

# Single-peakedness in aggregation function theory

Jimmy Devillet

University of Luxembourg  
Luxembourg

in collaboraton with Miguel Couceiro and Jean-Luc Marichal

## Part I: Single-peaked orderings

## Single-peaked orderings

### Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

- $a_1$  : 0 sandwich
- $a_2$  : 1 sandwich
- $a_3$  : 2 sandwiches
- $a_4$  : 3 sandwiches
- $a_5$  : 4 sandwiches
- $a_6$  : more than 4 sandwiches

We write  $a_i \prec a_j$  if  $a_i$  is preferred to  $a_j$

## Single-peaked orderings

$a_1$  : 0 sandwich

$a_2$  : 1 sandwich

$a_3$  : 2 sandwiches

$a_4$  : 3 sandwiches

$a_5$  : 4 sandwiches

$a_6$  : more than 4 sandwiches

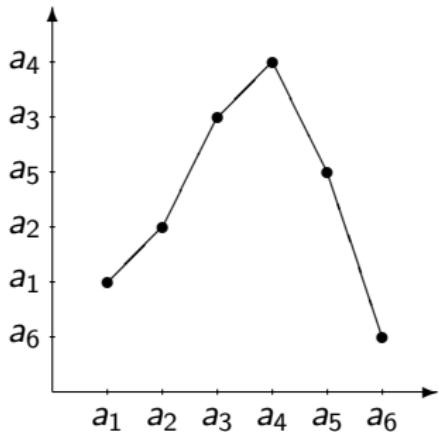
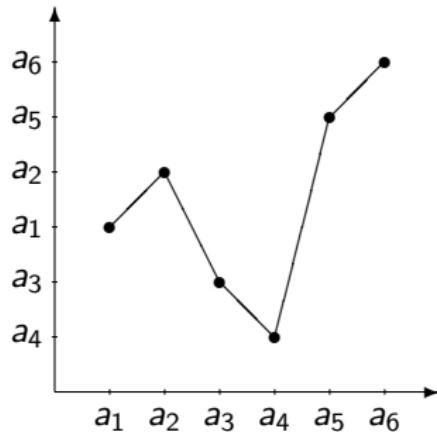
- after a good lunch:  $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$
- if you are starving:  $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$
- a possible intermediate situation:  $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$
- a quite unlikely preference:  $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$

## Single-peaked orderings

Let us represent graphically the latter two preferences with respect to the reference ordering  $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

$$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$

$$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$

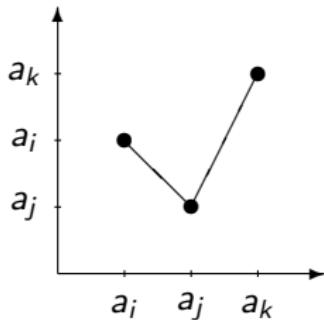
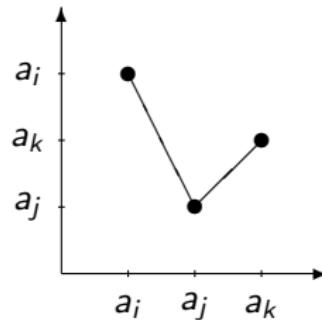


# Single-peaked orderings

**Definition.** (Black, 1948)

Let  $\leq$  and  $\preceq$  be total orderings on  $X_n = \{a_1, \dots, a_n\}$ .

Then  $\preceq$  is said to be *single-peaked for  $\leq$*  if the following patterns are forbidden



**Mathematically:**

$$a_i < a_j < a_k \implies a_j \prec a_i \quad \text{or} \quad a_j \prec a_k$$

## Single-peaked orderings

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

Let us assume that  $X_n = \{a_1, \dots, a_n\}$  is endowed with the ordering  $a_1 < \dots < a_n$

For  $n = 4$

$$\begin{array}{ll} a_1 \prec a_2 \prec a_3 \prec a_4 & a_4 \prec a_3 \prec a_2 \prec a_1 \\ a_2 \prec a_1 \prec a_3 \prec a_4 & a_3 \prec a_2 \prec a_1 \prec a_4 \\ a_2 \prec a_3 \prec a_1 \prec a_4 & a_3 \prec a_2 \prec a_4 \prec a_1 \\ a_2 \prec a_3 \prec a_4 \prec a_1 & a_3 \prec a_4 \prec a_2 \prec a_1 \end{array}$$

There are  $2^{n-1}$  total orderings  $\preceq$  on  $X_n$  that are single-peaked for  $\leq$

## Single-peaked orderings

Recall that a *weak ordering* (or *total preorder*) on  $X_n$  is a binary relation  $\precsim$  on  $X_n$  that is total and transitive.

Defining a weak ordering on  $X_n$  amounts to defining an ordered partition of  $X_n$

$$C_1 \prec \cdots \prec C_k$$

where  $C_1, \dots, C_k$  are the equivalence classes defined by  $\sim$

For  $n = 3$ , we have 13 weak orderings

$$a_1 \prec a_2 \prec a_3$$

$$a_1 \prec a_3 \prec a_2$$

$$a_2 \prec a_1 \prec a_3$$

$$a_2 \prec a_3 \prec a_1$$

$$a_3 \prec a_1 \prec a_2$$

$$a_3 \prec a_2 \prec a_1$$

$$a_1 \sim a_2 \prec a_3$$

$$a_1 \prec a_2 \sim a_3$$

$$a_2 \prec a_1 \sim a_3$$

$$a_3 \prec a_1 \sim a_2$$

$$a_1 \sim a_3 \prec a_2$$

$$a_2 \sim a_3 \prec a_1$$

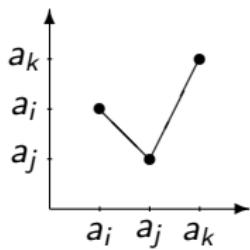
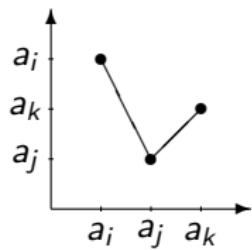
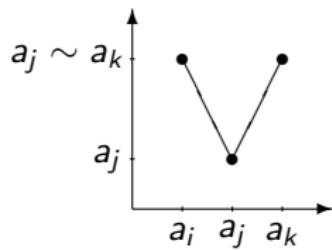
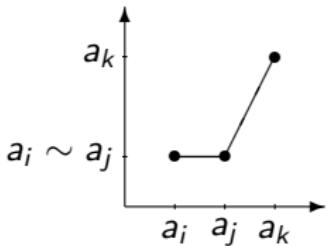
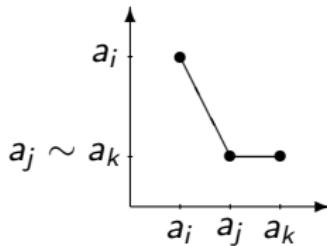
$$a_1 \sim a_2 \sim a_3$$

# Single-peaked orderings

**Definition.** (Black, 1948)

Let  $\leq$  be a total ordering on  $X_n$  and let  $\precsim$  be a weak ordering on  $X_n$ .

Then  $\precsim$  is said to be *single-peaked for  $\leq$*  if the following patterns are forbidden



# Single-peaked orderings

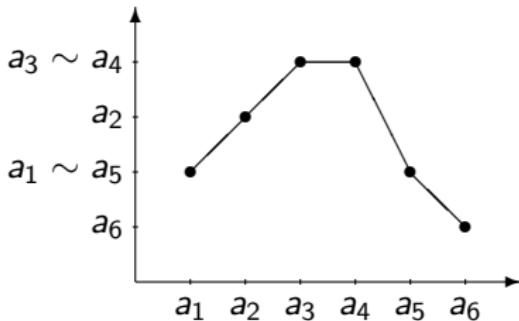
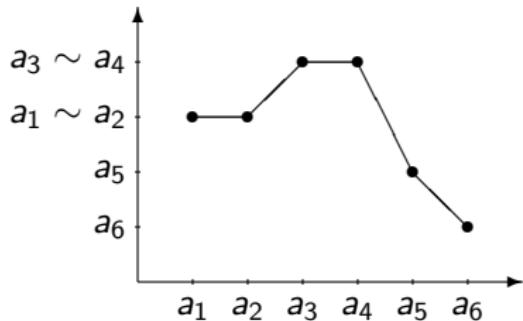
Mathematically:

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k \text{ or } a_i \sim a_j \sim a_k$$

Examples

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6$$



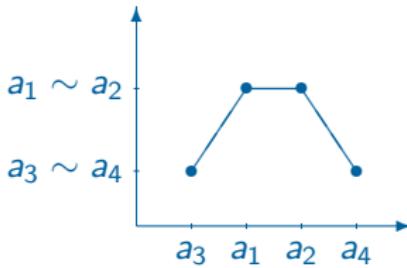
## Single-peaked orderings

**Q:** Given  $\precsim$  is it possible to find  $\leq$  for which  $\precsim$  is single-peaked?

**Example:** On  $X_4 = \{a_1, a_2, a_3, a_4\}$  consider  $\precsim$  and  $\precsim'$  defined by

$$a_1 \sim a_2 \prec a_3 \sim a_4 \quad \text{and} \quad a_1 \prec' a_2 \sim' a_3 \sim' a_4$$

Yes! Consider  $\leq$  defined by  $a_3 < a_1 < a_2 < a_4$



No!

## 2-quasilinear weak orderings

### Definition.

We say that  $\precsim$  is *2-quasilinear* if

$$a \prec b \sim c \sim d \implies a, b, c, d \text{ are not pairwise distinct}$$

### Proposition (D., Marichal, Teheux)

We have

$$\precsim \text{ is 2-quasilinear} \iff \exists \leq \text{ for which } \precsim \text{ is single-plateaued}$$

## Part II: Aggregation functions

# Associativity and quasitrivial operations

## Definition

$F: X_n^2 \rightarrow X_n$  is said to be

- *associative* if

$$F(F(x, y), z) = F(x, F(y, z)) \quad x, y, z \in X_n$$

- *quasitrivial* (or *conservative*) if

$$F(x, y) \in \{x, y\} \quad x, y \in X_n$$

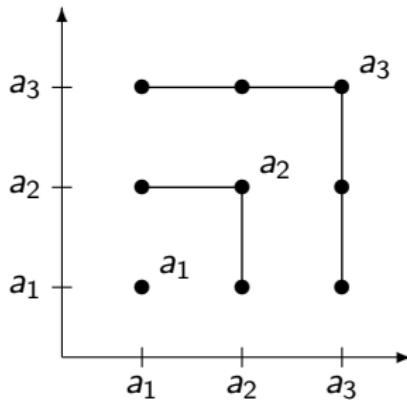
- *idempotent* if

$$F(x, x) = x \quad x \in X_n$$

**Fact.** If  $F$  is quasitrivial, then it is idempotent.

## Associativity and quasitrivial operations

**Example.**  $F = \max_{\leq}$  on  $X_3 = \{a_1, a_2, a_3\}$



# Associative and quasitrivial operations

## Definition

The *projection operations*  $\pi_1: X_n^2 \rightarrow X_n$  and  $\pi_2: X_n^2 \rightarrow X_n$  are respectively defined by

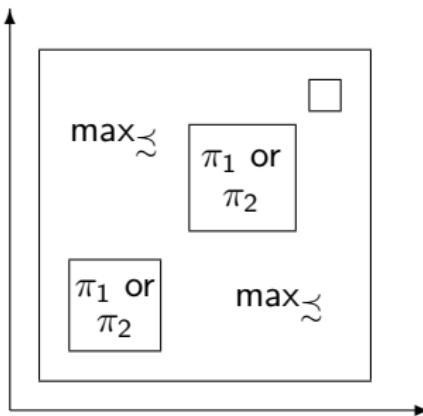
$$\begin{aligned}\pi_1(x, y) &= x, & x, y \in X_n \\ \pi_2(x, y) &= y, & x, y \in X_n\end{aligned}$$

# Associative and quasitrivial operations

Assume that  $X_n = \{a_1, \dots, a_n\}$  is endowed with a weak ordering  $\precsim$

## Ordinal sum of projections

$$\text{osp}_{\precsim}: X_n^2 \rightarrow X_n$$

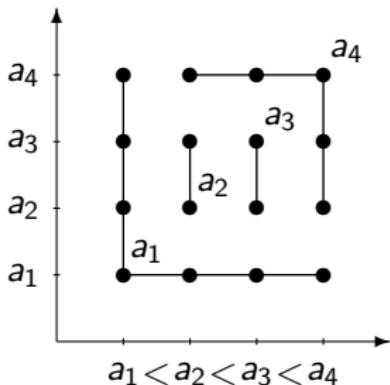
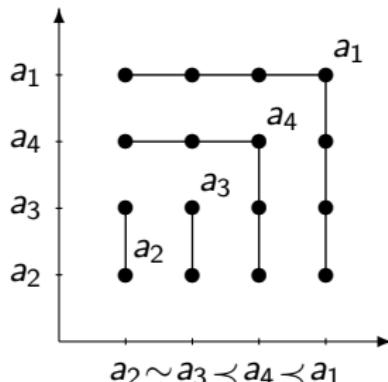


# Associative and quasitrivial operations

Theorem (Länger 1980)

Let  $F: X_n^2 \rightarrow X_n$ . The following assertions are equivalent.

- (i)  $F$  is associative and quasitrivial
- (ii)  $F = \text{osp}_{\precsim}$  for some weak ordering  $\precsim$  on  $X_n$

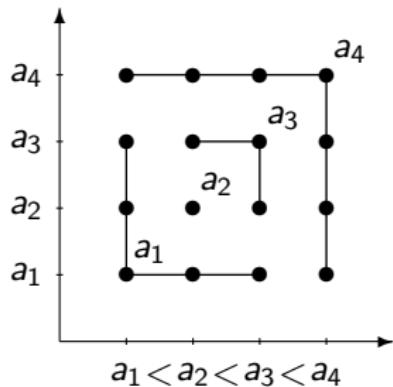
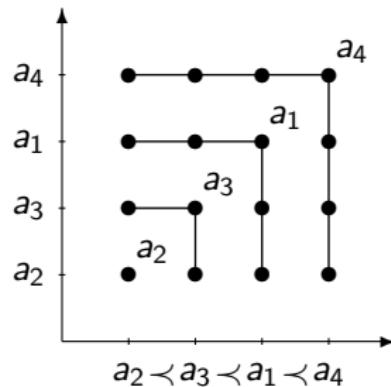


# Associative, quasitrivial, and commutative operations

## Corollary

Let  $F: X_n^2 \rightarrow X_n$ . The following assertions are equivalent.

- (i)  $F$  is associative, quasitrivial, and commutative
- (ii)  $F = \max_{\preceq}$  for some total ordering  $\preceq$  on  $X_n$



# Aggregation functions

## Definition.

$F: X_n^2 \rightarrow X_n$  is said to be  *$\leq$ -preserving* for some total ordering  $\leq$  on  $X_n$  if for any  $x, y, x', y' \in X_n$  such that  $x \leq x'$  and  $y \leq y'$ , we have  $F(x, y) \leq F(x', y')$

## Definition.

An *aggregation function on  $(X_n, \leq)$*  is an operation  $F: X_n^2 \rightarrow X_n$  that

- is  $\leq$ -preserving

and satisfies

- $F(a_1, a_1) = a_1$  and  $F(a_n, a_n) = a_n$

**Example.**  $F = \max_{\leq}$  on  $X_3 = \{a_1, a_2, a_3\}$

# Uninorms

## Definition.

A *uninorm on  $(X_n, \leq)$*  is an operation  $F: X_n^2 \rightarrow X_n$  that

- has a neutral element  $e \in X_n$       ( $\Leftrightarrow F(x, e) = F(e, x) = x \quad \forall x \in X_n$ )

and is

- associative
- commutative
- $\leq$ -preserving

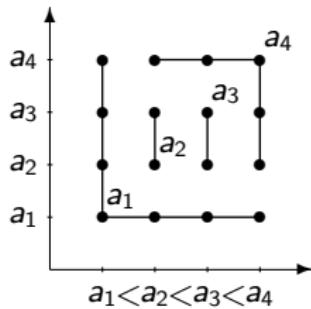
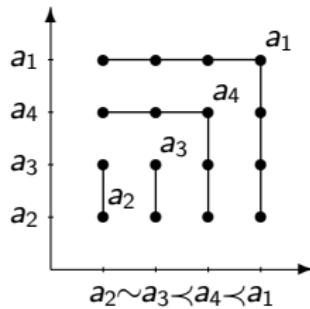
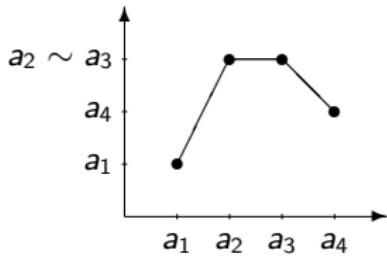
# Associative, quasitrivial, and order-preserving operations

$\leq$  : total ordering on  $X_n$

## Theorem

Let  $F: X_n^2 \rightarrow X_n$ . The following assertions are equivalent.

- (i)  $F$  is associative, quasitrivial, and  $\leq$ -preserving
- (ii)  $F = \text{osp}_{\precsim}$  for some weak ordering  $\precsim$  on  $X_n$  that is single-plateaued for  $\leq$



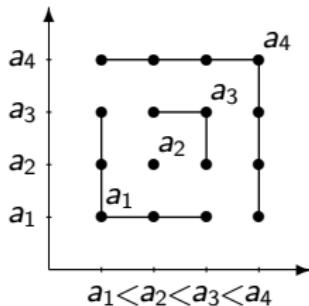
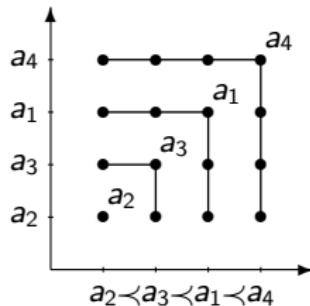
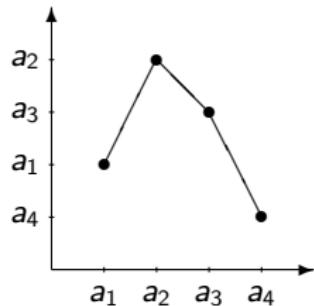
# Associative, quasitrivial, and order-preserving operations

$\leq$  : total ordering on  $X_n$

## Theorem

Let  $F: X_n^2 \rightarrow X_n$ . The following assertions are equivalent.

- (i)  $F$  is associative, quasitrivial, commutative, and  $\leq$ -preserving
- (ii)  $F = \max_{\preceq}$  for some total ordering  $\preceq$  on  $X_n$  that is single-peaked for  $\leq$
- (iii)  $F$  is an idempotent uninorm on  $X_n$



# Order-preservable operations

## Definition.

We say that  $F: X_n^2 \rightarrow X_n$  is *order-preservable* if it is  $\leq$ -preserving for some  $\leq$

**Q:** Given an associative and quasitrivial  $F$ , is it order-preservable?

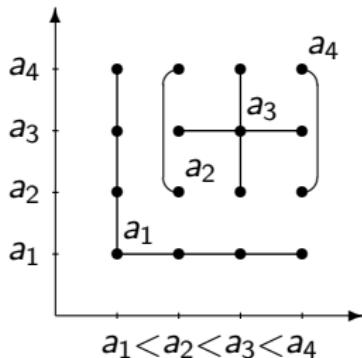
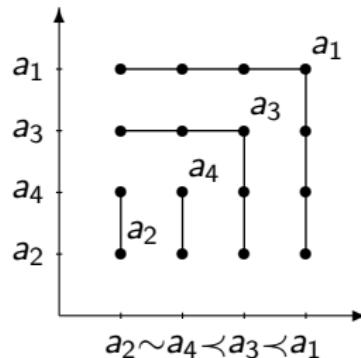
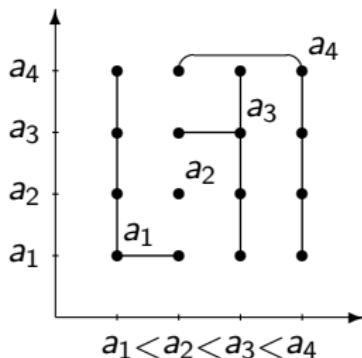
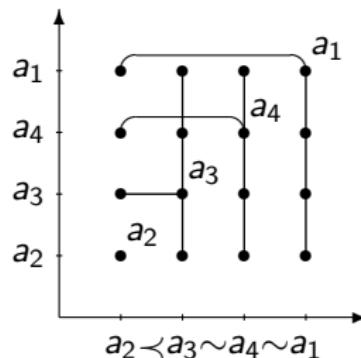
2-quasilinearity :  $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

## Theorem (D., Marichal, Teheux)

Let  $F: X_n^2 \rightarrow X_n$ . The following assertions are equivalent.

- (i)  $F$  is associative, quasitrivial, and order-preservable
- (ii)  $F = \text{osp}_{\precsim}$  for some weak ordering  $\precsim$  on  $X_n$  that is 2-quasilinear

# Order-preservable operations



## Final remarks

1. We have introduced and identified a number of integer sequences in <http://oeis.org>
  - Number of associative and quasitrivial operations: A292932
  - Number of associative, quasitrivial, and  $\leq$ -preserving operations: A293005
  - Number of weak orderings on  $X_n$  that are single-plateaued for  $\leq$ : A048739
  - ...
2. Most of our characterizations still hold on arbitrary sets  $X$  (not necessarily finite)

# Some references

-  **S. Berg and T. Perlinger.**  
Single-peaked compatible preference profiles: some combinatorial results.  
*Social Choice and Welfare*, 27(1):89–102, 2006.
-  **D. Black.**  
On the rationale of group decision-making.  
*J Polit Economy*, 56(1):23–34, 1948.
-  **M. Couceiro, J. Devillet, and J.-L. Marichal.**  
Quasitrivial semigroups: characterizations and enumerations.  
*Semigroup Forum*, 98(3):472–498, 2019.
-  **J. Devillet, J.-L. Marichal, and B. Teheux.**  
Classifications of quasitrivial semigroups.  
[arXiv:1811.11113](https://arxiv.org/abs/1811.11113).
-  **Z. Fitzsimmons.**  
Single-peaked consistency for weak orders is easy.  
In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127–140, June 2015. [arXiv:1406.4829](https://arxiv.org/abs/1406.4829).
-  **H. Länger.**  
The free algebra in the variety generated by quasi-trivial semigroups.  
*Semigroup Forum*, 20:151–156, 1980.