Computational and Symbolic Analysis of Distance-Bounding Protocols

Jorge Toro Pozo

PhD Dissertation

May 14, 2019

Defence Committee Chair

Prof. Dr. Yves LE TRAON

Defence Committee Vice-Chair & Daily Advisor Dr. Rolando TRUJILLO RASÚA

Defence Committee Member & Supervisor Prof. Dr. Sjouke MAUW

Defence Committee Member Dr. Stéphanie DELAUNE

Defence Committee Member Dr. Ioana BOUREANU

Outline

1 Introduction

- Part I: Computational Analysis
- 2 Lookup-based protocols
- Optimality in lookup-based protocols

Part II: Symbolic Analysis

- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6 Conclusions

Problem: Relay attack

Source https://securepositioning.com

Problem: Relay attack

Source https://securepositioning.com

Definition

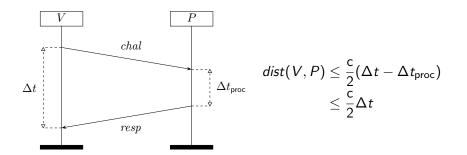
A *relay attack* is a man-in-the-middle attack in which an attacker relays verbatim a message from the sender to a valid receiver.

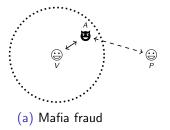
Definition

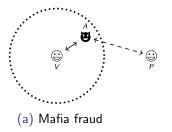
A *distance-bounding protocol* is a security protocol that, in addition to authentication, established an upper bound on the physical distance between the prover and the verifier.

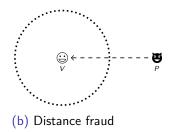
Definition

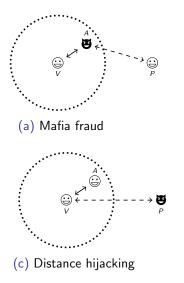
A *distance-bounding protocol* is a security protocol that, in addition to authentication, established an upper bound on the physical distance between the prover and the verifier.

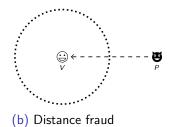


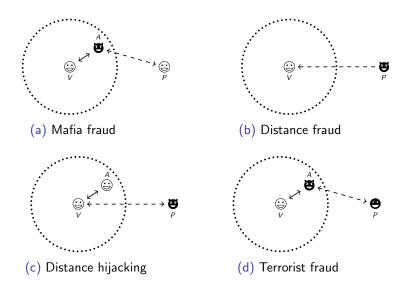












Part I

Computational Analysis of Distance-Bounding Protocols

Introduction

Part I: Computational Analysis

2 Lookup-based protocols

3 Optimality in lookup-based protocols

Part II: Symbolic Analysis

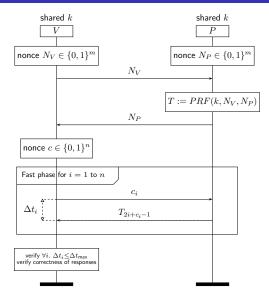
- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6 Conclusions

Lookup-based protocols are distance-bounding (DB) protocols such that:

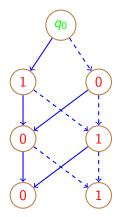
- Ouring the fast phase, the responses to the challenges are looked-up from a table built up in the slow phase.
- The prover does not send any messages after the fast phase has been completed.

Example Hancke and Kuhn (HK), 2005



Jorge Toro Pozo

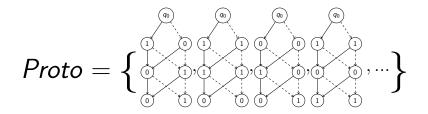
Protocol representation State-labeled DFA

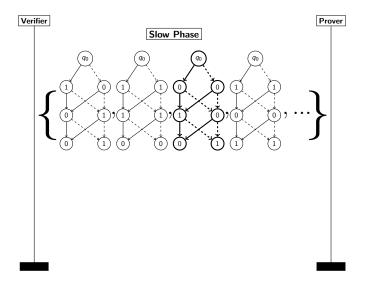


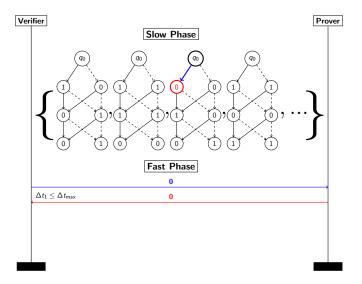
 $A = (\Sigma, \Gamma, Q, q_0, \delta, \ell)$ where:

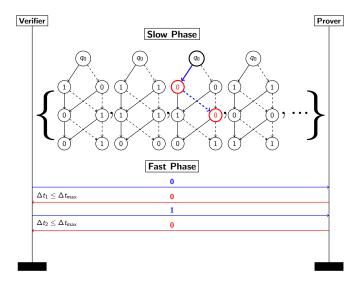
- Σ is the set of input symbols
- Γ is the set of output symbols
- Q is the set of states
- $q_0 \in Q$ is the initial state
- $\delta \colon Q \times \Sigma \to Q$ is the transition function
- $\ell: Q \to \Gamma$ is the state labeling function

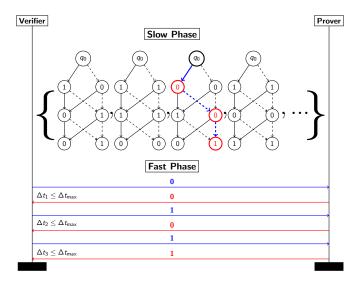
Protocol representation











- To provide an optimal adversary strategy to conduct a pre-ask mafia fraud attack against a prominent class of lookup-based protocols.
- To prove that the Tree [AT09] protocol is optimally resistant to pre-ask mafia fraud amongst all lookup-based protocols, at the cost of exponential space complexity.

Outline

1 Introduction

Part I: Computational Analysis

Lookup-based protocols

3 Optimality in lookup-based protocols

Part II: Symbolic Analysis

- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6) Conclusions

Definition (Optimality problem)

Given a bound h, find an optimally resistant to mafia fraud amongst all protocols that are layered, and random-labeled, and whose size is not larger than h.

Definition (Optimality problem)

Given a bound h, find an optimally resistant to mafia fraud amongst all protocols that are layered, and random-labeled, and whose size is not larger than h.

- Layered is to do with two sequences of different lenghts not reaching the same state.
- Random-labeled is a property that says that there exists an automaton for any labeling of the states.
- Size is a measure of space complexity.

Definition (Optimality problem)

Given a bound h, find an optimally resistant to mafia fraud amongst all protocols that are layered, and random-labeled, and whose size is not larger than h.

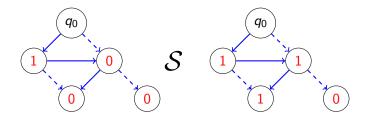
- Layered is to do with two sequences of different lenghts not reaching the same state.
- Random-labeled is a property that says that there exists an automaton for any labeling of the states.
- Size is a measure of space complexity.

To solve the optimality problem we employed equivalence relations, and closeness and consistency in sets, and inclusion-exclusion principle.

Definition (State-label-insensitive relation)

The relation ${\mathcal S}$ is defined by:

 $\left((\Sigma, \Gamma, Q, q_0, \delta, \ell), \ (\Sigma, \Gamma, Q, q_0, \delta, \ell')\right) \in \mathcal{S}$

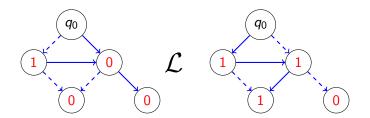


Definition (Label-insensitive relation)

The relation \mathcal{L} is defined by:

$$\left((\Sigma, \Gamma, Q, q_0, \delta, \ell), (\Sigma, \Gamma, Q, q_0, \delta', \ell')\right) \in \mathcal{L}$$

such that for every $q \in Q$, a bijective function $\sigma \colon \Sigma \to \Sigma$ exists such that $\delta(q, c) = \delta'(q, \sigma(c))$ for all $c \in \Sigma$.



• A protocol *Proto* is consistent w.r.t \mathcal{R} iff

$$A, A' \in P \colon (A, A') \in \mathcal{R}$$

• A protocol *Proto* is closed under \mathcal{R} iff

$$\forall (A, A') \in \mathcal{R} \colon A \in Proto \implies A' \in Proto$$

• The closure of *Proto* w.r.t \mathcal{R} , denoted by *Proto* $^{\mathcal{R}}$, is the minimal superset of *Proto* that is closed under \mathcal{R} .

Theorem (Modular is optimal)

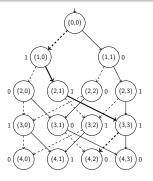
For any protocol Proto that is layered and closed under S, $A \in$ Proto exists such that:

$$mafia(Proto) \geq mafia\left(\{A\}^{\mathcal{L}}\right) \geq mafia\left(\left\{M_{size(Proto)}\right\}^{\mathcal{L}}\right)$$

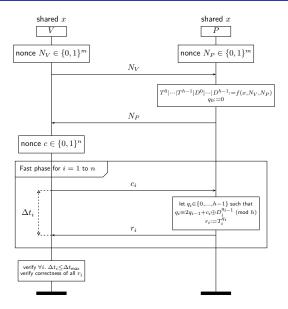
Theorem (Modular is optimal)

For any protocol Proto that is layered and closed under S, $A \in$ Proto exists such that:

$$\mathit{mafia}(\mathit{Proto}) \geq \mathit{mafia}\left(\{A\}^\mathcal{L}
ight) \geq \mathit{mafia}\left(\left\{M_{\mathit{size}(\mathit{Proto})}
ight\}^\mathcal{L}
ight)$$



The Modular protocol



Jorge Toro Pozo

- Introduced a model that allows us to systematically study security and space complexity in lookup-based protocols.
- Provided formulas for computing mafia fraud success probability for most lookup-based protocols.
- Addressed (partially) the security-memory trade-off problem in a prominent class within the lookup-based protocols.
- Provided a concrete construction of a protocol that is optimally secure amongst resource-constrained protocols.

Part II

Symbolic Analysis of Distance-Bounding Protocols

Outline

Introduction

Part I: Computational Analysis

- 2 Lookup-based protocols
- Optimality in lookup-based protocols

Part II: Symbolic Analysis

- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6 Conclusions

• Agents: the set Agent, partitioned into {Honest, Dishonest}.

- Agents: the set Agent, partitioned into {Honest, Dishonest}.
- Messages: the set Msg defined by:

$$m ::= atom \mid \left\langle m, m' \right\rangle \mid f(m) \mid \{m\}_{m'}$$

- Agents: the set Agent, partitioned into {Honest, Dishonest}.
- Messages: the set Msg defined by:

$$m ::= atom \mid \langle m, m' \rangle \mid f(m) \mid \{m\}_{m'}$$

• Events: the set Event defined by:

 $e ::= \operatorname{send} (A, m) [m'] | \operatorname{recv} (A, m) | \operatorname{claim} (A, B, e', e'')$

- Agents: the set Agent, partitioned into {Honest, Dishonest}.
- Messages: the set Msg defined by:

$$m ::= atom \mid \langle m, m' \rangle \mid f(m) \mid \{m\}_{m'}$$

• Events: the set Event defined by:

 $e ::= \operatorname{send} (A, m) [m'] | \operatorname{recv} (A, m) | \operatorname{claim} (A, B, e', e'')$

• **Trace**: a sequence $(t_1, e_1) \cdots (t_n, e_n)$ with $t_i \in \mathbb{R}, e_i \in \text{Event}$.

- Agents: the set Agent, partitioned into {Honest, Dishonest}.
- Messages: the set Msg defined by:

$$m ::= atom \mid \langle m, m' \rangle \mid f(m) \mid \{m\}_{m'}$$

• Events: the set Event defined by:

 $e ::= \operatorname{send} (A, m) [m'] | \operatorname{recv} (A, m) | \operatorname{claim} (A, B, e', e'')$

- **Trace**: a sequence $(t_1, e_1) \cdots (t_n, e_n)$ with $t_i \in \mathbb{R}, e_i \in \mathsf{Event}$.
- **Specification**: a set of *rules* defining the actions of *honest* agents.

- Agents: the set Agent, partitioned into {Honest, Dishonest}.
- Messages: the set Msg defined by:

$$m ::= atom \mid \langle m, m' \rangle \mid f(m) \mid \{m\}_{m'}$$

• Events: the set Event defined by:

 $e ::= \operatorname{send} (A, m) [m'] | \operatorname{recv} (A, m) | \operatorname{claim} (A, B, e', e'')$

- **Trace**: a sequence $(t_1, e_1) \cdots (t_n, e_n)$ with $t_i \in \mathbb{R}, e_i \in \mathsf{Event}$.
- Specification: a set of *rules* defining the actions of *honest* agents.
- ... and some other stuff such as message deduction.

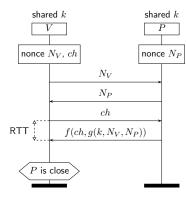
• **Specification**: a set of rules defining the actions of *honest* agents.

Proto = { R_1 ..., R_n } where the R_i 's have the form:

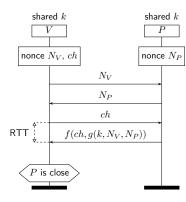
$$\frac{t \ge maxt(\alpha) \quad A \in \mathsf{Honest}}{(\alpha, (t, e)) \in R_i}$$

In words: if conditions $cond_j$ are met, then the agent A can execute the event e at time t.

Time/location model Syntax: Specifying the HK protocol



Time/location model Syntax: Specifying the HK protocol



$lpha \in \mathit{Tr}(\mathit{Proto}) V \in Honest t \ge \mathit{maxt}(lpha) \\ N_V \in Nonce_V \setminus \mathit{used}(lpha)$
$\alpha \cdot (t, \text{send}(V, N_V)[]) \in Tr(HK)$
$\alpha \in Tr(Proto) P \in Honest t \ge maxt(\alpha)$
$(t', recv(P, N_V)) \in lpha N_P \in Nonce_P \setminus \mathit{used}(lpha)$
$\alpha \cdot (t, \text{send}(P, N_P)[N_V]) \in Tr(HK)$
$\alpha \in Tr(Proto) V \in Honest t \geq maxt(\alpha)$
$(t', \text{send}(V, N_V)[]) \in \alpha$ $(t'', \text{recv}(V, N_P)) \in \alpha$
$ch \in Nonce_V \setminus used(\alpha)$
$lpha \cdot (t, send(V, \mathit{ch})[\mathit{N}_V, \mathit{N}_P]) \in \mathit{Tr}(\mathrm{HK})$
$\alpha \in Tr(Proto) P \in \text{Honest} t \ge maxt(\alpha)$
$(t', \operatorname{send} (P, N_P) [N_V]) \in \alpha (t'', \operatorname{recv} (P, ch)) \in \alpha$ $rp = f(ch, g(sh(V, P), N_V, N_P))$
$\alpha \cdot (t, send(P, \mathit{rp})[]) \in \mathit{Tr}(\mathrm{HK})$
$\alpha \in Tr(Proto) V \in Honest tz \ge maxt(\alpha)$
$rp = f(ch, g(sh(V, P), N_V, N_P))$
$x = \text{send}(V, ch)[N_V, N_P] y = \text{recv}(V, rp)$
$(tx, x) \in \alpha (ty, y) \in \alpha$
$lpha \cdot (tz, claim(V, P, x, y)) \in \mathit{Tr}(\mathrm{HK})$

 Message deduction: the set dm_A (α) contains all messages that A can infer from α:

$m \in initk(A)$ (t, recv(A, m		n)) $\in \alpha$	$\langle \textit{m}_{1},\textit{m}_{2} angle\in\textit{dm}_{\textit{A}}\left(lpha ight)$
$m \in dm_A(\alpha)$	$m \in dm_A(\alpha)$		$\overline{\left\{ m_{1},m_{2}\right\} \subseteq dm_{A}\left(\alpha\right) }$
$\frac{\textit{\textit{m}} \in \textit{\textit{dm}}_{\textit{A}}\left(\alpha\right)}{\textit{\textit{f}} \in \mathcal{F} \setminus \mathcal{B}}$ $\overline{\textit{\textit{f}}\left(\textit{m}\right) \in \textit{\textit{dm}}_{\textit{A}}\left(\alpha\right)}$		$m_2 \in$	$\frac{dm_{A}(\alpha)}{dm_{A}(\alpha)}$ $\phi \in dm_{A}(\alpha)$
k	$egin{aligned} & e \in \textit{dm}_{A}\left(lpha ight) \ & \in \textit{dm}_{A}\left(lpha ight) \ & \\ & e \in \textit{dm}_{A}\left(lpha ight) \ & \\ & e \in \textit{dm}_{A}\left(lpha ight) \end{aligned}$	$k^{-1} \in$	$\in dm_A(lpha)$ $\equiv dm_A(lpha)$ $dm_A(lpha)$

The set of all valid traces Tr(Proto) is closed under the rules Start, Int, Net and the rules of Proto, where:

$$\overline{\epsilon \in \mathit{Tr}\left(\mathit{Proto}
ight)}$$
 Start

$$E \in \text{Dishonest}$$

$$\frac{t \ge maxt(\alpha) \quad m \in dm_E(\alpha)}{\alpha \cdot (t, \text{send}(E, m)[]) \in Tr(Proto)} \text{ Int}$$

$$\frac{t \ge maxt(\alpha)}{\langle t', \text{send}(A, m)[m'] \rangle \in \alpha}$$

$$\frac{t \ge t' + dist(A, B)/c}{\alpha \cdot (t, \text{recv}(B, m)) \in Tr(Proto)} \text{ Net}$$

Definition

A distance-bounding protocol Proto is secure if and only if:

$$orall lpha \in Tr(Proto), (t, \operatorname{claim}(V, P, x, y)) \in lpha,$$

 $\exists (tx, x), (ty, y) \in lpha,$
 $dist(V, P) \leq \mathsf{c} \cdot rac{ty - tx}{2}$

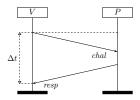
Definition

A distance-bounding protocol Proto is secure if and only if:

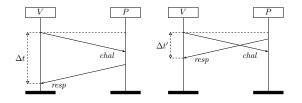
$$orall lpha \in Tr(Proto), (t, ext{claim}(V, P, x, y)) \in lpha.$$

 $\exists (tx, x), (ty, y) \in lpha, P' \in actor(lpha).$
 $dist(V, P') \leq c \cdot rac{ty - tx}{2} \wedge P pprox P'$

where $\approx = \{(A, A) \mid A \in \mathsf{Honest}\} \cup \mathsf{Dishonest} \times \mathsf{Dishonest}.$



Correct timing



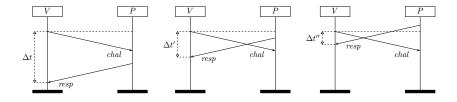
Correct timing



Correct timing

Early timing

Very early timing



Correct timing Early timing Very early timing

Claim: If there is an early timing, then there is a very early timing.

Theorem (Causality-based secure DB)

A distance-bounding protocol Proto is distance-bounding secure if and only if:

$$\forall \sigma \in \pi(Tr(Proto)), \text{claim}(V, P, x, y) \in \sigma.$$
$$\exists x \cdot e \cdot y \sqsubseteq \sigma. \text{ actor } (e) = P.$$

In words: Whenever V claims that P is close during the fast phase delimited by x and y, it is the case that P was alive in such phase.

Theorem (Causality-based secure DB)

A distance-bounding protocol Proto is distance-bounding secure if and only if:

$$\forall \sigma \in \pi(\operatorname{Tr}(\operatorname{Proto})), \operatorname{claim}(V, P, x, y) \in \sigma.$$
$$\exists x \cdot e \cdot y \sqsubseteq \sigma. \ \operatorname{actor}(e) \approx P.$$

In words: Whenever V claims that P is close during the fast phase delimited by x and y, it is the case that P was alive in such phase, or a compromised P' was, if P is compromised.

Verification results

Protocol	Satisfies dbsec	Attack Found
BC-Signature	×	DH
BC-FiatShamir	$\times^{(n)}$	$DH^{(n)}, DF^{(n)}$
BC-Schnorr	$\times^{(n)}$	$DH^{(n)}$, $DF^{(n)}$
CRCS	$\times^{(n)}$	$DH^{(n)}$
Lookup-based		
• Tree	\checkmark	-
 Poulidor 	\checkmark	-
 Hancke-Kuhn 	\checkmark	-
 Uniform 	\checkmark	-
Meadows et al.	×	DH
Kim-Avoine	√ ⁽ⁿ⁾	-
Munilla-Peinado	√ ⁽ⁿ⁾	-
Reid et al.	✓ ⁽ⁿ⁾	-
Swiss-Knife	√ ⁽ⁿ⁾	-
TREAD-PK	$\times^{(n)}$	$DH^{(n)}$, $MF^{(n)}$
TREAD-SH	$\times^{(n)}$	$DH^{(n)}$
PaySafe	$\times^{(n)}$	$DF^{(n)}$, $DH^{(n)}$

- Proved that distance-bounding security can be formulated through causality, like most other security properties.
 - Led to simplification and more effective tooling. (e.g. BC protocol is 650 Isabelle/HOL LoC vs. 180 Tamarin LoC).
 - Provided the first fully automated verification framework. verification.
- Provided computer-verifiable (in)security proofs for a number of state-of-the-art protocols.
 - Identified unreported vulnerabilities in two recently published protocols: PaySafe (FC'15) and TREAD (AsiaCCS'17).

Outline

Introduction

Part I: Computational Analysis

- 2 Lookup-based protocols
- Optimality in lookup-based protocols

Part II: Symbolic Analysis

- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6 Conclusions

• The execution of a protocol starts with the empty multiset of facts, and evolves through *multiset rewriting rules*.

- The execution of a protocol starts with the empty multiset of facts, and evolves through *multiset rewriting rules*.
- A multiset rewriting rule is a tuple (p, a, c), written as [p]^a→[c], where p, a and c are sequences of facts called the *premises*, the *actions*, and the *conclusions* of the rule, respectively. E.g.

$$\begin{bmatrix} \mathsf{Funds}(\mathsf{Person}, \mathsf{funds}), \\ \mathsf{Price}(\mathsf{Good}, \mathsf{price}) \end{bmatrix}^{\operatorname{Purchase}(\mathsf{Person}, \mathsf{Good}), \\ \operatorname{Happy}(\mathsf{Person})} \\ \begin{bmatrix} \mathsf{Salary}(\mathsf{Person}, \mathsf{salary}), \\ \mathsf{PayDay}(\mathsf{Person}), \\ \mathsf{Funds}(\mathsf{Person}, \mathsf{funds}) \end{bmatrix}^{\operatorname{PaySalary}(\mathsf{Person}), \\ \underbrace{\mathsf{EvenHappier}(\mathsf{Person}), \\ \mathsf{EvenHappier}(\mathsf{Person}), \\ \end{bmatrix}} \\ \begin{bmatrix} \mathsf{Funds}(\mathsf{Person}, \mathsf{funds} + \mathsf{salary}) \end{bmatrix}$$

- The execution of a protocol starts with the empty multiset of facts, and evolves through *multiset rewriting rules*.
- A multiset rewriting rule is a tuple (p, a, c), written as [p]^a→[c], where p, a and c are sequences of facts called the *premises*, the *actions*, and the *conclusions* of the rule, respectively. E.g.

$$\begin{bmatrix} \mathsf{Funds}(\mathsf{Person}, \mathsf{funds}), \\ \mathsf{Price}(\mathsf{Good}, \mathsf{price}) \end{bmatrix}^{\operatorname{Purchase}(\mathsf{Person}, \mathsf{Good}), \\ \operatorname{Happy}(\mathsf{Person})} \\ \begin{bmatrix} \mathsf{Salary}(\mathsf{Person}, \mathsf{salary}), \\ \mathsf{PayDay}(\mathsf{Person}), \\ \mathsf{Funds}(\mathsf{Person}, \mathsf{funds}) \end{bmatrix}^{\operatorname{PaySalary}(\mathsf{Person}), \\ \underbrace{\mathsf{EvenHappier}(\mathsf{Person}), \\ \mathsf{Funds}(\mathsf{Person}, \mathsf{funds})} \\ \begin{bmatrix} \mathsf{Funds}(\mathsf{Person}, \mathsf{funds} + \mathsf{salary}) \end{bmatrix}$$

Consider only traces t that satisfy $\forall x, y. \operatorname{Geq}(x, y) \in t \implies \exists z. y + z = x$

A set R of multiset rewriting rules defines a multiset rewriting system: an LTS whose set of states is G[♯] and whose transition relation
 →_R ⊆ G[♯] × P(G) × G[♯] is defined by:

$$S \xrightarrow{I}_{R} S' \iff$$

$$\exists (p, a, c) \in_{E} ginsts(R).$$

$$I = set(a) \land linear(p) \subseteq^{\sharp} S \land persist(p) \subseteq set(S) \land$$

$$S' = (S \setminus^{\sharp} linear(p)) \cup^{\sharp} multiset(c).$$

A set R of multiset rewriting rules defines a multiset rewriting system: an LTS whose set of states is G[♯] and whose transition relation
 →_R ⊆ G[♯] × P(G) × G[♯] is defined by:

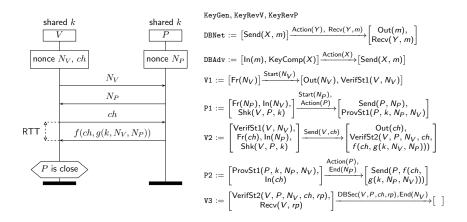
$$\begin{array}{ll} S \xrightarrow{I}_{
ightarrow R} S' \iff \ \exists (p,a,c) \in_{E} ginsts(R). \ I = set(a) \land linear(p) \subseteq^{\sharp} S \land persist(p) \subseteq set(S) \land \ S' = (S \setminus^{\sharp} linear(p)) \cup^{\sharp} multiset(c). \end{array}$$

• An execution of R is a finite alternating sequence of states and labels $[S_0, l_1, S_1, \ldots, l_n, S_n]$ of states and labels such that:

•
$$S_0 = \emptyset^{\sharp}$$
,
• $S_{i-1} \xrightarrow{l_i}_R S_i$ for $1 \le i \le n$, and
• if $S_{i+1} \setminus^{\sharp} S_i = \{\operatorname{Fr}(x)\}^{\sharp}$ for some *i* and *x*, then $j \ne i$ does not exist
such that $S_{j+1} \setminus^{\sharp} S_j = \{\operatorname{Fr}(x)\}^{\sharp}$.

Protocol specification

Hancke and Kuhn, 2005



 $HK = \{KeyGen, KeyRevV, KeyRevP, DBNet, DBAdv, V1, V2, V3, P1, P2\}$

Protocol execution

• The set of all executions *Proto* is $\llbracket Proto \cup \mathcal{I} \rrbracket$ where:

• Given an execution $[S_0, I_1, S_1, \dots, I_n, S_n]$, the sequence $I_1 \cdots I_n$ is the *trace*.

•
$$Tr(Proto) = \{I_1 \cdots I_n \mid [S_0, I_1, S_1, \dots, I_n, S_n] \in [\![Proto \cup \mathcal{I}]\!]\}.$$

Definition (Security Property)

A security property φ is a relation from traces to natural numbers, and $\varphi(t, i)$ means that the claims of φ in t_i are valid.

• E.g. secure distance-bounding is defined as:

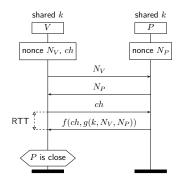
$$\begin{aligned} dbsec(t, I) \iff \\ \forall V, P, ch, rp. \ \mathsf{DBSec}(V, P, ch, rp) \in t_{I} \implies \\ (\exists i, j, k. \ i < j < k \land \mathsf{Send}(V, ch) \in t_{i} \land \\ \mathsf{Action}(P) \in t_{j} \land \mathsf{Recv}(V, rp) \in t_{k}) \lor \\ (\exists b, b', i, j, k, P'. \\ i < j < k \land \mathsf{Send}(V, ch) \in t_{i} \land \\ \mathsf{Action}(P') \in t_{j} \land \mathsf{Recv}(V, rp) \in t_{k} \land \\ \mathsf{Action}(P') \in t_{b} \land \mathsf{KeyComp}(P') \in t_{b'}) \lor \\ (\exists i. \ \mathsf{KeyComp}(V) \in t_{i}) \end{aligned}$$

Definition (Security)

A set *Proto* of protocol rules *satisfies* a security property φ , denoted *Proto* $\models \varphi$, if $\forall t \in Tr(Proto), i \in \{1, ..., |t|\}$. $\varphi(t, i)$.

Definition (Security)

A set *Proto* of protocol rules *satisfies* a security property φ , denoted *Proto* $\models \varphi$, if $\forall t \in Tr(Proto), i \in \{1, ..., |t|\}$. $\varphi(t, i)$.



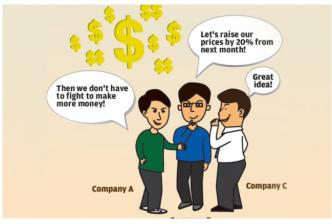
 $HK \models dbsec$

i.e. no MF, DF or DH exist

Distance-bounding attacks

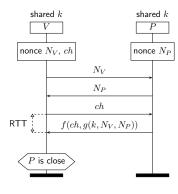


What is collusion?



Source https://yp.scmp.com

Modeling collusion Hancke and Kuhn, 2005

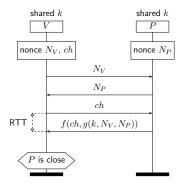


KeyGen, KeyRevV, KeyRevP

$$\begin{split} & \text{DBNet} := \left[\text{Send}(X, m)\right] \xrightarrow[\text{Action}(Y), \text{Recv}(Y, m)]} \begin{bmatrix} \text{Out}(m), \\ \text{Recv}(Y, m) \end{bmatrix} \\ & \text{DBAdv} := \left[\text{In}(m), \text{KeyComp}(X)\right] \xrightarrow[\text{Action}(X)]} \left[\text{Send}(X, m)\right] \\ & \text{V1} := \left[\text{Fr}(N_V)\right] \xrightarrow[\text{Start}(N_V)]} \left[\text{Out}(N_V), \text{VerifSt1}(V, N_V)\right] \\ & \text{P1} := \left[\frac{\text{Fr}(N_P), \text{In}(N_V), \\ \text{Shk}(V, P, k)}\right] \xrightarrow[\text{Action}(P)]} \left[\frac{\text{Send}(P, N_P), \\ \text{ProvSt1}(P, k, N_P, N_V)}\right] \end{split}$$

$$\begin{split} & \mathbb{V2} := \begin{bmatrix} \operatorname{VerifSt1}(V, N_V), \\ \operatorname{Fr}(ch), \ln(N_P), \\ \operatorname{Shk}(V, P, k) \end{bmatrix} \xrightarrow{\operatorname{Send}(V, ch)} \begin{bmatrix} \operatorname{Out}(ch), \\ \operatorname{VerifSt2}(V, P, N_V, ch, \\ f(ch, g(k, N_V, N_P))) \end{bmatrix} \\ & \mathbb{P2} := \begin{bmatrix} \operatorname{ProvSt1}(P, k, N_P, N_V), \\ \ln(ch) \end{bmatrix} \xrightarrow{\operatorname{Action}(P), \\ \ln(ch)} \begin{bmatrix} \operatorname{Send}(P, f(ch, \\ g(k, N_P, N_V))) \end{bmatrix} \\ & \mathbb{V3} := \begin{bmatrix} \operatorname{VerifSt2}(V, P, N_V, ch, rp), \\ \operatorname{Recv}(V, rp) \end{bmatrix} \xrightarrow{\operatorname{DBSec}(V, P, ch, rp), \operatorname{End}(N_V)} \begin{bmatrix} 1 \end{bmatrix} \end{split}$$

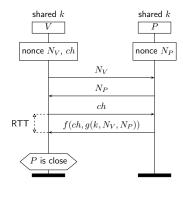
Modeling collusion Hancke and Kuhn, 2005



KeyGen, KeyRevV, KeyRevP

$$\begin{split} & \text{DBNet} := \left[\text{Send}(X, m)\right] \xrightarrow{\text{Action}(Y), \text{Recv}(Y, m)} \left[\begin{array}{c} \text{Out}(m), \\ \text{Recv}(Y, m) \end{array} \right] \\ & \text{DBAdv} := \left[\text{In}(m), \text{KeyComp}(X)\right] \xrightarrow{\text{Action}(X)} \left[\text{Send}(X, m)\right] \\ & \text{V1} := \left[\text{Fr}(N_V)\right] \xrightarrow{\text{Start}(N_V)} \left[\text{Out}(N_V), \text{VerifSt1}(V, N_V)\right] \\ & \text{P1} := \left[\begin{array}{c} \text{Fr}(N_P), \ln(N_V), \\ \text{Shk}(V, P, k) \end{array} \right] \xrightarrow{\text{Action}(P)} \left[\begin{array}{c} \text{Send}(P, N_P), \\ \text{ProvSt1}(P, k, N_P, N_V) \end{array} \right] \\ & \text{Coll} := \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V) \end{array} \right] \xrightarrow{\text{Collusion}} \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V), \\ \text{Out}(g(k, N_V, N_P)) \end{array} \right] \\ & \text{V2} := \left[\begin{array}{c} \text{VerifSt1}(V, N_V), \\ \text{Fr}(ch), \ln(N_P), \\ \text{Shk}(V, P, k) \end{array} \right] \xrightarrow{\text{Send}(V, ch)} \left\{ \begin{array}{c} \text{Out}(ch), \\ \text{VerifSt2}(V, P, N_V, ch, \\ f(ch, g(k, N_V, N_P))) \end{array} \right] \\ & \text{P2} := \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V), \\ \ln(ch) \end{array} \right] \xrightarrow{\text{Action}(P), \\ \ln(ch) \end{array} \right] \xrightarrow{\text{Action}(P), \\ & \text{End}(N_P)} \left[\begin{array}{c} \text{Send}(P, f(ch, \\ g(k, N_P, N_V))) \end{array} \right] \\ & \text{V3} := \left[\begin{array}{c} \text{VerifSt2}(V, P, N_V, ch, rp), \\ \text{Recv}(V, rp) \end{array} \right] \xrightarrow{\text{DSsec}(V, P, ch, rp), \text{End}(N_V)} \left[\begin{array}{c} 1 \end{array} \right] \end{aligned}$$

Modeling collusion Hancke and Kuhn, 2005



KeyGen, KeyRevV, KeyRevP

$$\begin{split} & \text{DENet} := \left[\text{Send}(X, m) \right] \xrightarrow{\text{Action}(Y), \text{Recv}(Y, m)} \left[\begin{array}{c} \text{Out}(m), \\ \text{Recv}(Y, m) \right] \\ & \text{DBAdv} := \left[\ln(m), \text{KeyComp}(X) \right] \xrightarrow{\text{Action}(X)} \left[\text{Send}(X, m) \right] \\ & \text{V1} := \left[\text{Fr}(N_V) \right] \xrightarrow{\text{Start}(N_V)} \left[\text{Out}(N_V), \text{VerifSt1}(V, N_V) \right] \\ & \text{P1} := \left[\begin{array}{c} \text{Fr}(N_P), \ln(N_V), \\ \text{Shk}(V, P, k) \end{array} \right] \xrightarrow{\text{Start}(N_P),} \left[\begin{array}{c} \text{Send}(P, N_P), \\ \text{ProvSt1}(P, k, N_P, N_V) \end{array} \right] \\ & \text{Coll1} := \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V) \end{array} \right] \xrightarrow{\text{Collusion}} \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V), \\ \text{Out}(g(k, N_V, N_P)) \end{array} \right] \\ & \text{V2} := \left[\begin{array}{c} \text{VerifSt1}(V, N_V), \\ \text{Fr}(ch), \ln(N_P), \\ \text{Shk}(V, P, k) \end{array} \right] \xrightarrow{\text{Send}(V, ch)} \left\{ \begin{array}{c} \text{Out}(ch), \\ \text{VerifSt2}(V, P, N_V, ch, \\ f(ch, g(k, N_V, N_P))) \end{array} \right] \\ & \text{P2} := \left[\begin{array}{c} \text{ProvSt1}(P, k, N_P, N_V), \\ \ln(ch) \end{array} \right] \xrightarrow{\text{Action}(P), \\ \ln(ch) \end{array} \left[\begin{array}{c} \text{Send}(P, f(ch, g(k, N_P, N_V))) \end{array} \right] \\ & \text{V3} := \left[\begin{array}{c} \text{VerifSt2}(V, P, N_V, ch, rp), \\ \text{Recv}(V, rp) \end{array} \right] \xrightarrow{\text{DESec}(V, P, ch, rp), \text{End}(N_V)} \left[\begin{array}{c} \text{I} \end{array} \right] \end{aligned}$$

We obtain $HK \cup \{Coll\} \not\models dbsec$ as opposed to $HK \models dbsec$

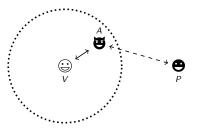
Definition (Post-collusion security)

Given a protocol *Proto*, a valid extension *Proto'* \supseteq *Proto* is *post-collusion secure w.r.t.* φ , denoted *Proto'* $\models^* \varphi$, if:

$$\forall t \in Tr (Proto'), e \in \{1, \dots, |t|\}. \\ (complete(t_1 \cdots t_e) \land nocollusion(t_{e+1} \cdots t_{|t|})) \\ \implies \forall i > e. \varphi(t, i).$$

Definition (Terrorist Fraud Attack – Informal)

Terrorist fraud is an attack in which a remote and non-compromised prover P colludes with a close and compromised prover A to make the verifier believe that P is close. Conditionally, A must not be able to prove the same again without further collusion.



Definition (Terrorist Fraud Attack – Informal)

Terrorist fraud is an attack in which a remote and non-compromised prover P colludes with a close and compromised prover A to make the verifier believe that P is close. Conditionally, A must not be able to prove the same again without further collusion.

Definition (Resistance to Terrorist Fraud)

A protocol *Proto* is *resistant to terrorist fraud* if for every valid extension $Proto' \supseteq Proto$ it holds that:

 $Proto' \not\models dbsec_hnst \implies Proto' \not\models^* dbsec_hnst.$

Verification results

Protocol	Satisfies dbsec_hnst	Satisfies dbsec	Resists TF	Protocol	Satisfies	Satisfies	Resists
					dbsec_hnst	dbsec	TF
Brands-Chaum				Reid et al.	\checkmark	\checkmark	✓ (n)
 Signature id. 	\checkmark	×	$\times^{(n)}$	MAD (one way)	\checkmark	×(≠c)	×
• Fiat-Shamir id.	\checkmark	×	$\times^{(n)}$	DBPK	√(n)	✓ (n)	✓(n)
CRCS				Swiss Knife	\checkmark	\checkmark	✓(n)
 Non-reveal sign. 	\checkmark	\checkmark	×	UWB			
 Reveal sign. 	\checkmark	×	×	• PKI	× ⁽ⁿ⁾	$\times^{(n)}$	(n)
Meadows et al.				 keyed-MAC 	$\times^{(n)}$	× ⁽ⁿ⁾	🗸 (n)
• $\langle N_V, P \oplus N_P \rangle$	\checkmark	$\times^{(\neq c)}$	×	WSBC+DB	(n)	$\times^{(n)}$	$\times^{(n)}$
• $N_V \oplus h(P, N_P)$	√(n)	✓ (n)	$\times^{(n)}$	Hitomi	√(n)	(n)	$\times^{(n)}$
• $\langle N_V, P, N_P \rangle$	√(n)	✓ (n)	$\times^{(n)}$	TREAD			
Lookup-based				Asymmetric	×	×	✓ (n)
• Tree	\checkmark	\checkmark	$\times^{(\neq c)}$	Symmetric	\checkmark	×	🗸 (n)
 Poulidor 	\checkmark	\checkmark	$\times^{(\neq c)}$	ISO/IEC 14443			
 Hancke-Kuhn 	\checkmark	✓	$\times^{(\neq c)}$	 PaySafe 	\checkmark	×	×
• Uniform	\checkmark	\checkmark	$\times^{(\neq c)}$	MIFARE Plus	\checkmark	×	×
Munilla-Peinado	\checkmark	\checkmark	$\times^{(n)}$	 PayPass 	\checkmark	×	×
Kim-Avoine	\checkmark	\checkmark	$\times^{(n)}$				

- First causality-based secure DB property.
- A concrete formalism to model collusion in security protocols.
- Introduced the notion of post-collusion security.
- Provided a formal definition of TF resistance.
- A comprehensive security survey of DB protocols.

Outline

Introduction

Part I: Computational Analysis

- 2 Lookup-based protocols
- Optimality in lookup-based protocols

Part II: Symbolic Analysis

- 4 Causality-based verification
- 5 Collusion and terrorist fraud

6 Conclusions

- A computational model that allows for comprehensive security and space complexity analysis.
- An optimally secure protocol for a prominent class of lookup-based protocols, given an upper bound on the size.
- A causality-based, automatic symbolic framework for DB verification that accounts for the four classes of attacks.
- An extensive security survey of DB protocols, including Mastercard's PayPass protocol and NXP's MIFARE Plus protocol.

Publications

Related to Part I

- A Class of Precomputation-Based Distance-Bounding Protocols, with S. Mauw, and R. Trujillo-Rasua. In 1st IEEE European Symposium on Security and Privacy, EuroS&P'16, Saarbrüecken, Germany, March 21-24, 2016. pp. 97–111.
- Optimality Results on the Security of Lookup-Based Protocols, with S. Mauw, and R. Trujillo-Rasua. In *Radio Frequency Identification and IoT Security*, RFIDSec'16, Hong Kong, China, Nov. 30 Dec. 2, 2016. pp. 137–150.

Related to Part II

- Distance-Bounding Protocols: Verification without Time and Location, with S. Mauw, Z. Smith, and R. Trujillo-Rasua. In 39th IEEE Symposium on Security and Privacy, S&P'18, San Francisco, California, May 21–23, 2018, USA. pp. 549–566.
- **Post-Collusion Security and Distance Bounding**, with S. Mauw, Z. Smith, and R. Trujillo-Rasua (under submission).

Not related to DB

 Automated Identification of Desynchronisation Attacks on Shared Secrets, with S. Mauw, Z. Smith, and R. Trujillo-Rasua. In 23rd European Symposium on Research in Computer Security, ESORICS'18, Barcelona, Spain, Sept. 3–7, 2018. pp. 406–426.

- Extend the computational analysis in order to account for further attacks.
- Proof of *completeness* for our TF resistance definition in relation to the Tamarin prover.
 - Seems quite complex, yet we have some promising ideas.
- Reduce the gap between computational and symbolic analysis.
 - Build "stochastic reasoning" on top of multiset rewriting.

Thank you Gracias • Merci • Danke

Jorge Toro Pozo jorgetp.github.io