
APPENDIX A
BUG FIX PROCESS

A fix pattern is used as a guide to fix a bug, of which fixing
process is defined as a bug fix process.

Definition 7. Bug Fix Process (FIX): A bug fix process is a
function of fixing a bug with a set of fix patterns.

FIX : (bc, FP+)→ P ∗ (7)

where bc is the code block of a bug. FP+ means a set of
fix patterns, and some of them could be applied to bc. P ∗

is a set of patches for bc, which is generated by the bug fix
process. A bug fix process is specified by a bug fix function in
this study.

Definition 8. Bug Fix Function (FixF): A bug fix function
consists of two domains and three sub functions. They can
be formalized as:

FixF : (bc, FP+) = CtxF +M +R→ P ∗ (8)

CtxF : bc→ Ctxbc (9)

M : (Ctxbc, Ctxfp ∈ FP+)→ FP ∗ (10)

R : (bc, Ctxbc, CO ∈ FP ∗)→ P ∗ (11)

where bc is the code block of a given bug and FP+ is a set of
fix patterns. CtxF denotes the function of converting buggy
code into a code context (i.e., Ctxbc). M means the matching
function of matching the code context of the given buggy
code block with fix patterns to find appropriate fix patterns
(i.e., FP ∗, FP ∗ ⊆ FP+) for the bug, where Ctxfp is the
code context of a fix pattern. If FP ∗ = ∅, it indicates that
there is no fix pattern matched for the bug in the whole set
of fix patterns. R represents the function of repairing the bug
with change operations (i.e., CO) in matched fix patterns. If
P ∗ = ∅, it indicates that there is no any patch which could
be generated by the provided fix patterns and pass test cases
of the bug.

APPENDIX B
STATISTICS ON VIOLATIONS IN THE WILD

In this section, we present the distributions of violations
from three aspects of violations: number of occurrences,
spread in projects and category. There are 16,918,530 distinct
violations distributed throughout 400 types in our dataset.
We investigate which violation types are common by check-
ing their recurrences in terms of quantity (i.e., how many
times they occur overall) and in terms of spread (i.e., in how
many projects they occur).

Common types by number of occurrences.

Figure 24 shows the quantity distributions of all detected
violation types. The x-axis represents arbitrary id numbers
assigned to violation types following the number of times
that occur in our dataset. The id mapping considered in this
figure by sorting occurrences (i.e., id=1 corresponds to the
most occurring violation type) will be used in the rest of this
paper unless otherwise indicated. The Order 1 of Table 14
presents the mapping of top 50 types. The whole mapping

TABLE 13: Category Distributions of Violations

Category # Violation
instances

Violation types # Projectstop-50 top-100 All
Dodgy code 6,736,692 22 29 75 703

Bad practice 4,467,817 11 34 86 696

Performance 1,822,063 8 13 29 685

Malicious code vulnerability 1,774,747 4 8 17 634

Internationalization 740,392 2 2 2 632

Multithreaded correctness 602,233 2 4 44 517

Correctness 542,687 0 6 131 636

Experimental 135,559 1 2 3 446

Security 95,258 0 2 11 219

Other 1,082 0 0 2 51

is available at the aforementioned website for interested
readers.

It is noted from the obtained distribution that violation
occurrences for the top 50 violation types account for 81.4%
of all violation occurrences. These types correspond only
to about 12% of FindBugs violation types. These statistics
corroborate our conjecture that most violation instances are
associated with a limited subset of violation types.

Figure 24 further highlights the category of each vio-
lation type according to the categorization by FindBugs.
We note that all categories are represented among most and
least occurring violations alike.

Common types by spread in projects

Figure 25 illustrates to what extent the various violation
types appear in projects. The id numbers for violation types
are from the mapping produced before (i.e., as in Figure 24).
Almost 200 (50%) violation types have been associated with
over 100 (about 14%) projects. It is further noted that there
is no correlation between the spread of a violation type and
its number of occurrences: some violation types among the
most widespread types (e.g., top-50) actually occur less than
some lesser widespread ones. Nevertheless, the data indi-
cate that, together, the top-50 most widespread violations
account also for the majority of violation instances.

Category distributions of violations

Table 13 provides the statistics on the categories of vi-
olation types regrouped in the FindBugs documenta-
tion. The ranking of violation types is based on over-
all occurrences as in Figure 24. Category Other contains
SKIPPED_CLASS_TOO_BIG and TESTING that actually are not
violation types defined in FindBugs. In the remainder of
our experiments, instances of the two types are ignored.

Dodgy code and Bad practice appear as the top two
most common categories in terms of occurrence and spread.
Security violations are the least common, although they
could be found in 30% of the projects.

In terms of violation types, Correctness regroups the
largest number of types, but its types are not among the top
occurring. Figure 26 illustrates the detailed distributions of
categories. The number of violation types of Correctness
increases sharply from the ranking 100 to 400, while there

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 81.4% >>0

1

2

3

4

5

6

7

8

1 50 100 150 200 250 300 350 400
Arbitary ID numbers of violation types

%
 o

f r
ec

ur
re

nc
es

 o
f e

ac
h

ty
pe

Categories
Bad practice
Correctness

Dodgy code
Experimental

Internationalization
Malicious code vulnerability

Multithreaded correctness
Other

Performance
Security

Fig. 24: Quantity distributions of violation types sorted by their occurrences. The x-axis represents arbitrary id numbers
assigned to violation types. The y-axis represents the percentages of their occurrences in all violations.

0

20

40

60

80

1 50 100 150 200 250 300 350 400
Arbitary ID numbers of violation types

%
 o

f S
pr

ea
d

of
 e

ac
h

ty
pe

Categories
Bad practice
Correctness

Dodgy code
Experimental

Internationalization
Malicious code vulnerability

Multithreaded correctness
Other

Performance
Security

Fig. 25: Spread distributions of all violation types. The order of id numbers on x-axis is consistent with the order in Figure 24.
The y-axis represents the percentages of their spread in all projects.

0

100

200

300

400

10 50 100 150 200 250 300 350 400
Top # Violation Types in terms of quantity

Bad practice Correctness Dodgy code

Experimental Malicious code vulnerability Internationalization

Multithreaded correctness Performance Security

#
V

io
la

tio
n

ty
pe

s

Fig. 26: Category distributions of violation types. The values on x-axis represent the threshold of violation types ranking used
to carry out the category distributions, of which the order is consistent with the order in Figure 24. For example, 50 means
that top 50 violation types are used to carry out the category distributions.

is no correctness-related violation type in top 50 types.
The violation types out of top 100 have much lower num-
ber of occurrences compared against top 100 types. Thus,
Correctness has a low number of overall occurrences,
although it contains a large number of violation types
and is seen in many projects. These findings suggest that
developers commit few violations of these types.

Overall, Dodgy code and Bad practice are the top
two most common categories. Internationalization is
also found to be common since it contains only two viola-
tion types (i.e., DM_CONVERT_CASE and DM_DEFAULT_ENCODING)
which are among top-20 most occurring violation types and
among top-10 most widespread ones throughout projects.

Dodgy code represents either confusing, anomalous, or
error-prone source code [108]. Figure 27 shows an example
of a fixed Dodgy code violation, which is a fixed viola-
tion of BC_VACUOUS_INSTANCEOF type that denotes that the

instanceof test would always return true, unless the
value being checked was null [108]. Although this is safe,
make sure it is not an indication of some misunderstandings
or some other logic errors. If the programmer really wants
to check the value for being null, it would be clearer and
better to do a null check rather than an instanceof test.
Consequently, this violated instance is fixed by replacing the
instanceof test with a null check.

Bad practice means that source code violates recom-
mended coding practices [108]. The fixed violation in Fig-
ure 2 is an example of a corrected Bad practice violation.
It is not recommended to ellipsis an instanceof test when
implementing an equals(Object o) method, so that this
violation is fixed by adding an instanceof test.

30https://github.com/antlr/stringtemplate4
31https://github.com/apache/httpclient

Violation Type: BC_VACUOUS_INSTANCEOF.

Fixing DiffEntry:
- if (code.strings[poolIndex] instanceof String) {
+ if (code.strings[poolIndex] != null) {

Fig. 27: Example of a fixed Dodgy code violation taken
from BytecodeDisassembler.java file within Commit e2713c
in project ANTLR Stringtemplate430.

Violation Type: DM_CONVERT_CASE.

Fixing DiffEntry:
- cookieDomain = domain.toLowerCase();
+ cookieDomain = domain.toLowerCase(Locale.ENGLISH);

Fig. 28: Example of a fixed Internationalization viola-
tion taken from BytecodeDisassembler.java file within Com-
mit 17bacf in project Apache httpclient31.

Internationalization denotes that source code
uses non-localized method invocations [108]. Figure 28
presents an example of a fixed Internationalization
violation, which is a fixed DM_CONVERT_ CASE violation that
means that a String is being converted to upper or lower
case by using the default encoding of the platform [14].
This may result in improper conversions when used with
international characters, therefore, this violation is fixed
by adding a rule of Locale.ENGLISH. For more definitions
of categories and descriptions of violation types, please
reference paper [108] and FindBugs Bug Descriptions [14].

Static analysis techniques are widely used in modern
software projects32. However, developers and researchers
have no clear knowledge on the distributions of violations
in the real world, especially for the fixed violations (See
Section 3.3). The empirical analysis can provide an overview
of this knowledge from three different aspects: occurrences,
spread and categories of violations, that can be used to
rank violations for developers. The high false positives of
FindBugs and the common non-severe violations could
threaten the validity of the violation ranking. To reduce
this threat, we further investigate the distributions of fixed
violations in the next section. Fixed violations are resolved
by developers, which means that they are detected with
correct positions and are treated as issues being addressed,
Thus they are likely to be true violations.

APPENDIX C
STATISTICS ON FIXED VIOLATIONS

This section presents the distributions of fixed violations
with their recurrences in terms of quantity and in terms
of spread. We further compare the distributions of fixed
violations and detected ones.

Common types of fixed violations
Figure 29 presents the distributions (in terms of quantity) of
fixed violation types sorted by the number of their instances.
Fixed violation instances of the top 50 (15%) fixed types
(presented by Order 2 in Table 14) account for about 80%
of all fixed violations. Additionally, 122 (about 37%) types

32http://findbugs.sourceforge.net/users.html

are represented in less than 20 instances, 91 (about 27%)
types are represented in less than 10 instances, and 20 (6%)
types are associated with a single fixed violation instance.
These data further suggest that only a few violation types
are concerned by developers.

Figure 30 illustrates the appearance of violation types
throughout software projects. There is no correlation be-
tween the spread of a fixed violation type and its number
of instances: some fixed violation types among the most
spread actually occur less than some lesser spread ones.
Nevertheless, the top-50 most spread violations account for
the majority of fixed violation instances. Additionally, we
note that 63 (19%) fixed violation types occur in at least 10%
(55/547) projects, which further suggests that only a few
violation types are concerned by developers.

Recurrences of types: fixed types VS. all detected ones

Table 14 provides comparison data on the occurrence ratios
of fixed violation types against detected violation types. We
consider two rankings based on the occurred quantities for
all detected violations and for only fixed violations respec-
tively, and select top-50 violation types in each ranking for
comparison. If the value of R1/R2 or R2/R1 is close to 1,
it means that the violation type has a similar ratio in both
fixed instances and detected ones. We refer to this value as
Fluctuation Ratio (hereafter FR).

In the left side of Table 14, there are 12 violation types
marked in green, for which FR values range between 0.80
and 1.20. We consider in such cases that the occurrences
are comparable across all violations and fixed violations
instances. These 12 violation types have one more type
than the types marked in green in the right side because
the last type in the left side is not in the top 50 of the
right side. On the other hand, FR values of 21 violation
types are over 1.5, 10 of them are over 3.0, and 4 of them
are even over 10: these numbers suggest that the relevant
violation types with high recurrences do not appear to have
high priorities of being fixed. Combining FR values and
Ratio 2 values, one can infer that developers make a few
efforts to fix violation instances for types SE_BAD_FIELD,
NM_CLASS_NAMING_CONVENTION, SE_TRANSIENT_FIELD_NOT_RE

STORED, NP_METHOD_PARAMETER_TIGHTENS_ANNOTATION or EQ_

DOESNT_OVERRIDE_EQUALS.
In the right side of Table 14, FR values of 23 violation

types are over 1.5, 4 of them are over 3.0, and one of them
is even over 20: these numbers suggest that the relevant
violation types with low recurrences do appear to have
high priorities of being fixed. Combining FR values and
Ratio 2 values, which can infer that developers ensure that
violations of type NP_NONNULL_RETURN_VIOLATION are fixed
with higher priority than others. Additionally, 13 violation
types marked in bold in the right side are in the top 50
ranking of fixed violations but not in the top 50 ranking of
all detected violations, and vice versa to the types marked
in bold in the left side of this table.

To sum up, these findings suggest that fixed violation
types have different recurrences compared against detected
violation types. The order of fixed violation types and the
FR values of fixed violation types can provide better criteria
to help prioritize violations than the order of all detected

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 79.8% >>>0

1

2

3

4

5

6

7

8

9

1 50 100 150 200 250 300 331
Arbitary ID numbers of fixed violation types

%
 o

f o
cc

ur
re

nc
es

 o
f e

ac
h

ty
pe

Categories
Bad practice
Correctness

Dodgy code
Experimental

Internationalization
Malicious code vulnerability

Multithreaded correctness
Performance

Security

Fig. 29: Quantity distributions of all fixed violation types sorted by their occurrences. The values on x-axis are the id numbers
assigned to fixed violation types, which are different from the id numbers in Figure 24. The values of y-axis are the percentages
of their occurrences in all fixed violations.

0

20

40

60

1 50 100 150 200 250 300 331
Arbitary ID numbers of fixed violation types

%
 o

f S
pr

ea
d

of
 e

ac
h

ty
pe

Categories
Bad practice
Correctness

Dodgy code
Experimental

Internationalization
Malicious code vulnerability

Multithreaded correctness
Performance

Security

Fig. 30: Spread distributions of all fixed violation types. The x-axis is the same order as in Figure 29. The values of y-axis are
percentages of all fixed types in projects.

0

100

200

300

400

10 50 100 150 200 250 300 331
Top # Violation Types in terms of quantity

Bad practice Correctness Dodgy code

Experimental Malicious code vulnerability Internationalization

Multithreaded correctness Performance Security

#
V

io
la

tio
n

ty
pe

s

Fig. 31: Category distributions of fixed violation types. The values on x-axis represent the threshold of fixed types ranking
used to carry out the category distributions, of which the order is consistent with the order in Figure 29. For example, 50
means that top 50 violation types are used to carry out the category distributions.

violation types, since fixed violations are concerned and
resolved by developers.

Category distributions of fixed violations
Table 15 presents the category distributions of fixed viola-
tions. Dodgy code is the most common fixed category, and
the following two secondary common fixed categories are
Performance and Bad practice in terms of occurrences
and spread. Fixed Security violations are the least com-
mon, although they are found in 10% of the projects with
fixed violations.

In terms of violation types, Correctness regroups the
largest number of fixed violation types, but they are not
among the top occurring. Figure 31 illustrates the detailed

distributions of categories. The number of violation types
of Correctness increases sharply from the ranking 50 to
331, and there are a few correctness-related violation types
in the top 50 types. However, the violation types out of top
50 have much lower number of occurrences compared to
top 50 types. Therefore, Correctness has a low number
of overall fixed occurrences, although it contains the largest
number of fixed violation types and is seen in many projects.
The top 50 types are mainly occupied by Dodgy code,
Performance and Bad practice categories.

Category Performance represents the inefficient mem-
ory usage or buffer allocation, or usage of non-static
class [108]. Figure 32 presents an example of a fixed
Performance violation. It is a SBSC_USE_STRINGBUFFER

TABLE 14: Comparison of distributions of fixed violation types against all detected violation types. Order 1 refers to the
sorting order of violation types by the quantities of all detected violations (cf. the order in Figure 24). Order 2 refers to the
sorting of violation types by the quantities of all fixed violations (cf., order in Figure 29). Ratio 1 represents the occurred
ratio of a given violation type in the all detected violations. Ratio 2 represents the occurred ratio of a given fixed violation
type in all fixed violations. R1/R2 is used to measure the fluctuation ratio of a violation type from all detected violations to
fixed violations, the same as R2/R1.

id Order 1 (Top 50 all detected types) Ratio 1(%) Ratio 2(%) R1/R2 Order 2 (Top 50 all fixed types) Ratio 1(%) Ratio 2(%) R2/R1
1 SE NO SERIALVERSIONID 8.19 2.19 3.73 SIC INNER SHOULD BE STATIC ANON 3.15 8.81 2.80
2 RCN REDUNDANT NULLCHECK OF NONNULL VALUE 5.15 3.24 1.59 DLS DEAD LOCAL STORE 3.64 5.74 1.58
3 BC UNCONFIRMED CAST 4.24 2.65 1.60 DM CONVERT CASE 1.89 4.04 2.14
4 DLS DEAD LOCAL STORE 3.64 5.74 0.63 DM DEFAULT ENCODING 2.49 3.52 1.41
5 EI EXPOSE REP 3.20 1.35 2.36 UWF FIELD NOT INITIALIZED IN CONSTRUCTOR 2.29 3.49 1.53
6 SIC INNER SHOULD BE STATIC ANON 3.15 8.81 0.36 RCN REDUNDANT NULLCHECK OF NONNULL VALUE 5.15 3.24 0.63
7 EI EXPOSE REP2 3.14 1.50 2.09 NM METHOD NAMING CONVENTION 2.77 2.89 1.04
8 SE BAD FIELD 3.04 0.29 10.36 URF UNREAD FIELD 1.26 2.88 2.29
9 NM METHOD NAMING CONVENTION 2.77 2.89 0.96 BC UNCONFIRMED CAST 4.24 2.65 0.63
10 DM DEFAULT ENCODING 2.49 3.52 0.71 REC CATCH EXCEPTION 2.43 2.42 1.00
11 REC CATCH EXCEPTION 2.43 2.42 1.00 BC UNCONFIRMED CAST OF RETURN VALUE 2.02 2.25 1.12
12 UWF FIELD NOT INITIALIZED IN CONSTRUCTOR 2.29 3.49 0.66 SE NO SERIALVERSIONID 8.19 2.19 0.27
13 PZLA PREFER ZERO LENGTH ARRAYS 2.19 0.63 3.46 UPM UNCALLED PRIVATE METHOD 1.03 2.16 2.10
14 BC UNCONFIRMED CAST OF RETURN VALUE 2.02 2.25 0.90 VA FORMAT STRING USES NEWLINE 0.25 1.72 6.90
15 RI REDUNDANT INTERFACES 1.91 0.62 3.10 MS SHOULD BE FINAL 1.72 1.71 0.99
16 DM CONVERT CASE 1.89 4.04 0.47 RV RETURN VALUE IGNORED BAD PRACTICE 0.78 1.67 2.15
17 ST WRITE TO STATIC FROM INSTANCE METHOD 1.82 1.57 1.16 ST WRITE TO STATIC FROM INSTANCE METHOD 1.82 1.57 0.87
18 SF SWITCH NO DEFAULT 1.81 0.86 2.10 EI EXPOSE REP2 3.14 1.50 0.48
19 MS SHOULD BE FINAL 1.72 1.71 1.01 URF UNREAD PUBLIC OR PROTECTED FIELD 1.26 1.49 1.18
20 NP LOAD OF KNOWN NULL VALUE 1.40 1.14 1.22 WMI WRONG MAP ITERATOR 0.72 1.47 2.04
21 URF UNREAD PUBLIC OR PROTECTED FIELD 1.26 1.49 0.85 OBL UNSATISFIED OBLIGATION 0.52 1.40 2.69
22 URF UNREAD FIELD 1.26 2.88 0.44 EI EXPOSE REP 3.20 1.35 0.42
23 LI LAZY INIT STATIC 1.25 0.39 3.20 NP LOAD OF KNOWN NULL VALUE 1.40 1.14 0.82
24 NM CLASS NAMING CONVENTION 1.23 0.10 12.89 DM NUMBER CTOR 1.10 1.04 0.94
25 MS PKGPROTECT 1.14 0.55 2.07 SIC INNER SHOULD BE STATIC 0.83 1.00 1.22
26 DM NUMBER CTOR 1.10 1.04 1.07 SBSC USE STRINGBUFFER CONCATENATION 0.48 0.97 2.03
27 UPM UNCALLED PRIVATE METHOD 1.03 2.16 0.48 OS OPEN STREAM EXCEPTION PATH 0.49 0.91 1.87
28 FE FLOATING POINT EQUALITY 1.02 0.48 2.14 NP NONNULL RETURN VIOLATION 0.04 0.87 23.00
29 IS2 INCONSISTENT SYNC 0.99 0.71 1.38 SF SWITCH NO DEFAULT 1.81 0.86 0.48
30 NP PARAMETER MUST BE NONNULL BUT MARKED AS NULLABLE 0.87 0.50 1.75 UWF UNWRITTEN FIELD 0.18 0.84 4.73
31 SE TRANSIENT FIELD NOT RESTORED 0.85 0.04 22.95 DE MIGHT IGNORE 0.71 0.79 1.11
32 NP METHOD PARAMETER TIGHTENS ANNOTATION 0.83 0.04 23.16 IS2 INCONSISTENT SYNC 0.99 0.71 0.72
33 SIC INNER SHOULD BE STATIC 0.83 1.00 0.83 DM BOXED PRIMITIVE FOR PARSING 0.24 0.71 2.90
34 RV RETURN VALUE IGNORED BAD PRACTICE 0.78 1.67 0.47 RV RETURN VALUE IGNORED NO SIDE EFFECT 0.27 0.64 2.42
35 DLS DEAD LOCAL STORE OF NULL 0.72 0.19 3.85 ODR OPEN DATABASE RESOURCE 0.22 0.64 2.86
36 WMI WRONG MAP ITERATOR 0.72 1.47 0.49 PZLA PREFER ZERO LENGTH ARRAYS 2.19 0.63 0.29
37 DE MIGHT IGNORE 0.71 0.79 0.90 RI REDUNDANT INTERFACES 1.91 0.62 0.32
38 CI CONFUSED INHERITANCE 0.62 0.23 2.67 NP NULL ON SOME PATH FROM RETURN VALUE 0.31 0.61 1.99
39 NM CONFUSING 0.61 0.43 1.44 UCF USELESS CONTROL FLOW 0.53 0.61 1.15
40 EQ DOESNT OVERRIDE EQUALS 0.56 0.08 6.96 UC USELESS CONDITION 0.39 0.59 1.49
41 UCF USELESS CONTROL FLOW 0.53 0.61 0.87 NP NULL ON SOME PATH 0.29 0.59 2.07
42 OBL UNSATISFIED OBLIGATION 0.52 1.40 0.37 UC USELESS OBJECT 0.15 0.58 3.96
43 ES COMPARING STRINGS WITH EQ 0.52 0.51 1.00 DM FP NUMBER CTOR 0.40 0.57 1.43
44 OS OPEN STREAM EXCEPTION PATH 0.49 0.91 0.53 MS PKGPROTECT 1.14 0.55 0.48
45 SBSC USE STRINGBUFFER CONCATENATION 0.48 0.97 0.49 SQL PREPARED STATEMENT GENERATED FROM NONCONSTANT STRING 0.27 0.55 2.07
46 SF SWITCH FALLTHROUGH 0.44 0.15 2.95 OBL UNSATISFIED OBLIGATION EXCEPTION EDGE 0.28 0.55 1.96
47 RCN REDUNDANT NULLCHECK OF NULL VALUE 0.40 0.24 1.68 ES COMPARING STRINGS WITH EQ 0.52 0.51 1.00
48 DM FP NUMBER CTOR 0.40 0.57 0.70 OS OPEN STREAM 0.36 0.51 1.40
49 UC USELESS CONDITION 0.39 0.59 0.67 RCN REDUNDANT NULLCHECK WOULD HAVE BEEN A NPE 0.24 0.50 2.08
50 HE EQUALS USE HASHCODE 0.39 0.47 0.82 NP PARAMETER MUST BE NONNULL BUT MARKED AS NULLABLE 0.87 0.50 0.57

TABLE 15: Category distributions of fixed violations.

Category # Violation
instances

Violation types # Projectstop-50 top-100 All
Dodgy code 30,419 18 31 72 505
Performance 19,248 9 13 27 450
Bad practice 15,640 9 24 71 419
Correctness 6,809 5 16 99 384
Internationalization 6,719 2 2 2 347
Malicious code vulnerability 5,505 3 7 16 299
Multithreaded correctness 2,018 1 3 34 208
Experimental 1,748 2 2 3 162
Security 821 1 2 7 47

_CONCATENATION violation which denotes that concatenat-
ing strings using the + operator in a loop [14]. In each
iteration, the String is converted to a StringBuffer or
StringBuilder, appended to, and converted back to a
String, which can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

33https://github.com/apache/pdfbox

Violation Type: SBSC_USE_STRINGBUFFER_CONCATENATION.

Fixing DiffEntry:
- String colorStr = "";
+ StringBuilder sb = new StringBuilder();

for (float f : color) {
- if (!colorStr.isEmpty()){
+ if (sb.length() > 0){
- colorStr += " ";
+ sb.append(’ ’);

}
- colorStr += String.format("%3.2f", f);
+ sb.append(String.format("%3.2f", f));

}

Fig. 32: Example of a fixed Performance violation, taken
from Vertex.java file within Commit 36e820 in Apache
pdfbox33 project.

Internationalization is also found to be a common
fixed category since it has 6,719 fixed violation instances
taken from 347 (63.3%) projects and contains only two viola-
tion types (i.e., DM_CONVERT_CASE and DM_DEFAULT_ENCODING)

TABLE 16: Comparison of category distributions of all de-
tected violations and fixed violations.

Category % Violation Occurrences in FR values
(F/D)All detected (D) Fixed (F)

Experimental 0.8 1.97 2.46
Correctness 3.21 7.66 2.37
Performance 10.77 21.64 2.01
Internationalization 4.38 7.56 1.73
Security 0.56 0.92 1.70
Dodgy code 39.82 34.21 0.86
Bad practice 26.41 17.59 0.67
Multithreaded correctness 3.56 2.27 0.64
Malicious code vulnerability 10.49 6.19 0.59

that are among top-5 most occurring violation types and
among top-10 most widespread throughout projects.

To sum up, these findings suggest that developers
may prefer to take more efforts on fixing violations of
the four categories, i.e., Dodgy code, Performance, Bad
practice and Internationalization, than others.

Category distributions: fixed Violations VS. all detected
ones
Table 16 shows the comparing results of category distribu-
tions of fixed violations against all detected ones. Overall,
the ratios of top-5 categories occurrences in fixed violations
have increases compared against their ratios in all detected
ones. Particularly, the top-3 categories have great increases
(more than one fold).

The ratio of Performance occurrence in fixed viola-
tions has a great increase of 11% compared against its
ratio in all ones, which can suggest that developers take
many efforts to fix Performance violations. The ratio
of Internationalization occurrence in fixed viola-
tions also has a great increase compared against its ratio
in all detected ones. And the Internationalization
contains only two violation types that have high rank-
ings in quantity and spread distributions respectively. So
that, it implies that developers take many efforts to fix
Internationalization violations as well. Even though
Correctness Experimental and Security occurrences
in fixed violations and all detected ones do not present good
rankings, their occurrence ratios in fixed violations have
great increases compared against their ratios in all detected
ones. The ratios of Dodgy code and Bad practice oc-
currences in fixed violations have great decreases compared
with their ratios in all detected ones, although they occupy
the main proportion in fixed violations.

To sum up, when ranking categories with their FR val-
ues, total different priorities of violation categories can be
carried out.

APPENDIX D
VIOLATION CODE PATTERNS

Example of mined violation code patterns which are
consistent with FindBugs documentation.
We note that identified common code patterns of many
violation types are consistent with the bug descriptions by
FindBugs. We consider in the following 10 example cases
of violation types to investigate the possibility for mining
patterns.

DM_CONVERT_CASE is converting a string variable or lit-
eral to an upper or lower case with the platform’s de-
fault encoding [14]. It may result in improper conversions
when used with international characters. The two pat-
terns are method invocations of String.toUpperCase() and
String.toLowerCase().

RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE represents
that the current statement contains a redundant check of a
known non-null value against the constant null [14]. Four
kinds of common patterns are found in this study, which
are shown in Table 5.

BC_UNCONFIRMED_CAST denotes that the current cast is
unchecked with an instanceof test, and not all instances
can be cast from their type to the target type that is
being cast to [14]. In the three patterns, T1 is the target
type, and v2 or exp1 are the value or expression be-
ing cast. BC_UNCONFIRMED_CAST_OF_RETURN_VALUE has similar
patterns, which denotes an unchecked cast of the return
value of a method invocation.

RV_RETURN_VALUE_IGNORED_BAD_PRACTICE means that the
current statement does not check the return value of a
method invocation which could indicate an unusual or
unexpected function execution [14]. Its patterns consist of
a file’s creation, a file’s deletion and a method invocation
with a return value.

DM_NUMBER_CTOR is using a number constructor to create
a number object, which is inefficient [14]. For example,
using new Integer(...) is guaranteed to always result in a
new Integer object whereas Integer.valueOf(...) allows
caching of values to be done by the compiler, class library,
or JVM. Using cached values can avoid object allocation
and the code will be faster. Our mined patterns are the
five types of number creations with number constructors.
DM_FP_NUMBER_CTRO has the similar patterns with it.

DM_BOXED_PRIMITIVE_FOR_PARSING denotes that a boxed
primitive value is created from a String value without using
an effective static parseXXX method [14]. The two common
patterns are Integer.valueOf(str) and Long.valueOf(str).

PZLA_PREFER_ZERO_LENGTH_ARRAYS means that an array-
returned method returns a null reference which is not an
explicit presentation of an empty list of results [14]. It leads
to the clients needing a null check for this return value.

ES_COMPARING_STRINGS_WITH_EQ denotes the comparison
of two strings using == or != operator [14]. Unless both
strings either were constants in a source file or had been in-
terned using the String.intern() method, the same string
value might be represented by two different String objects.

APPENDIX E
REASONS FOR FAILURE TO RESOLVE UNFIXED VIO-
LATIONS

We have identified 23 violation types where we could
not successfully resolve the associated unfixed violations.
According to our observation, it might be caused by the
following reasons:

Reason 1. It is difficult to match effective fix patterns
for specific violations. For example, DE_MIGHT_IGNORE viola-
tions are fixed by replacing the Exception with a specific
exception class. Therefore, it is challenging to match an ap-
propriate specific exception class for this kind of violations

in terms of syntax without any semantic information or test
cases.

Reason 2. It is challenging to identify common fix
patterns from the source code changes of some violations
without an exact position. For example, UWF_FIELD_NOT

_INITIALIZED_IN_CONSTRUCTOR means that non-null fields
are not initialized in any constructors [14]. Our observation
shows that the positions of this kind of violations are located
in one constructor. So that, it is impossible to obtain any in-
formation about these violations. Even if some information
of these violations could be identified, which are the specific
information, it is still a challenge to match any effective fix
patterns for them.

Reason 3. It is unable to fix NM_METHOD_NAMING_CONVEN-
TION violations which do not comply the method naming
convention. Even if violated method names can be fixed
by matched fix patterns, the changed name may cause
compilation errors or API changes that may break client
programs.

Reason 4. It is challenging to fix all related violations
just by deleting the violated source code. For example,
the common fix pattern of EI_EXPOSE_REP is deleting the
violated source code. When the fix pattern is used to fix
related violations, the changed source code may not be
correctly compiled.

Reason 5. There might be a lack of effective fix patterns
for some violation types. The fix patterns of some violation
types are deleting the violated source code. We do not adopt
this kind of fix patterns, even though the violation can
be fixed or removed by deleting the violated source code,
which removes the feature of original source code and many
of them failed to pass compile or checkstyle.

