.org/10.1016/S0092-8674(00)80420-1)

Border, W. A., & Noble, N. A. (1997). CYTOKINES IN THE KIDNEY TGF-J3 in kidney

fibrosis: A target for gene therapy. *Kidney International*, 51, 1388–1396.
<http://doi.org/10.1038/ki.1997.190>

Braga, V. M. M., Machesky, L. M., Hall, A., Hotchin, N. A., & Hotchin, N. A. (2013). for the Establishment of The Small GTPases Rho and Rac Are Required Cell-Cell Contacts, 137(6), 1421–1431.

Breau, M. A. (2006). Lack of 1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. *Development*, 133(9), 1725–1734.
<http://doi.org/10.1242/dev.02346>

Bruce, D. L., Macartney, T., Yong, W., Shou, W., & Sapkota, G. P. (2012). Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor - β pathway. *Cellular Signalling*, 24(11), 1999–2006.
<http://doi.org/10.1016/j.cellsig.2012.07.003>

Büttner, S., Habernig, L., Broeskamp, F., Ruli, D., Nora Vögtle, F., Vlachos, M., ... Madeo, F. (2013). Endonuclease G mediates α -synuclein cytotoxicity during Parkinson's disease. *EMBO Journal*, 32(23), 3041–3054.
<http://doi.org/10.1038/emboj.2013.228>

Cano, A., Diaz-Lopez, A., & Moreno-Bueno, G. (2014). Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. *Cancer Management and Research*, 205. <http://doi.org/10.2147/cmar.s38156>

Chawla, S., Hardingham, G. E., Quinn, D. R., & Bading, H. (1998). CBP : A Signal-Regulated Transcriptional Coactivator Controlled by Nuclear Calcium and CaM Kinase IV. *Science*, 281(September), 1505–1510.

Chen, L., Xiao, Z., Meng, Y., Zhao, Y., Han, J., Su, G., ... Dai, J. (2012). Biomaterials The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. *Biomaterials*, 33(5), 1437–1444. <http://doi.org/10.1016/j.biomaterials.2011.10.056>

Chen, X., Liu, X., Lang, H., Zhang, S., Luo, Y., & Zhang, J. (2015). S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β -catenin in pancreatic cancer cell line. *PLoS ONE*, 10(3), 1–14.

<http://doi.org/10.1371/journal.pone.0121319>

Chen, Y., Tong, Y., Li, Y., Liu, R., Xu, Q., Chang, G., & Chen, G. (2016). Ferritin heavy polypeptide 1 mediates apoptosis-related gene expression of duck (*Anas platyrhynchos domesticus*). *Canc. J. Anim.*, 625(July), 619–625.

Cheng, N., Bhowmick, N. A., Chytil, A., Gorksa, A. E., Brown, K. A., Muraoka, R., ... Moses, H. L. (2005). Loss of TGf- β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF- α -, MSP- and HGF-mediated signaling networks. *Oncogene*, 24(32), 5053–5068.
<http://doi.org/10.1038/sj.onc.1208685>

Coffey, R. G. (1992). Paradoxical stimulation and inhibition by protein kinase C modulating agents of lipopolysaccharide evoked production of tumour necrosis factor in human monocytes. *Immunology*, 76, 48–54.

Cooke, H. J., Wunderlich, J., & Christofi, F. L. (2019). “ The Force Be with You ”: ATP in Gut Mechanosensory Transduction. *News Physiology*, 18, 43–49.

Cox, A., Dunning, A. M., Garcia-Closas, M., Balasubramanian, S., Reed, M. W. R., Pooley, K. A., ... Easton, D. F. (2007). A common coding variant in CASP8 is associated with breast cancer risk. *Nature Genetics*, 39(3), 352–358.
<http://doi.org/10.1038/ng1981>

Crabtree, G. R. (1999). Generic signals and specific outcomes: Signaling through Ca $^{2+}$, calcineurin, and NF-AT. *Cell*, 96(5), 611–614.
[http://doi.org/10.1016/S0092-8674\(00\)80571-1](http://doi.org/10.1016/S0092-8674(00)80571-1)

Czerwinska, P., & Kaminska, B. (2015). Regulation of breast cancer stem cell features. *Contemporary Oncology*, 19. <http://doi.org/10.5114/wo.2014.47126>

Dho, S. H., Lim, J. C., Kim, L. K., & Kim, L. K. (2018). Beyond the Role of CD55 as a Complement Component. *Immune Network*, 18(1), 1–13.

Ding, J. M., Buchanan, G. F., Tischkau, S. A., Chen, D., Kuriashkina, L., Faiman, L. E., ... Gillette, M. U. (1998). A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. *Nature*, 394(6691), 381–384.

<http://doi.org/10.1038/28639>

Dolmetsch, R. E., Xu, K., & Lewis, R. S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. *Nature*, 392(6679), 933–936.
[http://doi.org/10.1016/1369-5266\(88\)80037-2](http://doi.org/10.1016/1369-5266(88)80037-2)

Dupont, G., Combettes, L., Bird, G. S., & Putney, J. W. (2011). Calcium oscillations. *Cold Spring Harbor Perspectives in Biology*, 3(3), 1–18.
<http://doi.org/10.1101/cshperspect.a004226>

El-Tanani, M., Platt-Higgins, A., Rudland, P. S., & Campbell, F. C. (2004). Ets gene PEA3 cooperates with β -catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. *Journal of Biological Chemistry*, 279(20), 20794–20806.
<http://doi.org/10.1074/jbc.M311131200>

Elenbaas, B., Spirio, L., Koerner, F., Fleming, M. D., Zimonjic, D. B., Donaher, J. L., ... Weinberg, R. a. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. *Genes & Development*, 15(1), 50–65. <http://doi.org/10.1101/gad.828901.monly>

Elenbaas, B., & Weinberg, R. A. (2001). Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. *Experimental Cell Research*, 264(1), 169–184. <http://doi.org/10.1006/excr.2000.5133>

Erlinge, D. (1998). Extracellular ATP : A Growth Factor for Vascular Smooth Muscle Cells. *Gen. Pharmac.*, 31(1), 1–8.

Feng Wei-gang, T. X. (2017). Identification of a new pro-invasion factor in tumor microenvironment: progress in function and mechanism of extracellular ATP. *Jurnal of Pekin University*, 49(2).

Fernandez, I. E., & Eickelberg, O. (2012). The Impact of TGF- β on Lung Fibrosis. *Proceedings of the American Thoracic Society*, 9(3), 111–116.
<http://doi.org/10.1513/pats.201203-023AW>

Gab Seok Kim, Joo Eun Jung, Purnima Narasimhan, Hiroyuki Sakata, and P. H. C. (2013). Induction of thioredoxin-interacting protein is mediated by oxidative

stress, calcium, and glucose after brain injury in mice. *Neurobiologi Dis.*, 46(2), 440–449. <http://doi.org/10.1016/j.nbd.2012.02.008>.Induction

Galichon, P., & Hertig, A. (2011). Epithelial to mesenchymal transition as a biomarker in renal fibrosis: Are we ready for the bedside? *Fibrogenesis and Tissue Repair*, 4(1), 1–7. <http://doi.org/10.1186/1755-1536-4-11>

Geng, Y., Ju, Y., Ren, F., Qiu, Y., Tomita, Y., Tomoeda, M., & Kishida, M. (2014). Insulin Receptor Substrate 1 / 2 (IRS1 / 2) Regulates Wnt / β -Catenin Signaling through Blocking Autophagic Degradation of Dishevelled2 *. *Journal of Biological Chemistry*, 289(16), 11230–11241. <http://doi.org/10.1074/jbc.M113.544999>

Giovannelli, P., Donato, M. Di, Galasso, G., Zazzo, E. Di, & Bilancio, A. (2018). The Androgen Receptor in Breast Cancer. *Frontiers in Endocrinology*, 9(August), 1–8. <http://doi.org/10.3389/fendo.2018.00492>

Goldman, S. L., MacKay, M., Afshinnekoo, E., Melnick, A. M., Wu, S., & Mason, C. E. (2019). The Impact of Heterogeneity on Single-Cell Sequencing. *Frontiers in Genetics*, 10(March), 1–8. <http://doi.org/10.3389/fgene.2019.00008>

Greenman, C., Stephens, P. J., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G. R., ... Stratton, M. R. (2007). UKPMC Funders Group Patterns of somatic mutation in human cancer genomes. *Nature*, 446(7132), 153–158. <http://doi.org/10.1038/nature05610.Patterns>

Grosse-Wilde, A., D'H??rou??l, A. F., McIntosh, E., Ertaylan, G., Skupin, A., Kuestner, R. E., ... Huang, S. (2015). Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. *PLoS ONE*, 10(5), 1–28. <http://doi.org/10.1371/journal.pone.0126522>

Hamada, T., Liou, S. Y., Fukushima, T., Maruyama, T., Watanabe, S., Mikoshiba, K., & Ishida, N. (1999). The role of inositol trisphosphate-induced Ca 2+ release from IP 3 - receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. *Neuroscience Letters*, 263(2–3), 125–128. [http://doi.org/10.1016/S0304-3940\(99\)00111-1](http://doi.org/10.1016/S0304-3940(99)00111-1)

Handly, L. N., Yao, J., & Wollman, R. (2017). Signal transduction at the single-cell

level: Approaches to study the dynamic nature of signaling networks. *J Mol Biol*, 428(19), 3669–3682. <http://doi.org/10.1016/j.jmb.2016.07.009>.Signal

Hardingham, G. E., Chawla, S., Cruzalegui, F. H., & Bading, H. (1999). Control of Recruitment and Transcription-Activating Function of CBP Determines Gene Regulation by NMDA Receptors and L-Type Calcium Channels. *Neuron*, 22, 789–798.

Hart, Y., Reich-zeliger, S., Antebi, Y. E., Zaretsky, I., Mayo, A. E., & Alon, U. (2014). Paradoxical Signaling by a Secreted Molecule Leads to Homeostasis of Cell Levels. *Cell*, 158(5), 1022–1032. <http://doi.org/10.1016/j.cell.2014.07.033>

Hata, K., Takashima, R., Amano, K., Ono, K., Nakanishi, M., Yoshida, M., ... Yoneda, T. (2013). Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. *Nature Communications*, 4, 1–11. <http://doi.org/10.1038/ncomms3850>

He, A., He, S., Li, X., & Zhou, L. (2019). ZFAS1 : A novel vital oncogenic lncRNA in multiple human cancers. *Cell Proliferation*, 52(June 2018), 1–9. <http://doi.org/10.1111/cpr.12513>

Hertig, A., Anglicheau, D., Ancel, P., Mesnard, L., Brousse, N., Baugey, E., ... Rondeau, E. (2008). Early Epithelial Phenotypic Changes Predict Graft Fibrosis. *J Am Soc Nephrol* 19:, 19, 1584–1591. <http://doi.org/10.1681/ASN.2007101160>

Hogan, P. G., Hogan, P. G., Chen, L., & Chen, L. (2003). Transcriptional regulation by calcium, calcineurin and NFAT. *And NFAT. Genes Dev.*, 17(18), 2205–2232. <http://doi.org/10.1101/gad.1102703.GENES>

Hou, C., Lin, F., Hou, S., & Liu, J. (2014). Cyr61 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by Raf-1 / MEK / ERK / Elk-1 / TWIST-1 signaling pathway. *Molecular Cancer*, 13, 1–13.

Huang, J., & Guo, L. (2019). Knockdown of SOX9 Inhibits the Proliferation, Invasion, and EMT in Thyroid Cancer Cells. *Oncology Reserch*, 25, 167–176.

Ihara, H., Hirukawa, K., Goto, S., & Togari, A. (2005). ATP-stimulated interleukin-6

synthesis through P2Y receptors on human osteoblasts. *Biochemical and Biophysical Research Communications*, 326, 329–334.
<http://doi.org/10.1016/j.bbrc.2004.11.037>

Jayaraman, S., Doucet, M., Lau, W. M., & Kominsky, S. L. (2016). CITED2 Modulates Breast Cancer Metastatic Ability Through Effects on IKK α . *Molecular Cancer Research*, 96(8), 730–739. <http://doi.org/10.1158/1541-7786.MCR-16-0081>.CITED2

Jia Yin, Keping Xu, Jing Zhang, Ashok Kumar, and F.-S. X. Y. (2007). Wound-induced ATP release and EGF receptor activation in epithelial cells. *J Cell Sci*, 120(Pt 5), 815–825.

Jiao, Y., Sun, K., Zhao, L., Xu, J., Wang, L., & Fan, S. (2011). Suppression of human lung cancer cell proliferation and metastasis in vitro by the transducer of ErbB-2 . 1 (TOB1). *Acta Pharmacologica Sinica*, 33(2), 250–260.
<http://doi.org/10.1038/aps.2011.163>

Kalcheim, C. (2015). Epithelial–Mesenchymal Transitions during Neural Crest and Somite Development. *Journal of Clinical Medicine*, 5(1), 1.
<http://doi.org/10.3390/jcm5010001>

Kalluri, R., & Weinberg, R. a. (2009). Review series The basics of epithelial–mesenchymal transition. *Journal of Clinical Investigation*, 119(6), 1420–1428.
<http://doi.org/10.1172/JCI39104.1420>

Klein, A. M., Mazutis, L., Weitz, D. A., Kirschner, M. W., Klein, A. M., Mazutis, L., ... Peshkin, L. (2015). Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells Resource Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. *Cell*, 161(5), 1187–1201.
<http://doi.org/10.1016/j.cell.2015.04.044>

Knight, G. E., Bodin, P., Groat, W. C. D. E., & Burnstock, G. (2019). ATP is released from guinea pig ureter epithelium on distension. *Physiol Renal*, 282.

Komin, N., & Skupin, A. (2017). Systems Biology How to address cellular heterogeneity by distribution biology. *Current Opinion in Systems Biology*, 3,

154–160. <http://doi.org/10.1016/j.coisb.2017.05.010>

Kowanetz, M., Valcourt, U., Bergstro, R., & Heldin, C. (2004). Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor \square and Bone Morphogenetic Protein \dagger . *Molecular and Cellular Biology*, 24(10), 4241–4254. <http://doi.org/10.1128/MCB.24.10.4241>

Kroemer, G., Galluzzi, L., Kepp, O., & Zitvogel, L. (2013). Immunogenic Cell Death in Cancer Therapy. *Immunology*, 31. <http://doi.org/10.1146/annurev-immunol-032712-100008>

Kwon, T., Youn, H., Son, B., Kim, D., Moon, K., Park, S., ... Youn, B. (1978). DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. *Oncotarget*, 7(6).

Lauren Averett Byers, Lixia Diao, Jing Wang, J. V. H. (2011). An epithelial-mesenchymal transition (EMT) gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. *Clinical Cancer Res*, 193(1), 118–125.
<http://doi.org/10.1016/j.jneumeth.2010.08.011>. Autogenic

Legewie, S., Herten, D.-P., Lympertopoulos, K., Eils, R., Klingmüller, U., Kallenberger, S. M., & Unger, A. L. (2017). Correlated receptor transport processes buffer single-cell heterogeneity. *PLOS Computational Biology*, 13(9), e1005779.
<http://doi.org/10.1371/journal.pcbi.1005779>

Lewis, C. E., & Hughes, R. (2007). Inflammation and breast cancer. Microenvironmental factors regulating macrophage function in breast tumours: Hypoxia and angiopoietin-2. *Breast Cancer Research*, 9(3), 2–5.
<http://doi.org/10.1186/bcr1679>

Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. *Cancer Research*, 67(11), 5064–5066.
<http://doi.org/10.1158/0008-5472.CAN-07-0912>

Liu, C., Lv, D., Li, M., & Zhang, X. (2017). Hypermethylation of miRNA-589 promoter leads to upregulation of HDAC5 which promotes malignancy in non-small cell

lung cancer. *Jurnal of Oncology*, 50, 2079–2090.

<http://doi.org/10.3892/ijo.2017.3967>

Lohman, A. W., Billaud, M., & Isakson, B. E. (2012). Mechanisms of ATP release and signalling in the blood vessel wall. *Cardiovascular Research*, 95, 269–280.

<http://doi.org/10.1093/cvr/cvs187>

Longo, D., & Hasty, J. (2006). Dynamics of single-cell gene expression. *Molecular Systems Biology*, 2. <http://doi.org/10.1038/msb4100110>

Lüer, K., & Technau, G. M. (2009). Single cell cultures of drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy. *Neural Development*, 4(1), 1–16.

<http://doi.org/10.1186/1749-8104-4-30>

Luika A. Timmerman, Neil A. Clipstone, Steffan N. Ho, J. P. N. & G. R. C. (1996).

Rapid shuttling of NF-AT in discrimination of Ca²⁺ signals and immunosuppression. *Nature*, 383.

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., ...

McCarroll, S. A. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell*, 161(5), 1202–1214.

<http://doi.org/10.1016/j.cell.2015.05.002>

Mathew, S. O., Chaudhary, P., Powers, S. B., Jamboor, K., & Mathew, P. A. (2016).

Overexpression of LLT1 (OCIL , CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. *Oncotarget*, 7(42).

Mathis, L., & Nicolas, J. F. (2002). Cellular patterning of the vertebrate embryo.

Trends in Genetics, 18(12), 627–635. [http://doi.org/10.1016/S0168-9525\(02\)02806-8](http://doi.org/10.1016/S0168-9525(02)02806-8)

Mimitou, E., Cheng, A., Montalbano, A., Hao, S., Stoeckius, M., Legut, M., ... Smibert, P. (2018). Expanding the CITE-seq tool-kit: Detection of proteins, transcriptomes, clonotypes and CRISPR perturbations with multiplexing, in a single assay. *bioRxiv*, 466466. <http://doi.org/10.1101/466466>

Moosavi, A., & Ardekani, A. M. (2016). Role of Epigenetics in Biology and Human Diseases. *Biomedical J*, 20(November), 246–258.
<http://doi.org/10.22045/ibj.2016.01>

Morel, A.-P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. *PLoS ONE*, 3(8), e2888. <http://doi.org/10.1371/journal.pone.0002888>

Moris, N., Pina, C., & Arias, A. M. (2016). Transition states and cell fate decisions in epigenetic landscapes. *Nature Publishing Group*, 17(11), 693–703.
<http://doi.org/10.1038/nrg.2016.98>

N. M. Woods, K.S. Cuthbertson, P. H. C. (1986). Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. *Nature*, 319.

Nair, R., Teo, W. S., Mittal, V., & Swarbrick, A. (2014). ID Proteins Regulate Diverse Aspects of Cancer Progression and Provide Novel Therapeutic Opportunities. *Molecular Therapy*, 22(8), 1407–1415. <http://doi.org/10.1038/mt.2014.83>

Nelson, D. E. (2004). Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. *Science*, 306(October), 704–708.
<http://doi.org/10.1126/science.1099962>

Ng, K., Chan, L., Chai, S., Tong, M., Guan, X., Lee, N. P., ... Ma, S. (2017). TP53INP1 Downregulation Activates a p73- Dependent DUSP10 / ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma. *Cancer Research*, 77(16), 4602–4613. <http://doi.org/10.1158/0008-5472.CAN-16-3456>

Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A., & Thiery, J. P. P. (2016). Emt: 2016. *Cell*, 166(1), 21–45. <http://doi.org/10.1016/j.cell.2016.06.028>

Nishida, H. (2005). Specification of embryonic axis and mosaic development in ascidians. *Developmental Dynamics*, 233(4), 1177–1193.
<http://doi.org/10.1002/dvdy.20469>

North, R. A. (2019). Molecular Physiology of P2X Receptors. *Physiol Rev.*, 1013–1067.

Novak, I. (2003). ATP as a Signaling Molecule : the Exocrine Focus. *News Physiology*, 18, 0–5.

Parekh, A. B. (2011). Decoding cytosolic Ca²⁺ oscillations. *Trends in Biochemical Sciences*, 36(2), 78–87. <http://doi.org/10.1016/j.tibs.2010.07.013>

Patsialou, A., Wang, Y., Lin, J., Whitney, K., Goswami, S., Kenny, P. A., & Condeelis, J. S. (2012). Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. *Breast Cancer Research*, 14(5). <http://doi.org/10.1186/bcr3344>

Polyak, K. (2007). Science in medicine Breast cancer : origins and evolution. *The Journal of Clinical Investigation*, 117(11), 3155–3163.
<http://doi.org/10.1172/JCI33295>.group

Pote, M. (2012). Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. *Molecular and Cellular Biochemistry*, 363, 301–307.
<http://doi.org/10.1007/s11010-011-1182-x>

Press Release, W. (2018). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018, (September), 13–15.

Purvis, J. E., & Lahav, G. (2013). Review Encoding and Decoding Cellular Information through Signaling Dynamics. *Cell*, 152(5), 945–956.
<http://doi.org/10.1016/j.cell.2013.02.005>

Putney, J. W., Poggioli, J., & Weiss, S. J. (1981). Receptor regulation of calcium release and calcium permeability in parotid gland cells. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 296(1080), 37–45. <http://doi.org/10.1098/rstb.1981.0169>

Qiang Li, Diana L. Ramírez-Bergeron, Sally L. Dunwoodie, and Y.-C. Y. (2012). Cited2 Gene Controls Pluripotency and Cardiomyocyte Differentiation of Murine Embryonic Stem Cells through Oct4 Gene. *Journal of Biological Chemistry*, 287(34), 29088–29100. <http://doi.org/10.1074/jbc.M112.378034>

Roberts, A. B., Tian, F., Byfield, S. D. C., Stuelten, C., Ooshima, A., Saika, S., &

Flanders, K. C. (2006). Smad3 is key to TGF- β -mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. *Cytokine and Growth Factor Reviews*, 17(1–2), 19–27.
<http://doi.org/10.1016/j.cytofr.2005.09.008>

Rorison, P., Thomlinson, A., Hassan, Z., Roberts, S. A., Ferguson, M. W. J., & Shah, M. (2010). Longitudinal changes in plasma Transforming growth factor beta-1 and post-burn scarring in children. *Burns*, 36(1), 89–96.
<http://doi.org/10.1016/j.burns.2009.03.008>

Saitoh, M. (2018). Involvement of partial EMT in cancer progression. *Biochem J*, 164(4), 257–264. <http://doi.org/10.1093/jb/mvy047>

Shan, L., Song, Y., Su, D., Liu, Y., Shi, X., & Lu, S. (2015). Early Growth Response Protein-1 Involves in Transforming Growth factor- β 1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells. *Asian Pacific Journal of Cancer Prevention*, 16, 4137–4142.

Simino, J., Wang, Z., Bressler, J., Chouraki, V., Yang, Q., & Mosley, H. (2017). Whole exome sequence-based association analyses of plasma amyloid- β in African and European Americans ; the Atherosclerosis Risk in Communities-Neurocognitive Study. *PLoS ONE*.

Sjöblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., ... Velculescu, V. E. (2006). Supporting Online Material for “The consensus coding sequences of human breast and colorectal cancers”. *Science (New York, N.Y.)*, 314(September), 1–11. <http://doi.org/10.1126/science.1133427>

Skupin, A., Kettenmann, H., & Falcke, M. (2010). Calcium signals driven by single channel noise. *PLoS Computational Biology*, 6(8), 17–19.
<http://doi.org/10.1371/journal.pcbi.1000870>

Smedler, E., & Uhlén, P. (2014). Frequency decoding of calcium oscillations. *Biochimica et Biophysica Acta - General Subjects*, 1840(3), 964–969.
<http://doi.org/10.1016/j.bbagen.2013.11.015>

Sonnen, K. F., & Aulehla, A. (2014). Seminars in Cell & Developmental Biology

Dynamic signal encoding — From cells to organisms. *Seminars in Cell and Developmental Biology*, 34, 91–98. <http://doi.org/10.1016/j.semcdb.2014.06.019>

Stacey, S. N., Manolescu, A., Sulem, P., Rafnar, T., Gudmundsson, J., Gudjonsson, S. A., ... Stefansson, K. (2007). Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. *Nature Genetics*, 39(7), 865–869. <http://doi.org/10.1038/ng2064>

Suarez-carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation : inseparable actors of cancer progression. *Molecular Oncology*, 11, 805–823. <http://doi.org/10.1002/1878-0261.12095>

Sun, T., Du, S. Y., Armenia, J., Qu, F., Fan, J., Wang, X., ... Kantoff, P. W. (2018). Expression of lncRNA MIR222HG cotranscribed from the miR-221/222 gene promoter facilitates the development of castration-resistant prostate cancer. *Oncogenesis*, 7(3). <http://doi.org/10.1038/s41389-018-0039-5>

Syn, W. K. I. N., Jung, Y., Omenetti, A., Abdelmalek, M., Guy, C. D., Yang, L. I. U., ... Diehl, A. M. A. E. (2009). Hedgehog-Mediated Epithelial-to-Mesenchymal Transition and Fibrogenic Repair in Nonalcoholic Fatty Liver Disease. *GASTROENTEROLOGY*, 137(4), 1478–1488.e8. <http://doi.org/10.1053/j.gastro.2009.06.051>

Thevenod, F., Streb, H., Ullrich, K. J., & Schulz, I. (1986). Inositol 1,4,5-trisphosphate releases Ca²⁺ from a nonmitochondrial store site in permeabilized rat cortical kidney cells. *Kidney International*, 29(3), 695–702. <http://doi.org/10.1038/ki.1986.54>

Thurley, K., Tovey, S. C., Moenke, G., Prince, V. L., Meena, A., Thomas, A. P., ... Falcke, M. (2014). Reliable encoding of stimulus intensities within random sequences of intracellular Ca²⁺ spikes. *Science Signaling*, 7(331), ra59. <http://doi.org/10.1126/scisignal.2005237>

Trapnell, C., & Cacchiarelli, D. (2017). Monocle : Cell counting , differential expression , and trajectory analysis for single-cell RNA-Seq experiments, 10. Retrieved from <https://bioconductor.org/packages/release/bioc/html/monocle.html>

Ulrich, C. M., Bigler, J., & Potter, J. D. (2006). Non-steroidal anti-inflammatory drugs for cancer prevention: Promise, perils and pharmacogenetics. *Nature Reviews Cancer*, 6(2), 130–140. <http://doi.org/10.1038/nrc1801>

Valladares, D., Almarza, G., Contreras, A., Pavez, M., Buvinic, S., Jaimovich, E., & Casas, M. (2013). Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy. *PLoS ONE*, 8(11). <http://doi.org/10.1371/journal.pone.0075340>

Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S., & Marioni, J. C. (2017). Normalizing single-cell RNA sequencing data: challenges and opportunities. *Nature Methods*, 14(6), 565–571. <http://doi.org/10.1038/nmeth.4292>

Virgilio, F. Di, Ben, D. D., Sarti, A. C., Giuliani, A. L., & Falzoni, S. (2017). Review The P2X7 Receptor in Infection and Inflammation. *Immunity*, 47(1), 15–31. <http://doi.org/10.1016/j.jimmuni.2017.06.020>

Volk, S. W., Iqbal, S. A., & Bayat, A. (2013). Interactions of the Extracellular Matrix and Progenitor Cells in Cutaneous Wound Healing. *Advances in Wound Care*, 2(6), 261–272. <http://doi.org/10.1089/wound.2012.0417>

Wang, J., Moreira, K. M., Campos, B., Kaetzel, M. A., & John, R. (1996). Targeted neutralization of calmodulin in the nucleus blocks DNA synthesis and cell cycle progression. *Biochemical and Biophysical Research Communications*, 1313, 223–228.

Wang, J., Sun, D., Wang, Y., Ren, F., Pang, S., Wang, D., & Xu, S. (2014). FOSL2 Positively Regulates TGF- β 1 Signalling in Non-Small Cell Lung Cancer. *PLoS ONE*, 9(11), 1–7. <http://doi.org/10.1371/journal.pone.0112150>

Wang, S., Ren, T., Jiao, G., Huang, Y., & Bao, X. (2017). BMPR2 promotes invasion and metastasis via the RhoA-ROCK- LIMK2 pathway in human osteosarcoma cells. *Oncotarget*, 8(35), 58625–58641.

Wen-hong, L., Llopis, J., Whitney, M., Zlokarnik, G., & Tsien, R. Y. (1998). Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. *Nature*, 414(November), 204–208.

<http://doi.org/10.1038/nature02336.1>.

Wen, J. D. O., Trieter, R. S., Urdick, M. B., Aghnegahdar, H. H., Anney, L. N., & Randt, R. S. H. (1997). Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine β and γ proteins. *International Journal of Cancer*, 103(February), 94–103.

Wesley, U. V., Bove, P. F., McCarthy, S., & Der, A. Van. (2007). Airway Epithelial Cell Migration and Wound Repair by ATP-mediated Activation of Dual Oxidase 1 *. *Biol. Chem.*, 282. <http://doi.org/10.1074/jbc.M606533200>

Whitaker, M. (2006). Calcium at fertilization and in early development. *Physiol Rev.*, 86(1), 25–88. <http://doi.org/10.1152/physrev.00023.2005.Calcium>

Wiley, H. S. (2017). Previews Decoding Signal Processing at the Single-Cell Level. *Cell Systems*, 5, 542–543. <http://doi.org/10.1016/j.cels.2017.12.003>

Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. *Wound Repair and Regeneration : Official Publication of the Wound Healing Society [and] the European Tissue Repair Society*, 22(2), 246–255. <http://doi.org/10.1111/wrr.12154>

Xu, G., Chen, J., Jing, G., & Shalev, A. (2012). Preventing β -Cell Loss and Diabetes With Calcium Channel Blockers. *Diabetes*, 61(April). <http://doi.org/10.2337/db11-0955>

Xu, L., Zhang, Y., Guo, R., Shen, W., Qi, Y., & Wang, Q. (2017). HES1 promotes extracellular matrix protein expression and inhibits proliferation and migration in human trabecular meshwork cells under oxidative stress. *Oncotarget*, 8(13), 21818–21833.

Yang, J. M., Bhattacharya, S., West-Foyle, H., Hung, C. F., Wu, T. C., Iglesias, P. A., & Huang, C. H. (2018). Integrating chemical and mechanical signals through dynamic coupling between cellular protrusions and pulsed ERK activation. *Nature*

Yang, Y., Pan, X., Lei, W., Wang, J., & Song, J. (2006). Transforming growth factor-1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. *Transforming growth factor- b 1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene*, 25(December 2006). <http://doi.org/10.1038/sj.onc.1209712>

Yoon, K., Kim, S. H., Lee, S. Y., & You, H. J. (2015). Tight junction protein 1 is regulated by transforming growth factor- β and contributes to cell motility in NSCLC cells. *BMB Reports*, 48(2), 115–120.

Youk, H., Lim, W. A., Biology, S., Francisco, S., Francisco, S., & Francisco, S. (2014). Sending Mixed Messages for Cell Population Control. *Cell*, 158(5), 973–975. <http://doi.org/10.1016/j.cell.2014.08.013>. Sending

Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., & Kalluri, R. (2003). BMP-7 counteracts TGF- β 1 – induced epithelial-to- mesenchymal transition and reverses chronic renal injury. *Nature Medicine*, 9(7), 964–968.

Zeng, J., Zhang, N., Zhao, G., Xu, L., Yang, Y., Xu, X., & Chen, M. (2018). MT1G is Silenced by DNA Methylation and Contributes to the Pathogenesis of Hepatocellular Carcinoma. *Journal of Cancer*, 9. <http://doi.org/10.7150/jca.25680>

Zhu, L., Luo, Y., Chen, T., Chen, F., Wang, T., & Hu, Q. (2008). Ca $^{2+}$ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. *Journal of Cell Science*, 121, 2511–2518. <http://doi.org/10.1242/jcs.031997>

Zhu, L., Song, S., Pi, Y., Yu, Y., She, W., Ye, H., ... Hu, Q. (2011). Cumulated Ca $^{2+}$ spike duration underlies Ca $^{2+}$ oscillation frequency-regulated NF κ B transcriptional activity. *Journal of Cell Science*, 124(Pt 15), 2591–2601. <http://doi.org/10.1242/jcs.082727>