ADDENDUM TO: REDUCTIONS OF ALGEBRAIC INTEGERS

ANTONELLA PERUCCA, PIETRO SGOBBA, SEBASTIANO TRONTO

Abstract

Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times}. We consider Kummer extensions of G of the form $K\left(\zeta_{2^{m}}, \sqrt[2^{n}]{G}\right) / K\left(\zeta_{2^{m}}\right)$, where $n \leqslant m$. In the paper Reductions of algebraic integers (J. Number Theory, 2016) by Debry and Perucca, the degrees of those extensions have been evaluated in terms of divisibility parameters over $K\left(\zeta_{4}\right)$. We prove how properties of G over K explicitly determine the divisibility parameters over $K\left(\zeta_{4}\right)$. This result yields a clear computational advantage, since no field extension is required.

Aim. Let K be a number field not containing ζ_{4}, and let G be a finitely generated and (without loss of generality) torsion-free subgroup of K^{\times}. The aim of this note is studying the degree of Kummer extensions of G of the form

$$
\begin{equation*}
K\left(\zeta_{2^{m}}, \sqrt[2^{n}]{G}\right) / K\left(\zeta_{2^{m}}\right) \quad \text { where } n \leqslant m \tag{1}
\end{equation*}
$$

In [1. Theorem 18 and Lemma 19] by Debry and Perucca, such Kummer degree has been evaluated in terms of divisibility parameters for G over $K\left(\zeta_{4}\right)$. We show in Theorems 1 and 2 that those divisibility parameters are completely determined by properties over K, so that applying [1] Theorem 18 and Lemma 19] does not require any computation over $K\left(\zeta_{4}\right)$.

Notation and definitions. Let K be a number field. We denote by $\zeta_{2^{n}}$ a root of unity of order 2^{n}, and write $K_{2^{n}}:=K\left(\zeta_{2^{n}}\right)$ for the corresponding cyclotomic extension. We write $K_{2^{\infty}}$ for the compositum of all extensions $K_{2^{n}}$ with $n \geqslant 1$.
An element of K^{\times}is called strongly 2-indivisible if it is not a root of unity times a square in K^{\times}. Finitely many distinct elements of K^{\times}are called strongly 2-independent if the product of any non-empty subset of them is strongly 2 -indivisible.
We consider a finitely generated and torsion-free subgroup G of K^{\times}and a basis g_{1}, \ldots, g_{r} of G. We can write

$$
\begin{equation*}
g_{i}=\zeta_{i} \cdot b_{i}^{2_{i}^{d_{i}}} \tag{2}
\end{equation*}
$$

for some strongly 2 -indivisible elements b_{1}, \ldots, b_{r} of K^{\times}, for some non-negative integers d_{i} and for some roots of unity ζ_{i} in K of order $2^{h_{i}}$. We refer to b_{i} as the strongly 2-indivisible part of g_{i}. We call g_{1}, \ldots, g_{r} a 2-good basis of G if the b_{i} 's are strongly 2 -independent or, equivalently, if the sum $\sum_{i} d_{i}$ is maximal among the possible bases of G, see [1, Section 3.1]. In this case we call d_{i} and h_{i} the d-parameters and the h-parameters for the 2 -divisibility of G in K, respectively. Recall from [1, Theorem 14] that a 2 -good basis of G always exists.

[^0]Key words and phrases. Number fields, Kummer theory, Degree, Cyclotomic fields.

Two special elements. From now on we suppose that K is a number field with $\zeta_{4} \notin K$, and such that

$$
\begin{equation*}
K \cap \mathbb{Q}_{2^{\infty}}=\mathbb{Q}\left(\zeta_{2^{s}}+\zeta_{2^{s}}^{-1}\right) \tag{3}
\end{equation*}
$$

holds for some $s \geqslant 2$. (Notice that otherwise the divisibility parameters do not change from K to K_{4}, because strongly 2 -indivisible elements over K are strongly 2 -indivisible also over K_{4} by [2, Lemma 12].) In this case the two elements

$$
\begin{equation*}
\pm f:= \pm\left(\zeta_{2^{s}}+\zeta_{2^{s}}^{-1}+2\right) \tag{4}
\end{equation*}
$$

are strongly 2 -indivisible over K but not strongly 2 -indivisible over K_{4}. Indeed, by [2, Lemma 9] we know that $K(\sqrt{ \pm f})$ is a quadratic extension of K because its intersection with $\mathbb{Q}_{2} \infty$ is a quadratic extension of $K \cap \mathbb{Q}_{2^{\infty}}$. So $\pm f$ is not a square in K, and since $\zeta_{4} \notin K$ we have that $\pm f$ is strongly 2-indivisible in K. By [2, Lemma 9] we know that $K_{4} \cap \mathbb{Q}_{2^{\infty}}=\mathbb{Q}_{2^{s}}$ because this intersection is a quadratic extension of $K \cap \mathbb{Q}_{2 \infty}$ containing ζ_{4}. Notice that we can write

$$
\begin{equation*}
f=\zeta_{2^{s}}^{-1}\left(1+\zeta_{2^{s}}\right)^{2}, \tag{5}
\end{equation*}
$$

so $\pm f$ is not strongly 2 -indivisible in K_{4}. By [2, Lemma 12], up to squares in K^{\times}, only the elements $\pm f$ are strongly 2 -indivisible over K but not strongly 2 -indivisible over K_{4}.
Main results. We prove when and how the divisibility parameters change from K to K_{4} :
Theorem 1. Let G be a finitely generated and torsion-free subgroup of K^{\times}. The following conditions are equivalent (where f is as in (4)):
(1) the d-parameters for the 2 -divisibility of G change from K to K_{4};
(2) the group G contains an element of the form $\pm\left(f a^{2}\right)^{2^{d}}$ for some $a \in K^{\times}$and $d \geqslant 0$;
(3) there is a 2-good basis of G that contains an element of the form $\pm\left(f a^{2}\right)^{2^{d}}$ for some $a \in K^{\times}$and $d \geqslant 0$.

Theorem 2. Suppose that there is a 2-good basis $\left\{g_{i}\right\}$ of G over K such that

$$
\begin{equation*}
g_{1}= \pm\left(f a^{2}\right)^{2^{d_{1}}} \tag{6}
\end{equation*}
$$

for some $a \in K^{\times}$and some $d_{1} \geqslant 0$. Then $\left\{g_{i}\right\}$ is a 2 -good basis of G over K_{4}. The d parameters over K_{4} are those over K except for the parameter d_{1} which increases by 1 . The h-parameters are unchanged, except for the parameter h_{1}, which over K_{4} becomes

$$
h_{1}^{\prime}= \begin{cases}h_{1} & \text { if } d_{1} \geqslant s \\ 0 & \text { if } d_{1}=s-1 \text { and } h_{1}=1 \\ 1 & \text { if } d_{1}=s-1 \text { and } h_{1}=0 \\ s-d_{1} & \text { if } d_{1} \leqslant s-2 .\end{cases}
$$

Example 3. Let G be the subgroup of \mathbb{Q}^{\times}given by $\langle 1350,75\rangle$. We are in the situation of Theorem 2 with $f=2$. Indeed, $1350 / 75=18$ is 2 times a square, thus the divisibility parameters of G change from \mathbb{Q} to \mathbb{Q}_{4}. More precisely $\{18,75\}$ is a 2 -good basis of G with parameters given by $d_{1}=d_{2}=h_{1}=h_{2}=0$ over \mathbb{Q} and by $d_{1}=1, h_{1}=2, d_{2}=h_{2}=0$ over \mathbb{Q}_{4}.

We can apply Theorem 18 and Lemma 19 from [1] for $m \geqslant 2$ and $m=1$, respectively. We obtain:

$$
\left[\mathbb{Q}_{2^{m}}(\sqrt[2^{n}]{G}): \mathbb{Q}_{2^{m}}\right]= \begin{cases}4 & \text { if } m=1,2 \text { and } n=1 \\ 16 & \text { if } m=n=2 \\ 2^{2 n-1} & \text { if } m \geqslant 3\end{cases}
$$

The proof of Theorem 2.

Lemma 4. Let b_{1}, \ldots, b_{r} be strongly 2-independent elements of K^{\times}. Then they are strongly 2 -independent over K_{4} if and only if no product of the form $\prod_{i \in J} b_{i}$, for some subset $J \subseteq$ $\{1, \ldots, r\}$, is equal to $\pm f a^{2}$ for some $a \in K^{\times}$.

Proof. This is clear from the definition of strongly 2 -independent because the only elements of K^{\times}that are strongly 2 -indivisible over K but not over K_{4} are of the form $\pm f a^{2}$.

Proof of Theorem 2 Notice that there is no generator g_{i} other than g_{1} whose strongly 2 -indivisible part b_{i} is f times a square in K^{\times}(otherwise the b_{i} 's would not be strongly 2-independent over $K)$. In particular, each b_{i} for $i>1$ is strongly 2 -indivisible also over K_{4}. Set $B_{1}=\left(1+\zeta_{2^{s}}\right) a$, and set $B_{i}=b_{i}$ for $i>1$. We claim that the B_{i} 's are strongly 2 -independent over K_{4}.
Since we can use the B_{i} 's as strongly 2 -indivisible parts of the elements g_{i} over K_{4}, it follows from this claim that the g_{i} 's form a 2 -good basis over K_{4}. Only the d-parameter of g_{1} changes (it increases by 1) from K to K_{4}, and in view of (5) and (6) it is easy to check that its h parameter changes as given in the statement.
We are left to prove the claim. Suppose that the B_{i} 's are not strongly 2 -independent over K_{4}, and consider a non-empty set $J \subseteq\{1, \ldots, r\}$ such that we can write

$$
\zeta \cdot \alpha^{2}=\prod_{i \in J} B_{i}
$$

where ζ is a root of unity in K_{4} and $\alpha \in K_{4}^{\times}$. This is impossible if $1 \notin J$ because b_{2}, \ldots, b_{r} are strongly 2 -independent also over K_{4} by Lemma 4. So by (5) we can write $\zeta^{\prime} \cdot \alpha^{4}=f \cdot b^{2}$ where ζ^{\prime} is a root of unity in K_{4} and $b \in K^{\times}$. This gives a contradiction because $f \cdot b^{2}$ cannot have a fourth root in $K_{2 \infty}$ (see for instance [2, Proof of Lemma 12]).

The proof of Theorem 1.

Proposition 5. Let G be a finitely generated and torsion-free subgroup of K^{\times}of rank r. The following conditions are equivalent (where f is as in (4)):
(1) the group G contains an element of the form $\pm\left(f a^{2}\right)^{2^{d}}$ for some $a \in K^{\times}$and $d \geqslant 0$;
(2) there is a 2 -good basis $\left\{g_{i}\right\}$ of G and some subset $J \subseteq\{1, \ldots, r\}$ such that $\prod_{i \in J} b_{i}=$ $\pm f a^{2}$ for some $a \in K^{\times}$;
(3) for every 2 -good basis $\left\{g_{i}\right\}$ of G there is some subset $J \subseteq\{1, \ldots, r\}$ such that $\prod_{i \in J} b_{i}= \pm f a^{2}$ for some $a \in K^{\times} ;$
(4) the d-parameters for the 2 -divisibility of G change from K to K_{4}.

Proof. The implication (3) $\Rightarrow(2)$ is obvious, and to prove (2) \Rightarrow (1) it suffices to raise $\pm f a^{2}$ to the power 2^{d}, where d is the maximum of the d-parameters of the g_{i} with $i \in J$. Now we prove $(1) \Rightarrow(3)$. Expressing the element in (1) in terms of the generators of a 2 -good basis, we can write

$$
\left(f a^{2}\right)^{2^{d}}= \pm \prod_{i} b_{i}^{z_{i} \cdot 2^{d_{i}}}
$$

for some integers z_{i}. Since the b_{i} 's are strongly 2-independent, we have that $2^{d} \mid 2^{d_{i}} z_{i}$ for all i. Hence there are some integers $y_{i} \in\{0,1\}$ such that $\prod_{i} b_{i}^{y_{i}}= \pm f \alpha^{2}$ for some $\alpha \in K^{\times}$(recall that $\zeta_{4} \notin K$).
The equivalence (3) $\Leftrightarrow(4)$ is clear by Lemma 4 because the b_{i} 's are not strongly 2 -independent over K_{4} if and only if the sum of the d-parameters increases from K to K_{4}.

Proposition 6. Let G be a finitely generated and torsion-free subgroup of K^{\times}. Suppose that G contains an element of the form $\pm\left(f a^{2}\right)^{2^{d}}$ for some $a \in K^{\times}$, and for some $d \geqslant 0$. Then G has a 2-good basis containing an element of the same form.

Proof. By Proposition 5 we know that there is a 2 -good basis g_{1}, \ldots, g_{r} of G such that the strongly 2 -indivisible parts b_{i} satisfy $\prod_{i \in J} b_{i}= \pm f a^{2}$ for some $a \in K^{\times}$and for some nonempty subset $J \subseteq\{1, \ldots, r\}$. Let d_{j} be the largest divisibility parameter of the g_{i} 's for $i \in J$. Then we have

$$
\left(f a^{2}\right)^{2^{d_{j}}}= \pm g_{j} \cdot \prod_{i \in J, i \neq j} g_{i}^{2^{d_{j}-d_{i}}}
$$

In particular, we may replace the generator g_{j} by $\pm\left(f a^{2}\right)^{2^{d_{j}}}$. The d-parameter of this generator does not change, so the obtained basis is again a 2 -good basis.

Notice that the above proof is constructive in that it provides an explicit way of constructing a 2 -good basis of G containing an element of the form $\pm\left(f a^{2}\right)^{2^{d}}$ where f is as in (4), $a \in K^{\times}$, and $d \geqslant 0$.

Proof of Theorem 1 The equivalence $(1) \Leftrightarrow(2)$ is proven in Proposition 5 and the equivalence $(2) \Leftrightarrow(3)$ in Proposition 6

REFERENCES

[1] Debry, C. - Perucca, A.: Reductions of algebraic integers, J. Number Theory, 167 (2016), 259-283.
[2] Perucca, A.: The order of the reductions of an algebraic integer, J. Number Theory, 148 (2015), 121-136.

Mathematics Research Unit, University of Luxembourg, 6 av. de la Fonte, 4364 Esch-surAlzette, Luxembourg

Email address: antonella.perucca@uni.lu, pietro.sgobba@uni.lu, sebastiano.tronto@uni.lu

[^0]: 2010 Mathematics Subject Classification. Primary: 11Y40; Secondary: 11R18, 11R21.

