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Problem: Relay attack

Source https://securepositioning.com

Definition

A relay attack is a man-in-the-middle attack in which an attacker relays
verbatim a message from the sender to a valid receiver.
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Solution: Distance-bounding protocols

Definition

A distance-bounding protocol is a security protocol that, in addition to
authentication, established an upper bound on the physical distance
between the prover and the verifier.

V P

chal

∆t ∆tproc

resp

dist(V ,P) ≤ c

2
(∆t −∆tproc)

≤ c

2
∆t
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Distance-bounding attacks

PV

A

(a) Mafia fraud

PV

(b) Distance fraud

PV

A

(c) Distance hijacking
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A
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Part I

Computational Analysis of

Distance-Bounding Protocols
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Lookup-based protocol

Lookup-based protocols are distance-bounding (DB) protocols such
that:

1 During the fast phase, the responses to the challenges are
looked-up from a table built up in the slow phase.

2 The prover does not send any messages after the fast phase has
been completed.
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Example
Hancke and Kuhn (HK), 2005

shared k

V

shared k

P

nonce NV ∈ {0, 1}m nonce NP ∈ {0, 1}m

NV

T := PRF (k,NV , NP )

NP

nonce c ∈ {0, 1}n

ci

∆ti T2i+ci−1

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of responses
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Protocol representation
State-labeled DFA

q0

1 0

0 1

0 1

A = (Σ, Γ,Q, q0, δ, `) where:

Σ is the set of input symbols

Γ is the set of output symbols

Q is the set of states

q0 ∈ Q is the initial state

δ : Q × Σ→ Q is the transition function

` : Q → Γ is the state labeling function
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Protocol representation

Proto = {
q0

1 0

0 1

0 1

,

q0

1 1

1 1

0 0

,

q0

0 0

1 0

0 1

,

q0

1 1

0 0

1 1

, ...}
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Protocol execution

Slow Phase

{
q0

1 0

0 1

0 1

,

q0

1 1

1 1

0 0

,

q0

0 0

1 0

0 1

,

q0

1 1

0 0

1 1

, ...}

Verifier Prover

xxxxxxx xxxxxxx
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Protocol execution

Slow Phase

{
q0

1 0

0 1

0 1

,

q0

1 1

1 1

0 0

,

q0

0 0

1 0

0 1

,

q0

1 1

0 0

1 1

, ...}
Fast Phase

Verifier Prover

0

0

1

0

1

1

xxxxxxx xxxxxxx

∆t1 ≤ ∆tmax

∆t2 ≤ ∆tmax

∆t3 ≤ ∆tmax
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DFA representation allowed us

To provide an optimal adversary strategy to conduct a pre-ask
mafia fraud attack against a prominent class of lookup-based
protocols.

To prove that the Tree [AT09] protocol is optimally resistant to
pre-ask mafia fraud amongst all lookup-based protocols, at the cost
of exponential space complexity.
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The optimality goal

Definition (Optimality problem)

Given a bound h, find an optimally resistant to mafia fraud amongst all
protocols that are layered, and random-labeled, and whose size is not
larger than h.

Layered is to do with two sequences of different lenghts not
reaching the same state.

Random-labeled is a property that says that there exists an
automaton for any labeling of the states.

Size is a measure of space complexity.

To solve the optimality problem we employed equivalence relations, and
closeness and consistency in sets, and inclusion-exclusion principle.
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Automata equivalence relations

Definition (State-label-insensitive relation)

The relation S is defined by:(
(Σ, Γ,Q, q0, δ, `), (Σ, Γ,Q, q0, δ, `

′)
)
∈ S

q0

1 0

0 0

S
q0

1 1

1 0
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Automata equivalence relations

Definition (Label-insensitive relation)

The relation L is defined by:(
(Σ, Γ,Q, q0, δ, `), (Σ, Γ,Q, q0, δ

′, `′)
)
∈ L

such that for every q ∈ Q, a bijective function σ : Σ→ Σ exists such
that δ(q, c) = δ′(q, σ(c)) for all c ∈ Σ.

q0

1 0

0 0

L
q0

1 1

1 0
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Consistency and closeness

A protocol Proto is consistent w.r.t R iff

A,A′ ∈ P : (A,A′) ∈ R

A protocol Proto is closed under R iff

∀(A,A′) ∈ R : A ∈ Proto =⇒ A′ ∈ Proto

The closure of Proto w.r.t R, denoted by ProtoR, is the minimal
superset of Proto that is closed under R.

Jorge Toro Pozo PhD Dissertation May 14, 2019 22 / 56



Solving the optimality problem

Theorem (Modular is optimal)

For any protocol Proto that is layered and closed under S, A ∈ Proto
exists such that:

mafia(Proto) ≥ mafia
(
{A}L

)
≥ mafia

({
Msize(Proto)

}L
)

(0,0)

(1,0)1 (1,1) 0

(2,0)0 (2,1) 1 (2,2) 0 (2,3) 1

(3,0)1 (3,1) 0 (3,2) 1 (3,3) 1

(4,0)0 (4,1) 1 (4,2) 0 (4,3) 0
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The Modular protocol

shared x

V

shared x

P

nonce NV ∈ {0, 1}m nonce NP ∈ {0, 1}m

NV

T 0|···|Th−1|D0|···|Dh−1:=f(x,NV ,NP )
q0:=0

NP

nonce c ∈ {0, 1}n

ci

∆ti

let qi∈{0,...,h−1} such that

qi≡2qi−1+ci⊕D
qi−1
i (mod h)

ri:=T
qi
i

ri

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of all ri
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Summary of Part I

Introduced a model that allows us to systematically study security
and space complexity in lookup-based protocols.

Provided formulas for computing mafia fraud success probability
for most lookup-based protocols.

Addressed (partially) the security-memory trade-off problem in a
prominent class within the lookup-based protocols.

Provided a concrete construction of a protocol that is optimally
secure amongst resource-constrained protocols.
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Part II

Symbolic Analysis of Distance-Bounding

Protocols
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Time/location model
Syntax

Agents: the set Agent, partitioned into {Honest,Dishonest}.

Messages: the set Msg defined by:

m ::= atom |
〈
m,m′〉 | f (m) | {m}m′

where atom ∈ Nonce ∪ Agent ∪ Const and f ∈ F .

Events: the set Event defined by:

e ::= send (A,m) [m′] | recv (A,m) | claim
(
A,B, e ′, e ′′

)
Trace: a sequence (t1, e1) · · · (tn, en) with ti ∈ R, ei ∈ Event.

Specification: a set of rules defining the actions of honest agents.

... and some other stuff such as message deduction.
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Time/location model
Syntax

Specification: a set of rules defining the actions of honest agents.

Proto = {R1 . . . ,Rn} where the Ri ’s have the form:

t ≥ maxt(α) A ∈ Honest
cond1 · · · condn

(α, (t, e)) ∈ Ri

In words: if conditions condj are met, then the agent A can
execute the event e at time t.
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Time/location model
Syntax: Specifying the HK protocol

shared k

V

shared k

P

nonce NV , ch nonce NP

NV

NP

ch

RTT f(ch, g(k,NV , NP ))

P is close

α ∈ Tr (Proto) V ∈ Honest t ≥ maxt(α)
NV ∈ NonceV \ used(α)

α · (t, send (V ,NV ) [ ]) ∈ Tr (HK)

α ∈ Tr (Proto) P ∈ Honest t ≥ maxt(α)
(t′, recv (P,NV )) ∈ α NP ∈ NonceP \ used(α)

α · (t, send (P,NP ) [NV ]) ∈ Tr (HK)

α ∈ Tr (Proto) V ∈ Honest t ≥ maxt(α)
(t′, send (V ,NV ) [ ]) ∈ α (t′′, recv (V ,NP )) ∈ α

ch ∈ NonceV \ used(α)
α · (t, send (V , ch) [NV ,NP ]) ∈ Tr (HK)

α ∈ Tr (Proto) P ∈ Honest t ≥ maxt(α)
(t′, send (P,NP ) [NV ]) ∈ α (t′′, recv (P, ch)) ∈ α

rp = f (ch, g(sh(V , P),NV ,NP ))

α · (t, send (P, rp) [ ]) ∈ Tr (HK)

α ∈ Tr (Proto) V ∈ Honest tz ≥ maxt(α)
rp = f (ch, g(sh(V , P),NV ,NP ))

x = send (V , ch) [NV ,NP ] y = recv (V , rp)
(tx, x) ∈ α (ty, y) ∈ α

α · (tz, claim (V , P, x, y)) ∈ Tr (HK)
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Time/location model
Syntax

Message deduction: the set dmA (α) contains all messages that
A can infer from α:

m ∈ initk (A)

m ∈ dmA (α)

(t, recv (A,m)) ∈ α
m ∈ dmA (α)

〈m1,m2〉 ∈ dmA (α)

{m1,m2} ⊆ dmA (α)

m ∈ dmA (α)
f ∈ F \ B

f (m) ∈ dmA (α)

m1 ∈ dmA (α)
m2 ∈ dmA (α)

〈m1,m2〉 ∈ dmA (α)

m ∈ dmA (α)
k ∈ dmA (α)

{m}k ∈ dmA (α)

{m}k ∈ dmA (α)
k−1 ∈ dmA (α)

m ∈ dmA (α)

Jorge Toro Pozo PhD Dissertation May 14, 2019 31 / 56



Time/location model
Semantics

The set of all valid traces Tr (Proto) is closed under the rules Start,
Int, Net and the rules of Proto, where:

ε ∈ Tr (Proto)
Start

E ∈ Dishonest
t ≥ maxt(α) m ∈ dmE (α)

α · (t, send (E ,m) [ ]) ∈ Tr (Proto)
Int

t ≥ maxt(α)
〈t ′, send (A,m) [m′]〉 ∈ α
t ≥ t ′ + dist(A,B)/c

α · (t, recv (B,m)) ∈ Tr (Proto)
Net
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Time/location model
Security property

Definition

A distance-bounding protocol Proto is secure if and only if:

∀α ∈ Tr (Proto) , (t, claim (V ,P, x , y)) ∈ α.
∃(tx , x), (ty , y) ∈ α.

dist(V ,P) ≤ c · ty − tx

2

where ≈ = {(A,A) | A ∈ Honest} ∪ Dishonest× Dishonest.
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A distance-bounding protocol Proto is secure if and only if:

∀α ∈ Tr (Proto) , (t, claim (V ,P, x , y)) ∈ α.
∃(tx , x), (ty , y) ∈ α,P ′ ∈ actor (α) .

dist(V ,P ′) ≤ c · ty − tx

2
∧ P ≈ P ′

where ≈ = {(A,A) | A ∈ Honest} ∪ Dishonest× Dishonest.
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Three timing scenarios

V P

chal∆t

resp

V P

chal
∆t′

resp

V P

resp
chal

∆t′′

Correct timing

Early timing Very early timing

Claim: If there is an early timing, then there is a very early timing.

Jorge Toro Pozo PhD Dissertation May 14, 2019 34 / 56



Three timing scenarios

V P

chal∆t

resp

V P

chal
∆t′

resp

V P

resp
chal

∆t′′

Correct timing Early timing

Very early timing

Claim: If there is an early timing, then there is a very early timing.

Jorge Toro Pozo PhD Dissertation May 14, 2019 34 / 56



Three timing scenarios

V P

chal∆t

resp

V P

chal
∆t′

resp

V P

resp
chal

∆t′′

Correct timing Early timing Very early timing

Claim: If there is an early timing, then there is a very early timing.

Jorge Toro Pozo PhD Dissertation May 14, 2019 34 / 56



Three timing scenarios

V P

chal∆t

resp

V P

chal
∆t′

resp

V P

resp
chal

∆t′′

Correct timing Early timing Very early timing

Claim: If there is an early timing, then there is a very early timing.

Jorge Toro Pozo PhD Dissertation May 14, 2019 34 / 56



Causality-based security property

Theorem (Causality-based secure DB)

A distance-bounding protocol Proto is distance-bounding secure if and
only if:

∀σ ∈ π(Tr (Proto)), claim (V ,P, x , y) ∈ σ.
∃x · e · y v σ. actor (e) = P.

In words: Whenever V claims that P is close during the fast phase
delimited by x and y , it is the case that P was alive in such phase.
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A distance-bounding protocol Proto is distance-bounding secure if and
only if:

∀σ ∈ π(Tr (Proto)), claim (V ,P, x , y) ∈ σ.
∃x · e · y v σ. actor (e) ≈ P.

In words: Whenever V claims that P is close during the fast phase
delimited by x and y , it is the case that P was alive in such phase, or a
compromised P ′ was, if P is compromised.
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Verification results

Protocol Satisfies dbsec Attack Found
BC-Signature × DH

BC-FiatShamir ×(n) DH(n), DF(n)

BC-Schnorr ×(n) DH(n), DF(n)

CRCS ×(n) DH(n)

Lookup-based
• Tree X -
• Poulidor X -
• Hancke-Kuhn X -
• Uniform X -
Meadows et al. × DH

Kim-Avoine X(n) -

Munilla-Peinado X(n) -

Reid et al. X(n) -

Swiss-Knife X(n) -

TREAD-PK ×(n) DH(n), MF(n)

TREAD-SH ×(n) DH(n)

PaySafe ×(n) DF(n), DH(n)
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Summary on causality

Proved that distance-bounding security can be formulated through
causality, like most other security properties.

Led to simplification and more effective tooling.
(e.g. BC protocol is 650 Isabelle/HOL LoC vs. 180 Tamarin LoC).

Provided the first fully automated verification framework.
verification.

Provided computer-verifiable (in)security proofs for a number of
state-of-the-art protocols.

Identified unreported vulnerabilities in two recently published
protocols: PaySafe (FC’15) and TREAD (AsiaCCS’17).
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Multiset rewriting system

The execution of a protocol starts with the empty multiset of facts,
and evolves through multiset rewriting rules.

A multiset rewriting rule is a tuple (p, a, c), written as
[
p
]a−→[c],

where p, a and c are sequences of facts called the premises, the
actions, and the conclusions of the rule, respectively. E.g.

[
Funds(Person, funds),
Price(Good , price)

] Geq(funds,price),
Purchase(Person,Good),

Happy(Person)−−−−−−−−−−−−−→
[
Funds(Person, sub(funds, price))

]
Salary(Person, salary),PayDay(Person),
Funds(Person, funds)

 PaySalary(Person),
EvenHappier(Person)−−−−−−−−−−−→

[
Funds(Person, funds + salary)

]
Consider only traces t that satisfy

∀x , y . Geq(x , y) ∈ t =⇒ ∃z . y + z = x
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Multiset rewriting system

A set R of multiset rewriting rules defines a multiset rewriting system: an
LTS whose set of states is G] and whose transition relation
→R ⊆ G] × P (G)× G] is defined by:

S
l−→R S ′ ⇐⇒
∃(p, a, c) ∈E ginsts(R).

l = set(a) ∧ linear(p) ⊆] S ∧ persist(p) ⊆ set(S) ∧
S ′ =

(
S \] linear(p)

)
∪] multiset(c).

An execution of R is a finite alternating sequence of states and labels
[S0, l1,S1, . . . , ln,Sn] of states and labels such that:

S0 = ∅],
Si−1

li−→R Si for 1 ≤ i ≤ n, and
if Si+1 \] Si = {Fr(x)}] for some i and x , then j 6= i does not exist
such that Sj+1 \] Sj = {Fr(x)}].
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Protocol specification
Hancke and Kuhn, 2005

shared k

V

shared k

P

nonce NV , ch nonce NP

NV

NP

ch

RTT f(ch, g(k,NV , NP ))

P is close

KeyGen, KeyRevV, KeyRevP

DBNet :=
[
Send(X ,m)

] Action(Y ), Recv(Y ,m)
−−−−−−−−−−−−−→

[
Out(m),

Recv(Y ,m)

]
DBAdv :=

[
In(m),KeyComp(X )

] Action(X )
−−−−−−→

[
Send(X ,m)

]
V1 :=

[
Fr(NV )

] Start(NV )
−−−−−−→

[
Out(NV ), VerifSt1(V ,NV )

]
P1 :=

[
Fr(NP ), In(NV ),
Shk(V , P, k)

] Start(NP ),
Action(P)
−−−−−−→

[
Send(P,NP ),

ProvSt1(P, k,NP ,NV )

]

V2 :=

VerifSt1(V ,NV ),
Fr(ch), In(NP ),
Shk(V , P, k)

 Send(V ,ch)
−−−−−−−→

 Out(ch),
VerifSt2(V , P,NV , ch,
f (ch, g(k,NV ,NP )))



P2 :=

[
ProvSt1(P, k,NP ,NV ),

In(ch)

] Action(P),
End(NP )
−−−−−−→

[
Send(P, f (ch,
g(k,NP ,NV )))

]
V3 :=

[
VerifSt2(V , P,NV , ch, rp),

Recv(V , rp)

]
DBSec(V ,P,ch,rp),End(NV )
−−−−−−−−−−−−−−−−−→

[ ]

HK = {KeyGen, KeyRevV, KeyRevP, DBNet, DBAdv, V1, V2, V3, P1, P2}
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Protocol execution

The set of all executions Proto is JProto ∪ IK where:

I =
{
Fresh :=

[ ]
−→
[
Fr(x : fresh)

]
,

Learn :=
[
Out(x)

]
−→
[
K(x)

]
,

Inject :=
[
K(x)

]K(x)−−−→
[
In(x)

]
,

AdvFresh :=
[
Fr(x)

]
−→
[
K(x)

]
,

Public :=
[ ]
−→
[
K(x : pub)

]
,

Funct :=
[
K(x1), . . . ,K(xn)

]
−→
[
K (f (x1, . . . , xn))

] }
Given an execution [S0, l1,S1, . . . , ln,Sn], the sequence l1 · · · ln is the trace.

Tr (Proto) = {l1 · · · ln | [S0, l1,S1, . . . , ln,Sn] ∈ JProto ∪ IK}.
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Security properties

Definition (Security Property)

A security property ϕ is a relation from traces to natural numbers, and
ϕ(t, i) means that the claims of ϕ in ti are valid.

E.g. secure distance-bounding is defined as:

dbsec(t, l) ⇐⇒
∀V ,P, ch, rp. DBSec(V ,P, ch, rp) ∈ tl =⇒
(∃i , j , k. i < j < k ∧ Send(V , ch) ∈ ti ∧

Action(P) ∈ tj ∧ Recv(V , rp) ∈ tk) ∨
(∃b, b′, i , j , k,P ′.

i < j < k ∧ Send(V , ch) ∈ ti ∧
Action(P ′) ∈ tj ∧ Recv(V , rp) ∈ tk ∧
KeyComp(P) ∈ tb ∧ KeyComp(P ′) ∈ tb′) ∨

(∃i . KeyComp(V ) ∈ ti )
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Security properties

Definition (Security)

A set Proto of protocol rules satisfies a security property ϕ, denoted
Proto |= ϕ, if ∀t ∈ Tr (Proto) , i ∈ {1, . . . , |t|}. ϕ(t, i).

shared k

V

shared k

P

nonce NV , ch nonce NP

NV

NP

ch

RTT f(ch, g(k,NV , NP ))

P is close

HK |= dbsec

i.e. no MF, DF or DH exist
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Distance-bounding attacks

PV

A

(a) Mafia fraud

PV

(b) Distance fraud

PV

A

(c) Distance hijacking

PV

A

(d) Terrorist fraud
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What is collusion?

Source https://yp.scmp.com

Jorge Toro Pozo PhD Dissertation May 14, 2019 46 / 56

https://yp.scmp.com


Modeling collusion
Hancke and Kuhn, 2005

shared k

V

shared k

P

nonce NV , ch nonce NP

NV

NP

ch

RTT f(ch, g(k,NV , NP ))

P is close

KeyGen, KeyRevV, KeyRevP

DBNet :=
[
Send(X ,m)

] Action(Y ), Recv(Y ,m)
−−−−−−−−−−−−−→

[
Out(m),

Recv(Y ,m)

]
DBAdv :=

[
In(m),KeyComp(X )

] Action(X )
−−−−−−→

[
Send(X ,m)

]
V1 :=

[
Fr(NV )

] Start(NV )
−−−−−−→

[
Out(NV ), VerifSt1(V ,NV )

]
P1 :=

[
Fr(NP ), In(NV ),
Shk(V , P, k)

] Start(NP ),
Action(P)
−−−−−−→

[
Send(P,NP ),

ProvSt1(P, k,NP ,NV )

]

Coll :=
[
ProvSt1(P, k,NP ,NV )

] Collusion()
−−−−−−→

[
ProvSt1(P, k,NP ,NV ),

Out(g(k,NV ,NP ))

]

V2 :=

VerifSt1(V ,NV ),
Fr(ch), In(NP ),
Shk(V , P, k)

 Send(V ,ch)
−−−−−−−→

 Out(ch),
VerifSt2(V , P,NV , ch,
f (ch, g(k,NV ,NP )))



P2 :=

[
ProvSt1(P, k,NP ,NV ),

In(ch)

] Action(P),
End(NP )
−−−−−−→

[
Send(P, f (ch,
g(k,NP ,NV )))

]
V3 :=

[
VerifSt2(V , P,NV , ch, rp),

Recv(V , rp)

]
DBSec(V ,P,ch,rp),End(NV )
−−−−−−−−−−−−−−−−−→

[ ]

We obtain HK ∪ {Coll} 6|= dbsec as opposed to HK |= dbsec
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Post-collusion security

Definition (Post-collusion security)

Given a protocol Proto, a valid extension Proto ′ ⊇ Proto is
post-collusion secure w.r.t. ϕ, denoted Proto ′ |=? ϕ, if:

∀t ∈ Tr
(
Proto ′) , e ∈ {1, . . . , |t|}.

(complete(t1 · · · te) ∧ nocollusion(te+1 · · · t|t|))

=⇒ ∀i > e. ϕ(t, i).
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Terrorist fraud

Definition (Terrorist Fraud Attack – Informal)

Terrorist fraud is an attack in which a remote and non-compromised
prover P colludes with a close and compromised prover A to make the
verifier believe that P is close. Conditionally, A must not be able to
prove the same again without further collusion.

PV

A
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Terrorist fraud

Definition (Terrorist Fraud Attack – Informal)

Terrorist fraud is an attack in which a remote and non-compromised
prover P colludes with a close and compromised prover A to make the
verifier believe that P is close. Conditionally, A must not be able to
prove the same again without further collusion.

Definition (Resistance to Terrorist Fraud)

A protocol Proto is resistant to terrorist fraud if for every valid
extension Proto ′ ⊇ Proto it holds that:

Proto ′ 6|= dbsec hnst =⇒ Proto ′ 6|=? dbsec hnst.
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Verification results

Protocol
Satisfies Satisfies Resists

Protocol
Satisfies Satisfies Resists

dbsec hnst dbsec TF dbsec hnst dbsec TF

Brands-Chaum Reid et al. X X X(n)

• Signature id. X × ×(n) MAD (one way) X ×(6=c) ×

• Fiat-Shamir id. X × ×(n) DBPK X(n) X(n) X(n)

CRCS Swiss Knife X X X(n)

• Non-reveal sign. X X × UWB

• Reveal sign. X × × • PKI ×(n) ×(n) X(n)

Meadows et al. • keyed-MAC ×(n) ×(n) X(n)

• 〈NV , P ⊕ NP〉 X ×(6=c) × WSBC+DB X(n) ×(n) ×(n)

• NV ⊕ h(P,NP ) X(n) X(n) ×(n) Hitomi X(n) X(n) ×(n)

• 〈NV , P,NP〉 X(n) X(n) ×(n) TREAD

Lookup-based • Asymmetric × × X(n)

• Tree X X ×(6=c) • Symmetric X × X(n)

• Poulidor X X ×(6=c) ISO/IEC 14443

• Hancke-Kuhn X X ×(6=c) • PaySafe X × ×

• Uniform X X ×(6=c) • MIFARE Plus X × ×

Munilla-Peinado X X ×(n) • PayPass X × ×

Kim-Avoine X X ×(n)
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Summary of Part II

First causality-based secure DB property.

A concrete formalism to model collusion in security protocols.

Introduced the notion of post-collusion security.

Provided a formal definition of TF resistance.

A comprehensive security survey of DB protocols.
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Conclusions

A computational model that allows for comprehensive security and
space complexity analysis.

An optimally secure protocol for a prominent class of lookup-based
protocols, given an upper bound on the size.

A causality-based, automatic symbolic framework for DB
verification that accounts for the four classes of attacks.

An extensive security survey of DB protocols, including
Mastercard’s PayPass protocol and NXP’s MIFARE Plus protocol.
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Hong Kong, China, Nov. 30 - Dec. 2, 2016. pp. 137–150.
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Privacy, S&P’18, San Francisco, California, May 21–23, 2018, USA. pp. 549–566.

Post-Collusion Security and Distance Bounding, with S. Mauw, Z. Smith, and R.
Trujillo-Rasua (under submission).

Not related to DB

Automated Identification of Desynchronisation Attacks on Shared Secrets, with S.
Mauw, Z. Smith, and R. Trujillo-Rasua. In 23rd European Symposium on Research in
Computer Security, ESORICS’18, Barcelona, Spain, Sept. 3–7, 2018. pp. 406–426.

Jorge Toro Pozo PhD Dissertation May 14, 2019 54 / 56

http://www.ieee-security.org/TC/EuroSP2016/
http://rfidsec2016.org/
https://www.ieee-security.org/TC/SP2018/
https://esorics2018.upc.edu/


Future Work

Extend the computational analysis in order to account for further
attacks.

Proof of completeness for our TF resistance definition in relation to
the Tamarin prover.

- Seems quite complex, yet we have some promising ideas.

Reduce the gap between computational and symbolic analysis.

- Build “stochastic reasoning” on top of multiset rewriting.
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Q & A

Thank you
Gracias • Merci • Danke

Jorge Toro Pozo
jorgetp.github.io
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