
!

PhD-FSTC-2019-31

The Faculty of Sciences, Technology and Communication 

DISSERTATION

Defence held on 14/05/2019 in Esch-sur-Alzette

to obtain the degree of 

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Jorge Luis TORO POZO

Born on 30 October 1988 in Las Tunas (Cuba)

COMPUTATIONAL AND SYMBOLIC ANALYSIS OF
DISTANCE-BOUNDING PROTOCOLS

Dissertation defence committee
Dr. Yves Le Traon, Chairman
Professor, Université du Luxembourg
Dr. Rolando Trujillo Rasúa, Vice-Chairman
Deakin University, Australia
Dr. Sjouke Mauw, Dissertation supervisor
Professor, Université du Luxembourg
Dr. Ioana Boureanu
University of Surrey, United Kingdom
Dr. Stéphanie Delaune
IRISA, Rennes, France

DOCTORAL THESIS

Computational and symbolic
analysis of distance-bounding

protocols

Jorge Luis TORO POZO

Supervisor
Prof. Dr. Sjouke MAUW

Université du Luxembourg, Luxembourg

Scientific Advisor
Dr. Rolando TRUJILLO RASÚA

Deakin University, Australia

2019

The author was supported by Luxembourg Fonds National de la Recherche (FNR) under
the grant AFR-PhD-10188265.

Abstract

Contactless technologies are gaining more popularity everyday. Credit cards enabled with
contactless payment, smart cards for transport ticketing, NFC-enabled mobile phones, and
e-passports are just a few examples of contactless devices we are familiar with nowadays.
Most secure systems meant for these devices presume physical proximity between the device
and the reader terminal, due to their short communication range. In theory, a credit card
should not be charged of an on-site purchase if the card is not up to a few centimeters away
from the payment terminal. In practice, this is not always true. Indeed, some contactless
payment protocols, such as Visa’s payWave, have been shown vulnerable to relay attacks.
In a relay attack, a man-in-the-middle uses one or more relay devices in order to make two
distant devices believe they are close. Relay attacks have been implemented also to bypass
keyless entry and start systems in various modern cars.

Relay attacks can be defended against with distance-bounding protocols, which are
security protocols that measure the round-trip times of a series of challenge/response
rounds in order to guarantee physical proximity. A large number of these protocols
have been proposed and more sophisticated attacks against them have been discovered.
Thus, frameworks for systematic security analysis of these protocols have become of high
interest. As traditional security models, distance-bounding security models sit within the
two classical approaches: the computational and the symbolic models. In this thesis we
propose frameworks for security analysis of distance-bounding protocols, within the two
aforementioned models.

First, we develop an automata-based computational framework that allows us to
generically analyze a large class of distance-bounding protocols. Not only does the proposed
framework allow us to straightforwardly deliver computational (in)security proofs but it
also permits us to study problems such as optimal trade-offs between security and space
complexity. Indeed, we solve this problem for a prominent class of protocols, and propose a
protocol solution that is optimally secure amongst space-constrained protocols within the
considered class.

Second, by building up on an existing symbolic framework, we develop a causality-
based characterization of distance-bounding security. This constitutes the first symbolic
property that guarantees physical proximity without modeling continuous time or physical
location. We extend further our formalism in order to capture a non-standard attack
known as terrorist fraud. By using our definitions and the verification tool Tamarin, we
conduct a security survey of over 25 protocols, which include industrial protocols based
on the ISO/IEC 14443 standard such as NXP’s MIFARE Plus with proximity check and
Mastercard’s PayPass payment protocol. For the industrial protocols we find attacks,
propose fixes and deliver security proofs of the repaired versions.

i

Acknowledgments

I must thank many people here. I promise I’ll do my best to mention as many as possible.
Sorry for those who I’ll miss.

I’d like first to thank my supervisor Prof. Dr. Sjouke Mauw for his guidance and encour-
agement during these four years. I remember he told me once “we expect great things from
you”, which was within the first few months of my PhD. As scary as it sounds, that was
a boost of motivation and has pushed me to aim for nothing but the best. It’s been a
pleasure to be his apprentice.

I would also like to thank my daily advisor and compatriot Dr. Rolando Trujillo, with
whom I could only speak in Spanish over a beer, basically (kind of Sjouke’s rule). I enjoyed
a lot the never-ending, exciting technical meetings in which we would just throw maths on
a whiteboard. I can’t thank him enough for his personal and professional support since the
very first contact, back in 2014. I’ll always be grateful compay.

The completion of this thesis would’ve not been possible were it not be for the support
of my family. In special, my mother, whom I’ll always owe everything to, and Yani, my
beautiful wife –te amo mi chiquita. I thank my dad and brother too, they have been there
for me at all times.

I want to deeply express my gratitude to the rest of the defence committee: Prof. Dr. Yves
Le Traon, Dr. Stéphanie Delaune, and Dr. Ioana Boureanu. Thank you all for taking the
time to review my thesis, your inputs are highly appreciated. I cannot think of more suited
judges.

I want to thank the Luxembourg National Research Fund (FNR) for the financial support.

Last but not least, I want to thank my friends and close colleagues: Aramis, Luis Angel,
Chincha, Mary, Sami, Amin, Chuks, Serket, Ryan, Olga, Yunior, Stas, Zach, Alek, Cui,
and Samir.

To all and every single one of you, many thanks.

Jorge Luis TORO POZO

Luxembourg, April 2019

iii

Contents

Contents v

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Distance-Bounding Protocols . 2
1.2 Security Analysis . 3
1.3 Contributions . 12
1.4 Overview . 13

2 Related Work 15
2.1 On Computational Analysis . 15
2.2 On Symbolic Analysis . 19

I Computational Analysis 27

3 Lookup-Based Protocols 29
3.1 A Model Based on Automata . 30
3.2 Preliminary Analysis of Lookup-Based Protocols 33

3.2.1 Formalizing Pre-Ask Attacks . 33
3.2.2 Preliminary Analysis of Optimal Resistance to Mafia Fraud 34

3.3 Layered and Random-Labeled Protocols . 36
3.4 The Family of Uniform Protocols . 39

3.4.1 Uniform Protocols . 39
3.4.2 Security Analysis of Uniform Protocols 41
3.4.3 Constructing a Uniform Protocol . 44

3.5 Conclusions . 48

4 Optimality in Lookup-Based Protocols 51
4.1 Equivalence Relations between Automata 52

4.1.1 Defining the Relations . 52
4.1.2 Security Analysis through the Relations 53

4.2 Security and Size Trade-Off . 55
4.3 The Modular Protocol . 58

v

Contents

4.3.1 Optimality Proof of the Modular Protocol 59
4.3.2 Constructing the Modular Protocol 62

4.4 Comparative Analysis . 62
4.4.1 Framework of Reference . 63
4.4.2 Experimental Setting . 64
4.4.3 Results . 65

4.5 Conclusions . 68

II Symbolic Analysis 71

5 Causality-Based Secure Distance-Bounding 73
5.1 A Model Based on Time and Location . 74
5.2 The Semantic Domain . 78

5.2.1 Basic Properties of the Semantics . 79
5.2.2 Validity of the Properties . 81

5.3 Causality-Based Verification . 81
5.4 Conclusions . 86

6 Collusion and Terrorist Fraud 89
6.1 Modeling Security Protocols . 90

6.1.1 Preliminaries . 90
6.1.2 Protocol Specification . 92
6.1.3 Execution and Adversary Model . 93
6.1.4 Security Properties . 94

6.2 Collusion . 95
6.2.1 Collusion Rules . 96
6.2.2 Post-Collusion Security . 97

6.3 Post-Collusion Security in Distance Bounding 99
6.3.1 Secure Distance-Bounding . 101
6.3.2 Formalizing (Resistance To) Terrorist Fraud 102

6.4 Conclusions . 103

7 Automatic Verification 105
7.1 Breaking the TREAD Protocol . 106
7.2 A Security Survey of Distance-Bounding Protocols 108
7.3 On the ISO/IEC 14443 Protocols . 112
7.4 Conclusions . 115

8 Conclusions 117

Bibliography 121

vi

List of Figures

1.1 A representation of a relay attack, in which the legitimate RFID reader falsely
believes that the legitimate RFID tag is within a valid communication range. . 2

1.2 A challenge/response round-trip time ∆t measurement by a verifier V to upper-
bound their distance to a prover P . Timeline goes from top to bottom. 3

1.3 Brands and Chaum’s (BC) protocol [BC93]. This is the traditional version with
signature-based identification scheme. 4

1.4 Types of attack on distance-bounding protocols. In all cases, V is an honest
verifier, P is an honest prover, and E is a dishonest prover. The encircled
area represents V ’s proximity, which is bounded by the predefined round-
trip threshold. Dashed arrows represent untimed communication, which is
communication that does not occur entirely within the fast phase. 5

1.5 Hancke and Kuhn’s (HK) protocol [HK05], where m is a publicly-known integer
number and PRF is a public pseudo-random function whose output is a 2n-bit
string. 7

1.6 Three timing scenarios of a challenge/response round. 10

2.1 Relations between the frauds in the white-box and black-box models as given
in [ABK+11]. An arrow (dashed or not) from A to B means that for any attack
in A that succeeds with probability pA, an attack in B exists that succeeds with
probability pB ≥ pA. Dashed arrows are relations we do not subscribe to. . . . 16

2.2 Meadows et al.’s protocol [MPP+07], where locP denotes the location of the
prover P . Three instances of the protocol are given by the authors, as per
the following three choices f := 〈NV , NP ⊕ P 〉, f := 〈NV , P,NP 〉, and f :=

NV ⊕h(P,NP) where h is a collision-free hash function. The symbol ⊕ represents
the exclusive-OR operator. 20

2.3 A distance hijacking attack on Meadows et al.’s protocol with f := 〈NV , P ⊕NP 〉.
In this attack, the legitimate prover P is close to the verifier V , and the
dishonest prover E is far from V . The dishonest prover E hijacks the ses-
sion by replacing P ’s final authentication message with their own authenti-
cation message, thus making V believe that E is close. E learns all mes-
sages exchanged between V and P by observation. The attack works because
NE ⊕ E = (NP ⊕ E ⊕ P)⊕ E = NP ⊕ P . 21

vii

List of Figures

2.4 The hierarchy of distance-bounding attacks given by Chothia et al. [CdRS18].
The existence of a higher attack implies that any attack below it exists as well.
The notation [P1| . . . |Pn] | [Q1| . . . |Qm] indicates that the processes Pi are co-
located, the processes Qi are co-located as well, and no process Pi is co-located
with a process Qj . This last statement implies that no timed communication
occurs between Pi and Qj . 23

2.5 The SPADE protocol [BGG+16], where pkX and skX respectively denote the
long-term public and secret key associated to the agent X, aenc(m, pkX) de-
notes the asymmetric encryption of m with the (asymmetric) key pkX , and
sign(m, skX) denotes the signature of m by X. A signature sign(m, skX) is
verified upon knowledge of m and pkX . 24

2.6 A mafia fraud attack on the SPADE protocol [BGG+16], in which the legitimate
prover P is far from the verifier V , and the dishonest prover E is close to V .
The prover P starts the protocol with (supposedly a verifier) E by sending
〈nP , sign(nP , skP)〉 encrypted with the public key of E, which is all E needs to
impersonate P to V for the rest of the execution, thus making V believe that it
is P who is close. 25

3.1 The automaton A24 from the HK protocol for n = 4 rounds. 32
3.2 An automaton representing an instance of a 2-uniform protocol with n = 4

rounds. Dashed and solid arrows represent transitions when the input symbol
is 0 and 1, respectively. An execution with challenge sequence 0110 whose
responses are 1110 is highlighted in bold. 45

3.3 A binary u-uniform protocol. This construction takes 2un bits of memory. . . . 47
3.4 The probability of success of mafia fraud attacks against various protocols, for

up to 32 rounds. 48

4.1 The binary h-modular protocol. This construction takes (2n− 1)h bits of memory. 63
4.2 The probability of success of mafia fraud attacks against various protocol instances. 67
4.3 The probability of success of distance fraud attacks against various protocol

instances. 68

5.1 Rules for message deduction. 75
5.2 Start, Intruder and Network rules. 76
5.3 Symbolic abstraction of Hancke and Kuhn’s protocol [HK05]. Differences in

notation with respect to the representation in Figure 1.5 are two fold: ch instead
of c to avoid confusion with the transmission speed symbol c, and g instead of
PRF for the sake of presentation. 77

5.4 Specification rules of Hancke and Kuhn’s protocol [HK05]. 78
5.5 A protocol rule that leads to incorrect traces. 79
5.6 Prototype of rules that lead to well-formed protocols. 81

6.1 The Toy protocol. 93
6.2 Specification rules of the Toy protocol. 94
6.3 Dolev-Yao rules. 94

viii

List of Figures

6.4 A trace t = t1 · · · te · · · ti · · · tn can be broken down into a pre-collusion trace
consisting of completed runs (e.g. before e), and a second subtrace containing
post-collusion claims (e.g. a claim made in ti). 98

6.5 An MSC showing that the Toy protocol with collusion, represented by the
dashed arrow, is not post-collusion secure with respect to non-injective agreement. 99

6.6 The DBToy protocol. 100
6.7 Specification rules of the DBToy protocol. 101

7.1 The TREAD protocol. 107
7.2 A symbolic abstraction of the TREAD protocol. 107
7.3 A mafia fraud attack on TREAD with asymmetric encryption. 108
7.4 A distance hijacking attack on TREAD with symmetric encryption. 109
7.5 Mastercard’s PayPass protocol. 113
7.6 A modified version of Mastercard’s PayPass protocol that satisfies dbsec. The

modification to the original protocol (Figure 7.5) consists of the addition of
sign(nC , skC) and UN to the card’s fast phase response. 115

7.7 A modified version of Mastercard’s PayPass protocol that satisfies dbsec and
resists terrorist fraud. The modifications to the original protocol (Figure 7.5)
are: (1) addition of f(UN , nC ⊕KM) to the card’s fast phase response, and (2)
removal of nC and ti from the SDAD message. 116

ix

List of Tables

2.1 Relations between fraud types as per Dürholz et al. [DFKO11]. Each row of
the table means that a distance-bounding protocol exists such that, for each
fraud given by the columns, it is either secure (X) or an attack exists (×). . . . 17

4.1 Protocol instances selected for the multi-criteria comparison experiments. . . . 65
4.2 Non-dominated protocol instances for the different sets Iy. This table only

shows, for each protocol, the non-dominated protocol instance (if any) with
least memory usage and fewer bits exchanged during the fast phase, in that
order. The total number of non-dominated instances is given in the last column.
Furthermore, every security value p has been scaled to 2dlog2 pe, and the memory
values m have been scaled to bm/1024c kilobits. 66

7.1 Tamarin verification results. The protocols that satisfy dbsec and resist terrorist
fraud are highlighted in bold. The protocols from the block “Lookup-based” are
a subset of protocols of the same name (studied in Part I) and have identical
specification. Legend: X: verified, ×: falsified (i.e. attack found), (n): no
symbolic (in)security proof reported before, and (6=c): differs from Chothia et
al.’s verification [CdRS18]. 110

xi

1
Introduction

Contactless technologies have drastically changed our way of communication. Not only have
we moved from fixed to mobile telephony, but we are also using more and more contactless
devices such as mobile phones enabled with Near Field Communication (NFC) technology,
and Radio Frequency Identification (RFID) smart cards. Contactless communication has
multiple applications, which include access control, transport ticketing, e-passports, loyalty
cards, and in-store payments. Many modern mobile devices, such as phones, tablets, and
smart watches, feature NFC interfaces so users can perform on-site transactions without
having to carry any traditional wallets.

According to a recent report by Mastercard, consumers can pay nowadays with a simple
tap with their Mastercard credit/debit cards in over 8 million point-of-sale (POS) locations
across 111 countries. In the UK, for example, one in two Mastercard transactions are
contactless. The company also claims that by 2020 all POS terminals in Europe will be
enabled for contactless payments. Another giant, Visa, announced in its Fiscal Year 2018’s
report that Transport for London (TfL) has seen more than 1 billion Visa contactless
journeys since launch. The company also reported that in this year, nearly one out of four
face-to-face Visa domestic transactions were contactless.

Speed and convenience are the flagship advantages of contactless communication over
contact-based. Contact-based communication naturally enforces proximity between the
communicating devices, e.g. when a credit card is inserted in a POS terminal, or a mechanic
key is inserted into its keyhole. However, such form of “proximity by design” cannot be
presumed in a contactless (or wireless) setting as wireless communication technologies
can be often tampered with. For example, while RFID- and NFC-based devices have a
small communication range (typically a few centimeters), this does not guarantee proximity
because such devices can still communicate at arbitrary distances by means of relay.

Relay is a technique that repeats a signal to make it reachable beyond the primary
signal’s coverage area. While relay is a useful technique, e.g. it is the basis for satellite
communication, it can be used by a malicious party to abuse proximity-based secure systems.
For example, an RFID tag can be activated by placing a concealed, corrupt reader near
the tag so the latter falls into the electromagnetic field of the reader. By implementing
the same setting between a corrupt tag co-located with a legitimate RFID, and by simply
relaying the communication between the two corrupt devices, an attacker could trick the
legitimate reader into believing that the legitimate tag is close (see Figure 1.1).

The first reference to a relay attack possibly appeared in the so-called Chess Grandmaster

1

1.1. Distance-Bounding Protocols

RFID
Reader

Corrupt
Tag

Corrupt
Reader

RFID
Tag

Relay channel

Attacker’s equipment

Figure 1.1 A representation of a relay attack, in which the legitimate RFID reader falsely
believes that the legitimate RFID tag is within a valid communication range.

problem [Con76]. A little girl who does not know how to play chess manages to win (or at
least draw) in one out of two simultaneous matches against each of two chess grandmasters.
The strategy employed by the girl consists of simply relaying the moves made by each of
her opponents to the other.

Various practical relay attacks have been implemented as well. As reported in [FDC11],
Francillon et al. conducted relay attacks on the Passive Keyless Entry and Start (PKES)
system of ten cars from eight manufacturers. The authors implemented their attack by
simply relaying the communication between the car and the car’s legitimate key, located
up to 50 meters away from the car. Various other demonstrations of relay attacks on cars
can be found on YouTube1.

1.1 Distance-Bounding Protocols

In 1990, Beth and Desmedt [BD90] proposed the integration of messages’ time-of-flight as
an extra verification layer into security protocols in order to guarantee physical proximity
between the communicating parties, thus preventing relay attacks. This notion was later
formalized as distance-bounding protocols by Brands and Chaum in [BC93].

Despite the existence of distance-bounding protocols in the academic literature for
almost 30 years, they seem to be under-acknowledged when developing secure systems, as
the relay attacks described earlier prove. This is often attributed to under-estimation of
the damage of relay attacks, and/or the usual assumption that proximity holds by design
or is enforced by the environment. However, proximity must be accounted for at the
communication protocol level, when designing secure proximity-sensitive systems. There
have been undergoing efforts in developing distance-bounding systems by smart cards
manufacturers such as the well-known NXP and EMV. We do not intend to uncover the
reasons for which distance-bounding protocols have not been widely implemented (yet),
though they seem to be gaining popularity.

Distance-bounding protocols aim to securely establish an upper bound on the distance
between a prover (e.g. an RFID tag) and a verifier (e.g. an RFID reader) by measuring the
round-trip time (RTT) of a number of rounds of challenges and responses. This round-trip
time is the time lapse between the verifier’s sending of a challenge and the verifier’s receiving
of the corresponding response from the prover. More precisely, let us denote by c the
(ideally tight) upper bound on the propagation speed of the communication channel (c
equals the speed of light for radio waves), and by ∆t the RTT of a challenge/response

1E.g. https://www.youtube.com/watch?v=0AHSDy6AiV0

2

https://www.youtube.com/watch?v=0AHSDy6AiV0

Chapter 1. Introduction

V P

chal

∆t ∆tproc

resp

Figure 1.2 A challenge/response round-trip time ∆t measurement by a verifier V to
upper-bound their distance to a prover P . Timeline goes from top to bottom.

round between a verifier V and a prover P . In addition, let d be the distance between V
and P and let ∆tproc be the time that the prover takes, upon reception of the challenge, to
produce the response. Then:

d ≤ c

2
(∆t−∆tproc) ≤

c

2
∆t, (1.1)

which means that, while d is unknown to V , they can assert that d is small by checking that
∆t ≤ ∆tmax, where ∆tmax is a threshold on the RTT that defines the verifier’s proximity.
See the Message Sequence Chart (MSC) [CM12] in Figure 1.2 for graphical reference.

A well-known distance-bounding protocol is that of Brands and Chaum [BC93], depicted
in Figure 1.3. The protocol consists of three phases. The slow phase (a.k.a. initial phase,
setup phase, lazy phase) where the parties agree on the parameters of the protocol, such as
the number n of rounds of the RTT measurements. In addition, the prover commits to a
random sequence of bits β = β1 · · ·βn and transmits the sequence encoded. The encoded
sequence can be the encryption of β with a freshly generated symmetric key k, which is not
revealed at the moment. The verifier stores this commit message for later authentication
of the prover. Then the fast phase (a.k.a. timed phase, distance-bounding phase, rapid
phase, time-measurement phase) starts, composed of n rounds. At the i-th round, the
verifier starts a clock for the RTT measurement and sends a random bit-challenge αi. Upon
reception of the challenge, the prover instantly replies with αi ⊕ βi. Once the verifier
receives the prover’s response, the former stops the clock and declares proximity, if the
measured round-trip time is not larger than a given threshold ∆tmax. Authentication, on
the other hand, is verified during a final phase (a.k.a. verification phase) in which the
prover opens the commit (e.g. by revealing k) and signs the fast phase exchanges.

1.2 Security Analysis

This thesis focuses on security analysis of distance-bounding protocols. As traditional
security protocol analysis, the analysis techniques will be developed through computational
and symbolic models. Computational models were introduced in the 1980s by a number
of works such as [GM84, GMR88, Yao82], whilst symbolic models are attributed to Dolev
and Yao [DY83] as well as Needham and Schroeder [NS87].

Both computational and symbolic approaches are supported by mathematical models for
the protocol’s execution, cryptographic primitives and adversarial behavior. They formally

3

1.2. Security Analysis

V P

nonce α ∈ {0, 1}n nonce β ∈ {0, 1}n

commit(β)

αi

∆ti ri := αi ⊕ βi

ri

Fast phase for i = 1 to n

m := α1|r1| · · · |αn|rn

open(commit(β)), signP (m)

verify ∀i. ∆ti≤∆tmax
verify commit and signature

Figure 1.3 Brands and Chaum’s (BC) protocol [BC93]. This is the traditional version
with signature-based identification scheme.

define security properties expected from cryptographic specifications, and provide methods
to rigorously verify that the specified protocols meet these requirements [CKW11]. We do
not intend to compare the two approaches. Instead, we will provide a concrete model within
each, and show how both proposals can be used to comprehensively construct attacks or
deliver security proofs.

In the computational model, the messages are bit-strings, and the cryptographic
primitives are functions from bit-strings to bit-strings. Security proofs are assessed against
arbitrary probabilistic polynomial-time algorithms (which are the attacks), thus offering
strong security guarantees. However, even for moderately lengthy protocols, the proofs are
long, tedious, and highly prone to human error, both when delivering them and assessing
their soundness as well. In the symbolic model, on the other hand, cryptographic primitives
are represented by function symbols considered as absolutely secure black-boxes, messages
are symbolic terms on these primitives, and the adversary is restricted to compute only
using these primitives. Thus security proofs follow from a high-level, logic analysis of the
protocol executions, regardless of the cryptographic algorithms the protocol implements.
Often, those proofs are simple, produced and verified (semi-)automatically with tools such
as Isabelle/HOL [NPW02], ProVerif [Bla01], and Tamarin [MSCB13].

On the one hand, attacks on a given protocol that exist in the symbolic model also
exist in the computational model. On the other hand, attacks on a protocol that exist in
the computational model and do not exist in the symbolic model are often the result of the

4

Chapter 1. Introduction

PV

E

(a) Mafia fraud: V believes P is close

EV

(b) Distance fraud: V believes E is close

E′V

E

(c) Terrorist fraud: V believes E′ is close

EV

P

(d) Distance hijacking: V believes E is close

Figure 1.4 Types of attack on distance-bounding protocols. In all cases, V is an honest
verifier, P is an honest prover, and E is a dishonest prover. The encircled area represents
V ’s proximity, which is bounded by the predefined round-trip threshold. Dashed arrows
represent untimed communication, which is communication that does not occur entirely
within the fast phase.

adversary’s exploitation of arithmetic properties of the cryptographic primitives used.
In computational models, often security is assessed by analyzing separately differ-

ent classes of attacks. Distance-bounding protocols are not the exception, and there
exist four main classes of attacks. Some authors consider more classes but, consistently
with [CRSC12], our classification represents an exhaustive partition of the full space of
attacks: mafia fraud [DGB88], distance fraud [Des88], terrorist fraud [DGB88] and dis-
tance hijacking [CRSC12]. We briefly describe next these attacks, and their graphical
representations are depicted in Figure 1.42.

Mafia Fraud (Figure 1.4a) Given a verifier V , a close attacker E uses a distant and honest
prover P to make V believe that P is close. The attack works in two sessions: one
between E and P (the so-called pre-ask session) and another one between V and E.
The attacker E typically relays the verbatim untimed communication between P and
V , and impersonates P to V during the fast phase.

Distance Fraud (Figure 1.4b) Given a verifier V , a distant and dishonest prover E replies
in advance to V ’s challenges so the V believes that E is close. This means that E
must be able to reproduce the responses prior to receiving the challenges.

Terrorist Fraud (Figure 1.4c) Given a verifier V , a close and dishonest prover E and a
distant prover E′ collude (any deviation from their protocol specification) to make

2Thanks to https://thenounproject.com for the icons.

5

https://thenounproject.com

1.2. Security Analysis

V believe that E′ is close. A condition for this attack to be valid is that, without
further collusion involving E′, it must not be possible to convince V that E′ is close
in further sessions of the protocol.

Distance Hijacking (Figure 1.4d) Given a verifier V , a distant and dishonest prover E
makes use of close and honest provers to make V believe that E is close. To achieve
this, E lets the honest provers run the fast phase with V . Then (or sometimes before)
E hijacks the session to inject their own identity-defining messages, possibly during
the verification phase of the protocol. This tricks V into believing that they are
running the protocol with E.

Two notes regarding the above descriptions of the attacks are as follows. First, some
authors consider mafia fraud and relay attacks to be equivalent. We do not, because mafia
fraud attackers can manipulate the messages rather than simply relaying the verbatim
messages exchanged between the legitimate parties. Second, we note that E′ must not be
under full control of the adversary, otherwise the condition of no further false proximity
proof does not hold. In particular, E′ must not reveal their secret key material.

On Computational Analysis of Security

Distance-bounding protocols aim to minimize the processing time on the prover side during
the fast phase. A small and deterministic processing time will improve the precision of
the distance estimation and thus prevents attacks in which the adversary overclocks the
prover [CHKM06, BC93, HK08]. To minimize such computational time, it is common to
use inexpensive operations such as exclusive-OR or a lookup operation on a constant-time
access table, built up prior to the fast phase.

A large number of distance-bounding protocols proposed to date indeed employ the
lookup-based approach, e.g. [HK05, TP07, MP08, AT09, KA09, TMA10, GAA10, KKBD11,
ALM11, TMA14] Another common principle that many protocols share is that the prover
does not send any messages after the fast phase has been completed. This might provide
some guarantees on proximity and authentication, even if the protocol execution is halted
after a few RTT measurement rounds. We will focus on these protocols, i.e. those in which
(1) the prover’s fast phase messages are looked-up from a table built up prior to the fast
phase, and (2) the prover does not send any messages after the fast phase. We call these
protocols lookup-based distance-bounding protocols, or lookup-based protocols for short.

Lookup-based protocols typically consist of two phases: slow and fast. In the slow
phase, the verifier and the prover agree on the parameters to precompute a lookup table
with all possible responses for the fast phase. Then, at the i-th round of the fast phase,
the verifier sends a random challenge bit ci to the prover and starts a clock. The prover
replies instantly to the challenge ci by looking up the response ri, according to ci, from the
lookup table. Upon reception of the prover’s reply, the verifier stops the clock to determine
the round-trip time ∆ti. The protocol completes correctly if all responses are correct and
∆ti ≤ ∆tmax for all rounds, where ∆tmax is again a predefined threshold.

A well-known, possibly the earliest, lookup-based distance-bounding protocol is that of
Hancke and Kuhn [HK05] (HK). The protocol is depicted in Figure 1.5 and works as follows.
In the slow phase, the verifier V sends a random nonce NV to the prover P , who creates

6

Chapter 1. Introduction

shared k

V

shared k

P

nonce NV ∈ {0, 1}m nonce NP ∈ {0, 1}m

NV

T := PRF (k,NV , NP)

NP

nonce c ∈ {0, 1}n

ci

∆ti T2i+ci−1

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of responses

Figure 1.5 Hancke and Kuhn’s (HK) protocol [HK05], where m is a publicly-known
integer number and PRF is a public pseudo-random function whose output is a 2n-bit
string.

a bit sequence T from the output of a pseudo-random function PRF on the long-term
symmetric key shared between V and P , the verifier’s nonce NV , and the prover’s own
nonce NP . The prover then sends NP back to V . Upon reception, V starts the fast phase,
composed of n round-trip time measurement rounds numbered from 1 to n. At the i-th
round, V sends a random challenge bit ci to which P must reply with the bit T2i+ci−1. The
protocol completes correctly if all responses are correct and the round-trip times are below
the threshold.

The simplicity of lookup-based protocols makes them attractive for ubiquitous wireless
technologies such as RFID and NFC. The apparent drawback of these protocols is that they
fall short in terms of resistance to mafia fraud in comparison to more cryptographically
expensive approaches, such as the BC protocol. To motivate this, let us consider again the
HK protocol.

An adversary can execute a mafia fraud attack against the HK protocol as follows.
First, the adversary relays all communication between the prover and the verifier during
the slow phase. Before the start of the fast phase, an adversary E poses as the verifier V
and queries the prover P with the same challenge 0 for each one of the n rounds. As a
result, E receives the sequence of responses T1, T3, . . . , T2n−1 from P . Then, in the second
session, the adversary uses this knowledge to reply to V ’s challenges during the fast phase.
The probability of success of an adversary executing such an attack is

(
3
4

)n. This value is

7

1.2. Security Analysis

obtained from the following reasoning. At the i-th round of the fast phase, E is challenged
with a random bit ci. If ci = 0 then E answers with the correct reply T2i−1. Otherwise, E
replies with a random bit, which gives a chance of 1

2 to reply correctly. In total, this attack
succeeds with probability 1

2 × 1 + 1
2 × 1

2 = 3
4 per round, leading to

(
3
4

)n for n rounds. This
value is significantly larger than the probability

(
1
2

)n [BC93] of the same attack to succeed
against the BC protocol, also for n rounds.

However, Hancke and Kuhn [HK05] explained the advantage of avoiding a final slow
phase. Their reasoning is that the execution time of a few additional rounds during the
fast phase is significantly lower than that of performing extra cryptographic operations.
Hence, for all values of n, there exists u larger (but not much larger) than n such that the
HK protocol with u rounds is more resistant to mafia fraud than the BC protocol with n
rounds, i.e.

(
3
4

)u
<
(

1
2

)n.
In 2009, Avoine and Tchamkerten proposed a lookup-based protocol whose lookup

structure is an edge-labeled binary tree. This protocol reduces the probability of a mafia
fraud attack to succeed to 1

2n (1 + n
2) [AT09], in comparison to

(
3
4

)n of the HK protocol.
However, this good performance of Avoine and Tchamkerten’s protocol (Tree) comes at the
price of an exponential space complexity in the number n of fast phase rounds. Indeed,
the n-depth binary tree structure that their protocol employs gives it exponential space
complexity. Space complexity is an important consideration in lookup-based protocols,
and in distance-bounding protocols in general, as it determines the amount of memory a
device running the protocol must be able to allocate. Memory is indeed a critical issue in
ubiquitous technologies such as RFID.

It is not known if the security of the Tree protocol [AT09] can be achieved at lower space
costs. Furthermore, it is also an open question whether this lower bound 1

2n (1 + n
2) can be

reduced in lookup-based protocols. This discussion on the prominent class of lookup-based
protocols, which all have structural similarity, leads to our first research question.

Research Question 1. Can we define a computational model that would
allow us to comprehensively study security and other properties of lookup-
based distance-bounding protocols?

In order to develop a comprehensive and comparative analysis of lookup-based protocols,
we propose a computational model that represents a protocol as a set of state-labeled
Deterministic Finite Automata. An execution of the protocol is thus represented by
a random walk in a randomly selected automaton. The adversary is modeled by any
polynomial algorithm whose input is the walk in the selected automaton.

An extensive number of lookup-based distance-bounding protocols have been published
to date. Each of them aims to bring improvement on its predecessors not only in terms
of security, but also in space complexity, defined by the size of the protocol. Despite the
efforts on optimizing these comparison criteria, no protocol has been proven optimal yet.
More precisely, it still remains an open problem how to design a lookup-based protocol
whose resistance to mafia fraud is optimal, given an upper bound on the size of the protocol.
This leads to our second research question.

Research Question 2. Within a prominent class of lookup-based protocols,
can we design a protocol that optimizes the trade-off between resistance to
mafia fraud and the size of the protocol?

8

Chapter 1. Introduction

By using the proposed automata-based computational model, we provide a formal
definition of the security and size trade-off optimization problem in lookup-based protocols.
Furthermore, we give a solution protocol for this problem, for a large subclass of lookup-
based protocols.

On Symbolic Analysis of Security

The majority of academic work on distance-bounding protocols use a given computational
model (e.g. [ABK+11, DFKO11, BV14]) to conduct security analysis of distance-bounding
protocols. In general, this analysis is assessed in terms of provable-resistance to mafia
and distance frauds. To compute the probability of success of terrorist fraud and distance
hijacking attacks does not seem to be a common approach. In fact, resistance to these two
types of attacks has been traditionally given in a “yes or no” fashion (an attack assertively
exists or not) rather than in a probabilistic way.

A few symbolic frameworks for analysis of distance-bounding security exist: [BCSS09,
SSBC09], [CRSC12], [MSTT18b], [CdRS18], [DDW18] and [MSTT19]. The publications
[MSTT18b, MSTT19] are part of this thesis.

In 2009, Basin et al. proposed the first tool-supported framework [BCSS09, SSBC09]
to verify distance-bounding protocols by employing a symbolic approach. This work
constituted a major step forward, as previous (computational) security/attack proofs were
complex and error prone, whilst symbolic proofs are simpler and often produced and
verified by a computer software. Not long after Basin et al.’s proposed their framework, it
proved further significance when Cremers et al. [CRSC12] introduced a new type of attack:
distance hijacking, and found a number of protocols vulnerable to it. Surprisingly, many
of those protocols had been proven secure in computational approaches. An important
observation is that Cremers et al. assumed a Dolev-Yao [DY83] adversary, so they did not
introduce a stronger adversary model to demonstrate their attack.

Unfortunately, while the desired security properties of a distance-bounding protocol
can be precisely specified in Basin et al.’s framework, it is not so straightforward to verify
them for a given protocol. This is because the verification relies on modeling continuous
time and location of agents to deliver the security proofs by using an adapted version of
the higher-order theorem-proving tool Isabelle/HOL [NPW02]. This tool is acknowledged
to require a considerable amount of user intervention and expertise.

By comparison, well-established tools for automatic verification of security protocols,
such as Tamarin [MSCB13], ProVerif [Bla01] and Scyther [Cre08], are able to verify
traditional security properties in a straightforward and rapid way. These tools handle time
as a discrete ordering of events, therefore specification of protocols featuring the notion of
continuous time is unfeasible in these tools. This leads to our third research question.

Research Question 3. Can we define a property, equivalent to that of
Basin et al. [BCSS09, SSBC09] for symbolic verification of distance-bounding
protocols, that does not explicitly consider time or location?

We argue that the notions of time and location are indeed not needed to specify and
verify distance-bounding protocols. Surprisingly enough, such protocols can be verified
by considering the causal order of events in protocol traces, similar to verification of

9

1.2. Security Analysis

V P

chal∆t

resp

(a) Correct timing

V P

chal
∆t′

resp

(b) False timing

V P

resp
chal

∆t′′

(c) “Very” false timing

Figure 1.6 Three timing scenarios of a challenge/response round.

authentication properties such as aliveness [Low97, CM12]. The intuition behind this
observation is illustrated in Figure 1.6.

Figure 1.6a shows a regular challenge/response round, in which prover P can only
respond to verifier V ’s challenge after having received the challenge. Therefore, c

2 · ∆t
determines an upper bound on the distance between V and P . Suppose now that, due
to a vulnerability of the protocol, P is able to predict the appropriate response before
having received the challenge (Figure 1.6b). This means that he will be able to send his
response “too early”, leading to a shorter round-trip time ∆t′ < ∆t and thus to a smaller
and incorrect distance calculated by V . Thus, if the protocol is insecure because P can
preempt the response, P has sufficient knowledge to create the response before reception
of the challenge. Hence, our main observation is that, assuming no other causal relation
between sending the challenge and P ’s knowledge, P could even have sent the response
before V sent the challenge (Figure 1.6c). From a causal point of view, this means that if
there is a trace in which P sends its response before P receives the challenge, there must
also be a trace in which P sends the response before V sends the challenge. Hence, a flaw
in the protocol translates into a wrongly ordered trace, which can be discovered through
an analysis that does not consider time.

Basin et al.’s formalism [BCSS09, SSBC09], and ours by extension, employs a Dolev-
Yao [DY83] adversary model with a few restrictions. Such restrictions are inherent from
the distance-bounding setting and are based precisely on the physical law that sets the
speed of light as an upper bound on the ratio travel-distance over travel-time of a message.
From a symbolic point of view, this law enforces that adversary data injection must be
done through a compromised agent. The compromise capabilities of the adversary are the
same as in the Dolev-Yao adversary, who compromises agents by exerting full control over
them for the entire protocol execution after the compromise. Hence this formalism, and
again ours either, do not capture terrorist fraud. We motivate this next.

Terrorist fraud is an attack in which provers collude in order to provide a verifier
with a false proximity proof. Collusion is a form of secret aid given by agents who are
not compromised by the adversary. Indeed, collusion differs from compromise in that
compromise is exerted by the adversary and collusion is a deliberate choice of the agent(s)
involved. For example, covert adversaries [AL10, FY92, CO99] are agents who are willing
to cheat by deviating from the protocol specification, as long as the cheating would not
be detected. One might think of an online gaming platform, in which some players
secretly cooperate to cheat against other players, whilst avoiding being caught, or else face
consequences such as being thrown out of the platform.

10

Chapter 1. Introduction

In order to reason about terrorist fraud within our formalism, we must account for
collusion in security protocols. Collusion can be modeled by allowing non-compromised
agents to deviate from their protocol specification. This leads to the fourth and last research
question of this thesis.

Research Question 4. Can we build a tool-supported framework for
symbolic verification of distance-bounding protocols that accounts for all
four classes of attack?

Two main approaches to defining terrorist fraud attacks exist. Both state that a distant
prover, by colluding with a close and compromised prover, make a verifier believe that the
distant prover is close. The approaches differ in the condition on the collusion that make
one consider the attack as valid. The first approach states that a terrorist fraud occurs
whenever the distant prover does not reveal their secret keys in the process of collusion. The
second approach considers a weaker condition, in which the distant prover must not allow
the compromised prover to proof proximity in further sessions without further collusion. In
this thesis we adopt the second approach, which we believe it to be more accurate than the
first approach. We briefly discuss the reasons in the next two paragraphs.

It is significantly hard to properly model the meaning of “the distant prover does
not reveal their secret keys in the process of collusion”. This is because key reveal must
be explicitly modeled in most (if not all) automated verification tools as part of the
protocol/environment specification, and is always the case that some key reveal scenarios
are missed in this modeling.

The second reason is also related to the reveal of secret keys or rather to the reveal of
messages that are as relevant as secret keys. For example, for some protocols, an agent’s
leakage of session-fresh data can lead to their impersonation in every session thereafter.
A running example is given as follows. Consider a distance-bounding protocol Proto in
which every crypto-operation uses a shared, symmetric key. Let us assume that the only
aid the distant prover can provide the close prover with is to give away the shared key.
If we follow the first approach, Proto would be resistant to terrorist fraud. Consider now
another protocol Proto′ that results from Proto by replacing any instance of a shared key
k by its hash h(k). Therefore, if we follow the first approach, Proto′ would not be resistant
to terrorist fraud, as the distant prover can leak h(k), which does not reveal k. This means
that the key-hashing transformation weakens the protocol, which does not seem to be a
coherent statement. The mentioned issue does not occur if we follow the second approach
as both Proto and Proto′ would be resistant to terrorist fraud.

By providing a formal definition of (resistance to) terrorist fraud, we develop a symbolic
verification framework3 that accounts for the four classes of attacks on distance-bounding
protocols. The framework is developed in Tamarin and is highly modular, thus users only
have to specify the protocol and the framework will generate and verify the concerning
generic security lemmas.

3Available at https://github.com/jorgetp/dbverify

11

https://github.com/jorgetp/dbverify

1.3. Contributions

1.3 Contributions

The four main contributions of this thesis are summarized as follows:

(1) We propose an abstract model to study theoretical properties for a large class of
distance-bounding protocols, called lookup-based protocols. The model represents a
protocol as a set of Deterministic Finite Automata (DFA), and protocol executions are
represented as random walks in random automata of the set. We prove that 1

2n (1 + n
2)

is a tight lower bound on the resistance of lookup-based protocols to mafia fraud,
where n is the number of fast phase rounds. We define a pre-ask strategy to execute a
mafia fraud attack that is optimal in the prominent class of layered and random-labeled
lookup-based protocols. The strategy is to reply to the verifier’s challenges with exactly
the prover’s responses from the pre-ask session. The Tree protocol [AT09] achieves the
mentioned optimal resistance to mafia fraud, but it is unfeasible in practice due to
its exponential space complexity. We thus define a family of protocols which strike
excellent resistance to mafia fraud in relation to their space complexity.

(2) By using the proposed model based on DFAs, we study trade-offs between security
and space complexity, in layered protocols. We define two equivalence relations on
DFAs and use them to demonstrate our optimality result: given an upper bound on the
protocol size (the size of a protocol is the number of states of the largest layer amongst
all automata of the protocol), the protocol whose automata have the largest girth (the
girth of an automaton is the shortest cycle if viewed as an undirected graph) is optimally
resistant to mafia fraud amongst all layered and random-labeled protocols. We provide
a concrete construction of a protocol whose automata have the largest girth, which we
call the Modular protocol. We use the multi-criteria comparison framework [AMT15]
to show that our protocol compares well with protocols that are non-layered or even
not lookup-based.

(3) We build on Basin et al.’s symbolic model [BCSS09, SSBC09] in order to define a
causality-based property to verify distance-bounding protocols. Our property does
not consider continuous time or agents’ location. Instead, it resembles a form of
aliveness [Low97, CM12] in that the prover must perform some action during the fast
phase of the protocol. Specifically, we demonstrate that a verifier’s guarantee that the
prover (or any compromised agent if the prover is compromised) is alive during the
fast phase is equivalent to the verifier’s guarantee that the fast phase round-trip time
can be used to upper-bound their distance to said prover.

(4) We develop a multiset rewriting formalism to reason about collusion in security protocols.
Collusion is any deviation from the protocol specification of agents who are not under
full control of the adversary. By relying on this formalism, we extend our distance-
bounding security model in order to account for terrorist fraud attacks. By using our
extended model, we develop a Tamarin-based symbolic verification framework that
accounts for all four classes of attack from the literature on distance bounding. We
also conduct a security survey of over 25 protocols, which include industrial protocols
such as Mastercard’s contactless payment protocol PayPass and NXP’s MIFARE Plus
with proximity check. For the industrial protocols we confirm known attacks, propose
fixes, and provide Tamarin-constructed proofs of security of the repaired protocols.

12

Chapter 1. Introduction

1.4 Overview

This thesis consists of two parts and four research questions. Each part addresses two
research questions. The first part concerns security analysis of distance-bounding protocols
in the computational model. This part is based on the publications [MTT16a, MTT16b],
which are joint works with Sjouke Mauw and Rolando Trujillo Rasúa. The second part
develops a symbolic framework for security analysis of distance-bounding protocols. This
part is based on the papers [MSTT18b, MSTT19], which are joint works with the afore-
mentioned co-authors and Zach Smith. The author of this thesis also co-wrote the pa-
pers [STBF17, MSTT18a] while developing this PhD. These papers are not particularly
within the scope of this dissertation, thus not included in it.

Part I: Computational Analysis of Distance-Bounding Protocols

Chapter 3 addresses Research Question 1. This chapter focuses on the class of lookup-
based distance-bounding protocols. By designing an automata-based model for these
protocols, we comprehensively study their properties, such as security lower bounds in
relation to space complexity. Further, we develop a novel family of protocols within this
class that resist well to mafia fraud. This chapter is based on the paper:

• Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. A class of precomputation-
based distance-bounding protocols. In IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 97–111,
2016 [MTT16a].

Chapter 4 addresses Research Question 2. In this chapter we study the trade-off between
security and size for a non-trivial class of lookup-based protocols. As a result, we construct
a protocol that strikes the optimal resistance to mafia fraud within such class, for a
given upper bound on the size of the protocols. By using a tool-supported multi-criteria
comparison method [AMT15], we show that the protocol compares well with protocols
outside the analyzed class. This chapter is partially based on the paper:

• Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Optimality results on
the security of lookup-based protocols. In Radio Frequency Identification and IoT
Security - 12th International Workshop, RFIDSec 2016, Hong Kong, China, November
30 - December 2, 2016, Revised Selected Papers, pages 137–150, 2016 [MTT16b].

Part II: Symbolic Analysis of Distance-Bounding Protocols

Chapter 5 addresses Research Question 3. We first describe the symbolic framework
by Basin et al. [BCSS09, SSBC09], which models timestamp of agents’ events and agents’
location. We build on Basin et al.’s model to provide a causality-based characterization of
secure distance-bounding. This chapter is based on the paper:

• Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Distance-
bounding protocols: Verification without time and location. In 2018 IEEE Symposium
on Security and Privacy, S&P 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 549–566, 2018 [MSTT18b].

13

1.4. Overview

Chapter 6 partially addresses Research Question 4. We first develop a multiset rewriting
formalism to reason about collusion (a deviation from the protocol specification) in security
protocols, and introduce the notion of post-collusion security, which verifies security
properties claimed in sessions initiated after the collusion. By means of post-collusion
security, we extend the distance-bounding security model of Chapter 5 in order to account
for terrorist fraud. This chapter is based on the paper:

• Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Post-
collusion security and terrorist fraud. 2019. (under submission) [MSTT19].

Chapter 7 partially addresses Research Question 4. By using the definitions from Chap-
ters 5 and 6, we develop a Tamarin framework for symbolic verification of distance-bounding
protocols. With our framework, we perform an extensive survey of distance-bounding
protocols from both academia and the industry. The protocol models and proofs can be
freely accessed online4. This chapter is based on the paper:

• Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Post-
collusion security and terrorist fraud. 2019. (under submission) [MSTT19].

4At https://github.com/jorgetp/dbverify

14

https://github.com/jorgetp/dbverify

2
Related Work

Possibly more than forty distance-bounding protocols have been proposed to date. Most of
them can be classified in one of two major classes: lookup-based protocols (which we briefly
introduced in Chapter 1 and for which have two dedicated chapters in this thesis), and
protocols based on Brands and Chaum’s [BC93] commit/authentication approach. The
most significant difference between these classes is the presence or not of a final, prover-
active, authentication phase. We do not intend to list distance-bounding protocols here.
Instead, we will describe previous works that develop frameworks for distance-bounding
security analysis within computational and symbolic models. We will also give our own
views on the described approaches and their results.

2.1 On Computational Analysis

Almost every protocol published to date comes with a specific, isolated computational
approach for proving their security. This section, however, focuses on various of those works
in which security analysis is conducted in a systematic and generic manner, thus making
them possibly applicable to further protocols.

Avoine, Bingöl et al.’s Framework

Avoine, Bingöl et al. [ABK+11] introduced a unified security analysis framework that
includes a thorough terminology about the frauds, adversary, and prover. The authors
explore the adversary’s capabilities and strategies, and the effect of the provers’ abilities
to tamper with their devices. To develop their security analyses, they focus on four types
of frauds: impersonation, distance, mafia and terrorist frauds. The particular case of
impersonation regards a lonely prover who pretends to be another one.

This work considers three adversarial strategies to execute the attacks: pre-ask, post-ask,
and early-reply. In the pre-ask strategy (which we briefly discussed in Chapter 1 and
will formalize in Chapter 3), the adversary relays the slow phase messages between the
verifier and the prover, runs a fast phase with the prover, and then runs (on behalf of the
prover) a fast phase with the verifier. In the post-ask strategy, the adversary relays the
slow phase messages, executes the fast phase with the verifier without involving the prover,
and then queries the prover with the correct challenges received during the fast phase with
the verifier. The authors suggest that post-ask strategy is meaningful when the protocol

15

2.1. On Computational Analysis

Mafia fraud

Terrorist fraud

Distance fraud

Mafia fraud

Terrorist fraud

Distance fraud

Black-box model White-box model

Figure 2.1 Relations between the frauds in the white-box and black-box models as given
in [ABK+11]. An arrow (dashed or not) from A to B means that for any attack in A that
succeeds with probability pA, an attack in B exists that succeeds with probability pB ≥ pA.
Dashed arrows are relations we do not subscribe to.

features a final phase that checks that the challenges received by the prover are correct.
Finally, the early-reply strategy refers to an adversary who anticipates the replies to the
verifier’s challenges so the replies arrive earlier than they should if sent upon reception of
the challenges. This strategy is particularly relevant for distance fraud attacks.

The authors also introduced new concepts in the distance-bounding field, such as
black-box [Bla00, YY96] and white-box [CEJvO02, SWP09] models. On the one hand, in
their black-box model, the prover cannot observe or tamper with the execution of the
algorithm. In their white-box model, on the other hand, the prover has full access to the
implementation of the algorithm and a complete control over the execution environment.
This works also provides relations between the frauds when considering both white-box and
black-box models. The relations are illustrated in Figure 2.1. We do not agree with (at
least) two of such relations, which are the ones represented with dashed arrows in Figure 2.1.
For example, the SPADE protocol [BGG+16] is vulnerable to mafia fraud (with probability
1) in the white-box model, yet it is resistant to terrorist fraud. Furthermore, any protocol
in which the fast phase responses are constant is vulnerable to distance fraud (and also to
mafia fraud) but is terrorist fraud resistant. We do not have concrete protocol examples to
refute any of the remaining relations.

Finally, the authors make use of their framework to provide a detailed analysis of Munilla
and Peinado’s protocol [MP08]. An outcome of their analysis is a higher probability of
success of mafia fraud than the one due to Munilla and Peinado given in [MP08].

Dürholz et al.’s Formal Approach

Dürholz et al. [DFKO11] developed rigorous cryptographic security models for mafia,
terrorist, and distance fraud attacks. The authors define their communication/attacker
model such that honest parties reply as soon as they have received a (protocol) message,
and the adversary schedules message delivery to honest parties. Their model also considers

16

Chapter 2. Related Work

Impersonation Mafia Fraud Distance Fraud Terrorist Fraud

X X X ×
X X × X
X × X X

Table 2.1 Relations between fraud types as per Dürholz et al. [DFKO11]. Each row of
the table means that a distance-bounding protocol exists such that, for each fraud given by
the columns, it is either secure (X) or an attack exists (×).

a global clock that incrementally assigns (for every k and every sid) an integer number
clock(sid, k)1 to the k-th protocol message delivered to an honest party, in a session with
identifier sid. The model allows them to make claims on whether the adversary has tainted
a particular fast phase or not. Interestingly, their notion of “activeness” of the adversary
during the fast phase somehow relates to one of the main results of this thesis (developed in
Chapter 5) in that we consider such activeness (which we call aliveness) but of the prover
rather than the adversary, in order to deliver security proofs. Unfortunately, we were not
able to draw more concrete connections between the two approaches.

Besides the three aforementioned frauds (mafia, terrorist, and distance), Dürholz et
al. also consider impersonation attacks (a concept similar to that of [ABK+11]). They
suggest a simple, yet strong definition of impersonation resistance as a basic requirement of
identification. Whereas the three previous frauds concern the fast phase, impersonation
security requires that an adversary cannot impersonate a tag in either the slow or the final
phase. One could notice some degree of similarity between Dürholz et al.’s impersonation
with distance hijacking (yet unknown at the time). Thus, it would be of interest to see the
outcome of the framework, in terms of impersonation, when analyzing protocols that are
vulnerable to distance hijacking attacks, such as Brands and Chaum’s protocol [BC93].

Dürholz et al. also refute the claim in [RNTS07] that terrorist fraud resistance implies
distance fraud resistance, which coincides with one of our claims related to the fraud
relations of [ABK+11] illustrated in Figure 2.1. More generally, Dürholz et al. claim that
the fraud types are rather independent, and demonstrate the existence of protocols that
negate dependencies between the frauds (see Table 2.1).

The authors also study in detail Kim and Avoine’s protocol [KA09], which is mafia
fraud and distance fraud resistant, but it fails to defend against impersonation and terrorist
fraud, according to [DFKO11]. Thus, Dürholz et al. amended this protocol so their version
provides impersonation security and also deals with noisy channels. Furthermore, they
provide formal proofs of security of their enhanced version of Kim and Avoine’s protocol,
in terms of impersonation, mafia and distance frauds. Dürholz et al. show that a terrorist
fraud attack on their protocol version does exist though. We confirm their results in
Chapter 7.

Avoine, Mauw and Trujillo’s Multi-Criteria Comparison

Avoine, Mauw and Trujillo proposed in [AMT15] a tool-supported methodology to compare
distance-bounding protocols. This work uses multi-citeria decision-making techniques to

1Some form of discrete timestamps.

17

2.1. On Computational Analysis

deliver classes of non-dominated protocol instances. Protocols instances result from of
various choices of protocol parameters. A protocol instance dominates another protocol
instance if two conditions hold: (1) the former is at least as good as the latter in all criteria,
and (2) the former is better than the latter in at least one criterion. A protocol instance is
non-dominated if no other protocol instance dominates it.

The authors consider eight comparison criteria that have been used frequently in the
literature: number of bits exchanged during the fast phase, probability of success of mafia,
distance and terrorist fraud attacks, number of bits of the fast phase communication channel,
number of cryptographic operations, memory, and whether the protocol has a prover-active
final phase or not. Their comparison method constructs classes of winner protocol instances
according to non-dominance Pareto frontiers. The comparison software2 is written in
Java and includes around thirteen fully-detailed protocols. Due to the modularity of the
software source, new protocols can be easily added. We will use this framework in Chapter 4
(specifically Section 4.4) of this thesis.

Yang et al.’s Two-Hop Distance Bounding

The work by Yang et al. [YPM+18] extends traditional distance-bounding protocols to a
two-hop setting. In this setting, the prover is out of the verifier’s communication range,
hence they must rely on an untrusted in-between entity in order to verify proximity. This
work presents a formal framework to compute the probability of success of mafia, distance
and terrorist frauds against register-based distance-bounding protocols (a subclass of what
we call layered lookup-based protocols, which we briefly introduced in Chapter 1 and will
formally study in Chapters 3 and 4). The authors also provide a general method to extend
traditional distance-bounding protocols to the two-hop case.

The authors developed their framework by considering a well-defined set of functions
that model the protocol specification. They determined the success probability of the
aforementioned three types of attack (mafia, distance, and terrorist frauds) against several
state-of-the-art protocols, and conducted simulated experiments in order to validate their
theoretical security analyses. They also showed that the presence or not of a third, linker
entity in a two-hop protocol affects the security in relation to its corresponding one-hop
protocol, as opposed to what it was believed before.

While the class of register-based distance-bounding protocols indeed covers a large
number of protocols published to date, it does not seem hard to escape from their round-
independence scheme by re-defining the prover’s fast phase function domain so it considers
not only the current round’s challenge but also every challenge the prover has received
before the current round. This generalization obviously affects the probabilistic security
analysis but it could lead to perhaps more interesting results, applicable to a larger class of
protocols.

Avoine et al.’s Survey

Avoine et al. [ABB+19] developed a detailed survey of eleven distance-bounding protocols
with their variations. The survey assesses security against impersonation, distance fraud,
mafia fraud, and terrorist fraud attacks; and they focus on the three adversary strategies

2Available at https://github.com/rolandotr/db_comparison

18

https://github.com/rolandotr/db_comparison

Chapter 2. Related Work

pre-ask, post-ask and early-reply. The survey also analyzes performance aspects of the
protocols such as: cryptographic primitives (type of cryptographic primitives needed to be
implemented on the prover side), number of exchanged bits during the slow phase, number
of exchanged bits during the fast phase, and memory consumption. One must notice the
similarities between this work and the works [ABK+11, AMT15].

2.2 On Symbolic Analysis

We will discuss on various works on symbolic verification of distance-bounding protocols. To
the best of our knowledge, the works revised in this section, along with our papers [MSTT18b,
MSTT19] (which are part of this dissertation), form an exhaustive list of computer-assisted
frameworks for distance-bounding symbolic verification. For the sake of simplicity, the
protocols illustrated in this section abstract away from cycles of RTT measurement rounds
into a single one.

Meadows et al.’s Authentication Logic

Meadows et al. [MPP+07] proposed a symbolic framework based on the combined authen-
tication and secrecy logics of [CMP05, PM06]. Their logic defines two basic axioms: the
receive axiom for reception of messages and the freshness axiom for modeling freshness of
terms (or messages). The receive axiom states that every message which is received must
have been originated from someone. The freshness axiom states two properties: (1) any
event mentioning a fresh message must occur after such message has been generated, and
(2) every fresh message that is known to an agent A and was not generated by A must have
been received (ruled by the receive axiom) from another agent.

Meadows et al.’s formalism also considers further axioms to deal with authentication
codes (which refer to the deduction of the agent who created a particular message), and
events’ timestamps and distances between agents. Their approach is particularly oriented
to security analysis in the presence of honest provers.

In the case of dishonest provers, Meadows et al.’s methods are not able to derive
meaningful security results. The reason is that, as the authors claim, they would require
strong assumptions about the behavior of other dishonest agents well. For example, suppose
a dishonest prover P sends out a predictable value instead of a fresh nonce as meant by
the protocol specification. Then a dishonest prover E, who is closer to the verifier than
P is, could have anticipated and sent P ’s rapid response, thus tricking the verifier into
believing that P is close. In order to account for this kind of scenarios, the authors claim
they would need to make the assumption that E could not produce P ’s response in advance.
The authors point out that this assumption does not differ from considering honest prover
behavior. The authors also make a connection between this scenario and terrorist fraud.

Meadows et al. also proposed a novel distance-bounding protocol, illustrated in Fig-
ure 2.2. Noticeable novelties of their protocol in relation to then-traditional distance-
bounding protocols are twofold: (1) its fast phase uses a multiple-bit communication
channel, and (2) the prover includes their location in the final authentication message.

The authors provide a formal security proof of their proposed protocol, supported by
their logic. However, Cremers et al. indicated in [CRSC12] that Meadows et al.’s protocol

19

2.2. On Symbolic Analysis

shared k

V

shared k

P

fresh NV fresh NP

V, hello

NV

RTT f(NV , NP , P)

s := 〈P, locP , NP , NV 〉

s, h(k, s)

P is close

Figure 2.2 Meadows et al.’s protocol [MPP+07], where locP denotes the location of the
prover P . Three instances of the protocol are given by the authors, as per the following
three choices f := 〈NV , NP ⊕ P 〉, f := 〈NV , P,NP 〉, and f := NV ⊕ h(P,NP) where h is a
collision-free hash function. The symbol ⊕ represents the exclusive-OR operator.

with the choice f := 〈NV , NP ⊕ P 〉 is vulnerable to a distance hijacking attack (recall that
in this attack, a distant and dishonest prover convinces the verifier to be close by using a
close and honest prover). The attack is shown in Figure 2.3, which is indeed consistent
with the authors’ own claim that they do not cover attacks of the dishonest-prover type.
In Chapter 7 we will confirm this vulnerability in their protocol.

Finally, Meadows et al. briefly address collusion analysis in distance bounding. The
desired outcome of collusion is to make a verifier believe a collusion-involved prover is
closer than they are. The authors illustrate this by using standard collusion and also
wormholes. Their standard collusion refers to a pool of shared information (which may
include long-term secrets) from which any colluding agent can extract information. Their
wormhole attack, on the other hand, is one in which a fast channel is set up between the
victims and an distant attacker. No formal analysis related to collusion is provided. In
addition, the authors fail to make a connection between collusion and terrorist fraud.

Malladi et al.’s Automatic Analysis

The (possibly) first formal framework for distance-bounding protocols with multi-prover
scenarios was proposed by Malladi et al. [MBK10], along with a software tool. They
analyzed the signature-based Brands and Chaum’s protocol [BC93] and found an attack
in which an adversary who is not in the vicinity of the verifier still passes the protocol (a
form of distance hijacking attack). They called this attack the farther adversary scenario.
Moreover, to solve the security issue they found, they observed that including the prover’s
identity in the signature would make the protocol no longer vulnerable to farther adversary
attacks. Their constraint solver tool only considers a bounded number of protocol processes

20

Chapter 2. Related Work

shared k′ with E

V P

shared k′ with V

E

fresh NV fresh NP

V, hello

NV

RTT NV , NP ⊕ P

NE:=NP⊕E⊕P

s′:=〈E,locP ,NP ,NV 〉

s′, h(k′, s′)

E is close

Figure 2.3 A distance hijacking attack on Meadows et al.’s protocol with f :=
〈NV , P ⊕NP 〉. In this attack, the legitimate prover P is close to the verifier V , and
the dishonest prover E is far from V . The dishonest prover E hijacks the session by
replacing P ’s final authentication message with their own authentication message, thus
making V believe that E is close. E learns all messages exchanged between V and P by
observation. The attack works because NE ⊕ E = (NP ⊕ E ⊕ P)⊕ E = NP ⊕ P .

but the authors claim that their method can be easily extended to unbounded verification
tools such as ProVerif [Bla01]. Though, we were not able to follow-up on such extension.

Basin et al.’s Isabelle/HOL-Based Framework

Basin et al. [BCSS09, SSBC09] presented a formal model that extends inductive and trace-
based reasoning to include physical proximity in security protocols analysis. The authors
refine the standard Dolev-Yao model to account for network topology, transmission delays,
and agents’ physical locations. This resulted in a distributed intruder with restricted, yet
more realistic, communication capabilities. Their network model establishes that an (honest
or dishonest) agent B may only receive, at time t, a given message sent at time t′ by an
(honest or dishonest) agent B if the following inequality holds:

t ≥ t′ + dist(A,B)

c

where c denotes the network transmission speed and dist(A,B) is the physical distance
between A and B. This restricts the adversary’s control of the network in two ways: (1)
the adversary’s injection of messages must be done via a dishonest agent with an actual
physical location, and (2) there are delays between sending and receiving messages. This
modeling allows one to verify validity of claims about proximity of agents.

Furthermore, the authors developed an abstract message theory that formalizes protocol-
independent facts about messages. The authors formalized their model in the theorem-
proving assistant Isabelle/HOL [NPW02] and used it to verify or provide attacks on a few

21

2.2. On Symbolic Analysis

distance-bounding protocols3. We build on this work to develop our symbolic distance-
bounding security model in Chapter 5, hence more details on this work will be given
then.

Chothia et al.’s Hierarchy and ProVerif-Based Framework

Chothia et al. [CdRS18] presented an extension of the applied pi-calculus that can be
used to model distance-bounding protocols. This work identified a new attack, which
they call uncompromised distance bounding attack, in which the prover being tested is not
compromised though other provers may have been. Their property however resembles a
form of mafia fraud, and we do not find the differentiation meaningful.

This work seems to assume a difference between the attacker and a compromised (or
dishonest) prover. That is, processes modeling dishonest provers are different from the
process modeling the attacker. We argue that such differentiation does not seem to derive
meaningful conclusions in distance-bounding analysis, except perhaps for odd cases in
which devices have trusted hardware, which translates into the attacker not being able to
compromise any prover. Our argument is supported by the fact that any action of the
attacker is done through a compromised prover, therefore no different claim can be made
about the “attacker’s location” or a compromised prover’s location.

The authors show how a number of different attacks can be encoded in their model and
proved a partial order (or hierarchy) between them (see Figure 2.4). A summary of their
discussion on the implications of their hierarchy of distance-bounding attacks is as follows:

(1) If the attacker model does consider terrorist fraud provers, then the strongest attack
that needs to be defended against is assisted distance fraud.

(2) If the attacker model does not consider terrorist fraud provers, then strongest protection
the protocol needs is against both distance hijacking and uncompromised distance-
bounding attacks.

(3) If the attacker model does not consider compromised provers, then the strongest attack
that needs to be defended against is uncompromised distance-bounding attack.

(4) If the attacker model assumes only trusted hardware devices, then the strongest attack
that needs to be defended against is relay hijacking.

(5) If the attacker model only considers attackers that are distant to the verifier, then the
strongest attack that needs to be defended against is distance hijacking.

The first and second implications are derived from the analysis of the red line of the
figure. The third, fourth, and fifth implications are deduced from the analysis of the yellow,
green, and purple lines of the figure, respectively.

Chothia et al. also showed how to compile their new calculus into the applied pi-calculus
so that protocols can be automatically checked with the ProVerif tool [Bla01]. They used
their framework4 to analyze industrial protocols from Mastercard and NXP.

3Isabelle/HOL models and proofs available at http://www.infsec.ethz.ch/research/software/
protoveriphy.html

4Source codes at http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-master.
tar.gz

22

http://www.infsec.ethz.ch/research/software/protoveriphy.html
http://www.infsec.ethz.ch/research/software/protoveriphy.html
http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-master.tar.gz
http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-master.tar.gz

Chapter 2. Related WorkFigure 3 Ordering of distance bounding attack scenarios that follows from lemmas 1, 2 and 3 and assumptions 1 and
2. Higher properties imply those below them. We write [V (id) | P] | [Q] for verified(id):[V | P] | [Q]

Distance	Fraud	
[V(id)]	|	[DP(id)]		

Mafia	fraud/Relay	
[V(id)|A]	|	[P(id)|A]	

[V(id)]	|	[P(id)|A]	

[V(id)|P(id’)]	|	[P(id)|A]	

Terrorist	Fraud	
[V(id)|A]	|	[TP(id)]	

[V(id)|P(id')|A]	|	[TP(id)]	

Distance	Hijacking	
[V(id)|P(id')]	|	[DP(id)]	

Assisted	Distance	Fraud		
[V(id)|DP(id')]	|	[TP(id)]	

Remote	a6acker	only	
Uncompromised	Distance	Bounding	

[V(id)|DP(id')]	|	[P(id)|DP(id’)]	

Relay	Hijacking	
[V(id)|P(id')|A]	|	[P(id)|A]	

Trusted	devices	only		

Some	untrusted	devices	

Terrorist	a6acker	

[V(id)]	|	[P(id)|DP(id')]	

[V(id)|A]	|	[P(id)|TP(id')]	 [V(id)|P(id')]	|	[P(id)|DP(id')]	

[V(id)|P(id')|A]	|	[P(id)|TP(id')]		

No	terrorist	a6acker	

Remote	and	local	a6ackers	

Key:	
			P(id):					honest	provers	with	idenGty	“id”				
			V(id):					verifier	wishing	to	verifier	“id”	
			A:											a6acker	process	
			TP(id):		terrorist	provers,	acGng	as	“id”	
			DP(id):		dishonest	provers,	acGng	as	“id”	

Prover	being	checked	
						is	compromised	

Prover	being	checked	
	is	not	compromised	

a distance bounding protocol is secure against this at-
tack scenario, then none of the other attacks are possible.
However, this property is very strong; industrial distance
bounding protocols such as MasterCard’s RRP or NXP’s
proximity check do not have this property nor do they
need it: If a bank card or key fob has been fully com-
promised, then an attacker may send all key information
from this device to the same location as the verifier and
so pass the verification.

The lines which dissect Figure 3 each represent differ-
ent possible attacker models, and each area is dominated
by a single property, which, if checked, will prove secu-
rity for that particular attacker model. Assisted distance
fraud, and all of the other attack scenarios that require a
terrorist fraud attacker process (as indicated by the red
dotted line in Figure 3), rely on the terrorist fraud at-
tacker simply deciding not to send their key. While such
an attacker could exist, there is nothing to stop an at-
tacker, that has compromised a device, from sharing the
secret key. Therefore, the additional protection provided
by protecting against a terrorist attacker is questionable
in some attacker models.

The brown, large dashed lines separates the properties
in which the verifier is checking a compromised prover
from an uncompromised prover. Many of the use cases
for distance bounding protocols aim to protect a device
against relay attack, thereby preventing criminals from

taking a victim’s car or making a payment with the vic-
tim’s EMV card, for instance. In this attacker model,
if the attackers have compromised the device, then they
can simply clone it, making the distance bounding at-
tack unnecessary. In this model, checking verified(id):
[V | DP-A(id0) | A] | [P(id) | DP-A(id0)] ensures that all
of the possible relevant security properties hold. For this
security property to hold, the attacker should not be able
to pretend to be an uncompromised device, regardless of
how many other devices are compromised. We define
this property as uncompromised distance bounding:

Definition 6 (Uncompromised Distance Bounding at-
tack). Given a name id0 and a distance bounding pro-
tocol (V,P(id), ñ), from which we derive a dishonest
prover DP-A(id0), we say that the protocol is vulnera-
ble to an uncompromised distance bounding attack if:
verified(id):new ñ.[V | DP-A(id0)] | [P(id) | DP-A(id0)]
otherwise we say that it is safe from this attack.

As we are dealing with dishonest provers, by Lemma 3:

verified(id):new ñ.[V | DP-A(id0)] | [P(id) | DP-A(id0)]

, verified(id):new ñ.[V | A] | [P(id) | DP-A(id0)]

, verified(id):new ñ.[V | DP-A(id0)] | [P(id) | A]

therefore any of these system contexts could be used
to represent uncompromised distance bounding attacks.

Figure 2.4 The hierarchy of distance-bounding attacks given by Chothia et al. [CdRS18].
The existence of a higher attack implies that any attack below it exists as well. The notation
[P1| . . . |Pn] | [Q1| . . . |Qm] indicates that the processes Pi are co-located, the processes Qi
are co-located as well, and no process Pi is co-located with a process Qj . This last statement
implies that no timed communication occurs between Pi and Qj .

To the best of our knowledge, this work brings the first and only published symbolic
formalization of terrorist fraud. Recall that in terrorist fraud attacks, provers collude to
falsely provide proximity proofs to a verifier. Collusion refers to actions, of agents who
are not under control of the adversary, that are not specified by the protocol. Chothia et
al. model collusion actions in the form of cryptographic oracles. A cryptographic oracle
outputs the result of a cryptographic operation (such as encryption, decryption, signing,
keyed-MACing) on an adversary-chosen input, without revealing the long-term keys.

In Chapter 7 (specifically Section 7.2) we will argue that their terrorist fraud modeling
is not sound, provide our own modeling, and discuss differences between Chothia et al.’s
approach and ours, not only for terrorist fraud but also for other frauds. Specifically, we
will show that Chothia et al.’s framework delivers incorrect results for some protocols.

Debant et al.’s ProVerif-Based Framework

To model timed protocols and physical proximity, Debant et al. [DDW18] proposed a
calculus that subjects communication to physical restrictions. The restrictions are applied
to honest and dishonest participants (attacker). Similar to Basin et al.’s [BCSS09, SSBC09],
an attacker can only send and receive messages in accordance with the sender and receiver’s
physical location. This implies that dishonest participants cannot instantaneously share or
exchange knowledge. Instead, they must transmit the messages they want to share and
therefore those messages take time to become known to the receiver(s).

Debant et al. [DDW18] provided reduction results motivated by [CC03] for traditional

23

2.2. On Symbolic Analysis

V P

fresh nPfresh m,nV , c

σ := sign(nP , skP)

aenc(〈nP , σ〉 , pkV)

m, nV

c

RTT
a:=h0(nP ,nV)

r:=f(c,a⊕nP⊕m)

r

h1(c, nP , nV , m, r)

P is close

Figure 2.5 The SPADE protocol [BGG+16], where pkX and skX respectively denote
the long-term public and secret key associated to the agent X, aenc(m, pkX) denotes the
asymmetric encryption of m with the (asymmetric) key pkX , and sign(m, skX) denotes the
signature of m by X. A signature sign(m, skX) is verified upon knowledge of m and pkX .

protocols: if there is an attack, then there is one considering only few participants at some
specific locations. Their work considers two classes of attacks: mafia fraud and distance
hijacking. Their results slightly differ depending on the type of attack considered and allow
one to reduce the number of topologies to be considered from infinitely many to only one
(involving at most four participants including the malicious ones). Their reduction results
hold for arbitrary cryptographic primitives as soon as they can be expressed using rewriting
rules modulo an equational theory.

Their reduction results allowed them to use traditional verification methods and tools,
such as ProVerif [Bla01]. They used this tool to analyze various distance-bounding protocols.
Their case studies include the PaySafe protocol [CGdR+15], which is a distance-bounding
version of Visa’s payWave contactless payment protocol [EMV18b]. Their verification5.
confirmed a number of known results, and discovered an unreported mafia fraud attack on
the SPADE protocol [BGG+16]. Figures 2.5 and 2.6 illustrate the SPADE protocol and
Debant et al.’s mafia fraud attack against it, respectively.

Debant et al. also analyzed the PaySafe protocol [CGdR+15], which is a distance-
bounding-enabled version of Visa’s payWave [EMV18b]. Their verification reports this
protocol as secure against mafia fraud, and therefore against relay attacks as well, which is
indeed the fundamental security goal of the protocol. In line with [CdRS18], Debant et
al. do not consider dishonest-prover type of attacks to be relevant for payment protocols.
We do not fully agree with this and will briefly argue about it in Chapter 7 (specifically
Section 7.3). Furthermore, we will show that this protocol, and other protocols based on

5Full documentation and source codes are available at http://people.irisa.fr/Alexandre.Debant/
proving-physical-proximity-using-symbolic-methods.html

24

http://people.irisa.fr/Alexandre.Debant/proving-physical-proximity-using-symbolic-methods.html
http://people.irisa.fr/Alexandre.Debant/proving-physical-proximity-using-symbolic-methods.html

Chapter 2. Related Work

V E P

fresh nPfresh m,nV , c

σ := sign(nP , skP)

aenc(〈nP , σ〉 , pkE)

aenc(〈nP , σ〉 , pkV)

m, nV

c

RTT
a:=h0(nP ,nV)

r:=f(c,a⊕nP⊕m)

r

h1(c, nP , nV , m, r)

P is close

Figure 2.6 Amafia fraud attack on the SPADE protocol [BGG+16], in which the legitimate
prover P is far from the verifier V , and the dishonest prover E is close to V . The prover P
starts the protocol with (supposedly a verifier) E by sending 〈nP , sign(nP , skP)〉 encrypted
with the public key of E, which is all E needs to impersonate P to V for the rest of the
execution, thus making V believe that it is P who is close.

the ISO/IEC 14443, indeed fail to defend against both distance hijacking and distance
fraud. We will also suggest simple fixes to the protocol that prevent such attacks.

25

Part I

Computational Analysis of
Distance-Bounding Protocols

27

3
Lookup-Based Protocols

Distance-bounding protocols measure the round-trip times of a series of
challenge/response rounds, during which the proving party must have min-
imal computational overhead. This can be achieved by pre-computing the
responses and storing them in a constant-time access lookup table.

In this chapter we study such class of lookup-based distance-bounding proto-
cols. By designing an aumotata-based model for these protocols, we study
their properties such as security bounds in relation to space complexity.
Further, we identify a family of lookup-based protocols which balance well
security and space complexity.

Organization– In Section 3.1 we define an abstract model for the represen-
tation of lookup-based protocols. Security bounds and space complexity of
this class are the focus of Section 3.2. In Section 3.3 we study a prominent
class of lookup-based protocols, called layered and random-labeled protocols,
and define an optimal mafia fraud strategy against these protocols. Later
on, in Section 3.4 we describe a family of protocols whose resistance to
mafia fraud converges to the optimal value, as a security parameter grows.
Conclusive remarks of the chapter are given in Section 3.5.

29

3.1. A Model Based on Automata

3.1 A Model Based on Deterministic Finite Automata

We focus on a prominent class of distance-bounding protocols. This class is composed of
protocols that satisfy the following two properties:

(1) During the fast phase, the responses to the challenges are looked-up from a table built
up in the slow phase.

(2) The prover does not send any messages after the fast phase has been completed.

Protocols that satisfy these two properties are called lookup-based distance-bounding
protocols, or lookup-based protocols for short. These protocols have become attractive for
ubiquitous systems as a lookup operation can be done in constant time, thus the round-trip
times accurately approximate twice the prover-to-verifier distance divided by the network
propagation speed, regardless of the computational power of the prover. A large number
of such protocols have been proposed to date, e.g. [MP08, AT09, TMA10, GAA10, KA11,
MTT16a, KKBD11, TP07]. In order to study lookup-based protocols in a generic manner,
we model them via a particular class of Deterministic Finite Automata (DFA).

Definition 3.1 (State-Labeled DFA). A State-Labeled Deterministic Finite Automata is a
tuple of the form (Σ,Γ, Q, q0, δ, `) where:

• Σ is a finite set of input symbols,

• Γ is a finite set of output symbols,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× Σ→ Q is a state-transition function,

• ` : Q→ Γ is a labeling function on the states.

Definition 3.1 above differs from traditional DFAs in two main aspects. First, it does
not define final states. This is because we use it for modeling the execution of protocols
that might halt at any state. Second, it includes a labeling function on the states whose
output ranges over the set of output symbols Γ. Transition labels express the challenges
exchanged in the protocol, whereas the state labels define the corresponding responses,
which regard the lookup operations. We will make this precise later on in Definition 3.5.

Similar to traditional DFAs, we assume that the state transition function is total.
However, for the sake of simplicity, when defining or drawing DFAs we will only specify the
relevant transitions and, again similar to regular DFAs, we assume that specifications are
completed with an implicit trap state that serves as the target state for all transitions that
are not shown.

In the remaining of Part I of this thesis we will use, unless otherwise indicated:

• the terms string and sequence interchangeably,

• either s1 · · · sk, or 〈s1, . . . , sk〉, or s1| · · · |sk, or [s1, . . . , sk] to refer to a sequence s of
k elements (the choice depends on presentation),

30

Chapter 3. Lookup-Based Protocols

• si to refer to the i-th symbol of a sequence s,

• ε to denote the empty sequence,

• Σ and Γ to denote the universes of challenge and response symbols, respectively,
and both Σ and Γ are assumed to be composed of consecutive non-negative integer
numbers starting from 0 (zero),

• n to denote the number of fast phase rounds of RTT measurements, and

• AΣ,Γ to denote the universe of all automata with Σ and Γ as their sets of input and
output symbols, respectively.

Both Σ and Γ are equal to {0, 1} for most protocols, which means that the protocol’s
fast phase is composed of single-bit messages. However, whenever possible, we will develop
our definitions and analyses in a generic way, i.e. in terms of |Σ|, and |Γ|, and (possibly)
other protocol-specific parameters.

We define the generalized transition and labeling functions, for a given automaton,
that extend the automaton’s transition and label functions; respectively. Given a sequence
of symbols as input, the generalized transition function yields the state resulting from a
sequence of consecutive transitions. The generalized labeling function gives the label of the
state given by generalized transition function.

Definition 3.2 (Generalized Transition). Given an automaton A = (Σ,Γ, Q, q0, δ, `), its
generalized transition function stateA :

⋃n
i=0 Σi → Q is defined by:

stateA(c) =

{
q0 if c = ε

δ(stateA(c1 . . . cn−1), cn) if c = c1 . . . cn .

Definition 3.3 (Generalized Labeling). Given an automaton A = (Σ,Γ, Q, q0, δ, `), its gen-
eralized labeling function labelA :

⋃n
i=1 Σi → Γ is defined by:

labelA(x) = `(stateA(x)).

We model a lookup-based protocol as a set of State-Labeled DFA, where each of them
describes one of the possible executions of the protocol’s fast phase. The structure and
labeling of the selected automaton follows from the calculations in the slow phase, in which,
e.g. the nonces are chosen and exchanged. Consequently, every possible outcome of the
slow phase results in an automaton, so the number of automata in the protocol equals
the number of different outcomes of the slow phase. The execution of a protocol therefore
consists of the (random) selection of one of the automata (the slow phase) and a run of
this automaton consisting of an alternation of input and output symbols (the fast phase).

Definition 3.4 (Lookup-Based Protocol). A lookup-based protocol is a finite set Proto ⊆ AΣ,Γ

such that for every A ∈ Proto, the functions stateA and labelA are total.

The condition guarantees that no input sequence runs into an undefined point. Observe
that by definition, the domain of stateA equals the domain of labelA in addition to the empty
sequence ε. As a running example, let us consider Hancke and Kuhn’s (HK) protocol [HK05]
(recall its representation from Figure 1.5). Note that this in this protocol, the lookup table
is a 2n-bit sequence.

31

3.1. A Model Based on Automata

0

10001100 0 2 000110 0 0

300011 0 00 4 0001 1 000

5000 1 1000 6 00 0 11000

70 0 011000 8 0 0011000

Figure 3.1 The automaton A24 from the HK protocol for n = 4 rounds.

Example 3.1 (The HK Protocol). HK = {A0, . . . , A22n−1} ⊆ A{0,1},{0,1} where, for every
i ∈ {0, . . . , 22n − 1}, Ai = ({0, 1}, {0, 1}, Q, q0, δ, `i) such that:

• Q = {0, 1, . . . , 2n},

• q0 = 0,

• δ(q, c) =

{
q + c+ 1 if q is even
q + c+ 2 otherwise ,

• `i(q) is the q-th least significant bit of i in the binary representation of i.

The number 22n of automata defining the HK protocol corresponds to the total number
of possible 2n-bit sequences that can be pre-computed. To encode the labeling functions,
each bit-sequence b1 . . . b2n ∈ {0, 1}2n is mapped into the automaton Ai where i equals to
b1 . . . b2n in decimal.

Figure 3.1 shows a graphical representation of the automaton A24 ∈ HK, which corre-
sponds to an execution of n = 4 rounds of the HK protocol with b1 . . . b2n = 00011000. In
this example, the states 4 and 5 are labeled with b4 = b5 = 1. The rest of the states are
labeled with 0. The binary sequence 00011000 besides the states stand for 24 in binary.
Dashed and solid arrows denote transitions labeled with 0 and 1, respectively.

Definition 3.5 (Execution Model). Let Proto ⊆ AΣ,Γ be a lookup-based protocol. The triple
(A, c1 . . . cn, r1 . . . rn) ∈ Proto×Σn×Γn is a correct execution of Proto if ri = labelA(c1 . . . ci)

for all i ∈ {1, . . . , n}.

Before the start of the fast phase, the prover and the verifier agree on a fresh automaton
A. Then during the fast phase, the verifier sends n challenges c1 . . . cn and expects to

32

Chapter 3. Lookup-Based Protocols

receive as replies the sequence labelA(c1) · · · labelA(c1 . . . cn). As an example, consider
again the automaton A24 ∈ HK depicted in Figure 3.1. Given the input bit sequence
1100, this automaton transits over the states 2, 4, 5, and 7, whose labels are 0, 1, 1, and
0, respectively. Hence, (A24, 1100, 0110) is a correct execution of the HK protocol with 4

rounds. The set of all correct executions of a protocol Proto is denoted JProtoK.

3.2 Preliminary Analysis of Lookup-Based Protocols

In this section we investigate preliminary properties of lookup-based protocols. First, we
make our adversarial model explicit and define pre-ask attacks, which is a fundamental class
of mafia fraud attacks. Hence, we prove that there does not exist a lookup-based protocol
for which a mafia fraud succeeds with probability lower than 1

2n (1 + n
2). This result implies

that the Tree protocol [AT09] is optimal in terms of resistance to mafia fraud. We also
prove a necessary property on the probability distribution of labels for a lookup-based
protocol to be optimal.

3.2.1 Formalizing Pre-Ask Attacks

A pre-ask attack is a mafia fraud attack based on the pre-ask strategy [ABK+11]. As stated
in [ABK+11], this is the most effective adversary strategy to perform a mafia fraud attack
against a distance-bounding protocol in which the prover does not act in the final phase.
Because of this, we focus on this type of attack.

A pre-ask attack consists of two (possibly) interleaved sessions1: one session between the
prover and the adversary –the pre-ask session, and another session between the adversary
and the verifier. As a form of mafia fraud, the verifier and the prover are distant and the
adversary’s goal is to make the verifier believe the prover is close. The adversary proceeds
first by relaying the verbatim messages exchanged during the slow phase, from one session
to the other. Then, the adversary runs a fake fast phase with the prover by querying
the latter with the adversary’s own sequence of challenges –the pre-ask challenges. The
adversary then bypasses the fast phase with the verifier, on behalf of the distant legitimate
prover. To achieve this, the adversary possibly uses the messages exchanged in the pre-ask
session.

Below we give a formal stochastic definition of mafia fraud, with focus on the described
pre-ask strategy. We denote by FΣ,Γ the universe of all sequences 〈f1, . . . , fn〉 of total
functions fi : Σi × Σn × Γn × Γn → Γ for all i ∈ {1, . . . , n}.

Definition 3.6 (Success Probability). Let Proto ⊆ AΣ,Γ be a lookup-based protocol, and for
every F = 〈f1, . . . , fn〉 ∈ FΣ,Γ and every x ∈ Σn, letExF be the event that (A, c1 . . . cn, r1 . . . rn)

is a correct execution of Proto where:

• A is a random automaton uniformly chosen from Proto,

• c is a random sequence uniformly chosen from Σn,

• y ∈ Γn such that (A, x, y) is a correct execution of Proto,
1The usage of the term session here is merely illustrative, thus it does not carry the rigorousness of

session identification or authentication.

33

3.2. Preliminary Analysis of Lookup-Based Protocols

• z is a random sequence uniformly chosen from Γn,

• ri = fi(c1 . . . ci, x, y, z) for all i ∈ {1, . . . , n}.

Then the probability of success of a pre-ask attack against Proto is computed by:

mafia(Proto) = max
F∈FΣ,Γ, x∈Σn

{
Pr (ExF)

}
. (3.1)

In Definition 3.6, the adversary knowledge is a correct execution (A, x, y) of Proto

where x1 . . . xn are the pre-ask challenges chosen by the adversary and A is randomly
chosen from the set Proto. That is, the adversary is able to query the prover with x1 . . . xn
and receive the corresponding responses y1 . . . yn. With this knowledge, the adversary
defines a strategy to respond to the verifier’s challenge. We represent such strategy as
a sequence F = 〈f1, . . . , fn〉 so the adversary’s response to the verifier’s i-th challenge ci
is fi(c1 . . . ci, x, y, z). The random sequence z ∈ Γn is utilized for rounds in which the
adversary replies randomly.

In the remaining of this Part I we will assume that the probability of success of a mafia
fraud is equal to that of a pre-ask attack, in consistency with [ABK+11]. Thus, we will use
indistinctly both terms to refer to the same attack.

3.2.2 Preliminary Analysis of Optimal Resistance to Mafia Fraud

The success probability of a mafia fraud attack against the Tree protocol is mafia(Tree) =
1

2n

(
1 + n

2

)
[AT09]. We will prove that such probability value is indeed optimal within

the class of binary lookup-based protocols. A lookup-based protocol Proto is binary if
Proto ⊆ A{0,1},{0,1}, which is indeed the case of most distance-bounding protocols proposed
to date.

Theorem 3.1. The probability of success of a mafia fraud attack against a binary lookup-
based protocol is tightly lower-bounded by 1

2n

(
1 + n

2

)
.

Proof. Let Proto ⊆ A{0,1},{0,1} be a protocol and consider the following adversary strategy
to execute a pre-ask attack as in Definition 3.6. Let F = 〈f1, . . . , fn〉 ∈ F{0,1},{0,1} where
each fi is defined by:

fi(c1 . . . ci, x, y, z) =

{
yi if c1 . . . ci = x1 . . . xi
zi otherwise .

According to this strategy, at the i-th round, the adversary replies randomly unless they
have guessed all verifier’s challenges so far. We will prove that mafia(Proto) ≥ 1

2n

(
1 + n

2

)
.

In effect, let x ∈ {0, 1}n be the pre-ask challenge sequence, i.e. the challenges chosen
by the adversary to query the prover in the pre-ask session. We will proceed to compute
the probability Pr(ExF), recall the event ExF from Definition 3.6. Let Mi be the event that
c1 . . . ci = x1 . . . xi−1 and that ci 6= xi for every i ∈ {1, . . . , n}, where c ∈ {0, 1}n is the
random sequence as per the event ExF . From the law of total probability we have:

Pr(ExF) =

n∑
i=1

Pr(ExF |Mi) Pr(Mi) + Pr(ExF | c = x) Pr(c = x). (3.2)

34

Chapter 3. Lookup-Based Protocols

But, given that Pr(Mi) = 1
2i
, and Pr(ExF | c = x) = 1, and Pr(c = x) = 1

2n , Equation 3.2
becomes:

Pr(ExF) =
n∑
i=1

Pr(ExF |Mi) ·
1

2i
+

1

2n
. (3.3)

So far we have not used the particularity of F . Let’s do so now. Indeed, if Mi occurs,
then starting from the i-th round the adversary always replies randomly. This gives us
Pr(ExF |Mi) = 1/2n−i+1 and therefore by applying this result in Equation 3.3 we obtain
Pr(ExF) =

∑n
i=1

1
2n−i+1 · 1

2i
+ 1

2n = 1
2n

(
1 + n

2

)
. This lower bound is tight because it is

realized by the Tree protocol [AT09].

Definition 3.7 (Optimal Binary Lookup-Based Protocol). A binary lookup-based protocol is
optimal if the probability of mafia fraud attack to succeed against it is 1

2n

(
1 + n

2

)
.

A necessary requirement for a binary lookup-based protocol to be optimal is that, given
an input sequence x and a lookup-based protocol Proto, the labels assigned to the states
reachable by x uniformly distribute in Proto.

Lemma 3.1. Let Proto ⊆ A{0,1},{0,1} be an optimal protocol, j ∈ {1, . . . , n}, and c̄ ∈ {0, 1}j .
Also, let S0 and S1 be the events that labelA(c̄) = 0 and labelA(c̄) = 1, respectively, for a
random automaton A = (Σ,Γ, Q, q0, δ, `) ∈ Proto. Then, Pr(S0) = Pr(S1) = 1

2 .

Proof. We proceed by reduction to the absurd, i.e. let a = Pr(S0) and assume a 6= 1
2 . Our

goal is to reach a contradiction. We define the following pre-ask strategy F = 〈f1, . . . , fn〉 ∈
F{0,1},{0,1} to execute a pre-ask attack as per Definition 3.6:

fi(c1 . . . ci, x, y, zi) =


yi if c1 . . . ci = x1 . . . xi
0 if i = j ∧ c1 . . . ci = c̄1 . . . c̄i 6= x1 . . . xi ∧ a > 1/2

1 if i = j ∧ c1 . . . ci = c̄1 . . . c̄i 6= x1 . . . xi ∧ a < 1/2

zi otherwise .

Let x ∈ {0, 1}n be the pre-ask challenges, and as in Theorem 3.1’s proof, for the
random c ∈ {0, 1}n in the context of the event ExF , let Mi to be the event that c1 . . . ci−1 =

x1 . . . xi−1 and ci 6= xi for every i ∈ {1, . . . , n}. We proceed as in Theorem 3.1’s proof until
Equation 3.3:

Pr(ExF) =

n∑
i=1

Pr(ExF |Mi) ·
1

2i
+

1

2n
. (3.4)

From the strategy F it follows that, for every i ∈ {1, . . . , n}, Pr(ExF |Mi) = 1/2n−i+1

unless c1 . . . ci = c̄1 . . . c̄i 6= x1 . . . xi. In this case, the probability of success of the adversary
at the j-th round is max(a, 1 − a) > 1

2 . This means that Pr(ExF | Mi) > 1/2n−i+1 if
c1 . . . cj = c̄1 . . . c̄j 6= x1 . . . xj or otherwise Pr(ExF | Mi) = 1/2n−i+1. This implies that
Pr(ExF |Mi) > 1/2n−i+1 and by applying this result to Equation 3.4 we have:

Pr(ExF) >

n∑
i=1

1

2n−i+1
· 1

2i
+

1

2n
=

1

2n

(
1 +

n

2

)
. (3.5)

Therefore, Equation 3.5 contradicts the assumption that Proto is optimal. Analogously,
we prove that Pr(S1) = 1

2 .

35

3.3. Layered and Random-Labeled Protocols

Lemma 3.1 along with observed structural properties of the automata composing most
lookup-based protocols motivate our focus on the class of layered and random-labeled
protocols. We describe and study such class of protocols in the next section.

3.3 Layered and Random-Labeled Protocols

A number of existing lookup-based protocols satisfy that, in every auomata, two input
sequences reach the same state only if the sequences have the same length. Examples
of such protocols are [TP07, KAK+08, HK05, AT09, MTT16a, KKBD11]. Formulated
differently, two sequences of different lengths cannot reach the same state. We call the
automata that satisfy this property as layered automata, and protocols composed of layered
automata as layered protocols. The term layer comes from the fact that the set of states
can be partitioned into n subsets (or layers) Q1, . . . , Qn, such that the states within a layer
Qi are only reachable by input sequences of length i. We write |x| to indicate the length of
a sequence x.

Definition 3.8 (Layered Automaton). An automaton A ∈ AΣ,Γ is layered if:

∀x, y ∈ Σ∗. stateA(x) = stateA(y) =⇒ |x| = |y|.

Definition 3.9 (Layered Protocol). A protocol Proto ⊆ AΣ,Γ is layered if all its automaton
are layered.

A second interesting property of lookup-based protocols we focus on is motivated by
Lemma 3.1. We observe that the labeling function of the DFAs in a protocol plays an
important role in the protocol’s resistance to pre-ask attacks. We thus define the notion of
random-labeling, whose intent is to maximize the adversary’s uncertainty on the label of a
given (even if known) state.

Definition 3.10 (Random-Labeled Protocol). A protocol Proto ⊆ AΣ,Γ is random-labeled if
for every (Σ,Γ, Q, q0, δ, `) ∈ Proto and for every labeling function `′ : Q→ Γ, it holds that
(Σ,Γ, Q, q0, δ, `

′) ∈ Proto.

A random-labeled protocol accounts for all possible labeling functions that can be
defined on a set of states. This property holds in most distance-bounding protocols. We
show next that any binary random-labeled protocol satisfies the statement of Lemma 3.1.

Lemma 3.2. Let Proto ∈ A{0,1},{0,1} be a random-labeled protocol and let j ∈ {1, . . . , n}
and c̄ ∈ {0, 1}j . Define the events S0 and S1 as in Lemma 3.1. Then Pr(S0) = Pr(S1) = 1

2 .

Proof. Consider the relation R ⊆ Proto × Proto defined by (A,A′) ∈ R if and only if
A = (Σ,Γ, Q, q0, δ, `) and A′ = (Σ,Γ, Q, q0, δ, `

′) for some Q, q0, δ, `, and `′ in their
respective domains, and:

∀q ∈ Q \ {stateA(c̄)}. `(q) = `′(q).

Let B0 (resp. B1) be the largest subset of Proto such that labelA(c̄) = 0 (resp.
labelA(c̄) = 1) for all A ∈ B0 (resp. A ∈ B1). But, for all (A,A′) ∈ R, it holds that

36

Chapter 3. Lookup-Based Protocols

A ∈ B0 ⇐⇒ A′ ∈ B1, thus |B0| = |B1| and {B0, B1} is a partition of Proto. Hence:

Pr(S0) =
|B0|
|Proto| =

|B1|
|Proto| = Pr(S1) =

1

2
.

The vast majority of lookup-based protocols published to date are layered and random-
labeled. Only the Poulidor [TMA10] protocol is not, to the best of our knowledge. Figure 3.1
clearly shows that the example automaton of the HK protocol is layered, because the states
of the i-th layer, i.e. 2i−1 and 2i, with 0 < i ≤ 4, can only be reached by an input sequence
of length i. The labeling function, i.e., the association from states to bits, is composed in a
random way. In the remaining of this chapter we will thus focus on the analysis of layered
and random-labeled lookup-based protocols.

We provide next an optimal adversary strategy to execute a pre-ask attack against a
layered and random-labeled lookup-based protocol. It turns out that said strategy is simply
to reply to the verifier’s challenges exactly with the same responses as those obtained from
the prover in the pre-ask session. Recall that the pre-ask session is the session between the
prover and the adversary.

Theorem 3.2. Let Proto ⊆ AΣ,Γ be a layered and random-labeled lookup-based protocol
and let x ∈ Σn be the pre-ask challenges. For every S ∈ FΣ,Γ, let ExS (as in Definition 3.6)
that the pre-ask strategy S succeeds in attacking Proto with the pre-ask challenges x.
Consider the strategy F = 〈f1, . . . , fn〉 ∈ FΣ,Γ where fi(c, x, y, z) = yi for all i ∈ {1, . . . , n}.
Then:

Pr(ExF) = max
S∈FΣ,Γ

{Pr(ExS)} .

Proof. Let’s first introduce four functions we will use throughout this proof.

• δ : FΣ,Γ → P (N× Σ+) defined by:

δ (〈s1, . . . , sn〉) =
{

(t, α) | t ∈ {1, . . . , n}, α ∈ Σt, y, z ∈ Γn,

(A, x, y) ∈ JProtoK, yt 6= st(α, x, y, z)
}
. (3.6)

Intuitively, δ(S) regards the sequences of challenges (not necessarily of length n) for
which the strategies F and S choose different response.

• ε : FΣ,Γ → FΣ,Γ defined by ε (〈s1, . . . , sn〉) = 〈s1, . . . st−1, s
′
t, st+1, . . . , sn〉 where (t, α)

is the syntactically least pair from δ (〈s1, . . . , sn〉), and s′t is defined by:

s′t(c, x, y, z) =

{
yt if c = α

st(c, x, y, z) otherwise .
(3.7)

Intuitively, ε(S) slightly approximates the strategy S towards the strategy F .

• λ : Proto × Σn × FΣ,Γ × Γn → {0, 1} defined by:

λ (A, c, 〈s1, . . . , sn〉 , z) =

 1
if ∀j ≤ n. labelA(c1 . . . cj) = sj(c1 . . . cj , x, y, z)

where y ∈ Γn s.t. (A, x, y) ∈ JProtoK
0 otherwise .

37

3.3. Layered and Random-Labeled Protocols

• win : FΣ,Γ → N defined by:

win(S) =
∑

A∈Proto

∑
z∈Γn

∑
c∈Σn

λ(A, c, S, z).

One can read the above sum as the total number of automata in Proto the strategy
S “wins”, i.e. it replies correctly all verifier’s challenges. Observe that if δ(S) = ∅
then win(F) = win(S).

It is easy to observe that, for every S ∈ FΣ,Γ:

Pr (ExS) =
win(S)

|Σ|n|Γ|n|Proto| . (3.8)

So, we will prove that win(F) = maxS∈FΣ,Γ
{win(S)}. We will proceed by reduction to

the absurd, i.e. assume that a strategy S ∈ FΣ,Γ exists such that:

win(F) < win(S). (3.9)

We will reach a contradiction. In effect, let (t, α) be the syntactically least pair from
δ(S). Notice that such pair exists because δ(S) 6= ∅ or otherwise win(F) = win(S) which
contradicts the inequality in Equation 3.9. Further, let R ⊆ Proto × Proto be a relation
defined by (A,A′) ∈ R if and only if (A,A′) ∈ R if and only if A = (Σ,Γ, Q, q0, δ, `) and
A′ = (Σ,Γ, Q, q0, δ, `

′) for some Q, q0, δ, ` and `′ in their respective domains such that:

∀q ∈ Q \ {stateA(x1 . . . xt)}. `(q) = `′(q).

Note that R is reflexive, symmetric and transitive. So, let k ∈ N and A1, . . . , Ak ∈ Proto

be k automata such that [A1], . . . , [Ak] are the equivalence classes in Proto with respect
to R. In addition, let J ⊆ {1, . . . , k} be the set containing all j ∈ {1, . . . , k} such that
stateAj (α) = stateAj (x1 . . . xt).

Consider now S′ = ε(S), which exists because (t, α) exists. From Proto being layered
and random-labeled, and from the definition of S′, it follows that, for every j ∈ {1, . . . , k},
every β ∈ Σn−t, and every z ∈ Γn:

• If j ∈ J then:

(1) λ(Aj , α · β, S′, z) = λ(A,α · β, S′, z) for all A ∈ [Aj], and

(2) If λ(A,α · β, S, z) = 1 for some A ∈ [Aj] then λ(Aj , α · β, S′, z) = 1.

• If j /∈ J then:

(1)
∑

A∈[Aj] λ(A,α · β, S, z) =
∑

A∈[Aj] λ(A,α · β, S′, z) ≤ 1.

From this case analysis and the definition of S′ we obtain:

win(S′)− win(S) =
∑
z∈Γn

∑
β∈Σn−t

k∑
j=1

∑
A∈[Aj]

λ(A,α · β, S′, z)− λ(A,α · β, S, z)

=
∑
z∈Γn

∑
β∈Σn−t

∑
j∈J

|[Aj]|λ(Aj , α · β, S′, z)−
∑

A∈[Aj]

λ(A,α · β, S, z)


≥ 0. (3.10)

38

Chapter 3. Lookup-Based Protocols

Hence, from the inequality in Equation 3.10 and given that δ(S′) = δ(S) \ {(t, α)}, it
follows that, from a finite number of successive applications of ε, we obtain a strategy
S′...′ = ε(· · · ε(S) · · ·) such that δ(S′...′) = ∅ and win(S′...′) ≥ · · · ≥ win(S′) ≥ win(S).
These two results together give us win(F) ≥ win(S), which contradicts Equation 3.9.

3.4 The Family of Uniform Protocols

In Theorem 3.1 we proved that 1
2n

(
1 + n

2

)
is a tight lower bound on the resistance to mafia

fraud of lookup-based protocols with n rounds. The only known protocol that achieves
such lower bound is the Tree protocol [AT09]. However, the automata of the Tree protocol
have an exponential number of states. The number of states of the automata of a protocol
defines the space complexity of the protocol, which in turn determines the memory that
the protocol requires.

In this section we present a family of lookup-based protocols which have excellent
resistance to pre-ask attacks in relation to their space complexity. In particular, binary
protocols within this family have resistance to pre-ask attacks which converges to the above-
mentioned optimal bound as a security parameter, which we call uniformity, converges to
its maximum.

3.4.1 Uniform Protocols

Uniform protocols are layered and random-labeled protocols that satisfy an additional
property: an integer value u exists such that in any automaton, two input sequences reach
the same state if and only if the last u symbols if they have no less that u symbols, or
otherwise the two sequences are the same. The value u is called the uniformity.

This property relates to the adversary’s chance to guess the correct automaton states
which an execution passes through. If so, the adversary would have certainty on the
responses associated to those guessed states and in turn to the correct responses to the
corresponding verifier’s challenges. We formally define next the notion of uniformity.

Definition 3.11 (u-uniform Protocol). Let u ∈ {1, . . . , n}. A protocol Proto ⊆ AΣ,Γ is
u-uniform (or simply uniform) if it is layered and random-labeled and:

∀A ∈ Proto, k ∈ {1, . . . , n}, x, y ∈ {0, 1}k.
stateA(x) = stateA(y) ⇐⇒ ∀i ∈ {max(1, k − u+ 1), . . . , k}. xi = yi. (3.11)

As briefly motivated earlier, the notion of uniformity is related to the adversary’s
chance to predict the correct states in the pre-ask session. Suppose the adversary chooses a
challenge sequence x1 . . . xn to query the prover and consider A = (Σ,Γ, Q, q0, δ, `) to be the
selected automaton for the protocol execution, which is unknown to the adversary. Suppose
also y1 . . . yn are the verifier’s challenges. Let’s denote q1 . . . qn and q′1 . . . q′n the sequences of
states reached by challenge sequences x and y, respectively. Formally, qi = stateA(x1 . . . xi)

and q′i = stateA(y1 . . . yi) for all i ∈ {1, . . . , n}. Now, the more elements q1 . . . qn and
q′1 . . . q

′
n have in common, the more vulnerable the protocol becomes, since the adversary

has the responses for those states. In the case of a u-uniform protocol, for the adversary to
reach the correct state, let’s say at round i, he needs to guess all the u (or i if i ≤ u) last

39

3.4. The Family of Uniform Protocols

verifier’s challenges in advance. So, the higher the uniformity value u, the harder it becomes
for the adversary to make the correct guesses. The next two lemmas show that HK [HK08]
and Tree [AT09] are both uniform protocols, with uniformity 1 and n, respectively.

Proposition 3.1. The HK protocol is 1-uniform.

Proof. In this proof we will use the definition of the HK protocol provided in Example 3.1.
Trivially, HK is layered and random-labeled, thus let’s proceed to prove Equation 3.11 with
u = 1.

Let A = (Σ,Γ, Q, q0, δ, `) ∈ HK, k ∈ {1, . . . , n} and x, y ∈ {0, 1}n. Let a, b ∈ Q =

{0, . . . , 2n} be two states such that a ∈ stateA(x1 . . . xk−1) and b ∈ stateA(y1 . . . yk−1).
Also, let a′, b′ ∈ {0, 1} such that a ≡ a′ (mod 2) and b ≡ b′ (mod 2). Hence,

stateA(x) = stateA(y) ⇐⇒ δ(a, xk) = δ(b, yk)

⇐⇒ a+ xk + 1 + a′ = b+ yk + 1 + b′

⇐⇒ a+ xk + 1 + a′ ≡ b+ yk + 1 + b′ (mod 2)

⇐⇒ 2a+ xk + 1 ≡ 2b+ yk + 1 (mod 2)

⇐⇒ xk ≡ yk (mod 2) ⇐⇒ xk = yk.

Proposition 3.2. The Tree protocol is n-uniform.

Proof. Let Tree = {A0, A1, . . . , AN} ⊆ A{0,1},{0,1} where N = 22n+1−2 − 1 and, for every
i ∈ {0, . . . , N}, Ai = ({0, 1}, {0, 1}, Q, q0, δ, `i) such that:

• Q = {0, 1, . . . , 2n+1 − 2},

• q0 = 0,

• δ(q, c) = 2q + c+ 1,

• `i(q) is the q-th bit of the binary representation of i.

Trivially, Tree is layered and random-labeled, thus let’s proceed to prove Equation 3.11
with u = n. Let A = (Σ,Γ, Q, q0, δ, `) ∈ Tree, k ∈ {1, . . . , n} and x, y ∈ {0, 1}n. Let
a, b ∈ Q be two states such that a ∈ stateA(x1 . . . xk−1) and b ∈ stateA(y1 . . . yk−1). Then:

stateA(x) = stateA(y) ⇐⇒ δ(a, xk) = δ(b, yk) ⇐⇒ 2a+ xk + 1 = 2b+ yk + 1.

We will proceed to prove that 2a+ xk + 1 = 2b+ yk + 1 ⇐⇒ (a = b ∧ xk = yk). The
implication from right- to left-hand side is trivial, so we proceed by proving the implication
from left- to right-hand side. Indeed,

2a+ xk + 1 = 2b+ yk + 1 =⇒ 2a+ xk + 1 ≡ 2b+ yk + 1 (mod 2)

=⇒ xk ≡ yk (mod 2) =⇒ xk = yk.

40

Chapter 3. Lookup-Based Protocols

Hence, if 2a + xk + 1 = 2b + yk + 1 and xk = yk then a = b. So, from a recursive
reasoning we have:

stateA(x) = stateA(y)

⇐⇒ stateA(x1 . . . xk−1) = stateA(y1 . . . yk−1) ∧ xk = yk

⇐⇒ stateA(x1 . . . xk−2) = stateA(y1 . . . yk−2) ∧ xk−1 = yk−1 ∧ xk = yk

· · ·
⇐⇒ stateA(x1) = stateA(y1) ∧ x2 = y2 ∧ · · · ∧ xk−1 = yk−1 ∧ xk = yk

⇐⇒ x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xk−1 = yk−1 ∧ xk = yk.

3.4.2 Security Analysis of Uniform Protocols

To compute the success probability of a pre-ask attack against a uniform protocol, we
will use the results from Theorem 3.2. That is to say, we will compute the adversary’s
success probability when executing the optimal pre-ask strategy defined in Theorem 3.2.
We recall that such a strategy consists of replying to the verifier’s challenges with the
answers received from the prover in the pre-ask session.

Theorem 3.3. Let u ∈ {1, . . . , n} and a binary u-uniform protocol Proto ⊆ A{0,1},{0,1}.
Then mafia(Proto) = Rn, where R0 = 1 and for all i ∈ {1, . . . , n}:

Ri =
1

2i
+

i−1∑
j=0

Ri−j−1

2j+min(u,j+1)+1
.

Proof. Let x ∈ {0, 1}n be the pre-ask challenges, i.e. a sequence representing the adversary’s
challenges to query the prover in the pre-ask phase. Consider the following events, for a
random atomaton A = (Σ,Γ, Q, q0, δ, `) ∈ Proto and a random sequence c ∈ {0, 1}n:

• for all i ∈ {1, . . . , n} let Si be the event that y1 . . . yi = r1 . . . ri where y, r ∈ Γn

such that (A, x, y) ∈ JProtoK and (A, c, r) ∈ JProtoK (recall from Definition 3.5 that
JProtoK is the set of all correct executions of Proto),

• for all i ∈ {1, . . . , n} and j ∈ {0, . . . , i− 1}, let Mi,j is the event that xi−j+1 . . . xi =

ci−j+1 . . . ci ∧ xi−j 6= ci−j . Note that Mi,0 becomes xi 6= ci,

• for all i ∈ {1, . . . , n}, let Gi is the event that x1 . . . xi = c1 . . . ci.

Note that Gi occurs if none of the events Mi,0, . . . Mi,i−1 do. This means that
Pr(Gi ∨Mi,0 ∨ · · · ∨Mi,i−1) = 1.

Our goal is to compute the values of Pr(Si) and in particular Pr(Sn). In effect, by the
law of total probability we have:

Pr(Si) = Pr (Si | Gi) Pr(Gi) +

i−1∑
j=0

Pr (Si |Mi,j) Pr(Mi,j)

=
1

2i
+

i−1∑
j=0

Pr (Si |Mi,j) Pr(Mi,j), (3.12)

41

3.4. The Family of Uniform Protocols

because Pr (Si | Ei) = 1 and Pr(Ei) = 1
2i
. Moreover, since the sequence c is chosen

randomly and its bits are independent, it follows that, for every i ∈ {1, . . . , n} and every
j ∈ {1, . . . , i− 1}:

Pr(Mi,j) = Pr(xi−j 6= ci−j)×
i∏

k=i−j+1

Pr(xk = ck) =
1

2
× 1

2j
=

1

2j+1
. (3.13)

Observe that Pr(Mi,0) = Pr(xi 6= ci) = 1
2 . Now let’s compute the values Pr(Si |Mi,j)

for i ∈ {1, . . . , n} and j ∈ {0, . . . , i− 1}. To develop our reasoning, let’s fix i ∈ {1, . . . , n}
and j ∈ {0, . . . , i− 1}. If Mi,j occurs, then the input sequences x1 . . . xi and c1 . . . ci have
the same last j symbols. Let’s analyze now the two cases:

Case j < u: In this case we have stateA(x1 . . . xk) 6= stateA(c1 . . . ck) for all k ∈ {i− j, i}.
Hence:

Pr (yi−j . . . yi = ri−j . . . ri |Mi,j) =
1

2j+1
. (3.14)

Case j ≥ u: Because of the uniformity property, we have that:

stateA(x1 . . . xi−j) 6= stateA(c1 . . . ci−j),

stateA(x1 . . . xi−j+1) 6= stateA(c1 . . . ci−j+1),

. . .

stateA(x1 . . . xi−j+u−1) 6= stateA(c1 . . . ci−j+u−1), (3.15)

and

stateA(x1 . . . xi−j+u) = stateA(c1 . . . ci−j+u),

stateA(x1 . . . xi−j+u+1) = stateA(c1 . . . ci−j+u+1),

. . .

stateA(x1 . . . xi) = stateA(c1 . . . ci). (3.16)

From the set of inequalities in Equation 3.15 and the set of equalities in Equation 3.16
and given that Proto is random-labeled we derive that, for every k ∈ {i− j, . . . , i}:

Pr (yk = rk |Mi,j) =

{
1/2 if k ≤ i− j + u− 1

1 otherwise ,

which leads to:
Pr (yi−j . . . yi = ri−j . . . ri |Mi,j) =

1

2u
. (3.17)

Now, the event Si−j−1 and the event that yi−j . . . yi = ri−j . . . ri are independent, due
to the uniformity property and xi−j 6= ci−j . This gives us:

Pr (Si |Mi,j) = Pr (Si−j−1 |Mi,j)× Pr (yi−j . . . yi = ri−j . . . ri |Mi,j) . (3.18)

Hence, Equations 3.14, 3.17, and 3.18 give us:

Pr (Si |Mi,j) =
Pr (Si−j−1 |Mi,j)

2min(u,j+1)
. (3.19)

42

Chapter 3. Lookup-Based Protocols

Furthrmore, the events Mi,j and Si−j−1 are independent, thus Pr (Si−j−1 |Mi,j) =

Pr (Si−j−1). By applying this in Equation 3.19 we obtain:

Pr (Si |Mi,j) =
Pr(Si−j−1)

2min(u,j+1)
. (3.20)

From Equations 3.12, 3.13 and 3.20 and by applying the substitution Ri = Pr(Si) we
obtain the expected recursive formula. Finally, notice that Pr(Si) is independent from x,
so this observation together with Definition 3.6 and Theorem 3.2 give us mafia(Proto) =

Pr(Sn) = Rn.

A consequence of this theorem is that, in uniform protocols, the adversary has no
advantage in selecting the challenges to query the prover. In the next corollaries we show,
by using the previous theorem, a security computation in terms of pre-ask attacks for the
mentioned HK and Tree protocols.

Corollary 3.1. Consider the HK protocol as defined in Example 3.1. Then:

mafia(HK) =

(
3

4

)n
. (3.21)

Proof. Since the HK protocol is 1-uniform (see Proposition 3.1), we have Ri = 1
2i

+∑i−1
j=0

Ri−j−1

2j+2 . Thus, by multiplying this equation by 2i we obtain that:

2iRi = 1 +
i−1∑
j=0

2i−j−2Ri−j−1 = 1 +
1

2

i−1∑
j=0

2i−j−1Ri−j−1.

This can be written as 2iRi = 1 + 1
2

∑i−1
k=0 2kRk since i− j − 1 goes from 0 to i− 1. By

applying now the substitution Bi = 2iRi we obtain Bi = 1 + 1
2

∑i−1
k=0Bk. Hence, from this

last result we derive Bi+1 −Bi = 1
2Bi and thus Bi+1 = 3

2Bi. This implies that Bi+1 = 3
2Bi

and given that B0 = 1, we have Bi =
(

3
2

)i. Therefore Ri = 1
2i
Bi =

(
3
4

)i.
Corollary 3.2. Consider the Tree protocol as defined in Proposition 3.2. Then:

mafia(Tree) =
1

2n

(
1 +

n

2

)
.

Proof. Since the Tree protocol is n-uniform (see Proposition 3.2), we have Ri = 1
2i

+∑i−1
j=0

Ri−j−1

22j+2 . By multiplying this equation by 4i we obtain that:

4iRi = 2i +
i−1∑
j=0

4i−j−1Ri−j−1 = 2i +
i−1∑
k=0

4kRk.

By letting Bi = 4iRi in the equation above we have Bi = 2i +
∑i−1

k=0Bk. Therefore,
from this last result we derive that Bi+1 −Bi = 2i +Bi and consequently Bi+1 = 2Bi + 2i

and
Bi+1

2i+1
=
Bi
2i

+
1

2
. Now, by letting Di = Bi

2i
we have that Di+1 = Di + 1

2 and therefore

Di = i
2 +D0. Since R0 = 1, we have that B0 = D0 = 1. Therefore, Bi = 2i(1 + i

2) which
implies that Ri = 1

2i
(1 + i

2).

43

3.4. The Family of Uniform Protocols

Next we prove that the resistance to pre-ask attacks of uniform protocols monotonically
depends on their uniformity value.

Theorem 3.4. Let u, v ∈ {1, . . . , n} with u ≤ v and let Pu, Pv ⊆ A{0,1},{0,1} be a u-uniform
and a v-uniform protocols, respectively. Then mafia(Pu) ≥ mafia(Pv).

Proof. To refer to the recursive equation in Theorem 3.3 for Pu, we introduce the notation:

Rui =
1

2i
+

i−1∑
j=0

Rui−j−1

2j+min(u,j+1)+1
(3.22)

Analogously we use Rvi for Pv. We proceed by induction over i to prove that Rui ≥ Rvi for
every i ∈ {0, . . . , n} and in particular that Run ≥ Rvn.

• Base Case: Ru0 ≥ Rv0.
It trivially holds, given that Ru0 = Rv0 = 1.

• Induction Hypothesis: ∀j < i. Ruj ≥ Rvj .

• Induction Thesis: Rui ≥ Rvi .
From u ≤ v it follows that min(u, j + 1) ≤ min(v, j + 1) for all j ∈ {1, . . . , n} and
consequently 1/2j+min(u,j+1)+1 ≥ 1/2j+min(v,j+1)+1. Therefore, from this and the the
induction hypothesis we complete the proof Rui ≥ Rvi .

Let π : {1, . . . , n} →
[

1
2n (1 + n

2),
(

3
4

)n] be a function such that π(u) = mafia(Protou)

where Protou ⊆ A{0,1},{0,1} is a (binary) u-uniform protocol. Theorem 3.4 proves that π
is decreasing and approaches 1

2n

(
1 + n

2

)
when u approaches n. Based on this, we assert

that the closer the uniformity value gets to n (resp. 1) the lower (resp. higher) the success
probability of a pre-ask attack. In particular, n-uniform protocols (such as the Tree protocol)
are optimal within this class, whereas 1-uniform (such as the HK protocol) perform worst.

3.4.3 Constructing a Uniform Protocol

In this section we provide an automata-based construction of a binary u-uniform protocol,
for an arbitrary u ∈ {1, . . . , n}. We prove that our construction indeed satisfies the
definition of uniformity. We also describe the proposed protocol in standard cryptographic
notation. Thus, this confirms that we can always build a protocol with mafia fraud resistance
arbitrarily close to optimal, by setting up its uniformity value and using our model.

Let u be an arbitrary number from the set {1, . . . , n}. The proposed u-uniform protocol
is the set {A0, A2, . . . , AN} ⊆ A{0,1},{0,1} where N = 2(n−u+2)2u−2 − 1 and for every
i ∈ {0, . . . , N}, Ai = ({0, 1}, {0, 1}, Q, q0, δ, `i) such that:

• Q = {(i, d) | 0 ≤ i ≤ n ∧ 0 ≤ d < min(2u, 2i)},

• q0 = (0, 0),

44

Chapter 3. Lookup-Based Protocols

(0,0)

(1,0)1 (1,1) 0

(2,0)0 (2,1) 1 (2,2) 0 (2,3) 1

(3,0)1 (3,1) 0 (3,2) 1 (3,3) 1

(4,0)0 (4,1) 1 (4,2) 0 (4,3) 0

Figure 3.2 An automaton representing an instance of a 2-uniform protocol with n = 4
rounds. Dashed and solid arrows represent transitions when the input symbol is 0 and
1, respectively. An execution with challenge sequence 0110 whose responses are 1110 is
highlighted in bold.

• for every c ∈ {0, 1} and (i, d) ∈ Q such that i < n, δ((i, d), c) = (i+ 1, d′) such that
d′ ∈ {0, . . . , 2u − 1} with d′ ≡ 2d+ c (mod 2u),

• for every j ∈ {1, . . . , N}, `j(q) is the k-th least significant bit in the binary represen-
tation of j and k is the position of q in Q \ {q0}.

In this construction, Q is a set of pairs of integers. Each pair (i, d) represents the d-th
state in layer i. For two binary strings to share the last u bits, their decimal representations
have to leave the same remainder when divided by 2u. Based on this property, we build our
state transition function. The expression δ((i, d), c) = (i+ 1, (2d+ c) (mod 2u)) stands for
this idea. Notice that dec(c1 . . . ci) = 2dec(c1 . . . ci−1) + ci, where dec(.) converts binary
strings into their corresponding natural number. Moreover, for every j ∈ {1, . . . , u} and
every c ∈ {0, 1}j , the values dec(c) have at most 2j different remainders when divided by
2u, this explains our upper bound for d in the definition of Q. The last two rules in our
construction represent the random-labeling property, though in practice this is achieved by
generating a distribution of random bits over the set of states. An example of an automaton
for a 2-uniform protocol following the above construction is depicted in Figure 3.2.

Lemma 3.3. The proposed protocol is u-uniform.

Proof. Let’s denote by Proto the proposed protocol. We first prove that Proto is layered
and random-labeled. Because of the definition of δ, for every pair x, y ∈ {0, 1}i × {0, 1}j
with i 6= j we have that stateA(x) = (i, ax) and stateA(y) = (j, ay), where ax and ay are

45

3.4. The Family of Uniform Protocols

integer numbers (they are irrelevant here). Then (i, ax) 6= (j, ay) and stateA(x) 6= stateA(y).
Therefore Proto is layered.

To show the random-labeling property, consider any labeling function ` : Q \ {q0} →
{0, 1}. Let B = b1b2 . . . b|Q|−1 be a binary string such that bi = `(qi) for every i ∈
{1, . . . , |Q| − 1}. We recall that q0 does not require a label since it is never used for replies.
Let D =

∑|Q|−1
i=1 2i−1bi be an integer number, i.e. the decimal representation of B. Then,

given that N = 2|Q|−1 − 1 we have that D ∈ {0, . . . , N} and, because of our construction,
`D = `. This proves that for any `, it holds that ({0, 1}, {0, 1}, Q, q0, δ, `) ∈ Proto. Every
labeling function is unique since it is related to a unique integer number in D. This states
that Proto is indeed a set.

We will proceed now to prove that Proto satisfies the uniformity property, i.e. Equa-
tion 3.11. Let A = (Σ,Γ, Q, q0, δ, `) ∈ Proto and k ∈ {1, . . . , n} and x, y ∈ {0, 1}k. Because
of our definition of δ, we derive that stateA(x) = (k, Sx (mod 2u)) and stateA(y) =

(k, Sy (mod 2u)) where:

Sx =
k∑
i=1

2k−ixi and Sy =
k∑
i=1

2k−iyi.

Note that Sx and Sy are the decimal representations of the bit strings x and y, respec-
tively. Hence, stateA(x) = stateA(y) ⇐⇒ Sx ≡ Sy (mod 2u). We will analyze now two
cases:

Case k ≤ u: We have Sx < 2u and Sy < 2u and therefore:

stateA(x) = stateA(y) ⇐⇒ Sx ≡ Sy (mod 2u) ⇐⇒ Sx = Sy ⇐⇒ x = y.

Case k > u: We can write Sx (and analogously Sy) in the following way:

Sx =
k−u∑
i=1

2k−ixi +
k∑

i=k−u+1

2k−ixi = 2u
k−u∑
i=1

2k−i−uxi +
k∑

i=k−u+1

2k−ixi.

Since k− i−u ≥ 0 for all i ∈ {1, . . . , k−u}, the elements in the first sum are integers.
This implies that Sx ≡ S′x (mod 2u) and Sy ≡ S′y (mod 2u), where:

S′x =
k∑

i=k−u+1

2k−ixi and S′y =
k∑

i=k−u+1

2k−iyi.

Therefore stateA(x) = stateA(y) ⇐⇒ Sx ≡ Sy (mod 2u) ⇐⇒ S′x ≡ S′y (mod 2u).
Given that k − i < u for every i ∈ {k − u+ 1, . . . , k}, we deduce that both S′x and
S′y are smaller than 2u. This implies that:

stateA(x) = stateA(y) ⇐⇒ S′x = S′y ⇐⇒ xk−u+1 . . . xk = yk−u+1 . . . yk.

Hence, from both cases we derive the necessary and sufficient condition stated in
Definition 3.11.

46

Chapter 3. Lookup-Based Protocols

shared x

V

shared x

P

nonce NV ∈ {0, 1}m nonce NP ∈ {0, 1}m

NV

T 0|T 1|···|T 2u−1:=g(x,NV ,NP)
q0:=0

NP

nonce c ∈ {0, 1}n

ci

∆ti

let qi∈{0,...,2u−1} such that
qi≡2qi−1+ci (mod 2u)

ri:=T
qi
i

ri

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of all ri

Figure 3.3 A binary u-uniform protocol. This construction takes 2un bits of memory.

We provide next a cryptographic construction for the proposed binary u-uniform
distance-bounding protocol. See Figure 3.3 for a compact, high-level description of the
protocol.

1. Initialization phase: The prover and the verifier agree on the following parameters: a
shared key x, an integer number m > 0 which represents the length of the nonces, the
number n of fast phase rounds, an integer number u ∈ {1, . . . , n} which represents
the uniformity value, a pseudo-random function g, and a threshold ∆tmax for the
round-trip times.

2. Slow phase: Both parties generate nonces, NP for the prover and NV for the verifier.
The value NV is sent to the prover which constructs the labeling function from
g(x,NV , NP). Then, the prover sends the nonce NP to the verifier and the latter
also computes the function g(x,NV , NP) to agree with the prover on the labeling
function. The shared pseudo-random function g outputs 2u (concatenated) registers
T 0|T 1| . . . |T 2u−1 of n bits each (numbered from 1 to n, i.e. T j = T j1 · · ·T jn). The
initial state q0 is set to 0.

3. Fast phase: This phase is composed of n rounds numbered from 1 to n. At the
i-th round, the verifier sends a challenge bit ci to the prover who, upon reception,

47

3.5. Conclusions

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 5 10 15 20 25 30

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

 o
f m

af
ia

 fr
au

d
(p

m
)

Number of rounds (n)

SKI
MP

Poulidor
KA2
Tree
TMA

HK
3-uniform

Figure 3.4 The probability of success of mafia fraud attacks against various protocols,
for up to 32 rounds.

moves from the qi−1-th state of layer i − 1 to the qi-th state of layer i such that
qi ∈ {0, . . . , 2u − 1} with qi ≡ 2qi−1 + ci (mod 2u) and replies with the bit T qii .

4. Verification phase: The protocol succeeds if and only if all the exchange times are not
greater than the predefined RTT threshold ∆tmax and all the responses are correct.

In order to illustrate the good balance offered by the uniform protocols in terms of
security and space complexity, we depict in Figure 3.4 a chart with the probability of success
of mafia fraud attacks against various distance-bounding protocols, as given by [AMT15].
The protocols are SKI [BMV13a], Tree [AT09], Poulidor [TMA10], Kim and Avoine’s
(KA2) [KA11], Munilla and Peinado’s (MP) [MP08], Trujillo et al.’s (TMA) [TMA14],
HK [HK05], and a binary 3-uniform protocol. Our protocol clearly shows competitive levels
of resistance to mafia fraud attacks, without demanding exponential space like the Tree

protocol. Indeed, as per the construction in Figure 3.3, the 3-uniform protocol requires 8n

bits of memory, which is considerably smaller than 2n+1 − 2 of the Tree protocol.

3.5 Conclusions

In this chapter we have introduced an abstract model for the description of lookup-based
distance-bounding protocols. The model represents a protocol as a set of State-Labeled
Deterministic Finite Automata and executions are represented by a random walk through

48

Chapter 3. Lookup-Based Protocols

a randomly selected automata from the set. The model is sufficiently expressive to describe
many published protocols, which include the well-known HK and Tree protocols.

The virtue of this model is that it supports generic analysis. For instance, we can
analyze the security limits of a protocol in relation to the number of rounds of the protocol’s
fast phase. In particular, we analyze security in terms of mafia fraud attacks based on the
pre-ask strategy. We proposed a concrete pre-ask strategy that is optimal for a prominent
class of lookup-based protocols.

We introduced the notion of uniformity, which expresses that randomly chosen walks
through the automaton have no bias towards a particular automaton state. This property
indeed relates to the resistance of the protocol to mafia fraud attacks based on the pre-ask
strategy. We also described a family of uniform protocols, and showed that indeed these
protocols feature excellent resistance to mafia fraud even with relatively small memory
usage.

49

4
Optimality in Lookup-Based Protocols

In Chapter 3 we showed that lookup-based protocols suffer from a trade-off
between security and space complexity. For example, Avoine and Tchamk-
erten’s protocol [AT09] offers the optimal resistance to mafia fraud amongst
all binary lookup-based protocols. However, its exponential space complexity
makes it not suitable for resource-constrained systems.

In this chapter we study this security and space complexity trade-off problem
for a non-trivial class of lookup-based protocols. As a result, we construct a
protocol that strikes the optimal resistance to mafia fraud within such class,
for a given upper bound on the protocol size, which in turn relates to space
complexity. By using a multi-criteria comparison method, we show that our
protocol compares well with protocols outside the analyzed class.

Organization– In Section 4.1 we introduce two binary relations on automata
that allow for description of most (if not all) existing lookup-based distance-
bounding protocols. In Section 4.2 we use the two relations to formalize
the security and size trade-off optimality problem for layered and random-
labeled protocols. Later in Section 4.3 we propose a protocol solution for
such a problem, and give a cryptographic specification of the proposed
protocol protocol. Section 4.4 presents a comparison of the proposed
protocol with existing protocols, which are not layered or even not lookup-
based. Section 4.5 summarizes the findings of this chapter.

51

4.1. Equivalence Relations between Automata

4.1 Equivalence Relations between Automata

By observing the underlying structure of the automata of various lookup-based protocols,
one can notice structural similarities between them. For example, any pair of automata of
the HK protocol [HK05] only differ in the labels assigned to the states. Such “pattern” in
the automata of a protocol can be described through equivalence relations.

In this section we describe two relations on State-Labeled DFAs and show that these
relations are sufficiently expressive to specify all (to the best of our knowledge) lookup-based
protocols by using a closure operator on sets of automata, with respect to one of the two
relations. Moreover, by using the automata relations, we produce closed formulas of success
probability of pre-ask attacks against protocols that are specified with the aforementioned
closure operator and the relations.

4.1.1 Defining the Relations

Most lookup-based protocols proposed to date satisfy that any pair of automata differ
only in their labeling functions. This property, which we call state-label-insensitive, is
defined as a binary relation on automata. Examples of protocols in which every pair of
their automata are related according to the state-label-insensitive relation are HK [HK05],
Kim and Avoine’s [KA11], Tree [AT09], and Kardas et al.’s PUF [KKBD11]. The state-
label-insensitive relation makes the design and implementation of such protocols simple in
that the verifier and prover agree on the structure of the lookup table, whilst only requiring
randomness on the pre-computed values.

Definition 4.1 (Relation S). The state-label-insensitive relation S ⊆ AΣ,Γ×AΣ,Γ is defined
by (A,A′) ∈ S if and only if A = (Σ,Γ, Q, q0, δ, `) and A′ = (Σ,Γ, Q, q0, δ, `

′) for some Q,
q0, δ, ` and `′ in their respective domains.

The Poulidor protocol [TMA10] is the only published lookup-based protocol that does
not satisfy that every pair of automata in it are related according to S. In this protocol,
the authors designed a mechanism to prevent (to some extent) an adversary from knowing
which state is being used by the prover at any round of the fast phase. The idea is that the
probability of two automata sharing the same transition function must be negligible. Such
mechanism seems to improve the resistance to pre-ask attacks as the adversary cannot
easily use knowledge acquired in previous rounds to succeed in the current round of the
fast phase.

While two automata in the Poulidor protocol can have different transition functions,
they still preserve a slightly weaker structural property than the above mentioned state-
label-insensitive property. If we ignore the edge labels of the automata –only look at the
structure of the underlying graph of the automata– the transition functions of the automata
in the Poulidor protocol are identical. We provide a formal definition for this structural
relation next.

Definition 4.2 (Relation L). The label-insensitive relation L ⊆ AΣ,Γ × AΣ,Γ is defined by
(A,A′) ∈ L if and only if A = (Σ,Γ, Q, q0, δ, `) and A′ = (Σ,Γ, Q, q0, δ

′, `′) for some Q, q0,
δ, δ′, ` and `′ in their respective domains such that for every q ∈ Q, a bijective function
σ : Σ→ Σ exists such that δ(q, c) = δ′(q, σ(c)) for all c ∈ Σ.

52

Chapter 4. Optimality in Lookup-Based Protocols

Observe that both relations S and L are reflexive, symmetric and transitive. This
property will be used when developing our security analyses. In addition, we will be using
a fundamental operator on sets with respect to binary relations –the closure.

Definition 4.3 (Closure). Given a protocol Proto ⊆ AΣ,Γ and a relation R ⊆ AΣ,Γ ×AΣ,Γ,
the closure of Proto with respect to R, denoted by ProtoR, is the smallest superset of
Proto such that:

∀A ∈ ProtoR, A′ ∈ AΣ,Γ. (A,A′) ∈ R =⇒ A′ ∈ ProtoR.

We say that a protocol Proto is closed with respect to a relation R if Proto = ProtoR.
Furthermore, if ∀A,A′ ∈ Proto. (A,A′) ∈ R, then we say that Proto is consistent with
respect to R. The Poulidor protocol, for example, is closed with respect to both S and L,
whereas it is consistent only with respect to L.

Example 4.1 (The Poulidor Protocol). Poulidor = {({0, 1}, {0, 1}, Q, q0, δ, `)}L where:

• Q = {0, 1, . . . , 2n− 1},

• q0 = 0,

• δ(q, c) = q′ ∈ {0, . . . , 2n− 1} such that q′ ≡ q + c+ 1 (mod 2n),

• ` is any function from Q to {0, 1}.

The vast majority of lookup-based distance-bounding protocols published to date, if
not all, can be modeled by using the closure operator. A protocol being closed under S is
equivalent to being random-labeled (Chapter 3, Section 3.3, Definition 3.10).

4.1.2 Security Analysis through the Relations

In Theorem 3.2, we provided a deterministic, optimal pre-ask strategy to execute a mafia
fraud against a layered and random-labeled lookup-based distance-bounding protocol. Such
strategy consists of simply replying to the verifier’s challenges with the exactly the same
sequence of responses obtained from the prover in the pre-ask session.

Proposition 4.1 (Probability of Success of Mafia Fraud). Let Proto ⊆ AΣ,Γ be a layered
protocol that is closed under S. For every x ∈ Σn, let Ex be the event that, for a random
sequence c ∈ Σn and a random automaton A ∈ Proto, (A, x, y) and (A, c, y) are both
correct executions of Proto, for some y ∈ Γn. Then:

mafia(Proto) = max
x∈Σn

{Pr (Ex)} .

Proof. The proof follows straightforwardly from Definition 3.6 and Theorem 3.2.

In Lemmas 4.1 and 4.2 below, we make Proposition 4.1 more precise by providing
concrete formulas to compute the probability of success of (pre-ask strategy) mafia fraud
against protocols that are consistent and closed with respect to S and L, respectively. We
do so by considering, for a given automaton, the meeting points between the input sequence
used by the adversary during the pre-ask session and the challenges sent by the verifier.

53

4.1. Equivalence Relations between Automata

Definition 4.4 (Meeting Points). Given an automaton A ∈ AΣ,Γ and two input sequences
x, c ∈ Σn, the set of meeting points of x and c is defined as follows:

meetA (x, y) = {i ∈ {1, . . . , n} | stateA(x1 . . . xi) = stateA(c1 . . . ci)} .

Lemma 4.1. Let A ∈ AΣ,Γ be a layered automaton, then:

mafia
(
{A}S

)
=

1

|Σ|n|Γ|n max
x∈Σn

{∑
c∈Σn

|Γ||meetA(x,c)|

}
.

Proof. Let Proto = {A}S and for every x, c ∈ Σn define the event Exc that, for a random
automaton A′ ∈ Proto, both (A′, x, y) and (A′, c, y) are correct executions of Proto, for
some y ∈ Γn. Because Proto is closed under S, for all x, c ∈ Σn, the following two properties
hold:

• meetA (x, c) = meetA′ (x, c) for all A′ ∈ Proto;

• there are |Γ||Q|−(n−|meetA(x,c)|) automata A′ ∈ Proto such that both (A′, x, y) and
(A′, c, y) are correct executions of Proto for some y ∈ Γn.

Therefore, for all x, c ∈ Σn, it holds that:

Pr (Exc) =
|Γ||Q|−(n−|meetA(x,c)|)

|Γ||Q| =
|Γ||meetA(x,c)|

|Γ|n . (4.1)

As in Proposition 4.1, for every x ∈ Σn define the event Ex that Exc occurs, for a
random c ∈ Σn. Thus:

Pr(Ex) =
1

|Σ|n
∑
c∈Σn

Pr(Exc) =
1

|Σ|n|Γ|n
∑
c∈Σn

|Γ||meetA(x,c)|. (4.2)

Finally, from Equation 4.2 and Proposition 4.1 we obtain the expected result.

Lemma 4.2. Let A ∈ AΣ,Γ be a layered automaton, then:

mafia
(
{A}L

)
=

1

|Σ|2n|Γ|n
∑

x,c∈Σn

|Γ||meetA(x,c)| .

Proof. Let A = (Σ,Γ, Q, q0, δ, `) and let Proto = {A}L. As in Proposition 4.1, for every
x ∈ Σn define the the event Ex that, a random automaton A′ ∈ Proto and a random input
sequence c ∈ Σn, both (A′, x, y) and (A′, c, y) are correct executions of Proto, for some
y ∈ Γn.

Let k ∈ N and A1, . . . , Ak ∈ Proto such that [A1], . . . , [Ak] are the equivalence classes
of Proto with respect to S. Further, let x ∈ Σn and let A′ be the random automaton in
the context of the event Ex. According to the law of total probability we have:

Pr(Ex) =

k∑
i=1

Pr
(
Ex | A′ ∈ [Ai]

)
Pr(A′ ∈ [Ai]) =

1

k

k∑
i=1

Pr(Ex | A′ ∈ [Ai]). (4.3)

54

Chapter 4. Optimality in Lookup-Based Protocols

Define now, for every i ∈ {1, . . . , k}, the set Ri = {c ∈ Σn | ∀j ≤ n. stateA(x1 . . . xj) =

stateAi(c1 . . . cj)}. Therefore:

Pr(Ex | A′ ∈ [Ai]) = Pr(Ec | A′ ∈ [A]) (4.4)

for all i ∈ {1, . . . , k} and all c ∈ Ri. Hence, by iterating i over {1, . . . , k} and c on the
corresponding Ri we obtain:

k∑
i=1

∑
c∈Ri

Pr(Ex | A′ ∈ [Ai]) =
k∑
i=1

∑
c∈Ri

Pr(Ec | A′ ∈ [A]). (4.5)

Define now, for every c ∈ Σn, the set Bc = {i ∈ {1, . . . , k} | c ∈ Ri}. By symmetry,
|Ri| = |Rj | for all i, j ∈ {1, . . . , k}; and |Bc| = |Bc′ | for all c, c′ ∈ Σn. Thus, Equation 4.5
transforms into:

r
k∑
i=1

Pr(Ex | A′ ∈ [Ai]) = b
∑

c∈{0,1}n
Pr(Ec | A′ ∈ [A]) (4.6)

where r = |R1| and b = |B0···0|. Hence, from Equations 4.3 and 4.6 we obtain:

Pr(Ex) =
b

r · k
∑
c∈Σn

Pr(Ec | A′ ∈ [A]). (4.7)

But, given that [A] = {A}S , from Equation 4.2 it follows:

Pr(Ec | A′ ∈ [A]) =
1

|Σ|n|Γ|n
∑
z∈Σn

|Γ||meetA(c,z)|. (4.8)

Therefore, by using Equations 4.7 and 4.8 we obtain:

Pr(Ex) =
b

r · k ·
c

|Σ|n|Γ|n
∑

c,z∈Σn

|Γ||meetA(c,z)|. (4.9)

Observe that the right-hand side of Equation 4.9 does not depend on x. This means
that mafia(Proto) = Pr(Ex) for all x ∈ Σn. Furthermore,

∑k
i=1 |Ri| =

∑
c∈Σn |Bc| which

gives us r · k = |Σ|n · b, which together with Equation 4.9 give us the expected formula.

The closed formulas from Lemmas 4.1 and 4.2 will be used in the next section to formalize
and solve the security and space complexity trade-off optimality problem, within the class of
layered and random-labeled lookup-based protocols. Recall that a random-labeled protocol
is a protocol that is closed under S.

4.2 Security and Size Trade-Off

We are interested in the trade-off between security in terms of mafia fraud and space
complexity of the protocol. As we motivated in Chapter 1, this choice of security and
performance indicators follows from two reasons: (1) mafia fraud is the fundamental attack
that distance-bounding protocol must defend against, and (2) distance-bounding protocols

55

4.2. Security and Size Trade-Off

are mainly run on ubiquitous, resource-constrained devices such as RFID smart cards. On
the one hand, security in terms of mafia fraud is determined by the protocol’s resistance to
pre-ask attacks. Space complexity, on the other hand, is interpreted as the largest amount
of memory the device running the protocol must be able to allocate.

The memory of a protocol is determined as a function in the number n of fast phase
rounds and the protocol-specific parameters. For example, the memory of the HK protocol
is f(n) = 2n which is function with the single argument n because the HK protocol has no
further parameters. A more illustrative example is the u-uniform (recall Definition 3.11),
whose memory is1:

f1(u, n) =
n∑
i=1

2min(u,i) =
u∑
i=1

2i +
n∑

i=u+1

2u

= 2u+1 − 2 + (n− u)2u = (n− u+ 2)2u − 2.

In line with this computation, let us conduct a more general analysis. Let h ∈ {1, . . . , 2n}
be a tight upper bound on the number of states of any layer of any automaton of a given
binary layered lookup-based protocol. Therefore, if no further properties on its automata
are assumed, the memory of the given protocol is:

f2(h, n) =
n∑
i=1

min(h, 2i) =

blog2 hc∑
i=1

2i +
n∑

i=blog2 hc+1

h

= 2blog2 hc+1 − 2 + (n− blog2 hc)h. (4.10)

For example, h = 2n for the Tree protocol [AT09] and therefore, from Equation 4.10 it
follows that the Tree protocol requires f2(2n, n) = 2n+1− 2 bits of memory, which is consis-
tent with the representation given in Proposition 3.2. Hence, following the computation as
in Equation 4.10 above, we will use h as the precise space measure, which we call the size.

Definition 4.5 (Size). The size of a layered automaton A ∈ AΣ,Γ, denoted by size(A), is the
number of states of the largest layer of A. Furthermore, the size of a protocol Proto ⊆ AΣ,Γ,
denoted by size(Proto), is equal to maxA∈Proto{size(A)}.

The security and size trade-off optimality problem is therefore defined as follows.

Definition 4.6 (Security and Size Trade-Off Optimality Problem). Given h ∈ {1, . . . , |Σ|n},
find a protocol Proto ⊆ AΣ,Γ such that mafia (Proto) ≤ mafia (Proto′) for every protocol
Proto′ ⊆ AΣ,Γ that is layered, closed under S, and whose size is not larger than h.

In Theorem 4.1 below we show a protocol transformation, which uses the closure with
respect to L, that results in a more secure protocol (or at least not less secure) protocol in
terms of mafia fraud attacks based on the pre-ask strategy. We demonstrate that for every
layered and random-labeled protocol (recall that a random-labeled property is equivalent
to being closed under S), there exists an automata in the protocol whose closure with
respect to L is at least as resistant to pre-ask attacks as the original protocol. This is a

1Note that this value is smaller than 2un given in Figure 3.3 because the construction in the figure is
not memory-wise optimal.

56

Chapter 4. Optimality in Lookup-Based Protocols

preliminary step towards solving the trade-off optimality problem of Definition 4.6, later
on in Section 4.3.

Theorem 4.1. Let Proto ⊆ AΣ,Γ be a layered protocol that is closed under S, then:

∃A ∈ Proto. mafia
(
{A}L

)
≤ mafia(Proto).

Proof. Let A1, . . . , Ak ∈ Proto such that [A1], . . . , [Ak] are the equivalence classes of Proto

with respect to S. Let A be any of the automata from Proto such that:

mafia
(
{A}L

)
= min

i∈{1,...,k}

{
mafia

(
{Ai}L

)}
. (4.11)

We define, as in Proposition 4.1, for every x ∈ Σn, the event Ex that, for a random
c ∈ Σn and a random B = (Σ,Γ, Q, q0, δ, `) ∈ Proto, both (B, x, y) and (B, c, y) are correct
executions of Proto, for some y ∈ Γn. From the law of total probability it follows that, for
every x ∈ Σn:

Pr(Ex) =
k∑
i=1

Pr(Ex | B ∈ [Ai]) Pr(B ∈ [Ai]). (4.12)

From Proposition 4.1 we deduce that:

mafia(Proto) ≥ 1

|Σ|n
∑
x∈Σn

Pr(Ex). (4.13)

Hence, by using Equations 4.12 and 4.13 and inverting the order of the sums we obtain:

mafia(Proto) ≥
k∑
i=1

(
1

|Σ|n
∑
x∈Σn

Pr (Ex | B ∈ [Ai])

)
Pr(B ∈ [Ai]). (4.14)

On the other hand, from Lemmas 4.1 and 4.2, and given that [Ai] = {Ai}S , for all
i ∈ {1, . . . , k} we have:

1

|Σ|n
∑
x∈Σn

Pr (Ex | B ∈ [Ai]) = mafia
(
{Ai}L

)
Further, due to Equation 4.11 and given that

∑k
i=1 Pr(B ∈ [Ai]) = 1, the inequality in

Equation 4.14 transforms into mafia(Proto) ≥ mafia
(
{A}L

)
which completes the proof.

Notice that consistency with respect to L imposes a structural property on a protocol:
all automata of the protocol are equal if the labels on edges and states are ignored. Thus,
Theorem 4.1 rules out, for example, protocol composition as a technique to obtain an
optimal protocol, where a protocol composition is simply the union of the sets of automata
defining the protocols. For instance, the union of HK [HK05] and the Tree [AT09] protocols
does not result in an optimal protocol.

We have proven that the protocol transformation consisting of the application of
Theorem 4.1 results in a protocol that is more secure than (or at least as secure as) the
original one. In addition, such protocol transformation either preserves or simplifies the size
of the original protocol. Hence, Theorem 4.1 reduces the search space to the subclass of
protocols that are consistent and closed with respect to L, in order to solve the security and
size trade-off optimality problem. In the next section we address such optimality problem
by providing a protocol solution.

57

4.3. The Modular Protocol

4.3 The Modular Protocol

In mathematics, usually the optimal (minimum or maximum) value of a function on a
number of variables takes place when such variables differ to each other in as least as
possible. For example, as per the inequality of arithmetic and geometric means2,

(
s
k

)k
is the maximum value of the product of k real-positive numbers whose sum is s. Such
maximum takes place when all numbers are the same, i.e. equal to s

k .
Inspired by this, we define a property on automata that distributes the inputs over the

states as evenly as possible. Intuitively, the more evenly the inputs are distributed over
the states, the less probable (overall) it becomes for the adversary to reach a state visited
during the pre-ask session.

In order to define an automata A = (Σ,Γ, Q, q0, δ, `) that distribute evenly the input
sequences over the states, we consider the transition function such that it minimizes∑

q∈Qi
(reach(q))2 for every i ∈ {1, . . . , n} and Qi are the layers of A and reach : Q→ N

gives the number of sequences that reach the argument state. To minimize these sums, we
utilize remainder (or modular) operations on integer numbers. Later we will prove that the
sums are related to the security of the protocol and that indeed the modular distribution
property of δ indeed minimizes these sums.

Definition 4.7 (h-modular Automaton). Let h ∈ {1, . . . , |Σ|n}, the h-modular automaton
A ∈ AΣ,Γ is a layered automaton such that:

∀i ∈ {1, . . . , n}, x, y ∈ Σi.

stateA(x) = stateA(y) ⇐⇒ dec(x) ≡ dec(y) (mod h),

where dec : Σ∗ → N is defined by:

dec(c1 . . . cn) =
n−1∑
j=0

|Σ|jcn−j ,

Note that dec(x) refers to the decimal number represented by x in base |Σ|. The
h-modular protocol is a closure with respect to L of a singleton set composed of the
h-modular automaton.

Definition 4.8 (h-modular Protocol). Let h ∈ {1, . . . , |Σ|n}, the h-modular protocol Proto ⊆
AΣ,Γ is defined as Proto = {A}L where A ∈ AΣ,Γ is the h-modular automaton.

The HK and the Tree protocols are subsets of the binary 2-modular and 2n-modular
protocols, respectively. From this point on we will often use the term “the Modular protocol”
to refer to any h-modular protocol, for h ∈ {1, . . . , |Σ|n}. The reason for this simplification
is that, even though there are |Σ|n of those protocols (if viewed as sets of automata), in a
high-level, cryptographic context they all can be seen as one instance of the same protocol,
and the instance is given by the choice of the security parameter h.

Observe that each automata of the h-modular protocol has the largest girth amongst
all layered automata with size no longer than h. The girth is the shortest cycle contained
in an automata if viewed as an undirected graph.

2See https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means

58

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means

Chapter 4. Optimality in Lookup-Based Protocols

4.3.1 Optimality Proof of the Modular Protocol

We observe that mafia fraud resistance in layered protocols strongly relates to the number
of rounds where the adversary and verifier challenge sequence meet, as the adversary knows
the correct answer in those rounds. This notion was introduced as the set of meeting points
in Definition 4.4.

Given a protocol Proto that is consistent and closed with respect to L and j ∈ {1, . . . , n},
the probability that j ∈ meetA (x, c), for two random sequences x, c ∈ Σj and a random
automaton A = (Σ,Γ, Q, q0, δ, `) ∈ Proto is equal to the number of pairs of j-input sequences
that meet at any state in the j-th layer of A, divided by |Σ|2j . Moreover, such number of
pairs can be computed as

∑|Qj |
i=1 a

2
i where ai is the number of sequences that reach the i-th

state in that layer Qj . Next, we provide a lower bound on this sum which, by extension,
imposes a lower bound on the probability of success of a pre-ask attack.

Lemma 4.3. Let h, j, p ∈ N be three positive integers. Let a1 ≥ a2 ≥ · · · ≥ ah be
non-negative integer numbers satisfying that

∑h
i=1 ai = pj . Then:

h∑
i=1

a2
i ≥ ω(h, j, p),

where ω(h, j, p) = ha2 + 2ar + r, and a =
[
pj/h

]
and r = pj − ah. The equality holds if

ai ∈ {a, a+ 1} for i ≤ min(h, pj) and ai = 0, otherwise.

Proof. Let k ≤ h be a positive integer number such that ai > 0 if i ≤ k and ai = 0,
otherwise. Thus

∑h
i=1 a

2
i =

∑k
i=1 a

2
i .

Let’s assume h ≥ pj , then ∑h
i=1 a

2
i ≥

∑h
i=1 ai = pj = ω(h, j, p). The equality holds if

ai = 1,∀i ≤ k which implies that k = pj .
Consider now h < pj . Observe that a1 ≥ 2, otherwise a1 = · · · = ak = 1 and,

consequently, k = pj but k ≤ h, which is a contradiction. Now, observe that
∑k

i=1 a
2
i > 1 +

(a1−1)2+
∑k

i=2 a
2
i . Thus, there exists a permutation (b1, b2, . . . , bk+1) of (1, a1−1, a2, . . . , ak)

such that b1 ≥ b2 ≥ · · · ≥ bk+1 > 0 and
∑k

i=1 a
2
i >

∑k+1
i=1 b

2
i . Hence, as we are minimizing,

we can successively apply the same process h−k times, until reaching c1 ≥ c2 ≥ · · · ≥ ch > 0

such that
∑h

i=1 ci = pj and
∑h

i=1 c
2
i ≤

∑k
i=1 a

2
i .

Now, let d = c1 − ch and suppose d > 1. Let e1 = c1 − d + 1, eh = ch + d − 1 and
ei = ci for all i ∈ {2, . . . , h− 1}. Notice that

∑h
i=1 ei = pj , e1 > 0 and eh > 0. It is easy

to verify that e2
1 + e2

h < c2
1 + c2

h, which implies that
∑h

i=1 e
2
i <

∑h
i=1 c

2
i . Again, as we

are looking for the minimum, we can successively apply the same process until reaching
t1 ≥ t2 ≥ · · · ≥ th > 0 such that t1 − th ≤ 1,

∑h
i=1 ti = pj and

∑h
i=1 t

2
i ≤

∑h
i=1 c

2
i .

Hence, given that t1−th ≤ 1 we derive that ti ∈ {th, th+1} for every i ∈ {1, . . . , h}. This
gives ti = th + 1 if i ≤ r and ti = th otherwise, where r = pj −h[pj/h] (i.e. r ≡ pj (mod h)).
Finally,

∑h
i=1 t

2
i = ω(h, j, p).

For the remaining of this chapter, whenever we use ω we refer to the function defined
in Lemma 4.3. The next corollary is a consequence of Lemma 4.2. It will serve to prove
the main result of this chapter later on in Theorem 4.2.

Corollary 4.1. Let A ∈ AΣ,Γ be a layered automaton and let BJ = {(x, y) ∈ Σ2n | J ⊆
meetA (x, y)} for all J ⊆ {0, . . . , n}. Let W0 = |Σ|2n and Wk =

∑
J⊆{0,...,n},|J |=k |BJ | for

59

4.3. The Modular Protocol

all k > 0. Then:

mafia
(
{A}L

)
=

1

|Σ|2n|Γ|n
n∑
i=0

Wi (|Γ| − 1)i .

Proof. Lemma 4.2 gives us:

mafia
(
{A}L

)
=

1

|Σ|2n|Γ|n
∑

x,y∈Σn

|Γ||meetA(x,y)| =
1

|Σ|2n|Γ|n
n∑
k=0

|Γ|kNk

where Nk is the number of pairs (x, y) ∈ Σ2n such that they collide exactly k times when
traversing through A, i.e. Nk =

∣∣{(x, y) ∈ Σ2n | |meetA (x, y) | = k
}∣∣. Hence, from the

combinatorial inclusion-exclusion principle we have that Nk =
∑n

i=k(−1)i+k
(
i
k

)
Wi for all

k ∈ {0, . . . , n}. This gives us the expected formula.

In the next lemma we explicitly link the structural properties of the Modular protocol
with the function ω defined in Lemma 4.3. This is an important result for our optimality
proof as ω determines the lower bound on the overall collisions of two sequences on a given
automaton.

Lemma 4.4. Let h ∈ {1, . . . , |Σ|n} and let A = (Σ,Γ, Q, q0, δ, `) be the h-modular automa-
ton. Let {Q0, . . . , Qn} be the partition of Q representing the layers of A. Then, for all
i, j ∈ {0, . . . , n} with i < j and all q ∈ Qi, it holds that:

ω(h, j − i, |Σ|) =
∣∣∣{(x, y) ∈ Σ2(j−i) | state(Σ,Γ,Q,q,δ,`)(x) = state(Σ,Γ,Q,q,δ,`)(y)

}∣∣∣ .
Proof. Let T be the set containing all tuples (i, j, q) ∈ N× N×Q such that 0 ≤ i < j ≤ n
and q ∈ Qi. Consider now the function f : T → N defined by:

f(i, j, q) =
∣∣∣{(x, y) ∈ Σ2(j−i) | state(Σ,Γ,Q,q,δ,`)(x) = state(Σ,Γ,Q,q,δ,`)(y)

}∣∣∣ .
Our goal is to prove that f(i, j, q) = ω(h, j − i, |Σ|) for all (i, j, q) ∈ T . In effect, since

A is the the h-modular automaton, it follows that, for all (i, j, q) ∈ T and all x, y ∈ Σj−i:

state(Σ,Γ,Q,q,δ,`)(x) = state(Σ,Γ,Q,q,δ,`)(y) ⇐⇒ dec(x) ≡ dec(y) (mod h). (4.15)

Consider now a tuple (i, j, q) ∈ T and, for every r ∈ {1, . . . , h}, let ar be the number
of (j − i)-length input sequences such that, starting from q, reach the r-th state in Qj
(ar = 0 means that either such state does not exist or is not reachable from q). Therefore,
f(i, j, q) =

∑h
r=1 a

2
r. Hence, because of Equation 4.15, we deduce that there exists a

permutation (b1, b2, . . . , bh) of (a1, a2, . . . , ah) such that b1 ≥ b2 ≥ · · · ≥ bh ≥ 0 where
br = 0 for r > k = min(h, |Σ|j−i) and b1 − bk ≤ 1. Hence, from Lemma 4.3 we derive that∑h

r=1 b
2
r = ω(h, j − i, |Σ|), which concludes the proof.

As mentioned before, the automata of the Modular protocol distribute as evenly as
possible the inputs over the states. This property makes such protocol to perform well
when facing mafia fraud. Furthermore, we prove in Theorem 4.2 next that the Modular

protocol is more secure than (or as secure as) any layered protocol consistent and closed
with respect to L, as long as the latter has size no larger than the former.

60

Chapter 4. Optimality in Lookup-Based Protocols

Theorem 4.2. Let A ∈ AΣ,Γ be a layered automata and A′ ∈ AΣ,Γ be the h-modular
automaton with h ≥ size(A). Then:

mafia
(
{A′}L

)
≤ mafia

(
{A}L

)
.

Proof. For every J ⊆ {0, . . . , n} consider the sets BJ = {(x, y) ∈ Σ2n | J ⊆ meetA (x, y)}
and B′J = {(x, y) ∈ Σ2n | J ⊆ meetA′ (x, y)}. From Corollary 4.1 we derive that it is
sufficient to prove that |BJ | ≥ |B′J | for all J ⊆ {0, . . . , n}.

Let j0 = 0, J = {j1, . . . , jk} ⊆ {0, . . . , n} with 0 < j1 < j2 < · · · < jk and G ∈ N
defined as follows:

G =
k∏
t=1

ω(h, jt − jt−1, |Σ|), (4.16)

where ω is defined as in Lemma 4.3. Furthermore, for every t ∈ {1, . . . , k} consider
D(jt−1, jt) as the minimum number of pairs of (jt− jt−1)-length input sequences that start
from the same state in layer jt−1 and reach the same state in the layer jt. Then:

|BJ | ≥ |Γ|2n−2jk

k∏
t=1

D(jt−1, jt). (4.17)

From Lemma 4.3 we derive that D(jt−1, jt) ≥ ω(h, jt − tt−1, |Σ|) for all t ∈ {1, . . . , k}.
By using this and Equations 4.16 and 4.17 we obtain:

|BJ | ≥ |Γ|2n−2jk

k∏
t=1

ω(h, jt − jt−1, |Σ|) = |Γ|2n−2jk ×G. (4.18)

Therefore, from Lemma 4.4 we have that |B′J | = |Γ|2n−2jk ×G. Finally, by using this
in Equation 4.18 we conclude that |BJ | ≥ |B′J |.

With this last result along with the statement of the end of Section 4.2, we can
conclude that, amongst all layered and random-labeled protocols with size of at most h,
the h-modular protocol is optimal in terms of resistance to pre-ask attacks. This means
that, the h-modular protocol is a solution for the security and size trade-off optimality
problem (Definition 4.6). This is the main result of the current chapter, together with the
construction of the h-modular protocol that we propose later on in Section 4.3.2.

Theorem 4.3 (h-modular is Optimal). Let Proto ⊆ AΣ,Γ be a layered protocol that is closed
under S. Let M ⊆ AΣ,Γ be the h-modular protocol with h ≥ size(Proto). Then:

mafia(M) ≤ mafia(Proto) .

Proof. The proof follows straightforwardly from Theorems 4.1 and Theorem 4.2.

In Theorem 3.1 we proved that the Tree protocol is the optimal binary lookup-based
protocol in terms of resistance to pre-ask attacks. However, the protocol requires an
exponential amount of memory, which makes it infeasible in practice. Motivated by this,
we derive a straightforward consequence of Theorem 4.3: a protocol that is layered, closed
under S, and optimal with no size restrictions does have exponential size in the number n
of round-trip time rounds.

61

4.4. Comparative Analysis

Corollary 4.2. Let Proto ⊆ AΣ,Γ be a layered protocol that is closed under S such that
there is no layered protocol Proto′ ⊆ AΣ,Γ closed under S as well, with mafia(Proto′) <

mafia(Proto). Then:
size(Proto) = |Σ|n.

Proof. Let h = size(Proto) and let M be the h-modular protocol and let M ′ be the |Σ|n-
modular protocol. Let’s assume that h < |Σ|n. Hence, from Theorem 4.3 it follows that no
layered protocol Proto′ ⊆ AΣ,Γ exists such that mafia(Proto′) < mafia(M). But, this is a
contradiction because mafia(M ′) < mafia(M) due to Lemma 4.4 and the composition of
ω(...) (recall this function from Lemma 4.3).

We remark that the size of a protocol Proto ⊆ AΣ,Γ is never greater than |Σ|n. This
trivially follows from the fact that the maximum number of possible reachable state on
a given automaton is upper-bounded by |Σ|n, being the number of different sequences of
length n.

4.3.2 Constructing the Modular Protocol

In this section we provide a description of the binary h-modular protocol, for any h ∈
{1, . . . , 2n}, in standard cryptographic notation for security protocols. The protocol is
illustrated in Figure 4.1 and consists of the following phases:

1. Initialization: The parties agree on protocol parameters such as: a secret and shared
key x, the length m of the nonces, the number of rounds n, the size h ∈ {1, . . . , 2n} of
the automata, a pseudo-random function f , and a threshold ∆tmax for the round-trip
times.

2. Slow phase: In the slow phase, the prover and verifier exchange nonces NV and NP .
The output of the pseudo-random function f(x,NV , NP) is used to create h sequences
T 0, . . . , T h−1 of n random bits each (numbered from 1 to n, i.e. T j = T j1 · · ·T jn) and
h sequences D0, . . . , Dh−1 of n− 1 random bits each (numbered from 1 to n− 1, i.e.
Dj = Dj

1 · · ·Dj
n−1). The initial state q0 is set to 0.

3. Fast phase: This phase is composed of n rounds numbered from 1 to n. At the i-th
round, the verifier sends a challenge bit ci to the prover. The prover moves from the
qi−1-th state in layer i− 1 to the qi-th state in layer i such that qi ∈ {0, . . . , h− 1}
and qi ≡ 2qi−1 + ci ⊕Dqi−1

i (mod h) and replies with the bit T qii .

4. Verification: The protocol succeeds if and only if all round-trip times are below the
pre-defined threshold ∆tmax and all responses are correct.

4.4 Comparative Analysis

This section intends to compare the proposed Modular protocol with several state-of-the-art
distance-bounding protocols, including protocols that are not lookup-based. Our hypothesis
is that the the Modular protocol offers interesting features that are not offered by other
distance-bounding protocols, such as a good trade-off between mafia fraud resistance

62

Chapter 4. Optimality in Lookup-Based Protocols

shared x

V

shared x

P

nonce NV ∈ {0, 1}m nonce NP ∈ {0, 1}m

NV

T 0|···|Th−1|D0|···|Dh−1:=f(x,NV ,NP)
q0:=0

NP

nonce c ∈ {0, 1}n

ci

∆ti

let qi∈{0,...,h−1} such that

qi≡2qi−1+ci⊕D
qi−1
i (mod h)

ri:=T
qi
i

ri

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of all ri

Figure 4.1 The binary h-modular protocol. This construction takes (2n − 1)h bits of
memory.

and memory usage. To validate this hypothesis we consider the methodology proposed
in [AMT15], which we describe next.

4.4.1 Framework of Reference

The software-supported3 comparison methodology [AMT15] determines the best distance-
bounding protocol(s) according to a set of criteria. Each criterion is defined by a triple
(D,<,∼), where D is an attribute domain with total order < and approximate equality ∼.
For example, memory is a criterion with domain N representing the minimum size of the
volatile memory (in bits) used by the prover during the protocol execution. The total order
for the memory criterion is the usual total order for natural numbers, and the approximate
equality ∼ is defined by x ∼ y ⇐⇒ |x− y| < 1024. That is to say, two memory attribute
values x and y are considered similar if they differ in less than a kilobit.

The authors in [AMT15] highlight eight criteria that have been used frequently in the
literature: number of bits exchanged during the RTT-measurement phase (e), probability
of success of mafia (pm), distance (pd) and terrorist (pt) fraud attacks, number of bits

3Available at https://github.com/rolandotr/db_comparison

63

https://github.com/rolandotr/db_comparison

4.4. Comparative Analysis

(b) of the fast phase communication channel, number of cryptographic operations (c),
memory (m), and whether the protocol has a prover-active final phase or not (f). For every
i ∈ {e, pm, pd, pt, b, c,m, f}, we use (Di, <i,∼i) to refer to the triple corresponding to the
criteria i. We kindly refer the reader to [AMT15] for intuitions and formal definitions of
these attributes.

There exist many parameters that influence a protocol specification, such as number of
rounds and size of the cryptographic keys. We thus use Inst (Proto), for a given protocol
Proto, to denote the set of all possible parametrizations of Proto. If p ∈ Inst (Proto) then
we say that p is a protocol instance or an instantiation of Proto. As in [AMT15], we
assume that any protocol instance can be mapped to a value within the attribute space
Ω = De ×Dpm ×Dpd ×Dpt ×Db ×Dc ×Dm ×Df . Such a mapping is represented by the
total function Values :

⋃
Proto∈P Inst (Proto) → Ω where P is the universe of all protocol

specifications.
Intuitively, a protocol instance p1 outperforms another protocol instance p2 if it performs

better in one criterion and better or equal in the others. This is formalized by the dominant
relation ≺ ⊆ Ω× Ω defined by:

x ≺ y ⇐⇒ (∀i ∈ I. xi < yi ∨ xi ∼ yi) ∧ (∃i ∈ I. xi < yi)

where I = {e, pm, pd, pt, b, c,m, f} and xi denotes the element of x corresponding to the
attribute domain Di. The protocol p is said to be dominated by p′ if Values(p) ≺ Values(p′).

A dominant relation is typically used in multi-criteria decision-making to determine the
largest subset of non-dominated objects, i.e., those that are not outperformed (dominated)
by any other object. Below we precisely define the set of protocol instances to be compared,
and show those protocol instances that turned out to be non-dominated.

4.4.2 Experimental Setting

For our experiments we kept a similar setting to that of [AMT15]. We considered the eight
previously described criteria. The differences in our experiments with respect to [AMT15]
are twofold:

• We reduced the number of rounds from 256 to 128 because the results do not change
for n > 128, as shown in [AMT15].

• We added the proposed Modular protocol and its corresponding instances.

Given a protocol Proto, we use Proto-{p1, p2, . . . , pk} to refer to the instance of Proto

with parameter values {p1, p2, . . . , pk}. For example, BC-{12} stands to the BC protocol
with n = 12 rounds, while Tree-{28, 7} represents the Tree protocol with trees of depth
l = 7 and n = 28 rounds. The full list of protocols and parameters can be found in Table 4.1.
In this table, an instance of the proposed Modular protocol is denoted by Modular-{n, h},
where n is again the number of rounds and h the size of the protocol.

As we do not provide the analysis of distance and terrorist fraud attacks against the
Modular protocol, we set the values pd = 1

2n+1 + 1
2

√
1

22n − 4
2n + 4pm and pt = 1. In the

case of distance fraud, it corresponds to the upper bound provided in [TMA10].

64

Chapter 4. Optimality in Lookup-Based Protocols

Table 4.1 Protocol instances selected for the multi-criteria comparison experiments.

Protocol Identifier Parameter values

Brands and Chaum [BC93] BC-{n} n ∈ {1, . . . , 128}
MAD [CBH03] MAD-{n} n ∈ {1, . . . , 128}
Bussard and Bagga [BB05] BB-{n} n ∈ {1, . . . , 128}
Hancke and Kuhn [HK05] HK-{n} n ∈ {1, . . . , 128}

Munilla and Peinado [MP08] MP-{n, pf} n ∈ {1, . . . , 128}
pf ∈ {0, 0.05, 0.1, . . . , 0.95, 1}

SwissKnife [KAK+08] SwissKnife-{n} n ∈ {1, . . . , 128}

Tree [AT09] Tree-{n, l} n ∈ {1, . . . , 128}
l ∈ {1, 2, . . . , 32}

Poulidor [TMA10] Poulidor-{n} n ∈ {1, . . . , 128}
Rasmussen and Capkun [RC10] RC-{n} n ∈ {1, . . . , 128}
Yum et al. [YKHL11] YKHL-{n} n ∈ {1, . . . , 128}

Kim and Avoine [KA11] KA-{n, pd} n ∈ {1, . . . , 128}
pd ∈ {0, 0.05, 0.1, . . . , 0.95, 1}

SKI [BMV13a] SKI-{n, t} n ∈ {1, . . . , 128}
t ∈ {2, 3, . . . , 32}

TMA [TMA14] TMA-{n} n ∈ {1, . . . , 128}

Modular Modular-{n, h} n ∈ {1, . . . , 128}
h ∈ {16, 32, 64, 128, 256}

4.4.3 Results

According to the above settings, a total of 15232 protocol instances were analyzed. We
ran the decision-making approach proposed in [AMT15] six times. Each run corresponds
to the analysis of a set of protocol instances that resist to mafia fraud with probability at
least y, where y ∈ {2−16, 2−32, 2−48, 2−64, 2−80, 2−96}. The sets of protocol instances are
denoted by Iy, for every y. The results are depicted in Table 4.2.

To review the comparison results, we refer to Figures 4.2 and 4.3, which depict charts
with mafia and distance fraud success probabilities for a number of protocol instances.
We have selected representative protocol instances based on the most frequent protocol
parameters (except for n) as per Table 4.2. The selected protocol instances are KA-{n, 0.95},
BC-{n}, Tree-{n, 6}, TMA-{n}, Poulidor-{n}, SwissKnife-{n}, Modular-{n, 32}, and SKI-
{n, 2}, for n ∈ {10, 20, . . . , 120}. We provide next a brief discussion on the reasons for the
non-dominance of the protocol instances of Table 4.2:

• The instances of the BC, BB, MAD, and RC protocols achieve the optimal resistance
to both mafia and distance fraud amongst all instances of protocols with single-bit
channel for the fast phase. In addition, the BC protocol outperforms BB, MAD, and
RC protocols, hence excluding the instances of these three latter protocols from the
non-dominated sets.

65

4.4. Comparative Analysis

Table 4.2 Non-dominated protocol instances for the different sets Iy. This table only
shows, for each protocol, the non-dominated protocol instance (if any) with least memory
usage and fewer bits exchanged during the fast phase, in that order. The total number of
non-dominated instances is given in the last column. Furthermore, every security value
p has been scaled to 2dlog2 pe, and the memory values m have been scaled to bm/1024c
kilobits.

y
Non-dominated Attribute values totalinstances in Iy n pm pd pt b c m f

2−16

KA-{20, 0.85} 20 2−16.0 2−2.0 20.0 1 1 0 false 3
BC-{16} 16 2−16.0 2−16.0 20.0 1 2 0 true 113

Tree-{24, 6} 24 2−16.0 2−10.0 20.0 1 1 1 false 181
TMA-{27} 27 2−16.0 2−16.0 20.0 1 1 0 false 1

SwissKnife-{16} 16 2−16.0 2−6.0 2−6.0 1 2 1 true 113
Modular-{21, 16} 21 2−16.0 2−8.0 20.0 1 1 1 false 4

SKI-{39, 2} 39 2−16.0 2−16.0 2−39.0 2 1 1 false 90

2−32

Poulidor-{42} 42 2−32.0 2−16.0 20.0 1 1 0 false 1
KA-{37, 0.9} 37 2−32.0 2−2.0 20.0 1 1 0 false 2
BC-{32} 32 2−32.0 2−32.0 20.0 1 2 0 true 97

Tree-{48, 6} 48 2−32.0 2−21.0 20.0 1 1 1 false 156
TMA-{53} 53 2−32.0 2−32.0 20.0 1 1 0 false 1

SwissKnife-{32} 32 2−32.0 2−13.0 2−13.0 1 2 1 true 97
Modular-{41, 16} 41 2−32.0 2−16.0 20.0 1 1 1 false 4

SKI-{78, 2} 78 2−32.0 2−32.0 2−78.0 2 1 1 false 51

2−48

Poulidor-{61} 61 2−48.0 2−25.0 20.0 1 1 0 false 1
KA-{53, 0.95} 53 2−48.0 2−1.0 20.0 1 1 0 false 4

BC-{48} 48 2−48.0 2−48.0 20.0 1 2 0 true 81
Tree-{72, 6} 72 2−48.0 2−32.0 20.0 1 1 2 false 120
TMA-{80} 80 2−48.0 2−48.0 20.0 1 1 0 false 1

SwissKnife-{48} 48 2−48.0 2−19.0 2−19.0 1 2 1 true 81
Modular-{58, 32} 58 2−48.0 2−24.0 20.0 1 1 4 false 4

SKI-{116, 2} 116 2−48.0 2−48.0 2−116.0 2 1 1 false 13

2−64

Poulidor-{78} 78 2−64.0 2−32.0 20.0 1 1 0 false 1
KA-{70, 0.9} 70 2−64.0 2−2.0 20.0 1 1 0 false 4
BC-{64} 64 2−64.0 2−64.0 20.0 1 2 0 true 65

Tree-{96, 6} 96 2−64.0 2−43.0 20.0 1 1 2 false 83
TMA-{106} 106 2−64.0 2−64.0 20.0 1 1 0 false 1

SwissKnife-{64} 64 2−64.0 2−26.0 2−26.0 1 2 1 true 65
Modular-{77, 32} 77 2−64.0 2−32.0 20.0 1 1 5 false 4

SKI-{110, 3} 110 2−64.0 2−45.0 2−64.0 3 1 1 false 1

2−80

Poulidor-{96} 96 2−80.0 2−41.0 20.0 1 1 0 false 1
KA-{86, 0.95} 86 2−80.0 2−2.0 20.0 1 1 0 false 5

BC-{80} 80 2−80.0 2−80.0 20.0 1 2 0 true 49
Tree-{120, 6} 120 2−80.0 2−54.0 20.0 1 1 3 false 46

Modular-{95, 32} 95 2−80.0 2−40.0 20.0 1 1 6 false 4
SwissKnife-{80} 80 2−80.0 2−33.0 2−33.0 1 2 1 true 49
SKI-{118, 4} 118 2−80.0 2−48.0 2−48.0 4 1 1 false 1

2−96

Poulidor-{114} 114 2−96.0 2−49.0 20.0 1 1 1 false 1
KA-{102, 0.95} 102 2−96.0 2−2.0 20.0 1 1 0 false 5

BC-{96} 96 2−96.0 2−96.0 20.0 1 2 0 true 33
Tree-{126, 14} 126 2−99.0 2−60.0 20.0 1 1 288 false 14

Modular-{109, 64} 109 2−96.0 2−48.0 20.0 1 1 14 false 3
SwissKnife-{96} 96 2−96.0 2−39.0 2−39.0 1 2 1 true 33
SKI-{124, 6} 124 2−96.0 2−51.0 2−32.0 6 1 1 false 1

66

Chapter 4. Optimality in Lookup-Based Protocols

10-35

10-30

10-25

10-20

10-15

10-10

10-5

 20 40 60 80 100 120

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

 o
f m

af
ia

 fr
au

d
(p

m
)

Number of rounds (n)

TMA
Poulidor

Tree
SKI

Modular
SwissKnife

BC
KA

Figure 4.2 The probability of success of mafia fraud attacks against various protocol
instances.

• The instances of the TMA protocol are non-dominated because they offer the best
resistance to distance fraud amongst all protocol instances that have a single-bit fast
phase channel and a single call to a cryptographic function (see Figure 4.3).

• The instances of the SwissKnife and SKI protocols are non-dominated because these
are the only protocols that resist terrorist fraud attacks, and neither instance of
them dominates the other. This is because the SKI protocol exchanges more bits
than SwissKnife during the fast phase, and the SwissKnife protocol has a final,
prover-active phase, which the SKI protocol does not.

• While the instances of the KA protocol do not perform well in terms of distance fraud
(see Figure 4.3), they perform better in terms of mafia fraud (see Figure 4.2) than
the instances of any other protocol with just one call to a cryptographic function.

• Overall, the instances of the Poulidor, Modular and Tree protocols perform similar
security-wise. Furthermore, they offer the best resistance to mafia fraud (see Fig-
ure 4.2) amongst instances of protocols without a final, prover-active phase, except
for the KA protocol. The KA protocol instances do not dominate the instances of
any of these three protocols because KA protocol is the least resistant to distance
fraud (see Figure 4.3).

67

4.5. Conclusions

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

 20 40 60 80 100 120

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

 o
f d

is
ta

nc
e

fra
ud

 (p
d)

Number of rounds (n)

TMA
Poulidor

Tree
SKI

Modular
SwissKnife

BC
KA

Figure 4.3 The probability of success of distance fraud attacks against various protocol
instances.

None of the instances of the Poulidor, Modular and Tree protocols dominate any
other because the Modular protocol performs better than the other two in terms of
mafia fraud, the Poulidor protocol has less memory consumption (except for the set
I2−16) than the other two, and the Tree protocol performs better than the other two
in terms of distance fraud.

Table 4.2 confirms our hypothesis that the Modular protocol is relevant with respect to
the most frequently used criteria in the literature. We observe that at least one protocol
instance of the Modular protocol is non-dominated for every set Iy of Table 4.2. In general,
we observe that the Modular protocol instances offer security levels comparable with various
protocols that are not layered or even not lookup-based. All this, at a very low-cost in
memory and computational complexity.

4.5 Conclusions

We have proposed the first lookup-based distance-bounding protocol that is optimal within a
large class of protocols, in terms of resistance to mafia fraud for a given upper bound on the
size of the protocol. A comprehensive set of experiments relying on decision-making theory,
which included thirteen state-of-the-art protocols, indicate that the proposed protocol
cannot be outperformed by other protocols, as it balances well security and memory

68

Chapter 4. Optimality in Lookup-Based Protocols

consumption. At the conceptual level, we showed that equivalence relations on automata
shape a powerful tool for the analysis of distance-bounding protocols.

The proposed protocol seems to have connections with some works in further security
fields. For example, the properties of bipartite and q-partite graphs, which relates to layered
protocols, have been used to guarantee lower bounds on the code rate of error correcting
codes [Tan81, KPP+04]. In addition, graphs with large girths, such as expander and Cayley
graphs, have been studied in order to design provable-secure cryptographic hashes [Zém91].

69

Part II

Symbolic Analysis of
Distance-Bounding Protocols

71

5
Causality-Based Secure
Distance-Bounding

Existing frameworks for symbolic verification of distance-bounding protocols
are based on events’ timestamps and agents’ location. These approaches
differ from traditional symbolic verification frameworks because the latter
deliver (in)security proofs by looking at the causality of the agents’ actions.

In this chapter we introduce a causality-based property to verify distance-
bounding protocols that discards the notions of continuous time and physical
location. This constitutes a major step forward into computer-assisted
verification of distance-bounding protocols as time and location are arguably
hard to properly account for in established protocol verification tools.

Organization– In Section 5.1 we describe the Isabelle/HOL [NPW02]-
supported symbolic model introduced by Basin et al. in [BCSS09, SSBC09]
to verify distance-bounding protocols. Basin et al.’s model is based on
the location of agents and the time at which the agents’ events occur.
In Section 5.2 we introduce a set of property to characterize a semantic
protocol domain on which our results can be applied. In Section 5.3 we
propose the causality-based secure distance-bounding property, which we
prove equivalent to Basin et al.’s property in protocol models within the
semantic domain. We give conclusive remarks of the chapter in Section 5.4.

73

5.1. A Model Based on Time and Location

5.1 A Model Based on Time and Location

This section describes the formalism of Basin et al. [BCSS09, SSBC09], which is the basis
for the work developed in this chapter. The formalism employs logic theories to handle
inductively-defined sets of traces that represent the protocol’s executions. It considers
execution traces that consist of a sequence of timestampted events, e.g. denoting the sending
and reception of messages, where the timestamps represent the timing at which the events
occurred.

Agents and Messages. Participants in a protocol execution are called agents. The set of
agents is denoted by Agent, and {Honest,Dishonest} is a partition of the set of agents into
honest and dishonest agents.

During a protocol execution, agents exchange messages through the network. Basic
messages are agent names (Agent), nonces (Nonce), and constants (Const). More complex
messages can be defined by using atomic messages as the arguments of a function, by pairing
them together into a single message or by denoting an encrypted message. Formally, the set
of messages Msg is defined by the following grammar, where atom ∈ Const∪Agent∪Nonce
and f ∈ F are terminal symbols and F is a countably infinite set of function symbols.

Msg ::= atom | 〈Msg,Msg〉 | {Msg}Msg | f (Msg) .

The term 〈m1,m2〉 denotes the pairing of messages m1 and m2. Further, {m1}m2

stands for the encryption of m1 with the key m2. An agent’s signature on a message is
represented by the encryption of the message with the secret key of the agent. Finally,
f(m1) indicates the output of the function f on the input m1. Functions with multiple
arguments can be represented through pairing of arguments.

Agents’ cryptographic keys are denoted by the functions pk : Agent→ Msg, sk : Agent→
Msg and sh : Agent× Agent→ Msg that indicate the asymmetric public key of an agent,
asymmetric secret key of an agent and the symmetric shared key of two agents, respectively.
Lastly, the function _−1 : Msg → Msg maps an encryption key onto the corresponding
decryption key, and vice-versa.

The set B = {sk, pk, sh,_−1} ⊆ F is the set of basic functions and its functions are
assumed to satisfy that sh(A,B) = sh(B,A), and pk(A)−1 = sk(A), and sk(A)−1 = pk(A);
for all A,B ∈ Agent. We also assume that, for all k ∈ Msg, if no A ∈ Agent exists such
that k ∈ {pk(A), sk(A)}, then k−1 = k. These assumptions represent the properties for
symmetric and asymmetric encryption and decryption.

Events and Traces. An event denotes an agent’s action, such as sending or receiving a
message, or an agent’s security claim. We define the set of events Event via the following
grammar, for A,B ∈ Agent.

Event ::= send (A,Msg) [Msg] | recv (A,Msg) | claim (A,B,Event,Event) .

Given messages m1 and m2, and agents A and B, send (A,m1) [m2] indicates that A
has sent the message m1 and updated the agent’s local state with the message m2, and
recv (A,m1) means that A has received m1. In the original model, claiming events have
the form claim (A,B, d), where d ∈ R is a distance value. This allows an agent A to claim

74

Chapter 5. Causality-Based Secure Distance-Bounding

m ∈ InitK (A)

m ∈ DMA (α)

(t, recv (A,m)) ∈ α
m ∈ DMA (α)

〈m1,m2〉 ∈ DMA (α)

{m1,m2} ⊆ DMA (α)

m ∈ DMA (α)
f ∈ F \ B

f(m) ∈ DMA (α)

m1 ∈ DMA (α)
m2 ∈ DMA (α)

〈m1,m2〉 ∈ DMA (α)

m ∈ DMA (α)
k ∈ DMA (α)

{m}k ∈ DMA (α)

{m}k ∈ DMA (α)
k−1 ∈ DMA (α)

m ∈ DMA (α)

Figure 5.1 Rules for message deduction.

that another agent B is within a radius of length d, which is computed based on the
round-trip time of a message exchange. We will make the message exchange explicit, and
use claim (A,B, e1, e2) where e1 and e2 are the events used to compute the round-trip time
and, by extension, the distance bound d.

We define the sets Send,Recv ⊆ Event of all send and receive events, respectively. The
function actor : Event→ Agent maps events onto their corresponding actor agent (i.e., the
instance of A from the syntax). We extend this notation by using actor (α), for a given trace
α, to refer to the set {actor (e) | (t, e) ∈ α}. We require for an event claim (A,B, e1, e2)

that A is the agent actor of both events e1 and e2, i.e. actor (e1) = actor (e2) = A.
A trace α is a finite sequence of timed-events α ∈ (R× Event)∗, representing the

execution of a protocol.

Agents’ Knowledge. As the trace evolves, agents may gain knowledge by receiving
messages from other agents. At the beginning of a protocol execution, every agent is
provided with an initial knowledge consisting of all agents’ names and constants, his own
nonces and secret keys, and all public keys. We use the function InitK : Agent→ P (Msg)

to represent the initial knowledge of an agent:

InitK (A) = Agent ∪ Const ∪ NonceA ∪ {sk(A)} ∪
{pk(B) | B ∈ Agent} ∪ {sh(A,B) | B ∈ Agent},

where NonceA denotes the set of nonces for a given agent A ∈ Agent. We assume that
{NonceA|A ∈ Agent} forms a partition of the set Nonce.

Given an agent A and a trace α, deducibleA(α) denotes the set of all deducible messages
from a trace α. This set is inductively defined by the rules in Figure 5.1.

Network and Intruder. For a given protocol Proto, the set of possible traces Tr (Proto)

is inductively defined by the Start rule (Start), the Intruder rule (Int), the Network rule
(Net) and the rules specifying the protocol. The Start, Intruder and Network rules are
depicted in Figure 5.2.

The rules make use of the function maxt : (R × Event)∗ → R, which is defined by
maxt(α) = max(t,e)∈α{t}. That is, maxt(α) yields the latest time at which an event of
α occurred. The expression dist(A,B) gives the distance between two agents A and B
based on an uninterpreted function location : Agent→ R3, which associates each agent to
a location in the real coordinate space R3. It is worth remarking that this interpretation of
location assumes that agents are static, including dishonest agents.

75

5.1. A Model Based on Time and Location

ε ∈ Tr (Proto)
Start

α ∈ Tr (Proto) t ≥ maxt(α)
E ∈ Dishonest
m ∈ DME (α)

α · (t, send (E,m) []) ∈ Tr (Proto)
Int

α ∈ Tr (Proto) t ≥ maxt(α)
(t′, send (A,m) [s]) ∈ α
t ≥ t′ + dist(A,B)/c

α · (t, recv (B,m)) ∈ Tr (Proto)
Net

Figure 5.2 Start, Intruder and Network rules.

The Start rule states that the empty trace ε is always part of the set of traces. The
Intruder rule enables a dishonest agent, typically known as the intruder or the adversary, to
inject (by sending) on the network any of his deducible messages. Finally, the Network rule
establishes that a message m sent by an agent A can be received by an agent B without
violating a time/location constraint that we describe in the next paragraph. This constraint
is actually what makes this model particularly different from standard security models.

The Network rule also states that a message sent by an agent A and received by an
agent B at times t′ and t, respectively, must satisfy dist(A,B) ≤ (t− t′) · c. In this way
the physical law that messages cannot travel faster than the speed of light is made explicit.
Observe that message loss is captured by not applying the network rule for a given sending
event.

Protocol Specification. A protocol is specified by a set of rules similar to the rules in
Figure 5.2. Two syntactic restrictions1 are applied:

(1) Neither the premises nor the conclusion of a protocol rule contain references to dishonest
agents. This means that the behavior of dishonest agents is fully specified by the
intruder rule.

(2) The premise of a protocol rule cannot contain events whose actors are not the same as
the actor of the event in the premise of the rule. That is to say, agents are unaware of
what other agents do. They can interact exclusively through the network rule.

Example 5.1 (Hancke and Kuhn’s protocol). Recall the HK protocol from Figure 1.5 whose
symbolic representation and specification rules are shown in Figures 5.3 and 5.4, respectively.
The first four rules in Figure 5.4 correspond to the four transmissions that take place in
the protocol. The receive events are derived from the network rule. The last rule from
Figure 5.4 refers to the claim event for the property secure distance-bounding represented
as “P is close" in Figures 5.3. The function subterm : Msg → P (Msg) yields the set of
atomic messages that are sub-terms of a given message, and it is recursively defined by:

subt(m) =


subt(m1) ∪ subt(m2) if m = 〈m1,m2〉 or m = {m1}m2

subt(m1) if m = f(m1)

{m} otherwise .

1Semantic interpretations of these restrictions will be given in Section 5.2.1.

76

Chapter 5. Causality-Based Secure Distance-Bounding

shared k

V

shared k

P

nonce NV , ch nonce NP

NV

NP

ch

RTT f(ch, g(k, NV , NP))

P is close

Figure 5.3 Symbolic abstraction of Hancke and Kuhn’s protocol [HK05]. Differences in
notation with respect to the representation in Figure 1.5 are two fold: ch instead of c to
avoid confusion with the transmission speed symbol c, and g instead of PRF for the sake
of presentation.

Furthermore, the function used : (R × Event)∗ → P (Msg) is utilized to make sure that
newly generated nonces are fresh, and it is defined by:

used(α) =
⋃

(t,e)∈α

subt(content (e)),

where content : Event→ Msg gives us the content of a given event.

Example 5.1 also illustrates the purpose of the information in square brackets at the
end of the send actions. In this case, it is implicitly used to define the notion of a session,
by extending the send actions with the random nonces from that session. Further, it is
used to specify in which order the events of a session will have to be executed.

Security Properties. The model uses claim events as placeholders to indicate where a
security property needs to be satisfied. In this paper we focus on the property of secure
distance-bounding, which is syntactically represented by claims of the form claim (V, P, x, y),
where V, P ∈ Agent and x, y ∈ Event. A claim event claim (V, P, x, y) intuitively means
that the agent V believes that the events x and y can be used to correctly compute an
upper bound on his distance to P .

As the Intruder rule suggests, dishonest agents might disclose their secret key material
by sending them out. This means that two dishonest provers might be indistinguishable to a
legitimate verifier. In other words, a verifier V cannot securely decide whether a particular
dishonest prover P is close, as another dishonest prover P ′ could have obtained all P ’s secrets
and therefore P ′ can impersonate P . This leads to the following statement: V cannot claim
that “P is close” but V can claim that “someone who knows P ’s secrets is close", at most. To
capture this notion, we define the relation ≈ = {(A,A) | A ∈ Honest}∪Dishonest×Dishonest.

77

5.2. The Semantic Domain

α ∈ Tr (Proto) V ∈ Honest
t ≥ maxt(α)

NV ∈ NonceV \ used(α)

α · (t, send (V,NV) []) ∈ Tr (Proto)

α ∈ Tr (Proto) P ∈ Honest
t ≥ maxt(α) (t′, recv (P,NV)) ∈ α

NP ∈ NonceP \ used(α)

α · (t, send (P,NP) [NV]) ∈ Tr (Proto)

α ∈ Tr (Proto) V ∈ Honest
t ≥ maxt(α)

(t′, send (V,NV) []) ∈ α
(t′′, recv (V,NP)) ∈ α
ch ∈ NonceV \ used(α)

α · (t, send (V, ch) [NV , NP]) ∈ Tr (Proto)

α ∈ Tr (Proto) P ∈ Honest
t ≥ maxt(α)

(t′, send (P,NP) [NV]) ∈ α
(t′′, recv (P, ch)) ∈ α

rp = f(ch, g(sh(V, P), NV , NP))

α · (t, send (P, rp) []) ∈ Tr (Proto)

α ∈ Tr (Proto) V ∈ Honest tz ≥ maxt(α)
rp = f(ch, g(sh(V, P), NV , NP))

x = send (V, ch) [NV , NP] y = recv (V, rp)
(tx, x) ∈ α (ty, y) ∈ α

α · (tz, claim (V, P, x, y)) ∈ Tr (Proto)

Figure 5.4 Specification rules of Hancke and Kuhn’s protocol [HK05].

Definition 5.1 (Secure Distance-Bounding). A protocol Proto satisfies secure distance-
bounding if and only if:

∀α ∈ Tr (Proto) , (tz, claim (V, P, x, y)) ∈ α.
∃(tx, x), (ty, y) ∈ α, P ′ ∈ actor (α) .

P ≈ P ′ ∧ dist(V, P ′) ≤ c · (ty − tx) /2. (5.1)

A distance-bounding protocol is secure if the occurrence of a claim event claim (V, P, x, y)

in a protocol execution implies that V has correctly computed an upper bound on his
distance to either P (if P is honest) or some dishonest agent P ′ (if P is dishonest).

The definition of secure distance-bounding slightly differs from the original one provided
by Basin et al., but the difference is merely notational, allowing us to cleanly formulate
our main result in Section 5.3. Note that claim events are formulated in a way that they
relate to a single challenge/response pair. Thus, similar to Basin et al.’s approach, we
will need to include several claim events if the fast phase cannot be abstracted to a single
challenge/response pair.

5.2 The Semantic Domain

An important characteristic of Basin et al.’s approach, as presented in the previous section,
is that security protocols are specified using the same type of derivation rules as used for
the definition of the general semantics of the system. Consequently, protocol specifications
are much more liberal than in comparable formal approaches that define a domain specific
language for the definition of protocols. Alternative approaches, like the one by Cremers and
Mauw [CM12] provide a dedicated protocol specification language and impose syntactical

78

Chapter 5. Causality-Based Secure Distance-Bounding

α ∈ Tr (Proto) A ∈ Honest
Hello,Hi ∈ Const

(t, recv (A,Hello)) ∈ α
α · (t− 1, send (A,Hi) []) ∈ Tr (Proto)

Figure 5.5 A protocol rule that leads to incorrect traces.

or semantical constraints to prevent users from specifying meaningless or simply undesired
protocols.

An example of a protocol rule that may be considered undesirable is the one in Figure 5.5.
It specifies that after reception of the message Hello at time t, agent A sends a message Hi

back at time t− 1. This is clearly an infringement of a time consistency property, because
it leads to the trace (1, recv (A,Hello)) · (0, send (A,Hi) []).

The solution proposed by Basin et al. is to consider only those traces that have non-
decreasing timestamps for subsequent events. In our approach we will take this line of
reasoning one step further, in that we will define a number of assumptions that a proper
semantics should satisfy and that are sufficient to derive our main result. We will argue that
these properties are valid for the semantics from the previous section, under the assumption
of a class of “reasonable” protocol specifications.

5.2.1 Basic Properties of the Semantics

In line with the previous example, the first property that we formulate is time consistency.
It states that events of a trace are timestamped in non-decreasing order.

Property 5.1 (Time consistency). A protocol Proto satisfies time consistency if t1 ≤ . . . ≤ tn
for all traces (t1, e1) · · · (tn, en) ∈ Tr (Proto).

The second property that we consider is speed-of-light consistency. It states that all
traces satisfy the restrictions of the speed of light. In particular, this means that the time
between the sending of a message by agent A and the reception of this message by agent B
must be equal to or larger than the distance between the two agents divided by the speed
of light. Because this definition requires the correspondence between a send event and its
related receive event, we define the relation ⊆ Send× Recv as follows:

 =
{

(e, e′) ∈ Send× Recv | content (e) = content
(
e′
)}

.

The relation defines whether an event e′ is a receive event that could have occurred
as consequence of the send event e. As followed from its formulation, is not a one-to-one
relation. This lines up with the fact that it does not need to be the case that there is a
unique send event that triggers a given receive event. In the semantics above, the relation
 can be easily derived from the application of the Network rule in Figure 5.2.

Property 5.2 (Speed-of-light consistency). A protocol Proto satisfies speed-of-light consis-
tency if for every trace α = (t1, e1) · · · (tn, en) ∈ Tr (Proto) and for all j ∈ {2, . . . , n} such
that ej ∈ Recv, there exists i ∈ {1, . . . , j − 1} such that ei ej and tj − ti ≥

dist(ei, ej)

c
.

79

5.2. The Semantic Domain

Even though we define Properties 5.1 and 5.2 for protocols, we will also use them in
relation to traces. Thus we will talk about time consistency and speed-of-light consistency
of a given trace, with the obvious interpretation.

The formulation of the remaining properties requires the notion of untimed traces, or
simply a sequence of (untimed) events. The projection of a trace α = (t1, e1) · · · (tn, en) ∈
(R× Event)∗ is the untimed untimed trace e1 · · · en ∈ Event∗. Likewise, the projection of
the set of traces is defined as π(Tr (Proto)) = {π(α) | α ∈ Tr (Proto)}. We say that two
traces α and β are content-wise equal, denoted α ≈ α′, if π(α) = π(β).

The third property states that traces are built inductively by appending events.

Property 5.3 (Prefix-closure). A protocol Proto is prefix-closed if for every untimed trace
γ = σ · e ∈ π(Tr (Proto)), it holds that σ ∈ π(Tr (Proto)).

The fourth property expresses that the notion of time is only used for the verifier’s
decision-making process on whether the prover passed the protocol or not. Time will not
be used to make any other decision during the execution of the protocol (e.g., to take a
different branch depending on the time). This means that any trace can be retimed, as
long as it still satisfies time consistency and speed-of-light consistency.

Property 5.4 (Time-unawareness). A protocol Proto is time-unaware if for every α ∈
Tr (Proto) and for all time consistent and speed-of-light consistent traces β ∈ (R× Event)∗

such that α ≈ β it holds that β ∈ Tr (Proto).

As mentioned in Section 5.1, different agents only interact through the network via
sending and receiving events. As a consequence, a non-receive action can only be triggered
by the actor agent’s own preceding actions and another agent’s actions in between can be
disregarded or delayed. This leads to the fifth property, locally-enabled events. We use
untimed events in order to easily express that the resulting trace σ · e′ might require a
re-timing of event e′.

Property 5.5 (Locally-enabled events). A protocol Proto satisfies locally-enabled events if
for every γ = σ · e · e′ ∈ π(Tr (Proto)) such that e′ /∈ Recv and actor (e) 6= actor (e′), it
holds that σ · e′ ∈ π(Tr (Proto)).

The locally-enabled events property allows non-receive events to move left in a trace
under specific conditions. The next property expresses when a receive event can be appended
to a trace.

Property 5.6 (Transmission-enabled events). A protocol Proto satisfies transmission-enabled
events if for every γ = σ · e ∈ π(Tr (Proto)) and every e′ ∈ Recv such that e e′, it holds
that γ · e′ ∈ π(Tr (Proto)).

Agents in the model are universally quantified. Therefore, in a given trace we can
replace an agent by another and still obtain a valid trace, as long as both agents are either
honest or dishonest. An agent substitution is denoted by A 7→ B where A and B are agents.
Given a message m ∈ Msg, m[A 7→ B] represents the substitution of all occurrences in m
of A by B. We extend substitutions onto events and traces in the obvious way.

80

Chapter 5. Causality-Based Secure Distance-Bounding

α ∈ Tr (Proto) A ∈ Honest t ≥ maxt(α)
prem1 prem2 · · · premp

(t1, e1) ∈ α (t2, e2) ∈ α · · · (tq, eq) ∈ α
α · (t, e) ∈ Tr (Proto)

Figure 5.6 Prototype of rules that lead to well-formed protocols.

Property 5.7 (Substitution-closure). A protocol Proto is substitution-closed if for every
untimed trace σ ∈ π(Tr (Proto)) and every A,B ∈ Agent such that {A,B} ⊆ Honest or
{A,B} ⊆ Dishonest, it holds that σ[A 7→ B] ∈ π(Tr (Proto)).

Observe that e e′ implies e[A 7→ B] e′[A 7→ B]. We say that a protocol is
well-formed if it satisfies the seven properties mentioned above.

5.2.2 Validity of the Properties

As stated before, the mechanism for specifying protocols is too liberal to ensure the well-
formedness properties. Therefore, we use a restricted format for protocol rules inspired by
the example specification of Hancke and Kuhn’s protocol from Figure 5.4. The restricted
format is specified by the rule prototype in Figure 5.6. We additionally require that
p+ q > 0, A = actor (e) = actor (e1) = actor (e2) = · · · = actor (eq), e /∈ Recv and none of
the premises premi involve any of the timestamps tj or t. Even though the protocol format
is restricted with respect to the liberal format specified by Basin et al., we conjecture that it
is sufficiently expressive to specify all relevant protocols from literature. We validate this by
specifying a number of protocols in this format and analysing them with our implementation
(see Section 5.3).

Together with the Start, Intruder and Network rules from Figure 5.2, the restricted
format implies well-formedness of the specified protocol. We briefly argue next the validity
of the properties under this restricted format.

Time consistency follows from the precondition t ≥ maxt(α) in the Intruder and
Network rules and in the restricted protocol rule. Speed-of-light consistency follows from
the precondition t ≥ t′+dist(A,B)/c in the Network rule and the requirement that e /∈ Recv

in the restricted protocol rule. Prefix-closure follows from the precondition α ∈ Tr (Proto)

in all rules, together with the fact that the conclusion extends this trace with a single
event. Time-unawareness follows from the fact that in the construction of the traces any
time t ≥ maxt(α) is allowed for the next event, as long as speed-of-light consistency is
satisfied. The property locally-enabled events follows from the requirement that a rule only
concerns a single actor. The transmission-enabled events property follows directly from the
Network rule. Substitution-closure expresses the (implicit) universal quantification over
agents’ names in all rules.

5.3 Causality-Based Verification

Given the definitions and properties from the previous sections, we can now formulate
the notion of causality-based secure distance-bounding and prove that it is equivalent to

81

5.3. Causality-Based Verification

the original definition of secure distance-bounding from Definition 5.1. The main feature
of this new formulation is that it is causality-based, i.e., it only takes into account the
relative occurrence of events, while ignoring the actual timestamps of the events and agents’
locations.

This new formulation resembles authentication properties, such as aliveness [Low97,
CM12]. It states that for every claim that prover P is in the vicinity of verifier V , due to a
challenge event x and the reception of its corresponding response event y in the fast phase,
agent P (or a conspiring agent, if P is dishonest) must have been active in between these
two events. The main difference with Definition 5.1 is that we require the prover to be
active, instead of measuring the time between x and y.

Definition 5.2 (Causality-based Secure Distance-Bounding). A well-formed protocol Proto

satisfies causality-based secure distance-bounding if and only if:

∀σ ∈ π(Tr (Proto)), claim (V, P, x, y) ∈ σ.
∃i, j, k ∈ {1, . . . , |σ|}.

i < j < k ∧ σi = x ∧ σk = y ∧ P ≈ actor (σj) . (5.2)

In Definition 5.2 we formalize our causality-based notion of secure distance-bounding.
This formulation impacts only the security analysis in the design stage. It does not affect
the runtime behavior of the agents executing the protocol. In particular, the verifying agent
still has to measure the round-trip time of the message exchanges in the fast phase.

In the remainder of this section, we develop the proof that the causality-based definition
is equivalent to the secure distance-bounding property from Definition 5.1. To do so, we
first present a few lemmas that follow from the basic properties of the semantic domain
described in Section 5.2.1. They will prove useful when deriving our main result.

Given two events e, e′ ∈ Event, we will write dist(e, e′) as a shorthand notation for
dist(actor (e) , actor (e′)). Also, we say that two timed-events (t, e), (t′, e′) ∈ R × Event

satisfy the time/location constraint if |t′ − t| ≥ dist(e, e′)

c
. For example, all pairs of events

used in the network rule satisfy this constraint. In addition, we define the predicate
ψ (α), where α is a trace, that holds if all pairs of consecutive timed-events on α satisfy
the time/location constraint. Likewise, we say that timed-trace β is a subsequence of a
timed-trace α = (t1, e1) · · · (tn, en), denoted by β v α, if there exist m ∈ {0, . . . , n} and
{w1, . . . , wm} ⊆ {1, . . . , n} such that w1 < · · · < wm and β = (tw1 , ew1) · · · (twm , ewm).

In Lemma 5.1 below, we demonstrate that for any well-formed protocol Proto, any valid
timed-trace α · (t, e) ∈ Tr (Proto) must contain a subsequence β that is also a valid trace
in Proto, and contains (t, e) and ψ (β). We use |.| to denote the length of a (timed or not)
trace, in terms of the number of events.

Lemma 5.1. Let Proto be a well-formed protocol, then the following holds:

∀α ∈ Tr (Proto) , (t, e) ∈ R× Event.

α · (t, e) ∈ Tr (Proto) =⇒
∃β ∈ Tr (Proto) . (t, e) ∈ β ∧ β v α · (t, e) ∧ ψ (β) .

Proof. We will proceed by induction over |α|. The base case |α| = 0 trivially holds by
setting β = (t, e). So, let n ∈ Z>0 and assume by the induction hypothesis that the lemma

82

Chapter 5. Causality-Based Secure Distance-Bounding

holds for all α ∈ Tr (Proto) with |α| < n. Now, let α = (t1, e1) · · · (tn, en) ∈ Tr (Proto)

and (t, e) ∈ R× Event such that γ = α · (t, e) ∈ Tr (Proto). Let us analyze the two cases:

Case e ∈ Recv: From Property 5.2 we have that there exists i ∈ {1, . . . , n} such that

ei e and t − ti ≥
dist(ei, e)

c
. Consider α′ = (t1, e1) · · · (ti−1, ei−1). Then, from

the induction hypothesis (given that |α′| = i − 1 < n and α′ ∈ Tr (Proto) due to
Properties 5.3 and 5.4) it follows that there exists β′ ∈ Tr (Proto) with (ti, ei) ∈ β′

such that β′ v α′ and ψ (β′). Thus, ψ (β′) along with t − ti ≥
dist(ei, e)

c
give us

ψ (β′ · (t, e)) and that β′ · (t, e) is time and speed-of-light consistent.

Hence, from Property 5.6 we derive π(β′) · e ∈ π(Tr (Proto)). Further, β′ · (t, e) ≈ β′′
for some β′′ ∈ Tr (Proto) such that π(β′) · e = π(β′′). Finally, Property 5.4 gives us
β′ · (t, e) ∈ Tr (Proto).

Case e /∈ Recv: Let i be the largest number in {1, . . . , n} such that actor (ei) = actor (e).
If i does not exist, then from Property 5.5 we obtain that e ∈ π(Tr (Proto)) and
therefore (t′, e) ∈ Tr (Proto) for some t′ ∈ R. Hence, as (t, e) is time and speed-of-
light consistent, Property 5.4 gives us (t, e) ∈ Tr (Proto) as (t, e) ≈ (t′, e). Further,
ψ ((t, e)) trivially holds, which leaves us with the remaining case in which i exists.

Let α′ = (t1, e1) · · · (ti, ei). Then, from the induction hypothesis (given that |α′| =
i − 1 < n and α′ ∈ Tr (Proto) due to Properties 5.3 and 5.4) it follows that there
exists β′ ∈ Tr (Proto) with (ti, ei) ∈ β′ such that β′ v α′ and ψ (β′). Thus, ψ (β′)

along with t− ti ≥
dist(ei, e)

c
= 0 give us ψ (β′ · (t, e)) and that β′ · (t, e) is time and

speed-of-light consistent.

Hence, from Property 5.52 we derive π(β′) ·e ∈ π(Tr (Proto)). Further, β′ · (t, e) ≈ β′′
for some β′′ ∈ Tr (Proto) such that π(β′′) = π(β′) · e. Thus, Property 5.4 gives us
β′ · (t, e) ∈ Tr (Proto).

Lemma 5.2 below is an extension of Lemma 5.1. It states that if a valid trace α satisfies
ψ (α), then not only any pair of consecutive events in α satisfy the time/location constraint
but also any pair of events in α. The proof follows from the application of the triangle
inequality dist(e, e′) + dist(e′, e′′) ≥ dist(e, e′′) for all e, e′, e′′ ∈ Event, given that dist
models physical distances.

Lemma 5.2. Let Proto be a well-formed protocol and α ∈ Tr (Proto) such that ψ (α).

Then |t− t′| ≥ dist(e, e′)

c
for all (t, e), (t′, e′) ∈ α.

Proof. Let α = (t1, e1) · · · (tn, en) and i, j ∈ {1, . . . , n}. Assume without loss of generality
that i < j. From ψ (α) it follows that, for all w ∈ {i, . . . , j − 1}:

tw − tw−1 ≥
dist(ew, ew+1)

c
2In published version, Property 5.6 is referenced here instead, which is a typo.

83

5.3. Causality-Based Verification

Hence,

tj − ti = (tj − tj−1) + (tj−1 − tj−2) + · · ·+ (ti+1 − ti) ≥
j−1∑
w=i

dist(ew, ew+1)

c
. (5.3)

Hence, by applying the triangle inequality above, we obtain tj − ti ≥
dist(ei, ej)

c
.

The last lemma of this section refers to agent substitutions. We extend Property 5.7 from
the set of untimed-traces π(Tr (Proto)) of a given protocol Proto to the set of timed-traces
Tr (Proto). The lemma proves that, given a protocol’s valid trace α = (t1, e1) · · · (tn, en), it
is possible to replace an agent A by another agent B (under certain conditions described in
the lemma) to obtain another valid trace α′ = (t′1, e

′
1) · · · (t′n, e′n) such that the difference

between t′i and ti only depends on the number of events before the i-th event on α that
were executed by A. Consequently, the time-difference between two events of α where A
does not act is equal to the time-difference between the corresponding events of α′. This is
actually a strong result because it implicitly shows that event-intervals where the prover
does not act cannot be used to securely upper-bound the prover-to-verifier distance.

Lemma 5.3. Let Proto be a well-formed protocol and α = (t1, e1) · · · (tn, en) ∈ Tr (Proto).
Let A ∈ actor (α) and B ∈ Agent\actor (α) such that either {A,B} ⊆ Honest or {A,B} ⊆
Dishonest. Therefore µ ∈ R≥0 and α′ = (t′1, e

′
1) · · · (t′n, e′n) ∈ Tr (Proto) exist such that, for

all i ∈ {1, . . . , n}:

e′i = ei[A 7→ B] and t′i = ti + µ · qi, with

qi = |{j ∈ {1, . . . , i− 1} | actor (ej) = A}|+ si, and

si =

{
1 if A = actor (ei) ∧ ei ∈ Recv

0 otherwise .

Proof. Consider the set R = {B}∪actor (α) and µ = max
X∈R

{
dist(A,X)

c

}
. We will proceed

to prove that α′ ∈ Tr (Proto). To do so we will first prove time consistency and speed-of-light
consistency for α′.

Time consistency: For all i ∈ {1, . . . , n − 1}, we have that qi+1 ≥ qi and therefore
t′i+1 − t′i = ti+1 − ti + µ · (qi+1 − qi) ≥ ti+1 − ti ≥ 0.

Speed-of-light consistency: Let j ∈ {1, . . . , n} such that ej ∈ Recv. Also, as α is speed-of-

light consistent, we derive that there exists i < j such that ei ej and tj− ti ≥
dist(ei, ej)

c
.

Hence, given that e′i e′j , it becomes sufficient to prove that t′j − t′i ≥
dist(e′i, e

′
j)

c
. Let us

consider the three cases:

Case A = actor (ei): In this case qj ≥ qi + 1 because ei /∈ Recv. Therefore t′j − t′i ≥

tj − ti + µ ≥
dist(e′i, e

′
j)

c
as µ ≥

dist(e′i, e
′
j)

c
.

Case A 6= actor (ei) and A = actor (ej): In this case we have again qj ≥ qi+1 as ej ∈ Recv,
and it follows analogously to the previous case.

84

Chapter 5. Causality-Based Secure Distance-Bounding

Case A /∈ {actor (ei) , actor (ej)}: This case gives us actor (ei) = actor (e′i) and actor (ej) =

actor (ej). Thus,
dist(ei, ej)

c
=
dist(e′i, e

′
j)

c
and therefore t′j−t′i = tj−ti+µ·(qj−qi) ≥

tj − ti ≥
dist(ei, ej)

c
=
dist(e′i, e

′
j)

c
.

Thus, α′ is time consistent and speed-of-light consistent. Consider now σ = π(α).
From Property 5.7 we have that σ[A 7→ B] ∈ π(Tr (Proto)). Therefore, there exists
γ ∈ Tr (Proto) such that π(γ) = σ[A 7→ B]. Finally, given that γ ≈ α′, from Property 5.4
we obtain α′ ∈ Tr (Proto).

Theorem 5.1. A well-formed protocol Proto satisfies secure distance-bounding (Defini-
tion 5.1) if and only if Proto satisfies causality-based secure distance-bounding (Defini-
tion 5.2).

Proof. We will proceed by proving sufficiency (i.e. Equation 5.1 ⇒ Equation 5.2) and
necessity(i.e., Equation 5.2 ⇒ Equation 5.1).

Sufficiency: Assume Equation 5.1 holds and Equation 5.2 does not. Our goal is to
reach a contradiction. The statement that Equation 5.2 does not hold is equivalent to
stating that there exist σ = σ1 · · ·σn ∈ π(Tr (Proto)), and V, P ∈ Agent, and x, y ∈ Event,
and l ∈ {1, . . . , n} such that σl = claim (V, P, x, y) and:

∀i, j, k ∈ {1, . . . , n}.
(x = σi ∧ y = σk ∧ i < j < k) =⇒ P 6≈ actor (σj) . (5.4)

Consider now the following sets:

I = {(i, k) ∈ N× N | σi = x ∧ σk = y},
J = {j ∈ N | ∃(i, k) ∈ I. i < j < k},
G = {G1, . . . , Gg} = {G ∈ actor (σ) | P ≈ G}.

If P is honest, then G = {P}, otherwise G contains all dishonest agents that act in σ.
Let Eve,Charlie ∈ Agent\actor (σ) be two different agents such that P , Eve and Charlie
are either all honest or all dishonest.

Consider the sequence of traces σ1, . . . , σg+1 ∈ π(Tr (Proto)) such that σ1 = σ and
σi+1 = σi[Gi 7→ Eve] for all i ∈ {1, . . . , g}. Observe that σ1, . . . , σg+1 ∈ π(Tr (Proto))

follows from the substitution-closedness property. Hence, let e1 · · · en = σg+1, i.e., the
trace resulting from σ after the successive substitutions of all agents G1, . . . , Gg by Eve.
Therefore N ⊆ Agent exists such that:

actor (e1 · · · en) = {V,Eve} ∪N ∧ ∀E ∈ N. Eve 6≈ E. (5.5)

Let t1, . . . , tn ∈ R such that (t1, e1) · · · (tn, en) ∈ Tr (Proto). Observe that the ti’s
exist because e1 · · · en ∈ π(Tr (Proto)). Hence, from Equations 5.1 and 5.5 and given that
el = claim (V,Eve, ei, ek) for some (i, k) ∈ I, we derive that δ ∈ R≥0 exists such that:

dist(V,Eve) + δ =
c

2
max

(i,k)∈I
{tk − ti}. (5.6)

85

5.4. Conclusions

From Lemma 5.3 we have that there exist µ ∈ R≥0, (t′1, e
′
1) · · · (t′n, e′n) ∈ Tr (Proto) and

q1, . . . , qn ∈ N such that e′i = ei[Eve 7→ Charlie] and t′i = ti + µ · qi (see the construction
of the qi’s in Lemma 5.3) for all i ∈ {1, . . . , n}. On the other hand, from Equation 5.4 we
have that Eve 6= actor (ej) for all j ∈ J . Therefore

∀(i, k) ∈ I. t′k − t′i = tk − ti. (5.7)

Furthermore, given that {Eve,Charlie} ⊆ Honest or {Eve,Charlie} ⊆ Dishonest, it
holds that:

actor
(
e′1 · · · e′n

)
= {V,Charlie} ∪N ∧ ∀C ∈ N. Charlie 6≈ C. (5.8)

Again, e′l = claim (V,Charlie, e′i, e
′
k) for some (i, k) ∈ I, so from Equations 5.1 and 5.8

we derive:
dist(V,Charlie) ≤ c

2
max

(i,k)∈I
{t′k − t′i}. (5.9)

Finally, from Equations 5.6, 5.7 and 5.9 we derive that dist(V,Charlie) ≤ d(V,Eve)+δ.
This is a contradiction, as δ does not depend on Charlie who is an arbitrary agent (from
the same set, either Honest or Dishonest, as P). Therefore we can always find Charlie such
that his distance to V is larger than dist(V,Eve) + δ.

Necessity: Assume Equation 5.2 holds. We will prove that Equation 5.1 holds as
well. Let σ ∈ π(Tr (Proto)) and α ∈ Tr (Proto) such that σ = π(α). Let V, P ∈ Agent,
and x, y ∈ Event and tz ∈ R such that (tz, claim (V, P, x, y)) ∈ α. Furthermore, let
β ∈ Tr (Proto) such that β v α, (tz, claim (V, P, x, y)) ∈ β and ψ (β). Observe that β
exists because of Lemma 5.1.

From Equation 5.2 and given that π(β) ∈ π(Tr (Proto)), we have that there exist
tx′, ty′ ∈ R, P ′ ∈ Agent and (t, e) ∈ β such that P ′ = actor (e), tx′ ≤ t ≤ ty′, (tx′, x) ∈ β,
(ty′, y) ∈ β and P ≈ P ′. Hence, Lemma 5.2 gives us:

ty′ − tx′ = (ty′ − t) + (t− tx′) ≥ dist(e, y)

c
+
dist(x, e)

c
= 2 · dist(V, P

′)

c
,

which proves Equation 5.1 given that (tx′, x) ∈ β, (ty′, y) ∈ β, (tz, claim (V, P, x, y)) ∈ β,
and β v α.

The result obtained from Theorem 5.1 means that, within the semantic domain described
in Section 5.2.1, the secure distance-bounding property can be verified by simply analyzing
the ordering of events in the traces. Therefore, the notions of time and location are indeed
unnecessary for the symbolic verification of distance-bounding protocols.

5.4 Conclusions

In this chapter we have studied the symbolic verification framework proposed by Basin et
al. [BCSS09, SSBC09]. This framework is based on timed-events and agents’ locations and
it delivers Isabelle/HOL-constructed (in)security proofs. Motivated by this work, we first
characterized a semantic domain of well-formed distance-bounding protocols in which the
timestamps associated to the agents’ actions are only utilized for proximity verification

86

Chapter 5. Causality-Based Secure Distance-Bounding

purposes and not for, e.g., taking a different branch in the execution. This is not a trivial
class of distance-bounding protocols but it contains, to the best of our knowledge, all
protocols published to date. Later, we proposed our main result, which consists of the first
causality-based security model for symbolic verification of distance-bounding protocols,
which we prove equivalent to Basin et al.’s model. Our security model can be used to verify
any well-formed distance-bounding protocol.

87

6
Collusion and Terrorist Fraud

Verification of cryptographic protocols is built upon the assumption that
participants have not revealed their long-term keys. However, in some
protocols participants can collude to defeat some security goals, without
revealing their long-term secrets.

In this chapter we develop a multiset rewriting formalism to reason about
collusion in security protocols, and introduce the notion of post-collusion
security, which verifies security properties claimed in sessions initiated after
the collusion. By means of post-collusion security, we extend the distance-
bounding security model of Chapter 5 (precisely Theorem 5.1) in order to
account for terrorist fraud.

Organization– In Section 6.1, we describe the multiset rewriting model
employed by the Tamarin prover. In Section 6.2, we extend this model
to formalize the concepts of collusion and post-collusion security. In this
section we also show how the notions of collusion post-collusion security
apply to authentication analysis. Later on, in Section 6.3, we use the
proposed notion of post-collusion security to provide a formal definition
of (resistance to) terrorist fraud. A summary of the chapter is provided in
Section 7.4.

89

6.1. Modeling Security Protocols

6.1 Modeling Security Protocols

This section describes the security model we use throughout this and the subsequent
chapters. It is based on the multiset rewriting theory employed by the Tamarin verification
tool [MSCB13, SMCB12], which we will use to conduct automatic verification. In the
multiset rewriting model, protocols are specified as transition rules and the associated
transition system describes the protocol executions. The states of the system are composed
of facts. Transition rules model how the protocol participants and the adversary behave
and interact.

6.1.1 Preliminaries

Notation. Given a set S, we denote by S] the set of finite multisets with elements from
S, and by S∗ the set of finite sequences of elements from S. The power set of S is denoted
by P (S). For any operation on sets, we use the superscript] to refer to the corresponding
operation on multisets, e.g. given the multisets M and M ′, M ∪]M ′ denotes the multiset
union of M and M ′.

Given a (multi)set S and a sequence s ∈ S∗, |s| denotes the length of s, si the i-th
element of s with 1 ≤ i ≤ |s|, and ε the empty sequence. We write s indistinctly as
[s1, . . . , sn] or s1 · · · sn (the choice depends on presentation). The concatenation of the
sequences s and s′ is denoted by s · s′. We use set(s) and multiset(s) to denote the set
and multiset of elements from s, respectively. Given a ∈ S and s ∈ S∗, we write a ∈ s for
∃i ∈ {1, . . . , |s|}. a = si.

For the sake of simplicity, when using universal or existential quantifiers, we will not
specify the domain unless it is ambiguous or cannot be inferred from the context.

Cryptographic Messages. To model cryptographic messages, we use an order-sorted term
algebra (S,≤, TΣ(V)) where S is a set of sorts, ≤ a partial order on S, Σ is a signature,
and V is a countably infinite set of variables. We consider three sorts: msg , fresh, pub ∈ S,
where fresh ≤ msg and pub ≤ msg . That is, msg is the super sort of two incomparable
sub-sorts fresh and pub, denoting fresh and public names, respectively. We use Vs ⊆ V to
denote the set of term variables of sort s and write x : s to indicate x ∈ Vs.

Each function symbol f ∈ Σ has a type (w, s) ∈ S∗ ×S, where w is the arity and s the
sort. If w is the empty sequence ε, then f denotes a constant of sort s. We use Σw,s ⊆ Σ to
denote the family of function symbols of type (w, s). Special function families are Σε,fresh

and Σε,pub , denoting fresh names (a.k.a. nonces) and public names, respectively. Public
names include constants (often written in between quotations, e.g. ‘hello’), and agents’
names. The following function symbols are reserved:

• 〈 , 〉 ∈ Σmsg×msg,msg to pair two terms.

• fst, snd ∈ Σmsg,msg to extract the first and second term from a pair, respectively.

• senc, sdec ∈ Σmsg×msg,msg for symmetric encryption and decryption, respectively.
The second argument is the key.

• aenc, adec ∈ Σmsg×msg,msg for asymmetric encryption and decryption, respectively.
The second argument is the encryption/decryption key.

90

Chapter 6. Collusion and Terrorist Fraud

• pk ∈ Σmsg,msg to indicate the asymmetric public key of the argument.

• sign ∈ Σmsg×msg,msg and verify ∈ Σmsg×msg×msg,pub to create and verify signatures,
respectively.

The semantics of the function symbols above is formalized by the equational theory E,
which is in turn defined by the following equations over Σ, where true ∈ Σε,msg :

fst(〈x, y〉) = x, snd(〈x, y〉) = y,

sdec(senc(x, y), y) = x, adec(aenc(x,pk(y)), y) = x,

verify(sign(x, y), x,pk(y)) = true.

We use t =E t
′ to denote that terms t and t′ are equal modulo E. Terms in our term

algebra without free variables are called ground terms. A substitution is a well-sorted
function σ : V → TΣ(V), i.e. (σ(x) = y ∧ x : s) =⇒ y : s, from variables to terms. We use
tσ to denote the application of the substitution σ to the term t.

Multiset Rewriting System. We model the execution of a protocol as a labeled transition
system. A state in the system is a multiset of facts, and a fact is a term of the form
F (t1, . . . , tn) where F is a symbol from an unsorted signature Γ and t1, . . . , tn are terms
in TΣ(V). For n ≥ 0 we denote by Γn ⊆ Γ the set of fact symbols with n arguments.
The application of a substitution function σ to a fact F (t1, . . . , tn), denoted F (t1, . . . , tn)σ,
results in the fact F (t1σ, . . . , tnσ). The set of all facts is denoted F and the set G ⊆ F
denotes the set of ground facts, which are facts with only ground terms as arguments.

We extend equality modulo E from terms to facts as follows. Given two facts u and u′,
we write u =E u

′ to indicate that they are equal modulo E. Formally, u =E u
′ if and only

if there exist n ≥ 0, t1, . . . , tn, t′1, . . . , t′n ∈ TΣ(V), and F ∈ Γn such that u = F (t1, . . . , tn),
u′ = F (t′1, . . . , t

′
n), and ti =E t

′
i for all i ∈ {1, . . . , n}. Substitution and equality modulo E

are also extended to sequences of facts. Given two sequences s, s′ ∈ F∗, s =E s
′ if and only

if |s| = |s′| and si =E s
′
i for all i ∈ {1, . . . , |s|}.

A fact symbol is either linear or persistent. Linear fact symbols model resources that
are exhaustible, such as a message sent to the network. Persistent fact symbols model
inexhaustible resources, such as the adversary knowledge. Given a sequence of facts s ∈ F∗,
we write linear(s) and persist(s) to denote the multiset of linear facts from s, and the set
of persistent facts from s, respectively.

We reserve the linear fact symbols In,Out,Fr ∈ Γ1. The facts In(m) and Out(m) denote
the reception and sending of m, respectively. Fr(m) indicates that m is a fresh name.
The persistent fact symbols K ∈ Γ1, Ltk ∈ Γ2, Shk ∈ Γ3 and KeyComp ∈ Γ1 are also
reserved. K(m) indicates that the message m is known to the adversary. Facts with
symbols Shk and Ltk are used to associate agents to their long-term cryptographic keys.
Shk(A,B, k) indicates that k is the long-term symmetric key shared by A and B, and
Ltk(A, sk) indicates that A holds the long-term asymmetric private key sk. We say that
an agent A is compromised if the agent has revealed at least one of their long-term keys;
and we use the fact KeyComp(A) to indicate so.

The execution of a protocol starts with the empty multiset of facts, and evolves through
multiset rewriting rules. A multiset rewriting rule is a tuple (p, a, c), written as

[
p
]a−→[c],

where p, a and c are sequences of facts called the premises, the actions, and the conclusions

91

6.1. Modeling Security Protocols

of the rule, respectively. Each variable that occurs in a multiset rewriting rule is assumed
to be of sort msg , unless otherwise indicated.

A ground instance of a rule r :=
[
p
]a−→[c] is obtained via application of a substitution

function σ to result in rσ :=
[
pσ
]aσ−→[cσ] where pσ, aσ and cσ consist of ground facts only.

Given a set of rules R, we denote ginsts(R) the set of ground instances of the rules from R.
We write g ∈E G, where g is a (possibly ground) rule and G is a set of (possibly ground)
rules, to indicate that ∃g′ ∈ G. g =E g

′.
A set R of multiset rewriting rules defines a multiset rewriting system: an LTS whose

set of states is G] and whose transition relation →R ⊆ G] × P (G)× G] is defined by:

S
l−→R S′ ⇐⇒
∃(p, a, c) ∈E ginsts(R).

linear(p) ⊆] S ∧ persist(p) ⊆ set(S) ∧
S′ = (S \] linear(p)) ∪] multiset(c) ∧ l = set(a). (6.1)

A transition is performed by applying a ground instance of a transition rule. The rule
is applicable if the current system state contains all facts in the premises of the rule. The
rule application removes the linear facts from the state, keeps the persistent facts, and
adds the facts from the conclusions. An execution of R is a finite alternating sequence
[S0, l1, S1, . . . , ln, Sn] of states and labels such that the following three conditions hold:

(1) S0 = ∅],

(2) Si−1
li−→R Si for 1 ≤ i ≤ n, and

(3) If Si+1 \] Si = {Fr(x)}] for some i and x, then j 6= i does not exist such that
Sj+1 \] Sj = {Fr(x)}].

The third condition guarantees that fresh names are generated once. The set of all
executions of R is denoted JRK.

6.1.2 Protocol Specification

A protocol is specified as a set of multiset rewriting rules, called protocol rules, with the
restrictions: (1) fresh names and K facts do not occur, (2) In and Fr facts do not occur in
the conclusions, and (3) every variable occurring in the actions or conclusions either occurs
in the premises or is of sort pub. The universe of all rules that satisfy these conditions is
denoted R.

Example 6.1 (The Toy protocol). Figure 6.1 shows a message sequence chart (MSC) [CM12]
of the Toy protocol, an example protocol which we will use for illustration throughout
the paper. The initiator I creates a nonce1 ni, and sends it to the responder agent R,
encrypted with their shared long-term symmetric key. Upon reception, R decrypts the
received message to learn ni. Then, R creates his own nonce nr, encrypts it using the
nonce ni as a key, and sends that encrypted message to I. Upon reception of senc(nr, ni),

1We will indistinctly use “nonce" and “fresh name", though they mean the same thing: a number
generated once.

92

Chapter 6. Collusion and Terrorist Fraud

shared k

I

shared k

R

fresh ni fresh nr

senc(ni, k)

senc(nr, ni)

h(nr)

agree ni, nr

Figure 6.1 The Toy protocol.

I learns nr and sends back to R a hash of nr. Such a value allows R to be convinced that
I has executed the protocol with R and agrees on the nonces nr and ni. The protocol rules
are depicted in Figure 6.2.

The specification of the Toy protocol uses fact symbols that are reserved, such as
Shk. Indeed, we assume that all protocol specifications use reserved fact symbols with the
intended meaning. The remaining facts are used to either determine protocol progress or
enrich execution traces with information that will be later used to analyze trace properties.

For example, RState1(I,R, ni, nr) appears in the conclusion of R1 and in the premises
of R2, allowing to establish an order between R1 and R2. The facts of the form Start(x)

and End(x) denote the start and the end of a protocol run by an agent, respectively. The
term x denotes the run identifier. We delay the discussion of the fact symbols Commit and
Running until the introduction of security properties in Section 6.1.4.

For the remainder of this chapter, the fact symbols Start and End are reserved to mark
the start and end of the protocol execution. Also we assume that the protocol specification
is consistent with the usage of Start and End. In particular, we assume that all End facts
are reachable from the empty state.

6.1.3 Execution and Adversary Model

Given that protocol rules cannot generate fresh names, i.e. protocol rules are not allowed
to use Fr facts in their conclusion, we add a special rule Fresh, independent of the protocol
specification, to model generation of fresh names. This rule adds a fact Fr(x) into the
system state, where x is a variable of type fresh, without consuming facts from the state:

Fresh :=
[]
−→
[
Fr(x)

]
where x : fresh.

To model the adversary’s actions we use the standard Dolev-Yao network adversary,
modeled by the rules depicted in Figure 6.3, which we will explain in the next paragraph.
We remark that the compromise capabilities of the adversary are part of the protocol
specification (e.g. KeyCompI and KeyCompR in the Toy protocol). We will extend this model
with collusion actions in the next section.

93

6.1. Modeling Security Protocols

KeyGen :=
[
Fr(k)

]
−→
[
Shk(I,R, k)

]
ShkCompI :=

[
Shk(I,R, k)

]KeyComp(I)−−−−−−−→
[
Out(k)

]
ShkCompR :=

[
Shk(I,R, k)

]KeyComp(R)−−−−−−−−→
[
Out(k)

]
I1 :=

[
Fr(ni),

Shk(I,R, k)

]
Start(ni)−−−−−−→

[
Out(senc(ni, k)),
IState1(I,R, ni)

]

R1 :=

 Fr(nr),
In(senc(ni, k)),
Shk(I,R, k)

 Start(nr)−−−−−−→

Out(senc(nr, ni)),
RState1(I,R,

ni, nr)


I2 :=

[
IState1(I,R, ni),
In(senc(nr, ni))

] Running(I,R,
〈‘I’,‘R’,ni,nr〉), End(ni)−−−−−−−−−−−−−−→

[
Out (h(nr))

]
R2 :=

[
RState1(I,R, ni, nr),

In (h(nr))

] Commit(R,I,
〈‘I’,‘R’,ni,nr〉), End(nr)−−−−−−−−−−−−−−→

[]
Figure 6.2 Specification rules of the Toy protocol.

Learn :=
[
Out(x)

]
−→
[
K(x)

]
Inject :=

[
K(x)

]K(x)−−−→
[
In(x)

]
AdvFresh :=

[
Fr(x)

]
−→
[
K(x)

]
Public :=

[]
−→
[
K(x)

]
where x : pub

Funct :=
[
K(x1), . . . ,K(xn)

]
−→
[
K (f(x1, . . . , xn))

]
Figure 6.3 Dolev-Yao rules.

The rules Learn and Inject model the adversary’s ability to learn messages being
sent and to inject any of their known messages, respectively. The rule AdvFresh declares
that the adversary can generate their own fresh names. The rule Public states that the
adversary knows all public messages and the rule Funct indicates that the adversary can
evaluate any function, provided that they know the inputs.

We denote by I the set of intruder rules in Figure 6.3 together with the rule Fresh,
which will form part of every protocol specification. Hence, the set of all executions of a set
Proto of protocol rules is JProto ∪ IK. Moreover, given an execution [S0, l1, S1, . . . , ln, Sn]

of Proto, the sequence l1 · · · ln is called the trace. The set of all traces of Proto is denoted
Tr (Proto), i.e Tr (Proto) = {l1 · · · ln | [S0, l1, S1, . . . , ln, Sn] ∈ JProto ∪ IK}.

6.1.4 Security Properties

Security properties are verified on execution traces. Certain facts on the traces indicate a
security claim, e.g. the Commit fact in the Toy protocol. A security claim denotes a belief

94

Chapter 6. Collusion and Terrorist Fraud

(traditionally of an agent) about the protocol execution that led to the claim. Formally,
we define a security property ϕ as a relation on traces and integer numbers such that
ϕ(t1 · · · tn, i) means that security claims in ti are valid. Recall that a trace is a sequence of
labels, which in turn are sets of ground facts.

For illustration purposes, let us instantiate ϕ with the authentication property non-
injective agreement, as defined by Lowe in [Low97]. Following Lowe’s notation, we use the
fact symbols Running and Commit as markers in the traces to indicate those execution steps
where agreement is expected to be satisfied, e.g. as used by rules I2 and R2 in Figure 6.2.

Non-injective agreement on a message m is guaranteed to an agent A, if whenever A
completes a run apparently with B, denoted by the claim Commit(A,B,m), then B has
previously performing a run apparently with A and they both agree on m, denoted by the
fact Running(A,B,m):

ni_agree(t, i) ⇐⇒ (6.2)

∀A,B,m. Commit(A,B,m) ∈ ti =⇒
(∃j. Running(B,A,m) ∈ tj) ∨
(∃j. KeyComp(A) ∈ tj ∨ KeyComp(B) ∈ tj) .

On the one hand, the prefix-closure of traces imposes an implicit order j < i in
Equation 6.2, which is suggested by the word “previously" in the description of the property.
On the other hand, the last line of Equation 6.2 indicates that the property is conditional
on A and B not being compromised.

Definition 6.1 (Security). A set Proto of protocol rules satisfies a security property ϕ,
denoted Proto |= ϕ, if:

∀t ∈ Tr (Proto) , i ∈ {1, . . . , |t|}. ϕ(t, i).

The Toy protocol satisfies2 non-injective agreement, i.e. Toy |= ni_agree. We write
Proto 6|= ϕ to indicate that Proto |= ϕ does not hold.

6.2 Collusion

In recent years, the adversary model of Dolev and Yao [DY83] has become an accepted
standard. The Dolev-Yao adversary is capable of intercepting, blocking or modifying
messages on the communication network, as well as injecting their own messages. Further,
the adversary is assumed to be capable of compromising protocol participants (a.k.a. users,
agents), gaining full control of them for the entire protocol execution. Indeed, computer-
assisted verification approaches typically consider Dolev-Yao adversaries. Such approaches
have proven useful in verifying or discovering attacks on real-world, complex protocols such
as 5G authentication [BDH+18], the TLS 1.3 protocol suite [CHH+17], and key-exchange
protocols such as Naxos [SMCB12].

In some cases, the Dolev-Yao model has been shown to be too coarse-grained. This is
because this model assumes that agents can be categorized as being either honest: those

2All Tamarin models and proofs used for this thesis can be found in our repository https://github.
com/jorgetp/dbverify.

95

https://github.com/jorgetp/dbverify
https://github.com/jorgetp/dbverify

6.2. Collusion

who precisely follow their protocol specification; or compromised: those who deviate from
their protocol specification as desired by the adversary. The concern lies in accounting for
agents who cannot be classified in either group.

For example, a given agent might choose to deviate from the protocol specification, but
only if certain guarantees are met in later executions of the protocol. Would a university
student willingly, due to certain benefit, lend their campus access card to a university-
external friend? The student’s decision might be conditional on their assertion that their
friend will not be able to later access the campus, after the card has been returned to
its owner. Would a user of a video streaming platform utilize a VPN extension to fool
geo-location restrictions? The user’s decision might be based on whether they are certain
that the VPN extension is not malicious and will not cause irreversible harm.

In this section we refine the traditional Dolev-Yao adversary model in order to capture
collusion. Collusion refers to any deviation of the protocol specification by agents who
are not under control of the adversary. Furthermore, we introduce the notion of post-
collusion security, which refers to security guarantees about claims made in execution
sessions initiated after the collusion. Informally, one can interpret the relation of these
two notions as follows: post-collusion security allows the potential colluding agents to
decide whether colluding is worth it. After all, what the agents gain out of colluding must
outweigh the collateral effect that such collusion might have on themselves. On the other
hand, a protocol designer might aim to increase the cost of collusion.

More precisely, in Section 6.2.1 we extend the adversary model with collusion rules,
which express ways in which non-compromised agents can deviate from the protocol
specification. In an illustrative example, we show how such extension invalidates, under the
traditional security verification model (Definition 6.1), the agreement-based authentication
property given earlier (Section 6.1.4). Later, in Section 6.2.2 we provide the formulation of
post-collusion security.

6.2.1 Collusion Rules

In the traditional Dolev-Yao compromise model, agents are assumed to be either compro-
mised (a.k.a. corrupt, dishonest) or non-compromised (a.k.a. honest). Non-compromised
agents follow precisely the protocol specification, whilst compromised agents deviate from
it as pleased by the adversary.

We refine the traditional Dolev-Yao compromise model so that agents can collude in
order to provide false proof to their communication partners of a certain claim’s validity.
Collusion refers to non-compromised agents’ deviation from their protocol specification.

For example, assume Alice is running an authentication protocol (supposedly) with Bob.
Consider also a third party Charlie who, in cooperation with Bob, impersonates Bob when
communicating with Alice. Bob could trivially achieve this by giving all his secret keys to
Charlie. But, does Bob really have to do so in order to cheat on Alice? Not necessarily.
Indeed, Bob can provide Charlie (possibly in advance) with all the messages that Charlie
needs to successfully complete a protocol session with Alice, posing as Bob. Such aid by
Bob is what we call collusion, and we call Bob a colluding agent.

Collusion is modelled by extending the protocol specification such that agents may
deviate from the protocol’s intended execution. Typically, the deviation consists of leakage
of session data, cryptographic oracles, reuse of nonces, or state reveals. For example, in the

96

Chapter 6. Collusion and Terrorist Fraud

Toy protocol I might collude with a compromised agent, say Eve, by leaking ni. This can
be modelled with the rule:

Leak_ni :=
[
IState1(I,R, ni)

] Collusion()−−−−−−−−→
[
IState1(I,R, ni),

Out(ni)

]
(6.3)

which leads to the statement:

Toy ∪ {Leak_ni} 6|= ni_agree .

The rules that extend the protocol specification to model collusion are called collusion
rules. By convention, and also to syntactically distinguish legitimate protocol rules from
collusion rules, we will assume that all collusion rules have an action fact of the form
Collusion(). We denote by C ⊆ R the universe of all collusion rules. We restrict the set of
collusion rules by requiring them to not prevent agents from completing legitimate protocol
runs.

Definition 6.2 (Valid Extension). Let Proto ⊆ R \ C be a protocol and C ⊆ C be a set of
collusion rules, we say that Proto′ = Proto ∪ C is a valid extension of Proto if:

∀α ∈ Tr
(
Proto′

)
, i, x.

(Start(x) ∈ αi ∧ @j. End(x) ∈ αj) =⇒
∃β. α · β ∈ Tr

(
Proto′

)
∧ End(x) ∈ β|β|.

Definition 6.2 states that collusion rules do not create points of no-return during
execution. That is to say, agents must always be able to complete their runs even if they
have colluded. For example, Toy ∪ {Leak_ni} is a valid extension of Toy because, even if
I leaks ni in some execution, I might still continue with the intended protocol execution.
This means that the system can execute the next rule concerning I, i.e. I2, should the
system state contain the facts IState(I,R, ni) and In(senc(ni, nr)) for some nr. Thus, I
can log the fact Running(I,R, 〈‘R’, ‘I’, nr, ni〉) into the trace which means that indeed I has
been running the protocol with R and they both agree on ni and nr. This is particularly
important for authentication properties. After all, they are meant to guarantee an agent’s
claim about their peer’s local state.

An example of a rule that leads to a non-valid extension of Toy is the following:

NonValidRule :=
[
IState1(I,R, ni)

]Collusion()−−−−−−→
[]

.

Thus Toy ∪ {NonValidRule} is not a valid extension of Toy because if this rule is
applied, it will consume the fact IState1(I,R, ni) from the system state, and so I will never
be able to continue with the current run (identified by ni).

6.2.2 Post-Collusion Security

We informally define post-collusion security as follows.

Definition 6.3 (Informal). Post-collusion security is the guarantee of security claims made
in sessions initiated after the collusion.

97

6.2. Collusion

1 ne i

complete runs post-collusion

Figure 6.4 A trace t = t1 · · · te · · · ti · · · tn can be broken down into a pre-collusion trace
consisting of completed runs (e.g. before e), and a second subtrace containing post-collusion
claims (e.g. a claim made in ti).

The remainder of this section is intended to formalise the above informal definition of
post-collusion security. Moreover, we will use the Toy protocol and the agreement property
from the previous sections to illustrate our definitions and intuitions.

To identify claims made in sessions initiated after the collusion, which we call post-
collusion claims, we must make sure that all sessions before or while the (last) collusion
occurred are complete. The reason for this is that the agent who makes a security claim
cannot always decide whether their communication partner is still acting on a run initiated
before or during the collusion. That is, a claim by Alice about her communication with
Bob is a post-collusion claim if both Alice and Bob have completed their runs that started
before or while Bob colluded. That way we make sure that Alice makes her claim in a
session initiated after Bob’s collusion action.

Consider a trace t = t1 · · · te · · · ti · · · tn, and an index e such that all collusion actions
(if any) occurred before e. If all runs initiated before e were completed before e too, then
we call the security claims made after e post-collusion claims. See Figure 6.4 for a graphical
representation. Note that every claim that occurs after a post-collusion claim is also a
post-collusion claim.

Below in Definition 6.4 we formulate post-collusion security, in which we use the following
helper predicates on sequences of sets of ground facts:

complete(l) ⇐⇒ ∀i, x. (Start(x) ∈ li =⇒ ∃j. End(x) ∈ lj),
nocollusion(l) ⇐⇒ @j. Collusion() ∈ lj .

On the one hand, complete(l) holds if all runs initiated in l are also completed in l. On
the other hand, nocollusion(l) means that no collusion actions occurred in l.

Definition 6.4 (Post-Collusion Security). Given a protocol Proto, a valid extension Proto′

of Proto, and a security property ϕ, we say that Proto′ is post-collusion secure with respect
to ϕ, denoted Proto′ |=? ϕ, if:

∀t ∈ Tr
(
Proto′

)
, e ∈ {1, . . . , |t|}.

(complete(t1 · · · te) ∧ nocollusion(te+1 · · · t|t|))
=⇒ ∀i > e. ϕ(t, i). (6.4)

We write Proto′ 6|=? ϕ to indicate that Proto′ |=? ϕ does not hold. As Figure 6.5 shows,
Toy ∪ {Leak_ni} is not post-collusion secure with respect to non-injective agreement, i.e.

Toy ∪ {Leak_ni} 6|=? ni_agree. (6.5)

The attack works with two consecutive sessions in which an attacker Eve can re-use the
first message senc(ni, k) and ni of the first session to impersonate I in the second session.

98

Chapter 6. Collusion and Terrorist Fraud

shared k with I

R

shared k with R

I Eve

fresh nifresh nr

senc(ni, k) ni

senc(nr, ni)

h(nr)

agree ni, nr

fresh nr′

senc(ni, k)

senc(nr′, ni)

h(nr′)

agree ni, nr′

Figure 6.5 An MSC showing that the Toy protocol with collusion, represented by the
dashed arrow, is not post-collusion secure with respect to non-injective agreement.

Observe that the second claim is a post-collusion claim as the first session is complete and
no collusion occurred in the second session.

The impact of post-collusion security can depend on the circumstances in which a given
protocol is deployed. We see from the Toy protocol that the effects of collusion can cause
an irreversible change to the truth value of future authentication claims. Thus, a legitimate
agent playing the initiator role would not want to collude with a “friend” by giving them
their nonce ni, as this would lead to impersonation. On the contrary, suppose a given
protocol is post-collusion secure with respect to a desirable authentication property. Then,
an agent can issue their “one-time” keys to their friends if desired, confident that these
friends will not be able to re-use this information for later authentication.

6.3 Post-Collusion Security in Distance Bounding

In this section we use post-collusion security to develop a symbolic formulation of (resistance
to) terrorist fraud in distance-bounding protocols. First we give a protocol example in order
to illustrate the modeling of distance-bounding protocols by using the multiset rewriting
model from Section 6.1. We pay particular attention to restrictions to the Dolev-Yao model
that are necessary to model physical limitations of the communication channel. Later on, in
Section 6.3.1, we formulate the secure distance-bounding property proposed in [MSTT18b]
to verify this type of protocols. Finally, in Section 6.3.2, we provide a symbolic formulation
of resistance to terrorist fraud.

99

6.3. Post-Collusion Security in Distance Bounding

shared k

V

shared k

P

fresh n fresh m

senc(m, k)

n

RTT f(n,m, P)

P is close

Figure 6.6 The DBToy protocol.

Example 6.2 (The DBToy Protocol). Figure 6.6 depicts the DBToy protocol, which works
as follows. The prover P encrypts a fresh name m with the shared key between P and the
verifier V . Then P sends the encrypted message to V . Hence, the fast phase starts with V
sending the fresh name n as the challenge, to which P must reply with f(n,m,P). If P
replies correctly and on time, then V declares P as being close. The specification rules of
DBToy are shown in Figure 6.7.

In the rules we introduced the linear fact symbols Send,Recv ∈ Γ2, Action ∈ Γ1 and
DBSec ∈ Γ4. A fact Send(X,m) denotes the sending of m by the agent X and a fact
Recv(X,m) denotes the reception by X of the message m. A fact Action(X) denotes
that an action was executed by X. A fact DBSec(V, P, ch, rp) denotes V ’s claim that P
is close during the fast phase delimited by Send(V, ch) and Recv(V, rp). The remaining
newly introduced facts denote the agents’ information on the system state. Recall that the
(reserved) fact symbols Shk and KeyComp are persistent. The rest of the fact symbols used
in Figure 6.7 are linear.

The rules DBNet and DBAdv were introduced in [MSTT18b] to restrict the Dolev-
Yao attackers’ communication with protocol participants. This was briefly motivated in
Section 2.2. The aim is to capture the statement “every message that can be received by
the verifier during the fast phase has been sent from a real physical location”. The reason
behind this is that messages cannot travel faster than light, thus the adversary cannot
instantaneously send a message to an agent (as modelled by Dolev-Yao’s rule Inject in
Figure 6.3). Hence, in order for the adversary to inject data on an agent’s receiver, they
must use a compromised agent as the sender, ergo the message takes a while to arrive to
the receiver. Note that we do not drop the rule Inject but we use Recv and Send facts to
model the sending and receiving of messages during the fast phase.

In line with this, we will assume that every set of rules defining a distance-bounding
protocol is consistent with the usage of Send, Recv and Action facts as follows: (1) every
message m sent by the prover P is modeled by a rule with a fact Send(P,m) in the
conclusions, (2) every message m received by the verifier V during the fast phase is modeled
by a rule with a fact Recv(V,m) in the premises, and (3) every prover rule has the action

100

Chapter 6. Collusion and Terrorist Fraud

KeyGen :=
[
Fr(k)

]
−→
[
Shk(V, P, k)

]
KeyRevV :=

[
Shk(V, P, k)

]KeyComp(V)−−−−−−−−→
[

Out(k),
KeyComp(V)

]
KeyRevP :=

[
Shk(V, P, k)

]KeyComp(P)−−−−−−−−→
[

Out(k),
KeyComp(P)

]
DBNet :=

[
Send(X,m)

]Action(Y), Recv(Y,m)−−−−−−−−−−−−−→
[

Out(m),
Recv(Y,m)

]
DBAdv :=

[
In(m),

KeyComp(X)

]
Action(X)−−−−−−→

[
Send(X,m)

]
P1 :=

[
Fr(m),

Shk(V, P, k)

]
Start(m), Action(P)−−−−−−−−−−−−→

[
Send(P, senc(m, k)),

ProvSt1(P,m)

]

V1 :=

 Fr(n),
Shk(V, P, k),
In(senc(m, k))

 Start(n),
Send(V,n)−−−−−−→

[
VerifSt1(V, P, n,m)

]
P2 :=

[
ProvSt1(P,m),

In(n)

]
Action(P), End(m)−−−−−−−−−−−→

[
Send(P, f(n,m,P))

]
V2 :=

[
VerifSt1(V, P, n,m),
Recv(V, f(n,m,P))

] DBSec(V,P,n,f(n,m,P)),
End(n)−−−−−−−−−−−−−−−−→

[]
Figure 6.7 Specification rules of the DBToy protocol.

fact Action(P) where P is the prover’s name.

6.3.1 Secure Distance-Bounding

In Definition 5.2, we formulated a causality-based property to verify distance-bounding
protocols. The property resembles a form of aliveness [Low97, CM12] as the prover must
perform some action during the fast phase of the protocol. The authors demonstrated that
a verifier’s guarantee that the prover is alive during the fast phase is equivalent to the
verifier’s guarantee that the fast phase RTT provides an upper bound to their distance to
the prover. Next we formulate the property:

dbsec(t, l) ⇐⇒
∀V, P, ch, rp. DBSec(V, P, ch, rp) ∈ tl =⇒

(∃i, j, k. i < j < k ∧ Send(V, ch) ∈ ti ∧
Action(P) ∈ tj ∧ Recv(V, rp) ∈ tk) ∨

(∃b, b′, i, j, k, P ′.
i < j < k ∧ Send(V, ch) ∈ ti ∧
Action(P ′) ∈ tj ∧ Recv(V, rp) ∈ tk ∧
KeyComp(P) ∈ tb ∧ KeyComp(P ′) ∈ tb′) ∨

(∃i. KeyComp(V) ∈ ti). (6.6)

101

6.3. Post-Collusion Security in Distance Bounding

Secure distance-bounding holds for a trace t if, whenever a claim DBSec(V, P, ch, rp)

occurs, it is the case that there is an action of P (or a compromised prover P ′ if P is
compromised) during the fast phase. Tamarin provides proof of DBToy |= dbsec.

Observe that, unlike the agreement property from Section 6.1, dbsec does not exclude
traces in which one of the agents involved in the security claim is compromised. Instead,
should the prover be compromised, then the verification fails only if no compromised prover
is active in the fast phase.

6.3.2 Formalizing (Resistance To) Terrorist Fraud

In this section we provide a formal, symbolic definition of resistance to terrorist fraud.
Recall that this is an attack in which agents collude to falsely prove proximity for one run
of the protocol, whereas no further false proximity proofs can be issued without further
collusion. We informally define this attack as follows.

Definition 6.5 (Informal). Terrorist fraud (TF) is an attack in which a remote and non-
compromised prover P colludes with a close and compromised prover P ′ to make the verifier
believe that P is close. Conditionally, P ′ (or any other compromised prover) must not be
able to attack the protocol again without further collusion.

While the dbsec property allows us to detect attacks such as distance fraud [Des88]
and distance hijacking [CRSC12], it is too fine-grained for modelling terrorist fraud, as we
require the distant and colluding prover to be non-compromised. In line with this reasoning,
we define below a property broader than dbsec, that is conditional on non-compromise of
both prover and verifier:

dbsec_hnst(t, l) ⇐⇒
∀V, P, ch, rp. DBSec(V, P, ch, rp) ∈ tl =⇒

(∃i, j, k. i < j < k ∧ Send(V, ch) ∈ ti ∧
Action(P) ∈ tj ∧ Recv(V, rp) ∈ tk) ∨

(∃i. KeyComp(V) ∈ ti ∨ KeyComp(P) ∈ ti).

We formally define next resistance to terrorist fraud, a property formulated by means
of post-collusion security with respect to dbsec_hnst .

Definition 6.6 (Resistance to terrorist fraud). A protocol Proto ⊆ R \ C is resistant to
terrorist fraud if every valid extension Proto′ of Proto that breaks dbsec_hnst is not
post-collusion secure with respect to dbsec_hnst , i.e.

Proto′ 6|= dbsec_hnst =⇒ Proto′ 6|=? dbsec_hnst . (6.7)

Observe that resistance to terrorist fraud is a property on protocols rather than on
traces. Further, note that terrorist fraud uses the negation of post-collusion security. That
is because, in a terrorist fraud attack, the colluding prover wishes to allow their partner to
complete the protocol only whilst they are cooperating.

Theorem 6.1. DBToy is resistant to terrorist fraud.

102

Chapter 6. Collusion and Terrorist Fraud

Proof. Let DBToy ′ be a valid extension of DBToy such that DBToy ′ 6|= dbsec_hnst . Thus,
there exist t1 · · · tl ∈ Tr (DBToy ′), and n,m, V, P ∈ TΣ, and i, k ∈ {1, . . . , l} with i < k,
such that:

Send(V, n) ∈ ti ∧ Recv(V, f(n,m,P)) ∈ tk ∧
DBSec(V, P, n, f(n,m,P)) ∈ tl ∧
(@j ∈ {i+ 1, . . . , k − 1}. Action(P) ∈ tj) ∧
(@j ∈ {1, . . . , l}. KeyComp(V) ∈ tj) ∧
(@j ∈ {1, . . . , l}. KeyComp(P) ∈ tj), (6.8)

Hence, because of Equation 6.8 above and given that the fact Recv(V, f(n,m,P)) can
only occur due to the rule DBNet (see Figure 6.7), we derive that:

∃c, j ∈ {1, . . . , k − 1}, C. (Send(C, f(n,m,P)) ∈ tj ∧ KeyComp(C) ∈ tc) . (6.9)

Equation 6.9 implies that ∃w < k. K(m) ∈ tw. This means that DBToy ′ has a collusion
rule in which m is given away. In addition, if the adversary knows m, then they can use a
compromised prover to run again the protocol with V on behalf of P , by using the messages
senc(m, k) and f(n2,m, P) in that order, where n2 is V ’s (new) challenge. This reasoning
can be formalized as follows.

Given that DBToy ′ is a valid extension of DBToy (see Definition 6.2) we have that
e ≥ l, and tl+1, . . . , te exist such that:

t1 · · · tl · · · te ∈ Tr
(
DBToy ′

)
∧ complete(t1 · · · tl · · · te). (6.10)

Now, l2 ≥ e, and te+1, . . . , tl2 , and n2, and i2, k2 ∈ {e+ 1, . . . , l2 − 1} exist such that:

t1 · · · tl · · · te · · · tl2 ∈ Tr
(
DBToy ′

)
∧

Send(V, n2) ∈ ti2 ∧ Recv(V, f(n2,m, P)) ∈ tk2 ∧
DBSec(V, P, n2, f(n2,m, P)) ∈ tl2 ∧
(@j ∈ {i2 + 1, . . . , k2 − 1}. Action(P) ∈ tj) ∧
(@j ∈ {1, . . . , l2}. KeyComp(V) ∈ tj) ∧
(@j ∈ {1, . . . , l2}. KeyComp(P) ∈ tj). (6.11)

Therefore, from Equations 6.10 and 6.11 we deduce that DBToy ′ 6|=? dbsec_hnst3 which
completes the proof.

6.4 Conclusions

In this chapter we briefly discussed about security protocols in the presence of colluding
agents. Colluding agents are agents who are not under full control of the adversary, yet
they are willing to deviate from the intended protocol execution with the goal to invalidate
a given property. Agents can collude to break a given security property, i.e. make a proving
participant believe that certain properties hold, even if the proving party’s communication

3A Tamarin proof for a given DBToy ′ is also available in our repository.

103

6.4. Conclusions

partners are not under full control of the adversary. We introduced the notion of post-
collusion security, which provides security guarantees even if the agents involved have been
colluding in previous sessions of the protocol.

We have proposed a concrete symbolic formulation of post-collusion security that can
be implemented in state-of-the-art protocol verification tools such as Tamarin. We used
our definition to illustrate that leakage of session data can lead to impersonation of agents.
This is particularly interesting in the context of authentication properties in which agents,
by leaking session-fresh data that is apparently harmless for later executions, enable the
adversary to successfully break the authentication property in every session thereafter.

By means of post-collusion security, we provided a symbolic definition of (resistance
to) terrorist fraud. Recall that this is an attack in which a distant prover colludes with a
compromised prover who is co-located with the verifier. As a result, they cause the verifier
to falsely believe that the distant prover is proximal; whilst no further false proximity proof
can be provided without further collusion.

104

7
Automatic Verification

In this chapter we show how our definitions from Chapters 5 and 6 can
be used to automatically deliver symbolic proofs of (in)security of distance-
bounding protocols. Specifically, we utilize the distance-bounding security
model of Chapter 5, its collusion-based extension developed in Chapter 6,
and the Tamarin prover to build a verification framework that accounts for
all four classes of distance-bounding attacks: mafia fraud, distance fraud,
distance hijacking, and terrorist fraud.

By using our framework, we conduct a comprehensive security survey of
protocols, including industrial protocols such as EMV contactless payment
protocols. We provide fixes for the vulnerabilities encountered in the indus-
trial protocols and provide computer-verifiable security proofs of the repaired
protocols.

Organization– In order to illustrate the overall verification methodology we
employ, we perform a detailed analysis of the TREAD protocol [ABG+17]
in Section 7.1. In Section 7.2, we describe the results of our verification of
a selection of over 25 distance-bounding protocols. In this section we also
discuss differences between our verification results and those of Chothia
et al.’s [CdRS18]. Finally, we analyze in detail the industrial protocols
in Section 7.3 based on the ISO/IEC 14443 standard (includes EMV pay-
ment protocols) and propose fixes for the vulnerabilities encountered. We
summarize our findings in Section 7.4.

105

7.1. Breaking the TREAD Protocol

7.1 Breaking the TREAD Protocol

A Prover-Anonymous and Terrorist-Fraud Resistant Distance-Bounding Protocol (TREAD)
is shown in Figure 7.1 and it consists of the traditional three phases. First, the prover P
generates two nonces α and β, and creates the message 〈α, β, idpriv(P)〉, where idpriv(P)

is an anonymous group identity. This message is signed by P , then encrypted, and sent
to the verifier V , together with P ’s public identity idpub(P). Upon reception, V decrypts
the message and verifies the signature. If correct, V finishes the first phase by sending a
random nonce m of size n to P . The second phase is a standard n-round fast phase wherein
V sends a random bit ci and P replies back with αi if ci = 0, with βi ⊕ mi otherwise.
The protocol finishes successfully if all responses during the fast phase are correct and the
round-trip times are below a predefined threshold (third phase).

The TREAD protocol was claimed to satisfy various security properties, in the compu-
tational model [DFKO11]. Relying on this model, a proof is given to show probabilistic
resistance1 against mafia fraud, distance fraud, terrorist fraud, and distance hijacking
attacks. However, by using our framework, we have identified mafia fraud and distance
hijacking attacks on this protocol.

To symbolically verify this protocol, we transform the fast phase into a single challenge
response message exchange (see Figure 7.2). We also ignore details that are irrelevant to
our security analysis, such as the anonymous identity of the prover, and upgrade bitwise
operations to stronger cryptographic primitives, such as a hash function. Overall, our goal
is to obtain an abstraction of the original protocol such that every attack found in the
abstraction can be mapped back onto the original protocol.

The TREAD can be instantiated with either a asymmetric or symmetric encryption.
We thus specified it in Tamarin with both variants: one where k is an asymmetric key and
another one where k is symmetric. In the first variant, Tamarin finds a simple man-in-
the-middle attack that violates the secure distance-bounding property Recall the property
from Definition 5.2 and formulated in the multiset rewriting language in Equation 6.6. The
attack is a mafia fraud and is depicted in Figure 7.3. A prover P starts a session with a
dishonest verifier E by sending message

〈
{α, β, P, {α, β, P}sk(P)}pk(E), P

〉
to E. Hence, E

decrypts the received message, learns the nonces α and β, and re-encrypts the message
with the public key of a legitimate verifier V . Next, the intruder starts a session with V
with the goal of impersonating P . To do so, E sends

〈
{α, β, P, {α, β, P}sk(P)}pk(V), P

〉
to

V . Then V checks that the signed message {α, β, P}sk(P) indeed corresponds to P , and
sends back two nonces m and c, where c is the fast phase challenge. The attack ends with
the intruder correctly replying to the challenge c with f(c,m, α, β).

The attack described above not only breaks standard authentication properties such
as agreement and synchronization [Low97, CM12], but also the secure distance-bounding
property as follows. Assume P is far from V and the intruder E wants to convince V that
P is close. To achieve this, E needs to be close to V and executes the attack above. Note
that the fast phase corresponds to the events containing the messages c and f(c,m, α, β),
which the intruder can successfully produce without relaying.

Interesting enough, if k is a symmetric key the described mafia fraud attack no longer
works. The reason is that the intruder does not know the secret key shared between P and

1No attack succeeds with non-negligible probability.

106

Chapter 7. Automatic Verification

decryption key k−1

V

encryption key k

P

nonces α, β ∈ {0, 1}2nnonces m, c ∈ {0, 1}n

u:=〈α,β,idpriv(P)〉
w:=〈u,signP (u)〉

{w}k, idpub(P)

m

ci

∆ti ri :=





αi if ci = 0
βi ⊕ mi if ci = 1

ri

Fast phase for i = 1 to n

verify ∀i. ∆ti≤∆tmax
verify correctness of all ri

Figure 7.1 The TREAD protocol.

dec. key k−1

V

enc. key k

P

nonces α, βnonces m, c

u:=〈α,β,P 〉
w:=〈u,{u}sk(P)〉

{w}k, P
m

c

RTT f(c,m, α, β)

P is close

Figure 7.2 A symbolic abstraction of the TREAD protocol.

107

7.2. A Security Survey of Distance-Bounding Protocols

V

Intruder

E P

nonces α, βnonces m, c

u:=〈α,β,P 〉
w:=〈u,{u}sk(P)〉

{w}pk(E), P

{w}pk(V), P

m

c

RTT f(c,m, α, β)

P is close

Figure 7.3 A mafia fraud attack on TREAD with asymmetric encryption.

V . Thus the intruder is prevented from re-encrypting the message received from P with
the correct key. Nevertheless, a distance hijacking attack is possible, irrespective of the
encryption scheme. The attack is represented in Figure 7.4.

Assume an honest prover P is close to the verifier V , whilst the intruder E is far from
V . As before, P executes the protocol to prove its proximity to E. This allows E to learn α
and β. Thus E starts a session with V by using the nonces α and β from P . At this point,
V believes E is a legitimate prover and accept its signature. During the fast phase, P who
is close to V , receives the challenge, supposedly from E, sent by V and replies correctly.
Then V receives the response f(c,m, α, β), supposedly from E, sent by P who is close to
V , and finishes the protocol with E correctly.

Neither of the two described attacks are possible when considering the adversary model
used by the authors of the TREAD protocol. That is because their model does not allow
for dishonest verifiers. In their model an honest prover will fail to initiate a communication
with an untrusted verifier as the first message in each attack will not be sent. This adversary
model is weaker than adversary models in the distance-bounding literature.

7.2 A Security Survey of Distance-Bounding Protocols

We conducted a security survey2 of over 25 state-of-the-art distance-bounding protocols.
For each of analyzed protocols, we verify whether it satisfies dbsec_hnst (without collusion),
whether it satisfies dbsec (also without collusion) and whether it resists terrorist fraud
(Definition 6.6). The results are shown in Table 7.1. In other chapter of this thesis (e.g. in
Tables 4.1 and 4.2) the following acronyms have been used: BC for Brands and Chaum’s
protocol [BC93], RC for Rasmussen and Capkun’s CRCS [RC10] protocol, Tree for Avoine

2Models and proofs available at https://github.com/jorgetp/dbverify

108

https://github.com/jorgetp/dbverify

Chapter 7. Automatic Verification

dec. key k−1
2

V

enc. key k1

P

dec. key k−1
1 , enc. key k2

E

nonces α, βnonces m, c

u:=〈α,β,P 〉
w:=〈u,{u}sk(P)〉

{w}k1, P

w′ := {α, β, E}sk(E)

{w′}k2, E
m

c

RTT f(c,m, α, β)

E is close

Figure 7.4 A distance hijacking attack on TREAD with symmetric encryption.

and Tchamkerten’s protocol [AT09], HK for Hancke and Kuhn’s protocol [HK05], MP for
Munilla and Peinado’s protocol [MP08], KA for Kim and Avoine’s protocol [KA09], and
BB for Bussard and Bagga’s DBPK protocol [BB05].

To identify the type of attack (except for terrorist fraud) against a given protocol, if
any, one may go through the outcome of Tamarin in interactive mode3 and inspect the
trace that invalidates the property dbsec. Two hints to identify such attacks are (1) if the
protocol does not satisfy dbsec_hnst , then a mafia fraud exists; and (2) if the protocol
satisfies dbsec_hnst but it does not satisfy dbsec, then a distance fraud exists, or a distance
hijacking exists, or both.

Out of the analyzed protocols, only three protocols are distance-bounding secure and
resist terrorist fraud. These protocols are Reid et al.’s [RNTS07], DBPK [BB05], and Swiss
Knife [KAK+08]. A total of nineteen protocols were found vulnerable to terrorist fraud.

We note that the authors of UWB impulse radio based protocol [KLT10] do not give
precise specifications of the secure channel used in the protocol. We took two different
approaches when modeling this: a public key infrastructure and a keyed-MAC scheme.
Both cases yield the same results, which include a mafia fraud against the protocol. Such
attack is not reported in [KLT10] as the authors only consider verbatim relay.

For each one of the protocols reported as not resistant to terrorist fraud, the valid
extension used to invalidate Equation 6.7 is the prover’s leakage of the least-disclosing
message. Such message is the knowledge-based minimal message that the adversary needs
to produce the fast phase response, upon reception of the challenge. In most cases, if the

3See https://tamarin-prover.github.io/manual/index.html for instructions.

109

https://tamarin-prover.github.io/manual/index.html

7.2. A Security Survey of Distance-Bounding Protocols

Table 7.1 Tamarin verification results. The protocols that satisfy dbsec and resist
terrorist fraud are highlighted in bold. The protocols from the block “Lookup-based” are a
subset of protocols of the same name (studied in Part I) and have identical specification.
Legend: X: verified, ×: falsified (i.e. attack found), (n): no symbolic (in)security proof
reported before, and (6=c): differs from Chothia et al.’s verification [CdRS18].

Protocol Satisfies Satisfies Resists
dbsec_hnst dbsec terrorist fraud

Brands and Chaum [BC93]
- Signature id. X × ×(n)

- Fiat-Shamir id. X × ×(n)

CRCS [RC10]
- Non-revealing sign. X X ×
- Revealing sign. X × ×

Meadows et al. [MPP+07]
- f := 〈NV , P ⊕NP 〉 X ×(6=c) ×
- f := NV ⊕ h(P,NP) X(n) X(n) ×(n)

- f := 〈NV , P,NP 〉 X(n) X(n) ×(n)

Lookup-based
- Avoine and Tchamkerten [AT09] X X ×(n)

- Poulidor [TMA10] X X ×(n)

- Hancke and Kuhn [HK05] X X ×(6=c)

- Uniform [MTT16a] X X ×(n)

Munilla and Peinado [MP08] X X ×(n)

Kim and Avoine [KA09] X X ×(n)

Reid et al. [RNTS07] X X X(n)

MAD (one way) [CBH03] X ×(6=c) ×
DBPK [BB05] X(n) X(n) X(n)

Swiss Knife [KAK+08] X X X(n)

UWB [KLT10]
- PKI ×(n) ×(n) X(n)

- keyed-MAC ×(n) ×(n) X(n)

WSBC+DB [PLHCT+10] X(n) ×(n) ×(n)

Hitomi [PCEvdL09] X(n) X(n) ×(n)

TREAD [ABG+17]
- Asymmetric × × X(n)

- Symmetric X × X(n)

ISO/IEC 14443
- PaySafe [CGdR+15] X × ×
- MIFARE Plus [TDJM+11] X × ×
- PayPass [EMV18a] X × ×

110

Chapter 7. Automatic Verification

prover’s fast phase response is of the form f(ch, table) where ch is the verifier’s fast phase
challenge, then the least-disclosing message is table.

For each protocol Proto reported as resistant to terrorist fraud, one of the following
three cases occurred:

(1) Proto 6|= dbsec_hnst and Proto 6|=? dbsec_hnst , thus for any valid extension Proto′ of
Proto, it holds that Proto′ 6|=? dbsec_hnst , given that Tr (Proto) ⊆ Tr (Proto′). The
protocols within this case are TREAD [ABG+17] with asymmetric encryption, and
both versions of UWB [KLT10].

(2) Every valid extension Proto′ of Proto such that Proto′ 6|= dbsec_hnst leads to disclosure
of the symmetric key shared by the prover and verifier, therefore Proto′ 6|=? dbsec_hnst .
The protocols within this case are Reid et al. [RNTS07], DBPK [BB05], Swiss-
Knife [KAK+08], and Hitomi [PCEvdL09].

(3) Every valid extension Proto′ of Proto such that Proto′ 6|= dbsec_hnst leads to replay
attacks, therefore Proto′ 6|=? dbsec_hnst . This is analogous to the analysis of DBToy

in Theorem 6.1. The protocol within this case is TREAD [ABG+17] with symmetric
encryption.

On average, a Tamarin model of a protocol consists of about 255 lines of code. On
a modern laptop, the verification of all lemmas for a given protocol takes little over 1

minute on average and a few seconds in most cases. All (in)security proofs were constructed
without any proof oracles for speeding up the verification.

Our Approach vs. Chothia et al.’s Approach

As briefly motivated in Chapter 2, Section 2.2, a recent publication [CdRS18] at the
USENIX Security Symposium 2018 analyzed a number of lookup-based protocols and
reported that some of them are resistant to terrorist fraud. Our findings show incorrectness
in their results.

Inconsistencies between our verification results and Chothia et al.’s are on the protocols
Hancke and Kuhn’s [HK05], Meadows et al.’s [MPP+07], and Capkun et al.’s MAD [CBH03].
On the one hand, Chothia et al.’s approach reports Hancke and Kuhn’s protocol as resistant
to terrorist fraud. It is well-known that this protocol does not resist this attack [BGL15,
KAK+08, AMT15, ALM11, ABK+11, BMV13b, ABB+19]. On the other hand, Chothia
et al.’s verification reports no attack, other than terrorist fraud, against Meadows et al.’s
protocol version in which the prover’s fast phase response is 〈Nv, P ⊕Np〉, and the MAD
protocol with one-way authentication. Our verification, however, identifies a valid distance
hijacking attack against each of these protocols. Indeed, a number of previous works (e.g.
[CRSC12, AMT15, MSTT18b, DDW18]) report such attacks as well.

Finally, we observe that Chothia et al.’s theoretical model seems to be attached to
the ProVerif prover, possibly due to the way that co-location of processes is represented.
However, ProVerif is not particularly suited to deal with protocols that feature stateful
data such as session counters, which are used in numerous protocols. Thus, ProVerif-
based frameworks such as Chothia et al.’s, oversimplify such protocols by replacing those

111

7.3. On the ISO/IEC 14443 Protocols

features with simpler constructions, which might lead to missing attacks. A similar over-
approximation issue was pointed out, although in the context of authentication protocols,
in [BDH+18].

Tamarin comes with a built-in multiset which can be used to faithfully model
counters, thus making the verification more accurate. In addition, our theoretical model is
not exclusive to Tamarin. Indeed, it can be also implemented in Isabelle/HOL [NPW02]
as we build upon Mauw et al.’s model [MSTT18b], which is in turn a refinement of the
Isabelle/HOL-supported model by Basin et al. [BCSS09, SSBC09].

7.3 On the ISO/IEC 14443 Protocols

The ISO/IEC 14443 standard is used in more than 80% of today’s contactless smart cards.
Within our case studies, we analyzed three protocols based on this standard:

• NXP’s MIFARE Plus4 (versions X and EV1) with proximity check (with patent
[TDJM+11]) with worldwide applications in public transport, access management,
school and campus cards, citizen cards, employee cards, and car parking.

• PaySafe [CGdR+15], which is a distance-bounding-enabled version of Visa’s contact-
less payment protocol payWave (in qVSDC mode) [EMV18b].

• PayPass [EMV18a], which is Mastercard’s contactless payment protocol with relay
resistance.

To demonstrate our analysis, we have chosen the PayPass protocol, represented in
Figure 7.5. The analyses of the other 2 protocols are analogous. In the context of these
protocols, the verifier R is the reader terminal and the prover C is the card. The PayPass
protocol is a relay-resistance-enabled version of the EMV5 payment protocol implemented
in Mastercard’s contactless cards. EMV (which stands for Europay, Mastercard and Visa)
has become the international standard for smart cards/chips payment protocols.

In a regular EMV session, a transaction is initiated by the exchange of SELECT and
SELECTED commands along with the selected EMV applet that will be used for the
transaction (PayPass in this case). Then, the terminal issues the GPO command to inform
the card on the terminal’s capabilities. The card then responds to this command with the
Application Interchange Profile (AIP) and Application File Locator (AFL) which indicate
the card’s capabilities and the location of data files, respectively. Then, the terminal
issues the GENERATE_AC command, which includes an Unpredictable Number UN , the
amount of the transaction, the currency code, and other data. The cards responds with
the Application Cryptogram (AC), the Signed Dynamic Application Data (SDAD) and
the Application Transaction Counter (ATC). The AC is a the result of keyed-MAC on the
transaction information whose key is an encryption of the Application Transaction Counter
(ATC , equal to the number of transactions previously made by the card) with a long-term
symmetric key shared between the terminal and the card. The AC is the proof of the
transaction, which can be verified by the card issuer. The SDAD is the card’s signature on
the transaction.

4https://www.mifare.net/en/products/chip-card-ics/mifare-plus/
5https://www.emvco.com

112

https://www.mifare.net/en/products/chip-card-ics/mifare-plus/
https://www.emvco.com

Chapter 7. Automatic Verification

counter ATC
shared KM

R

counter ATC
shared KM

C

fresh UN
fresh amount

fresh nC
Timing info ti

SELECT, PayPass

SELECTED

GPO

AIP, AFL

EXCHANGE RRD, UN

RTT nC, ti

READ RECORD

GENERATE AC, UN , amount , . . .

KS:=senc(ATC ,KM)
AC :=MAC(KS,amount,ATC ,UN)
SDAD :=sign(〈nC,UN ,AC ,ti〉,skC)

SDAD ,AC ,ATC

C is close

Figure 7.5 Mastercard’s PayPass protocol.

To enable the EMV protocol with the relay resistance mechanism, after the card issues
the AIP and AFL commands, the terminal issues the new Exchange Relay Resistance Data
EXCHANGE_RRD command, along with the Terminal Relay Resistance Entropy number
(which equals UN). This message initiates the fast phase of the protocol. The card must
respond on time with their nonce nC (Device Relay Resistance Entropy) and three timing
estimates (minimum time for processing, maximum time for processing and estimated
transmission time). The maximum time serves as an upper bound for the terminal’s timer.

When modeling the PayPass protocol in Tamarin, and also the other ISO/IEC 14443
protocols, we made the following abstractions: (1) the timing information is considered
a nonce; and (2) we did not model any exchanged messages that are fully composed of
constant terms, e.g. the first message 〈SELECT,PayPass〉.

As Table 7.1 shows, PayPass satisfies dbsec_hnst , which means that it does resist mafia
fraud and in particular, relay attacks. Indeed, defending against relay is a fundamental
security goal of this protocol. However, PayPass fails to defend against distance fraud [Des88]
and distance hijacking [CRSC12]. Those attacks refer to a remote and compromised card
which successfully tricks the reader into believing they are co-located, and thus the reader
accepts the transaction.

One might argue that those attacks are irrelevant for payment systems. After all, it
is the compromised card’s owner’s bank account which ends up being charged. However,
suppose an attacker has acquired the payment card of a victim and wishes to cause them

113

7.3. On the ISO/IEC 14443 Protocols

harm. After compromising the card, they might place a concealed device near the checkout
area of a store that performs a distance hijacking attack using the compromised card.
Shoppers at the store would then perform transactions, believing that they were paying for
products, whilst in fact all payments came from the one corrupted card. The attacker could
even mix in several transactions of their own, which would be indistinguishable from the
honest shoppers. As a result of this “Robin Hood” style attack, the victim will be charged
for these illegitimate transactions with no clear perpetrator.

Fixing the ISO/IEC 14443 Protocols

As before, we will focus on the PayPass protocol. Before giving the fixes, let us motivate
the reasons for which it does not satisfy dbsec. As noted by Mauw et al. in [MSTT18b]
when analyzing the PaySafe protocol, a distance fraud attack is possible due to the lack of
a causal relation between the fast phase challenge and response. That is, the fast phase
response can be produced prior to reception of the challenge. To solve this issue, Mauw et
al. suggested the inclusion of the reader’s nonce UN within the card’s response.

Mauw et al.’s suggestion applied on PayPass does prevent distance fraud, but it does
not prevent distance hijacking. To prevent the latter, we must bind the fast phase messages
to the card’s identity. We do so by adding to the card’s fast phase response, besides UN ,
the card’s signature on the nonce nC . Thus, the card’s fast phase response becomes:

〈nC , ti, sign(nC , skC),UN 〉 .

This modification results in a protocol, represented in Figure 7.6, that satisfies dbsec.
Observe that the signature sign(nC , skC) can be computed prior to the fast phase, so it does
not delay the card’s response. The very same solution of adding 〈sign(nC , skC),UN 〉 into
the card’s fast phase response also works for both the PaySafe and MIFARE Plus protocols.
Though, to keep consistency with the usage of cryptographic operations in the case of the
latter protocol, we propose a keyed-MAC message MAC(KM , nC , ‘1’, ‘2’) instead of the
signature sign(nC , skC). As before, the keyed-MAC message can be computed prior to the
fast phase as well.

The proposed version (Figure 7.6) of the PayPass protocol does not resist terrorist
fraud. Indeed, the card’s leakage of 〈nC , ti, sign(nC , skC)〉 prior to the fast phase leads to a
valid attack. To prevent terrorist fraud, we propose to further modify the PayPass protocol
by changing the card’s fast phase response and SDAD messages so that they become:

〈nC , ti, f(UN , nC ⊕KM)〉 and sign(〈UN ,AC 〉 , skC),

respectively; where f is an irreversible function. This modification results in a protocol,
shown in Figure 7.7, that satisfies dbsec and resists terrorist fraud.

Similar constructions can be done over the PaySafe and MIFARE Plus protocols to
repair them. Though only the modification of the card’s fast phase response is required to
repair the latter protocol. The Tamarin models and security proofs of the two versions of
each protocol are available in our repository. We give two different repaired versions of each
protocol in order to leave the choice up to the requirements of the application system. For
example, if terrorist fraud is not a critical issue, then the first modification is suggested over
the second one, because the latter modifies the standard more “aggressively”. We do always
suggest the first modified version over the original protocol, regardless of the application.

114

Chapter 7. Automatic Verification

counter ATC
shared KM

R

counter ATC
shared KM

C

fresh UN
fresh amount

fresh nC
Timing info ti

SELECT, PayPass

SELECTED

GPO

AIP, AFL

EXCHANGE RRD, UN

RTT nC, ti, sign(nC, skC),UN

READ RECORD

GENERATE AC, UN , amount , . . .

KS:=senc(ATC ,KM)
AC :=MAC(KS,amount,ATC ,UN)
SDAD :=sign(〈nC,UN ,AC ,ti〉,skC)

SDAD ,AC ,ATC

C is close

Figure 7.6 A modified version of Mastercard’s PayPass protocol that satisfies dbsec. The
modification to the original protocol (Figure 7.5) consists of the addition of sign(nC , skC)
and UN to the card’s fast phase response.

Other modifications for ISO/IEC 14443 protocols that make them resistant to terrorist
fraud possibly exist, and likely all of them (like ours) would require major changes to the
standard. For example, the composition of the SDAD message would likely have to be
modified due to the occurrence of the card’s nonces within it. Furthermore, we conjecture
that if the card’s nonces (e.g. nC) can be inferred from passive observation of the execution,
then versions of the protocols in question that resist terrorist fraud would be vulnerable to
relay attacks, thus violating a primary security goal of these protocols.

7.4 Conclusions

We provided computer-verifiable proofs of the (in)security of over 25 distance-bounding
protocols that account for all classes of attacks, as given by the literature on distance
bounding. To the best of our knowledge, this is the most extensive and sound set of
security/vulnerability proofs within this research subject. Our verification reports that
for the vast majority of the analyzed protocols at least one attack exists. The vulner-
able protocols include protocols based on the ISO/IEC 14443 standard such as Mas-
tercard’s PayPass [EMV18a], a distance-bounding-enabled version [CGdR+15] of Visa’s

115

7.4. Conclusions

counter ATC
shared KM

R

counter ATC
shared KM

C

fresh UN
fresh amount

fresh nC
Timing info ti

SELECT, PayPass

SELECTED

GPO

AIP, AFL

EXCHANGE RRD, UN

RTT nC, ti, f(UN , nC ⊕ KM)

READ RECORD

GENERATE AC, UN , amount , . . .

KS:=senc(ATC ,KM)
AC :=MAC(KS,amount,ATC ,UN)

SDAD :=sign(〈UN ,AC 〉,skC)

SDAD ,AC ,ATC

C is close

Figure 7.7 A modified version of Mastercard’s PayPass protocol that satisfies dbsec and
resists terrorist fraud. The modifications to the original protocol (Figure 7.5) are: (1)
addition of f(UN , nC ⊕KM) to the card’s fast phase response, and (2) removal of nC and
ti from the SDAD message.

payWave [EMV18b], and NXP’s MIFARE Plus with proximity check [TDJM+11]. Finally,
we proposed fixes for these protocols and provide computer-verifiable security proofs of the
repaired protocols. The proposed fixes form demonstrative examples that could be used
to improve proximity-based secure systems that follow the standard, or may even form
guidance for a future version of the standard itself.

116

8
Conclusions

In this thesis we have addressed the topic of security analysis of distance-bounding protocols.
The fundamental goal of this thesis is to provide researchers and industry professionals with
frameworks that allow them to analyze the security of these protocols in a systematic manner.
The proposed frameworks, like traditional frameworks for security protocol verification,
conceive the distance-bounding security models in the two classic settings: computational
and symbolic. Computational security proofs are assessed against arbitrary probabilistic
polynomial-time algorithms, thus offering strong security guarantees. Symbolic security
proofs, on the other hand, follow from a high-level, logic analysis of the protocol executions,
and treat cryptographic primitives as unbreakable black-boxes.

On Computational Analysis

We developed an automata-based model for systematic analysis of a large class of distance-
bounding protocols, called lookup-based protocols. The protocols composing this class
are those in which (1) the prover’s responses to the verifier’s fast phase challenges are the
result of a lookup operation from a table built up in the initial phase, and (2) the prover
does not send any messages after the fast phase. Our proposal represents a protocol as a
finite set of State-Labeled Deterministic Finite Automata, and a protocol execution is thus
represented by a random walk in a randomly selected automaton. The adversary is modeled
by a polynomial-time algorithm whose input is the walk in the selected automaton.

By using the proposed automata-based model, we demonstrated that no lookup-based
protocol has better provable-resistance to mafia fraud attacks than Avoine and Tchamk-
erten’s Tree protocol [AT09]. We also defined an optimal pre-ask strategy for an adversary
to perform a mafia fraud attack against any lookup-based protocol that is layered (different-
length sequences do not reach the same state) and random-labeled (any modification to
the labeling function of an automaton of the protocol results in a automaton that is also in
the protocol). The strategy consists in replying to the verifier’s challenges with exactly the
same responses the adversary obtained from the prover in the pre-ask session. This strategy
allows us to straightforwardly compute probability of success of a mafia fraud attack (based
on the pre-ask strategy) against most lookup-based protocols proposed to date.

Motivated by the exponential space complexity of the optimally secure Tree protocol,
we propose a family of protocols that strike excellent resistance to pre-ask attacks in relation
to their space complexity. Every protocol of this family satisfies that, a positive integer

117

number u exists, such that two input sequences meet, for each automaton, if and only if
they have the same u-length suffix.

We defined structural equivalence relations between automata that allow us to take the
security and space complexity analysis even further. Indeed, we have proposed the first
lookup-based distance-bounding protocol that is optimal in terms of mafia fraud resistance,
amongst all layered and random-labeled protocols with an upper bound on the size of the
protocol. The size of a layered protocol is the number of states of the largest layer amongst
all automata of the protocol. The size of a protocol defines its space complexity, which in
turns defines the amount of memory the protocol requires. The proposed optimal protocol,
called the Modular protocol, is composed of automata whose transition functions are based
on modular congruences. As a result, its automata have the largest girth (the girth is the
shortest cycle if viewed as an undirected graph) amongst all layered protocol with equal
or smaller size. We also provided a concrete cryptographic construction of the Modular

protocol.
We conducted a comprehensive set of experiments supported by the decision-making

theory [AMT15], which included thirteen state-of-the-art protocols. The experiments
indicate that the proposed protocol cannot be outperformed by other protocols.The Modular

protocol seems to have interesting connections with previous work in other security fields.
For example, the properties of bipartite and q-partite graphs, which relates to layered
protocols, have been used to guarantee lower bounds on the code rate of error correcting
codes [Tan81, KPP+04]. Moreover, graphs with large girth, such as expander and Cayley
graphs, have been studied for years in order to design provable-secure cryptographic
hashes [Zém91].

The downside of framework approach is that we do not provide methods for generic
analysis of attacks other than mafia fraud. Our belief though is that our automata-based
representation does allow one to systematically reason on security against further attacks.

On Symbolic Analysis

We studied the symbolic verification framework proposed by Basin et al. [BCSS09, SSBC09].
This framework is based on timed-events and agents’ locations and it delivers Isabelle/HOL-
constructed (in)security proofs. With focus on this work, we characterize a semantic domain
of well-formed distance-bounding protocols in which the timestamps associated to the
agents’ actions are only utilized for proximity verification purposes and not for, e.g., taking
a different branch in the execution. This is not a trivial class, but it contains most (if not
all) distance-bounding protocols published to date. We proposed the first causality-based
security property for symbolic verification of distance-bounding protocols which we prove
equivalent to Basin et al.’s property, for any well-formed distance-bounding protocol.

Our property resembles the aliveness authentication property [Low97, CM12] in that
the prover (or any compromised agent if such prover is compromised) must perform some
action during the fast phase. We demonstrated that, for any well-formed distance-bounding
protocol, our property is equivalent to the statement that the fast phase round-trip time is
an upper bound on twice the prover-to-verifier distance multiplied by the network speed.

We refined the traditional Dolev-Yao [DY83] adversary model to account for collusion
in security protocols in the presence of colluding agents. Colluding agents are protocol
participants who are not under full control of the adversary, yet they are willing to deviate

118

Chapter 8. Conclusions

from the intended protocol specification with the goal of breaking a given security property.
We introduced the notion of post-collusion security, which provides security guarantees even
if the agents involved have been colluding in previous sessions of the protocol. By means of
post-collusion security, we provided a symbolic definition of (resistance to) terrorist fraud.
This is a non-standard class of attack in which a distant non-compromised prover colludes
colludes with a compromised prover who is co-located with the verifier in order to make the
verifier believe that the distant prover is proximal. As condition on the collusion is that
the same proximity proof cannot be provided in further sessions without further collusion.

We built a Tamarin-based verification framework that accounts for all classes of attacks,
as given by the literature on distance bounding. With our framework, we conducted
verification of a over 25 state-of-the-art distance-bounding protocols. To the best of our
knowledge, this is the most extensive and sound set of security/vulnerability proofs within
this research subject. Our verification reports that for the vast majority of the analyzed
protocols at least one attack exists. The vulnerable protocols include industrial protocols
based on the ISO/IEC 14443 standard such as Mastercard’s PayPass [EMV18a], a distance-
bounding-enabled version [CGdR+15] of Visa’s payWave [EMV18b], and NXP’s MIFARE
Plus with proximity check [TDJM+11]. We provided fixes for these protocols as well as
computer-verifiable security proofs of the repaired protocols. The proposed fixes form
demonstrative examples that could be used to improve proximity-based secure systems that
follow the standard, or may even form guidance for future versions of the standard itself.

Unfortunately, the Tamarin prover together with our definition of resistance to terrorist
fraud do not make a complete verification approach. That is, there may exist a protocol
that resists terrorist fraud (as per our definition) but Tamarin is unable to deliver proof
of it. The cause goes beyond the well-acknowledged non-termination issue of the tool, as it
is due to the impossibility of covering up the full set of possible collusion actions.

Future Work

As future work, we will look into the mentioned issues: (1) to broaden the focus of
the computational analysis of security to attacks other than mafia fraud, and (2) the
completeness issue of our theoretical definition of terrorist fraud resistance in relation to its
applicability in Tamarin.

Furthermore, it would be beneficial to reduce the gap between computational and
symbolic models. This seems to be a research direction that one would benefit from, not
only for analysis of distance-bounding protocols, but for security protocols in general.
Specifically, we would like to develop an (ideally) automated framework that employs the
techniques from both the computational and the symbolic approaches.

A possible direction would be the integration of more realistic equational theories into
multiset rewriting models that would make cryptographic primitives “less symbolic”. One
can think of, for example, an equational theory to account for weak hashes or weak random
generators. Another idea is to attach a term to each message that represents the probability
that the adversary knows such a message. Hence, modifier rules for such probabilities could
be worked around, e.g. if a message is sent, then the attached probability term to such
message becomes one. Therefore, the adversary’s inference of messages can be modeled in
a probabilistic fashion. Obviously these suggestions imply that the overall verification time

119

will increase considerably, therefore optimization techniques will be needed on both the
tool and the user sides.

120

Bibliography

[ABB+19] Gildas Avoine, Muhammed Ali Bingöl, Ioana Boureanu, Srdjan Capkun,
Gerhard P. Hancke, Süleyman Kardas, Chong Hee Kim, Cédric Lauradoux,
Benjamin Martin, Jorge Munilla, Alberto Peinado, Kasper Bonne Rasmussen,
Dave Singelée, Aslan Tchamkerten, Rolando Trujillo-Rasua, and Serge Vau-
denay. Security of distance-bounding: A survey. ACM Comput. Surv.,
51(5):94:1–94:33, 2019.

[ABG+17] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal
Lafourcade, Cristina Onete, and Jean-Marc Robert. A terrorist-fraud resistant
and extractor-free anonymous distance-bounding protocol. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017,
pages 800–814, 2017.

[ABK+11] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardas, Cédric Lauradoux,
and Benjamin Martin. A framework for analyzing RFID distance bounding
protocols. Journal of Computer Security, 19(2):289–317, 2011.

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. J. Cryptology, 23(2):281–343,
2010.

[ALM11] Gildas Avoine, Cédric Lauradoux, and Benjamin Martin. How secret-sharing
can defeat terrorist fraud. In Proceedings of the Fourth ACM Conference on
Wireless Network Security, WISEC 2011, Hamburg, Germany, June 14-17,
2011, pages 145–156, 2011.

[AMT15] Gildas Avoine, Sjouke Mauw, and Rolando Trujillo-Rasua. Comparing
distance bounding protocols: A critical mission supported by decision theory.
Computer Communications, 67:92–102, 2015.

[AT09] Gildas Avoine and Aslan Tchamkerten. An efficient distance bounding
RFID authentication protocol: Balancing false-acceptance rate and memory
requirement. In Information Security, 12th International Conference, ISC
2009, Pisa, Italy, September 7-9, 2009. Proceedings, pages 250–261, 2009.

[BB05] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge
to avoid real-time attacks. In Security and Privacy in the Age of Ubiquitous

121

Bibliography

Computing, IFIP TC11 20th International Conference on Information Se-
curity (SEC 2005), May 30 - June 1, 2005, Chiba, Japan, pages 223–238,
2005.

[BC93] Stefan Brands and David Chaum. Distance-bounding protocols (extended
abstract). In Advances in Cryptology - EUROCRYPT ’93, Workshop on the
Theory and Application of of Cryptographic Techniques, Lofthus, Norway,
May 23-27, 1993, Proceedings, pages 344–359, 1993.

[BCSS09] David A. Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt.
Let’s get physical: Models and methods for real-world security protocols.
In Theorem Proving in Higher Order Logics, 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, pages
1–22, 2009.

[BD90] Thomas Beth and Yvo Desmedt. Identification tokens - or: Solving the
chess grandmaster problem. In Advances in Cryptology - CRYPTO ’90,
10th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1990, Proceedings, pages 169–177, 1990.

[BDH+18] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse,
and Vincent Stettler. A formal analysis of 5G authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
1383–1396, 2018.

[BGG+16] Xavier Bultel, Sébastien Gambs, David Gerault, Pascal Lafourcade, Cristina
Onete, and Jean-Marc Robert. A prover-anonymous and terrorist-fraud
resistant distance-bounding protocol. In Proceedings of the 9th ACM Confer-
ence on Security & Privacy in Wireless and Mobile Networks, WISEC 2016,
Darmstadt, Germany, July 18-22, 2016, pages 121–133, 2016.

[BGL15] Agnès Brelurut, David Gerault, and Pascal Lafourcade. Survey of distance
bounding protocols and threats. In Foundations and Practice of Security -
8th International Symposium, FPS 2015, Clermont-Ferrand, France, October
26-28, 2015, Revised Selected Papers, pages 29–49, 2015.

[Bla00] Matt Blaze. Looking on the bright side of black-box cryptography (transcript
of discussion). In Security Protocols, 8th International Workshop, Cambridge,
UK, April 3-5, 2000, Revised Papers, pages 54–61, 2000.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-14
2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada, pages 82–96,
2001.

[BMV13a] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Secure and
lightweight distance-bounding. In Proc. 2nd International Workshop on
Lightweight Cryptography for Security and Privacy (LightSec’13), volume
8162 of LNCS, pages 97–113, Gebze, Turkey, May 2013. Springer-Verlag.

122

Bibliography

[BMV13b] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Towards se-
cure distance bounding. In Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers,
pages 55–67, 2013.

[BV14] Ioana Boureanu and Serge Vaudenay. Optimal proximity proofs. In Infor-
mation Security and Cryptology - 10th International Conference, Inscrypt
2014, Beijing, China, December 13-15, 2014, Revised Selected Papers, pages
170–190, 2014.

[CBH03] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux. SECTOR: secure
tracking of node encounters in multi-hop wireless networks. In Proceedings
of the 1st ACM Workshop on Security of ad hoc and Sensor Networks, SASN
2003, Fairfax, Virginia, USA, 2003, pages 21–32, 2003.

[CC03] Hubert Comon-Lundh and Véronique Cortier. Security properties: Two
agents are sufficient. In Programming Languages and Systems, 12th European
Symposium on Programming, ESOP 2003, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, pages 99–113, 2003.

[CdRS18] Tom Chothia, Joeri de Ruiter, and Ben Smyth. Modelling and analysis of a
hierarchy of distance bounding attacks. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., pages
1563–1580, 2018.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Selected Areas in
Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, pages 250–270,
2002.

[CGdR+15] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi van den Breekel, and
Matthew Thompson. Relay cost bounding for contactless EMV payments. In
Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected
Papers, pages 189–206, 2015.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 1773–1788, 2017.

[CHKM06] Jolyon Clulow, Gerhard P. Hancke, Markus G. Kuhn, and Tyler Moore.
So near and yet so far: Distance-bounding attacks in wireless networks.
In Security and Privacy in Ad-Hoc and Sensor Networks, Third European
Workshop, ESAS 2006, Hamburg, Germany, September 20-21, 2006, Revised
Selected Papers, pages 83–97, 2006.

123

Bibliography

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of
symbolic methods in computational analysis of cryptographic systems. J.
Autom. Reasoning, 46(3-4):225–259, 2011.

[CM12] Cas Cremers and Sjouke Mauw. Operational Semantics and Verification of
Security Protocols. Springer, 2012.

[CMP05] Iliano Cervesato, Catherine A. Meadows, and Dusko Pavlovic. An encap-
sulated authentication logic for reasoning about key distribution protocols.
In 18th IEEE Computer Security Foundations Workshop, (CSFW-18 2005),
20-22 June 2005, Aix-en-Provence, France, pages 48–61, 2005.

[CO99] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-looking
parties: What if nobody is truly honest? (extended abstract). In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 255–264, 1999.

[Con76] John Horton Conway. On Numbers and Games. Academic Press Inc., London,
UK, 1976.

[Cre08] Cas J. F. Cremers. The Scyther tool: Verification, falsification, and analysis
of security protocols. In Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
pages 414–418, 2008.

[CRSC12] Cas J. F. Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan
Capkun. Distance hijacking attacks on distance bounding protocols. In
IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, pages 113–127, 2012.

[DDW18] Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling. A symbolic
framework to analyse physical proximity in security protocols. In 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India,
pages 29:1–29:20, 2018.

[Des88] Yvo Desmedt. Major security problems with the ‘unforgeable’ (Feige-)Fiat-
Shamir proofs of identity and how to overcome them. In SECURICOM’88,
pages 15–17, 1988.

[DFKO11] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A formal
approach to distance-bounding RFID protocols. In Information Security,
14th International Conference, ISC 2011, Xi’an, China, October 26-29, 2011.
Proceedings, pages 47–62, 2011.

[DGB88] Yvo Desmedt, Claude Goutier, and Samy Bengio. Special uses and abuses
of the Fiat-Shamir passport protocol. In Proc. Advances in Cryptology
(CRYPTO’87), volume 293 of LNCS, pages 21–39. Springer, 1988.

124

Bibliography

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Trans. Information Theory, 29(2):198–207, 1983.

[EMV18a] EMVCo. EMV Contactless Specifications for Payment Systems, Book C-2,
Kernel 2 Specification, Version 2.7. April 2018.

[EMV18b] EMVCo. EMV Contactless Specifications for Payment Systems, Book C-3,
Kernel 3 Specification, Version 2.7. April 2018.

[FDC11] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay attacks on
passive keyless entry and start systems in modern cars. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2011, San
Diego, California, USA, 6th February - 9th February 2011, 2011.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada, pages 699–710, 1992.

[GAA10] Ali Özhan Gürel, Atakan Arslan, and Mete Akgün. Non-uniform stepping
approach to RFID distance bounding problem. In Data Privacy Manage-
ment and Autonomous Spontaneous Security - 5th International Workshop,
DPM 2010 and 3rd International Workshop, SETOP 2010, Athens, Greece,
September 23, 2010, Revised Selected Papers, pages 64–78, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[HK05] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bounding
protocol. In First International Conference on Security and Privacy for
Emerging Areas in Communications Networks, SecureComm 2005, Athens,
Greece, 5-9 September, 2005, pages 67–73, 2005.

[HK08] Gerhard P. Hancke and Markus G. Kuhn. Attacks on time-of-flight distance
bounding channels. In Proceedings of the First ACM Conference on Wireless
Network Security, WISEC 2008, Alexandria, VA, USA, March 31 - April 02,
2008, pages 194–202, 2008.

[KA09] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocol
with mixed challenges to prevent relay attacks. In Proc. 8th International
Conference on Cryptology and Network Security (CANS’09), volume 5888 of
LNCS, pages 119–133. Springer, 2009.

[KA11] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocols
with mixed challenges. IEEE Transactions on Wireless Communications,
10(5):1618–1626, 2011.

125

Bibliography

[KAK+08] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert,
and Olivier Pereira. The Swiss-Knife RFID distance bounding protocol.
In Information Security and Cryptology - ICISC 2008, 11th International
Conference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers, pages
98–115, 2008.

[KKBD11] Süleyman Kardas, Mehmet Sabir Kiraz, Muhammed Ali Bingöl, and Hüseyin
Demirci. A novel RFID distance bounding protocol based on physically
unclonable functions. In RFID. Security and Privacy - 7th International
Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised Selected
Papers, pages 78–93, 2011.

[KLT10] Marc Kuhn, Heinrich Luecken, and Nils Ole Tippenhauer. UWB impulse
radio based distance bounding. In 7th Workshop on Positioning Navigation
and Communication, WPNC 2010, Dresden Germany, 11-12 March 2010,
Proceedings, pages 28–37, 2010.

[KPP+04] Jon-Lark Kim, Uri N. Peled, I. Perepelitsa, Vera Pless, and Shmuel Friedland.
Explicit construction of families of LDPC codes with no 4-cycles. IEEE
Trans. Information Theory, 50(10):2378–2388, 2004.

[Low97] Gavin Lowe. A hierarchy of authentication specification. In 10th Computer
Security Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport,
Massachusetts, USA, pages 31–44, 1997.

[MBK10] Sreekanth Malladi, Bezawada Bruhadeshwar, and Kishore Kothapalli. Au-
tomatic analysis of distance bounding protocols. CoRR, abs/1003.5383,
2010.

[MP08] Jorge Munilla and Alberto Peinado. Distance bounding protocols for RFID
enhanced by using void-challenges and analysis in noisy channels. Wireless
Communications and Mobile Computing, 8(9):1227–1232, 2008.

[MPP+07] Catherine A. Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang,
and Paul F. Syverson. Distance bounding protocols: Authentication logic
analysis and collusion attacks. In Secure Localization and Time Synchroniza-
tion for Wireless Sensor and Ad Hoc Networks, pages 279–298. 2007.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, pages 696–701, 2013.

[MSTT18a] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Automated identification of desynchronisation attacks on shared secrets. In
Computer Security - 23rd European Symposium on Research in, ESORICS
2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I, pages
406–426, 2018.

126

Bibliography

[MSTT18b] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Distance-bounding protocols: Verification without time and location. In
2018 IEEE Symposium on Security and Privacy, S&P 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages 549–566, 2018.

[MSTT19] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Post-collusion security and terrorist fraud. 2019. (under submission).

[MTT16a] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. A class of
precomputation-based distance-bounding protocols. In IEEE European Sym-
posium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 97–111, 2016.

[MTT16b] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Optimality
results on the security of lookup-based protocols. In Radio Frequency Identifi-
cation and IoT Security - 12th International Workshop, RFIDSec 2016, Hong
Kong, China, November 30 - December 2, 2016, Revised Selected Papers,
pages 137–150, 2016.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[NS87] Roger M. Needham and Michael D. Schroeder. Using encryption for authen-
tication in large networks of computers. Commun. ACM, 21(12), 1987.

[PCEvdL09] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M. Estévez-Tapiador,
and Jan C. A. van der Lubbe. Shedding some light on RFID distance
bounding protocols and terrorist attacks. CoRR, abs/0906.4618, 2009.

[PLHCT+10] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. E. Tapiador, E. Palomar,
and J. C. A. van der Lubbe. Cryptographic puzzles and distance-bounding
protocols: Practical tools for rfid security. In 2010 IEEE International
Conference on RFID (IEEE RFID 2010), pages 45–52, 2010.

[PM06] Dusko Pavlovic and Catherine A. Meadows. Deriving secrecy in key estab-
lishment protocols. In Computer Security - ESORICS 2006, 11th European
Symposium on Research in Computer Security, Hamburg, Germany, Septem-
ber 18-20, 2006, Proceedings, pages 384–403, 2006.

[RC10] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of RF distance
bounding. In 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 389–402, 2010.

[RNTS07] Jason Reid, Juan Manuel González Nieto, Tee Tang, and Bouchra Senadji.
Detecting relay attacks with timing-based protocols. In Proceedings of the
2007 ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2007, Singapore, March 20-22, 2007, pages 204–213,
2007.

127

Bibliography

[SMCB12] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin.
Automated analysis of Diffie-Hellman protocols and advanced security prop-
erties. In 25th IEEE Computer Security Foundations Symposium, CSF 2012,
Cambridge, MA, USA, June 25-27, 2012, pages 78–94, 2012.

[SSBC09] Patrick Schaller, Benedikt Schmidt, David A. Basin, and Srdjan Capkun.
Modeling and verifying physical properties of security protocols for wireless
networks. In Proceedings of the 22nd IEEE Computer Security Foundations
Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009,
pages 109–123, 2009.

[STBF17] Yamisleydi Salgueiro, Jorge L. Toro, Rafael Bello, and Rafael Falcon. Multi-
objective variable mesh optimization. Annals OR, 258(2):869–893, 2017.

[SWP09] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. Towards security notions
for white-box cryptography. In Information Security, 12th International
Conference, ISC 2009, Pisa, Italy, September 7-9, 2009. Proceedings, pages
49–58, 2009.

[Tan81] Robert Michael Tanner. A recursive approach to low complexity codes. IEEE
Trans. Information Theory, 27(5):533–547, 1981.

[TDJM+11] Peter Thueringer, Hans De Jong, Bruce Murray, Heike Neumann, Paul
Hubmer, and Susanne Stern. Decoupling of measuring the response time of a
transponder and its authentication, March 2011. US Patent App. 12/994,541.

[TMA10] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The Poulidor
distance-bounding protocol. In Proc. 6th International Conference on Radio
Frequency Identification: Security and Privacy Issues (RFIDSec’10), volume
6370 of LNCS, pages 239–257. Springer, 2010.

[TMA14] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. Distance
bounding facing both mafia and distance frauds. IEEE Transactions on
Wireless Communications, 13(10):5690–5698, 2014.

[TP07] Yu-Ju Tu and Selwyn Piramuthu. RFID distance bounding protocols. In
Proc. First International EURASIP Workshop on RFID Technology, pages
67–68, 2007.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

[YKHL11] Dae Hyun Yum, Jin Seok Kim, Sung Je Hong, and Pil Joong Lee. Distance
bounding protocol with adjustable false acceptance rate. Communications
Letters, IEEE, 15(4):434–436, April 2011.

[YPM+18] Anjia Yang, Elena Pagnin, Aikaterini Mitrokotsa, Gerhard P. Hancke, and
Duncan S. Wong. Two-hop distance-bounding protocols: Keep your friends
close. IEEE Trans. Mob. Comput., 17(7):1723–1736, 2018.

128

Bibliography

[YY96] Adam L. Young and Moti Yung. The dark side of “black-box” cryptography,
or: Should we trust capstone? In Advances in Cryptology - CRYPTO ’96,
16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, pages 89–103, 1996.

[Zém91] Gilles Zémor. Hash functions and graphs with large girths. In Advances in
Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of
of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings,
pages 508–511, 1991.

129

	Contents
	List of Figures
	List of Tables
	Introduction
	Distance-Bounding Protocols
	Security Analysis
	Contributions
	Overview

	Related Work
	On Computational Analysis
	On Symbolic Analysis

	Computational Analysis
	Lookup-Based Protocols
	A Model Based on Automata
	Preliminary Analysis of Lookup-Based Protocols
	Formalizing Pre-Ask Attacks
	Preliminary Analysis of Optimal Resistance to Mafia Fraud

	Layered and Random-Labeled Protocols
	The Family of Uniform Protocols
	Uniform Protocols
	Security Analysis of Uniform Protocols
	Constructing a Uniform Protocol

	Conclusions

	Optimality in Lookup-Based Protocols
	Equivalence Relations between Automata
	Defining the Relations
	Security Analysis through the Relations

	Security and Size Trade-Off
	The Modular Protocol
	Optimality Proof of the Modular Protocol
	Constructing the Modular Protocol

	Comparative Analysis
	Framework of Reference
	Experimental Setting
	Results

	Conclusions

	Symbolic Analysis
	Causality-Based Secure Distance-Bounding
	A Model Based on Time and Location
	The Semantic Domain
	Basic Properties of the Semantics
	Validity of the Properties

	Causality-Based Verification
	Conclusions

	Collusion and Terrorist Fraud
	Modeling Security Protocols
	Preliminaries
	Protocol Specification
	Execution and Adversary Model
	Security Properties

	Collusion
	Collusion Rules
	Post-Collusion Security

	Post-Collusion Security in Distance Bounding
	Secure Distance-Bounding
	Formalizing (Resistance To) Terrorist Fraud

	Conclusions

	Automatic Verification
	Breaking the TREAD Protocol
	A Security Survey of Distance-Bounding Protocols
	On the ISO/IEC 14443 Protocols
	Conclusions

	Conclusions
	Bibliography

