
 

On the Formalisation of GeKo: a Generic Aspect 

Models Weaver 

Max E. Kramer1,2, Jacques Klein2, Jim R. H. Steel3, Brice Morin5, 

Jörg Kienzle6, Olivier Barais4, and Jean-Marc Jézéquel4 

 

1 SnT, University of Luxembourg, Luxembourg 
2 Karlsruhe Institute of Technology, Karlsruhe, Germany 
3 The University of Queensland, Brisbane, Australia 
4 IRISA-INRIA, Triskell, Rennes, France 
5 SINTEF ICT, Oslo, Norway 
6 McGill University, Montréal, Canada 
 
 

19 March 2012 

978-2-87971-110-2 



On the Formalisation of GeKo: a Generic Aspect

Models Weaver

Max E. Kramer12, Jacques Klein2, Jim R. H. Steel3, Brice Morin5,
Jörg Kienzle6, Olivier Barais4, and Jean-Marc Jézéquel4

1 Karlsruhe Institute of Technology, Karlsruhe
2 University of Luxembourg, Luxembourg
3 The University of Queensland, Brisbane

4 IRISA-INRIA, Triskell, Rennes
5 SINTEF ICT, Oslo

6 McGill University, Montréal

Abstract. This technical report presents the formalisation of the com-
position operator of GeKo, a Generic Aspect Models Weaver.

1 Introduction

The aspect-oriented paradigm has gained attention in the earlier steps of the soft-
ware development life-cycle leading to the creation of numerous adhoc Aspect-
Oriented Modeling (AOM) approaches. These approaches mainly focus on ar-
chitecture diagrams, class diagrams, state-charts, scenarios or requirements, and
generally propose domain specific composition mechanisms. Recently, some generic
AOM approaches proposed to extend the notion of aspect to any domain specific
modeling language or metamodel. In this trend, we present our generic weaver:
GeKo. GeKo is a generic aspect-oriented model composition and weaving ap-
proach easily adaptable to any metamodel with no need to modify the domain
metamodel or to generate domain specific frameworks. It is a tool-supported
approach with a clear semantics of the different operators used to define the
weaving. The formalisation of GeKo allows clearly identifying the sets of re-
moved, added and altered elements. Based on this formalisation, GeKo yields
non-ambiguous woven models.

After a brief presentation in Section 2 of GeKo in practice, Section 3 details
the formalisation of the composition operator of GeKo.

2 Illustrating GeKo by Example

In this section, we introduce GeKo through an example of state chart weaving,
but GeKo can be used to weave other models, such as class diagrams, sequence
diagrams, and feature diagrams. An open-source prototype of GeKo and other
examples can be found online7

7 code.google.com/a/eclipselabs.org/p/geko-model-weaver

http://code.google.com/a/eclipselabs.org/p/geko-model-weaver


The statecharts presented in this section model two aspects of AspectOptima,
an aspect-oriented framework implementing run-time support for different trans-
action models. AspectOptima has been proposed in [3,2] as an independent case
study to evaluate aspect-oriented software development approaches, in particular
aspect-oriented modeling techniques.

The goal of this technical report is not to present AspectOptima but to detail
the formalisation of GeKo using examples of appropriate complexity. Therefore,
we concentrate on the states of the Context entity. As shown in the base part
of Fig. 1, a Context enters the Ready state when it is created. Upon reception
of an enterContext message (sent by a process wishing to enter the context), a
transition leads to the Active state. When the process leaves the context with
a leaveContext message, the context transitions to the Completed state.

Fig. 1. Applying the Collaborative Aspect to a Context.

In order to implement transactions, contexts have to provide additional func-
tionality. In AspectOptima, additional functionality is encapsulated in aspects.
Collaborative, for example, is an aspect that can be applied to a context in order
to allow the participation of multiple processes. As shown in the advice part of
Fig. 1, Collaborative does not add any states to a context. Instead, it allows con-
texts to accept multiple enterContext messages by adding a transition labeled
enterContext to and from the Active state. As a result, multiple processes
are allowed to enter the context, instead of only a single one. The number of
entering processes is counted in the local variable numParticipants. Likewise,
a collaborative context also accepts multiple leaveContext messages, and only
transitions to the Completed state when the last participating process has left
the context.

The result of the weaving of the advice state diagram of Collaborative into
the state diagram of the base Context is shown in Fig. 2.



The weaving process is two-phased:
1) The first step consists in the detection of the join points. This detection

step uses the business logic integration platform Drools8 and yields a mapping
from the pointcut model to the base model for each detected join point. In Fig. 1,
the detection yields a mapping f from the state Active, the state Completed

and the transition leaveContext of the pointcut model to the state Active, the
state Completed and the transition leaveContext of the base model.

2) The second step consists in the composition of the advice model with
the base model at the level of the join points previously detected (for each
join point the advice model is composed). The composition is based on the
definition of a mapping between the pointcut and the base model (automatically
obtained from the detection step), and a mapping between the pointcut and the
advice model (specified by the user or automatically detected in unambiguous
situations). These mappings are defined over the concrete syntax of models by
linking model elements. These links are fully generic and do not use any domain-
specific knowledge, so that we can define mappings for any domain metamodel.
We simply check that the bound elements are compatible (same type). In Fig. 1,
we specified a mapping g from the state Active and the state Completed of
the pointcut model to respectively the state Active and the state Completed

of the advice model. These mappings allow the identification of several sub-sets
of objects in the base and advice models characterizing the objects of the base
model which have to be kept, to be removed and to be replaced with those of
the advice model. The formalisation of the composition is detailed in Section 3.

Fig. 2. Result of weaving the Collaborative Aspect into the Context Model.

The second aspect of AspectOptima that we present here for illustration
purpose is OutcomeAware. An outcome-aware context is a context that has a
boolean outcome associated with it, i.e., it can end in either success or failure. The
essence of OutcomeAware is shown in the advice part of Fig. 3. While active,
an outcome-aware context accepts setOutcome messages that allow processes
to set the outcome of the context to either success or failure. In addition, the
Completed state is replaced by two different final states: Success and Failure.

8 jboss.org/drools

http://www.jboss.org/drools


When the last process leaves the context, the Success or Failure state is entered
depending on the current state of the local variable outcome.

Fig. 3. Applying the OutcomeAware Aspect to a Collaborative Context

The result of the weaving of the OutcomeAware aspect model with a Collab-
orative Context (Base of Fig. 3) is shown in Fig. 4. The mapping (or morphism)
g specified by the user associates the state Active of the pointcut to the state
Active of the advice, and the state Completed of the pointcut with both states
Success and Failure of the advice. That means the state Completed of the base
will be replaced with both states Success and Failure. Note that the replace-
ment implies that if a transition t1 leaves the state Completed of the base, after
the weaving this transition leaves both states Success and Failure. Roughly
speaking, the properties of the states Success and Failure are complemented
by those of Completed. More details are given in Section 3.

Fig. 4.Woven result of the OutcomeAware Aspect with a Collaborative Context.



3 Composition Formalisation

This section details and formalises GeKo, our generic weaver. This formalisation
is based on the OMG standard EMOF and is implemented in Java using the
Eclipse Modeling Framework (EMF). Both the formalisation and the implemen-
tation are independent from any particular domain metamodel. In other words,
it is possible to apply our tool-supported approach to arbitrary models that
conform to a well-defined metamodel conforming to EMOF respectively Ecore.

3.1 EMOF: Essential MetaObject Facilities

This subsection introduces Essential Meta-Object Facilities (EMOF) which is
the basis for understanding the composition formalisation detailed in the next
subsection. EMOF 2.0 is a metamodeling language designed to specify metamod-
els. It is a subset of the OMG standard MOF [5] providing the set of elements
required to model object-oriented systems. The minimal set of EMOF constructs
required for GeKo is presented in Fig. 5.

EMOF introduces the notion of Object, which is central to our formalisa-
tion. Every object has a class which describes its properties and operations.
The getMetaClass() operation returns the Class that describes the object. The
container() operation returns the containing parent object. It returns void if
there is no parent object. The equals(element) operation determines if the ele-
ment (an instance of the Element class) is equal to this Element instance. The
set(property, element) operation sets the value of the property of the element.
The get(property) operation returns the value of a property. It can be a List or
a single value, depending on the multiplicity of the property.

The isComposite attribute under class Property returns true if the object
is contained by a parent object (called container). Cyclic containment is not
possible, i.e., an object cannot contain one of its (possibly indirect) containers.
Moreover, an object cannot be contained by more than one other object. To
remove an object from a model, the object is removed from its container. The
getAllProperties() operation (not shown in the figure) of the Class returns all
the properties of instances of this Class along with the inherited properties. The
attributes, upper and lower, of classMultiplicityElement, represent the multiplic-
ities of the associations at the metamodel level. For example, “0..1” represents
a lower bound “0” and an upper bound “1”. If the upper bound is less than or
equal to “1”, then the property value is null or a single object; otherwise it is a
collection of objects.

Note that a model conforming to a given metamodel that itself conforms to
EMOF has a unique root element containing either directly or via composite
properties all the elements of the model.

In this technical report, we assume that all the metamodels we use conform
to EMOF. However, it is possible to adapt our formalisation to other M3 level
meta-metamodels such as KM3 [1].



Fig. 5. Fragment of EMOF Classes Required for Composition.

3.2 Composition Formalisation

The main idea of our generic composition of two models base and advice at the
level of a join point is the use of a third model called pointcut and two morphisms
allowing the identification of the objects of base which have to be kept, to be
removed and to be replaced with those of advice.

Definitions:
Let base, pointcut and advice be three models (defined by a set of objects). Let
f and g be two morphisms such that:

1. f is a surjective morphism from pointcut to a subset jp ⊆ base (jp being
a join point), obtained from the pattern matching engine presented earlier.
More precisely, f represents one match or one binding, i.e., one place where
the aspect may be woven. Note that for each join point, the pattern matching
engine yields a new morphism f .

2. g is a morphism from pointcut to advice.

The two morphisms partition the models base and advice into five sets:

i) The set Bkeep representing the set of objects of base which have to be kept,
i.e., which will appear in the target model unchanged. An object obj of base
is in Bkeep if there is no object obj′ in pointcut such as f(obj′) = obj. More
formally,

Bkeep = {obj ∈ base | ∄ obj′ ∈ pointcut, f(obj′) = obj}.

ii) The set B− representing the set of objects of base which have to be removed.
An object obj of base is in B− if there exists obj′ ∈ pointcut such that f

maps obj′ on obj and if there is no obj′′ ∈ advice such that g maps obj′ on
obj′′. More formally,

B− = {obj ∈ base | ∃ obj′ ∈ pointcut, ∄ obj′′ ∈ advice,

f(obj′) = obj ∧ g(obj′) = obj′′}.



iii) The set B± representing the set of objects of base which have to be replaced
with elements of advice. An element obj of base is in B± if there exists
obj′ ∈ pointcut and obj′′ ∈ advice such that f maps obj′ on obj and g maps
obj′ on obj′′. More formally,

B± = {obj ∈ base | ∃ obj′ ∈ pointcut, ∃ obj′′ ∈ advice,

f(obj′) = obj ∧ g(obj′) = obj′′}.

iv) In the same way, we define the set A± representing the objects of advice
which replace the objects of B±. An object obj′′ ∈ A± replaces an object
obj ∈ B± if and only if there exists an object obj’ in pointcut such that
f(obj′) = obj and g(obj′) = obj′′. Formally,

A± = {obj ∈ advice | ∃ obj′ ∈ pointcut, ∃ obj′′ ∈ base,

g(obj′) = obj ∧ f(obj′) = obj′′}.

v) The set A+ representing the set of objects of advice which have to be added
to base. An object obj of advice is in A+ if there is no obj′ ∈ pointcut such
that g maps obj′ on obj. More formally,

A+ = {obj ∈ advice | ∄ obj′ ∈ pointcut, g(obj′) = obj}.

Both morphisms also allow the definition of two sets in the pointcut model:

i) The set P± containing the elements of the pointcut which ’correspond to’
the common elements of both base and advice. Formally,

P± = {obj ∈ pointcut | ∃ obj′ ∈ advice, ∃ obj′′ ∈ base,

f(obj) = obj′′ ∧ g(obj) = obj′}.

ii) The set P− containing the elements of the pointcut which ’correspond to’
the removed elements of the base. Formally,

P− = {obj ∈ pointcut | ∄ obj′ ∈ advice, g(obj) = obj′}.

Note that f(P±) = B±, f(P−) = B− and that g(P±) = A±, g(P−) = ∅

Finally, as explained in [4] for cases with multiple join points, GeKo distincts
between advice elements that have to be reused for all join points (i.e., for all
compositions), and advice elements that have to re-instantiated for each join
point (i.e., for each composition). In practice, the elements labeled by “x1” have
to be reused for all join points. In this way, we can partition the sets A± and
A+ of elements of the advice as follows:
A± = A1

± ∪An
±, where A1

± represents objects that are reused for all join points
whereas An

± represents objects that are re-instantiated for each join point; and
A+ = A1

+ ∪An
+ , where A1

+ represents objects that are reused for all join points
whereas An

+ represents the objects that are instantiated for each join point.
We recall that the sets A1

± and An
±, and the sets A1

+ and An
+ are disjoint,

i.e., A1
± ∩An

± = ∅, and A1
+ ∩ An

+ = ∅.
An example illustrating the different partitions of the base, pointcut and

advice models is shown in Fig. 6. The letters a, b, . . . , l represent the base model
element, the letters m,n, o, p represent the pointcut model elements, and the
letters q, r, s, v, u represent the advice model elements. Let us suppose that the



a

v

u

c

e

d

g

f

b

o

n
m

s
1

q
r

h

p

Base

Advice

Pointcut

R
+-

R
-

i j

k lJP1

JP2

a

c

d
b

Result

qf
re

qj
ri

s

v u

v
u

A
+

B
keep

B
keep

A
+-

Fig. 6. Illustration of the Partitioning of the Base, Pointcut and Advice Models.

pointcut matches both join points JP1 and JP2. The morphism f from the
pointcut to the second join point JP2 is not depicted, but we can easily infer
that o and p are linked to i and j, and that m and n are linked to k and l.
The result of the composition of the advice with the base for both join points is
represented by the Result model.

Definition of the Composition:
We can now define the composition of two models at the level of a join point:

Definition 1 (Generic Composition). Let base, pointcut and advice be
three models. Let f and g be two morphisms as defined previously which partition
the base and advice models. The composition of base with advice at the level of
a join point is three-phased:

1) result = Bkeep ∪ A1
+ ∪ A1

± ⊎An
+ ⊎ An

±

2) The properties of the objects of result are updated;
3) The properties of the objects of result are cleaned.

First Phase:
In the first phase we keep the objects of Bkeep. Then, we add all the objects of
the advice model: elements of the advice which are simply added (A1

+ and An
+),



and elements of the advice which replace existing base model elements (A1
± and

An
±). However, the elements of A1

+ and A1
± are added by using the traditional

union operator ∪. This means that if an element e of A1
+ or A1

± is already
present in result, the element e is not added. The elements of An

+ and An
± are

added by using the disjoint union operator ⊎9. This means that if an element e
of An

+ or An
± is already present in result, the element e is duplicated.

Second Phase:
During the second phase the properties of the objects of result are updated.

I) For each obj′ ∈ A± (obj′ is an object that replaces the object obj ∈ B±),
the properties of obj′ are modified according to those of obj as follows: let
p be a property of obj′:
I-1) if p.upper > 1 then p is complemented by the corresponding property

of obj, i.e., obj′.get(p) = obj′.get(p) ∪ obj.get(p).
I-2) If p.upper = 1, a preliminary dialog step proposes to resolve the con-

flicts in the cases where the priority is given to the base and where
several elements from the pointcut are mapped to a single element
from the advice, i.e., when several elements of the base are replaced
by a single element of the advice. An example illustrating this case is
when both states a and b of the base FSM are replaced by a state c

of the advice FSM. The property name of the class State is unique.
If the priority is given to the base, the property name of the state
c has to be updated. There are two possible solutions: a or b. The
preliminary dialog step allows to choose between a or b, i.e., it is pos-
sible to define one of the base element as the priority element. In this
case, all the unique properties (with an upper bound equal to one) of
this priority element will be kept. It is also possible to define, for each
unique priority, the object that has the priority.
In the remainder, we assume that obj is the priority base element
chosen by the user, for the property p, in the case of a N to 1 mapping
from pointcut to advice.
For p.upper = 1, let us denote objb = obj.get(p) the object targeted10

by the property p of obj, and obja = obj′.get(p) the object targeted
by the property p of obj′. Fig. 7 illustrates these notations. There are
several possibilities:

I-2-1) If objb == void or if objb ∈ B−, then the property p of obj′ is
unchanged (i.e., obj′.get(p) = obja);

I-2-2) If objb ∈ Bkeep, then
a) If obja == void then the property p of obj′ is updated with

the property of obj, i.e., obj′.get(p) = objb.

9
⊎ is the disjoint union of two sets, i.e., an usual union operation where common
elements of both sets are duplicated (cloned).

10 A property p of a object obj targets an object obj′′ if obj′′ ∈ obj.get(p).



Fig. 7. Illustration of the notations when an object obj′ of the advice replaces
an object obj of the base.

b) If obja 6= void, there are two possible values for the property
p of obj′: either obja or objb. If the priority is given to the
advicemodel, the property p is unchanged, i.e., obj′.get(p) =
obja. If the priority is given to the base model, the property
p is updated by the property of obj, i.e., obj′.get(p) = objb.

I-2-3) If objb ∈ B±, let us denote obj′a the object of the advice model
which replaces objb. Fig. 8 illustrates the notations used.

Fig. 8. Illustration of the notations used when an object obj′ of the advice
replaces an object obj of the base, and when the object targeted by a property
p is replaced by an object obj′a of the advice.

a) If obj′a == obja then the property p of obj′ is unchanged.
b) If obja == void, then the property p of obj′ is updated with

obj′a
c) If obja 6= obj′a and obja 6= void, we do not perform the

weaving. Indeed, as illustrated by Fig. 8, the property p

(with an upper bound equals to one) of the object obj in
the base model is set twice: i) in the advice, obj′ refers to
obja via the property p and obj′ replaces obj and ii) obj′a
replaces objb. In this case, we raise an exception and ask
the designer to refactor the advice. He can either set obja
to void or keep obja and not replace objb by obj′a to avoid
setting the property p twice.

II) Next, for each obj′ ∈ A± (obj′ is an object that replaces the object obj ∈
B±), all the properties that targeted obj are updated. These properties
should now target the corresponding element in A±, i.e., obj

′. As a result,



for every property p of an object obj′′ that targeted obj, if p.upper > 1
then obj′′.get(p) = obj′′.get(p) ∪ obj′ \ obj, else obj′′.get(p) = obj′.

III) It is not necessary to update the properties of an object obj′ in A+ because
it doesn’t replace elements of the base model. It is simply added without
link to the elements of the base model. Nevertheless, we have to consider
each property p of an object obj that targets an element obj′ of A+. In
this case, the property p is updated according to the “nature” of obj. The
model element obj necessary comes from the advice model, but:
III-1) If obj ∈ A+, the property p of obj which targets obj′ is unchanged,

i.e., obj.get(p) = obj′;
III-2) If obj ∈ A±, it is the same case as the item I).

Third Phase:
The third cleaning phase consists in the deletion of the references to objects

removed in the first phase (objects of B−). Let us consider an object obj removed,
an object obj′ ∈ result and a property p such as obj ∈ obj′.get(p). Then, if
p.upper > 1, we remove obj from the list obj′.get(p). If the cardinality of p is
0..1, we remove obj from obj′.get(p). Finally, if the cardinality of p is 1..1, we
remove obj′ from result to avoid the creation of a non-consistent model. We
recursively apply the clean operation on result as long as there exist objects
which have to be removed from result.

3.3 Composition Example Details

Let us illustrate this definition of generic composition by the simple example in
Fig. 10 where we compose the Finite State Machines (FSM) base and advice.
In this example, the priority is given to the advice, i.e., for a property with
a cardinality 1..1 or 0..1, it is the value of the property of the advice which
will be chosen instead of the value of the property of the base. The FSMs
conform to the metamodel described in Fig. 911. It shows that a FSM con-

11 To simplify the example, we omitted to specify the property output of the transitions.

Fig. 9. Meta-model for Finite State Machines (FSM).



sists of named states that contain transitions from source to target states hav-
ing an input and an output string. Furthermore, it displays that a FSM has
exactly one current state, one initial state, and an arbitrary number of final
states. The base FSM contains the objects12: {FSM : base, State : ab, State :
b, State : c, State : d, State : e, T ransition : t1, T ransition : t2, T ransition :
t3, T ransition : t4, T ransition : t5, T ransition : t6}. The advice FSM contains
the objects: {FSM : advice, State : aad, State : f, T ransition : t12}. The mor-
phism f is the identity morphism. The morphism g associates respectively State
a, State b, and State c of pointcut to State : aad, State f, and State f of advice.

Fig. 10. Example of FSM composition

The morphisms allow the identification of the following sets:

– Bkeep = {State : d, State : e, T ransition : t4, T ransition : t5, T ransition :
t6, FSM : base}.

– B− = {Transition : t1, T ransition : t2, T ransition : t3}.
– B± = {State : ab, State : b, State : c}.
– A± = {State : aad, State : f}.
– A+ = {Transition : t12}

Consequently, the result of the composition of base and advice is equal to
result = {State : d, State : e, T ransition : t4, T ransition : t5, T ransition :
t6, State : aad, State : f, T ransition : t12, FSM : base}, where the properties

12 We use .b and .ad to distinguish the object State : ab from the base and the object
State : aad from the advice.



of State : aad and State : f have been updated, but also the properties of ob-
jects which target State : aad and State : f . According to the FSM metamodel,
the class State is characterized by three properties: outgoingT ransition[0. . ∗],
incomingT ransition[0. . ∗] and name[1..1]. The priority being given to the ad-
vice, for the property name, the name of the states State : aad and State : f are
unchanged. For the properties with a cardinality higher than 1, we have:

State : a.outgoingT ransition = State : aad.get(outgoingT ransition) ∪

State : ab.get(outgoingT ransition)13

State : a.outgoingT ransition = {Transition : t12} ∪ {Transition : t6}

State : a.incomingT ransition = State : aad.get(incomingT ransition) ∪

State : ab.get(incomingT ransition)

State : a.incomingT ransition = ∅ ∪ ∅

State : f.outgoingT ransition = State : b.get(outgoingT ransition) ∪

State : c.get(outgoingT ransition) ∪

State : f.get(outgoingT ransition)

State : f.outgoingT ransition = {Transition : t4} ∪ ∅ ∪ ∅

State : f.incomingT ransition = State : b.get(incomingT ransition) ∪

State : c.get(incomingT ransition) ∪

State : f.get(incomingT ransition)

State : f.incomingT ransition = {Transition : t5} ∪ ∅ ∪ {Transition : t12}

Furthermore, let us consider the properties of the objects which targeted the
objects which have been replaced, i.e., State : a, State : b and State : c:

Replaced Objects Properties That Target Them

State : ab FSM : base.{initialState, currentState, ownedState},
T ransition : t6.source

State : b FSM : base.ownedState, T ransition : t5.target
State : c FSM : base.{finalState, ownedState}

After the composition, these properties target State : aad instead of State :
ab, and State : f instead of State : b and State : c (for instance, now State : f
is a finalState instead of State : c).

In this example, the clean operation does not remove additional objects from
properties because the three removed objects Transition : t1, Transition : t2,
and Transition : t3 were only targeted by properties of objects already removed
(State : a, State : b, and State : c).



References

1. Frédéric Jouault and Jean Bézivin. Km3: A dsl for metamodel specification. In
Roberto Gorrieri and Heike Wehrheim, editors, Formal Methods for Open Object-
Based Distributed Systems, volume 4037 of Lecture Notes in Computer Science,
pages 171–185. Springer Berlin / Heidelberg, 2006.

2. J. Kienzle, W. Al Abed, and J. Klein. Aspect-oriented multi-view modeling. In
ACM, editor, 8th International Conference on Aspect Oriented Software Develop-
ment (AOSD.09), Charlotteville, Virginia, USA, March 2009.

3. J. Kienzle and S. Gélineau. AO Challenge: Implementing the ACID Properties
for Transactional Objects. In Proceedings of the 5th International Conference on
Aspect-Oriented Software Development - AOSD 2006, March 20 - 24, 2006, pages
202 – 213. ACM Press, March 2006.

4. Brice Morin, Jacques Klein, Jörg Kienzle, and Jean-Marc Jézéquel. Flexible model
element introduction policies for aspect-oriented modeling. In Proceedings of the
13th international conference on Model driven engineering languages and systems:
Part II, MODELS’10, pages 63–77, Berlin, Heidelberg, 2010. Springer-Verlag.

5. OMG. Mof core specification , v2.0. OMG Document number formal/2006-01-01,
2006.


	On the Formalisation of GeKo: a Generic Aspect Models Weaver
	Max E. Kramer(Karlsruhe Institute of Technolgy), Jacques Klein (University of Luxembourg), Jim R. H. Steel (The University of Queensland), Brice Morin (SINTEF ICT), Jörg Kienzle (McGill University), Olivier Barais (IRISA, INRIA), Jean-Marc Jézéquel (IRISA, INRIA) 

