ADDENDUM TO: REDUCTIONS OF ALGEBRAIC INTEGERS

ANTONELLA PERUCCA, PIETRO SGOBBA, SEBASTIANO TRONTO

ABSTRACT. Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times} . We consider Kummer extensions of G of the form $K(\zeta_{2^m}, \sqrt[2^n]/K(\zeta_{2^m}))$, where $n \leq m$. In the paper *Reductions of algebraic integers* (J. Number Theory, 2016) by Debry and Perucca, the degrees of those extensions have been evaluated in terms of divisibility parameters over $K(\zeta_4)$. We prove how properties of G over K explicitly determine the divisibility parameters over $K(\zeta_4)$. This result yields a clear computational advantage, since no field extension is required.

Aim. Let K be a number field not containing ζ_4 , and let G be a finitely generated and (without loss of generality) torsion-free subgroup of K^{\times} . The aim of this note is studying the degree of Kummer extensions of G of the form

(1) $K(\zeta_{2^m}, \sqrt[2^n]{G})/K(\zeta_{2^m})$ where $n \leq m$.

In [1, Theorem 18 and Lemma 19] by Debry and Perucca, such Kummer degree has been evaluated in terms of divisibility parameters for G over $K(\zeta_4)$. We show in Theorems 1 and 2 that those divisibility parameters are completely determined by properties over K, so that applying [1, Theorem 18 and Lemma 19] does not require any computation over $K(\zeta_4)$.

Notation and definitions. Let K be a number field. We denote by ζ_{2^n} a root of unity of order 2^n , and write $K_{2^n} := K(\zeta_{2^n})$ for the corresponding cyclotomic extension. We write $K_{2^{\infty}}$ for the compositum of all extensions K_{2^n} with $n \ge 1$.

An element of K^{\times} is called *strongly 2-indivisible* if it is not a root of unity times a square in K^{\times} . Finitely many distinct elements of K^{\times} are called *strongly 2-independent* if the product of any non-empty subset of them is strongly 2-indivisible.

We consider a finitely generated and torsion-free subgroup G of K^{\times} and a basis g_1, \ldots, g_r of G. We can write

(2)
$$g_i = \zeta_i \cdot b_i^{2^{d_i}}$$

for some strongly 2-indivisible elements b_1, \ldots, b_r of K^{\times} , for some non-negative integers d_i and for some roots of unity ζ_i in K of order 2^{h_i} . We refer to b_i as the *strongly* 2-*indivisible part* of g_i . We call g_1, \ldots, g_r a 2-good basis of G if the b_i 's are strongly 2-independent or, equivalently, if the sum $\sum_i d_i$ is maximal among the possible bases of G, see [1, Section 3.1]. In this case we call d_i and h_i the *d*-parameters and the *h*-parameters for the 2-divisibility of G in K, respectively. Recall from [1, Theorem 14] that a 2-good basis of G always exists.

²⁰¹⁰ Mathematics Subject Classification. Primary: 11Y40; Secondary: 11R18, 11R21.

Key words and phrases. Number fields, Kummer theory, Degree, Cyclotomic fields.

Two special elements. From now on we suppose that K is a number field with $\zeta_4 \notin K$, and such that

(3)
$$K \cap \mathbb{Q}_{2^{\infty}} = \mathbb{Q}(\zeta_{2^s} + \zeta_{2^s}^{-1})$$

holds for some $s \ge 2$. (Notice that otherwise the divisibility parameters do not change from K to K_4 , because strongly 2-indivisible elements over K are strongly 2-indivisible also over K_4 by [2, Lemma 12].) In this case the two elements

(4)
$$\pm f := \pm (\zeta_{2^s} + \zeta_{2^s}^{-1} + 2)$$

are strongly 2-indivisible over K but not strongly 2-indivisible over K_4 . Indeed, by [2, Lemma 9] we know that $K(\sqrt{\pm f})$ is a quadratic extension of K because its intersection with $\mathbb{Q}_{2^{\infty}}$ is a quadratic extension of $K \cap \mathbb{Q}_{2^{\infty}}$. So $\pm f$ is not a square in K, and since $\zeta_4 \notin K$ we have that $\pm f$ is strongly 2-indivisible in K. By [2, Lemma 9] we know that $K_4 \cap \mathbb{Q}_{2^{\infty}} = \mathbb{Q}_{2^s}$ because this intersection is a quadratic extension of $K \cap \mathbb{Q}_{2^{\infty}}$ containing ζ_4 . Notice that we can write

(5)
$$f = \zeta_{2^s}^{-1} (1 + \zeta_{2^s})^2,$$

so $\pm f$ is not strongly 2-indivisible in K_4 . By [2, Lemma 12], up to squares in K^{\times} , only the elements $\pm f$ are strongly 2-indivisible over K but not strongly 2-indivisible over K_4 .

Main results. We prove when and how the divisibility parameters change from K to K_4 :

Theorem 1. Let G be a finitely generated and torsion-free subgroup of K^{\times} . The following conditions are equivalent (where f is as in (4)):

- (1) the *d*-parameters for the 2-divisibility of G change from K to K_4 ;
- (2) the group G contains an element of the form $\pm (fa^2)^{2^d}$ for some $a \in K^{\times}$ and $d \ge 0$;
- (3) there is a 2-good basis of G that contains an element of the form $\pm (fa^2)^{2^d}$ for some $a \in K^{\times}$ and $d \ge 0$.

Theorem 2. Suppose that there is a 2-good basis $\{g_i\}$ of G over K such that

(6)
$$g_1 = \pm (fa^2)^{2^d}$$

for some $a \in K^{\times}$ and some $d_1 \ge 0$. Then $\{g_i\}$ is a 2-good basis of G over K_4 . The dparameters over K_4 are those over K except for the parameter d_1 which increases by 1. The h-parameters are unchanged, except for the parameter h_1 , which over K_4 becomes

$$h_1' = \begin{cases} h_1 & \text{if } d_1 \ge s \\ 0 & \text{if } d_1 = s - 1 \text{ and } h_1 = 1 \\ 1 & \text{if } d_1 = s - 1 \text{ and } h_1 = 0 \\ s - d_1 & \text{if } d_1 \le s - 2 . \end{cases}$$

Example 3. Let G be the subgroup of \mathbb{Q}^{\times} given by $\langle 1350, 75 \rangle$. We are in the situation of Theorem 2 with f = 2. Indeed, 1350/75 = 18 is 2 times a square, thus the divisibility parameters of G change from \mathbb{Q} to \mathbb{Q}_4 . More precisely $\{18, 75\}$ is a 2-good basis of G with parameters given by $d_1 = d_2 = h_1 = h_2 = 0$ over \mathbb{Q} and by $d_1 = 1, h_1 = 2, d_2 = h_2 = 0$ over \mathbb{Q}_4 .

We can apply Theorem 18 and Lemma 19 from [1] for $m \ge 2$ and m = 1, respectively. We obtain:

$$\left[\mathbb{Q}_{2^m}(\sqrt[2^n]{G}):\mathbb{Q}_{2^m}\right] = \begin{cases} 4 & \text{if } m = 1,2 \text{ and } n = 1\\ 16 & \text{if } m = n = 2\\ 2^{2n-1} & \text{if } m \ge 3 \end{cases}.$$

The proof of Theorem 2.

Lemma 4. Let b_1, \ldots, b_r be strongly 2-independent elements of K^{\times} . Then they are strongly 2-independent over K_4 if and only if no product of the form $\prod_{i \in J} b_i$, for some subset $J \subseteq \{1, \ldots, r\}$, is equal to $\pm fa^2$ for some $a \in K^{\times}$.

Proof. This is clear from the definition of strongly 2-independent because the only elements of K^{\times} that are strongly 2-indivisible over K but not over K_4 are of the form $\pm fa^2$. \Box

Proof of Theorem 2. Notice that there is no generator g_i other than g_1 whose strongly 2-indivisible part b_i is f times a square in K^{\times} (otherwise the b_i 's would not be strongly 2-independent over K). In particular, each b_i for i > 1 is strongly 2-indivisible also over K_4 . Set $B_1 = (1 + \zeta_{2^s})a$, and set $B_i = b_i$ for i > 1. We claim that the B_i 's are strongly 2-independent over K_4 .

Since we can use the B_i 's as strongly 2-indivisible parts of the elements g_i over K_4 , it follows from this claim that the g_i 's form a 2-good basis over K_4 . Only the *d*-parameter of g_1 changes (it increases by 1) from K to K_4 , and in view of (5) and (6) it is easy to check that its *h*parameter changes as given in the statement.

We are left to prove the claim. Suppose that the B_i 's are not strongly 2-independent over K_4 , and consider a non-empty set $J \subseteq \{1, \ldots, r\}$ such that we can write

$$\zeta \cdot \alpha^2 = \prod_{i \in J} B_i$$

where ζ is a root of unity in K_4 and $\alpha \in K_4^{\times}$. This is impossible if $1 \notin J$ because b_2, \ldots, b_r are strongly 2-independent also over K_4 by Lemma 4. So by (5) we can write $\zeta' \cdot \alpha^4 = f \cdot b^2$ where ζ' is a root of unity in K_4 and $b \in K^{\times}$. This gives a contradiction because $f \cdot b^2$ cannot have a fourth root in $K_{2^{\infty}}$ (see for instance [2, Proof of Lemma 12]).

The proof of Theorem 1.

Proposition 5. Let G be a finitely generated and torsion-free subgroup of K^{\times} of rank r. The following conditions are equivalent (where f is as in (4)):

- (1) the group G contains an element of the form $\pm (fa^2)^{2^d}$ for some $a \in K^{\times}$ and $d \ge 0$;
- (2) there is a 2-good basis $\{g_i\}$ of G and some subset $J \subseteq \{1, \ldots, r\}$ such that $\prod_{i \in J} b_i = \pm f a^2$ for some $a \in K^{\times}$;
- (3) for every 2-good basis $\{g_i\}$ of G there is some subset $J \subseteq \{1, \ldots, r\}$ such that $\prod_{i \in J} b_i = \pm f a^2$ for some $a \in K^{\times}$;
- (4) the d-parameters for the 2-divisibility of G change from K to K_4 .

Proof. The implication $(3) \Rightarrow (2)$ is obvious, and to prove $(2) \Rightarrow (1)$ it suffices to raise $\pm fa^2$ to the power 2^d , where d is the maximum of the d-parameters of the g_i with $i \in J$. Now we prove $(1) \Rightarrow (3)$. Expressing the element in (1) in terms of the generators of a 2-good basis, we can write

$$(fa^2)^{2^d} = \pm \prod_i b_i^{z_i \cdot 2^{d_i}}$$

for some integers z_i . Since the b_i 's are strongly 2-independent, we have that $2^d | 2^{d_i} z_i$ for all i. Hence there are some integers $y_i \in \{0, 1\}$ such that $\prod_i b_i^{y_i} = \pm f \alpha^2$ for some $\alpha \in K^{\times}$ (recall that $\zeta_4 \notin K$).

The equivalence (3) \Leftrightarrow (4) is clear by Lemma 4 because the b_i 's are not strongly 2-independent over K_4 if and only if the sum of the *d*-parameters increases from K to K_4 .

Proposition 6. Let G be a finitely generated and torsion-free subgroup of K^{\times} . Suppose that G contains an element of the form $\pm (fa^2)^{2^d}$ for some $a \in K^{\times}$, and for some $d \ge 0$. Then G has a 2-good basis containing an element of the same form.

Proof. By Proposition 5 we know that there is a 2-good basis g_1, \ldots, g_r of G such that the strongly 2-indivisible parts b_i satisfy $\prod_{i \in J} b_i = \pm f a^2$ for some $a \in K^{\times}$ and for some nonempty subset $J \subseteq \{1, \ldots, r\}$. Let d_j be the largest divisibility parameter of the g_i 's for $i \in J$. Then we have

$$(fa^2)^{2^{d_j}} = \pm g_j \cdot \prod_{i \in J, i \neq j} g_i^{2^{d_j - d_i}}$$

In particular, we may replace the generator g_j by $\pm (fa^2)^{2^{d_j}}$. The *d*-parameter of this generator does not change, so the obtained basis is again a 2-good basis.

Notice that the above proof is constructive in that it provides an explicit way of constructing a 2-good basis of G containing an element of the form $\pm (fa^2)^{2^d}$ where f is as in (4), $a \in K^{\times}$, and $d \ge 0$.

Proof of Theorem 1. The equivalence $(1) \Leftrightarrow (2)$ is proven in Proposition 5 and the equivalence $(2) \Leftrightarrow (3)$ in Proposition 6.

REFERENCES

- [1] DEBRY, C. PERUCCA, A.: Reductions of algebraic integers, J. Number Theory, 167 (2016), 259–283.
- [2] PERUCCA, A.: The order of the reductions of an algebraic integer, J. Number Theory, 148 (2015), 121–136.

MATHEMATICS RESEARCH UNIT, UNIVERSITY OF LUXEMBOURG, 6 AV. DE LA FONTE, 4364 ESCH-SUR-ALZETTE, LUXEMBOURG

Email address: antonella.perucca@uni.lu, pietro.sgobba@uni.lu, sebastiano.tronto@uni.lu