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Abstract

We provide an introduction to certain ideas from the theory of uncon-
ditionally secure message authentication. We explain the notions of im-
personation and substitution attacks, and explain how protection against
these two types of attack implies composable, information theoretic se-
curity. We explain the relation of authentication protocols to universal
hashing. We give both probabilistic and explicit constructions proving
the existence of one way authentication protocols using a short secret key
and we prove matching lower bounds on the required secret key size.

Then, we turn attention to interactive authentication protocols. We
explain the message size reduction technique used by Gemmell and Naor
and later Naor, Segev and Smith, and how it leads to protocols with secret
key size independent of the message length. We also prove a matching
lower bound on the secret key entropy. We generalize the lower bound
proof of Naor, Segev and Smith and remove the assumption that the
message is revealed in the first flow of the protocol.

1 Introduction

Message authentication is one of the most important primitives in cryptography.
It has direct real world applications, for example in ensuring that the order for
a financial transaction comes from somebody authorized to perform it and not a
criminal. It is also used as a subroutine in other cryptographic protocols, where
it serves to protect against man in the middle attacks.

In defining the security of message authentication protocols, we distinguish
between computational and unconditional security. In the first case, the defini-
tion and proof of security rests on the assumption that the adversary has limited
computational resources, and on the conjecture that a certain problem cannot
be solved within the specified resource bound. In the second case, the protocol
is guaranteed to remain secure against adversaries with unbounded resources.
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Besides the obviously greater assurance, a further advantage of uncondition-
ally secure protocols is that often they are computationally more efficient, i.e.
the operations that sender and receiver must perform require less time and/or
memory; this was pointed out in [18]. On the other hand, a disadvantage of
unconditionally secure protocols is that they consume secret key for each au-
thenticated message.

The goal of this document is to provide a self contained introduction to the
theory of unconditionally secure message authentication. The main prerequisites
for understanding the exposition are mathematical maturity and knowledge of
certain basic concepts in probability theory.

The field of unconditionally secure message authentication is large, and we
cannot cover all results in one self-contained tutorial; therefore, we need some
criterion to guide the selection of topics. We focus on the question: how much
secret key is needed to accomplish unconditionally secure message authentica-
tion? With this criterion in mind, we select those concepts, ideas and proof
techniques that lead to an answer to this question. We cover two scenarios: one
way authentication, in which information flows only from sender to receiver and
interactive authentication, in which there is a conversation between sender and
receiver over an insecure channel.

We start our exposition in section 2, where we develop the basic ides of Con-
structive Cryptography. Constructive Cryptography is an approach to defining
the security of protocols in such a way that a protocol composes safely with other
protocols and remains secure in an arbitrary environment. Then, we consider
the scenario of one way authentication in section 3. We cover impersonation and
substitution attacks, the relation to universal classes of hash functions, proba-
bilistic and explicit constructions of authentication protocols with small secret
key size, and a proof of a matching lower bound on the secret key size. Then, we
turn attention to the interactive scenario in section 4. We show how interactive
protocols can achieve secret key size that depends only on the desired security
level and not on the message length. We also prove a matching lower bound on
the secret key size in the interactive case.

2 The Constructive Cryptography Framework

We would like to be able to put together cryptographic protocols into more
complex secure systems with the same ease and simplicity with which one can
put together Lego bricks to form complex structures. Unfortunately, things are
not quite so simple in cryptography; there are known examples of protocols
which satisfy intuitively appealing definitions of security in isolation, and yet
they become insecure when put together. One such example was given by [12]:
it is possible for a QKD protocol to ensure that the adversary has negligible
accessible information about the generated key, and yet this key cannot be
used for one time pad encryption of a message whose header is known to the
adversary.

It turns out that such undesirable examples can be avoided if a carefully
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selected security criterion is used for each building block. Frameworks of com-
posable security such as [3, 1, 16] have been developed, and protocols that are
secure according to the definition of a given framework compose safely with
other protocols within that framework.

In the present paper, we will also need to put together cryptographic building
blocks. For our purposes, the Constructive Cryptography framework [14], a
special case of [16], will be convenient. Constructive Cryptography can model
two honest users, Alice and Bob, and an adversary Eve.

The security definition in Constructive Cryptography, as in other frame-
works, follows the real-world ideal-world paradigm: a system is defined as secure
if it is indistinguishable from some ideal system. Constructive Cryptography dif-
fers from other frameworks in its algebraic approach: it introduces an algebra
of cryptographic resources and converters with suitable composition operations
and a distance metric on that algebra. This makes it possible to prove state-
ments about cryptographic systems on an abstract level, in a manner analogous
to how one can prove theorems in, for example, group theory.

We proceed to give more details about the systems, the operations for putting
them together, and the definition of distance in Constructive Cryptography.
The first concept that we need is that of resources. A resource is a system
with interfaces for Alice, Bob and Eve which allow them to enter inputs and
receive outputs. It is meant to capture our most general intuitive idea of what a
cryptographic functionality (or any distributed computing functionality) does.

On the set of all resources, we define a parallel composition operation. Given
resourcesR,S, their parallel composition, denotedR‖S, is another resource that
provides Alice, Bob and Eve with access to the interfaces of both R and S. This
captures our intuition that users may have access to several functionalities.

The next idea that we need is that of a converter: a converter is a system
with two interfaces that can receive inputs and produce outputs. We under-
stand intuitively the role of converters when we consider their combination with
resources. Given a converter α and a resource R, αAR is another resource.
Alice’s interface to αAR is the outside interface of the converter α, while the
inside interface of the converter α exchanges inputs and outputs with interface
A of the resource R. Bob’s and Eve’s interfaces to αAR are interfaces B,E
of R. αBR and αER are defined similarly, but with the converter attached to
Bob’s and Eve’s interfaces respectively.

An example may be helpful at this point. Let N be a noisy channel resource:
it allows Alice to input a string, and outputs a corrupted version of the string
to Bob. Let E,D be the encoding and decoding algorithms of a suitable error
correcting code, which we think of as converters. Then EADBN is (close to) a
noiseless channel resource. In this example, we were not interested in the role
of the adversary Eve, so we did not specify her interfaces.

Parallel and sequential composition of converters are defined in a natural
way. Given a resource R, an interface i, and two converters α, β, the sequential
composition of α and β attached to interface i of R is defined by

(αβ)iR = αi(βiR)
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Given two resources R,S, an interface i and two converters α, β, the parallel
composition of α and β attached to interface i of R‖S is defined by

(α‖β)i(R‖S) = (αiR)‖(βiS)

Depending on the role and meaning we attach to a converter, we sometimes
refer to it as a protocol, a filter or a simulator. We refer to a converter, or a set
of converters, as a protocol, if we think of their role as enabling honest parties to
perform some task of interest; in the example above, we can think of the encod-
ing and decoding algorithms EA, DB as a protocol that allows Alice and Bob to
faithfully transmit messages over the noisy channel. We think of a converter as
a filter if we attach to it the role of preventing a malicious user from doing any
harm; this is illustrated in a modification to our first example. Suppose that
the noisy channel N also sends a (possibly corrupted) version of Alice’s input to
Eve, a situation that has been considered in information theoretic cryptography
under the names wire-tap channel [26] and its generalization broadcast channel
[6]. Then a filter would be a converter [ that takes the input from the channel
and gives no output to Eve. Thus, EADB[EN is a noiseless channel from Alice
to Bob that keeps the message completely confidential from Eve. Finally, we
refer to a converter as a simulator if we think of its role as making the interface
of one resource appear as the interface of another. The role of simulators will
become clear later when we consider the definition of construction.

The next concept is meant to capture our intuition that some functionalities
are ”close to” each other while others are ”far apart.” We already used this idea
in our first example, when we said that EADBN is ”close to” a noiseless channel,
meaning that despite encoding and decoding with a suitable error correcting
code, it is still possible that Bob receives the wrong message, but this occurs
only with small probability. Formally, we define ”close to” and ”far apart” for
functionalities by the following:

Definition 1. A distance on a set of resources is a function d taking pairs of
resources to R+ with the properties:

1. (identity) d(R,R) = 0

2. (symmetry) d(R,S) = d(S,R)

3. (triangle inequality) d(R, T ) ≤ d(R,S) + d(S, T )

4. (non-increasing under a converter) d(αiR, αiS) ≤ d(R,S)

5. (non-increasing under a resource in parallel) d(R‖T ,S‖T ) ≤ d(R,S)

holding for any three resources R,S, T and any converter α attached to any
interface i.

The first three properties in the definition: identity, symmetry, and the
triangle inequality, form the mathematical definition of a pseudometric; thus,
we should expect any reasonable notion of distance to satisfy them. We do
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not require d(R,S) = 0 ⇒ R = S, the property that would convert d from a
pseudometric to a metric; intuitively, this corresponds to allowing there to be
different ways to obtain the same functionality.

The fourth and fifth property, non-increasing under a converter or a resource
in parallel, can be intuitively justified in two related ways. First, we anticipate
that the concrete way to instantiate a distance d on the set of resources will be
to define d(R,S) to be the supremum of the advantage of any distinguisher in
determining whether it is interacting with R or with S. Such a construction
will naturally lead to d satisfying the fourth and fifth property, because a subset
of all distinguishers apply the converter α or add the resource T in parallel.
Second, our goal in introducing the distance d is to capture the idea of a real
functionality being close to an ideal functionality in an arbitrary context, and
the fourth and fifth property of the definition are needed to make that work.

We proceed to make precise the idea that one way to construct a distance
on the set of resources is to take the supremum over the choice of distinguisher
of the distinguishing advantage.

Definition 2. A distinguisher D is a system with four interfaces. Three of the
interfaces of D connect to the Alice, Bob, and Eve interfaces of a resource. The
fourth interface outputs 0 or 1.

For distinguisher D and resource R, we define DR to be the random variable
that is the output of D when connected to R.

For a distinguisher D and two resources R,S, the advantage of D in dis-
tinguishing between R and S is defined as the statistical distance between the
random variables DR and DS; in other words,

AdvD(R,S) = |P(DR = 1)− P(DS = 1)|

Finally, we define the function d taking pairs of resources to R+ by

d(R,S) = sup
D
AdvD(R,S)

It can be checked, assuming natural properties of the operations of connect-
ing the interfaces of interacting systems, that d defined this way satisfies the
five properties required of a distance on the set of resources.

Proposition 1. The function d from Definition 2 satisfies the five conditions
of Definition 1.

Proof. d(R,R) = supD |P(DR = 1)− P(DR = 1)| = 0, gives the first property.

d(R,S) = sup
D
|P(DR = 1)−P(DS = 1)| = sup

D
|P(DS = 1)−P(DR = 1)| = d(S,R)
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gives the second property.

d(R, T ) = sup
D
|P(DR = 1)− P(DT = 1)|

= sup
D
|P(DR = 1)− P(DS = 1) + P(DS = 1)− P(DT = 1)|

≤ sup
D

(|P(DR = 1)− P(DS = 1)|+ |P(DS = 1)− P(DT = 1)|)

≤ sup
D
|P(DR = 1)− P(DS = 1)|+ sup

D′
|P(D′S = 1)− P(D′T = 1)|

= d(R,S) + d(S, T )

gives the third property.

d(R,S) = sup
D
AdvD(R,S) ≥ sup

D
AdvDαi(R,S)

= sup
D
AdvD(αiR, αiS) = d(αiR, αiS)

gives the fourth property, where in the first step we used the fact that a subset
of all distinguishers applies the converter α to interface i, and in the second step
we noticed that we can alternatively think of the converter α as associated to
the resources.

d(R,S) = sup
D
AdvD(R,S) ≥ sup

D
AdvD[·‖T ](R,S)

= sup
D
AdvD(R‖T ,S‖T ) = d(R‖T ,S‖T )

gives the fifth property, where in the first step we used the fact that a subset
of all distinguishers applies the resource T in parallel (denoted by [·‖T ] in the
equation), and in the second step we noticed that we can alternatively think of
[·‖T ] as associated to the resources.

Having introduced resources, converters, and distance, we are ready to define
construction. In Constructive Cryptography, the definition of security follows
the real world ideal world paradigm: a protocol is secure if it can construct an
ideal resource from some real resource. Formally, we have

Definition 3. A protocol π = (πA, πB) consisting of converters for Alice and

Bob constructs the resource S from the resource R within ε, denoted R π,ε−−→ S,
if the following two conditions hold:

1. (Close with Eve blocked) d(πAπB]ER, [ES) ≤ ε

2. (Close with full access for Eve) There exists a simulator σE such that

d(πAπBR, σES) ≤ ε
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When we apply this definition to cryptographic functionalities, we typically
have in mind the following interpretation: S is the goal, the ideal functionality
that honest users want to achieve. R is the real resource that they have available.
The protocol π is required to construct S from R in two scenarios: without
adversary, with the filters applied as in condition 1, and with adversary, as in
condition 2.

Since the adversary interface to S and R may look different, we allow in
condition 2 the choice of a converter σE whose job is to make the view from the
adversary interface as close as possible between the real and ideal resources. If
the ideal functionality S captures our intuition for ”secure against any adver-
sary”, then we need not worry about attaching the simulator σE to S: a subset
of all adversaries also interacts with S through σE . Thus the supremum over
all adversaries of the ”damage” that can be done to σES is less than or equal
to the supremum over all adversaries of the ”damage” that can be done to S.

Constructions can compose both in parallel and in sequence [14, Theorem
1]:

Theorem 1. 1. If R π,ε−−→ S and R′ π
′,ε′−−−→ S ′ then R‖R′ π‖π

′,ε+ε′−−−−−−→ S‖S ′.

2. If R π,ε−−→ S and S τ,δ−−→ T then R τπ,ε+δ−−−−→ T

3. For the identity protocol 1 = (1a,1b), and any resource R, R 1,0−−→ R.

Proof. The proof applies the properties of composition operations and distance
in a natural way.

First, we consider parallel composition:

d(πAπB]ER‖π′Aπ′B]′ER′, [ES‖[′ES ′)
≤ d(πAπB]ER‖π′Aπ′B]′ER′, [ES‖π′Aπ′B]′ER′) + d([ES‖π′Aπ′B]′ER′, [ES‖[′ES ′)

≤ d(πAπB]ER, [ES) + d(π′Aπ
′
B]
′
ER′, [′ES ′) ≤ ε+ ε′

where we have used the triangle inequality, then monotonicity under a resource
in parallel. Similarly,

d(πAπBR‖π′Aπ′BR′, σES‖σ′ES ′)
≤ d(πAπBR‖π′Aπ′BR′, σES‖π′Aπ′BR′) + d(σES‖π′aπ′BR′, σES‖σ′ES ′)

≤ d(πAπbR, σES) + d(π′Aπ
′
BR′, σ′ES ′)

where σ, σ′ are the two simulators whose existence is guaranteed by the two

construction statements R π,ε−−→ S and R′ π
′,ε′−−−→ S ′. Thus, R‖R′ π‖π

′,ε+ε′−−−−−−→ S‖S ′,
as needed.

Next, we consider sequential composition:

d(τAτBπAπB]ER, �ET )

≤ d(τAτBπAπB]ER, τAτB[ES) + d(τAτB[ES, �ET )

≤ d(πAπB]ER, [ES) + d(τAτB[ES, �ET ) ≤ ε+ δ
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where we have applied the triangle inequality, then monotonicity under a con-
verter. Similarly,

d(τAτBπAπBR, σEρET )

≤ d(τAτBπAπBR, τAτBσES) + d(τAτBσES, σEρET )

≤ d(πAπBR, σES) + d(τAτBS, ρET ) ≤ ε+ δ

where σ, ρ are the two simulators whose existence is guaranteed by the construc-

tion statements R π,ε−−→ S and S τ,δ−−→ T . Thus, R τπ,ε+δ−−−−→ T , as needed.
The third part of the theorem, concerning the identity protocol, is immedi-

ate.

3 One way authentication

In this section, we present certain results on one way authentication. We use
”one way” to refer to protocols that have a single flow from sender to receiver;
this is in contrast to the interactive authentication protocols we consider in Sec-
tion 4 where there is a conversation between sender and receiver on an insecure
channel.

We start in subsection 3.1 with a description of the message authentication
problem between two parties, a sender and a receiver, who communicate over
a channel under the control of an adversary. In subsection 3.2 we present two
possible attacks that the adversary may perform: these are the impersonation
and substitution attacks. Then, in subsection 3.3 we motivate our focus on
these two types of attack by proving that protection against impersonation
and substitution attacks for one way authentication implies that the protocol
provides composable security in the sense of Abstract Cryptography.

We continue by showing the close connection between authentication pro-
tocols and universal classes of hash functions. We start in subsection 3.4 with
the motivating example of authentication by a random function, and this leads
us to the definition of an almost strongly universal2 class of hash functions in
subsection 3.5.

We then devote ourselves to establishing the fundamental resource require-
ments for one way authentication. In subsection 3.6 we give a probabilistic
construction of a good one way authentication protocol, and in subsection 3.7
we give a lower bound on the secret key size required of any good one way
authentication protocol. Thus, the fundamental requirement on the secret key
size lies between the lower bound of subsection 3.7 and the probabilistic con-
struction of subsection 3.6, and the two match asymptotically up to a constant
factor.

We continue by introducing almost XOR universal classes of hash functions
in subsection 3.8. Almost XOR universal classes of hash functions can be used
to construct almost universal2 classes, and we show in subsection 3.9 that they
have a similar probabilistic construction and obey a similar lower bound on the
secret key size as do almost universal2 classes of hash functions. In subsection
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3.10 we give explicit constructions of almost XOR universal and almost strongly
universal2 classes that come close to the secret key size achieved by probabilistic
constructions. We will see almost XOR universal classes again in section 4
where they play a role in the message size reduction step of the interactive
authentication protocol.

We have gathered references for this section in subsection 3.11.

3.1 Setup

In the message authentication problem, a sender wishes to communicate a mes-
sage to a receiver over a channel that is under the control of an adversary who
can stop, delay or modify messages in transit, and who can insert messages of
her own. It is convenient to give the names Alice to the sender, Bob to the
receiver and Eve to the adversary. The focus is not on ensuring the secrecy of
the message m from Eve, but on ensuring that Bob does not get any messages
that were not sent by Alice.

Alice and Bob need to have some advantage over Eve if they are to have
a chance. Here, we focus on the case where this advantage is the knowledge
of a shared secret key k that is unknown to Eve. Using this secret key, Alice
and Bob encode and decode in order to transmit messages. To send message
m, Alice sends the codeword c = f(k,m) on the insecure channel; upon receipt
of a codeword c′, Bob applies a decoding rule to obtain m′ = φ(k, c′), where
m′ is a valid message or an indication of error (i.e. m′ = ⊥) signaling possible
interference from Eve.

Since we are focusing on authentication protocols that do not provide secrecy,
we can assume without loss of generality that the encoding takes the convenient
form

f(k,m) = (m,h(k,m))

where t = h(k,m) is called an authentication tag. Indeed, any encoding f(k,m)
that does not aim to provide secrecy can be transformed to f ′(k,m) = (m, f(k,m)).

Finally, we make one more simplifying assumption: we consider protocols
such that if a message-tag pair (m, t) was generated by Alice and honestly
transmitted by Eve, then Bob accepts with certainty. This assumption makes
easier certain technical details in the definitions and proofs.

3.2 Impersonation and Substitution Attacks

The adversary Eve, who does not know the secret key k, may try an imperson-
ation attack or a substitution attack on this scheme.

In an impersonation attack, Eve generates a message-tag pair (m′, t′) and
submits it to Bob. The attack succeeds if Bob accepts the received (m′, t′) as
coming from Alice. The probability that an impersonation attack succeeds is at
most

pimp = max
m′,t′

P(t′ = h(K,m′))
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where K is a random variable that models Eve’s uncertainty about the key;
for example, K may be a uniform random variable over the set of l-bit strings
{0, 1}l.

In a substitution attack, Eve waits until she observes a valid message-tag
pair (m, t) from Alice, and then substitutes a pair (m′, t′) with m′ 6= m. The
attack succeeds if Bob accepts (m′, t′). Thus, the probability that a substitution
attack succeeds is at most

psub = max
(m,t),(m′,t′),m 6=m′

P(t′ = h(K,m′)|t = h(K,m))

where again K is a random variable that models Eve’s uncertainty about the
key.

3.3 From Impersonation and Substitution Attacks to Com-
posable Security

Now suppose that an authentication system provides low pimp and psub. We
will show that such a system constructs an ideal authenticated channel in the
sense of Constructive Cryptography, as was observed in [19]. This motivates
our focus on the two types of attack, because protection against impersonation
and substitution attacks implies composable, information theoretic security.

Before we proceed, we need to make precise the resources and converters
we are considering. First, we look at the goal: the ideal authenticated channel
that Alice and Bob want to achieve. The resource A can be defined by the
pseudo-code:

0. Wait for an input b ∈ {0, 1} from Eve that encodes whether Alice’s message
is to be transmitted to Bob or blocked.

1. On input m from Alice, if b = 1 output m to Bob and Eve, and if b = 0
then output m to Eve only, and allow Eve to specify whether Alice or Bob
or both get a notification of the error. If b has not yet been specified, then
output m to Eve and wait.

Thus, we have a channel that provides to Bob the guarantee: if anything other
than ⊥ is output at his end, then that message must come from Alice. The filter
[ for this channel emulates honest behavior on Eve’s interface: it inputs b = 1
to allow Alice’s message to go through.

Next, we consider the real resources that Alice and Bob have available. The
first resource is a secret key resource K:

0. Wait for an input b ∈ {0, 1} from Eve that encodes whether Alice and Bob
are blocked from obtaining a secret key.

1. If b = 0 then allow Eve to specify whether a notification of the error is
sent to Alice or Bob or both, or whether nothing appears on their ends.
If b = 1 then let K be a random variable with the specified distribution
(usually uniform over the set {0, 1}l). Draw K = k and output k to Alice
and Bob.
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The filter � for this resource always inputs b = 1.
The second real resource that Alice and Bob have available is the insecure

channel C:

1. On input m from Alice, output m to Eve.

2. On input m′ from Eve, output m′ to Bob.

Thus, we have a channel that is completely under the control of Eve. The filter
] for this channel models honest behavior by forwarding Alice’s messages to Bob
and by not allowing Eve to input anything.

Next, we consider the converters that Alice and Bob use to construct the
ideal resource from the real resource. Both converters have two inside interfaces,
connecting to the secret key and the insecure channel resources, and one outside
interface, interacting with the user. The converter f for Alice can be described
by the pseudo-code:

1. On input k at the first inside interface, and input m at the outside inter-
face, output f(k,m) = (m,h(k,m)) at the second inside interface.

Similarly, the converter φ for Bob can be described by the pseudo-code:

1. On input k at the first inside interface and (m′, t′) at the second inside
interface, if t′ = h(k,m′) output m′ on the outside interface, else output
⊥ on the outside interface.

Now, we are ready to formally state and prove that if an authentication sys-
tem (f, φ) provides low probabilities of impersonation and substitution attacks,
then it constructs the ideal authenticated channel from the real insecure channel
and a secret key.

Theorem 2. Suppose that the authentication system f, φ provides maximum
probabilities of impersonation and substitution attacks pimp and psub respec-
tively. Then

d(fAφB(�EK‖]EC), [EA) = 0

and
∃σ d(fAφB(K‖C), σEA) = max(pimp, psub)

Corollary 1. If pimp, psub < ε, then K‖C (f,φ),ε−−−−→ A.

Proof. Before we prove this theorem, it is helpful to consider the general problem
of determining the distance between two resources. There is a general principle
in cryptography: if two interacting systems behave identically unless some event
E occurs, then the distinguishing advantage between them is at most P(E). This
idea has been formalized for example in [13, 2, 20, 15].

Now we can return to the proof of the theorem. First, observe that in the
case with Eve blocked, both the real resource fAφB(�EK‖]EC) and the ideal
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resource [EA have Eve’s interface blocked and transmit a message from Alice
to Bob. Therefore,

d(fAφB(�EK‖]EC), [EA) = 0

Now, we consider the case with full access for Eve. First, we have to find a
suitable simulator σ.

The real resource fAφB(K‖C) provides Eve with a control that can block the
secret key (and therefore the whole resource). Thus, the simulator sigma has
to also provide such a control to Eve, and if Eve sets it to 0, the simulator sets
the blocking control of the authenticated channel to 0.

The real resource fAφB(K‖C) outputs a codeword f(k,m) on Eve’s interface,
while the ideal resourceA outputs Alice’s messagem directly. Thus, we want the
simulator σ to convert a message m to a codeword; the simulator can internally
draw a secret key k from the appropriate distribution and then compute f(k,m).

The real resource fAφB(K‖C) allows Eve to enter messages that go to Bob.
Thus, the simulator σ has to also accept messages from Eve. If Eve inputs a
codeword f(k,m) that the simulator previously output to her, then the simu-
lator allows Alice’s message to go to Bob on the authenticated channel. If Eve
inputs a different codeword, then the simulator triggers an error for Bob on the
authenticated channel. In case Eve inputs a codeword before any input from Al-
ice, the simulator triggers an error for Bob on the authenticated channel, and,
on a subsequent input from Alice, draws the secret key from the conditional
distribution on keys given the event that Eve’s codeword is not valid.

With the simulator σ just described, we consider d(fAφB(K‖C), σEA). A
distinguisher has access to all interfaces of one resource or the other, and is trying
to tell them apart. By inspection, we see that the distinguisher can observe a
difference in behavior only if he tries an impersonation or a substitution attack
and succeeds, in which case the distinguisher can be sure that he was interacting
with the real system. Then, we obtain,

d(fAφB(K‖C), σEA) = max(psub, pimp)

as needed.

3.4 Authentication by a Random Function

We have shown that if an authentication system provides low probabilities of
impersonation and substitution attacks, then it provides composable, informa-
tion theoretic security. Now we ask: what kinds of encoding rules can be used
to achieve these low probabilities of impersonation and substitution attacks?
We begin with the motivating example of an authentication tag from a random
function.

Suppose Alice and Bob know a random function G = g from M to T. Then,
Alice and Bob can use g to authenticate messages in M using tags in T. To send
message m, Alice computes t = g(m) and sends (m, t). To verify a received
message (m, t), Bob checks whether t = g(m).
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The adversary Eve may try an impersonation attack or a substitution attack
on this scheme. The probability that an impersonation attack (m′, t′) succeeds
is

P(G(m′) = t′) =
1

|T|
The probability that a substitution attack from (m, t) to (m′, t′) succeeds is

P(G(m′) = t′|G(m) = t) =
1

|T|

Thus, random functions provide an authentication scheme that gives the
smallest possible probabilities for impersonation and substitution attacks given
the size of the tag space T. The problem with this scheme is that |M| log |T|
bits of secret key are required to specify a random function from M to T, and
this amount is too large to be practical.

3.5 Almost Strongly Universal2 Classes of Hash Functions

To overcome the problem with authentication by random functions, δ-almost
strongly universal2 classes of functions are used, which mimic the probabilities
of successful impersonation and substitution attacks given by random functions
but require much less bits of secret key.

Definition 4. Let M,T be finite sets, and let G be a class of functions from
M to T. G is called δ-almost strongly universal2 if for G a uniform random
variable taking values in G,

1. For all m ∈M and for all t ∈ T,

P(G(m) = t) =
1

|T|

2. For all m1 6= m2 ∈M, and for all t1, t2 ∈ T,

P(G(m2) = t2|G(m1) = t1) ≤ δ

It is convenient in the context of authentication to think of the class of
functions G as being indexed by a key k that takes values in some finite set K.
Thus, there is a function

h : K×M→ T

and the class G is given by

G = {h(k, ·) : k ∈ K}

Similarly, the random variable G in the definition takes the form

G = h(K, ·)

13



where K is a uniform random variable on the set of keys K.
We see from the definitions that there is a bijective correspondence between

almost strongly universal2 classes of hash functions and authentication protocols
with encoding rule of the form f(k,m) = (m,h(k,m)) and with probability of
impersonation attack bounded by 1/|T| and probability of substitution attack
bounded by δ. For each almost strongly universal2 class, the function h(k,m)
can be used to compute the tag in an authentication protocol, and, conversely,
for each good authentication protocol, the function h(k,m) that is used to com-
pute the tag defines an almost strongly universal2 class.

3.6 A Probabilistic Construction of a Good One Way Au-
thentication Protocol

The promise of δ-almost strongly universal2 classes is that much less than
|M| log |T| bits of key are required to specify a function in the class. Here,
we show using a probabilistic construction that there are good one way authen-
tication protocols which require only O(log log |M| + log |T|) bits of secret key.
The technique was presented in [9] where it was attributed to R. Roth.1

Theorem 3. Let {0, 1}n be the desired space of messages, and let 2−r be the
desired security level. Then, there exists an authentication scheme for n bit
messages with r + 1 bit tags and

l = dlog(n+ r + 2) + 2r + log(96 ln(2))e

bit secret key such that the probabilities of impersonation and substitution attacks
are bounded by 2−r.

Proof. Let h = h(k,m) be the function that assigns an authentication tag to
a given secret key k and message m. We think of h as a matrix. The rows
are indexed by secret keys; each row contains the authentication tags for all
messages given that key. The columns are indexed by messages; each column
contains the authentication tags for the given message under all secret keys.

Now, we choose a random authentication tag matrix H; each entry of H is
chosen independently from the uniform distribution on {0, 1}r+1. We introduce
random variables that count the number of keys such that certain messages get
certain authentication tags:

• For m ∈ {0, 1}n and t ∈ {0, 1}r+1, let

Nmt = Nmt(H) = |{k : t = H(k,m)}|

• For m1 6= m2 ∈ {0, 1}n and t1, t2 ∈ {0, 1}r+1, let

Nm1t1m2t2 = Nm1t1m2t2(H) = |{k : t1 = H(k,m1) ∧ t2 = H(k,m2)}|
1The proof only appears in the full version of [9].
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Then, Nmt has a Binomial(2l, 2−r−1) distribution: each of the 2l entries in the
m-th column of H is an independent trial that succeeds with probability 2−r−1.
Similarly, Nm1t1m2t2 has a Binomial(2l, 2−2r−2) distribution.

The proof that a random H makes a good authentication code relies on the
fact that Nmt, Nm1t1m2t2 are tightly concentrated around their mean, which we
formalize using the Chernoff Bound [11]:

Theorem 4 (Chernoff Bound). Let X1, . . . Xn be independent Bernoulli random
variables with parameters p1, . . . , pn respectively; let X =

∑
iXi and µ = EX =∑

i pi. Then

1. (Upper Tail) ∀δ > 0,P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δµ.

2. (Lower Tail) ∀δ ∈ (0, 1),P(X ≤ (1− δ)µ) ≤ e−µδ2/2.

3. (Two-sided) ∀δ ∈ (0, 1),P(|X − µ| ≥ δµ) ≤ 2e−µδ
2/3.

We obtain:

P(|Nmt − 2l−r−1| ≥ 2l−r−3) ≤ 2e−2
l−r−1/48

P(|Nm1t1m2t2 − 2l−2r−2| ≥ 2l−2r−3) ≤ 2e−2
l−2r−2/12

Then, we use the union bound to show that the probability that any of the
random variables deviates significantly from its mean is less than one:

P
((⋃

mt

{|Nmt−2l−r−1| ≥ 2l−r−3}
)
∪
( ⋃
m1t1m2t2

{|Nm1t1m2t2−2l−2r−2| ≥ 2l−2r−3}
))

≤ 2n2r+12e−2
l−r−1/48 +

2n(2n − 1)

2
22r+22e−2

l−2r−2/12 < 1

for the given choice of secret key size l = dlog(n+ r + 2) + 2r + log(96 ln(2))e.
Then, there exists a particular choice H = h of the matrix of authentication

tags such that

∀m∀t,|Nmt(h)− 2l−r−1| < 2l−r−3

∀(m1 6= m2)∀t1∀t2,|Nm1t1m2t2(h)− 2l−2r−2| < 2l−2r−3

It remains to show that this authentication tag matrix gives probabilities of
impersonation and substitution attacks bounded by 2−r. For a secret key chosen
from the uniform distribution, the maximum probability of impersonation attack
is

max
m,t

Nmt
2l

<
2l−r−1 + 2l−r−3

2l
< 2−r

and the maximum probability of a substitution attack is

max
m1t1m2t2

Nm1t1m2t2

Nm1t1

<
2l−2r−2 + 2l−2r−3

2l−r−1 − 2l−r−3
= 2−r

as needed.
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Remark: The probabilistic construction above does not, strictly speaking,
give a 2−r-almost strongly universal2 class; this is because the probability of
impersonation attack is only guaranteed to be at most 2−r, rather than 2−r−1

as would be required according to the standard definition (Definition 4). This
need not worry us. First, the probabilistic construction above captures the
essential intuition behind almost strongly universal2 classes, even if it allows a
slight deviation in the probability of impersonation attack. Second, we will see
in subsection 3.9 that using a similar argument but going through almost XOR
universal functions instead of directly, we can get an almost strongly universal2
class that satisfies Definition 4 and has a slightly lower secret key size

l = dlog(n+
r

2
) + 2r + log(24 ln(2))e

3.7 A Lower Bound on the Secret Key Size

In order to establish the fundamental resource requirements for one way au-
thentication protocols, we need to show that the secret key size achieved by
the probabilistic construction in subsection 3.6 is essentially optimal. Now, we
present the technique for proving a lower bound that matches the upper bound
asymptotically within a constant factor. This technique also comes from [9].

Theorem 5. If there exists a one way authentication protocol with message
space {0, 1}n, upper bound 2−r on the probabilities of impersonation and substi-
tution attacks and secret key size l bits then

l + log(l) ≥ log(n+ r) + r − 2

l ≥ 2r

Proof. The second inequality, l ≥ 2r, holds even for interactive protocols; we
will prove a much more general result in Theorem 12 in Section 4, from which
l ≥ 2r in the present setting will follow as a special case. Now, we focus on
proving the first inequality.

First, we give the high level idea of the proof. We look at the posterior dis-
tribution on secret keys conditional on observing a given message-tag pair. The
posterior distributions for all message-tag pairs live in the probability simplex
on 2l elements. The requirement that impersonation and substitution attacks
are difficult implies that the different posterior distributions are far apart. The
ability to pack many points that are far apart in the probability simplex on 2l

elements implies a lower bound on l.
Now, we proceed with the details. First, we introduce notation for the

posterior distributions and their support. Given a message-tag pair m, t that
occurs with positive probability, let

pmt(k) = P(K = k|M = m,T = t)

where K,M, T are random variables denoting the secret key, and an honestly
generated message and tag. Also, let

Smt = {k : h(k,m) = t}
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be the support of the distribution pmt.
Next, we formalize the statement that the distributions pmt are far apart.

First, consider a given m and two distinct tags t, t′. Then, Smt ∩ Smt′ = ∅, so

1

2
‖pmt − pmt′‖1 = 1

Second, consider two distinct messages m,m′ and two (not necessarily distinct)
tags t, t′. Then,

P(K ∈ Sm′t′ |M = m,T = t)

is at most the probability that a substitution attack that observes m, t and
substitutes m′, t′ is successful.2 Thus, we obtain∑

k∈Sm′t′

pmt(k) = pmt(Sm′t′) = P(K ∈ Sm′t′ |M = m,T = t) ≤ 2−r

and from here we get

1

2
‖pmt − pm′t′‖1 = sup

S⊂{0,1}l
(pm′t′(S)− pmt(S))

≥ pm′t′(Sm′t′)− pmt(Sm′t′) ≥ 1− 2−r

It remains to show that the ability to pack many different pmt that are far
apart inside the probability simplex on 2l elements implies a lower bound on
l. First, we count the number of different distributions that we have. There
are 2n messages, and, for each message, there must be at least 2r possible
authentication tags, because the probability of impersonation attack is assumed
to be bounded by 2−r. Thus, we have at least 2n+r distributions.

Next, we outline the remaining steps of the argument. First, we round the
distributions pmt to distributions p̃mt that have all entries of the form i2−l, with
i an integer; we also show that this operation does not change the distances by
much. Next, we convert the distributions p̃mt into codewords cmt of an error
correcting code, by interpreting the p̃mt as run-length encodings. Since the
distributions p̃mt are far apart, the codewords cmt are also far apart. Finally,
we apply the Singleton bound for error-correcting codes to get the lower bound
on l.

We proceed with the rounding step. Given pmt, define

amt(k) = b2l+1pmt(k)c

Then, ∑
k

amt(k) >
∑
k

(2l+1pmt(k)− 1) = 2l+1 − 2l = 2l

2Here we use the assumption: if the secret key is such that m gets tag t, then the recipient
accepts m, t with certainty. Thus, the operational interpretation of Smt is the set of keys such
that the recipient accepts m, t.
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Then, we can decrease some of the positive amt(k) by integer steps and obtain
ãmt(k) such that ∑

k

ãmt(k) = 2l

Finally, we define
p̃mt(k) = ãmt(k)2−l

Note that we have the guarantee p̃mt(k) ≤ 2pmt(k) for our construction. Also, if
we define S̃mt to be the support of p̃mt, we have the guarantee that S̃mt ⊂ Smt.

To complete the rounding step, we obtain a lower bound on the distance
between two distinct distributions p̃mt and p̃m′t′ . If m = m′ ∧ t 6= t′, then the
supports S̃mt and S̃m′t′ are disjoint, so

1

2
‖p̃mt − p̃m′t′‖1 = 1

If m 6= m′ then

1

2
‖p̃mt − p̃m′t′‖1 = sup

S⊂{0,1}l
(p̃m′t′(S)− p̃mt(S))

≥ p̃m′t′(S̃m′t′)− p̃mt(S̃m′t′) = 1− p̃mt(S̃m′t′)
≥ 1− p̃mt(Sm′t′)
≥ 1− 2pmt(Sm′t′)

≥ 1− 2 · 2−r

Next, we perform the conversion of the distributions p̃mt into codewords cmt.
We order all keys lexicographically. We then take the probability vector

(p̃mt(k1), . . . p̃mt(k2l)) =
1

2l
(ãmt(k1), . . . ãmt(k2l))

and convert it to the codeword

cmt = α1 . . . α1︸ ︷︷ ︸
ãmt(k1)

α2 . . . α2︸ ︷︷ ︸
ãmt(k2)

. . . α2l . . . α2l︸ ︷︷ ︸
ãmt(k2l )

where α1, . . . α2l are the symbols of an alphabet of size 2l.
To complete the conversion into codewords, we need to relate the hamming

distance of the codewords to the l1 distance of the probability distributions.
Indeed, we have

dH(cmt, cm′t′)

2l
≥ 1

2
‖p̃mt − p̃m′t′‖1

where dH denotes the Hamming distance. This is because the i-th key con-
tributes

|p̃mt(ki)− p̃m′t′(ki)| =
|ãmt(ki)− ãm′t′(ki)|

2l

18



to the l1 distance ‖p̃mt − p̃m′t′‖1 and contributes at least

|ãmt(ki)− ãm′t′(ki)|

to 2dH(cmt, cm′t′).
The last step of the proof is to apply the Singleton bound for error correcting

codes:

Theorem 6 (Singleton Bound). Let C be a collection of codewords of length s
and minimum distance d over alphabet of size q. Then |C| ≤ qs−d+1.

Proof of Singleton Bound. Erase the first d− 1 positions of each codeword. We
obtain |C| distinct codewords of length s− d+ 1.

Applying the Singleton Bound to the codewords cmt we obtain

2n+r ≤ (2l)2
l−2l(1−2−r+1)+1

which can be simplified to

l + log(l) ≥ log(n+ r) + r − 2

as needed.

3.8 Almost XOR Universal Classes of Hash Functions

So far, we have focused on one way authentication protocols and almost strongly
universal2 classes. Now, we present a closely related notion: almost XOR uni-
versal classes of hash functions.

Definition 5. Let ε > 0, and consider the function

g : {0, 1}l × {0, 1}n → {0, 1}r

The associated keyed class of functions from {0, 1}n to {0, 1}r

{g(k, ·) : k ∈ {0, 1}l}

is called ε-almost XOR universal if for all m 6= m′ ∈ {0, 1}n and for all t ∈
{0, 1}r,

P(g(K,m) + g(K,m′) = t) ≤ ε

where K is a uniform random variable over {0, 1}l and where + is bitwise ad-
dition mod 2.

Thus, almost XOR universal classes mimic another property of random func-
tions, namely that for a random function F , P(F (m) + F (m′) = t) = 2−r.

An almost XOR universal class can be used to build an almost strongly
universal2 class as shown in the following proposition.
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Proposition 2. Let

g : {0, 1}l × {0, 1}n → {0, 1}r

define an ε-almost XOR universal class. Then,

h : ({0, 1}l × {0, 1}r)× {0, 1}n → {0, 1}r

given by
h(k, k′,m) = g(k,m) + k′

defines an ε-almost strongly universal2 class.

Proof. First, take m ∈ {0, 1}n and t ∈ {0, 1}r. Then,

P(h(K,K ′,m) = t) = P(g(K,m) +K ′ = t) =
1

2r

because K ′ is independent of K and has the uniform distribution over {0, 1}r.
Now, take m 6= m′ ∈ {0, 1}n and t, t′ ∈ {0, 1}r. The event

E = {g(K,m) +K ′ = t ∧ g(K,m′) +K ′ = t′}

is a subset of the event

F = {g(K,m) + g(K,m′) = t+ t′}

Moreover, for each value K = k such that F occurs, there is exactly one value
k′ such that E also occurs. Then,

P(E) = P(F )P(E|F ) ≤ ε 1

2r

Then,

P(h(K,K ′,m′) = t′|h(K,K ′,m) = t) =
P(E)

P(h(K,K ′,m) = t)
≤ ε

as needed.

3.9 Lower and Upper Bounds on the Secret Key Size for
Almost XOR Universal Classes

Since almost XOR universal and almost strongly universal2 classes are closely
related, similar techniques can be used to prove lower and upper bounds on the
key size required for almost XOR universal classes. For the upper bound, we
have the following:

Theorem 7. Let {0, 1}n be the space of messages, let 2−r be the security level,
and let {0, 1}r+s be the output space. Let the key size be

l = dlog(n+
r + s− 1

2
) + r + log(12 ln(2))e
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Then, there exists a function

g : {0, 1}l × {0, 1}n → {0, 1}r+s

defining a 2−r-almost XOR universal class.

Proof. We choose a random matrix G(k,m), and show that it defines a 2−r-
almost XOR universal class with non-zero probability.

We choose each entry of G independently from the uniform distribution
on {0, 1}r+s. Given m 6= m′ ∈ {0, 1}n and t ∈ {0, 1}r+s, we define a ran-
dom variable Nmm′t = Nmm′t(G) that counts the number of keys k for which
G(k,m) + G(k,m′) = t holds. Then, Nmm′t has a Binomial(2l, 2−r−s) distri-
bution.

From the Chernoff Bound (Theorem 4) we get:

P(Nmm′t ≥ 2l−r) ≤ e−
(2s−1)2

2s+1 2l−r−s

From the union bound, we get

P
( ⋃
mm′t

{Nmm′t ≥ 2l−r}
)
≤
(

2n

2

)
2r+se−

(2s−1)2

2s+1 2l−r−s < 1

for the given choice of l. Then, there exists a particular choice G = g for
which all counts Nmm′t(g) are less than 2l−r. This g defines a 2−r-almost XOR
universal class, as needed.

From Theorem 7 and Proposition 2 we obtain the following Theorem, which
improves slightly on the earlier construction of Theorem 3.

Theorem 8. Let {0, 1}n be the space of messages, let 2−r be the security level,
and let {0, 1}r+s be the space of authentication tags. Let

l = dlog(n+
r + s− 1

2
) + 2r + s+ log(12 ln(2))e

be the secret key size. Then, there exists a function

h : {0, 1}l × {0, 1}n → {0, 1}r+s

that defines a 2−r-almost strongly universal2 class.

Proof. Let

l′ = dlog(n+
r + s− 1

2
) + r + log(12 ln(2))e

and let
g : {0, 1}l

′
× {0, 1}n → {0, 1}r+1

be the function given by Theorem 7. Take

h : ({0, 1}l
′
× {0, 1}r+s)× {0, 1}n → {0, 1}r+s
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given by
h(k, k′,m) = g(k,m) + k′

and apply Proposition 2. Then, h defines a 2−r-almost strongly universal2 class
with key size l′ + r + s = l.

Next, we give a lower bound on the key size for an almost XOR universal
class. The lower bound follows from the lower bound on key size for one way
authentication protocols (Theorem 5), and the observation that an almost XOR
universal class can be used to construct a one way authentication protocol.

Theorem 9. Let
g : {0, 1}l × {0, 1}n → {0, 1}r+s

define a 2−r-almost XOR universal class. Then,

l + r + s+ log(l + r + s) ≥ log(n+ r) + r − 2

l + r + s ≥ 2r

Proof. From g, construct

h : {0, 1}l+r+s × {0, 1}n → {0, 1}r+s

as in Proposition 2. Then, h defines a 2−r almost strongly universal2 class and
therefore also a one way authentication protocol with probability of imperson-
ation attack bounded by 2−r−s and probability of substitution attack bounded
by 2−r. Apply Theorem 5 to get the two inequalities for the key size l + r + s
of this class.

3.10 Explicit Constructions of Almost XOR Universal and
Almost Universal2 Classes

So far, we have presented probabilistic proofs that almost XOR universal and
almost strongly universal2 classes with given parameters exist. Now we give an
explicit construction of such classes.

We present a construction from [18] that is based on polynomials over finite
fields. Let GF (2l) be the field with 2l elements. Given a message m ∈ {0, 1}n,
break up m into blocks of l bits and interpret it as the coefficients m1, . . .md

of a polynomial of degree d = dn/le over GF (2l). Then, the associated keyed
family of hash functions is

g : {0, 1}l × {0, 1}n → {0, 1}l

g(k,m) =

d∑
i=1

kimi

Given m1 6= m2 and t, we have

P(g(K,m1) + g(K,m2) = t) = P(

d∑
i=1

(m1i +m2i)K
i − t = 0) ≤ d

2l
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because a polynomial of degree at most d can have at most d roots. Therefore, g
is a dn/le2−l-almost XOR universal keyed hash function family. We can see that
this construction has parameters comparable to the probabilistic construction
of Theorem 7. Indeed, if we set

2−r = dn
l
e2−l

as the security level obtained by this construction, we obtain

log(n) + r ≤ l + log(l) ≤ log(n+ l) + r

As in Proposition 2, we can convert an almost XOR universal to an almost
strongly universal2 class. We define

h : {0, 1}2l × {0, 1}n → {0, 1}l

by

h(k, k′,m) =

dn/le∑
i=1

mik
i + k′

When l ≈ log(n) + r, this almost strongly universal2 class has secret key size
comparable to the lower bound given by Theorem 5.

3.11 References for One Way Authentication

The problem of message authentication was introduced in [10]. The related topic
of universal hashing was introduced in [4], and the connection between universal
hashing and message authentication was made in [25], where the authors also
introduce the notion of almost strongly universal2 class of hash functions.

Various constructions and bounds for the one way message authentication
problem appear in [10, 25, 21, 22, 23, 9, 24, 17]. We have chosen to focus the
exposition on the techniques presented in [9] because the construction and the
lower bound there match asymptotically within a constant factor, and thus give
asymptotically the right answer to the question of how many bits of secret key
are needed for one way authentication.

The composable security of authentication by universal hashing was shown
in [19].

4 Interactive Authentication

We begin this section with a brief motivation for the study of interactive authen-
tication. We saw in Theorem 5 that there are two lower bounds on the secret
key length l for a one way authentication protocol. The first lower bound,

l + log(l) ≥ log(n+ r) + r − 2
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depends on both the message length n and the security level 2−r. It comes from
what can be called a “sphere packing” proof due to [9], and we have shown that
it is asymptotically tight. The second bound (which we did not prove there but
will prove in this section) states that

l ≥ 2r

and depends only on the security level. It comes from an “information theoretic”
proof that has gradually evolved over the years; see for example [10, Theorem
1], [22, Equation 28 and subsequent discussion], [17, Theorem 7 for the case
n = 1].

The bound l ≥ 2r cannot be tight for one way protocols as it does not depend
on the message length. On the other hand, the information theoretic proof looks
entirely natural and reasonable. So why does it not give the right lower bound?
The short answer is that the information theoretic proof can be extended to
apply to interactive protocols as well, and there exist interactive authentication
protocols that achieve l ≈ 2r. Thus, the information theoretic proof gives the
right lower bound, but for the larger class of interactive protocols.

Now, we give an outline of the rest of this section. We begin by constructing
interactive protocols that can use a key of size l ≈ 2r to authenticate a message
of any length with security level 2−r. In subsection 4.1 we show how to construct
an authenticated channel for a large message from an authenticated channel for a
smaller message and a bidirectional insecure channel. This step can be repeated
a number of times, leading eventually to a protocol that authenticates a message
of any length n using a key of size l ≈ 2r; we formalize this in subsection 4.2.

Having constructed protocols that achieve l ≈ 2r for any message size, we
turn our attention to proving a matching lower bound. First, we introduce some
notation for interactive protocols in subsection 4.3. Next, we consider possible
attacks that the adversary Eve can perform. At first sight, it may appear that
the more interaction a protocol has, the more options Eve has for manipulating
the order of messages in time. However, it turns out that to prove our lower
bound, we will need to consider only two natural options: either Eve ignores
Alice completely and has a conversation only with Bob, or Eve has an entire
conversation with Alice, then uses the information obtained to guess the secret
key, and then has a conversation with Bob. These two options are natural
generalizations of impersonation and substitution attacks, and we introduce
them in detail in subsection 4.4.

The intuition for the lower bound proof is that if a protocol protects against
impersonation and substitution attacks, then the joint distribution of the pro-
tocol transcript and the secret key in an honest execution and in an attack must
be far apart. We formalize this intuition using the relative entropy, an informa-
tion theoretic quantity that measures how far apart two distributions are. We
recall the definition of the relative entropy and an important property called
monotonicity in subsection 4.5. Finally, we prove in subsection 4.6 that any
protocol with security level ε against impersonation and substitution attacks
must use secret key of entropy ≈ 2 log(1/ε).
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4.1 Message size reduction

In this section, we present an idea for constructing an authenticated channel
for a larger message from an authenticated channel for a smaller message and
a bidirectional insecure channel by using an interactive protocol. The idea first
appeared in [9], however, [7] showed that the initial proposal was insecure. Fixes
of the original idea later appeared in [8, 18]. Here, we follow the construction
of [18].

Theorem 10. Let AnA→B be an authenticated channel that allows the trans-
mission of an n-bit message from Alice to Bob. Let CA↔B be a bidirectional
insecure channel. Let

g : {0, 1}l × {0, 1}n → {0, 1}r

be a keyed ε-almost XOR universal hash function family. Then,

CA↔B‖Al+rA→B
π,ε−−→ AnA→B

where π = (πA, πB) is the protocol given by:
πA = “On input m:

1. Draw random a ∈ {0, 1}r and send (m, a) on the insecure channel.

2. Receive b′ on the insecure channel.

3. Send (b′, g(b′,m) + a) on the channel Al+rA→B.”

πB = “

1. Receive m′, a′ on the insecure channel.

2. Draw random b ∈ {0, 1}l and send it on the insecure channel.

3. Receive (b′, g(b′,m) + a) on the channel Al+rA→B.

4. If (b′, g(b′,m) + a) = (b, g(b,m′) + a′) accept m′, otherwise reject.”

Proof. First, observe that with filters attached and the adversary blocked, both
resources transmit an n-bit message from Alice to Bob. Thus,

d(πAπB(]ECA↔B‖[EAl+rA→B), [EAnA→B) = 0

Now, consider the case with full access for Eve. First, we have to de-
fine a suitable simulator. The simulator σ contains a copy of the real system
πAπB(CA↔B‖Al+rA→B). Alice’s input message to the simulated real system comes
from the authenticated channel AnA→B . Eve is allowed to interact with the simu-
lated real system, and σ observes this interaction. If during the interaction Eve
only forwards messages honestly, then the simulator releases Alice’s message
on AnA→B . If there is any deviation from honest behavior, then the simulator
blocks Alice’s message on AnA→B ; if in addition an error is triggered on either
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side of the simulated real system, then the simulator orders AnA→B to output
the corresponding error.

Next, we consider the task of distinguishing πAπB(CA↔B‖Al+rA→B) and σEAnA→B .
By inspection, we see that the distinguisher can tell the real and the ideal re-
source apart only in the case when the real system accepts a message m′ on
Bob’s side that was not previously input on Alice’s side, whereas the ideal sys-
tem would never output such a message to Bob. Thus, the distance between the
real and ideal system is the maximum probability that the real system accepts
an incorrect message on Bob’s side.

Now, we evaluate this maximum probability. A distinguisher can choose the
message m on Alice’s interface, the (m′, a′) received by Bob, and the b′ received
by Alice. In addition, the distinguisher can choose the order of events in time.
Thus, we have to consider cases based on the order of events in time.

Let T (m, a) be the time πA sends out (m, a), let T (m′, a′) be the time πB
receives m′, a′; immediately afterwards πB generates the random b and sends
it out. Let T (b′) be the time that πA receives b′; immediately afterwards πA
generates (b′, g(b′,m) + a) and sends it out on the channel Al+rA→B . Finally, let
T (b′, g(b′,m) + a) be the time that (b′, g(b′,m) + a) is delivered to πB on the
channel Al+rA→B .

We assume that πA, πB generate an error if events in their view happen out
of the expected order. Moreover, from the definition of Al+rA→B , we know that
Alice must first send (b′, g(b′,m) + a), before it can be delivered to Bob. Thus,
we have

T (m, a) < T (b′) < T (b′, g(b′,m) + a)

T (m′, a′) < T (b′, g(b′,m) + a)

where the first line is the order imposed by πA and the second line is the order
imposed by πB .

We see that there are three cases for the order of events: T (m′, a′) < T (m, a),
T (m, a) < T (m′, a′) < T (b′), and T (b′) < T (m′, a′) < T (b′, g(b′,m) + a). We
consider the probability that πB accepts an incorrect message for each of the
cases in turn.

Case 1: T (m′, a′) < T (m, a) In this case, a is generated independently after
πB determines the pair (b, g(b,m′)+a′) against which it checks the final incoming
message. Thus, the probability that πB accepts is at most 2−r. This is at most
ε because g is ε-almost XOR universal.3

Note that this bound on the probability holds even if m = m′. This is as
it should be, because T (m′, a′) < T (m, a) describes a situation in which Eve
delivered a message to Bob before Alice intended to send anything, and thus
Eve’s message should be rejected.

3∀(m 6= m′)∃t,P(g(K,m) + g(K,m′) = t) ≥ 2−r, and this must be at most ε.
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Case 2: T (m, a) < T (m′, a′) < T (b′) and m 6= m′. This describes a situation
in which the normal time order of events in the protocol is preserved, but the
message is modified in transit.

b′ is generated after b is known. Moreover, the only way that πB accepts is
if b′ = b. Thus, we can assume that b′ = b.

Since B = b is generated after (m, a) and (m′, a′) are fixed, we have

P(g(B,m) + a = g(B,m′) + a′) ≤ ε

because g is ε-almost XOR universal.

Case 3: T (b′) < T (m′, a′) < T (b′, g(b′,m) + a) In this case, the message
(b′, g(b′,m) + a) that Alice sends to Bob on Al+rA→B is fixed before b is indepen-
dently drawn. Thus, the probability that b matches the already fixed b′ is 2−l.
This is at most ε because g is ε-almost XOR universal.4

We see that in all three cases, the probability that the real system accepts
an incorrect message for Bob is bounded by ε. Thus,

d(πAπB(CA↔B‖Al+rA→B), σEAnA→B) ≤ ε

as needed.

4.2 Interactive authentication with key size independent
of the message length

The general composition theorem allows us to repeat the construction step of
Theorem 10 several times. We obtain the following corollary:

Corollary 2. Suppose that for i = 1, . . . k there is an εi-almost XOR universal
keyed hash function family

gi : {0, 1}li × {0, 1}ni → {0, 1}ri

such that li + ri = ni−1 for i = 2, . . . k. Let πi be the corresponding protocol
from Theorem 10. Then,

Al1+r1‖C πk...π1,ε1+···+εk−−−−−−−−−−−→ Ank

[18] proposes to use the almost XOR universal functions we saw in subsection
3.10 for each of the message size reduction steps. Recall that GF (2l) denotes
the field with 2l elements, and, given a message m ∈ {0, 1}n, we break up m
into blocks of l bits and interpret it as the coefficients m1, . . .md of a polynomial

4Let k be a fixed key. Then ∀(m 6= m′),P(g(K,m) +g(K,m′) = g(k,m) +g(k,m′)) ≥ 2−l,
and this must be at most ε.
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of degree d = dn/le over GF (2l). Then, the associated keyed family of hash
functions is

g : {0, 1}l × {0, 1}n → {0, 1}l

g(b,m) =

d∑
i=1

bimi

and g is a dn/le2−l-almost XOR universal keyed hash function family.
In particular, given a target ε, we can use the construction of almost XOR

universal families from polynomials over finite fields with the parameters

r1 = l1 = 3 + dlog
1

ε
e, d1 = 4, n1 = d1l1, ε1 = d12−l1 ≤ ε

2

and for i > 1 we define recursively

ri = li =
ni−1

2
, di = 2li−li−1−1di−1, ni = dili, εi = di2

−li = di−12−li−1−1 =
εi−1

2

We obtain the following:

Corollary 3. Given n, ε, there exists a protocol π such that

C‖A2dlog(1/ε)e+6
A→B

π,ε−−→ AnA→B

4.3 Notation for Interactive Protocols

Now, we turn attention to proving a matching lower bound on the secret key
size needed for message authentication by an interactive protocol.

First, we introduce some notation. Let M be a random variable that models
the choice of message. Let C1, . . . Cr be random variables that denote the flows
of the protocol; thus, in an honest execution, Alice sends C1, C3, . . . and receives
C2, C4, . . . , and conversely for Bob.5 Let B be a random variable that denotes
Bob’s decision to accept or reject; thus B = 1 means Bob accepts and B = 0
means Bob rejects.

Now we consider the joint distribution of the random variables

B,C1, . . . Cr,K,M

Given the distribution of K, and given a distribution of M , which we are free to
specify as long as it is independent from K, an honest execution of the protocol
determines the conditional distribution of the other random variables. Let p be
the joint probability mass function of

B,C1, . . . Cr,K,M

5This model is sufficiently general to capture also protocols that have a variable number of
flows: just let r be the maximum number of flows and allow the last few Ci to be empty for
some executions. The model also captures protocols in which Alice and/or Bob sends several
consecutive flows without response from the other party: these can always be merged into a
single Ci.
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that is fixed by an honest execution of the protocol. Note that using Bayes’
rule, we have

p(b, c1, . . . cr, k,m) = p(k)p(m)
( r∏
i=1

p(ci|c1, . . . ci−1, k,m)
)
p(b|c1, . . . cr, k,m)

Note also that Bob’s decisions do not depend directly on m, but only on the
key k and the transcript of the protocol so far, i.e. for even i

p(ci|c1, . . . ci−1, k,m) = p(ci|c1, . . . ci−1, k)

and additionally
p(b|c1, . . . cr, k,m) = p(b|c1, . . . cr, k)

4.4 Impersonation and Substitution Attacks for Interac-
tive Protocols

Now, we introduce two more joint probability mass functions that are induced
by two natural strategies for Eve. First, we consider an impersonation attack,
in which Eve has a conversation with Bob:

1. The key k is selected according to the distribution p(k).

2. Eve selects a message m according to the distribution p(m).

3. Eve has a conversation with Bob. For odd i, Eve chooses Ci according to
the distribution p(ci|c1, . . . ci−1,m). For even i, Bob chooses Ci according
to the distribution p(ci|c1, . . . ci−1, k). We assume that if Bob notices at
an early stage that Eve’s messages are not consistent with the secret key
k, i.e. if

p(c1, . . . ci−1, k) = 0

then he rejects, sets B = 0 and stops.

4. Bob computes b according to the distribution p(b|c1, . . . cr, k) and stops.

Let p′ denote the joint probability mass function determined by this execution.
Then, whenever p(c1, . . . cr, k) > 0, we have

p′(b, c1, . . . cr, k,m) = p(k)p(m)
∏
odd i

p(ci|c1, . . . ci−1,m)
∏
even i

p(ci|c1, . . . ci−1, k)

∗ p(b|c1, . . . cr, k)

Second, we consider a substitution attack, in which Eve has a conversation
with Alice and then tries to guess the secret key.

1. The key k is selected according to the distribution p(k).

2. Eve selects the message m for Alice according to p(m).
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3. Eve has a conversation with Alice. For i odd, Alice computes ci according
to the distribution p(ci|c1, . . . ci−1, k,m). For i even, Eve computes ci
according to the distribution p(ci|c1, . . . ci−1,m). We assume that if Alice
notices Eve’s messages are not consistent with the key k, that is, if

p(c1, . . . ci−1, k,m) = 0

for some odd i, then Alice rejects and stops.

4. Eve selects a key K ′ = k′ according to the distribution

P(K ′ = k′) = p(k′|c1, . . . cr,m)

and then runs a conversation with Bob using any message of her choice
and the key k′.

Let p′′ be the joint probability mass function determined by this execution.
Then, whenever p(c1, . . . cr, k,m) > 0,

p′′(c1, . . . cr, k, k
′,m) = p(k)p(m)

∏
odd i

p(ci|c1, . . . ci−1, k,m)

∗
∏
even i

p(ci|c1, . . . ci−1,m) ∗ p(k′|c1, . . . cr,m)

4.5 Relative Entropy

As mentioned in the introduction, the lower bound proof will exploit the fact
that the distributions for an honest execution and for an attack are far apart. To
quantify this statement, we use the relative entropy. First, recall the definition
of relative entropy [5, section 2.3]

Definition 6. Let p(x), q(x) be two probability mass functions on the same finite
set. Then, the relative entropy of p and q is

D(p‖q) =
∑
x

p(x) log
p(x)

q(x)

where the conventions 0 log(0/q) = 0 and p log(p/0) =∞ are used.

An important property of the relative entropy is monotonicity. Intuitively,
it states that further processing can only bring distributions closer together.
Formally, we have:

Theorem 11 (Monotonicity of the Relative Entropy). Let p(x), q(x) be probabil-
ity mass functions. Let r(y|x) be a set of transition probabilities (i.e. ∀x∀y, r(y|x) ≥
0 and ∀x,

∑
y r(y|x) = 1). Let

p′(y) =
∑
x

r(y|x)p(x)

q′(y) =
∑
x

r(y|x)q(x)
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Then,
D(p′‖q′) ≤ D(p‖q)

Proof of monotonicity. We use the log-sum inequality [5, Theorem 2.7.1]:

Lemma 1 (Log sum inequality). Let a1, . . . an, b1, . . . bn be non-negative. Then,(∑
i

ai
)

log

∑
i ai∑
i bi
≤
∑
i

ai log
ai
bi

Proof of log sum inequality. Apply Jensen’s inequality

f(
∑
i

λixi) ≤
∑
i

λif(xi)

to the convex function f(x) = x log(x), the numbers xi = ai/bi and the weights
λi = bi/(

∑
j bj).

Now we have:

D(p′‖q′) =
∑
y

p′(y) log
p′(y)

q′(y)

=
∑
y

(∑
x

r(y|x)p(x)
)

log

∑
x r(y|x)p(x)∑
x r(y|x)q(x)

≤
∑
y

∑
x

r(y|x)p(x) log
r(y|x)p(x)

r(y|x)q(x)

=
∑
x

p(x) log
p(x)

q(x)
= D(p‖q)

as needed.

Second proof of monotonicity. Think of random variables X,Y with joint prob-
ability mass function p(x, y) = p(x)r(y|x). Now consider the following:

−D(p, q) =
∑
x

p(x) log
q(x)

p(x)
=
∑
y

p′(y)
∑
x

p(x|y) log
q(x)

p(x)

≤
∑
y

p′(y) log

(∑
x

p(x|y)
q(x)

p(x)

)

=
∑
y

p′(y) log

(∑
x

p(y|x)

p′(y)
q(x)

)
=
∑
y

p′(y) log

(∑
x r(y|x)q(x)

p′(y)

)
=
∑
y

p′(y) log
q′(y)

p′(y)
= −D(p′, q′)

where we have applied Jensen’s inequality, then Bayes’ rule. This completes the
proof.
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4.6 Lower Bound on the Secret Key Entropy for Interac-
tive Protocols

Now we are ready to state and prove the lower bound on secret key entropy for
interactive protocols.

Theorem 12. Let π be any interactive message authentication protocol such
that the probability Bob rejects in an honest execution is at most δ and the
probabilities of successful impersonation and substitution attacks are bounded by
ε. Let K be a random variable that models the secret key used by protocol π.
Then

H(K) ≥ δ log
δ

1− ε
+ (2− δ) log

1− δ
ε

where H(·) is the Shannon entropy.

Before we prove this Theorem, we remark that in the special case δ = 0,
ε = 2−r and π a protocol with a single flow from Alice to Bob, the Theorem
gives H(K) ≥ 2r, and so the secret key length l must be at least 2r, as we
claimed in the second bound of Theorem 5. Now, we proceed to prove Theorem
12.

Proof. First, we give the high level idea of the proof. Intuitively, the key K must
contain two parts; the first part protects against impersonation attack and we
will show that it must have entropy at least

δ log
δ

1− ε
+ (1− δ) log

1− δ
ε

The second part of the key protects against substitution attack, and we will
show that it must have entropy at least

log
1− δ
ε

We proceed with the details. First consider the relative entropy between
distributions induced by an honest execution and distributions induced by an
impersonation attack. For an honest execution, we have that the marginal
distribution pB of B is obtained from the marginal distribution pC1,...Cr,K,M

of the protocol transcript, the secret key and the message using the transition
probabilities

p(b|c1, . . . cr, k) = p(b|c1, . . . cr, k,m)

For an impersonation attack, the marginal distribution p′B is obtained from
the marginal distribution p′C1,...Cr,K,M

using the same transition probabilities
p(b|c1, . . . cr, k,m). We apply monotonicity of the relative entropy (Theorem
11) and obtain

D(pB‖p′B) ≤ D(pC1,...Cr,K,M‖p′C1,...Cr,K,M )
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We combine this with the further observation that P(B = 1) ≥ 1 − δ in an
honest execution and P(B = 1) ≤ ε in an impersonation attack. We get

D
(

(δ, 1− δ)‖(1− ε, ε)
)
≤ D(pB‖p′B) ≤ D(pC1,...Cr,K,M‖p′C1,...Cr,K,M ) (1)

Now, we turn our attention to substitution attacks. The overall probability
that Bob accepts in a substitution attack is at most ε. On the other hand,
conditional on Eve guessing the correct key, the probability that Bob accepts is
at least 1− δ, because Eve can now simulate to Bob an honest execution of the
protocol. Therefore,

ε ≥ (1− δ)P(K ′ = K)

which we transform to

ε

1− δ
≥ P(K ′ = K) =

∑
c1,...cr,k,m:p(c1,...cr,k,m)>0

p′′(c1, . . . cr, k, k,m)

=
∑

c1,...cr,k,m:p(c1,...cr,k,m)>0

p(c1, . . . cr, k,m)
p′′(c1, . . . , cr, k, k,m)

p(c1, . . . cr, k,m)

and we further transform to

log
1− δ
ε
≤

∑
c1,...cr,k,m:p(c1,...cr,k,m)>0

p(c1, . . . cr, k,m) log
p(c1, . . . cr, k,m)

p′′(c1, . . . , cr, k, k,m)

(2)
where we have taken logarithms of both sides, applied Jensen’s inequality and
concavity of the logarithm, and then flipped the sign.

Now, we combine (1) and (2) and we get

δ log
δ

1− ε
+ (1− δ) log

1− δ
ε

+ log
1− δ
ε

≤
∑

c1,...cr,k,m:p(c1,...cr,k,m)>0

p(c1, . . . cr, k,m)

∗ log
p(c1, . . . cr, k,m)2

p′(c1, . . . cr, k,m)p′′(c1, . . . cr, k, k,m)
(3)

The final step of the proof is to simplify the expression inside the logarithm.
We have:

p(c1, . . . cr, k,m)2

p′(c1, . . . cr, k,m)p′′(c1, . . . cr, k, k,m)

=
p(k)p(m)

∏r
i=1 p(ci|c1, . . . ci−1, k,m)

p(k)p(m)
(∏r

i=1 p(ci|c1, . . . ci−1,m)
)
p(k|c1, . . . cr,m)

=
1

p(k)

Combining this with (3) we get

δ log
δ

1− ε
+ (2− δ) log

1− δ
ε
≤ H(K)

as needed.
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4.7 References for interactive authentication

The idea of interactive message authentication protocols was introduced in [9].
Unfortunately, the interactive protocol proposed there was insecure, as shown
by [7]. Fixes of the original interactive protocol later appeared in [8, 18]. A
proof of the lower bound on the secret key size appears in [18]; however, here
we have deviated somewhat from the exposition in that paper.
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