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Abstract. Password Authenticated Key Exchange (PAKE) allows a
user to establish a secure cryptographic key with a server, using only
knowledge of a pre-shared password. One of the basic security require-
ments of PAKE is to prevent offline dictionary attacks.

In this paper, we revisit zkPAKE, an augmented PAKE that has been
recently proposed by Mochetti, Resende, and Aranha (SBSeg 2015). Our
work shows that the zkPAKE protocol is prone to offline password guess-
ing attack, even in the presence of an adversary that has only eavesdrop-
ping capabilities. Results of performance evaluation show that our attack
is practical and efficient. Therefore, zkPAKE is insecure and should not
be used as a password-authenticated key exchange mechanism.
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1 Introduction

Password Authenticated Key Frchange (PAKE) is a primitive that allows two or
more users that start only from a low-entropy shared secret — which is a typical
user authentication setting today — to agree on the cryptographically strong
session key. Since the introduction of PAKE in 1992, a plethora of protocols
trying to achieve secure PAKE has been proposed. However, due to patent issues,
only recently have PAKEs begun to be considered for a wide-scale use: SRP [28]
has been used in password manager called 1Password [2], J-PAKE of Hao and
Ryan [14] was used in Firefox Sync [12], while Elliptic Curve (EC) version of the
same protocol (EC-J-PAKE [11]) has been used to enable authentication and
authorization for network access for Internet-of-Things (IoT) devices under the
Thread network protocol [13].

From a deployment perspective, the most significant advantage of using
PAKE compared to a typical key exchange protocol is that it avoids depen-
dence on functional Public Key Infrastructure (PKI). On the downside, the use



of low-entropy secret as the primary means of authentication comes with the
price: PAKEs are inherently vulnerable to online dictionary attacks. To mount
this attack, all an adversary needs to do is repeatedly send candidate passwords
to the verifying server to test for their validity. In practice, this type of attack
can be relatively easily avoided in a two-party setting by limiting the number of
guesses (i.e., wrong login attempts) that can be made in a given time frame.

At the same time, a well-designed PAKE must be resistant against offline
dictionary attacks. In such attack scenario, the adversary typically operates in
two phases: in the first (usually online) phase, the adversary — either by eaves-
dropping or impersonating a user — tries to collect a function of the password
that is being targeted to serve him as the password verifier. Later, in the second
(offline) phase, the adversary has to correlate the verifier that has been collected
in the first step with offline password guesses to determine the correct password.

Concerning of design, PAKEs can follow a symmetric or asymmetric approach
concerning the value that is used as an authenticator. For instance, the first
PAKE to be proposed, EKE [6], follows symmetric design strategy: Both client
and server are required to know their joint password in clear to successfully run
the EKE protocol. Such protocols are usually called balanced PAKEs. Over time
it has been realized that the risk of losing a large number of passwords in case
of a server compromise increases if passwords are kept in the clear. Damage
inflicted from such loss could be very high, especially today when most people
typically use many online services while authenticating with only a few related
passwords.

One way to mitigate such treat is to use asymmetrically designed PAKE, also
known as augmented PAKE?. This type of PAKE guarantees that the password
is not stored on the server side as plaintext, but, in fact, as an image of the pass-
word. Nevertheless, for long it has been argued, from a theoretical perspective,
that augmented PAKESs do not add much benefit over balanced PAKEs, since the
brute-force attack on a stolen password file (a list containing password hashes)
would quickly yield a number of underlying passwords. With the introduction of
sequential memory-hard hash functions such as Scrypt [25] and Argon2 [8] and
use of salt, which can be used to slow down password cracking significantly, this
may not be the case anymore.

1.1  Owur contribution

Recently, Mochetti, Resende and Aranha [23] proposed (without exhibiting a
security proof) a simple augmented PAKE called zkPAKE, which they claim is
suitable for banking applications, requiring the server to store only the image of
a password under a one-way function. Their main idea was to use zero-knowledge
proof of knowledge (password) to design an efficient PAKE. However, here we
present an offline dictionary attack against the zkPAKE protocol. In addition,
we show that the same attack works on a slight variant of zkPAKE that has been
proposed later in [24]. We also provide a prototype and share the benchmarks of

3 For the latest results on augmented PAKE check Jarecki et al. [20].



the attack to demonstrate its feasibility. Our dictionary attack can be carried out
in two ways: passively - by eavesdropping on the zkPAKE protocol execution, or
actively - by impersonating the server and having the client attempt to log in.

1.2 Previous works

Password Authenticated Key Exchange was introduced by Bellovin and Meritt [6]
in 1992. Their EKE protocol was first to show that it is possible to bootstrap
a low-entropy string into a strong cryptographic key. A few years later, Jablon
proposed an alternative - the SPEKE protocol [18]. Over the next 25 years,
plenty more PAKE proposals have surfaced [21,22,4,14]. In parallel, augmented
versions of different PAKEs were introduced (e.g. A-EKE[7], B-SPEKEJ19]).
As explained above, augmented PAKEs have an additional security property
compared to balanced PAKEs: if implemented well, it is considered to be more
resistant to server compromise in a sense that clients’ passwords are not imme-
diately revealed once the password file is leaked since the attacker still has to
perform password cracking. Finally, a number of them have been standardized
in IEEE [16], IETF [15] and ISO [17].

Security of early PAKE proposals was argued only informally by showing that
a protocol can withstand all known attacks. Starting from 2000, the two formal
models of security for PAKE appeared in [5] and [9]. More specifically, following
a game-based approach Bellare, Pointcheval and Rogaway have argued in [5] that
a provably secure PAKE protocol must provide the indistinguishability of the
session key and satisfy the authentication property. The Real-or-Random (RoR)
variant of their model from [3], along with the Universally Composable PAKE
model from [10] are considered to be state-of-the-art models that rigorously
capture PAKE security requirements.

Since we exclusively deal with an offline dictionary attack on zkPAKE, in
this paper, we keep the discussion here short and refer readers to Pointcheval’s
survey [26] for a more detailed overview of PAKE research field.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes the zkPAKE
protocol and its variant. In Section 3, we present an offline dictionary attack
against both variants of the zkPAKE protocol. Finally, we conclude the paper
in Section 4.

2 The zkPAKE protocol

In this section, we review the zkPAKE protocol. We will start with the variant
of zkPAKE from [24] whose description is presented in Figure 1, and then point
out the differences with the original design from [23]. The reason for this order of
presentation is because the variant of zkPAKE that is proposed later is slightly
more elaborate than the original zkPAKE, so we want to show that zkPAKE
does not stand against our attack even with proposed modifications.



2.1 Protocol description

zkPAKE, as described in [24], is a two-party augmented PAKE protocol meant
to provide authenticated key exchange between a server S and a client C.

Initialization phase The protocol starts with an enrollment phase, which is
executed for every client only once. In this phase, a client and a server (e.g.,
bank) share a secret value of low entropy that can be remembered by the client.
More specifically, in case of zkPAKE, the client must remember the password
7, while the server only stores an image of the password R. Before the server
computes the corresponding image R, public parameters must be chosen and
agreed on: 1) a finite cyclic group G of prime order ¢ and a random generator g
of the group G; 2) Hash functions H; and Hy whose outputs are k-bit strings,
where k is the security parameter representing the length of session keys.

Protocol execution Once the enrollment phase is executed and the public
parameters are established, the zkPAKE protocol (see Figure 1) will run in
three communication rounds as follows:

1. First, the server S chooses a random value n from Z,, computes N that is
supposed to act both as a nonce and Diffie-Hellman value, and sends it to
the client C.

2. Now, upon receiving the nonce IV, the client C' inputs his password, computes
the hash of the password - r, chooses a random element v from Z,, and
computes t := N". Then, C' computes ¢ := Hi(g,¢",t, N) and obtains u :=
v — Hi(c)r that should lie in Z,. Next, C' computes the session key sk, :=
Hj(c) and sends u and Hip(c) to the S.

3. Upon receiving H(c) and u, S recovers ' by computing g** R"71(¢), Then,
S calculates ¢’ := Hiy(g, R,t',N). Next, S checks if Hy(¢') echoes Hy(c). If
it does, S computes the session key sks := Ha(c') and sends H;(sks) to C.
Otherwise; it aborts the protocol.

4. Similarly, upon receiving H(sks), C checks if H;(sks) and H(sk.) match.
If values are equal, C saves computed session key sk. and terminates.

As we said before, the authors of zkPAKE have presented two variants of it.
The original proposal from [23] differs from the follow-up version in two places:
Nonce N is left underspecified, and value t on the client side is computed without
involving received nonce. This difference also affects the computation of ¢’ from
the server side. In more details, the original zkPAKE protocol runs as follows:

1. The server sends his nonce N to the client C.

2. The client calculates the hash of his password r, chooses a random parameter
v < Zg4, and computes t := g. Then, C computes ¢ := Hi(g,¢",t,N) and
obtains u := v—Hy(¢)r in Z,. Next, C' computes the session key sk, := Ha(c)
and sends v and Hi(c) to the S.



Initialization

Public: G, g,q; Hi, Hs:{0,1}" — {0,1}*;
Server S Client C
Secret: R := g™ m

n < Zqg

N :=g" N
r:= Hi(m)
V4 ZLq
t:=N"

C = Hl(g7grvt7N)
u:=v — Hi(c)r mod q

~ u, Hi(c) ske := Ha(c)
¢ = gun RrHI(©)
¢ = Hi(g,R,t',N)
abort if Hi(c") # Hi(c)
sks := Ha(c) Hi(sks)

abort if Hi(sks) # Hi(ske)

Fig. 1. The zkPAKE protocol.

3. Upon receiving Hi(c) and u, S recovers ¢ by computing g*R™1(¢). Then,
S calculates ¢ := Hi(g,R,t',N). Next, S checks if Hy(c¢') echoes Hy(c). If
it does, S computes the session key sks := Ha(c') and sends Hi(sks) to C.
Otherwise, he aborts the protocol.

4. Finally, upon receiving Hi (sks), C checks if Hy(sks) echoes Hy(sk.). If values
are equal, C' saves computed session key sk, and terminates.

3 Offline dictionary attack on zkPAKE

In the next section, we will show how both variants of the zkPAKE protocol are
vulnerable to an offline dictionary attack. Our attack exploits the fact that r,
which is a hash of clients password, is of low entropy.

3.1 Attack description

Let the enrollment phase be established and let an attacker A be allowed only
to eavesdrop on the communication between two honest parties. The attack on



the version of zkPAKE protocol presented in Figure 1 proceeds as follows:

Step 1. The execution of the protocol starts and S sends his first message, N.
The attacker A sees the message and stores it in his memory.

Step 2. C does all the computations demanded by the protocol and sends u
and Hi(c) in the second transmission to S. A observes the second message
and obtains v and Hi(c).

Step 3. The adversary that now holds N, v and H;(c) from the first two mes-
sage rounds may go offline to perform a dictionary attack. His goal is to
compute a candidate ¢’ and then use stored H;(c) as a verifier. The adver-
sary will compute ¢’ by hashing Hy(g, g",t', N). Two intermediate inputs to
the hash function are obtained by first choosing a candidate password T,
and then computing the corresponding r and t’. Note that the adversary can
easily compute t' = NV, since v := u+ Hi(c)r. Finally, the adversary checks
if his guess Hy(c') echoes Hy(c).

Step 4. The adversary repeats Step 3 until he guesses the correct password.

As for the original zkPAKE protocol, the same attack works in a very similar
way: Steps 1,2, and 4 are the same while in Step 3 we need to make a minor
change:

Step 3a. The adversary that now holds N, u and Hy(c) from the first two mes-
sage rounds may go offline to perform a dictionary attack. Same as above, the
adversary aims to obtain candidate ¢; by computing a hash Hy(g,¢",t;, N).
Here the only difference is that ¢, = ¢¥*, while the formula for computing v;

stays the same.

Note that one can mount a similar dictionary attack by impersonating a
server. In this case, the only difference with the eavesdropping attack described
above is the attacker picks the value of the nonce N. Such knowledge, however,
does not additionally help the adversary in our attack. Once the adversary re-
ceives clients reply, he can continue with Steps 3 and 4 from the eavesdropping
attack.

3.2 Attack implementation

We implemented a prototype® in Python 3 to simulate the attack described
above. Our simulation consists of two steps: in the first step, a password is
randomly chosen from one of three fixed dictionaries that vary in size and the
zkPAKE protocol is executed between two honest parties. Then, in the second
step (see Algorithm 1), the adversary is given access to honestly generated values
as described in Section 3.1. With this information in hand, the adversary can
easily perform an offline dictionary attack against chosen password.

* Available under GPL v3 at https://github.com/PetraSala/zkPAKE-attack.
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Input: Values N, u, H(c) and a dictionary of passwords P
Output: puw’, K
for each pw’ in dictionary P do
¢’ = hash.sha256(pw’)
r=c mod ¢
v=(u+ H(c)*r) mod g
t=N"mod p
R =g" mod p
H(c") = hash.sha256(g,g",t, N)
if H(c) == H(c) then
K = HKDF(¢')
Return (pw’, H(c'), K)
end

end
Algorithm 1: Offline search algorithm

We performed a set of experiments, using a 224-bit subgroup of a 2048-bit
finite field Diffie-Hellman group®, to determine the time it takes to complete an
offline dictionary attack depending on the size of a selected dictionary. Each set
of experiments involved mounting the attack by enumerating dictionaries that
contain 1000, 10000, and 100000 random password elements. Each experiment
was performed 50 times.

Results. The times it took the adversarial algorithm described above to find
a matching password for each given dictionary are summarized in Table 1. Our

s s . |Average Time until the Correct
Dictionary size Password is found (ms) Std Dev
1000 3694 1898
10000 27322 17461
100000 244540 178465

Table 1. Results for different dictionary sizes.

results demonstrate that there is a linear relationship between the size of the
dictionary and the average time to find a matching password, and shows that
an attack is feasible for any adversary with even a small computational power®.
As expected, the total time for cracking a 100000 password-size dictionary is
less than 5 min, and thus we conclude that the attack would be feasible for

5 Selected group parameters, which are originally coming from the standard NIST
cryptographic toolbox, are specified in Appendix A.

5 In all cases the experiments were run under Windows 10 on a 2.8GHz PC with 8GB
of memory.



dictionaries with significantly more elements. We also note that there are more
powerful tools to create more efficient dictionaries, such as HashCat [27] or John
the Ripper [1], which would make the offline search more effective.

4 Conclusion

In this paper, we showed that both versions of the zkPAKE protocol [23,24] are
vulnerable to offline dictionary attacks. To make matters worse, the adversary
in case of zZkPAKE only needs eavesdropping capabilities to mount the attack.

By taking a wider view on zkPAKE, the problem with its design lies in a fact
that variable r, which is of low-entropy, is used as a mask for the secret value v.
In contrast, in a typical zero-knowledge proof of knowledge, which was used as
an inspiration for zkPAKE design, such value is of high entropy. By showing this
vulnerability, we hope that in future protocol designers will be more careful in
claiming the security of proposed protocols, especially when a proof of security
does not back those claims. Since zkPAKE protocol core design is flawed beyond
repair and there already exist many mature PAKE alternatives, we do not pursue
further study to improve on the zkPAKE protocol.
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A Appendix

The group parameters are taken from the NIST crytpographic toolbox using
2048 modulus, and are shown in Table 2.

Parameter ‘Value (Base 16)

Prime Modulus

ADI07ELE 9123A9D0 D660FAAT 9559C51F A20D64E5 683B9FD1
B54B1597 B61D0A75 E6FA141D F95A56DB AF9A3C40 TBA1DF15
EB3D688A 309C180E 1DE6B85A 1274A0A6 6D3F8152 AD6AC212
9037C9ED EFDA4DF8 DI91ESFEF 55B7394B 7TAD5B7D0 B6C12207
C9F98D11 ED34DBF6 C6BA0B2C 8BBC27BE 6A00E0A0 B9C49708
B3BF8A31 70918836 81286130 BC8985DB 1602E714 415D9330
278273C7 DE31EFDC 7310F712 1FD5A074 15987D9A DC0A486D
CDF93ACC 44328387 315D75E1 98C641A4 80CD86A1 BIE5STES
BEGOE69C C928B2B9 C52172E4 13042E9B 23F10BOE 16E79763
C9B53DCF 4BA80A29 E3FB73C1 6BSE75B9 TEF363E2 FFA31F71
CF9DE538 4E71B81C 0AC4ADFFE 0C10E64F

Generator

AC4032EF 4F2D9AE3 9DF30B5C 8FFDAC50 6CDEBETB
89998CAF 74866A08 CFE4FFE3 A6824A4E 10B9AGF0 DD921F01
ATO0C4AFA 00C29F52 C57DB17C 620A8652 BESE9001 A8D66AD7
C1766910 1999024A F4D02727 5AC1348B B8A762D0 521BCISA
E2471504 22EA1ED4 09939D54 DA7460CD B5F6C6B2 50717CBE
F180EB34 118E98D1 19529A45 D6F83456 6E3025E3 16A330EF
BB77A86F 0C1AB15B 051AE3D4 28C8F8AC B70A8137 150BSEEB
10E183ED D19963DD D9E263E4 770589EF 6AA21ETF 5F2FF381
B539CCE3 409D13CD 566AFBB4 8D6C0191 81E1BCFE 94B30269
EDFET2FE 9B6AA4BD 7B5A0F1C 71CFFF4C 19C418E1 F6EC0179
81BCO87F 2A7065B3 84B890D3 191F2BFA

Subgroup order

801C0D34 C58D93FE 99717710 1F80535A 4738CEBC BF389A99
B36371EB

Table 2. Group parameters




	An Offline Dictionary Attack against zkPAKE Protocol

