RANK n SWAPPING ALGEBRA FOR PGL, FOCK-GONCHAROV
X MODULI SPACE

ZHE SUN

To William Goldman on the occasion of his sixtieth birthday

ABSTRACT. The rank n swapping algebra is a Poisson algebra defined on the
set of ordered pairs of points of the circle using linking numbers, whose geo-
metric model is given by a certain subspace of (K" x K"*)"/GL(n,K). For
any ideal triangulation of Dj—a disk with k& points on its boundary, using
determinants, we find an injective Poisson algebra homomorphism from the
fraction algebra generated by the Fock—Goncharov coordinates for XpgL,, D,
to the rank n swapping multifraction algebra for r = k- (n — 1) with respect to
the (Atiyah-Bott—)Goldman Poisson bracket and the swapping bracket. This
is the building block of the general surface case. Two such injective Pois-
son algebra homomorphisms related to two ideal triangulations 7 and 7' are
compatible with each other under the flips.

1. INTRODUCTION

We study the Goldman Poisson structure using circle, linking numbers, deter-
minants and ratios.

1.1. Background and motivation. Let R, g be the space of gauge equivalence
classes of flat connections on a fixed principal G-bundle over S, where G is a
reductive Lie group and S is a connected oriented closed Riemann surface of genus
g > 1. In early 80s, Atiyah and Bott [AB83] constructed a symplectic structure
w on R¢,s by symplectic reduction from infinite dimensional symplectic manifold
Mg s of all such connections via the moment map given by the curvature. From
another point of view, the space R¢,s is Hom(m(S), G)/G using the monodromy
representation of 71 (S) with respect to the connection, where G acts by conjugation.
Then Goldman [G84] identified the tangent space of Hom(m(S),@)/G with the
group cohomology H(m(S), g) and interpret the symplectic structure w in terms of
the intersection pairings on the surface S—the cup product. This construction has
been extended to the case where the Riemann surface S has finitely many boundary
components in [AM95] [GHIJW97] and references therein, even with marked points
on the boundary in [FR9S].
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When S is a closed Riemann surface of genus g > 1, there is a special connected
component H,(S) of Rpar(n,r),s, containing all the n-Fuchsian representations,
called Hitchin component [H92]. Here an n-Fuchsian representation is the composi-
tion of a discrete faithful representation from 1 (S) to PSL(2, R) with an irreducible
representation from PSL(2,R) to PGL(n,R). The Hitchin component H,(S) is so
nice that the quotient in the sense of geometric invariant theory [MK94] is the same
as its topological quotient.

Let E be a n-dimensional vector space and let €2 be a non-zero volume form of
E. A flag F for PGL,, is a nested collection of vector subspaces in F

{OCF1C"'CFH71CFHZE| dimFi:i}

equipped with the volume form 2. The flag variety B is the space of all flags.
Labourie and Guichard [Gu08][L06] identified each element p in the Hitchin com-
ponent H,(S) with a p-equivariant hyperconvex Frenet curve £, from the boundary
at infinity 0o (m1(5)) of m1(S) to the flag variety B(R) up to diagonal action by pro-
jective transformations. This identification allows us to study the Goldman Poisson
structure on H, (S) by studying the Goldman Poisson structure on the space FR,,
of hyperconvex Frenet curves up to projective transformations. We write &, as a
(n—1)-tuple (&},--- &5 "), where £/, takes values in the Grassmannian G;(R™) for
i=1---,n—1. Let 5}, (Eg’l resp.) be any lift of £, (€7~! resp.) with the values
in R™ (R™ resp.). For any four distinct points x,y,z,t in 0 (m1(5)), Labourie
[LO7] defined a special function on the Hitchin component H,,(S), called the weak
cross ratio, defined as follows:

B,(X,y,2,t) = <§;(x) 5;;—1(z)> . <5§(Y) ELL‘l(t)>

(6x|&7'®) (G0)|& @)

Investigating the algebraic nature of weak cross ratios, Labourie [L18] introduced
the swapping algebra to characterize the Goldman Poisson structure on H,,(S) for
any n > 1 and the second Adler-Gel’fand—Dickey Poisson structure [Ma78][Di97]
(and references therein) via Drinfel’d-Sokolov reduction [DS81] on the space Opers,,
of SL(n,R)-opers with trivial holonomy. Let us recall the swapping algebra as
follows.

We represent an ordered pair (of points) (z,y) of a given set P C S! by the
expression zy, and we consider the commutative ring

Z(P) = K[{zy}o yer]/ {22} 2ep)

over a field K of characteristic zero. The ring Z(P) is equipped with the Pois-
son bracket {-,-}, called the swapping bracket, defined by extending to Z(P) the
following formula on arbitrary generators rx, sy:

(1) {rz, sy} = J(rz, sy) - ry - sz,

using Leibniz’s rule. We define the linking number J (rz,sy) € {0,+1,+1} on S*
as in Figure 1 which only depends on the corresponding position of the four points.
The swapping algebra of P is (Z(P),{-,-}). Then the swapping multifraction alge-
bra (B(P),{-,-}) is the sub-fraction algebra of the swapping algebra (Z(P),{:,})
generated by cross fractions like 25 - ;’—i By considering the homomorphism

7:B(P) = C™ (Hn(5))
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that sends 2= - ;’—i to B,(x,y,z,t), Labourie [L18] showed that 7 is “asymptotically
Poisson” with respect to the swapping bracket and the Goldman Poisson bracket.

However 7 is not injective. To make the kernel of 7 smaller, the rank n swapping
algebra (Z,(P),{-,-}) is introduced in [Sul7]. Here (Z,(P),{:,-}) is the quotient
of the swapping algebra (Z(P), {-,-}) by the Poisson ideal R,,(P) generated by

{det (ziy) T2y € ZP) lan, -+ wusn i s ynss € P

The geometric model for Z,(P) in [Sul7, Section 4] arises naturally from the

classical geometric invariant theory [W39]. When P = {z1,---,z,}, we associate
a pair (a;,b;) € K® x K™ to each x; for i« = 1,--- ;r. We consider the space
D,, , = (K" x K™)" of r vectors ay,-- - , a, in K” and r covectors by, - - , b, in K™*.

For any g € GL(n,K), the action of g on the vector a; is the left multiplication by
g, the action of g on the covector b; is the right multiplication by g~!. We define
the product between a vector a; in K™ and a covector b; in K™* by (a;|b;) := b;(a;),
which is GL(n,K) invariant. Then we associate each (a;|b;) to each pair x;z; €
Z,(P). The geometric model for (Z,(P),{-,-}) is

(2) Dn,r = {(Clhbl, oo ,ar,br) c Dn,r ‘ < az\bz >=0,1=1,--- 7T}/G]—_;(TL,}K),

which is also equipped with the swapping bracket.

The rank n swapping multifraction algebra (B, (P),{:,-}) is the sub-fraction al-
gebra of the rank n swapping algebra (Z,(P),{-,-}) generated by cross fractions.
Then the homomorphism 7 is changed into

Tt Br(P) = C* (Hp(S))

that sends 2= - ;’—z to B,(x,y,z,t). However 7, is still not injective because of the
m1(S) invariance of the weak cross ratios.

It motivates us to consider an injective Poisson homomorphism 6 that sends a
coordinate fraction ring of H,(S) to B,,(P) in Definition 5.1. Our crucial point for
defining such homomorphism is that we characterize a pairing between a vector and
a covector by a (n x n)-determinant in Z,(P) instead of an ordered pair in Z,(P).
It turns out that the Fock-Goncharov coordinates for Xpq;, o [FGO6] work well,
even for their corresponding quantized algebras [Su]. The Poisson homomorphism
in [L18, Theorem 10.7.2] for Opers,, is still Poisson after replacing an ordered pair
in Z,(P) by a (n x n)-determinant as shown in Section 7.

Instead of understanding the Goldman Poisson structure as the cup product on
the surface, the rank n swapping algebra provides another natural description using
circle, linking numbers, determinants, ratios and classical geometric invariant ring.

1.2. The main result. We use x for a vertex on the surface to distinguish it from
an element x of P throughout this paper.

Let Dy, be a disk D with k > 3 points mj, = {s < w < --- <t < s} on 9D, where
< defines a cyclic order with respect to the anticlockwise orientation on the circle.
In this case XpgL,,.p, = B’“/PGLH with respect to the diagonal action of PGL,,.
Given an ideal triangulation 7 of Dy, the n-triangulation T, is a subdivision of T
such that each triangle of T is divided into n? triangles as in Figure 3. Fock and
Goncharov (Definition 3.5) parameterize Xpar,, p, by assigning the coordinate Xy
to each vertex V of certain subset of vertices of T,,. Let FX(7,,) be the fraction ring
generated by these {Xy} over the field K. The rank n Fock-Goncharov Poisson
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bracket is given by
{Xv, Xw}, =cvw - Xv - Xw,
where by Figure 3

(3) eyw = #{ arrows from Vto W } — #{ arrows from WtoV }.
The rank n Fock-Goncharov algebra is (FX(Ty), {:, }n)-

Given ¢ € BF, for any r € my, we choose a basis {r1, -+ ,r,} of the flag {(r)
such that rq,--- ,r; span the ¢ dimensional subspace £*(r) of £(r). Then we choose
a covector r{ such that (r;|r{) = 0 for ¢ = 1,--- ,n — 1. For Xpcr,,p,, the key

observation for relating the rank n Fock—Goncharov algebra to the rank n swapping
multifraction algebra is the following:
Any remy andi € {1,--- ,n — 1} provide us a pair

(ri,75) € E x E* such that (r;|r§) =0

3

which embeds Xpar,, p, into the subspace of (Ex E*)F("=1) | GL,, subject to (r;|rs) =
0. The induced Poisson structure on Xpgy, b, from the swapping bracket does not

depend on the choice of bases of the flags.
Here each r € my, is related to n — 1 elements in F x E*. Therefore we define

P:{sn_l<~~<51<wn_1<~’~<w1<~~<tn_1<~~<t1<sn_1}

on S', where each r € m; corresponds to n — 1 anticlockwise ordered points
Tn—1,.-.,71 nearby in P as in Figure 4.

Suppose that V is a vertex of the n-triangulation 7, related to the marked
triangle (x,y,z) of the ideal triangulation 7 and a triple of non-negative integers
(m,l,p) with m 4+ 4+ p = n. Choose some bases

{le"' 7Xn}7 {Y17"' 7Yn}7 {Zlv"' 7Zn}'
for the flags £(x), £(y), £(z) respectively. Fix a volume form 2 of E. Let
Ay =QXIA - AXp AYL A Ay ANZIA - N2Zp).

Let FA,, be the fraction ring generated by all these determinants with the fixed
bases of flags.

For any d > 1 and any z1,- - ,x4,y1, - ,Yqd € P, let us adopt the notation
r1yr - T1Yd
(4) A((‘Tl, 7$d)»(y17"' 7yd)) = det o EZTL(P)
Layr -+ TdYd
Fixed a choice of distinct uy,- - ,u, € P, the homomorphism y, from FA,

to 9, (P) is defined by extending the following formula on the generators to F.A,
using Leibniz’s rule

(5) Xn(AV) = A((xh sy Tmsy Y1, 0 5 YL, 21,0 azp)a(ula"'un))~

We define the homomorphism 67, from FX(7,) to B, (P) by restricting the homo-
morphism x,, to the fraction ring FX(7,). Then the homomorphism 67, does not
depend on the choice of bases of flags and the choice of distinct uq,--- ,u, € P.
More explicitly, we have

07, (Xv) = xa(Xv) = xa ([ AF™)-
w
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Theorem 1.1. [MAIN RESULT THEOREM 5.5] Given an ideal triangulation T
of Dy, there is an injective Poisson homomorphism 01, from the rank n Fock—
Goncharov algebra for the moduli space Xpgr, p, to the rank n swapping multi-
fraction algebra (B, (P),{-,-}), with respect to the Goldman Poisson bracket and
the swapping bracket.

The above theorem generalizes the result for n = 2 in [Sul7], for n = 3 in Chapter
3 of [Sul4]. Combining this theorem with the main result in [L18], we again relate
the Fock—Goncharov Poisson structure with the Goldman Poisson structure.

To prove the main result, we introduce the quotient of two (n x n)-determinants

A((Mw“ ,xn)’(ul’... 7un))

A((yh' o ;yn) ) (ulv T 7“’”))
with the same right side n-tuple of distinct points (ug, - -, uy), called the (n x n)-
determinant ratio in the field of fractions 9, (P) of Z,(P). It has the nice property
that it does not depend the choice of (u1,---,uy), due to the R, (P) relations.
Then we realize that any 67, (Xy) is a product of two or three (n x n)-determinant
ratios which can be represented by two or three oriented edges of 7, as in Figure
7. Such (n x n)-determinant ratio is called oriented edge ratio. As a consequence
07, does not depend on the choice of uy, - ,u, € P.

By Lemma 2.6, the swapping bracket

{ab, A((21,+,20), (Y1, yn))} = AT (ab) = AT (ab)

can be expressed in two different ways regarding to the right or left side of E in
Figure 2. Then we compute the swapping bracket between two (n x n)-determinants
in our main proposition 5.7, which is the most technical part for proving the main
theorem. Let us fix some notations
0 4,8 = 45
We stress the fact that the formula

[ (o) 0m) (o) )]

1 1 1
— 3 min{m, m'} —3 - min{l, l/} ~ 5 min{p,p’}

i
W =Wy, , Wy

in Proposition 5.7 strictly depends on the cyclic order in Figure 5 and the condition
(*)1 > 1" or p <p'isstrict. Essentially, the + and — sign before %-min is due to our
cyclic order. Then we obtain Proposition 5.12, which shows that the [-,-] bracket
between any two oriented edge ratios belongs to {—%, 0, %} and only depends the
corresponding positions of two oriented edge ratios as in Figure 8, 9. Our oriented
edge ratios correspond to the generalized Kashaev coordinates [K98] [Kil6], but
their Poisson bracket is different from the swapping bracket for two oriented edges
lying on two different ideal triangles. In the proof of Proposition 5.12, we choose
the right side n-tuples wisely for the (n x n)-determinant ratios in each case in order
to use Proposition 5.7 under the condition (*). Finally by checking all the cases,
we finish the proof of the main theorem.

1.3. Compatible. For Dy, we can transform any ideal triangulation T to any other
ideal triangulation 7" by a finite sequence of flips. In Proposition 6.1, we prove that
the corresponding two injective Poisson homomorphisms 67, and 7 are compatible
by a generalized Pliicker relation in Z,,(P). It is realted to the result for n = 2 in
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[Sul7, Lemma 5.5] where the cross fractions are used to define the homomorphism
07,. As a corollary, the rank n Fock—Goncharov Poisson bracket does not depend
on the ideal triangulation 7. Note that these properties only become possible after
dividing (Z(P),{-,-}) by R.(P).

1.4. From disk to surface. Let § = (S = Sgm,0) with 2g —2+m > 0. In
this case, we obtain a homotopy equivalent surface S’ by shrinking holes on S
to punctures. The ideal triangulation of S is the ideal triangulation of S’ with
vertices at the punctures. Let T, be all the lifts of the n-triangulation 7, into the
universal cover of the surface S’. The Farey set Foo(S) is the countably infinite
collection of vertices of ’7', equipped with a cyclic order on the boundary at infinity
Osom1(S”). Let P be a cyclic subset of S! obtained by splitting each point of Fu ()
into n — 1 points nearby in S' as we did for Dy. By our main theorem 5.5, the
injective homomorphism 67 from FX(7,) to B,(P) is Poisson with respect to
the rank n Fock—Goncharov Poisson bracket and the swapping bracket. Thus the
swapping bracket identifies with the rank n Fock—Goncharov Poisson bracket on
the universal cover Confr_ (g, = B7>=(9) /PGL,. Moreover, m(S) acts on both

FX(T,) and 07 (FX(T,)) through the 71 (S) action on the Farey set Fag(S), thus
G%n is m1(S)-equivariant with respect to these actions. By [FG06, Lemma 1.1],

Xpar, s = Confj;oi%)m. Then the rank n Fock-Goncharov Poisson bracket on
Xpar, g 1s induced by the m (S)-equivariant homomorphism 07 from the swapping

bracket. This construction also works for S = (S, my) where my, C 9S is a finite set
since the cyclic order on the boundary at infinity d.71(S”) induces a cyclic order
on every lift of a boundary component containing marked points in m.

1.5. From cross fractions to (n x n)-determinant ratios. Instead of charac-
terizing the weak cross ratio by the cross fraction in the homomorphism 7,,, we use
a product of two (n x n)-determinant ratios to characterize the weak cross ratio.
By Theorem 7.3, such characterization is compatible with the former with respect
to the swapping bracket.

1.6. Summary, further development. Using (n x n)-determinant ratios instead
of cross fractions, we provide the following understanding of “the space of all cross
ratios” proposed by Labourie. Using the swapping bracket, we define the Poisson
structure on a subspace of (K" x K™)#7 / GL(n,K). It induces a Poisson bracket
wsw on the sub fraction ring DR(FR,,) of functions of FR,, (space of hypercon-
vex Frenet curves up to projective transformations) generated by all elements corre-
sponding to (n X n)-determinant ratios. By our main theorem, the Fock—Goncharov
coordinate fraction ring of Xpq; 4 is Poisson embedded into DR(FR,) with re-
spect to the Goldman Poisson structure and wsyy. On the other hand, combing
[L18, Theorem 10.7.2] and Theorem 7.3, the fraction ring of acceptable observables
on the space Opers,, of SL(n,R)-opers with trivial holonomy is also Poisson embed-
ded into DR(FR,) with respect to the second Gel’fand-Dickey Poisson structure
and wsyy.

In a forthcoming paper [Su], we define the quantized rank n swapping alge-
bra ZZ(P) generated over K, = K[g,¢~'] by non commutative indeterminates.
Given any ideal triangulation 7, we give an injective homomorphism Hg-n from the
quantized Fock-Goncharov coordinate fraction algebra [FG09] for XpcL, p, to the
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quantized rank n swapping multifraction algebra BZ(P). Moreover, we show that
any two homomorphisms F)an and 93-, are compatible using Skein relations.
Moreover, we suggest the following research directions.

(1) In the conference organized by Goldman at Maryland University in 2016,
Labourie [L] described a compactification of the Hitchin component H,,(.S)
using a tropical version of cross ratio and the rank n swapping algebra. It is
interesting to relate this compactification to the compactification of cluster
X variety at infinity in [FG16] through the injective Poisson homomorphism
0.

(2) It is interesting to investigate the Fock—Goncharov Poisson structures for
the surface S with bordered cusps as in [CM17], [CMR17] via the rank n
swapping algebra, where they build very interesting links with Painlevé-
type equations.

2. RANK n SWAPPING ALGEBRA

In this section, we recall the swapping algebra [L18] and the rank n swapping
algebra [Sul7]. Lemma 2.6 ([Sul7, Lemma 3.5, Remark 3.6]) is the key technical
formula to use for proving our main proposition 5.7.

2.1. Swapping algebra.

Definition 2.1. [LINKING NUMBER] Let (1,2, s,y) be a quadruple of points in P C
S. We represent an ordered pair (r,x) of P by the expression rx. Let o be any
point different from r,xz, s,y € S1. Let o be a homeomorphism from S*\o to R with
respect to the anticlockwise orientation of S*. Let A(a) = —1;0;1 whenever a < 0;
a = 0; a > 0 respectively.

The linking number between rx and sy is

1
- J(rz,sy) = 5 - B(o(r) —o(z)) - Blo(r) —a(y)) - Ao(y) —o(z))
1
=5 Blar) =a(@) - Bo(r) —a(s)) - Alo(s) — o(@)).

In fact, the value of J(rz, sy) belongs to {0, %1, :I:%}, and does not depend on
the choice of the point 0 and depends only on the relative positions of r, z, s,y. In
Figure 1, we describe five possible values of J (rz, sy).

For P a cyclic subset of S!, we represent an ordered pair (r,z) of P by the
expression rz. Then we consider the associative commutative ring

Z(P) := K{zy}ve yer)/{zz|Ve € P}

over a field K of characteristic zero, where {zy}vs ycp are the set of variables. Then
we equip Z(P) with a swapping bracket, defined as follows.

Definition 2.2. [SWAPPING BRACKET [L18, o = 0 case]] The swapping bracket
over Z('P) is defined by extending the following formula on arbitrary generators rz,
sy to Z(P) using Leibniz’s rule

{ra, sy} = J(rz,sy) - -ry - sz.
By direct computations, Labourie proved the following theorem.

Theorem 2.3. [LABOURIE [L18]] The swapping bracket is Poisson.



8 ZHE SUN

1 1
’
s Z Yy T
_1 r
s
S : }
,
@ |
T 3 Y

FIGURE 1. Linking number J(rz, sy) between ra and sy

DO |
)

Let Q(P) be the field of fractions of Z(P). We extend the swapping bracket to
Q(P) by

1., Arz,sy}

{rz, sy} = W

Definition 2.4. The cross fraction determined by (x,y, z,t) is the element

ot
xt yz
Let B(P) be the subring of Q(P) generated by cross fractions.
The swapping fraction (multifraction resp.) algebra of P is the ring Q(P) (B(P
resp.) equipped with the swapping bracket, denoted by (Q(P),{-,-}) ((B(P),{-,})
resp. ).

~—

By [Sul7, Proposition 2.9], the ring B(P) is closed under {-,-}.

2.2. Rank n swapping algebra.

Definition 2.5. [THE RANK n SWAPPING RING Z,(P)] Recall the notation in
Equation (4). Forn > 2, let R,(P) be the ideal of Z(P) generated by

{D S Z(P) | D=A ((1'17 e 7xn+1)7 (yla e 7yn+1)) ,V(El, s Tn4+1,Y1s " s Yn+1 S P}
The rank n swapping ring Z,(P) is the quotient ring Z(P)/Rn(P).

Lemma 2.6. [[Sul7, Lemma 3.5, Remark 3.6]] For any integer m > 2, suppose
1y T (Y1, Ym TESP.) In P are mutually distinct and anticlockwise ordered
(m, x;,y; used here do not involve m, z;,y; in any other places). Assume that a,b
belong to P and x1, -+ ,x1,y1, -, Y are on the right side of the oriented edge %
(include coinciding with a orb) as illustrated in Figure 2. Let u (v resp.) be strictly
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T a
Y1

Yk

b

FIGURE 2. {aba A((xlv e 7xM)a (ylv T 7ym))}

on the left (right resp.) side of a%. Let

(8) l
Al (ab) = Zj(ab, xqu) - Tab  A((T1, - Td—1,Q, Tag1s s Tm), (Y1, Ym))
) d=1
+ " Tlabuya) - aya - A1, 5 Tm), (U1, Ya—1,0Yas1s 5 Ym))s
d=1
) .
AL (ab) = Z J(ab,xqv) - xgb- A((z1, -+ a1, Tas1, s Tm), (Y1, Ym))
d=k+1

=+ Z j(ab? ’Uyd) s ayYq - A((xlv e 7IM)7 (y17 5 Yd—1, b7 Yd+1, - 7yTYL))a
d=Il+1

then we have
{ab,A((z1, -, xm), (Y1, - ym))} = Af(ab) = AL (ab).
The following proposition is a consequence of the above lemma.

Proposition 2.7. The ideal R, (P) is a Poisson ideal of Z(P) with respect to the
swapping bracket.

Definition 2.8. [RANK n SWAPPING ALGEBRA OF P| The rank n swapping algebra
of P is the ring Z,(P) = Z(P)/R,(P) equipped with the swapping bracket, denoted

By Theorem 4.7 in [Sul7], Z,(P) is an integral domain. Generators of Z,(P)
are non-zero divisors, so the cross fraction is well defined in the field of fractions of

Z,(P).
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Let Q,,(P) be the field of fractions of Z,,(P). Let B,,(P) be the sub-fraction ring
of Z,,(P) generated by cross fractions.

Definition 2.9. Then, the rank n swapping fraction (multifraction resp.) alge-
bra of P is Q,(P) (B.(P) resp.) equipped with the swapping bracket, denoted by

(QTL(P)a {a }) ((BH(P)a {a }) resp.).

3. FOCK—GONCHAROV COORDINATES

In this subsection, we explain explicitly the Fock—Goncharov coordinates for
Xpar, 5 1In [FGO6].

Let S = (S, myp) that admits an ideal triangulation, where S is a compact oriented
surface and my is a finite collection of marked points on 9S considered modulo
isotopy. Let m, be the set of punctures of S. An ideal triangulation T of Sisa
maximal collection of non-homotopic essential arcs joining points in m Um,, which
are pairwise disjoint on the interior parts.

Definition 3.1. [}, ¢ [FGO6, Definition 2.1]] A PGLy,-framed local system is
a pair (p, &) where

(1) p € Hom(m (S),PGL,,)/ PGL,,

(2) € is a monodromy invariant map from my U my, to B.
The moduli space XPGL”’S is the collection of equivalent classes of the pairs with
the equivalence relation (p,&) ~ (gopog=t,go&) for any g € PGL,.

Definition 3.2. [n-TRIANGULATION] For any triangulation T, we denote its
vertices by V- and its edges by E1. Given an ideal triangulation T of S, we define
the n-triangulation 7,, of T to be: we subdivide each triangle of T into n? triangles
as shown in Figure 3. Let

FI1GURE 3. 3-triangulation of Dy
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1, = (VTn \VT) N ( U 6)7
ecEr
and
I, ={V €1, | V is not on the boundary of T} .
For the case in Figure 3, I! = {B,C,D,F}. Any element W € I, is specified by
an oriented edge ub and a pair of positive numbers (m,l) with m + 1 = n where m
is the least number of edges between W and v in Et,. We also denote W by v;’f;,l,
For ezample, the vertex B = v} is specified by z% and (2,1).
A marked triangle (u, v, w) is a triangle wow with a mark on each vertex.
Let
TIn = VTn\(In U VT)-
For the case in Figure 3, J, = {A,E,G}. Any element U € [T, is specified by a
marked triangle (u, v, w) and a triple of positive numbers (m, 1, p) withm+Il+p=mn
where m (I resp.) is the least number of edges between U and vw (uw resp.) in
Er.,. We also denote U by vZf;,{ﬁ,’. For example, the vertex A = vi”;;i is specified
by (x,y,2) and (1,1,1).
With respect to the orientation of S, we define a quiver I'y. with vertices L, UJy,
and oriented edges as in Figure 3.

Definition 3.3. [FLAGS| Let E be a n-dimensional vector space and let Q be a
volume form of E. A flag is a nested sequence of vector subspaces in E
F=FcFC---CF, 1CF,=FE, dmF; =1

equipped with the volume form .

A basis of a flag F' is a basis {f1, -, fn} of E such that the vectors fi,---, f;
span the vector space F; fori=1,--- n.

The flag variety B is the collection of the flags.

Notation 3.4. When X is T or T, or myUmy, or I, UJ,, we use X for denoting
all its lifts in the universal cover S.

The construction of Fock—Goncharov X coordinates are based on Lusztig’s theory
of total positivity [Lu94][Lu9s].

Definition 3.5. [FOCK—GONCHAROV COORDINATES [FGO06, Section 9]] Fiz an
ideal triangulation T of S and its n-triangulation T,. Given a framed local system
(p,&) of Xpar, g by Deck transformation, we get a p-equivariant map &, from
mmp in the universal cover S to the flag variety B. For any vertex Ve Imn
of Tr, suppose that V is specified by a marked triangle (f, g, h) of T and a triple of
non-negative integers (m,1l,p) with m +1+p=n. Let
{f17 e 7.fn}7 {917 U 7gn}7 {h17 T 7h'n}
be the bases of the three flags £,(f), £,(9), &,(h) respectively. Recall Y is the fized
the volume form of E. Fizx the notation
Vo= O VARERIAN 7N
We define
Ay =Q(f"Ng NR).
Let FA,, be the fraction ring generated by these determinants over the field K of
characteristic zero with respect to a choice of bases of flags.
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For any V € I] U 7, we choose one of its lift V in the universal cover S. For
all the lifts of the quiver I'r, into g, we define e for any 17, WeZ,UJ, by

(10) €y = #1{ arrows from VioW } — #{ arrows from WtoV }
as in Figure 3. We define

which does not depend on the lift and the bases of flags that we choose. The collec-
tion of {Xv}ver,ug, parametrizes Xpqp g

Let FX(T,) be the fraction ring generated by {Xv }vez vz, over the field K of
characteristic zero. Then FX(T,) C FA,.

Remark 3.6. More explicitly, for V. € J, corresponding to a marked triangle
(f,g,h) of T and a triple of positive integers (m,l,p) with m + 1+ p = n, the
Fock-Goncharov X coordinate at V', also called the triple ratio, is

_ Q (fm+1 A gl A hp—l) QO (fn—l A gl+1 A hp) O (fn A glfl A hp+1)
QTN IAR) QU AGTARTY) QT Ag AR

ForV € I/, corresponding to an oriented edge T5 with two adjacent anticlockwise

Xv

oriented ideal triangles m_yﬁ and xzt, and a pair of positive integers (m,n —m), the
Fock-Goncharov X coordinate at V , also called the edge function, is

Q@ A2 I Al) - Q (e P Ay AT
Q(xm Ay, Azn=m=1) . Q (gL A v Ay

Xy =

Edge functions generalize Thurston’s shear coordinates [T86).

In both cases, Xy does not depend on the bases that we choose since each term
like €™ appears once in the numerator, once in the denominator. Moreover, because
Q does not change under the projective transformations, Xy is invariant by the
projective transformations. So Xy is a well-defined function on Xpar, 5

Remark 3.7. When the Riemann surface S is closed, with the help of Lie group G
invariant functions, Goldman [G86] studied the Hamiltonian flows on Rq,s where
the twist flows are described explicitly. For the Hitchin component H3(S), the flows
related to the Fock-Goncharov parameters are studied in [G13] [WZ17]. For the
Hitchin component H,(S), the Hamiltonian flows related to these parameters are
studied in [SWZ17] [SZ17].

The Fuchsian rigidity with respect to triple ratios (edge functions resp.) can be
found in [HS19].

Definition 3.8. [RANK n FOCK-GONCHAROV ALGEBRA] Let FX(T,) be the frac-
tion ring generated by {Xv }vez vz, over the field K of characteristic zero. The
rank n Fock-Goncharov Poisson bracket {-,-},, is defined by extending to FX(Ty)
the following formula for any VW € I/, U J,, using Leibniz’s rule:

{Xv, Xw}, =evw - Xv - Xw,

where € is defined in Equation (3).
The rank n Fock—Goncharov algebra of T,, is the ring FX(T,) equipped with the
rank n Fock-Goncharov Poisson bracket, denoted by (FX(T.),{, }n).
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Remark 3.9. (1) As shown in [FGO6, Section 15], the rank n Fock—Goncharov
Poisson bracket arises from a special Ko class in ASLnS' It can be un-
derstood as a canonical Poisson bracket defined for a cluster X wvariety
[GSV03].

(2) Actually, the rank n Fock—Goncharov Poisson bracket identifies with the
Goldman Poisson structure through a different way of symplectic reduction.
V. Fock and A. Rosly [FRI8] observed that the Goldman Poisson structure
on XG,S can be obtained as a quotient of the space of graph connections
by the Poisson action of a lattice gauge group endowed with a Poisson-Lie
structure. When G = PGL(n,R), we can calculate Fock—Rosly Poisson
bracket between any two Fock—Goncharov coordinates explicitly, which re-
sults in the rank n Fock—Goncharov Poisson bracket. In [N13, part I The-
orem 3.23], Nie uses an approach—the quasi-Poisson structure [AMMOS8]
[AKMO2] that is equivalent to that of Fock and Rosly, to explicitly identify
the Goldman Poisson structure with the Fock—Goncharov Poisson structure
on XG7 g

Theorem 3.10. [V. V . Fock, A. B. GONCHAROV [FGO06, Theorem 1.11], [FG04,
Theorem 2.5] FOR n = 3] Given an ideal triangulation T and its n-triangulation T,
of S', the Fock-Goncharov X coordinates {Xv }ver,uyg, provide a positive regular
atlas on Xpqy, g

4. (n X n)-DETERMINANT RATIO

In this section, we construct (n x n)-determinant ratios in Q,(P) and relate
them with the rank n Fock—Goncharov algebra.

Let us recall the geometric model for Z,,(P) from [Sul7, Section 4], which should
always be kept in mind while we do the computations in the rank n swapping

algebra. Let P = {z1,---,2,}. We associate a pair (a;,b;) € K* x K™ to z; for
i=1,---,r. We consider the space D,,, = (K" x K"*)" of r vectors ay,--- ,a, in
K™ and r covectors by,---,b, in K™. For any g € GL(n,K), the action of g on

the vector a; is the left multiplication by g, the action of g on the covector b; is
the right multiplication by g~!. We define the product between a vector a; in K
and a covector b; in K™ by (a;|b;) := b;(a;), which is GL(n,K) invariant. Let us
associate each (a;|b;) to each ordered pair z;2; € Z,(P) as follows. Let B,k be
the subring of K[D,, | generated by {(a;|b;)};_; ;_;. C. D. Concini and C. Procesi
[CP76] proved that B,x = K[D,,,]""%),

Let W be the polynomial ring K[{z; ;}] ;_;],

Zi1 T Zi1 1

R:{few‘f:det P P P >Vik7jl:1,"'77'}-

Zipt1,51 T Zipg1,dngt

Let T be the ideal of W generated by R. Then Weyl [W39] show that B,x =
W/T. Recall P = {z1, - ,2,} C S'. Let S,k be the ideal of B,x generated by
{{ai|b;)}i_,. Taking quotient by S,k, we identify (a;|b;) with x;z; through z; ;,
where we identify a; with z; on the left and b; with x; on the right of ordered pair
ziz; in Z,(P).
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Definition 4.1. For any d > 1 and any x1, - ,xq,y1, " ,Ya € P, recall the
notation

r1yr - T1Yd
(11) A((xh e 71'd), (yh e 7yd)) = det M cee S Zn(P>

Layr -+ TdlYd

We call (x1,--- ,2aq) ((y1,--- ,ya) resp) the left (right resp.) side n-tuple of the
determinant A ((x1,-- ,2q), (Y1, ,Yd))-

Theorem 4.2. [[Sul7] THEOREM 4.6] We have Byx/Snk = Z,(P).

Lemma 4.3. Forn > 1, let z1,-+ ,Tn, Y1, ,Yn € P. Suppose that x1,--- ,xp
(y1, -+, Yn resp.) are mutually distinct, we have

A((wy,-  2n), (Y1, 5 yn)) #0.
in Z,(P).

Proof. Forany i =1,--- ,n, let z;,y; € P and let (z; 4, Tic); (Yiw, Yi,c) € K* x K™,
Under identification Bk /Syx = Z,(P) of Theorem 4.2, we identify the vector z; ,
in K" with «; in P on the left and the covector y; . in K™ with y; in P on the right
of ordered pair z;y; in Z,(P). Then the determinant A ((z1,--- , ), (Y1, ,Yn))
is not zero in Z,(P) if and only if deti<; j<n (Ziv,¥j.c) is not always zero in K for
any generic K-point of B,x/Snx. Actually, for any generic K-point of B,k /Sux,
the value of det1<; j<n (@i, Yjc) is interpreted as the volume of &1 4, - , Ty, With
respect to the dual basis of y1.¢, ,Yn,e- If T10,  ,Tno a0d Y1, -, Yn,c are
both in general position, the volume deti<; j<n (s v,¥j,c) is not zero. We conclude
that

A((@1, - y2n), (Y1, 5 Yn)) #0

in Z,(P). O
Proposition 4.4. Let x1, - ,Zp_1,t,Y, 01, ,Up,u1 € P. If T1,-+ [ Tp_1,Yy
(1, ,Up,uq Tesp.) are mutually distinct, we have

A((‘Tla"' ,Jinfl,t%(’l}l,ﬂg,"' ,Un)) _ A((x17 7$n717t)5(u1av27"' ,Un))
A((x17"' 71'n—17y)a(v17v27"' 71}%)) A((xla ,In_l,y)7(U17’U2,"' 7U7L))
in Qn(P).
Proof. Consider the (n + 1) x (n + 1) matrix

r1U1 r1U1 e “e XT1Up
M=\ Tp_1U1 Tp_1V1 -+ - Tp_1Un

tul tvl e e t'Un

yul nyl e e nyn

The adjugate of M is
A (—1)"2 4,411
e (_]—)jJﬂAj,i
(_1)n+2A1,n+1 et An+1,n+1
whose (4,7) entry is (—1)7%%A;; and A;; equals the determinant of the (n x n)-
matrix obtained from M by deleting the j-th row and the i-th column.
We already know that

M* =

det M =0
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in Z,(P), hence we obtain
(12) M* - M = 0¢nq1)x(nt1)-

The entries of the matrices M, M* and M* - M are polynomials in Z,(P). Recall
that by Theorem 4.2, we identify a vector with a point on the left and a covector
with a point on the right of ordered pairs of points in Z,(P). When we specify the
values of vectors and covectors, under B,x/Snx = Z,(P), we specify the values of
all the polynomials in Z,(P). Then the values of the matrices M, M* and M*- M
provides the linear endomorphisms of K"*™!: f, g and g o f respectively. Actually,
any polynomial P is zero in the ring Z,,(P) over a field K of characteristic zero, if
and only if P is zero in all of the generic K-points. The following arguments are
true for any generic K-point of B,x/Syk, thus true for Z,(P). By Equation (12),
the rank of g o f (the dimension of the image of g o f) is 0. By the above lemma,
we have

A((@y, s 2n-1,9), (v, vn)) #0.

Thus, for any generic K-point, the rank of f is at least n. Therefore, for any generic
K-point, we have the rank of g is at most 1 (If not so, we will get the rank of go f
is not 0). By considering the top right corner 2 x 2 minor of M*, for any generic
K-point, we have

Api-Anti1o—Apno-Anyi11 =0,
which implies that

A((zla"' 7xn—1at)7(vlav23"' 7vn)) o A((xlv 7In—17t)5(u13v27"' avn))

A((x17"' 7$n717y)7(v17v27"' ,’Un)) A((:’L‘l, 7xn715y)7(u17/02"" 7vn))

in Qn(P) U
Moreover, by applying Proposition 4.4 n times, we have

Corollary 4.5. Let x1, -+ ,Tp_1,t,Y,V1," * ,Un, U1, ** U, € P. Suppose that

Xy, X1, Y (V1,0 U and ug, -+ uy, resp.) are mutually distinet, in Q,(P),

we have

A((‘rlv"' vxnflvt)’(vlv"' 7vn)) _ A((:El,-~- 7xn717t)7(u17"' 7un))
A((xla"' ’xn—lay)v(vla"' 7vn)) A((xlv al‘n—lvy)’(ul"" 7un))

By the above corollary, we can define a ratio of two (n x n)-determinants that
does not depend on the right side n-tuple.

Definition 4.6. [(nxn)-DETERMINANT RATIO| Let 1, - ,&n—1,y € P be different
from each other. The (n x n)-determinant ratio of 1, -+ ,Tp_1,t,y:

A ((xla e 7xnflat) P (Ulv e avn))

A ((xlv o 7$n—17y) ) (Ula T ,Un))

for any vy,--- v, € P different from each other.

The fraction ring D, (P) generated by all the (n x n)-determinant ratios is called
(n x n)-determinant ratio fraction ring.

E(xla e 7=Tn—1|ta y) =

Remark 4.7. The fraction ring D, (P) is also a fraction ring generated by all
A((@1,,%0),(V1,0,00))
A((y1,5yn), (V1,0 00)) 7

elements of the form since

A((xlv"'73371),(111,"',11”)) n
= E.f,[,',-.-’[]j‘i_,i e YnlTa, yi)-
A((ylv’”,yn),(vl,'””()n)) Zlel ( 1 1, Yi+1 Y. | y)
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FIGURE 4. {s<w < - <t <s} = {sp_1 < <51 <wy_1 <
e LWy < =<y < e <t < St}

By Corollary 4.5, we have

Corollary 4.8. Let a,b,x1, - ,xpn_1,t,y € P, 1, -+ ,Tn_1,y be different from
each other. The value of

{abv E(xlv e 7xn71|ta y)}
in Q,(P) does not depend on the choice of right side n-tuple (vi,--- ,vy).
As a consequence,
Corollary 4.9. Let P! = {u1, -+ ,un} UP. The value of
{ A((xlv"’axn—lvt)a(ula"'aun))}
ab,
A ((xla' o 7mn717y) ) (ulv' o ,Un))

in Qn(P’) can be expressed in Q,(P) by replacing uy,- - ,u, with any n different
elements vy, -+ ,v, in P.

By the above corollary, we can calculate the swapping bracket between two
(n x n)-determinant ratios with the right side n-tuples in any preferred position.

5. MAIN THEOREM

5.1. Homomorphism from rank n Fock—Goncharov algebra to rank n
swapping multifraction algebra. Let Dy be a disk D with k points m;, = {s <
w < -+ <t < s} on 0D, where < is defined with respect to the anticlockwise
cyclic order on a circle. In this case Xpar, p, = B*/PGL, and

XV = H A;[‘//W
WeZ,uTn

Definition 5.1. Given an ideal triangulation T of Dy and its n-triangulation T,
we have the fraction ring FX(T,) C FAy, as defined in Definition 5.5.
Let
P={sp_1 < <81 <Wp1 <+ <wWp <+ <ty <+ =<t <81}

on St with #P = k(n — 1), where each ™ € my, corresponds to n — 1 anticlockwise
ordered points r,_1,...,7T1 nearby in P as in Figure 4.
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Fiz a choice of distinct uy,--- ,u, € P, the homomorphism Yy, (which depends
on the choice) from FA, to Q,(P) is defined by extending the following formula
on the generators to FA,, using Leibniz’s rule

XTL(AV) = A((:Ch sy Ty Y1y 5 Y, 21,0 7ZP)7(U17"'UTL))7
where Ay = Q (:cm Ay A zp) and any vertex V. of T, is specified by a marked
triangle (x, y, 2) of T and a triple of non-negative integers (m, 1, p) withm~+Il+p =n
(Here S is the volume form of E and the bases of the flags ,(x), ,(y), &,(2) are
{ml7"' 7(3”}, {1117"' 7yn}7 {217"' wzn}
respectively. Recall the notation v' := vy A -+ A v;).

We define the homomorphism 01 from FX(T,) to B,(P) by restricting the
homomorphism x,, to the fraction ring FX(T,). We have

07—71 (XV) = Xn(XV) = HXn(Aw)EVW.
w

Proposition 5.2. The image of 07, lies in B, (P).

Proof. For any mutually distinct vq,--- ,v, € P (ug, - ,u, € P resp.) and any
permutation o € S, by [L18] Proposition 2, we have

V1Ug(1) " " UnUg(n) cB (,P)
ViU * - UpUp, " '

Thus we obtain
A((vr, 5 vn), (w1, un)) 3 e, AW b)) ¢ g (),

ViU -+ UplUp ViU -+ UplUnp

(s ) (o)

ViUl " UnUn

ocES,,

Since 07, (Xy) can be written as fraction of four or six
we conclude that 07, (X ) belongs to B, (P).

S,

O

Proposition 5.3. The homomorphism 01, is an injective homomorphism.

Proof. The homomorphism Y, sends (n X n)-determinants for K™ to (n x n)-
determinants in Z(P). By Theorem 4.2, we have the ring isomorphism B,k /Snx =
Z,(P), thus a choice of distinct uq,---,u, € P for the right side n-tuple for
(n x n)-determinants in Z(P) corresponds to fix a basis for K”. So any relation
among (n xn)-determinants for K™ in F.A,, corresponds to a relation among (n xn)-
determinants in Z(P). Hence it follows that the homomorphism Yy, is injective.
Since the homomorphism 67, is the homomorphism X, restricted to FX(Ty), we
conclude that the homomorphism 67, is injective. [

Recall the notation w’ := wy, - - - , w;.

Proposition 5.4. For V € 7, associating to (x,y,z) and a triple of positive
integers (m,l,p) with m+ 14 p =n, we have

eTn (XV) =FE (Z‘m+1a Z/l_17 Zp_l‘ylv Zp) - FE (mm_la yH—la Zp_1|zp7$’m) :
E (xm—17 yl_lv Zp+l |xm7 yl) .
For'V € I/, corresponding to z5 and (i,m —1), suppose that two adjacent anticlock-

wise ortented ideal triangles :@% and xzt have a common edge ﬁ, we have

Hﬂ(XV) =-F (1'17' Ly 21, aZn—i—1|t17y1)'E (xlv' L1521, 7Zn—i|y1;t1) .
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Proof. We only prove the first case. The other case will follow in a similar way. We

have
A 7). () A ) (1)
A((amtt,y' = Z”)a( ") Af(am =t 207t 2), (ur)

By ).
(et ). o ) e AL ), ()
Aoy o), (u )) A((@m 1y, 201 3, (un))

= 1)l+pE (xm Loyt |zp,3:m),

(- y

(. () e A ), )
A(am=t gt 2t), (un)) A(em=tyt =t 2t ), (ur)
= VB E Y ),

Taking the product of the above three terms, we obtain that

e'Tn (XV) =F (mm+17 yl_17 Zp_l‘ylv Z;D) - FE (xm_la yH_l) Zp_1|zp7xm) :

E (xmila ylil, Zp+l|xma yl) .

]

5.2. Proof of the main theorem. The main technical part of the proof of the
main theorem is contained in Proposition 5.7. Moreover, in Proposition 5.12 we
show how to compute the swapping bracket between two oriented edge ratios. Fi-
nally, we give a proof of our main theorem by considering different cases.

Theorem 5.5. [MAIN RESULT| Let Dy be a disk with k points on its boundary.
For an integer n > 1, given an ideal triangulation T of Dy and its n-triangulation
T, the homomorphism O, from FX(T,) to B, (P) is Poisson with respect to the
rank n Fock—Goncharov Poisson bracket and the swapping bracket.

As shown in Proposition 5.4, the image of one Fock—Goncharov X coordinate
can be written as a product of two or three (n x n)-determinant ratios. We start
by computing the swapping bracket between two (n x n)-determinants in our cases.
Recall the notation in Equation (6) [A4, B] := {A B} . We will use the following fact
frequently, by the Leibniz’s rule, VA, B,C, D € Z(P)

{A C

(13) 55| =1a.cl- 4.0~ 8.1+ [,

Lemma 5.6. Forn > 2, let M = (csdt);it:1 be a (n X n)-matriz with cs,d; € P,
let Mg be the determinant of the matriz obtained from M by deleting the s-th row
and the t-th column. Let B € Q,,(P), we have

{det M, B} = " "(=1)**" - det My - {c.d;, B}

s=1t=1
in Qn(P).
Proof. Firstly, we have

det M = Y €5 crdoqry -+ Cnlly ()
oeS,
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where S, is the permutation group of n elements, €, is the sign of ¢ in §,,. By the
Leibniz’s rule, we have

{det M, B} = Z €o - {ﬁ cidy(iy, B}

€Sy i=1
= Y ey, H ido(iy - {csdo(s), B}
oES, s=1i=1,s
n
= €o H Cida(i) . {Csdt, B}
5= 1 t= 1 oc€S,,0(s)=t i=1,i#s
= S+t - det Mst {Csdt7B}
s= 1 t= 1
We conclude that
{det M, B} =) ) (=1)**" - det My, - {c.dy, B} .
s=1t=1
O
Recall the notation [A, B] := {’ZBB} Before computing the swapping (Poisson)

bracket, Let us recall some useful properties: for any A, B € Q,,(P)
[A,B] = [-A,B] = [A,—B] = [-A,-B],
[1/A,B] = —[4, B], [4,B] = —[B, Al,
[A, A] = 0.

Recall the notation w® := wq, - - , w;.

Proposition 5.7. [MAIN PROPOSITION| Suppose that 1 < -+ < x1 < v1 <
LUy <X Yne1 ==Y < Zpe1 <=2 < U < =R Uy < X1 are ordered
anticlockwise in P as shown in Figure 5, for non-negative integers m,l,p,m’, I’ p’
withm+1l+p=nandm' +1' +p =n.
If 1> 1 or p<p'(*) as in Figure 6, we have

C= [A ((xm,yl,zp) (M), A ((mm/,yl,,z”,) ,(u"))}

1 1 1
= 5 . min{m, m/} - 5 ’ min{l, l/} - 5 : min{p7p/}

in Qn(P).

Remark 5.8. Lemma 2.6 and Lemma 5.6 allows us to compute the swapping
bracket between any two (n x n)-determinants. The general result is complicated.
But with respect to the cyclic order in Figure 5, the formula of Proposition 5.7 is
simple under the condition (*) 1 > 1" or p < p'. FEssentially, the + and — sign
before % -min in our formula is due to our cyclic order.

The condition (*) is strict and is used in case 3 of the proof. This condition
depends on the cyclic order of points and is crucial to the proof of the main theorem.
Finding the proper cyclic order and the condition (*) for this proposition is not as
direct as the proof of this proposition.
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FIGURE 5. Computation of [A ((xm,yl,zp) , (v")) JA ((m’”/,yl/,zl’/) , (u"))}

X

y Z

FIGURE 6. The region of (m/,l’,p’) satisfies the condition (*).

Proof. Let M = (csvy)¢,—; be a (n x n) matrix with ¢, = x5 for s = 1,--- ,m,
Cs =Ys—m fors=m+1,--- m+land cs = z5_y_; for s=m-+14+1,--- ,n. Then

det M = A ((xm,yl,zp) ,(v")). Let B=A ((mm/,yl,,zp,) ,(u"))
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By Lemma 5.6, we have

n

B S VS S « Ve .
c_;detM_BZ( 1"t M, - {esvy, B} .

t=1
Given s = 1,--- ,n, we compute the sum

1

B D M- {ewwr, BY
t=1

over t, where the summation is called the sum over t for c¢s for short. Thus C
equals to the sum of the above term over s. In the following three cases zsv; or
Ys_mU OF Zs_m_ 10y takes the place of cgvy.
1. For the sum over ¢ for z;, where 1 < s <m:
Let us fix the notation
wi\’UJ]' Ux = Wi,y Wj—1, T, Wjg1,° ", Wy

Here u € S is strictly on the left side of z,v} for any possible s and ¢. By Lemma
2.6 Equation (8), and using Af(x,v;) with respect to the right side of z,v;, we have

{xsvt, A ((:Em/,yl/7 zp/) , (u”))} = Af(z0) = ini7
i=1

where Q,, = J(zsvt, u) - 208 - A ((aﬁml\xz Uz, yl/,zp/) ) (U"))
(1) Suppose that 1 < s <m/. If i <m' and 7 # s, then x5 appears twice in the
left side n-tuple (:Em,\xi Uaxs, yl', zp'). We obtain

0 _{éerA(@Wwﬁﬂ)Jmﬂ ifi=s,
"o

if i <s.

Thus we get

{xsvt,A ((xm/,yl’,zp,) ,(u”))} = % s T A ((:cm,,yl/,zpl) ,(u")) .

Hence for 1 < s < min{m,m’} the sum over ¢ for =, equals

1
det M - B

" 1
s+t _
E (=1)*""-det M;-{csvs, B} = M B

t=1 t=1

- 1 1
Z(—l)s+tMst'§'Csvt'B = 5

(2) Suppose that m’ < s < m, we have

BN
— ml . . m/ : 2 l/ ' " .
= ;xlvt A((m \z; Uzs,y ,Zp)a(u ))

The sum over t for x, equals

/
m

1 Z (A((xm\xs Uz, ylv Zp)) (Un)) ' A((xM/\xi Uz, yl,’ Zp,)7 (un))) :

det M - B
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Since 1 < m’ < s < m, we have x; appears twice in the left side n-tuple
(:cm\:cs U g, o, zp). So

A ((2™\as U x5,y 2P), (v™)) = 0.

Hence in this case the sum over ¢ for x, equals 0.

The computations of the other two cases follow the similar strategy as above.

2. For the sum over t for y; where 1 < s <1[:

Here v € S! is strictly on the right side of m for any possible s and t. By
Lemma 2.6 Equation (9), and using AL (y,v;) with respect to the left side of 350},
we have

fora () 00} = S

where Qy, = 7 (yse, ) - vive - A (27 4 \ys Ui, 27) ().
(1) Suppose that 1 < s <. If i <1’ and @ # s, then y, appears twice in the
left side n-tuple (:Em,, yl’\yi U ys, zp'>. We have

_ 1. . m’ U . p n O
Qyi:{o Ys Ut A((x Yz ),(u )) ifi=s,

ifs<i<l.

(SIS

Hence for 1 < s < min{l,!'} the sum over ¢ for y, equals f%.
(2) Suppose that I’ < s <, the summation is null in this case. Thus we obtain

{ysUhA ((:cm/,yl/,z”/) ,(u"))} =0.

Hence in this case the sum over ¢ for y, equals 0.

3. For the sum over t for z;, where 1 < s < p:
Here v € S! is strictly on the right side of z,v; for any possible s and t. By
Lemma 2.6 Equation (9), and using AL (z,0;) with respect to the left side of Zyv;,

we have
(e () )
(14) = i T (2501, 2iv) - zivg - A ((ffm/7yl/7 2\z U Zs) 7(“n)>

l/
+ Zj(zsvtayiv> CYiUt - A ((mmla yl,\yi U Zsy Zp,) ’ (un)) .
i=1

(1) Suppose that 1 < s <p'. If i <p’ and ¢ # s, we have z5 appears twice in
the left side n-tuple (xm/, yll, zpl\zl- U zs). Thus we get

T (zsve, 2v) - zivg - A ((mm/, gt 2 \z U zs) , (u"))
 [ohsealan o) e

o ifs<i<p.



RANK n SWAPPING ALGEBRA FOR PGL, FOCK-GONCHAROV X MODULI SPACE 23

For the third line of Equation (14), since z, appears twice in the left side
n-tuple (xm/7 yl/\yi U z, zp/), we obtain

A ((zm/,yl,\yi U Zs,zp’) ,(u”)) =0.

Thus we get

{zsvt,A ((xm/,yl/,zpl) ,(u"))} = —% < 2gUp - A ((J;m,,yl/,zpl> ,(u")) i

Hence for 1 < s < min{p, p’} the sum over ¢ for z, equals —3.

(2) Suppose that p’ < s < p, by our condition (*), we have [ >1’. We get

(e (7 ) 00))

=S ) A (0 U ) 0)
i=1

l/
= =) yw-A ((:rm Y \yi U 2, 2P ) ,(U”)) :
=1

Thus the sum over t for z; equals

l/
_1 ’ ’ /
dot M B ;A ((xma Y, 2P\zg U yi) ) (Un)) “A ((xm Y \yi U 2, 2P ) ) (Un)) .
Observe that ¢ < I’ < [, thus y; appears twice in the left side n-tuple
(:c’”,yl, 2P\zs U yi)7 hence A ((mm, yl, 2P\ zs U yi) , (v")) = 0. Thus the
above summation is zero. Hence in this case the sum over ¢ for z; equals 0.
Sum over all the above cases, we conclude that

1 1 1
C= 9 -min{m,m'} — 9 -min{l, '} — 9 -min{p,p'}.
([l

Definition 5.9. [ORIENTED EDGE RATIO| Given an ideal triangulation T and its
n-triangulation T, of Dy. For the vertex V € T, U J, associating to the marked
triangle (x, y, 2) and a triple of non-negative integers (m,l,p) with m+1+p =mn,

we express the vertex V by v;’g{f. To the oriented edges

m+1,l,p—1, m+1,l—1,p eq = v7n—1,l+1,pvm,l+1,p—1 e3 = U'm,l—l,p—i—l m—1,0,p+1

€1 = /UE,ZU,Z Y,z ’ T, Y,z T, Y,z ’ Y,z Y,z

of Tn without touching the vertices of T, we associate
E. :=F (mmﬂ,yl_l,zp_l\yth) ,
E., =F (xm_17yl+1,zp_1\zp,xm) ,
E., =F (a:m_l,yl_l, zp+1|xm,yl) .
Each one of them is called oriented edge ratio of the corresponding arrow.

Lemma 5.10. The image of the Fock-Goncharov coordinates by 01, are the prod-
ucts of direct edge ratios as in Figure 7.



24 ZHE SUN

i—11n—i i,

T n—i iln—ic
Uxyz UXyz

FIGURE 7. 07, (Tpup(X,Y, Z)) and 67 (B;(Y, T, Z, X))

Proof. By Proposition 5.4, when V € 7, is specified by (x,y,z) and a triple of
positive integers (m, [, p) with m 4+ + p = n, we have

HTn (XV) = Evm+1,z,pflvm+1,171,p .E,Unz—l,H»l,pvm,H»l,Pfl ’
x,y.,z

m,l—1,p+1, m—1,1,p+1°
x,y,2z x,¥,z x,y,z v Ux,y,z

e
For V € T/, associating to X% and (i,n —1), suppose that two adjacent anticlock-
wise oriented ideal triangles )Ty% and xzt have a common edge ﬁ, we have

eTn (XV) = _Evi—l,l,n—ivi,l,n—i—f ’ iln—i—1 i—1,1,mn—4"
, \Ys Ux,t,z Ux,t,z

O

Definition 5.11. [LEVEL] Given a triangulation T and its n-triangulation T,. For
any vertex x of T, we define the k-th level of x to be the union of the edges in

n—k,lLk—l n—kl—1k—I+1
{”m,y,z Vz,y,z

| ZTyz is a triangle of T for some y,z, I =1,--- ,k}.
For any oriented edge e lying between i-th level and (i + 1)-th level of x, the sign
ex(e) of e with respect to @ is +1 (—1 resp.) if the arrow of e goes from the (i+1)-th
level of x to the i-th level of @ (otherwise resp.). For example ez(e1) = €z(ez) = 1
in Figure 8(1)(2).

When the triangulation T is an ideal triangulation of Dy, the k-th level of x is
topologically an interval, not a circle. In this case, for any two oriented edges ey
and ey in Tn, we say e is after (before resp.) e; for @, if e1 and ex both lie between
i-th level and (i + 1)-th level of © and ey is strictly after (before resp.) ey with
respect to anticlockwise orientation centered at x as in Figure 8(1) ((2) resp.).

Proposition 5.12. Given an ideal triangulation T of Dy and its n-triangulation
Tn. Let e1 (ex resp.) be the oriented edge of Tp lying inside the ideal triangle TYz
(€'y 2 resp.) of T. Then as in Figure 8 and 9, we have

% : eu(el) : €u(62), €2 18 (IftBT €1 fOT u < {m7 Y, Z} n {1317 Z/a Z,}a
[Ee,, Ee,] = —% ~ey(er) - ey(ea), es is before e; for uwe{xy z}N{x,y, 2}
otherwise.

(=]

)

Proof. The number of elements in # ({x,y,z} N {x’,y’,z’}), denoted by N, is zero
or one or two or three. When N = 0, we have [E,,, E.,] = 0 since all the linking
numbers are zero by setting the right side n-tuples properly.

When A = 3, suppose that the triangle Xyz of 7 has x < y < z < x with respect
to anticlockwise orientation of 9D. Suppose that x,_1 <+ <1 < Yp_1 < -+ <
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(NI

FIGURE 8. Computation of [E.,, E.,]. Consider the number of
vertices that each vertex has e; and es lying between two successive
levels of that vertex. For (1)(3) the number is two, say x and y;
for (2)(4) the number is one, say x.

Y1 < Zn_1 <+ < 21 < T,_1 are anticlockwise ordered in P as shown in Figure 5.
In the triangle Xyz, for any given oriented edge, there are two different vertices in
{X,¥,2z} such that for each one of them, say u, this oriented edge lies between two
successive levels of u. Thus there is a common vertex, say x, such that for the two
oriented edges e1, es in Ty, one lies between a-th level and (a 4 1)-th level of x, and
the other lies between a’-th level and (a’+1)-th level of x. Since [1/A, B] = —[A, B,
we fix ex(e1) = ex(e2) = 1 without loss of generality. By symmetry, there are two
cases as follows to be checked.

! ’ ’ ’ / 7
(1) Suppose that e; = v 0T bevatlhe and ey = v P M vg FLP-¢ where the

non-negative integers a, b, c,a’,b’, ¢ satisfy a+b+c=n—1and o’ +b'+c =

n —1 as in Figure 8(1)(3).

(a) If b > b, we arrange vy, ,Up,Ut, -+ , Uy SO that x,_1 < -+ <17 <
Vi < =V < Yot < o =YL = Zpel < <2 U < e <
Uy < Tp—1 as in Figure 5 for using Proposition 5.7. By Corollary 4.9,
the swapping bracket between two oriented edge ratios does not depend
on the right side n-tuples (v™), (u™) that we choose. By Proposition
5.7 with the condition (*) I > I’ there, we have

b oy Y
|:E (xaay uzc|yb+1u$a+1) 7E (‘ra Y 726 |yb’+1;xa’+1>:|

Ay, o), ()
ATy =), (@)

A ((xa7 yb-l—l’ Zc), (,Un))

_ _1)2c+b
= | YT R (@ ), o))

, (_1)2c'+b’
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($a+17ybvzc),(vn) , ((xa b+1,zc ,(u)

)
(@, 290, (o) A (@Y =), ()]
1

—~ o~~~
—
8
S]
<
o
+
—
™
[}
~—
—
<
3
S~—
N— S~— S— N—
/N
—
8
Q.
+
=
(\l
o
S~—
—
g,
N
v\_/vv ~—
P

1 1

5 min{a, a},, min{b + 1, b/+1}72 min{c, c}))
1 , 1 P /
i-mln{a,a +1}—§~mln{b+1,b}—§-mln{c,c})
1 . 12 1 . / 1 . /
5-m1n{a+1,a}—§~m1n{b,b +1}—§-m1n{c,c})
1. p 1. no 1o /
i-mln{a—i—l,a +1}—i-mm{b7b}—§~m1n{c7c})

- (min{a,a’} — min{a,a’ + 1} — min{a + 1,a’} + min{a + 1,a’ + 1})
- (min{b,b'} — min{b, v’ + 1} — min{b + 1,b'} + min{b + 1,b' + 1})
- (min{a,a’} — min{a,a’ + 1} — min{a + 1,a’'} + min{a + 1,a’ + 1})

ifa’ = a,

if ' # a.

S -

et N A e E el e e N e NI e N T

Note that in this case if a’ = a, as in Figure 8(1) ez is after e; for x.
(b) If b < ¥, we have b’ > b. Using the computation in Case (1a), we get

|:E (xay yb7 Zc|yb+17 xa+1) ) E (xa/7 yb/7
- |:E (xa"yb',
B -1 ifd =a,
o if ' # a.
Note that in this case if b < b and a’ = a, the oriented edge es is
before e; for x.
(¢) fb=1¥ and ¢ < ¢, as in Figure 8(3) ey is before e; for y and a # d'.

By Proposition 5.7 with the condition (*) p < p’ there, similarly we
obtain

/
2° |yb'+1,l‘a'+1)}

ch\yb'+1,9€a’+1> B (Jﬂa,yb,zc|yb+1,$a+1)}

—

b ’ b/ ’
E ($a7y 7zc|yb+17xa+1) 7E (xa Y 726 |yb’+1a‘ra’+l):|

- (min{a,a’} — min{a,a’ + 1} —min{a + 1,0’} + min{a + 1,a’ +1})

DN = N =

< (min{b, b'} — min{b, ¥’ + 1} — min{b+ 1,0’} + min{b + 1,4’ + 1})
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1

5
If b =10 and ¢ > ¢/, we have ey is after ey fory, ¢ < cand a # a'.
Using the above computation, we get

b ’ b/ /
[E (9", 2°lyp41, Tat1) , E (ﬂﬁa Yy, 2 \Z/b'+1,33a/+1)}

! / N i 1
= - [E (xa Ly, ¢ |yb/+1733a/+1> B (fa’ybvz°|yb+17$a+1)} =5

If b=V and ¢ = ¢, then a = a/. Thus in this case we have

[Ee,, Ee,] = 0.
’ / 7
(2) Suppose that e; = vi*g;cz“vfét,lib’c and ey = v“ L ya J5P¢ where the

non-negative integers a, b, c,a’, b', ¢’ satisfy a+b+c =n—landa +b+c =
n — 1 as in Figure 8(2)(4).
(a) If b > b, by Proposition 5.7 with the condition (*) I > I’ there, we
have

b ’ b/ ’
|:E (Iavy 7ZC|Z(:+17I(L+1) 7E (Ia Y ,Zc ‘yb’+17xa’+1>:|

_ _(_1)b+cA ((xa, yb, ZC+1), (,Un)) (_1)b/+zc’ A ((xa’,yb’+17 ZCI), (u”))
A (ot yb 2¢) (v7))’ A ((z9+1, 4% 2¢), (un))

1 1

-min{a,a’} — 3 -min{b, b’ + 1} — 3 -min{c+1,c'})
1 1

-min{a, a —1—1}—5 min{b, b}_§ min{c + 1,c'})

1 1
-min{a + 1,a’} — R min{b,b’ + 1} — 3 min{e, c'})

l\DM—l [\D\H w\n—\ w\»—l

1 1
-min{a + 1,a’ +1} — = mm{b b} — 3 -min{e, c'})

N— N

- (min{a,a’} — min{a,a’ + 1} —min{a + 1,a’} + min{a + 1,a’ + 1})

(
(
(
g
o

Note that in this case if ' = a, then es is after e; for x.
(b) If b < ¥, then b’ > b. Using the computation in Case (2a), we get

)
a ,b _c a b
|:E (Z‘ Y, 2 ‘ZC-‘:-laxa-‘rl)aE(x Yy L,z |yb’+1ama/+1):|
’
E xa C |yb’+17xa’+1) 7E (wa7yb7zc|zc+1;wa+1)]

- ((min{a,a’} — min{a,a’ + 1} — min{a + 1,4’} + min{a + 1,a’ + 1}))

|
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[

4 Z

FIGURE 9. Computation of [E,,, E.,] when the triangles for two
oriented edge ratios have two common vertices or one common
vertex.

_ f% if ' = a,
)0 ifd #a.
Note that in this case if ' = a, then e, is before e; for x as in Figure

8(2).
We conclude that for ' =3

% : 6u(el) : 6u(e2)a €2 15 after €1 fOT‘ uc {Xa Yy, Z};
[E€1 ’ E€2] = _% : 6u(el) : 6u(e2)7 ey is before e; for ue {X7 Y, Z};
0 otherwise.

)

Suppose N' = 2 as in Figure 9(1)(3)(4). If a < d’ ((a,b,¢) and (a’,V', ) are
defined similarly as the case N' = 3 with respect to (x,y,z) and (x,z,t)), we
can combine the points ¢1,--- ,t{» € P with the points z1,--- ,z, € P and apply
Proposition 5.7 with the condition | > I’ = 0 there. If a > d/, we use [E,, Ee,] =
— [Ee,, E.,] for arguing the same way as above. The case N' = 1 follows in a similar

way. O

Proof of Theorem 5.5. To prove the theorem, we have to verify that

07, (Xa) 01, (X7) 7

[eTn (XA) ’ eTn (X'r)] =

for any A, 7 € Z/, U J,.
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—
= o

F1GURE 10. All the cases up to symmetry

Each V € 7/ is related to a graph with 4-gon and an edge in the ideal triangu-
lation 7, and each V € 7, is related to a triangle in the ideal triangulation 7. By
symmetry, we have the following possible cases as shown in Figure 10:

(1) Two graphs associated with A and 7 are separated by a line;
(2) Two graphs associated with A and 7 have one common point;
(3) Two graphs associated with A and 7 have two common points;
(4) other cases.

Following Lemma 5.10, we write 07, (X4) and 07, (X;) as the products of directed
edge ratios. Then we use Proposition 5.12 to compute their swapping bracket case
by case. We prove the case in Figure 10 4(a) explicitly and leave the details for the
other cases to the reader.

Suppose A € T, (T € T, resp.) is specified by (x,y,z) and a triple of positive in-
tegers (m, 1, p) where m+I4+p =n ((m/,I’,p') where m'+1"+p’ = nresp.). Let e; =

m+1,l,p—1, m+1,l—1,p _ ,m—1Il1+1p, mi+1,p—1 _ ,yml—1,p+1, m—1,0,p+1 A
’vaYaz va}’vz ) €2 = UX»YJ Ux,y,z » €3 = UXvaz UX,sz » 61 =
’ ’ / ’ ’ 7 ’ ’ ’ 1 g7 / 1 g7 ’ ! ! ’
m'+1,01"p"—1, m'+1,I"—1,p /o ,m =11U+1p , om"U'+1p =1 oy _ o om I —1p'+1, ,m —1,1"p"+1
vx,y,z n vx,y,z ' 5 62 - ’Ux,y7z ' ' Ux,y,Z ’ ’ 63 - vay,J ’ Ux,y,z T :
O

07, (Xa) = Ee, - Eey - By, 07, (X7) = Ee/l 'Eelz ’ Eeé'
By the Leibniz’s rule, we have

[aTn (Xa) 07, (X7)] = [E€1E€2E637Ee’1 Ee’QEeng
3

= 2> [BBy.

j=11i=1
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y ' — z y — — z

FIGURE 11. Checking [07, (X4),07, (X;)] =car.

Then we use Proposition 5.12 for computing [Eei, Ee;] for any i, j = 1,2, 3. Firstly,
by observing Figure 11(1), we have

3
3 [EE} ~0

i=1
if e} lies outside the three strips formed by the dashed lines. Then, we compute
case by case for e;- lying inside these stripes. We get the following property, denoted

by (#x):

3
Z [EeiaEe;:| 7é 0
i=1
if and only if €/; lies strictly inside the hexagon formed by the vertices of e1, ea, e3.
J

The property (**) provides us the only six possible edges for € that we have

Z?:l {Eei, Ee;] # 0. Of course, when (m,l,p) = (m/,l',p’), we have

07, (Xa),071, (X:)] =0=¢ca-r.
When (m,l,p) # (m/,l',p’), without loss of generality, suppose that [ > I’

(1) When!{—1>1', we have l —1 > 1’ + 1. As shown in Figure 11(1), none of
€}, €5, €4 lie strictly inside the hexagon formed by the vertices of ey, e, €3.
By property (**), we obtain

07, (X4a),07, (X7)] =0 =c4,.
(2) Whenl —1=1"
(a) When m’ # m and m’ # m + 1, none of e, e, ej lie strictly inside

the hexagon formed by the vertices of e1, ea, e3. By property (**), we
obtain

[0, (Xa),07, (X:)] =0=¢a,.
(b) when m’ = m, by Figure 11(2), we have

[07-11 (XA) 797—71 (XT)] = [E€1E62E63,Ee/1 Ee’QEe’g:I
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3 3

3
= Z EENE + Z [EEWEG/Z} + Z [EEWEE,B:I
i=1 i=1

1=1
= 0+ 0+1+1 +0
o 2 2

= 1.
(¢) Similarly, when m’ = m + 1, we have

[0, (Xa),07, (X-)] = —1.
In the cases of Figure 10 4(a), we conclude that

(07, (Xa),07, (X5)] = €ar.

6. COMPATIBILITY BETWEEN ANY 67, AND 67/

For any two ideal triangulations 7 and T’ of Dy, a finite sequence of flips can
transform 7 to 7’. To prove that 6, and 67 are compatible, it is enough to prove
the compatibility when 7" is obtained from 7 by one flip at the edge e. Let T, and
T be the n-triangulations of 7 and 7" respectively. As shown in [FGO06, Section
10.3], the flip f. is a composition of the mutations where each mutation corresponds
to a Pliicker relation for K™. Let us denote the transition map for the flip f. by

. It induces a rational map pX* from FX(T)!) to FX(T,).

Pr0p051t10n 6.1. Let T and T’ be two ideal triangulations of Dy, such that T is
obtained from T by a flip f. at the edge e. For any Q € FX(T), we have

07, 0 12 "(Q) = 07,(Q).
Proof. Since the homomorphism 67, is induced from the homomorphism y,, to

prove the proposition, it is enough to prove the Pliicker relation in Z,(P). ]

The proof of the following Pliicker relation for the rank n swapping algebra
Z,(P) also works for the Pliicker relation for K™ even for the degenerate case. We
are not aware of an appropriate reference for this fact, and provide a proof here.

Lemma 6.2. [PLUCKER RELATION] For any x" 2 a,b,c,d,uy, -+ ,u, € P, we
have the following equality in Z,(P)

A ((x"iQ,a,d) ,(ug, - ,un)) -A ((:1:”7271), c) ,(ug, - ,un))

(15) + A ((m”_Q,aJ)) ,(ug, - ,un)) <A ((:v”_27c, d) ,(ug, - 7un))
=A ((z”fz,a,c) ) (ula e aun)) -A ((‘rn72vb7d) 7(u17' o ,Un)) .

Proof. Let 4 :=wuy, -+ ,uj_1,Ujt1," - ,Up. We have

(16)

A((2"% a,d), (™) - A ((&" 72, byc) s (u™))
+A(( ,a,b) 7(u”)) -A((x”fZ,c,d) 7(u”))

- A ((x - ,a,c) , (u”)) -A ((x"_Q,IL d) , (u”))
=Y A((z"2a), (@) - {(=1)7"" - du; - A (2", b,c) , (u"))
=1

DT b A (22 ) (1) = (17w A (2772, 5,d)  (0™)}
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Fori:=1,--- ;n—2, we get
(=)™ A ((2" 2, a,35) , (u)) = i(—l)iﬂ A ((2"%a), (@) - zu; = 0.
j=1
Using the above formula, we obtain that the right hand side of Equation (16) equals

- oA (). (@)

n—2
{Z(—l)i+j$i’t&j -A ((.1'1, oy Li—1yLi4+1 0 3 Tp—2, b7 C, d) ) (un))

(=D buy - A (2”72 e,d) L (W) + (1) cuy - A (72,6, d)  (u™))
+(=1)" T duy - A (272, b,¢), (u)) }
A @) B (e ed) )
j=1
=0.
[

Since x,, does not depend on the ideal triangulation, as a consequence, we again
prove the following result.

Corollary 6.3. The rank n Fock—Goncharov Poisson bracket {-,-}, does not de-
pend on the ideal triangulation.

7. FROM CROSS FRACTIONS TO (n X n)-DETERMINANT RATIOS

We will relate a cross fraction to a product of two (n x n)-determinant ratios
through the following identification of points on circles.

Definition 7.1. Forn>2,letP={s<w <--- <t < s} and

Pn—l :{Sn—l < <81 <Wp1 < =w =R <t <=1 -<Sn_1},
where each r € P corresponds to n — 1 anticlockwise ordered points r_1,...,71
nearby in Pn_1 as in Figure 12(1)(2). Let RT,(P) be the sub fraction ring of
Qn(P) generated by all elements like . Let DR, (Pn—1) be the sub fraction ring
of Qn(Pn—1) generated by all elements like E (x”_l\yl, zl).

The homomorphism p from RT ,(P) to DRy, (Pn—1) is defined by extending the
following formula on the generators to RT ,,(P) using Leibniz’s rule

1 (g) =F (x”*1|y1,21) .

Proposition 7.2. The homomorphism p is well-defined and injective.

Proof. By Theorem 4.2 B,x/Spk = Z,(P) and Bl x/Six = Zn(Pn-1). We con-
sider the geometric model instead. We embed B, /S,k into B;L]K / S;LK with respect
to the homomorphism g in the following way. We associate a vector for B,k /Snx
corresponding to z on the left to a vector for B /S! corresponding to z1 on the
left, a covector in B,k /Spk corresponding to x on the right to the wedge of (n —1)
vectors in B /S! corresponding to x1,- - ,Z,_1 on the left. Thus any relation
in RT ,(P) generated by the (n+1) x (n+ 1) determinants in R,,(P) is one-to-one
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(1)

UV, = Uy
x xnjl_xl U1 = Uy

FIGURE 12.

correspondence with a relation in u(R7,(P)) obtained from replacing each ordered
pair by a (n X n)-determinant with fixed right side n-tuple. We conclude that the
homomorphism g is well-defined and injective. (]

Theorem 7.3. The injective homomorphism p is Poisson with respect to the swap-
ping bracket.

Proof. It is enough to prove the theorem for generators in R7,,(P). For two arbi-

trary generators £, % € RTn(P), we want to show that

(5 ]) -B ) G5)]

an) (|28 )Y =ty o) = iy 1) = e af) + e 1)

Firstly we have

When z # f, we arrange v™ (u” resp.) immediately after z; (f1 resp.) with respect
to the anticlockwise orientation as in Figure 12(2). Then we can use the fact that
the linking number only depends on the corresponding position of the four points.
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This crucial arrangement allows us to get
[A(" " y0), (), A" 1), (u™))]
_ Jpv,g1u) - A" ), (0") - A ), (u”))

A1 y), (7)) - A g1), (u™)

(18) = J(wrz1,91f1) - B Mg, v1) - E(F" Hyr, 91)
=Tz, 9f) p (gi) p <Z;>
= p([yz, gf]) -

We have similar formulas for the other three terms in the right hand side of Equa-
tion (17). Thus we obtain
(19)

yz gf
<([£3])
= [A(("En_lv y1), (Un))7 A((f"_l,gl), (un)>] - [A((xn_la yl)? (Un>)v A((fn_la h1)= (un))]
—[A(E" T 20), ("), A 1), (@) + A" 20), (07), A ), (u™)]

= [BE@"y1, 20, B(f" g1, )] = {’“‘ (g) i (Z;ﬂ '

When x = f, we arrange the same way as above and v; = u; fort=1,--- ;n as in
Figure 12(4). By explicit computation, we get the same results as Equation (18)
and Equation (19) in this case. We conclude that the homomorphism g is Poisson
with respect to the swapping bracket. ([

As a consequence, for n = 3, our main theorem generalizes [Sul4, Chapter 3] if
we replace the elements like F (x2|y1, zl) by £*. The advantage of the expression
2% is that it allows us to get rid of x5 € P, but it only works for n < 3. Using the

Poisson homomorphism pu, we have the following result.

Corollary 7.4. The Poisson homomorphism in [L18, Theorem 10.7.2] is still Pois-
son after replacing each cross fraction by a product of two (n X n)-determinant
ratios.
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