
Frank Hermann

Analysis and Optimization
of Visual Enterprise Models

Based on
Graph and Model Transformation

Universitätsverlag der TU Berlin

ISBN 978-3-7983-2321-6 (Druckausgabe)
ISBN 978-3-7983-2322-3 (Online-Version)

Berlin 2011

∞∞∞∞ Gedruckt auf säurefreiem alterungsbeständigem Papier

Druck/ Endformat, Ges. für gute Druckerzeugnisse mbH
Printing: Köpenicker Str. 187-188, 10997 Berlin

Verlag/ Universitätsverlag der TU Berlin
Publisher: Universitätsbibliothek
 Fasanenstr. 88 (im VOLKSWAGEN-Haus), D-10623 Berlin
 Tel.: (030)314-76131; Fax.: (030)314-76133
 E-Mail: publikationen@ub.tu-berlin.de
 http://www.univerlag.tu-berlin.de

Analysis and Optimization of Visual Enterprise Models
Based on Graph and Model Transformation

vorgelegt von
Diplom-Informatiker

Frank Hermann
aus Luckenwalde

Von der Fakultät IV - Informatik und Elektrotechnik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. rer. nat. Bernd Mahr
Berichter: Prof. Dr. rer. nat. Hartmut Ehrig
Berichterin: Prof. Dr. rer. nat. Barbara König
Berichter: Prof. Dr. rer. nat. Thomas Engel

Tag der wissenschaftlichen Aussprache: 10. 02. 2011

Berlin 2011
D 83

iii

Abstract

Security, risk and compliance are increasingly important issues in enterprise modelling.
An analysis of real world scenarios for banking has shown that today’s “best practices”
based on informal techniques are insufficient and should be replaced by adequate formal
approaches. For this purpose, visual enterprise models based on algebraic graph and model
transformation are proposed in this thesis, where the following two typical problem areas
are considered:

1. Behaviour Analysis and Optimization of Visual Enterprise Process Models

2. Conformance Analysis of Enterprise Process and Service Models

The first problem is solved by new concepts and results concerning behaviour analysis of
visual languages, especially analysis of permutation equivalence of graph transformations
based on Petri nets. In order to tackle the second problem area, model transformations
based on triple graph grammars are introduced with new results concerning analysis and
optimization enabling automated support for sound integration and conformance checks
between different models.

The new results in the area of graph and model transformation are developed in the gen-
eral framework ofM-adhesive transformation systems. They can be instantiated to a large
variety of high-level replacement systems and applied not only to enterprise modelling, but
also to several other application domains. Last but not least, the new tool AGT-M provides
automated tool support for simulation, analysis and optimization in various case studies.

iv

Zusammenfassung
Sicherheit, Risikomanagement sowie Regelkonformität sind von wachsender Bedeutung
im Bereich der Unternehmens-Modellierung. In einer Analyse von realen Szenarien im
Bankenbereich wurde deutlich, dass heutige ”‘Best Practices”’, die auf informellen Tech-
niken basieren, nicht ausreichen und durch adäquate formale Techniken ersetzt werden
sollten. Zu diesem Zweck schlagen wir die visuelle Modellierung von Unternehmen
basierend auf algebraischer Graph- und Modelltransformation vor, wobei die beiden fol-
genden typischen Problemfelder betrachtet werden:

1. Verhaltensanalyse und Optimierung von visuellen betriebswirtschaftlichen Prozess-
Modellen

2. Konformitätsanalyse zwischen betriebswirtschaftlichen Prozess- und Organisations-
Modellen

Das erste Problem wird mit Hilfe neuer Konzepte und Resultate bezüglich der Ver-
haltensanalyse von visuellen sprachen gelöst, insbesondere mit Hilfe der Analyse von
Permutations-Äquivalenz von Graphtransformationen basierend auf Petrinetzen. Zur Be-
handlung des zweiten Problembereichs werden Modelltransformationen basierend auf
Triple-Graphgrammatiken inklusive neuer Resultate für die Analyse und Optimierung
vorgestellt, was eine automatisierte Unterstützung einer konsistenten Integration sowie
Konformitätsüberprüfung zwischen den Modellen ermöglicht.

Die neuen Resultate im Bereich der Graph- und Modelltransformation werden in
dem allgemeinen Rahmenwerk der M-adhesiven Transformationssysteme entwickelt.
Sie können somit für zahlreiche High-Level-Ersetzungssysteme instanziiert werden und
demzufolge nicht nur im Bereich der Unternehmensmodellierung sondern auch in diversen
anderen Anwendungsdomänen eingesetzt werden. Zudem bietet die neue Software AGT-M
eine automatisierte Werkzeugunterstützung für die Simulation, Analyse und Optimierung
in verschiedenen Fallstudien.

v

Acknowledgements

The research for this thesis has been carried out at the institute for Theoretical Com-
puter Science and Software Engineering at the Berlin Institute of Technology (Technische
Universität Berlin) in Germany and partly at the university of Pisa (Università di Pisa) in
Italy as well as at the technical university in Barcelona (UPC - Universitat Politècnica de
Catalunya) in Spain.

For his highly valuable, enthusiastic, and motivating support during the supervision of
my research, I would like to thank Hartmut Ehrig. He introduced me to the field of graph
and model transformation with its extensive formal foundations and powerful capabilities
for many application domains. During my studies, I highly enjoyed the fruitful discussions,
interesting projects and joint contributions to the international scientific community.

For all their valuable support and the fruitful cooperation in joint work for several inter-
esting conferences and workshops, I would also like to thank my co-supervisors Barbara
König and Thomas Engel.

For the interesting as well as enlightening discussions and for the highly successful joint
work, I would like to thank Andrea Corradini and Fernando Orejas, who additionally
supported my international stays at University of Pisa and UPC Barcelona.

Finally, I would like to sincerely thank all my colleagues for the inspiring time, the
fruitful discussions and the highly successful cooperation.

vi

Contents

1 Introduction 1

2 Visual Enterprise Modelling 11

3 Behaviour Analysis of Visual Languages Based on Graph Transformation 19
3.1 Specification of Visual Languages Based on Graph Transformation 20

3.2 Behaviour Analysis Based on Switch and Permutation Equivalence 32

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 40

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems . 54

3.5 Analysis of Permutation Equivalence Based on Petri Nets 64

4 Behaviour Analysis and Optimization of Visual Enterprise Process Models 73
4.1 Business Process Modelling . 74

4.1.1 Event Driven Process Chains . 74

4.1.2 Business Continuity Management 78

4.1.3 Problems of Business Process Modelling 81

4.2 Operational Semantics and Analysis of Business Process Models 83

4.2.1 Operational Semantics Based on Graph Transformation 83

4.2.2 Equivalent Runs . 92

4.3 Modification and Optimization . 95

4.3.1 Generation of Valid Process Variants and Continuity Processes . . . 96

4.3.2 Summary of the Solution . 98

5 Model Transformation Based on Triple Graph Grammars 101
5.1 Concepts and Characteristics . 102

5.1.1 Model Transformation Based on Forward Rules 103

5.1.2 Model Transformation Based on Forward Translation Rules 120

5.2 Analysis . 129

5.2.1 Correctness, Completeness and Termination 130

5.2.2 Functional Behaviour and Information Preservation 137

5.3 Optimization and Evaluation . 155

5.3.1 Detection, Reduction and Elimination of Conflicts 156

5.3.2 Reduction and Elimination of Backtracking 161

5.3.3 Evaluation of the Approach . 166

6 Conformance Analysis of Enterprise Process and Service Models 169
6.1 Business Service Modelling . 170

6.2 Model Transformation: Business Process to Business Service Models . . . 172

6.3 Analysing Conformance of Business Process to Business Service Models . 180

6.4 Optimization of Conformance Analysis 187

7 Prototypical Tool Support: AGT-M 191
7.1 AGT-M: Algebraic Graph Transformation Based on Wolfram Mathematica 191

7.2 Comparison of AGT-M with other Tools for Behaviour Analysis of Graph
Transformation Systems . 193

7.3 Comparison of AGT-M with other Tools for Model Transformation 194

8 Related Work 197
8.1 Process Analysis of Graph Transformation Systems 197

8.2 Reconfiguration in Business Continuity Management 199

8.3 Model Transformation . 201

8.4 Consistency Analysis of Heterogeneous Models 202

9 Conclusion and Future Work 205
9.1 Summary of Theoretical Results . 205

9.2 Summary of Results for Visual Enterprise Modelling 209

9.3 Relevance for Model Driven Software Development 211

9.4 Future Work . 214

Bibliography 217

Index 232

Chapter 1

Introduction

Visual modelling is a fundamental and important concept in a large variety of research
areas, such as architecture, biology, and computer science. The visual models are used
in these fields to provide a suitable abstraction of the modelled objects. Based on these
abstractions, the involved persons can obtain a comprehensive overview of the modelled
systems and artefacts, which additionally requires a common understanding of the visual
notation. Depending on the underlying modelling concepts, the analysis of models with
respect to certain specified requirements and criteria can be supported by automated and
verified techniques. However, visual modelling techniques often do not provide these capa-
bilities. The main reason is that their human-centric notation is usually not equipped with
an underlying formal notation, which would be adequate for currently available analysis
techniques.

From a general point of view, modelling languages can be formal (like the process al-
gebra CSP [Hoa85]), informal (like specifications in natural language), or semi-formal
(like UML [OMG10]), which means that their syntax or semantics is defined only partially
by formal methods, such that different or even incompatible interpretations are possible.
Besides general-purpose modelling languages like UML [OMG10], domain specific mod-
elling languages (DSMLs) are increasingly used in model driven software development,
because they provide more specific concepts and notations. Therefore, DSMLs build the
basis for an improved understanding and more powerful code generators [TK09]. Sev-
eral meta tools are available, which provide a DSML specification environment for rapid
DSML tool generation, like MetaEdit+ [Tol07], DiaGen [Min07], AToM 3 [dV07], GME
[LBM+01], Marama [GHHN08], Microsoft Visual DSL Tools [Mic10] and EMF Tiger
[Tig10]. This means that organization specific DSMLs can be developed and used without
additional efforts for developing the modelling environments.

Domain specific modelling languages for visual enterprise models usually have a strong
focus on human-centric notation, because they are used for modelling structures and activ-
ities of enterprises including the human actors. While such DSMLs have been successfully

2 Introduction

applied for improving the design and documentation of business objects and operations
based on their intuitive notations, the developed models are used only partially for analysis
and administration of business operations. However, improved analysis and administration
capabilities do also belong to the central aims of enterprise modelling [FG98, SAB98].

Today, security, risk and compliance are increasingly important issues in enterprise mod-
elling. An analysis of real world scenarios for banking in an ongoing project with Credit
Suisse and University of Luxembourg [BBE+07, BHE09a, BHE09b, BHEE10] has shown
that current “best practices” based on informal techniques are insufficient and should be re-
placed by more adequate formal approaches. A very common practice today is to provide
guidelines of best practices and to judge about security, risk and compliance requirements
by evaluating check lists. This pragmatic approach, however, does not ensure that the
requirements are respected.

Suitable formal techniques, however, can build the basis for fully automated verifica-
tion. Therefore, domain specific modelling languages for organizational aspects need to be
formal in order to enable the verification of requirements. Moreover, they need to be ex-
pressive enough in order to describe the static and dynamic aspects of an enterprise [PS07].
These requirements are especially important in the financial sector, which is faced with an
increasing complexity of regulations. Security requirements in this context concern the
whole information flow based on different classifications of information from confidential
to public, but also based on specific dependencies between related data objects. Risk in
general, concerns all kinds of possible events that may lead to a loss of profit or even of
business activity. Finally, compliance requires that an enterprise or a specific department
adheres to certain internal guidelines, external regulations and laws.

Because of the extensive formal foundation available for the framework of algebraic
graph transformation [Roz97, EEPT06], we propose to use graph transformation tech-
niques for the analysis of enterprise models based on the abstract syntax graphs of the
visual models. The universal visual and formal technique of graph transformation has been
already applied for modelling as well as analysing distributed and concurrent systems, for
the definition of visual languages and for specifying, analysing as well as performing model
transformations. In addition, the theory of algebraic graph transformation provides several
important and general results for analysing transformation systems concerning the com-
bination of transformation steps (Local Church-Rosser Thm., Concurrency Thm., Embed-
ding and Extension Thm.) and several results concerning confluence analysis (Termination,
Critical Pair Lemma and Completeness of Critical Pairs) [EEPT06, Lam09]. Furthermore,
properties of visual models can be formalized as graph constraints [EEPT06, HP09], which
are shown to be equivalent to first order logic on graphs [Ren04a], and they can be verified
by automated techniques [AGG10, Pen09].

In order to provide powerful techniques for the analysis of enterprise models, we can
apply on the one hand existing results. On the other hand, we are able to provide addi-

3

tional new techniques leading to new results and applications. Due to the general character
of graph transformation, these new techniques can be used for further domains of visual
modelling as well. Based on the extended results, we will perform formally well-founded
analysis techniques on visual human-centric models and derive formally verified results.
In particular, we propose to formalize security requirements as graph constraints – where
possible – and check them using formal and automated techniques.

In the area of risk management we will focus on the availability of actors and resources
of an enterprise. In the case that some of them are not available, running business processes
can fail and therefore, the enterprise has to provide an effective business continuity man-
agement to ensure continuity of critical business processes that are vital for the survival
of the enterprise. However, the combination of different possible failures leads to a high
complexity and therefore, the manual modelling of complete business continuity processes
is only possible for a minor subset of the possible combinations. Instead, we can show that
the modelling of business processes including business continuity aspects can be improved
and supported by automated techniques.

In order to support the analysis of compliance and to improve the overall modelling
process, we propose to apply model transformations based on triple graph grammars
(TGGs) [Sch94, SK08]. While the notion of compliance covers many different aspects,
we focus firstly on checking those constraints that can be formalized as graph constraints
and secondly on analysing and checking conformance between different heterogeneous en-
terprise models. In order to ensure efficient and verified conformance checks we have to
extend the available TGG results and develop adequate execution and analysis techniques.

Aims of the Thesis

In order to support the capabilities of visual enterprise modelling, we develop, on the one
hand, improved modelling concepts and extensions and, on the other hand, we provide
suitable formal techniques and results that can be efficiently applied for analysing the visual
enterprise models. The first main challenge in this context is to provide an adequate formal
and efficient technique for the analysis and optimization of visual business process models
including the aspects of business continuity management. The second main challenge is the
analysis of conformance between business process and business service models, in order to
formally verify that the specified restrictions and permissions within the business service
models are respected by the business process models.

According to the scope of the thesis in Fig. 1.1, we consider visual human-centric busi-
ness process models and business service models, but the techniques are developed on a
general basis allowing for applications in further domains. The specific DSML for business
processes in our case study is an extended version of event driven process chains (EPCs)

4 Introduction

Figure 1.1: Scope of the Thesis

called workflow engine and data oriented EPCs (WDEPCs). This extension provides ad-
ditional information, which is relevant for a sound analysis of standard and continuity
processes and for supporting recommender services during the execution of business pro-
cesses. The models in the business service domain specify business objects, hierarchies
or matrices, communication channels and access rights. However, these four aspects can
also be developed in separate models, such that they are either integrated when needed or
analysed separately.

The main aims of this thesis in the area of enterprise modelling and in the general context
of visual modelling are specified by the following list of tasks:

1. Provide formal and efficient techniques for analysing the behaviour of graph trans-
formation systems with respect to possible equivalent reorderings of transformation
sequences.

2. Develop an efficient modelling framework for business process models based on a
human-centric visual notation and an underlying formal abstract syntax for formal
analysis and verification using the techniques of 1.

3. Extend the results for model transformations based on TGGs in order to ensure syn-
tactically correct, complete and efficient executions. Provide further important anal-
ysis techniques.

5

4. Develop concepts for checking conformance between heterogeneous models. Pro-
vide results that ensure efficient and verified checks using the results in 3.

5. Provide the formal results in the general framework of high level replacement sys-
tems (M-adhesive transformation systems), such that they can be instantiated in
several important domains.

6. Apply the results to realistic case studies and provide prototypical tool support.

Main Results

According to the following main results of the thesis the specified aims above are realized,
such that the developed techniques can be applied for improved enterprise modelling and
analysis as well as for improving visual modelling in other domains, like model driven
software development.

Behaviour Analysis of Transformation Systems The behaviour of transformation sys-
tems is analysed based on its interleaving semantics, which specifies the equivalent re-
orderings of a given transformation sequence. In order to include transformation rules
which contain negative application conditions (NACs) – a widely used control structure –
we introduce the notion of permutation equivalence and provide a generalised construc-
tion of processes (Def. 3.3.25), which consist of a subobject transformation system (STS)
together with an embedding into the original transformation system. The generation of a
process is ensured to be performed in polynomial time and the analysis based on STSs is
shown to be correct and complete (Thm. 3.4.12). Moreover, we present the generation of
the dependency net of a process and show that the analysis based on the dependency net is
correct and complete (Thm. 3.5.3) as well as efficient according to the provided benchmark.

Business Process Modelling A new concept of continuity snippets for specifying alter-
native process fragments, which handle specific failure cases, improves the efficiency and
quality of business process modelling and business continuity management. The presented
analysis techniques for business processes models are used to verify the formalized func-
tional requirements (given by sets of required data elements and events) and non-functional
requirements (given by security graph constraints). The correctness is based on the formal
results for behaviour analysis of transformation systems above. We further show that the
generation of process runs and continuity process runs ensures the formalized functional
and non-functional requirements (Thms. 4.2.7, 4.2.10) Furthermore, we illustrate the ap-
plication of the analysis and generation techniques for the case study based on the provided
prototypical tool support.

6 Introduction

Model Transformation We provide a formal and efficient approach to model transfor-
mation based on triple graph grammars (TGGs) and show that most of the general chal-
lenges for model transformations concerning functional and non-functional criteria (see
Sec. 5.1) can be mastered by the approach. The execution ensures syntactical correctness
and completeness (Thm. 5.2.2, Cor. 5.2.6) and we provide static conditions for guarantee-
ing termination (Thms. 5.2.4, 5.2.14), (strong) functional behaviour (Thms. 5.2.27, 5.2.31),
and (complete) information preservation (Thms. 5.2.34, 5.2.37). Moreover, we present op-
timization techniques for model transformations concerning the conservative conflict res-
olution (Thm. 5.3.7) and the improvement of efficiency by reducing and – if possible –
eliminating backtracking (Thms. 5.3.10, 5.2.27).

Conformance Analysis In order to analyse conformance between models of heteroge-
neous DSMLs we provide different notions of conformance (conformance, forward con-
formance, and restricted forward conformance) as well as efficient techniques for checking
conformance (Thms. 6.3.3, 6.4.1) based on the results for model transformation. Further-
more, we show the applicability of the techniques by verifying that the business process
model of our case study conforms to the given business service structure model via the
notion of restricted forward conformance. This ensures that the specified permissions for
communication and access to resources are respected for any execution of the process
model and its continuity alternatives.

General Framework The new results in the area of graph and model transformation
are developed in the general framework ofM-adhesive transformation systems. They can
be instantiated to a large variety of high-level replacement systems and applied not only
to enterprise modelling, but also to several other application domains like model driven
software development and, moreover, for the behaviour analysis of mobile ad hoc networks
modelled by reconfigurable Petri nets.

Case Studies and Tool Support The provided techniques and results are applied in sev-
eral case studies: behaviour analysis of a workflow management system, analysis and opti-
mization of a loan granting process, model transformation from class diagrams to relational
data base models, conformance analysis of business process and business service structure
models. Moreover, the techniques are executed based on the provided tool AGT-M together
with the analysis engine of the tool AGG.

7

Overview of the Chapters

Chapter 2 (Visual Enterprise Modelling) presents the main challenges in enterprise
modelling and discusses the benefits of using visual enterprise modelling techniques based
on formal methods. In particular, we discuss main problems for large multi-national en-
terprises in the financial sector based on an ongoing research project with Credit Suisse
and University of Luxembourg. As a key challenge in this context, human-centric visual
models have to adhere to external regulations while they are distributed over departments
and shall be easy to maintain. In order to improve enterprise modelling in this domain,
the subsequent chapters present new and formally well founded techniques, for which we
show that the application of these techniques is adequate and efficient in this and in other
domains like model driven software development.

Chapter 3 (Behaviour Analysis of Visual Languages Based on Graph Transformation)
introduces an extended formal framework for the analysis of behavioural models based on
their underlying abstract syntax graphs and additional operational semantic rules. The
formal results concerning the analysis of interleaving semantics are shown in the general
framework ofM-adhesive transformation systems and are instantiated to typed attributed
graph transformation systems. In particular, we introduce the new notion of permutation
equivalence [Her09a] as a generalisation of the standard notion of switch equivalence in or-
der to analyse more complex transformation systems. The analysis of interleaving seman-
tics is based on a generalised notion of processes forM-adhesive transformation systems
using the concept of subobject transformation systems [CHS08]. Furthermore, we show
that the analysis can be performed efficiently based on the generation of a compact process
model given by a P/T Petri net – called dependency net [HCEK10a].

Chapter 4 (Behaviour Analysis and Optimization of Visual Enterprise Process
Models) presents improved modelling concepts in the area of business process mod-
elling in order to improve business process analysis and to support business continuity
management. Instead of modelling complete business continuity processes, we show that
it is sufficient and more efficient to model only fragments of continuity processes which
are specific to the different possible failures [BHG11]. Based on these fragments, called
continuity snippets, we provide an automated technique for the generation of validated
complete business process executions for the different possible combinations of failures.
The case study shows how a loan granting process is analysed with respect to functional
and non-functional requirements based on a given human-centric process model in the
domain specific language of extended event driven process chains. For this purpose, we
provide a formal operational semantics given by a subobject transformation system derived
from the abstract syntax graphs of the visual models and we apply the analysis techniques

8 Introduction

of Ch. 3. Exemplarily, we verify the formalized security requirement “four-eye principle”
and generate more than 100 valid process runs and more than 200 additional continuity
process runs that satisfy the given functional and non-functional requirements.

Chapter 5 (Model Transformation Based on Triple Graph Grammars) discusses
main challenges of model transformations and provides a powerful approach to bidirec-
tional model transformations based on triple graph grammars. Model transformations are a
key concept in model driven development and we show that the achieved results in this the-
sis allow us to master most of the discussed challenges for model transformations. In partic-
ular, the approach ensures syntactical correctness, completeness and we provide efficient
static criteria for ensuring termination [EHS09a]. Moreover, several analysis techniques
are presented for checking and improving important properties of model transformations.
This includes (strong) functional behaviour [HEGO10c], (complete) information preser-
vation [EEE+07] and efficiency [HEGO10c]. The case study on the well-known model
transformation from class diagrams to relational data base models shows that the tech-
niques can be efficiently applied and used to improve the system of model transformation
rules, such that the discussed properties can be verified.

Chapter 6 (Conformance Analysis of Enterprise Process and Service Models) ad-
dresses the problem of checking and ensuring conformance of enterprise models in dif-
ferent heterogeneous domain specific modelling languages. Conformance analysis is es-
pecially important between business process and business service structure models, which
specify certain restrictions and permissions concerning internal communication and access
to resources. Based on the abstract syntax of the visual models we show how the developed
techniques and results in Ch. 5 for model transformations are efficiently used to check con-
formance for the case study. The presented automated and efficient conformance analysis
techniques are suitable for a decentralised modelling process, which is important for large
enterprises, where support of decentralisation is a highly relevant requirement.

Chapter 7 (Prototypical Tool Support: AGT-M) provides an overview of the devel-
oped tool AGT-M and the used features of the tool AGG and compares their capabilities
with other available tools.

Chapter 8 (Related Work) discusses and compares related approaches and techniques
in the different areas concerning Chapter 3 to 6, while related work for enterprise modelling
in general and tool support are discussed in Chs. 2 and 7 already.

9

Chapter 9 (Conclusion and Future Work) summarizes the main achievements of the
thesis in the area of visual enterprise modelling and software driven development and
presents possible further application domains and extensions for future work.

10 Introduction

Chapter 2

Visual Enterprise Modelling

The aim of enterprise modelling is to support and improve the design, documentation, anal-
ysis and administration of business objects and operations based on adequate modelling
techniques [FG98, SAB98]. For this purpose, domain specific enterprise models shall pro-
vide the basis for communication between people with different professional background
[Fra02]. This chapter presents main aspects and problems of enterprise modelling and
specifies the scope of the developed techniques and applications of this thesis within the
wide area of enterprise modelling.

Enterprise models provide representations of the structures, processes, resources, in-
volved actors, executed functions, goals, and constraints relevant for the modelled enter-
prise. For this reason, enterprise modelling has to provide an agile modelling process,
which is integrated across the different business functions [FG98]. An agile modelling
process additionally reduces the required time frames for adapting the models according
to change requests, which can occur quite frequently during the lifetime of an enterprise.
Moreover, adequate modelling techniques should support the propagation of changes from
one domain to other domains. This way, the knowledge and expertise of enterprise mod-
ellers can be focussed on their main domain, which is an important requirement for decen-
tralised and distributed models occurring especially in large multi-national enterprises.

In order to master the high complexity of an enterprise in its whole, visual modelling
techniques have been successfully applied. They provide intuitive notations and high ab-
straction capabilities. Clearly, visual models cannot replace all textual models in all do-
mains. But still, where suitable, they often show high benefits. Furthermore, enterprise
models are usually not only used for the design and documentation of enterprises, but also
for the analysis and management of operations. In particular, process analysis concerns,
e.g., the question whether certain business processes can be performed in a different but
more suitable way, such that some goals can be achieved in an optimized way.

12 Visual Enterprise Modelling

The integration of different enterprise models requires, on the one hand, the application
of techniques that ensure certain quality and consistency requirements and, on the other
hand, the application of techniques for setting up and maintaining a common understanding
of the enterprise by the modellers. While this thesis provides several suitable techniques for
the first requirement, the common understanding is supposed to be set up and maintained
based on sophisticated techniques in the area of ontology engineering [FG98].

Figure 2.1: Scope of enterprise modelling in this thesis

This thesis is focussed on aspects in enterprise modelling especially relevant for enter-
prises in the financial area, such that the scope covers business process and business service
structure models as shown by the overview in Fig. 2.1. Accordingly, the case studies in
Chapters 4 and 6 are placed within the financial area and they were developed in a fruitful
cooperation with the University of Luxembourg and Credit Suisse. As the figure shows,
the main goal is to provide suitable techniques for the design (incoming left arrow) in order
to effectively support the management of business operations (outgoing right arrow).

Business process models (top left of Fig. 2.1), like event driven process chains (EPCs)
[IDS10, Men07] or models in business process modelling notation (BPMN models,
[OMG09]), are especially important for enterprise modelling in the financial domain,
where business processes need to be evaluated and have to be ensured to respect a wide
range of non-functional requirements, like for instance legislative restrictions and obliga-

13

tions. Business service structure models (top right of Fig. 2.1) are used for specifying the
organizational structure and roles of actors within an enterprise. Both model types evolve
over time and need to be analysed and maintained in order to ensure and improve correct
business activities. This includes the validation of given functional and non-functional re-
quirements, which have to be respected because of internal business goals or because of
external restrictions.

Clearly, there are several further perspectives and aspects within an enterprise which
are also relevant for enterprise modelling, but they go beyond the scope of this thesis.
However, the general techniques provided in this thesis show good potential that they can
also improve the modelling process in further domains as discussed in [BH10]. One com-
prehensive framework is presented in [Fra02] based on the concept of multi-perspective
enterprise modelling (MEMO). The MEMO method provides semi-formal domain specific
modelling languages that are focussed on the concrete modelling domains of enterprises.
Furthermore, the ISO standard 19439:2006 [ISO06] specifies a general framework for en-
terprise modelling and enterprise integration based on the GERAM framework (generalised
enterprise reference architecture and methodology, [BN96]), where several aspects and di-
mensions are distinguished in a partly similar way as in the MEMO method.

Compared with enterprise modelling based on general modelling languages like UML,
as presented in [Mar00], domain specific modelling techniques provide specific modelling
concepts and notations which are appropriate for the modelling tasks instead of providing
generic ones from which the specific ones have to be manually constructed and derived.
For this reason, the unified enterprise modelling language [Ver02, ABV07] does not aim
to provide one universal enterprise modelling language, but rather provides techniques for
integrating models of existing domain specific languages based on merging their ontolo-
gies. This line is also followed in this thesis, where we additionally provide concepts for
the concrete structural correspondences between the domain models in Chapters 5 and 6
by defining model transformations based on the underlying abstract syntax graphs of the
models.

The first component of the enterprise modelling scope in Fig. 2.1 concerning business
process modelling includes the modelling of standard and active business processes as well
as optimized future business processes and business continuity processes for handling fail-
ures and disasters. This combination causes high dependencies between the different types
of processes, because changes in the standard process can have high impact on the associ-
ated optimized and continuity process models. For this reason, the modelling of business
processes can be significantly improved by an automated support based on formally well
founded techniques. This way, the complexity and possible inconsistencies can be reduced.
Moreover, the business process models can be used to actually control and run the real busi-
ness processes based on some type of workflow engines that allow for process model input
and maintanence.

14 Visual Enterprise Modelling

Business service structure models in the second component of the enterprise modelling
scope in Fig. 2.1 are used for the specification of the organisational structure, communica-
tion structures as well as roles and access rights to resources. The organisational structure
includes the hierarchy or matrix relations between the employees and managers who are
distributed over the different departments. Therefore, business service structure models
make explicit the existing hierarchies, the used permissions as well as the available struc-
tures and resources. These information are used for checking conformance of business
process models with respect to given business service structure models. For example, ac-
tors within a business process model who access certain data from some data bases must
own a role to which the appropriate access rights to these resources are assigned.

The lower component of Fig. 2.1 consists of additionally specified functional and non-
functional requirements. Functional requirements for process models define the minimal
effects of business processes, which have to be provided and functional requirements for
business service structure models specify the types of roles, communication and data ma-
nipulation which are required in order to perform the relevant business operations. There-
fore, the modelling process has to support the analysis of the models with respect to the
given functional requirements. Moreover, there are non-functional requirements, which
usually restrict possible business operations to satisfy certain security side constraints and
to meet some goals concerning efficiency, quality, and profit potential.

Large enterprises become more and more complex and enterprise modelling has to cope
with a variety of large structures. The complexity does not only grow with the amount
of employees, but especially with the amount of products, product features, composed IT
systems, heterogeneous software components and information systems, changing require-
ments, and, in particular, decreasingly short development cycles in combination with a long
running customer support. In order to control these complex structures, there is a special
need for scalable abstraction techniques, which can be supported by visual modelling tech-
niques, where models are synchronized and reflect the current state, structure and possible
future activities of the enterprise.

As motivated before, the modelling process should be agile in order to cope with pos-
sibly frequent external change requests. For this reason, changes of requirements should
not cause massive manual modifications of a large amount of models. Low manual change
efforts also reduce the amount of inconsistencies causes by manually maintained models
with duplicated information parts. Moreover, models need to be easy to grasp in order to
improve the efficiency and quality of modelling. Visual modelling techniques in combina-
tion with suitable abstraction techniques can build the basis for solving these problems and
challenges by providing concise and compact models. In combination with formal abstract
syntax definitions, visual modelling techniques can additionally enable verified automated
analyses, which can support error detection and thus, quality assurance of the models.

15

Based on the abstract syntax of visual domain specific languages, different types of vi-
sual models can be aligned, like for instance human-centric and machine-centric models.
In [BBE+07], we presented a formal framework for language families and their integrated
views concerning well-founded domain languages for secure coarse-grained IT system
modelling. This approach was extended in [BHE09b, BH10], where we presented how
security requirements for machine-centric IT and business models in the financial domain
can be formalized by graph constraints (see Ch. 4) and analysed by graph transformation
tools, like e.g. AGG [AGG10]. Furthermore, we applied model transformation techniques
based on triple graph grammars as presented in Sec. 5.1.1 for ensuring consistency between
these models and checking consistency based on model integration.

In the following, we summarize the main requirements for enterprise modelling and
specific problems within the scope of this thesis and outline how the requirements are met
and the problems are solved by the techniques and results in Chapters 3 to 7.

General Requirements and Provided Results for Enterprise Modelling

As discussed in detail before, the benefits of enterprise modelling can be substantially im-
proved by providing techniques that satisfy the following requirements. The modelling
process should be agile and decentralised, changes should not cause massive manual mod-
ifications, the applied techniques should enforce a low rate of occurring inconsistencies
and duplicated information parts. Moreover, the techniques shall be applicable to dis-
tributed models. and the models itself shall be developed in a visual, human-centric and
domain-specific notation. The modelling framework shall build the basis for supporting the
management of operations and for analysing and ensuring functional and non-functional
requirements.

In order to satisfy these requirements in a suitable way we apply formal techniques based
on graph and model transformation (Chapters 3, 5), which provide powerful and efficient
analysis techniques. Their formal foundation ensures correct analysis results and the au-
tomated tool support provides efficient checks. The techniques are applied to enterprise
models in Chapters 4 and 6 based on the abstract syntax graph of the human-centric visual
models of common domain specific modelling languages. Moreover, the model trans-
formation techniques provide the basis for and agile and decentralised modelling process
including distribution of models and efficient change propagation. The new concepts in
Ch. 4 based on continuity snippets reduce the manual modelling efforts and possible in-
consistencies as well as duplicates.

16 Visual Enterprise Modelling

Specific Problems and Solutions in Business Process Modelling

Business process models need to be analysed in order to derive equivalent and valid execu-
tions of the process, which can be ranked according to some optimization criteria regarding
costs and time. The process models additionally have to satisfy functional requirements
(given by minimal required effects) and non-functional requirements (concerning e.g. se-
curity, efficiency or quality). In order to ensure the effectiveness of a corresponding busi-
ness continuity management, the continuity process have to modelled as well, which leads
to high dependencies between standard process models and the continuity process models,
such that changes can have high impact. Moreover, scalability is important, because the
amount of available processes can be high.

Based on the formal techniques and results on behaviour analysis in Ch. 3 we show
in Ch. 4 how business process models are analysed by automated and implemented tech-
niques that generate complete sets of equivalent process executions, which are additionally
verified to ensure the formalized functional and non-functional requirements (formalized
as visual graph constraints). Moreover, we show how complete continuity processes for
different combinations of failures can be generated out of the standard process model to-
gether with additional continuity snippets that concern only specific failures. This way, de-
pendencies between the models and change impacts are reduced substantially. Moreover,
in combination with the benchmark in Ch. 3 the overall approach shows good scalability.

Specific Problems and Solutions in Conformance Analysis

The different domain specific modelling languages in enterprise modelling cause addi-
tional efforts for the sound integration of the existing enterprise models. Besides business
process models we consider business service structure models (BSS models), which also
have to adhere and ensure functional requirements (availability of certain roles, commu-
nication structure and system resources) as well as non-functional requirements (security
constraints).

In Ch. 2, we present techniques or checking conformance between different heteroge-
neous models based on the formal techniques for model transformation in Ch. 5, for which
we provide efficient tool support in Ch. 7. This way, business process models are analysed
whether they conform to the given BSS models that specify permissions regarding the use
of communication channels and resources by the involved actors. Moreover, we show
that the model transformation techniques can be applied to generate models in related do-
mains, which automatically ensure conformance and can be used for further refinement.
Furthermore, the presented type of BSS models in Ch. 6 explicitly specifies existing hi-
erarchies, available structures, resources and access rights. Therefore, the functional and
non-functional requirements can be analysed by formalizing the requirements as visual
graph constraints on the structural elements of BSS models and checking these graph con-

17

straints on the underlying abstract syntax graphs of BSS models in a similar way as in the
case for business process models in Ch. 4.

18 Visual Enterprise Modelling

Chapter 3

Behaviour Analysis of Visual Languages
Based on Graph Transformation

Visual languages play an important role for software and system modelling. Especially the
concept of domain specific modelling languages, i.e. the specification of modelling lan-
guages for particular domains and applications, shows a high impact in many application
areas. In order to ensure correctness of the developed models with respect to given re-
quirements there is a strong need for automated formal tool support. This section presents
formal techniques for the analysis of visual behaviour models concerning the problems
how to check whether two executions of the system are equivalent, how to generate all the
executions that are equivalent to a given one and, moreover, how to check whether some
modifications of the the order of steps of a given execution preserves the equivalence.

The analysis techniques are based on the formal framework of algebraic graph transfor-
mation used for the specification of operational semantics of visual models as it is used
for the case studies of this thesis. All results, however, are shown to hold for generalM-
adhesive transformation systems. For this reason, the result can be applied as well for a
large variety of specification techniques including various kinds of graph transformation
systems and different kinds of Petri net transformation systems.

Main concepts and constructions for the specification of visual models and its opera-
tional semantics are presented in Sec. 3.1, which allow for automated generation of sytax
directed editor environments based on the Eclipse environment [Ecl10]. Sec. 3.2 intro-
duces the notion of permutation equivalence, which is shown to be the adequate equiv-
alence relation for transformation systems which use the intuitive and common concept
of negative application conditions (NACs) for restricting the applicability of the rules of
the operational semantics [Her09a]. Permutation equivalence is based on the standard no-
tion of switch equivalence without NACs. By definition, two transformation sequences are
permutation-equivalent, if they are switch equivalent without NACs and moreover, they
respect all NACs. As shown by an intuitive example a direct analysis according to this

20 Behaviour Analysis of Visual Languages Based on Graph Transformation

definition is complex and for this reason we show by Secs. 3.3 to 3.5 how the analysis can
be performed on the generated compact process model. Sec. 3.3 presents the generation
of the process model given by a subobject transformation system (STS) based on the re-
sults in [CHS08, Her08a, Her08b]. Thereafter, according to [Her09a], Sec. 3.4 presents the
analysis of permutation equivalence based on STSs and shows as the first main result by
Thm. 3.4.12 that the analysis is sound and complete with respect to interleaving semantics,
i.e. the set of generated sequences specifies exactly the set of all permutation-equivalent
transformation sequences to the given one. Finally, Sec. 3.5 shows that – independent of
the chosenM-adhesive category on which the transformation system is based – the anal-
ysis of permutation equivalence can be performed by generating a low-level P/T Petri net,
called dependency net [HCEK10a]. This generation uses the derived STS and we show by
Thm. 3.5.3 that the analysis is as well sound and complete. The advantage of the depen-
dency net is that only the dependencies between the steps of the given transformation are
specified leaving out the concrete details of the internal structure of the involved objects.

3.1 Specification of Visual Languages Based on Graph
Transformation

Visual modelling is a fundamental concept in software and system modelling and visual
models are increasingly developed and applied in many different areas. Compared to
one-dimensional plain textual specifications visual models are multi-dimensional and show
main advantages concerning abstraction and intuitive understanding. They provide addi-
tional diagrammatic elements, like boxes, connections and containers of different shapes.
These extensions lead to an increased complexity of the specification techniques for defin-
ing visual languages compared to textual ones. Furthermore, the different application do-
mains of visual languages require different features and properties of visual languages
leading to the concept of domain specific modelling, i.e. the specification of domain spe-
cific modelling languages (DSLs) that are optimized for the particular domain. For this
purpose, specification techniques for visual languages have to be powerful with respect to
complexity and they have to provide a general and well founded specification framework.

The two major lines in the specification of visual languages are – on the one hand – meta
modelling based on the Meta Object Facility (MOF [MOF06]) developed by OMG and –
on the other hand – graph grammars that extend the concepts for string grammars to the
case graphs. In both approaches the definition of the abstract syntax builds the main part of
the specification. The concrete syntax of the models is aligned to the abstract syntax graphs
and may contain some additional information for visualization that are not dependent on
the abstract syntax directly.

3.1 Specification of Visual Languages Based on Graph Transformation 21

In software design, the Unified Modelling Language (UML [OMG10]) developed and
maintained by OMG has become a standard and its specification is also the reference for
metamodelling with MOF. Various kinds of structure, behaviour and component diagram
types are provided, which can be furthermore customized for particular domains using the
concept of stereotypes. However, DSLs often are very specific to the application domain
such that UML alone is not sufficient and metamodelling based on MOF allows to specify
further visual languages.

The basis of metamodelling is the specification of a meta model, which generally spec-
ifies the possible structural elements of the abstract syntax of models. A meta model is
given by a restricted form of UML class diagram mainly providing the notion of classes,
attributes, associations, multiplicities and inheritance. In addition to the meta model the
object constraint language (OCL [OCL03]) is used to further restrict the abstract syntax of
models by additional constraints that have to be satisfied. The abstract syntax of the speci-
fied visual language VL consists of all possible models that conform to the meta model and
additionally satisfy the OCL constraints. Therefore, metamodelling is a descriptive speci-
fication technique and does not directly provide a technique for generating valid models of
the language.

Visual language definition based on graph transformation [EEPT06, Erm09] starts with
the specification of a type graph TG , which is a similar concept to defining a meta model.
Each model of the language is typed over TG which specifies the possible node types
(corresponding to classes in MOF), edge types (corresponding to associations in MOF)
and allows the specification of attribute types, multiplicities and inheritance similar to the
corresponding concepts in MOF. Instead of defining additional constraints for specifying
well-formedness conditions of models a graph grammar provides a start graph and con-
struction rules. These graph transformation rules are used to create the valid visual models
such that the graph grammar approach to visual language specification is constructive.

Graph transformation additionally provides the concept of graph constraints [EEPT06,
HP09] as a descriptive component of visual language definition offering the power of first
order logic on graphs [Ren04a]. The designer of a visual language is therefore free to
either specify the type graph with constraints, the type graph with start graph and rules or
a combination of both. From the formal point of view all three variants are considered to
form a graph grammar, because the set of rules can be empty.

As mentioned before, the concrete syntax of a visual language is defined as an ex-
tension of the abstract syntax or, alternatively, separately from the abstract syntax using
an additional mapping model to specify the correspondences. In the first case, the con-
crete syntax elements are attached directly to the corresponding abstract syntax elements,
i.e. the type graph and rules are extended by additional elements that specify certain po-
sitions and figures for the visualization of the abstract syntax. The Tiger environment
[EEHT05, Tig10, EE08b, BEEH08, BEEH09] is based on this approach and provides a

22 Behaviour Analysis of Visual Languages Based on Graph Transformation

generator for visual editors as Eclipse plugins using directly a given language specification.
In order to increase usability additional complex editing operations can be specified based
on graph transformation rules and control structures. In the second case, the alignment of
the abstract and concrete syntax can be described by plain text and suitable example visu-
alizations as e.g. in the specification of UML. A more precise mapping model is defined
using the Eclipse plugin GMF [GMF07], where corresponding abstract and concrete syntax
elements are pairwise related. In [Tae06, TCSE08], GMF was extended by a component
for the specification of graph transformation rules, such that also complex editing opera-
tions can be specified. In the following, we follow the graph grammar based approach for
the specification of visual languages.

The analysis of visual behaviour models – as being the main focus of this chapter – is
based on the definition of a semantics for a given visual language and its syntax definition.
Besides the wide range of approaches for the specification of semantics of behavioural
models mainly based on denotational semantics [Sto77, Sch86, Win93], graph transforma-
tion provides concepts for an intuitive specification of the formal semantics of behavioural
models by the definition of graph transformation rules for the operational semantics. These
graph transformation rules are defined on an extended type graph of the visual language
specification. This integrated concept of syntax and semantics definition based on graph
transformation further allows for simulation and animation [Erm06], which can be used
to visualize analysis results. Furthermore, the algebraic approach to graph transformation
provides a rich formal foundation [EPS73, Roz97, EEKR99, EKMR99, EEPT06] including
powerful results concerning the analysis of graph transformation systems, like the Local
Church-Rosser, Parallelism, Concurrency, Extension and Embedding Theorems. These re-
sults build the basis for the new techniques on behaviour analysis of visual models in this
chapter and the further techniques in the chapters thereafter.

At first, we review the main constructions and results for the algebraic approach to typed
attributed graph transformation [EEPT06], where graphs can be interpreted as algebras
over a graph structure signature and a data signature. Plain graphs, i.e. graphs without
attribution, are given by a set of nodes, a set of edges and two functions defining the source
and target nodes of each edge. Hence, graphs may contain multiple edges between two
edges and in the case of typed graphs these multiple edges may also have the same type.

Definition 3.1.1 (Graph and Graph Morphism). A graph G = (V,E, s, t) consists of a set
V of nodes (also called vertices), a set E of edges, and two functions s, t : E → V , the

source and target functions: V
s --
t
11 E.

E1
s1 --
t1 11

fE
��

(=)

V1

fV
��

E2
s1 --
t1 11 V2

Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for i = 1, 2, a graph
morphism f : G1 → G2 , f = (fV , fE) consists of two functions
fV : V1 → V2 and fE : E1 → E2 that preserve the source and target
functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE:

3.1 Specification of Visual Languages Based on Graph Transformation 23

A graph morphism f is injective (or surjective) if both functions fV , fE are injective (or
surjective, respectively); f is called isomorphic if it is bijective, which means both injective
and surjective. The class of all graphs as objects and of all graph morphisms forms the
category Graphs.

The attribution of graphs is based on the concept of E-graphs, which extend plain graphs
by two further sets attribution edges – one for node attribution (ENA) and one for edge
attribution (EEA) – together with a set of data values (VD) that can be assigned as attribute
values.

Definition 3.1.2 (E-graph and E-graph morphism). An E-graph G with G =

(VG, VD, EG, ENA, EEA, (sourcej, target j)j∈{G,NA,EA}) consists of the sets

• VG and VD , called the graph and data nodes (or vertices), respectively;

• EG, ENA , and EEA called the graph, node attribute, and edge attribute edges, re-
spectively; and the source and target functions

• sourceG : EG → VG, targetG : EG → VG for graph edges;

• sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges; and

• sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges:

EG
sourceG))

targetG
55 VG

EEA

targetEA **

sourceEA
99

ENA

targetNAtt

sourceNA
ee

VD

Consider the E-graphs G1 and G2 with Gk = (V k
G , V

k
D, E

k
G, E

k
NA, E

k
EA, (sourcekj ,

targetkj)j∈{G,NA,EA}) for k = 1, 2. An E-graph morphism f : G1 → G2 is a tuple
(fVG , fVD , fEG

, fENA
, fEEA

) with fVi : V 1
i → V 2

i and fEj
: E1

j → E2
j for i ∈ {G,D},

j ∈ {G,NA,EA} such that f commutes with all source and target functions, for example
fVG ◦ source1

G = source2
G ◦ fEG

.

E-graphs form the structural part of attributed graphs. In order to specify the carrier sets
of attribute values that form the single set VD and to define the operations for generation
and manipulating data values we extend E-graphs by an additional data algebra D. The
carrier sets Ds of D contain the data elements for each sort s ∈ S according to a data
signature DSIG = (SD,OPD). These carrier sets are combined by disjoint union and
form the set VD of data elements.

24 Behaviour Analysis of Visual Languages Based on Graph Transformation

Definition 3.1.3 (Attributed Graph and Attributed Graph Morphism). Let DSIG =

(SD,OPD) be a data signature with attribute value sorts S ′D ⊆ SD. An attributed graph
AG = (G,D) consists of an E-graph G together with a DSIG-algebra D such that
·∪s∈S′DDS = VD.

D1
s

fD,s //
� _

��
(1)

D2
s
� _

��
V 1
D

fG,VD
// V 2
D

For two attributed graphs AG1 = (G1, D1) and AG2 = (G2, D2),
an attributed graph morphism f : AG1 → AG2 is a pair
f = (fG, fD) with an E-graph morphism fG : G1 → G2 and an al-
gebra homomorphism fD : D1 → D2 such that (1) commutes for all
s ∈ S ′D, where the vertical arrows are inclusions.

Remark 3.1.4 (Further Attribution Concepts). The general concept of E-graphs can be
used for further kinds of attribution like e.g. for constraint graphs [NHOH10], where
attribute values are variables that are further specified by some formula. This concept
allows to postpone concrete attribute computations leading to a lazy evaluation concept,
which is of main importance for applications in service composition.

Definition 3.1.5 (Category of Attributed Graphs). Given a data signature DSIG as above,
attributed graphs and attributed graph morphisms form the category AGraphs.

Attributed graph AG1 in explicit E-graph notation with DSIG-algebra D

worksOn1

person1 task2

“Peter”

name1

“takePhoto”

name2

“Take a photo at

position H4.C3”

description1

3

accessLevel2

started1

… further data nodes

…

DSIG

sorts: int,alph,string

opns: zero: → int

succ: int → int

pred: int → int

empty: → string

ladd: alph string → string

concat: string string →string

DSIG-algebra D

Dint=ℤ

Dalph={a, …, z}

Dstring=Dalph*

zeroD=0

succD(x)=x+1

predD(x)=x-1

emptyD=

laddD(a,s)=as

concatd(s1,s2)=s1s2

Figure 3.1: Example for an attributed graph including its data algebra

Example 3.1.6 (Attributed Graph). The attributed graph AG1 = (G1, D) in Fig. 3.1 con-
sists of an E-graph and a DSIG-data algebra D. The E-graph contains structural nodes
(depicted as rectangles), structural edges between structural nodes, data nodes (depicted
as ellipses) as well as edges for node attribution. The graph shows a person named “Pe-
ter”, who is working on the task “takePhoto”. However, this graph can also be interpreted
completely different, because the structural nodes as well as the attribution edges are not
typed and thus, their names have no formal semantic interpretation. For this reason, we
extend this example to a typed attributed graph in Ex. 3.1.10.

Typing is one further major concept for graph transformation systems besides attribution
and further enriches the specification capabilities of the framework. Typing is used on the

3.1 Specification of Visual Languages Based on Graph Transformation 25

one hand to ensure certain well-formedness constraints for all graphs that can be generated
by a transformation system and on the other hand, to add information to each graph element
for semantic interpretation. In the simplest case types are assigned as labels to each node
and edge of a graph. The definition of a type graph additionally ensures that graphs typed
over the type graph satisfy structural properties. This means in particular that the type
graph specifies the types of the source and target nodes of each edge type ensuring that
each edge of this type is always connected to source and target nodes of the specified types
in the type graph. The relation of a typed graph towards its type graph is specified by a
type morphism from the typed graph to the type graph. This morphism specifies the types
for all nodes, edges, and attributes occurring in the typed graph. The data signature of the
type graph already distinguishes the sorts of the carrier sets for the attribute values. For
this reason, it suffices to define the data algebra of the type graph as final algebra over the
data signature, i.e. each carrier set exactly contains the element that specifies the data type
for the sort.

Definition 3.1.7 (Typed Attributed Graph and Typed Attributed Graph Morphism). Given
a data signature DSIG , an attributed type graph is an attributed graph ATG = (TG , Z),
where Z is the final DSIG-algebra. A typed attributed graph (AG, t) over ATG consists
of an attributed graph AG together with an attributed graph morphism t : AG → ATG .
A typed attributed graph morphism f : (AG1, t1) → (AG2, t2) is an attributed graph
morphism f : AG1 → AG2 such that t2 ◦ f = t1:

AG1

t1

**
f

��
ATG

AG2 t2

44

Definition 3.1.8 (Category of Typed Attributed Graphs). Typed attributed graphs over
an attributed type graph ATG and typed attributed graph morphisms form the category
AGraphsATG .

worksOn

member

connectedTo

device Person

name: String

accessLevel: Int

Task

name: String

description: String

acessLevel: Int

AccessPoint

IP: String

Subnet: String

started

MobileDevice

IP: String

task

Team

name: String

Attributed type graph ATG

Figure 3.2: Attributed type graph for workflows mobile networks

26 Behaviour Analysis of Visual Languages Based on Graph Transformation

Example 3.1.9 (Attributed Type Graph). Fig. 3.2 shows the type graph of an attributed
graph grammar for modelling a workflow system in mobile ad hoc networks, where persons
can be assigned to teams and tasks and they can change their location implying that their
mobile communication devices may need to reconnect to new access points. Each team
can assign its tasks to its team members, where each task can be performed by a group
of team members and not necessarily by a single person. During the execution of a task
the flag “started” will be attached to the task to specify that the task was started and not
yet finished. The type graph is shown in compact notation, which is similar to the MOF
notation for meta models [MOF06]. Attributes are depicted underneath the node names
and the attribute types are placed directly behind the names of the attributes. This means
that the attribution edges of underlying E-graph are implicit.

w1:worksOn

m1:memberp1:Person

name=“Peter”

accessLevel=5

t2:Task

name=“takePhoto”

description=“Take a photo at position H4.C3”

acessLevel=3

s1:started
t4:task

t1:Team

name=“discover3”

Typed attributed graph AG

m2:member p2:Person

name=“Julia”

accessLevel=5

Figure 3.3: Typed attributed graph AG in compact notation

Example 3.1.10 (Typed Attributed Graph). An example of an attributed graph AG typed
over the type graph ATG of Fig. 3.2 is shown in Fig. 3.3 and using the explicit E-graph
notation in Fig. 3.4. It specifies a team with two team members (“Peter” and “Julia”)
and one task, which is currently performed by person p1 (“Peter”). Graph AG is shown
in both, in compact notation (upper part) and in explicit E-graph notation (lower part).
All data value nodes in the E-graph notation are visualized by ellipses and the dots and
circles in the lower right part of the figure show that the further data nodes of the E-graph,
which are not connected to the main part of the graph, are left implicit. Note further that
both persons have an access level of “5” and thus, they share the same data value node.
Finally, the explicit E-graph notation shows that formally, a structural node may also have
multiple data values assigned to it, because there may be more than one edge outgoing with
the same type. While this effect will usually not appear during transformation sequences,
this generality of attribution is explicitly used in Sec. 3.3 for analysing the interleaving
behaviour of transformation sequences.

For more features of typing, such as the definition of multiplicities and node type inher-
itance, we refer to [EEPT06, LBE+07, EEH09]. The used multiplicities in our examples

3.1 Specification of Visual Languages Based on Graph Transformation 27

Typed attributed graph AG in explicit E-graph notation

w1:worksOn

m1:member
p1:Person

t2:Task

t4:task

t1:Team
m2:member

p2:Person

“Peter”:String

5

n1:name

a1:accessLevel

“takePhoto”:String

n2:name

“Take a photo at position

H4.C3”:String

d1:description

3

a2:accessLevel

“Julia”:String

n3:name

a3:accessLevel

“discover3”:String

n1:name

s1:started

… further data nodes

…

Figure 3.4: Typed attributed graph AG in explicit E-graph notation

will be ensured by the graph transformation rules and thus, they do not need to be checked
separately. Furthermore, each multiplicity constraint can be transformed into application
conditions for the graph transformation rules [EEPT06], which ensure that the multiplici-
ties are respected during the rule application.

The category of typed attributed graphs is one prominent instantiation of the framework
of M-adhesive categories, which abstracts away some of the construction details while
preserving all necessary properties needed to show the main results for transformation sys-
tems mentioned before. This abstract framework on the one hand simplifies several proofs
of results on constructions forM-adhesive categories and on the other hand, automatically
induces the shown results to all possible instantiations ofM-adhesive categories, like hy-
pergraphs, elementary Petri nets, place/transition Petri nets and algebraic high-level nets
with and without individual tokens. For this reason, we will base all further constructions
on the abstract framework ofM-adhesive categories and demonstrate them for typed at-
tributed graph transformation systems.

M-adhesive categories fulfil the following three conditions, which are less restrictive
than the conditions for adhesive categories [LS04], weak adhesive high level replacement
(HLR) categories [LS04, EEPT06] and partial map adhesive categories [Hei10] as pre-
sented in [EGH10]. Thus, the notion ofM-adhesive categories is a generalization of the
mentioned variants of adhesive categories.

Definition 3.1.11 (M-adhesive category). A pair (C,M) consisting of a category C and
a class of morphismM is called anM-adhesive category if:

28 Behaviour Analysis of Visual Languages Based on Graph Transformation

1. M is a class of monomorphisms of C closed under isomorphisms, composition, and
decomposition (g ◦ f ∈M, g ∈M⇒ f ∈M).

2. C has pushouts and pullbacks alongM-morphisms, andM-morphisms are closed
under pushouts and pullbacks.

3. Pushouts in C alongM-morphisms are “MVan Kampen” (M-VK) squares, i.e. for
any commutative cube like (2) below where the bottom face (1) is a pushout along
m ∈ M, the back faces are pullbacks, and b, c, d ∈ M, we have: The top face is a
pushout if and only if the front faces are pullbacks.

A
f

~~
m

(1)C

n

B

g~~

D

A′f ′

rr
m′
**

a

��

C ′

n′
))

c

��

B′
g′rr

b

��

D′

d

��

(2)

A
(1)
f

rr
m
**C

n **
B

grrD

Fact 3.1.12 ((AGraphsATG ,M) isM-adhesive). The category (AGraphs,M) of typed
attributed graphs with classM of monomorphisms that are isomorphisms on the data part
areM-adhesive.

Proof. By Thm. 11.11 in [EEPT06] the category is an adhesive HLR category. The condi-
tions of adhesive HLR categories directly imply the conditions ofM-adhesive categories.
Conditions (1) and (2) are equal and condition (3) for adhesive HLR categories has weaker
preconditions. Thus, (AGraphsATG ,M) is anM-adhesive category.

As motivated before, the operational semantics of visual behaviour models can be de-
fined by operation graph transformation rules – also called graph productions. General
transformation rules of arbitrary categories are defined in Def. 3.1.13 below including the
concept of negative application conditions (NACs). A NAC prevents the application of
a rule in cases when certain forbidden (negative) patterns are present at the matched part
where the rule shall be applied. Graph transformation rules are, in general, attributed with a
term algebra TOP (X) over the data signature DSIG defined in the type graph. This allows
for a flexible specification of attribute values using variables and terms over variables as
demonstrated in Ex. 3.1.14.

Definition 3.1.13 (Transformation Rule with NACs). A transforamtion rule (also called
production) p = (Lp

l←↩ Kp
r
↪→ Rp) is a pair of monomorphisms and we write rule for

short. Given a rule p, then a Negative Application Condition (NAC) for p is a morphism
n : Lp → N , having the left-hand side of p as source. A rule p0 together with a finite set of
NACs N for p is called a rule with NACs p and specified as the pair p = (p0,N).

3.1 Specification of Visual Languages Based on Graph Transformation 29

continueTask

L

:worksOn

K R

3:started

:member

task

2:Task

accessLevel=lv

1:Person

acessLevel=

add(lv,x)

2:Team

3:started

:member

task

2:Task

accessLevel=lv

2:Team

3:started

:member

task

2:Task

accessLevel=lv

2:Team

NAC2

:worksOn 3:started

:member

task

2:Task

accessLevel=lv

2:Team
NAC1

:worksOn 3:started

:member

task

2:Task

accessLevel=lv

:Person

2:Team

1:Person

acessLevel=

add(lv,x)

1:Person

acessLevel=

add(lv,x)

1:Person

acessLevel=

add(lv,x)

1:Person

acessLevel=

add(lv,x)

Figure 3.5: Graph transformation rule with NACs

Example 3.1.14 (Graph transformation rule with NACs). The rule “continueTask”
shown in Fig. 3.5 assigns a new task to a person, who has an access level equal or above
the specified access level of the task. This condition is ensured by the term “add(lv, x)” as
attribute value for node “1”. The two NACs ensure that the chosen task was not assigned
to a person before and still is assigned. While the first NAC ensures that there is no other
person assigned to the task the second NAC ensures that also the chosen person is not
currently assigned to task “2”.

The application of a rule to a given object of a category is defined as double pushout
according to Def. 3.1.15 below. The left hand side of the rule is matched into the given
object G via a morphism m : Lp → G. A NAC of a rule is violated, if the image of Lp
via match m in G can be extended to an image of the “forbidden context” N . If all NACs
are satisfied and the rule is applicable at m the first step is performed by constructing a
pushout complement meaning for graphs that all elements that are in L but not in K are
deleted leading to the intermediate graph D. Thereafter, the second step is constructed as
pushout meaning for graphs that all nodes and edges that are additionally in R but are not
present already in K are created leading to the resulting graph H .

30 Behaviour Analysis of Visual Languages Based on Graph Transformation

Definition 3.1.15 (Transformation Step). Given a rule p = (p0,N) and a morphism m :

Lp → G in an object G, called match. The match m satisfies a NAC n : Lp → N for
p, written m |= n, if there is no monomorphism q : N → G such that q ◦ n = m. A
transformation step G =

p,m
==⇒ H from an object G to H using the rule p via match m exists,

if (a) there are two pushouts (1) and (2), as depicted below; and (b) m |= n for each
NAC (n : Lp ↪→ N) ∈ N. We say that there is a transformation step respecting NACs If
condition (a) above is satisfied (and (b) possibly not, thus NACs are ignored) we say that
there is a transformation step from G to H . In both cases we write G =

p,m
==⇒ H .

N

q

Lp
noo

m

��
(1)

Kp

��

r //loo

(2)

Rp

��
G D //oo H

ForM-adhesive categories we further have that pushout complements are unique up to
isomorphism, if they exist, and thus, each transformation step is uniquely defined, because
pushouts are unique up to isomorphism by definition. Since pushout complements do not
exist in general, the existence has to be checked before applying a rule using the gluing
condition. For graphs, the gluing condition is given by GP ⊆ DP ∪ IP , i.e. the dangling
and identification condition are satisfied. The dangling condition ensures that a node of a
graph G may only be deleted if all adjacent edges in G are deleted as well by the rule. By
requiring the identification condition the rule may only be applied, if nodes or edges that
are identified by the match have to be preserved by the rule.

Remark 3.1.16 (NAC schemata for (AGraphsATG ,M)). The explicit specification of
NACs in a typed attributed graph transformation system can be complex. Consider a match
m : L → G and a NAC n : L → N , where L is attributed via the term algebra TOP(X).
If the data algebra AN of N is not isomorphic to the data algebra AG of G, then we have
trivially m |= n, because if the existence of a compatible (q : N → G) ∈ M implies
AN ∼= AG. Therefore, AN has to be isomorphic to AG, which means that the NAC is
relevant for one particular variable assignment ass : X → AG only and we would need to
explicitly specify each of them.

For this reason, we presented in Sec. 3.2 in [KHM06], how a single NAC (NAC schema)
can represent the set of all possible variations via the possible variable assignments. For
checking the NAC schema, the given match is used to derive the unique relevant concrete
NAC N ′. More precisely, NAC-satisfaction requires in this case that there is no compatible
M-morphism q : N ′ → G with N ′ being obtained from N by a pushout of n : L→ N and
L → m(L), i.e. by performing the same identifications as in the match m : L → G. This
approach is also implemented in the tool AGG [AGG10], where each NAC is interpreted
as NAC schema, which therefore allows for compact specifications of NACs.

A set of graph transformation rules with assigned rule names together with a common
type graph form a transformation system. Transformation systems play a big role for the

3.1 Specification of Visual Languages Based on Graph Transformation 31

analysis of behaviour models and graph transformation systems, in particular, have been
applied for analysing and simulating a wide range of visual behaviour models.

Definition 3.1.17 (Transformation System). A transformation system (TS) with NACs over
a category C is a pair TS = (TG,Q, πN) where Q is a set of rule names, and πN maps
each name q ∈ Q to a rule with NACs πN(q) = 〈π(q),Nq〉. A transformation sequence (re-
specting NACs) of TS is a sequence G0 =

q1,m1
===⇒ G1 · · · =qn,mn

===⇒ Gn, where q1, . . . , qn ∈ Q
and di = Gi−1 =

π(qi),mi
====⇒ Gi are transformation steps (respecting NACs) for i ∈ 1, . . . , n.

Sometimes we denote a transformation sequence as a sequence d = (d1; . . . ; dn) of trans-
formation steps.

L

:worksOn
1:Person

2:Task
:started

K

1:Person

2:Task

R

1:Person

2:Task

:started

NAC1

2:Task

continueTask

L

:worksOn

1:Person

3:started

K

1:Person

R

1:Person

2:Task

NAC2

:worksOn

1:Person

2:Task

3:started

2:Task

3:started

2:Task

R

:worksOn

1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

R

:worksOn
1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

:started

1:Person

NAC1

:worksOn

:Person

2:Task

1:Person

startTask

finishTask stopTask

3:started

3:started

:worksOn

:started

TG

Person

Task

Type Graph

Figure 3.6: Reduced transformation system GS as running example

Example 3.1.18 (Graph Transformation System with NACs). Fig. 3.6 shows a part of
an attributed graph transformation system for modelling a workflow system in mobile ad
hoc networks, where persons can be assigned to teams and tasks and they can change
their location implying that their mobile communication devices may need to reconnect to
new access points. The type graph TG shows that nodes in the system represent either
persons or tasks: a task is active if it has a “:started” loop, and it can be assigned to a
person with a “:worksOn” edge. Rule “stopTask” cancels the assignment of a task to a
person; rule “continueTask” instead assigns the task, and it has two NACs to ensure that
the task is not assigned to a person already. Fig. 3.7 shows two transformation sequences
respecting NACs of GS . In transformation sequence d the only task is first continued

32 Behaviour Analysis of Visual Languages Based on Graph Transformation

by “1:Person”, and then, after being stopped, by “2:Person”. In d′ the roles of the two
Persons are inverted.

Based on a given transformation sequence of a transformation system we define in
Secs. 3.2 - 3.5 techniques for analysing equivalence of transformation sequences. These
techniques are used in the further chapters for applications to enterprise models and model
transformations.

3.2 Behaviour Analysis Based on Switch and Permutation
Equivalence

As introduced and presented in Sec. 3.1 before,M-adhesive transformation systems with
negative application conditions (NACs) [HHT96, EEPT06] are a suitable modelling frame-
work for several application domains, and in particular for the specification of operational
semantics of visual behaviour models. In this context, the analysis of concurrent and inter-
leaving behaviour of the modelled system is of major interest. In order to provide suitable
behaviour analysis techniques in Secs. 3.3 to 3.5 this section presents the general notion of
permutation equivalence, introduced in [Her09a], on which the analysis techniques in the
subsequent sections are based.

Switch equivalence has been successfully used in many domains for the analysis of con-
current behaviour. Intuitively, two executions of a system are switch-equivalent, if the can
be transformed into each other by switching independent neighbouring execution steps.
This means that the dependency analysis of neighbouring steps is the fundamental part
of the overall equivalence analysis. In the context of visual behaviour models and their
operational semantics specified by a transformation systems the concept of Negative Ap-
plication Conditions (NACs) is widely used, because the application of each particular
transformation rule can be prohibited at certain states of the system, where the system is
not allowed to perform certain steps. The additional specification feature of NACs intro-
duces new dependencies which increase the complexity of a complete and sound analysis
of equivalence for transformation sequences. Indeed, the notion of switch equivalence with
NACs is too strict, because there are intuitively equivalent transformation sequences which
are not switch-equivalent if NACs are considered. For this reason we propose the notion of
permutation equivalence as the most general extension of switch equivalence that still en-
sures NAC consistency of all derived equivalent transformation sequences to a given one.
By definition, two transformation sequences are permutation-equivalent, if they respect the
NACs and disregarding the NACs they are switch-equivalent.

Using the introduced case study in Sec. 3.1 this section show that permutation equiv-
alence leads to all intuitively equivalent transformation sequences and that an analysis of

3.2 Behaviour Analysis Based on Switch and Permutation Equivalence 33

permutation equivalence directly based on the definition will cause high complexity in
general. For this reason, we show in subsequent Secs. 3.3 to 3.5 how an analysis can be
efficiently performed by constructing first a process model and, if required, transforming
the first process model into a reduced process model which still allows for a complete anal-
ysis of permutation equivalence. This way, the efficiency of the analysis is substantially
improved and the executable process models can be constructed in polynomial time.

In the following example, we present two intuitively equivalent transformation se-
quences of the transformation system – introduced in Sec. 3.1 before – and explain why
these transformation sequences are not switch-equivalent. Thereafter, we present the for-
mal notions which are used for the definition of switch equivalence and moreover, for the
definition of permutation equivalence and show that the example transformation sequences
are permutation-equivalent.

G1

w1:worksOn

1:Person

3:Task
4:started

2:PersonG0

1:Person

3:Task
4:started

2:Person G2

1:Person

3:Task
4:started

2:Person G3

w2:worksOn

1:Person

3:Task 4:started

2:Person G4

1:Person

3:Task
4:started

2:Person

G’1

w1:worksOn

1:Person

3:Task
4:started

2:PersonG0

1:Person

3:Task
4:started

2:Person G’2

1:Person

3:Task
4:started

2:Person G’3

w2:worksOn

1:Person

3:Task
4:started

2:Person G4

1:Person

3:Task
4:started

2:Person

cont,m1⇒
stop,m2⇒

stop,m4
⇒

cont,m3⇒

cont,m1
⇒

stop,m4⇒

stop,m2
⇒

cont,m3
⇒
’ ’ ’’

d:

d’:

continueTask (short: “cont“)

L

:worksOn

1:Person

3:started

K

1:Person

R

1:Person

2:Task

NAC2

:worksOn

1:Person

2:Task

3:started

2:Task

3:started

2:Task

R

:worksOn

1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

NAC1

:worksOn

:Person

2:Task

1:Person

stopTask (short: “stop“)

3:started

3:started

Figure 3.7: Transformation sequence d of GS and permutation-equivalent transformation
sequence d′

Example 3.2.1 (Equivalent Transformation Sequences). The two transformation sequences
shown in Fig. 3.7 specify two executions within the modelled mobile ad hoc network for
which the operation semantic rules are presented in Ex. 3.1.18 in Sec. 3.1. The transforma-
tion sequences are kept as simple and compact as possible to put the main focus on the for-
mal aspects of the analysis of switch equivalence and permutation equivalence. The start
state defined by the graph G0 shows two persons and one task which was already started
but there is currently no person working on this task. Hence, either person “1” or person
“2” can continue the task, but not both at the same time, because the system has to ensure
exclusive exections specified by the NACs of the operational semantics rule “continueTask”
in Ex. 3.1.18. In the first step of transformation sequence d the first person continues the
task (using rule “continueTask” abbreviated by “cont”) and in transformation sequence

34 Behaviour Analysis of Visual Languages Based on Graph Transformation

d′ the task is continued by the second person. In both transformation sequences the as-
signed persons stop again their work in the second step (via rule “stopTask” abbreviated
by “stop”) and the transformation sequences are continued by the assignment of the task
to the corresponding other person, who finally stops the work as well without finishing the
task.

Now, both transformation sequences consist intuitively of the same transformation steps
applied at equivalent matches, i.e. the left hand sides of rules in corresponding steps are
mapped at the same elements in of the instance graphs. The only difference is the order in
which the steps are executed. Thus, the transformation sequences d and d′ are intuitively
equivalent. However, switch equivalence does not relate them. Each pair of neighbouring
steps is dependent, such that no switching is possible. Considering transformation se-
quence d we have that the second step depends on the first one because it requires the edge
“w1” to be present in order to delete it. The third step forbids an edge of type “worksOn”
to be present causing the third step to depend on the second one. Finally, the forth step
requires the edge “w2” to be present in order to delete it, i.e. it depends on the third step.
A similar argumentation holds for transformation sequence d′.

The classical theory of the DPO approach (without NACs) introduces switch equivalence
among transformation sequences as an equivalence which relates transformation sequences
that differ only in the order in which independent transformation steps are performed (see
[Kre86, BCH+06]). This concept of switch equivalence is based on the notion of sequen-
tial independence and on the Local Church-Rosser theorem. In the next definitions we
summarise the corresponding formal conditions and constructions.

Definition 3.2.2 (Parallel and Sequential Independence of Transformation Sequences
Without NACs). Given two transformation steps d1 = (G0 =

p1,m1
===⇒ G1) and d2 =

(G0 =
p2,m2
===⇒ G2). They are parallel independent if there exist arrows i : L1 → D2 and

j : L2 → D1 such that l′2 ◦ i = m1 and l′1 ◦ j = m2.

R1

��

K1

��

//oo L1

m1

��
i

&&

L2

m2

��
j

xx

K2

��

oo // R2

��
G1 D1 l′1

//oo G0 D2l′2
oo // G2

Let d1 = G0 =
p1,m1
===⇒ G1 and d2 = G1 =

p2,m2
===⇒ G2 be two transformation steps. Then they

are sequentially independent if there exist arrows i : R1 → D2 and j : L2 → D1 such that
l′2 ◦ i = m′1 and r′1 ◦ j = m2.

L1

��

K1

��

//oo R1

m′1
��

i
&&

L2

m2

��
j

xx

K2

��

oo // R2

��
G0 D1 r′1

//oo G1 D2l′2
oo // G2

Switch equivalence relates transformation sequences which can be derived from each
other by switching sequentially independent steps, i.e. neighbouring steps that do not de-

3.2 Behaviour Analysis Based on Switch and Permutation Equivalence 35

pend on each other. By the Local Church Rosser Theorem (Thm. 5.12 in [EEPT06]) we
know that two sequentially independent steps G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 can be switched

leading to sequentially independent steps G0 =
p2,m′2===⇒ G′1 =

p1,m′1===⇒ G2 starting at the same
object G0 and ending at the same object G2 using the same rules and equivalent matches.
For transformation systems without NACs, switch equivalence leads to the complete set
of its equivalent transformation sequences as shown in [BCH+06]. Since DPO transfor-
mation diagrams are unique up to isomorphism only we relate isomorphic transformation
diagrams by “∼=” meaning that there are isomorphisms between the objects compatible
with the involved morphisms. Intuitively, d ∼= d′, if they have the same length and there are
isomorphisms between the corresponding objects of d and d′ compatible with the involved
morphisms.

Definition 3.2.3 (Switch Equivalence Without NACs). If d1 and d2 are two sequentially in-
dependent transformation steps without NACs, then according to the Local Church Rosser
Theorem (Thm. 5.12 in [EEPT06]) they can be “switched” obtaining the transformation
steps d′2 = G0 =

p2,m2
===⇒ G′1 and d′1 = G′1 =

p1,m1
===⇒ G2, which apply the two rules in the op-

posite order. Now, let d = (d1; . . . ; dk; dk+1; . . . ; dn) be a transformation sequence, where
dk and dk+1 are two sequentially independent transformation steps without NACs, and let
d′ be obtained from d by switching them according to the Local Church Rosser Theorem.
Then, d′ is a switching of d, written d sw∼ d′. The switch equivalence, denoted

sw
≈ , is

the smallest equivalence relation on transformation sequences containing both sw∼ and the
relation ∼= for isomorphic transformation sequences.

We now extend the notion of switch equivalence to transformation sequences with
NACs using sequential independence for transformation sequences with NACs according
to [HHT96, LEO06]. For this purpose, we use the local Church-Rosser Thmeorem for
M-adhesive transformation systems with NACs as shown by Thm. 3.4.3 in [Lam09] for
weak adhesive HLR systems and the proof uses only conditions, which are also ensured
for the slightly more general notion ofM-adhesive transformation systems. Note that the
distinguished class Q in [Lam09] is considered in this thesis to coincides withM, which
is also the usual case.

Definition 3.2.4 (Parallel and Sequential Independence With NACs). Let d1 = (G0 =
p1,m1
===⇒

G1) and d2 = (G0 =
p2,m2
===⇒ G2) be two transformation steps with NACs, such that they are

parallel independent without NACs, i.e. there exist arrows i : L1 → D2 and j : L2 → D1

such that l′2 ◦ i = m1 and l′1 ◦ j = m2. Let further m1 = r′2 ◦ i : L1 → G2 and
m2 = r′1 ◦ j : L2 → G1 and let m1,m2 satisfy all NACs, i.e. m2 |= n2 for each NAC
(n2 : L2 → N2) of p2 and m1 |= n1 for each NAC (n1 : L1 → N1) of p1. Then,
(G0 =

p1,m1
===⇒ G1), (G1 =

p2,m2
===⇒ G2) are two parallel independent transformation steps with

NACs.

36 Behaviour Analysis of Visual Languages Based on Graph Transformation

N1 N2

R1

m′1��

K1

��

//oo L1

m1
��

n1

OO

i
''

L2

n2

OO

m2
��j

ww

K2

��

oo // R2

m′2��
G1 D1

l′1

//
r′1

oo G0 D2
l′2

oo
r′2

// G2

Let d1 = (G0 =
p1,m1
===⇒ G1) and d2 = (G1 =

p2,m2
===⇒ G2) be two transformation steps with

NACs, such that they are sequentially independent without NACs, i.e. there exist arrows
i : R1 → D2 and j : L2 → D1 such that l′2 ◦ i = m′1 and r′1 ◦ j = m2. Let further
m1 : L1 → G′1 and m2 = l′1 ◦ j : L2 → G0 be the derived matches by the Local Church
Rosser Theorem (Thm. 3.4.3 in [Lam09]) and let m1,m2 satisfy all NACs, i.e. m2 |= n2

for each NAC (n2 : L2 → N2) of p2 and m1 |= n1 for each NAC (n1 : L1 → N1) of p1.
Then, (G0 =

p1,m1
===⇒ G1), (G1 =

p2,m2
===⇒ G2) are two sequentially independent transformation

steps with NACs.

N1 N2

L1

m1
��

n1

OO

K1

��

//oo R1

m′1 �� i
''

L2

n2

OO

m2
��j

ww

K2

��

oo // R2

m′2��
G0 D1

r′1

//
l′1

oo G1 D2
l′2

oo
r′2

// G2

Switch equivalence with NACs is defined based on the notion of sequential independence
with NACs and the Local Church Rosser Theorem with NACs (Thm. 3.4.3 in [Lam09]) and
differs from switch equivalence without NACs in the way that less switchings are possible.
Each switching has to respect the NACs and thus, a chain of switchings that violates some
NACs but leads to a new transformation sequence that respects all NACs as in Ex. 3.2.1 is
not possible.

Definition 3.2.5 (Switch Equivalence With NACs). If d1 and d2 are two sequentially in-
dependent transformation steps with NACs, then according to the Local Church Rosser
Theorem they can be “switched” obtaining the transformation steps d′2 = G0 =

p2,m2
===⇒ G′1

and d′1 = G′1 =
p1,m1
===⇒ G2, which apply the two rules in the opposite order and respect all

NACs. Now, let d = (d1; . . . ; dk; dk+1; . . . ; dn) be a transformation sequence, where dk
and dk+1 are two sequentially independent transformation steps with NACs, and let d′ be
obtained from d by switching them according to the Local Church Rosser Theorem. Then,

d′ is a switching of d, written d sw∼ d′. The switch equivalence with NACs, denoted
swN
≈ ,

is the smallest equivalence relation on transformation sequences containing both swN∼ and
the relation ∼= for isomorphic transformation sequences.

3.2 Behaviour Analysis Based on Switch and Permutation Equivalence 37

The notion of switch equivalence with NACs does not identify all intuitively equiva-
lent transformation sequences. The reason is that, in presence of NACs, there might be
an equivalent permutation of a transformation sequence that cannot be derived by switch
equivalence. Looking at d in Fig. 3.7 of Ex. 3.2.1 there is no pair of consecutive trans-
formation steps which is sequentially independent if NACs are considered. However, the
transformation sequence d′ should be considered as equivalent. There are also examples
in which even the switching of blocks of several steps would not lead to all permutation-
equivalent transformation sequences. This brings us to the following, quite natural notion
of permutation equivalence of transformation sequences respecting NACs, first proposed
in [Her09a]. Note that for permutation-equivalent transformation sequences d

π
≈ d′ the

sequence of rules used in d′ is a permutation of those used in d.

Definition 3.2.6 (Permutation Equivalence of Transformation Sequences). Two transfor-
mation sequences d and d′ respecting NACs are permutation equivalent, written d

π
≈ d′ if,

disregarding the NACs, they are switch equivalent as for Def. 3.2.3.

SW-Equ. without NACs

Permutation Equivalence

SW-Equ. With NACs

Figure 3.8: Hierarchy of Equivalenc Relations

By definition we have that two permutation-equivalent transformation sequences are
switch-equivalent without NACs and furthermore, given two transformation sequences that
are switch-equivalent with NACs then they are also permutation equivalent, because all
NACs are respected. This leads to the hierarchy of the equivalence relations visualized
in Fig. 3.8. Thus, for a given transformation sequence with NACs we have that the corre-
sponding sets of equivalent transformation sequences using the three different notions form

38 Behaviour Analysis of Visual Languages Based on Graph Transformation

a the total order via inclusions depicted in Fig. 3.8. In the special case that a transformation
system does not contain NACs all sets are collapse to the same set, but if the transformation
system contains NACs the relations usually differ quite heavily. Since switch equivalence
is shown to induce the complete set of all equivalent transformation sequences if NACs are
not considered, we have that permutation equivalence restricts this set to those transforma-
tion sequences that respect NACs. For this reason, permutation equivalence is the required
relation that induces exactly all equivalent and NAC-consistent transformation sequences
to a given transformation sequence with NACs.

While permutation equivalence is by definition a restriction of switch equivalence with-
out NACs we now show that an analysis of permutation equivalence by generating first
all switch equivalent transformation sequences without respecting NACs and then filtering
out those with are not NAC consistent is naive and in general too inefficient for complex
examples. For this reason, the subsequenct sections present alternative techniques that
generate NAC consistent sequences only while still being complete, such that permutation
equivalence can be analysed substantially more efficient.

In order to compare efforts for practical applications we extend the studied transforma-
tion sequences d and d′ in Ex. 3.2.1 and compare the amounts of equivalent transformation
sequences for the three considered equivalence relations, i.e. for switch equivalence with-
out NACs, for permutation equivalence and for switch equivalence with NACs. This com-
parison shows that an analysis of permutation equivalence as described above should be
avoided, because to many transformation sequences are generated that are not equivalent,
meaning that the direct analysis would be far to complex for practical scenarios.

1. 000

7. 483. 000

7. 484. 000

2. 000

Switch Equivalence

without NACs

Permutation

Equivalence

720

7.484.400

Amount of Equivalent Sequences for 12 StepsAmount of Equivalent Sequences

Logarithmic Scale

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

4 6 8 10 12

Transformation Steps

E
q

u
iv

a
le

n
t

S
e
q

u
e
n

c
e
s

Switch Equivalence

without NACs

Permutation

Equivalence

Figure 3.9: Comparison of the Amount of Equivalent Sequences

Example 3.2.7 (Extended Transformation Sequence). We extend the transformation se-
quence d of Ex. 3.2.1 to a transformation sequence d̃, which specifies that the two per-
sons are working on the same task, but they continue and stop their work three times, i.e.

3.2 Behaviour Analysis Based on Switch and Permutation Equivalence 39

d̃ = (d; d; d) is a transformation sequence with 12 steps. Note that still all steps in d̃ are
sequentially dependent with NACs and therefore, no direct switching respecting NACs is
possible. Fig. 3.9 shows how the different amounts of equivalent sequences develop for
2 up to 6 blocks of “continue;stop” steps, i.e. starting with transformation sequence d
with 2 blocks and ending at transformation sequence d̃ with 6 blocks. Each permutation-
equivalent transformation sequence of d̃ has to preserve these blocks, otherwise a NAC or
the causality relation (create-delete dependency) would be violated. Thus there are 6! =

720 permutation-equivalent transformation sequences. The overall amount of transfor-
mation sequences that are switch-equivalent without NACs, however, reaches the number
12!/(26) = 7.484.400 transformation sequences. This number is obtained by the following
observation. For each permutation-equivalent sequence we can move the rule occurrences
of the rule “stop” to later positions by switching sequentially independent neighbouring
steps, because NACs are not considered for switch equivalence without NACs. Thus, the
last (right most) rule occurrence of “stop” cannot be moved directly (=1 possible position),
for the second last rule occurrence of “stop” there are 2 possible later positions (= 3 possi-
ble positions) and so forth. This means that we have F = 1×3×· · ·×11 = 10.395 switch-
equivalent sequences for each single permutation equivalent transformation sequences.
This leads to a number of 6!× F = 12!/26 = 7.484.400 switch equivalent transformation
sequences. Considering other sequences of iterated applications of d with n steps we have
(n/2)! permutation-equivalent transformation sequences and n!/2(n/2)! transformation se-
quences that are switch-equivalent without NACs. These numbers show that an analysis of
permutation equivalence should not require to first generate all transformation sequences
that are switch equivalent without NACs.

The comparison shows a significant difference of the amounts of equivalent sequences
depending on the chosen notion of equivalence. This effect is not limited to the consid-
ered example, but appears in general if NACs are effectively involved in a transformation
sequence, i.e. if intermediate graphs may violate them. Furthermore, a direct construction
of the switch-equivalent transformation sequences without NACs is complex in addition.
First of all, the amount of all possible permutations of the transformation steps is high in
general and furthermore, the permutations have to be derived from the original transfor-
mation sequence by stepwise switching independent neighbouring steps. This includes the
computation of the new matches and the new intermediate objects from the old ones. Fi-
nally, once all switch-equivalent transformation sequences without considering NACs are
generated, the NACs have to be checked which again requires to perform the costly pattern
matching process. The following sections will show how, on the one hand, the amount of
generated sequences is reduced to the permutation-equivalent ones and, on the other hand,
how the costs for pattern matching are heavily reduced.

40 Behaviour Analysis of Visual Languages Based on Graph Transformation

3.3 Interleaving Semantics of M-adhesive Transforma-
tion Systems

A process of a behaviour model specifies an equivalence class of executions, which differ
only in the order of the executed steps. Thus, a process provides a compact model for
the analysis of interleaving semantics concerning one concrete execution and its equivalent
ones. This section presents the formal constructions and results for processes of arbitrary
M-adhesive transformation systems with respect to their interleaving semantics. The pro-
cess construction yields a subobject transformation system (STS) which can be considered
as a simplified variant of a DPO rewriting system which defines the possible equivalent
transformation sequences to a given transformation sequence of the original transforma-
tion system. The results of this section are instantiated to the framework of typed attributed
graph transformation systems in order to specify and analyse processes of visual behaviour
models based on the operational semantics as presented in Sec. 3.1. This builds the basis
for the analysis of interleaving semantics using the techniques in Secs. 3.4 and 3.5 based
on the notion of permutation equivalence.

Processes of graph transformation systems based on the DPO approach are defined as
occurrence grammars in [CMR96, Bal00]. In [BCH+06], they are lifted to the abstract set-
ting of adhesive rewriting systems in order to generalise the process construction, such
that it can be instantiated to all adhesive rewriting systems. This opened possibilities
for analysing processes of transformation systems based on arbitrary adhesive categories
[LS04], such as typed graphs, graphs with scopes and graphs with second order edges.

In [CHS08], we introduced subobject transformation systems (STSs) as a novel formal
framework for the analysis of transformation sequences of transformation systems based
on the algebraic, double-pushout (DPO) approach. This setting allows for a direct analysis
of all possible notions of dependency between any two productions without requiring any
explicit match – matches are automatically given by the subobject relation. In particular,
several equivalent characterizations of independence of productions are proposed, as well
as a local Church-Rosser theorem in the setting of STSs. We further show how a given
transformation sequence in an M-adhesive transformation system leads to an STS via a
suitable construction and show that relational reasoning in the resulting STS is sound and
complete with respect to the independence in the original transformation sequence. For this
purpose we extend the process construction to general matching and generalM-adhesive
transformation systems that satisfy suitable conditions, which we presented in [Her08b].
Furthermore, as presented in [Her09a], we show how the construction is extended to sys-
tems with NACs. Our case study uses a typed attributed graph transformation system as
one possible instantiation of theM-adhesive framework.

Subobject transformation systems are based on the notion of subobjects. In the general
case, a subobject A of an object T of a category C is an equivalence class of monomor-

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 41

phisms a : A→ T . We write A for short to denote the full equivalence class by a represen-
tative of the equivalence class and we leave the monomorphism a implicit. The category
of subobjects of T is called Sub(T) and its morphisms f : A → B are those monomor-
phisms in C, which are compatible with the implicit monomorphisms to T , i.e. b ◦ f = a

for a : A → T and b : B → T . If such an f exists, we write A ⊆ B for short. Note in
particular that if there is a morphism f : A→ B between two subobjects A and B, then f
is always unique. This implies that (A ⊆ B and B ⊆ A) is equivalent to A = B denoting
that the equivalence class A is equal to the equivalence class B of subobjects and it is also
equivalent to f : A→ B being an isomorphism.

For arbitraryM-adhesive categories we need to refine the notion of subobjects toM-
subobjects in order to ensure that all results and constructions for STSs can be performed.
This means that instead of monomorphisms we consider M-morphisms only and the
category of M-subobjects SubM(T) contains as objects all equivalence classes of M-
morphisms a : A → T ∈ M and as morphisms the compatible M-morphisms. Note
that in the case of adhesive categories we have the the class of M-morphisms contains
all monomorphisms and thus, the notion of M-subobjects coincides with the notion of
subobjects in this case.

Definition 3.3.1 (Category ofM-Subobjects). Let C be anM-adhesive category and T
be an object in C. The category ofM-subobjects of C is called SubM(T). Its objects are
the subobjects [a : A → T] of T , where a is anM-morphism. A morphism f : A → B in
SubM(T) is compatible with the implicitM-morphisms, i.e. b ◦ f = a, implying that f is
anM-morphism in C as well and we write A ⊆ B for short.

Notice that category SubM(T) in general is notM-adhesive, even if C is. In fact, let
A ⊆ B be an arrow in SubM(T) which is not an isomorphism; then the pushout object
of the span B ⊇ A ⊆ B is easily shown to be B itself, but the resulting square is not
a pullback, contradicting the fact that pushouts along M-morphisms in an M-adhesive
category are pullbacks [EEPT06].

The following notions of “intersection” and “union” are the basic constructions for all
further constructions, e.g. derivations in an STS, which can be constructed in a simpler
way than transformation sequences in the underlyingM-adhesive transformation system.

Definition 3.3.2 (Intersection and Union in SubM(T)). Let C be anM-adhesive category
and T be an object in C. Let SubM(T) be the category of M-subobjects of T . The
intersection A ∩ B of two objects A and B in SubM(T) is the product in SubM(T). The
union A ∪ B of A and B in SubM(T) is the coproduct in SubM(T). The union of A and
B is called effective, if (A→ A ∪B ← B) is the pushout of (A← A ∩B → B) in C.

We now characterize the constructions “intersection” and “union” forM-subobjects in
order to show the further properties - in particular the distributivity - which are needed for
the construction and analysis of an STS of a given transformation sequence.

42 Behaviour Analysis of Visual Languages Based on Graph Transformation

Lemma 3.3.3 (Intersection in SubM(T)). Let C be anM-adhesive category and T be an
object in C. Let SubM(T) be the category ofM-subobjects of T . The intersection A ∩B
of two subobjects A and B in SubM(T) exists and is given by the pullback (1) in C with
theM-morphism i : A ∩B −a ◦ pA−−−→ T .

A ∩B pA //

pB �� (1)

A
a��

B
b
// T

Proof. Let A,B be two objects in SubM(T) and (1) be a pullback in C. The pullback
exists, because a ∈ M. The projections pA, pB are inM, because a, b ∈ M andM is
closed under pullbacks. Furthermore, pA, pB are morphisms in SubM(T) by the commu-
tativity of the pullback construction and the definition of ab. Now, a comparison object X
for the product A ∩ B in SubM(T) is also a comparison object for the pullback A ∩ B in
C, because every diagram in SubM(T) commutes. Thus, there is a unique morphism h

satisfying the universal property of both, the pullback in C and the product in SubM(T).
Furthermore, h ∈ M by decomposition of x1 and h is a morphism in SubM(T) by the
commutativity of the diagram beneath. X

x1

{{
h
��

x2

##
x

ss

A

a

##

A ∩B pB //pAoo

i
��

B

b

{{
T

Remark 3.3.4 (Construction of Intersection and Union). The intersection and union of
two subobjects are defined for the category SubM(T) ofM-subobjects of T for a given
M-adhesive category (C,M). In many application domains, the constructions are re-
quired to be characterized by constructions in C itself. By Lem. 3.3.3 intersections in
SubM(T) can be always constructed as pullbacks over the super object T in C. For
unions, however, this result is not available. For the concrete category of typed attributed
graphs (AGraphsATG,M), we show by Thm. 3.3.5 that the union of two subobjects in
SubM(T) can be constructed as the pushout over the intersection. As the proof shows,
this property can be usually easy shown for several relevantM-adhesive categories and
if the classM contains all monomorphisms, then the result is immediate using Thm. 4.7
in [LS04].

We now show that the M-adhesive category AGraphsATG has effective unions, i.e.
they can be constructed within AGraphsATG as the pushout over the intersection in
SubM(T), i.e. AGraphsATG. The main part here is to show that the constructed ob-
ject is again a subobject in SubM(T).

Theorem 3.3.5 (Effective Unions in SubM(T) for (AGraphsATG,M)). Let T be an
object in (AGraphsATG,M), whereM contains all monomorphisms, which are isomor-

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 43

phisms on the data part. The union A∪B of two objects A andB in SubM(T) is effective,
i.e. it can be constructed as the pushout (1) over the intersection A ∩ B with the induced
M-morphism u : A ∪B → T of the pushout (1).

A
iA
%%

a

��
A ∩B

pA
99

pB %%

(1) A ∪B u // T

B
iB

99

b

@@

Proof. The intersection exists by Lemma 3.3.3 and the pushout exists, because pA ∈ M.
The induced morphism u is monomorphic using Thm. 4.7 in [LS04] and the existence
of pullbacks along M-morphisms. It remains to show that u is also an M-morphisms.
This means that u is additionally an isomorphism on the data part. Since a and iA are
M-morphisms they are isomorphisms on the data part and using the inverse isomorphism
of iA on its data part we have that u is an isomorphism on the data part by the composition
of isomorphisms.

Theorem 3.3.6 (Distributivity). Let C be an M-adhesive category with effective unions
and T be an object of C, then the union and intersection constructions in SubM(T) are
distributive, i.e.

(i) : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and
(ii) : A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. Property (i) : The proof is analogous to the one for Cor. 5.2 in [LS05] concerning
adhesive categories and we lift it to M-adhesive categories. Let A,B,C be objects in

A ∩B ∩ C ,,pp
(1)A ∩B ,, A ∩ C
pp

(A ∩B) ∪ (A ∩ C)
A ∩B ∩ C ,,pp

��

A ∩B ,,

��

A ∩ C
qq

��
A ∩ (B ∪ C)

��
B ∩ C

,,ppB ,, C
ppB ∪ C

SubM(T), then (1) is pushout
in C since C has effective
unions. The cube is commu-
tative, because all diagrams in
SubM(T) commute and A ∩
C ⊆ A ∩ (B ∪ C), because
C ⊆ B ∪ C. The bottom face
is a pushout in C along anM-
morphism, because C has effective unions. The back faces are pullbacks in C according to

A ∩B //

�� (2)

A ∩ (B ∪ C) //

�� (3)

A

��
B // B ∪ C // A ∪B ∪ C

Lem. 3.3.3. The front left face of the cube is a
pullback by pullback decomposition of the pull-
back (2+3). For the analogous reason, the front
right face of the cube is a pullback. By the VK-property of M-adhesive categories we
derive that the top face of the cube is a pushout and by uniqueness of pushouts we deduce
property (i) and by duality in lattices we also have property (ii).

44 Behaviour Analysis of Visual Languages Based on Graph Transformation

Based on the notion ofM-subobjects and the distributivity law for intersection and union
we now present subobject transformation systems (STSs) as formal framework for the con-
current semantics ofM-adhesive transformation systems. This concept generalises the the
notion of elementary nets, which form the category of process nets for P/T Petri nets, in
the way that STSs form the category of process transformation systems for M-adhesive
transformation systems. As we shall see by Fact 3.3.11, the typical effect occurring in
elementary nets – namely the situation of contact – also appears in the setting of STSs
and forms an addition application conditions for the transformation rules. Thus, we first
introduce the general setting of STSs and thereafter, we show how the process of a trans-
formation sequence in an M-adhesive transformation system is constructed as an STS
together with a morphisms into the originalM-adhesive transformation system.

Definition 3.3.7 (STS with NACs). A Subobject Transformation System with NACs S =

(T, P, π) over anM-adhesive category C with effective unions consists of a super object
T ∈ C, a set of rule names P – also called productions – and a function π, which maps a
rule name p ∈ P to a rule with NACs (〈Lq, Kq, Rq〉, N), where Lq, Kq, and Rq are objects
in SubM(T), Kq ⊆ Lq, Kq ⊆ Rq and N = 〈N [1], N [2], . . . , N [k]〉 is an ordered list of
negative application conditions with L ⊆ N [i] ⊆ T , where N [i] denotes the i(th) element
of N .

Direct derivations (G =
q⇒ G′) with NACs in an STS correspond to transformation steps

with NACs inM-adhesive transformation systems, but the construction is simplified, be-
cause morphisms between two subobjects are unique. This means that there is no need for
pattern matching and the match of the left hand side in G is fixed and does not have to
be specfied in (G =

q⇒ G′). Thus, there is also no need for performing pattern matching
for NACs – there is at most one occurrence of N in the object G. As we shall see later in
Fact 3.3.12, given a rule q and a subobject G, then the context subobject D of G w.r.t. q
is unique (not only up to isomorphism), if it exists. Thus, direct derivations starting at a
subobject G via a rule q in an STS are unique, if they exist.

Definition 3.3.8 (Direct Derivations with NACs in an STS). Let S = 〈S0, T, P, π〉 be a
Subobject Transformation System with NACs, π(q) = (〈L,K,R〉, N) be a production with
NACs, and let G be an object of SubM(T). Then there is a direct derivation with NACs
from G to G′ using q, written G =

q⇒ G′, if G′ ∈ SubM(T), for each N [i] in N : N [i] * G,
and there is an object D ∈ SubM(T) such that:

(i) L ∪D = G; (ii) L ∩D = K;

(iii) D ∪R = G′, and (iv) D ∩R = K.

Given subobjects L and R, considered as left- and right-hand sides of a rule, there is a
canonical choice for the interface K, namely K = L ∩ R. In this case, we say the rule is
pure and consequently, an STS is pure if all its rules are pure.

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 45

Definition 3.3.9 (Pure STS). An STS is pure, if Kq = Lq ∩Rq holds for all its rules q.

Intuitively, in a pure STS no rule deletes and produces again the same part of a subobject:
this terminology is adapted from the theory of Elementary Net Systems, where a system
which does not contain transitions with a self-loop is called “pure”.

The next technical lemma will be used several times along the paper: It provides a simple
set-theoretical syntax for expressing the fact that a commutative square in SubM(T) is a
pushout in C.

Lemma 3.3.10 (Characterization of Unions and Intersections). Assume that C is anM-
adhesive category with effective unions, that T ∈ C, and that (†) is a square in SubM(T).
In SubM(T), we refer by an object to its equivalence class. Then the following are equiv-
alent:

(1) (†) is a pushout in C

(2) B ∩ C = A and D = B ∪ C in SubM(T)

(3) B ∩ C ⊆ A and D ⊆ B ∪ C in SubM(T).

A // //
��

��
(†)

B
��

��
C // // D

Proof. (1 ⇒ 2) The square (†) is a pushout in C along an M-morphism, therefore a
pullback [EEPT06]. Since B ∩ C is also a pullback of C → D and B → D (given that
there is a morphism D → T), we have B ∩ C = A in SubM(T) and thus D = B ∪ C in
SubM(T).

(2 ⇔ 3) The identities imply the inclusions. For the other implication, it is sufficient to
observe that, given (†), A ⊆ B ∩ C and B ∪ C ⊆ D hold by the universal properties of ∩
and ∪, respectively.

(1 ⇐ 2) Diagram (†) is a pushout in C, because C has effectidve unions(see Def. 3.3.2).

It is instructive to consider the relationship between a direct derivation in an STS and
the usual notion of a DPO transformation step in anM-adhesive category. It is possible to
make this comparison, since one can consider a rule Lp ⊇ Kp ⊆ Rp as the underlying span
ofM-morphisms in C.

We shall say that there is a contact situation for a rule 〈L,K,R〉 at an M-subobject
G ⊇ L ∈ SubM(T) if G ∩ R 6⊆ L. Intuitively this means that part of theM-subobject
G is created but not deleted by the rule: if we were allowed to apply the rule at this match
via a DPO transformation step, the resulting object would contain the common part twice
and consequently the resulting morphism to T would not be an M-morphism; i.e., the
result would not be aM-subobject of T . The next result clarifies the relationship between
the definition of direct derivation in SubM(T) and the standard definition used in the
DPO approach [EEPT06]: essentially, STS direct derivations and DPO transformation steps
coincide if there is no contact.

46 Behaviour Analysis of Visual Languages Based on Graph Transformation

Fact 3.3.11 (STS Derivations are Contact-Free Double Pushouts). Let S = 〈T, P, π〉 be
an STS over anM-adhesive category C with effective unions, π(q) = 〈L,K,R〉 be a rule,
and G be an object of SubM(T). Then G =

q⇒ G′ iff L ⊆ G, G ∩ R ⊆ L, and there is an
object D in C such that the following diagram consists of two pushouts in C.

L
��

m
��

(1)

Koo
loo // r //

��
k
��

(2)

R
��
n
��

G Doo
f

oo //
g
// G′

Proof. (⇒) Suppose that G =
q⇒ G′. Then by Definition 3.3.8 there is an object D ∈

SubM(T) such that (i) L ∪ D = G and (ii) L ∩ D = K, so clearly L ⊆ G and by
the conclusion of Lemma 3.3.10, the left square (1) is a pushout in C. Furthermore, (iii)
D ∪ R = G′ and (iv) D ∩ R = K, and thus (2) is a pushout in C as well. The fact that
G ∩R ⊆ L can be shown as follows, using (i) and (iv):

G ∩R (i)
= (L ∪D) ∩R (∗)

= (L ∩R) ∪ (D ∩R) (iv)
= (L ∩R) ∪K ⊆ L

where (∗) holds by distributivity of SubM(T).

(⇐) Suppose that the squares (1) and (2) are pushouts in C, L ⊆ G (3) andG∩R ⊆ L (4).
Since G ∈ SubM(T) and (3), all arrows of (1) are in SubM(T) and by Lemma 3.3.10 we
have (ii) L ∩D = K and (i) L ∪D = G.

Clearly K ⊆ D ∩R. Now D ∩R = D ∩G∩R ⊆(4) D ∩L = K and thus we conclude
that condition (iv) : K = D ∩ R holds. Because square (2) is a pushout it follows that
(iii) : D ∪R = G′.

The following example shows that in the presence of a contact situation, a double-
pushout diagram in C does not correspond in general to a direct derivation in the STS.
More precisely, let C be the (M-adhesive) category of sets and functions, and let T = {•}
be a singleton set. Then the top span is a rule in SubM(T), and arrow m is in SubM(T)

as well, but condition G ∩ R ⊆ L is not satisfied. The double-pushout diagram can be
completed in Sets as shown, but the resulting set G′ is not a subobject of T .

L = ∅
��

m
��

(1)

K = ∅ooloo // r //
��
k
��

(2)

R = {•}
��
n
��

G = {•} D = {•}oo
f

oo //
g
// G′ = {•, •}

As a consequence of the fact that a direct derivation in an STS implies a transformation
step in the standard DPO approach, we can immediately derive its determinacy below.

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 47

Fact 3.3.12 (Determinacy of STS derivations). Suppose that S = 〈T, P, π〉 is an STS over
anM-adhesive category with effective unions, q is a rule, andG is an object of SubM(T).
Then the context of G w.r.t. q is unique, if it exists. As a consequence the target of a direct
derivation is determined uniquely as well: if G⇒q G′ and G⇒q G′′ then G′ = G′′.

Proof. If D is a context of G w.r.t. q, by Fact 3.3.11 it is a pushout complement of K ⊆ L

and L ⊆ G in C. The statement follows from the uniqueness up to isomorphism of pushout
complements alongM-morphisms inM-adhesive categories [EEPT06] and the fact that
morphisms in SubM(T) are always unique.

Given a transformation sequence d the construction of its subobject transformation sys-
tem STS(d) is performed as defined below according to [CHS08] and the extensions to
M-adhesive categories, general matching and NACs in [HE08, Her09a].
In order to construct the STS for a transformation
sequence d = (d1; . . . ; dn) we compute the col-
imit T of the sequence of DPO diagrams, where
all morphisms are injective. Thus, all objects and
morphisms of this diagram are in the category
SubM(T). The NACs of the rules do not occur
in this diagram.

Lk
��

Kk
oo //

��
Rk

��
G0

++

. . .oo // Gk−1

$$

Dk
oo //

��
Gk

||

. . .oo // Gn

ssT

For the rest of the paper, we consider only transformation sequences such that the colimit
T is finite, i.e. has finitely many M-subobjects. For typed attributed graphs, this means
that T is finite on the structural part and the carrier sets of the data algebra for the attri-
bution component may by infinite (M-morphisms in AGraphsATG are isomorphisms on
the data part). Thus, SubM(T) is a finite lattice. When constructing an STS for a given
transformation sequence of anM-adhesive transformation system TS, finiteness is guar-
anteed if each rule of TS has finite left- and right-hand sides, and if the start object of
the transformation sequence is finite, where finite again means that there are finitely many
M-subobjects.

During the generation of an STS with NACs from a given transformation sequence each
rule is equipped with a list of NACs, i.e., those obtained as “instances” of the original
NACs in the colimit object T .

Definition 3.3.13 (Instantiated NACs). Let d = (d1; . . . ; dk; . . . ; dn) be a transformation
sequence respecting NACs in anM-adhesive transformation system with NACs. Let further
〈p,N〉 be the rule with NACs used in transformation step dk, let T be the colimit object
of the transformation sequence, and let inT (Lp) be the injection in T of the left-hand side
of p. Let n : Lp ↪→ N be a NAC of p, then an instantiated NAC of n in T is a subobject
[j : N ↪→ T] ∈ SubM(T) such that j ◦ n = inT (Lp). The set of all instantiated NACs in
T of all NACs of a rule p is denoted by NACST (p).

48 Behaviour Analysis of Visual Languages Based on Graph Transformation

Remark 3.3.14. Note that given a NAC, then the set of its instantiated NACs may be empty,
which means that the NAC cannot be found within T . Furthermore, since we require T to
be finite, we get a finite list for each NAC.

For transformation systems with general matching the construction of an STS requires
an instantiation of the transformation diagrams as well as presented in [HE08, Her08a,
Her08b]. General matching is important for e.g. attribution. Rules may use terms to
specify attribute values and for this reason, two terms may be matched to the same value.
This implies that the match in this step is not injective and therefore not anM-morphism.
For this reason the transformation sequence is instantiated in the way that all identifications
are performed to the rules itself yielding new transformation diagrams with matches inM.
This instantiation is based on E-M factorizations of the matches.

Definition 3.3.15 (E-M factorization). C has an E-M factorization for given
morphism classes E and M if for each f there is a decompo-
sition, unique up to isomorphism, f = m ◦ e with e ∈ E and
m ∈M .

A
f //

e $$

B

C
m

99

Usually E is a subclass of epimorphisms andM is a subclass of monomorphisms. In the
context of theM-adhesive category AGraphsATG of typed attributed graphs the class E
contains all epimorphisms andM is the distinguished class ofM-adhesive category, i.e. it
consists of all monomorphisms that are isomorphisms on the data part. We now show that
the category AGraphsATG has E-M-factorizations for a restricted class of morphisms,
which is enough in our case, because matches of transformation sequences are included in
this class.

Theorem 3.3.16 (E-M factorization for (AGraphsATG,M)). Let E be the class of all
epimorphisms in theM adhesive category AGraphsATG withM the class of monomor-
phism that are isomorphisms on the data part. Let f = (fG, fD) : AG → AH be a
morphism in AGraphsATG, where AG = (G,AG) and AH = (H,AH) are attributed
graphs, where algebra AG = TΣ(X) and algebra AH is term generated. Then, there is
an E-M factorization (e,m) = ((eG, eD), (mG,mD)) for f . The morphisms (eG,mG) are
given by the epi-mono factorization for typed E-graphs and the morphisms (eD,mD) are
given by the the epi-mono factorization for Alg(Σ).

Proof. We can apply the E-M-pair factorization in item 1 of Ex. 9.22 in [EEPT06] using
the jointly surjective pair (f1, f2) = (f, f) and derive the epimorphism e by (e1, e2) =

(e, e) and the monomorphism m. It remains to show that m ∈ M. Since AH is term
generated we know that fD = xeval(ass) is surjective and by decomposition also mD

is surjective. By mD being mono according to the factorization we have that mD is an
isomorphism. Thus, m ∈M.

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 49

Remark 3.3.17. In the case that we consider transformation sequences with algebras that
are not term generated we can still perform a factorization AG −e→ AG′ −m−→ AH , but this
time with e being a general morphism and m ∈M. In this case AG′ is obtained as before
on the graph part, but for the data part we use the A-quotient term algebra extended by a
new variable for each element not reached by xeval(ass) : TSigma(X) → AH . Based on
this construction we can also construct the STS, because we only use the lower part of the
factorized transformation diagrams, where onlyM-morphisms occur.

Based on the factorization of the matches we instantiate the transformation steps of a
transformation sequence leading to a new transformation sequence, where all matches are
M-morphisms. Note in particular, that if all matches areM-morphisms already the instan-
tiated transformation sequence coincides with the given original transformation sequence.

Definition 3.3.18 (Instantiation of a Transformation Sequence). Let G =
p,m
==⇒ H be a trans-

formation step in an M-adhesive transformation system with E-M factorization for the
morphism class of the matches. The instantiated transformation step G =

p,m2
==⇒ H is given

by diagrams (5) and (6) below, which are constructed as follows.

N Lnoo

m
��

(1)

Koooo // //

k
��

(2)

R

m∗

��

G Doooo // // H

N Lnoo

(7)
m1 ���� m

~~

(3)

Koooo // //

k1
�� k

��

(4)

R

m∗1 ��

m∗

��

L′
een′

ee

��

m2
��

(5)

K ′oooo // //

��
k2
��

(6)

R′
��

m∗2
��

G Doooo // // H

The match m is factorized in the E-morphism m1 and theM-morphism m2. Diagram (5)

is constructed as pullback, implying that k2 ∈ M, becauseM is closed under pullbacks.
Morphism k1 is obtained as the induced morphism from the pullback (1) into K ′ and we
have that (3) and (5) are pushouts and pullbacks by the M pushout-pullback decompo-
sition lemma (item 2 of Thm. 4.26 in [EEPT06]). Diagram (4) is obtained as a pushout
and the morphism m∗2 is derived as the induced morphism from the pushout (4) into H .
Thus, (6) is a pushout by pushout decomposition making ((5), (6)) a DPO diagram. For
each NAC n : L → N of p check, if there is anM-morphism n′ : L′ → N , such that (7)
commutes. If it exists, it is unique, because it is part of an E-M factorization of n.

Let d be a transformation sequence in an M-adhesive transformation system with E-
M factorization for the morphism class of the matches. The instantiated transformation
sequence d′ is derived by instantiating each transformation step as defined above.

Example 3.3.19 (Instantiation). We show the instantiation of the transformation step d

in Fig. 3.10. In order to illustrate the effects of non-injective matches we use a simple
attributed graph transformation system with type graph TG and a rule “setValue” given
by the upper line of he transformation diagram. The attribute variables x1 and x2 in L

50 Behaviour Analysis of Visual Languages Based on Graph Transformation

(1)

(2)

(3)

(4)

G

L’

D 1:Object

0

H

...

2:Object:size

:size
:val

2
:val

1:Object

0...

2:Object:size

:size
:val

1:Object

0...

2:Object:size

:size
:val:val

1:Object

0

:size

22

2

...
:val

1:Object

0

R’

...

:size
2
:val

1:Object

0

K’

...

:size
2

s(s(z))

1:Object

x1

R

...

:size:val
x2

s(s(z))

1:Object

x1

K

...

:size
x2

s(s(z))

1:Object

x1

L

...

:size
x2

:val

TG

Object

int

sizeval

Figure 3.10: Instantiated transformation step d with rule setValue, type graph TG

are identified by the match to the same value 0 in G. Squares (1 + 2) and (3 + 4) define
the transformation step d and squares (2) and (4) specify the instantiated transformation
step. All squares (1) through (4) are pushouts. Note in particular that in pushout (1) the
evaluation of x2 in graph L′ is induced by the evaluation in graph K ′, because L and K
have the same term algebra with variables and L′, K ′ have the same data algebra.

Note that for the category AGraphsATG we have that the left hand side of the instanti-
ated rule p′ is given by L′ = m(L).

Using the instantiation of a transformation sequence we will apply the process construc-
tion STS below on the instantiated transformation diagram withM-morphisms. Thus, the
results for the analysis of permutation equivalence based on the derived STS in Secs. 3.4
and 3.5 are ensured for the lower DPO diagrams of an instantiated transformation sequence
d. But the computed equivalent transformation sequences for the lower part lead to equiv-
alent transformation sequences of d by composing the new DPO diagrams with the corre-
sponding but unchanged DPO diagrams of the upper line of the instantiation. Furthermore,
we show by Lem. 3.3.20 below that NAC consistency for the original rule is equivalent to
NAC consistency of the instantiated rule. Note that permutation equivalence requires that
matches are equivalent according to switch equivalence without NACs based on the Local
Church Rosser Thm. This implies that given an E-M factorization m2 ◦ e1 of a match m
we have that each equivalent match m3 can be decomposed to m3 = m′3 ◦ e1.

Lemma 3.3.20 (Soundness and Completeness of Rule Instantiation). Given a transforma-
tion step G =

p,m
==⇒ H and the instantiated step G =

p′,m′
==⇒ H acc. to Def. 3.3.18 and given a

match m′3 : L
′ → G3 with m′3 ∈M. Then:

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 51

there is a transformation step G3 =
p′,m′3===⇒ H3 via p′

iff
there is a transformation step G3 =

p,m3
==⇒ H3 via p with m3 = m′3 ◦m1.

Proof. Without considering the NACs we have that the transformation step via p′ can be
composed with the diagrams (3) and (4) acc. to Def. 3.3.18 leading to a transformation
step via p and match m3. Vice versa, for a transformation step via p and match m3 we
can conclude that K ′ is isomorphic to the pullback of (L′ → G3 ← D3) using the M
pushout-pullback lemma (item 2 of Thm. 4.26 in [EEPT06]) and uniqueness of pushout
complements for rules inM-adhesive transformation systems and we derive pushouts (3)
and (5). The comatch m′∗3 of the instantiated rule is induced by pushout (4). Finally, (6) is
a pushout by pushout decomposition.

L

m1 ���� m3

��

(3)

Koooo // //

k1
�� k3

��

(4)

R

m∗1 ��

m∗3

��

L′
��

m′3
��

(5)

K ′oooo // //

��
k′3
��

(6)

R′
��

m′∗3
��

G3 D3
oooo // // H3

We now consider the NACs. For the transformation diagram with step G3 =
p′,m′3===⇒ H3

we have that a NAC occurrence q′ : N ′ → G3 of the instantiated rule p′ induces a NAC
occurrence q : N → G3 of the original rule p, because (7) in Def. 3.3.18 commutes.
We now show that also a NAC occurrence q : N → G3 of p induces a NAC occurrence
q′ : N ′ → G3 of p′. Consider a NAC occurrence q : N → G3 of p via matchm3 = m′3◦m1,
i.e. q ◦ n = m′3 ◦m1 with q ∈M as shown below.

N ''

q

''

N1
oo

n2oo

q′

L

m1����

n1oooo
''

m3

xx

L′
iso

gg

��

m′3��

G3

We can perform an E-M factorization of n via N1 and have the morphsim q′ = q ◦ n2.
Now by uniqueness of E-M factorizations we have that L′ ∼= N1 via iso : L′ → N1 and
thus, n′ = n2 ◦ iso : L′ → N is a NAC of p′ and thus, q is an occurrence of the NAC n′ of
p′ in G3.

Based on the instantiation of transformation sequences and the instantiation of NACs we
now define the construction of an STS STS (d) for a given transformation sequence d.

52 Behaviour Analysis of Visual Languages Based on Graph Transformation

Definition 3.3.21 (STS-compatibleM-adhesive Transformation System). AnM-adhesive
transformation system TS over an M-adhesive category C is STS-compatible, if C has
effective unions and C has E-M-factorization for matches in TS.

Definition 3.3.22 (STS of a Transformation Sequence with NACs). Let d = (G0 =
q1,m1
===⇒

. . . =
qn,mn
===⇒ Gn) be a transformation sequence respecting NACs in an STS-compatible

M-adhesive transformation system. The STS with NACs generated by d is given by
STS (d) = (T, P, π) and its components are constructed as follows. Let d′ be the instan-
tiated transformation sequence of d according to Def. 3.3.18, then STS (d) = (T, P, π),
where T is the colimit of the DPO-diagrams given by d′, P = {i | i ∈ [n]} is a set that
contains a rule occurrence name for each rule occurrence in d′, and the mapping π is given
as follows: π(k) = (〈Lk ⊇ Kk ⊆ Rk〉, Nk) using the embeddings into T , where Nk is an
ordered list of the instantiated NACs given by the set NacsT (qk,mk) acc. to Def. 3.3.13.

q1=cont1

L

w1:worksOn

1:Person

4:started

K

1:Person

R

1:Person

3:Task

N1[2]

w2:worksOn

2:Person

3:Task

4:started

3:Task

4:started

3:Task

R

w2:worksOn

1:Person

3:Task

K

1:Person

3:Task

L

2:Person

3:Task

N1[1]

w1:worksOn

1:Person

3:Task

1:Person

q4=stop2

R

w1:worksOn

1:Person

3:Task

K

1:Person

3:Task

L

1:Person

3:Task

q2=stop1

q3=cont2

L

w2:worksOn
2:Person

4:started

K

2:Person

R

2:Person

3:Task

4:started

3:Task

4:started

3:Task

4:started4:started

N3[2]

w2:worksOn

2:Person

3:Task

N3[1]

w1:worksOn

1:Person

3:Task

2:Person

4:started4:started

T

w1:worksOn

1:Person

3:Task

4:started

2:Person

w2:worksOn

Super Object

Figure 3.11: Derived Subobject Transformation System STS (d)

Example 3.3.23 (Derived STS STS (d)). For the transformation sequence d in Ex. 3.2.1
we derive the STS as shown in Fig. 3.11. The super object T is derived by taking the first
graph of the transformation sequence and adding the items, which are created during the
transformation, i.e. the two edges of type “worksOn”. The transformation sequence d
involves the rules “continueTask” and “stopTask” and thus, the derived STS contains the
rule name P = {1, 2, 3, 4}, where the NACs of the rule “continueTask” are instantiated.
For an improved intuition, we denote rule 1 by “cont1”, 2 by “stop1”, 3 by “cont2”, and 4
by “stop2” to indicate the name of the original rule and the amount of occurrences of this
rule till the current transformation step.

3.3 Interleaving Semantics ofM-adhesive Transformation Systems 53

By Def. 3.3.24 below, we relate sequences of rule names and corresponding derivations
in an STS. The mapping drv shows that we can uniquely specify derivations by their se-
quence of rule names.

Definition 3.3.24 (STS-Derivation of an STS-sequence). Given an STS S and a subobject
G0 in S. The partial mapping drv : R∗ → DRV (S) maps a sequence s = 〈q1; . . . ; qn〉 to
a derivation dS = (G0 =

q1
=⇒ G1 =⇒ . . . =

qn
=⇒ Gn) in S, if the derivation dS exists.

Based on the construction of the STS of a derivation according to Def. 3.3.22 we now
define the interleaving semantics ofM-adhesive transformation systems in a similar way
as an occurrence grammar in the setting of adhesive transformation systems in [BCH+06].
Each transformation sequence d is mapped to its corresponding STS STS (d) together with
a relating mapping v from STS to the transformation system. At the end of Sec. 3.4 we
then show by Thm. 3.4.12 that this construction specifies all permutation-equivalent trans-
formation sequences of d. This means that each transformation sequence is related to a
process model that specifies all its equivalent interleavings. In a future step we will ex-
tend the interleaving analysis to a true concurrent analysis, i.e. including the merging of
independet steps to concurrent steps.

Definition 3.3.25 (Process of anM-adhesive Transformation Sequence with NACs). Let
d = (G0 =

q1,m1
===⇒ . . . =

qn,mn
===⇒ Gn) be a transformation sequence respecting NACs in an

STS-compatible M-adhesive transformation system TS = (TG , PTS, πTS). The process
Prc(d) = (STS (d), v) of d consists of the derived STS STS (d) = (T, P, π) of d together
with the mapping v : STS (d) → TS given by v = (vT , vP , vπ) with vT = typeT : T →
TG , vP (i) = qi for each step i of d and vπ : P → TRAFO(C,M), where vπ maps each
rule name i in STS (d) to the upper DPO diagram of the instantiation of the transformation
step (Gi−1 =

qi,mi
===⇒ Gi) according to Def. 3.3.18.

According to Fact 3.3.11 a direct derivation in an STS induces a DPO diagram in the
underlyingM-adhesive category (C,M). Therefore, a derivation in an STS, specified by
its sequence of rule names, gives rise to a transformation sequence in (C,M). Moreover,
if the STS is part of the process of a transformation sequence d in an STS-compatibleM-
adhesive transformation system TS, then we can additionally compose the derived DPO
diagrams by Fact 3.3.11 with the upper instantiation diagrams of d constructed for Prc(d)

and derive a transformation sequence in TS. In order to make this relation precise in
Def. 3.3.26 below, we denote by TRAFO(C,M) the set of all transformation sequences
in theM-adhesive category (C,M) and by DRV (S) the set of all STS derivations in the
STS S.

Definition 3.3.26 (Transformation Sequence of an STS-sequence). Let dS = (G0 =
q1
=⇒

G1 =⇒ . . . =
qn
=⇒ Gn) be a derivation in the STS S of a process Prc(d) = (S, vπ) of a

derivation d in an STS-compatibleM-adhesive transformation system over the category C

54 Behaviour Analysis of Visual Languages Based on Graph Transformation

and let s = 〈q1; . . . ; qn〉 denote the sequence of the rule occurrences according to dS . Then,
the partial mapping trafo : R∗ → TRAFO(C,M) maps the sequence s to the sequence
of DPO diagrams (transformation steps) in C for each derivation step Gi−1 =

qi⇒ Gi in S,
where each step i in TS is given by the composition of the DPO diagram vπ(i) and the the
DPO-diagram of Gi−1 =

qi⇒ Gi according to Fact 3.3.11.

Moreover, the partial mapping seq : TRAFO(C,M) → R∗ maps the transformation
sequence trafo(s) to the sequence s of rule names in S.

By Fact 3.3.27 below we show that the partial mappings seq and trafo are well defined
and are inverse to each other.

Fact 3.3.27 (Correspondence between Transformation and Rule Sequences). The partial
mappings trafo and seq are well defined, i.e. they are partial functions. Moreover, let
dS = (G0 =

q1
=⇒ G1 =⇒ . . . =

qn
=⇒ Gn) be a derivation in a process Prc(d) of a transformation

sequence, then d = trafo(seq(d)) and s = seq(trafo(s)).

Proof. By Fact 3.3.11 we know that derivations in an STS induce DPO diagrams and by
Lem. 3.3.20 we know that they can be composed with the upper DPO diagrams of the in-
stantiation. The equations hold, because of the above results and each step i in d is specified
by a distinguished rule qi = i in Prc(d), i.e. trafo and seq are left unique relations.

In a future step we will generalise the notion of deterministic processes [Bal00,
BCH+06] to the case ofM-adhesive transformation systems in order provide conditions
which characterise the set of processes of transformation sequences.

3.4 Analysis of Permutation Equivalence Based on Sub-
object Transformation Systems

Based on the process construction of a transformation sequence with NACs given by
an STS in Sec. 3.3 this section presents efficient techniques for the analysis of switch
equivalence and permutation equivalence of a transformation sequence according to
[CHS08, Her09a, Her09b]. The main advantage of first constructing and then analysing
the process model instead of directly checking the conditions of equivalence on the trans-
formation sequence itself is that we massively reduce the efforts for pattern matching. The
construction of the STS and the dependency relations used for the analysis is shown to be
performed in polynomial time (see Thm. 3.4.15) and the reasoning does not involve any
further pattern matching but only simple boolean checks instead. Furthermore, we show by
Thm. 3.4.12 that the analysis is sound and complete, i.e. given a transformation sequence
then the derived set of permutation-equivalent transformation sequences using the con-
structed STS coincides with the set of permutation-equivalent transformation sequences of

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems 55

the given one according to the definition of permutation equivalence (Def. 3.2.6). There-
fore, the notion of interleaving semantics via processes Prc(d) = (STS (d), v) specifies
exactly all possible equivalent interleavings of a transformation sequence d.

Thus, we provide a static analysis for efficiently generating all permutation-equivalent
transformation sequences to a given one. Furthermore, equivalent sequences can be com-
pared to find a suitable canonical one. Moreover, the reasoning on equivalence can be per-
formed iteratively, i.e. a transformation sequence can be analysed, thereafter extended by
some steps and the previous analysis results can be reused for the corresponding extended
STS for the extended transformation sequence. Finally, given a transformation sequence
we can check whether a particular step can be shifted a certain amount of steps by checking
the conditions of a legal sequence according to Def. 3.4.9.

In [BCH+06] the notion of occurrence grammars defining the process of a transformation
sequence is based on compound relations on STS rules, which can be obtained from the
first three basic relations in the following table in Def. 3.4.1 as presented in [CHS08]. The
next three relations concern conflicts and complete independence. Finally, the two last
relations handle dependencies causes by NACs and they were introduced in [Her09a].

Definition 3.4.1 (Relations on Rules). Let q1 and q2 be two rules in an STS with NACs
S = (T, P, πN) with πN(qj) = (〈Lj, Kj, Rj〉,Nj) for j ∈ {1, 2} and Nj = (Nj[i])i=1..nj

.
The relations on rules are defined on P as follows:

Name Notation Condition
Read Causality q1 <rc q2 R1 ∩K2 * K1

Write Causality q1 <wc q2 R1 ∩ L2 * K1 ∪K2

Deactivation q1 <d q2 K1 ∩ L2 * K2

Forward Conflict q1 ' q2 L1 ∩ L2 * K1 ∪K2

Backward Conflict q1 . q2 R1 ∩R2 * K1 ∪K2

Independence q1 3 q2 (L1 ∪R1) ∩ (L2 ∪R2) ⊆ K1 ∩K2

Weak NAC Enabling q1<wen[i]q2 1 ≤ i ≤ |N2| ∧ L1 ∩N2[i] * K1 ∪ L2

Weak NAC Disabling q1<wdn[i]q2 1 ≤ i ≤ |N1| ∧ N1[i] ∩R2 * L1 ∪K2

Read causality specifies that rule q1 produces an item that is read by q2, but not deleted by
q2 and in the case of write causality we have that q2 also deletes such an item. Deactivation
occurs when rule q2 deletes an item that is read by q1, but not created. Two rules are in
forward conflict if there is an item that is deleted by both of them and they are in backward
conflict if there is an item that is produced by both of them. Two rules are independent
if they overlap only on items that are neither produced nor deleted by one of the rules.
Therefore, the notions of parallel, sequential and co-parallel independence are special cases

56 Behaviour Analysis of Visual Languages Based on Graph Transformation

of independence, i.e. they are implied by the condition for independence, where parallel
independence is given by (L1 ∩ L2 ⊆ K1 ∩K2), sequential independence by (R1 ∩ L2 ⊆
K1 ∩K2 and L1 ∩ R2 ⊆ K1 ∩K2), and co-parallel independence is given by (R1 ∩ R2 ⊆
K1 ∩K2).

Rule q1 weakly enables the rule q2 at i if q1 deletes a forbidden part q2, i.e. an item of the
i-th NAC of q2 that is not contained in L2. The rule q2 weakly disables q1 at i if q2 produces
a piece of the i-th NAC of q1. It is worth stressing that the relations introduced above are
not transitive in general.

Example 3.4.2 (Relations on Rules). The rules of STS (d) in Fig. 3.11 are related by the
following dependencies. For write causality we have “cont1 <wc stop1” and “cont2 <wc

stop2”. Weak enabling/disabling are shown in the table below, while read causality and
deactivation are empty.

Weak Enabling Weak Disabling
stop1<wen[1]cont1 stop2<wen[2]cont1 cont1<wdn[1]cont1 cont2<wdn[2]cont2
stop1<wen[1]cont2 stop2<wen[2]cont2 cont2<wdn[1]cont1 cont1<wdn[2]cont2

The next lemma shows that if two productions of an STS are applicable to the same
subobject, then in order to check that they are independent it is enough to consider only a
subset of the possible dependency relations among them.

Fact 3.4.3 (Characterization of independence in STSs). Suppose that there are direct
derivations G =

q1
=⇒ G1 and G =

q2
=⇒ G2 in an STS over an M-adhesive category with

effective unions. Then, independence of rules can be characterised as follows:

1. q1 3 q2

2. ¬(q1 ' q2) ∧ ¬(q1 . q2) ∧ q1 ≮d q2 ∧ q2 ≮d q1

3. L1 ⊆ D2 ∧ L2 ⊆ D1 ∧ ¬(q1 . q2), where D1 and D2 are the contexts of the first
and of the second direct derivations, respectively.

Suppose that there are direct derivations G =
q1
=⇒ G1 =

q2
=⇒ G2. Then, independence of

rules can be characterised as follows:

1. q1 3 q2

2. q1 ≮rc q2 ∧ q1 ≮wc q2 ∧ q2 ≮wc q1 ∧ q1 ≮d q2

3. R1 ⊆ D2 ∧ L2 ⊆ D1 ∧ q2 ≮wc q1, where D1 and D2 are the contexts of the first
and of the second direct derivations, respectively.

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems 57

Proof (Idea). The proof (see Lem. 20 and 21 in [CHS08]) makes use of some laws on
the relations using the notion qop, which swaps the LHS and RHS of a rule. Note that in
the case that we consider an STS constructed of a derivation the condition q2 ≮wc q1 is
automatically ensured and is only necessary for the general case of an arbitrary STS.

The next result rephrases in the setting of Subobject Transformation Systems the well-
known local Church-Rosser theorem of the DPO approach.

Fact 3.4.4 (Local Church-Rosser for STSs). Let q1 and q2 be two independent productions
of an STS S. Then:

1. There are direct derivations as in diagram (†) below.

2. If there are direct derivations G =
q1
=⇒ G1 and G =

q2
=⇒ G2, then there is an object H

in SubM(T) and direct derivations G1 =
q2
=⇒ H and G2 =

q1
=⇒ H , as in diagram (‡)

below.

3. If there are direct derivations G =
q1
=⇒ G1 =

q2
=⇒ H , then there is an object G2 in

SubM(T) and direct derivations G =
q2
=⇒ G2 and G2 =

q1
=⇒ H , as in diagram (‡).

L1 ∪ L2
q1
s{

q2
#+

(†)R1 ∪ L2

q2 #+

L1 ∪R2

q1s{
R1 ∪R2

G
q1
y�

q2
�%

(‡)G1

q2 �%

G2

q1y�
H

Proof. (1) It is easy to check that (L1 ∪L2) =
q1
=⇒ (R1 ∪L2) with context D1

def
= L2 ∪K1.

In fact, the conditions (i− iv) of Definition 3.3.8 reduce to

1. L1 ∪ (L2 ∪K1) = L1 ∪ L2, because K1 ⊆ L1;

2. L1 ∩ (L2 ∪K1) = (L1 ∩L2)∪ (L1 ∩K1) = K1, by distributivity and independence;

3. (L2 ∪K1) ∪R1 = R1 ∪ L2, because K1 ⊆ R1;

4. (L2 ∪K1)∩R1 = (L2 ∩R1)∪ (K1 ∩R1) = K1, by distributivity and independence.

The other direct derivations are similar, using as contexts (clockwise) L1 ∪K2, K1 ∪ R2,
and R1 ∪K2.

(2) Let H def
= (D1 ∩D2) ∪R1 ∪R2, where D1 and D2 are the contexts of the first and of

the second direct derivations, respectively.

Let us show that G1 =
q2
=⇒ H: the proof that G2 =

q1
=⇒ H is analogous. Let D′2

def
= (D1 ∩

D2)∪R1: we show that conditions (i− iv) of Def. 3.3.8 hold for context D′2. By Fact 3.4.3
we have (∗) : L2 ⊆ D1.

58 Behaviour Analysis of Visual Languages Based on Graph Transformation

1. [L2 ∪D′2 = G1]: We have G1 = D1 ∪R1 and L2 ∪D′2 = L2 ∪ ((D1 ∩D2)∪R1) by
definition. We show L2 ∪ (D1 ∩D2) = D1: L2 ∪ (D1 ∩D2) = (L2 ∪D1) ∩ (L2 ∪
D2) =(∗) D1 ∩G = D1.

2. [L2 ∩ D′2 = K2]: Expanding D′2 and distributing we get L2 ∩ D′2 = L2 ∩ ((D1 ∩
D2) ∪ R1) = (L2 ∩ D1 ∩ D2) ∪ (L2 ∩ R1); the statement follows observing that
(†)L2 ∩D1 ∩D2 = K2 ∩D1 =(∗) K2, and that by independence we have L2 ∩R1 ⊆
K1 ∩K2 ⊆ K2.

3. [D′2 ∪R2 = H]: Obvious, by expanding the definitions of H and D′2.

4. [D′2 ∩ R2 = K2]: Expanding D′2 and distributing we get D′2 ∩ R2 = (D1 ∩ D2 ∩
R2) ∪ (R1 ∩ R2); analogous to (†), the first argument of the union is K2, and by
independence the second one is included in K2, allowing us to conclude.

(3) We use the notion qop = 〈R,K,L〉 for a rule q = 〈L,K,R〉. This allows us to reduce
this point to the previous one by observing that G =

q1
=⇒ G1 if and only if G1 =

q1op

==⇒ G, and
q1 3 q2 if and only if qop1 3 q2.

Based on Fact 3.4.4 above we can define switch-equivalence without NACs within STSs,
such that the derived switch equivalent sequences define not only transformation sequences
in theM-adhesive transformation system, but also within the STS itself. At first we show
how the notion of switch equivalence without NACs can be analysed within an STS. On
this basis we will show how the additional two relations concerning NACs are used to ana-
lyse permutation equivalence for transformation sequences with NACs by refining switch
equivalence of transformation sequences without NACs

Definition 3.4.5 (Switch Equivalence of Sequences). Let S = (T, P, π) be an STS, let
d be a derivation in S and let s = 〈 q1, . . . , qn 〉 be its corresponding sequence of rule
occurrence names. Let qk,qk+1 be independent in S (qk 3 qk+1), then the sequence s′ =
〈 q1, . . . , qk+1, qk, . . . , qn 〉 is switch-equivalent to the sequence s, written s sw∼S s′. Switch
equivalence

sw
≈S of sequences is the transitive closure of sw∼S .

By Fact. 3.4.7 below we show that the notion of switch equivalence in an STS is sound
and complete with respect to switch equivalence without NAs in the corresponding M-
adhesive transformation system. Soundness means that given a transformation sequence
d and its derived STS S, then all sequences of rule names s′ which are switch-equivalent
to the sequence of rule names seq(d) of d within S actually specify switch equivalent
transformation sequences trafo(s′) of d in the M-adhesive transformation system. Vice
versa, completeness means that for all switch-equivalent transformation sequences d′ of d
there is a corresponding sequence of rule names s′ = seq(d′) in S being switch-equivalent
to seq(d) in S.

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems 59

Remark 3.4.6 (Transformation Sequence and Sequence of Rule Names). Recall that we
use the notions seq(d), drv(s) and trafo(s) according to Def. 3.3.24 and Def. 3.3.26. If a
sequence of rule names specifies a derivation in an STS then this derivation is denoted by
drv(s). The sequence of rule names of a transformation sequence d in its derived STS is
given by s = seq(d) and the transformation sequence of s in theM-adhesive transforma-
tion system is given by trafo(s), which is constructed by taking the DPO diagrams induced
by drv(s) and composing them with the DPO diagrams of the instantiation of d for the
construction of S.

Fact 3.4.7 (Characterisation of Switch Equivalence). Let d be a transformation sequence
without NACs in anM-adhesive category with effective unions and S = STS (d), then

seq(d)
sw
≈S s′ ⇒ d

sw
≈ trafo(s′) ∧ drv(s′) is a derivation in STS (d) and

d
sw
≈ d′ ⇒ seq(d)

sw
≈S seq(d′).

Proof (Idea). The proof (see Cor. 1 in [Her09b]) uses the result that independence of two
rules involved in two subsequent derivation steps coincides with sequential independence
of the corresponding neighbouring transformation steps in theM-adhesive transformation
system. The additional result that drv(s′) is a derivation in STS (d) follows by stepwise
application of Fact 3.4.4 for each switching.

Remark 3.4.8 (Completeness of switch equivalence). Switch equivalence without NACs
leads to the complete set of equivalent permutations (see Def. 21 and Thm. 25 in [BCH+06]
where permutations are called linearisations). This means that the notion of switch equiv-
alence does not restrict the possible equivalent reorderings. In [BCH+06] this result is
shown for the setting of adhesive transformation systems and there is no indication that the
result shall not hold in the general case ofM-adhesive transformation systems.

The following notion of legal sequences allows us to first characterise permutation-
equivalent derivations with NACs within an STS. Afterwards we show that this charac-
terisation is sound and complete for analysing permutation equivalence of transformation
sequences with NACs in the originalM-adhesive category.

Note that a constructed STS STS (d) is an unfolding of the original transformation se-
quence. Thus, e.g. for the category Graphs we have that elements can be created and
deleted, but never re-created after they have been deleted in a derivation of the derived
STS, because the colimit construction distinguishes each creation of an element. This im-
plies that each item is either produced by exactly one rule or it is present in the start object
and not produced by any rule. Thus, a NAC is satisfied, if an item of the elements it forbids
has already been deleted (weak enabling) or such an item is created later (weak disabling).
This condition is formalized by the following notion of legal sequences based on the new
dependencies. It allows us to first characterise equivalent derivations with NACs within an
STS. Afterwards we show that this characterisation is sound and complete for analysing

60 Behaviour Analysis of Visual Languages Based on Graph Transformation

the permutation equivalence of transformation sequences with NACs in the original M-
adhesive category.

Definition 3.4.9 (Legal Sequence). Let d = (d1; . . . ; dn) be a transformation sequence with
NACs in anM-adhesive category with effective unions and let STS (d) = S = (T, P, π)

be its derived STS with NAC s. A sequence s = 〈 q1; . . . ; qn 〉 of rule names of P is locally
legal at position k ∈ {1, . . . , n} with respect to d, if each rule name in P occurs exactly
once in s and the following conditions hold:

1. s
sw
≈S seq(d)

2. ∀ NAC s Nk[i] of qk :
(
∃ e ∈ {1, . . . , k − 1} : qe<wen[i]qk or
∃ d′ ∈ {k, . . . , n} : qk<wdn[i]qd′ .

)
The sequence s of rule names is legal with respect to d, if it is locally legal at all positions
k ∈ {1, ..., n} with respect to d.

The second condition of Def. 3.4.9 considers NAC s and ensures that each NAC of a rule
cannot be found in the subobject to which the rule is applied, which is a consequence of
Thm. 3.4.12 and explained above. This subsumes the special case of s = seq(d), where we
have that seq(d) is always legal with respect to d. The following definition of permutation
equivalence of sequences is based on the notion of legal sequences and therefore, it suffices
to evaluate the presented relations on rule occurrence names in order to analyse permutation
equivalence of sequences.

Definition 3.4.10 (Permutation Equivalence of Rule Sequences). Let d be a transformation
sequence with NACs in anM-adhesive transformation system with effective unions and let
STS (d) = S be its derived subobject transformation system with NAC s. Two sequences
s, s′ of rule names in S are permutation-equivalent, written s

π
≈S s′, if they are legal

sequences with respect to d, i.e. they are switch equivalent and for each step and NAC
there is an enabling step before or a disabling step thereafter.

In order to analyse permutation equivalence within STSs we first state by Fact 3.4.11
below that the notion of permutation equivalence of sequences induces derivations within
the constructed STS STS (d) of a given transformation sequence d.

Fact 3.4.11 (Permutation-Equivalent Derivations in STSs). Let d be a transformation se-
quence with NACs in an M-adhesive transformation system with effective unions and
let STS (d) = S be the derived STS. Then, each sequence s′ in S that is permutation-
equivalent to the sequence seq(d) of rule occurrences in d defines a derivation drv(s′) in
S, i.e. (s′

π
≈S seq(d))⇒ drv(s′) is a derivation in S.

Proof. The fact is based on Fact 3.4.7 for the case without NACs. The second part of
the proof for Lem. 5 in [Her09b] shows that the derivation drv(s) is also NAC-consistent
within S.

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems 61

Now, we are able to state by Thm. 3.4.12 below that the analysis of permutation equiva-
lence within the framework of STSs is sound and complete. This way, we provide a correct
and complete analysis technique for the analysis of interleaving semantics ofM-adhesive
transformation systems.

Theorem 3.4.12 (Analysis of Permutation Equivalence of Transformation Sequences based
on STSs). Let d be a transformation sequence with NACs in an STS-compatible M-
adhesive transformation system and let Prc(d) = (S, v) be the process of d. Then, the anal-
ysis of permutation-equivalence within S is sound and complete, i.e. each permutation-
equivalent rule sequence s′ of seq(d) in S defines a permutation-equivalent transformation
sequence trafo(s′) of d and vice versa, each permutation-equivalent transformation se-
quence d′ of d defines a permutation-equivalent rule sequence seq(d′) of seq(d) in S.

∀ s′ ∈ P ∗ : s′
π
≈S seq(d) ⇒ trafo(s′)

π
≈ d (1)

∀ d′ ∈ TRAFO(C,M) : d′
π
≈ d ⇒ seq(d′)

π
≈S seq(d) (2)

Proof. The proof (see Thms. 3 and 4 in [Her09b]) uses Facts 3.4.7 and 3.4.11 and shows
that the NAC instantiation (Def. 3.3.13) ensures NAC consistency and does not eliminate
valid matches. The mapping v explicitly specifies how the typing and the rules of the single
transformation steps are related. In particular, the matches of an STS derivation step are
extended to matches of the instantiated transformation rule using the instantiation diagrams
according to vπ as defined in Def. 3.3.26.

Based on Thm. 3.4.12 we define for a given transformation sequence d the set EQU(d)
of all canonical transformation sequences, which are derived from permutation-equivalent
sequences of seq(d) in STS (d). Note that the set EQU(d) is finite, if d is finite.

Definition 3.4.13 (Canonical Equivalent Transformation Sequences). Let d be a transfor-
mation sequence with NACs in an STS-compatibleM-adhesive transformation system and
let Prc(d) = (S, v) be the process of d. The set EQU(d) = {trafo(s′) | s′

π
≈S seq(d)} is

called set of canonical permutation-equivalent transformation sequences of d.

Now we can state the second main result of this section by Cor. 3.4.14, which shows
that for each transformation sequence d′, which is permutation-equivalent to d, there is
an isomorphic representative in the set of canonical equivalent transformation sequences
EQU(d).

Corollary 3.4.14 (Generation of all Permutation-Equivalent Transformation Sequences
based on STSs). Let d be a transformation sequence with NACs in an M-adhesive cat-
egory with effective unions and let STS (d) = S be the derived STS. Then,

∀ d′ with d′
π
≈ d : ∃ d′′ ∈ EQU(d) : d′ ∼= d′′.

62 Behaviour Analysis of Visual Languages Based on Graph Transformation

Proof. This is a consequence of Def. 3.4.13 and Thm. 3.4.12, where the transformation
sequence d′′ is obtained by trafo(s′) with s′ being the sequence of rule occurrence names
that correspond to the steps of d′.

Furthermore, the construction of the process model of a transformation sequence is effi-
cient as stated by Fact 3.4.15 below. This ensures that the effort for the construction of the
presented framework does not lead to efficiency problems of the overall analysis, because
the upper bound is given by a polynomial term.

Fact 3.4.15 (Efficient Construction of the Process Model). Let d be a transformation se-
quence with NACs in a graph transformation system and let STS (d) = S. If additionally
the size of each NAC is bounded by the size of the left hand side of the corresponding rule
plus an arbitrary but fixed c, then the complexity of the construction of the process model S
and its dependency relations is in O(nc+4), where n is the length of the input I = (GG , d).

Proof. If matches are non-injective, the instantiation of the DPO steps leads to smaller
objects and reduces the efforts. Thus, for the worst case, we assume that the matches
are injective. The super object T is constructed as colimit of d by incremental pushouts
for each transformation step and the intermediate colimit object is extended by at most n
elements at each step. Thus, this construction has a complexity of O(n2). The size of T
is at most n, because - in the worst case - T is given as disjoint union of the graphs in d.
Furthermore, the construction of S0 with its embedding to T and the construction of P is
linear.

The mapping π is given by composing the morphisms in d with the embeddings to T
and instantiation of the NACs. For each transformation step we have at most n NACs of
the current rule p. The left hand side of p is already embedded into T and it remains to
perform pattern matching for the additional elements (at most c) for each NAC. We derive
complexity O(nc ·n ·n) = O(n2+c) and there are at most n1+c NAC-instances for each rule
occurrence.

The relations: For each pair of rules we store a Boolean value specifying whether the
relation 3 holds. We have at most n2 pairs and use the embeddings to T to check whether
they overlap only on interface elements of the rules. Thus, we have a complexity of O(n3)

and a Boolean array of size at most n2. For each instantiated NAC (at most n1+c) of a rule
occurrence q we check the relation<wdn[i]against each other rule q′, i.e. whether the rules
overlap on Lq and Kq′ only. We derive the complexity O(nc+1 · n2 · n) = O(nc+4) and a
Boolean array of size at most nc+3. The same procedure is applied for<wen[i]. Summing up
all steps, we have complexity O(nc+4).

Remark 3.4.16 (Check for Permutation Equivalence). If we are interested whether two
given transformation sequences d and d′ with NACs are permutation-equivalent we can
transfer this problem to the usual analysis of switch equivalence without NACs. The reason

3.4 Analysis of Permutation Equivalence Based on Subobject Transformation
Systems 63

is that we already know that d and d′ respect all NACs. But note that this check also involves
isomorphism checks, because the modified structure of an intermediate object in d is not
related to some structure in d′.

The main advantage of the analysis using STSs is that we do not need to update the
graphs of the transformation sequence and we do not need to perform pattern matching for
the NACs after each switching. Permutation equivalence of sequences within an STS does
only concern the introduced relations on rule occurrence names. This means that we only
have to check whether rule components overlap in the specified way. Furthermore, we can
compute the relations once and for all and store the results in Boolean arrays. This means
that dependencies of steps can be efficiently checked based on the dependency relations.

G1

w1:worksOn

1:Person

3:Task
4:started

2:PersonG0

1:Person

3:Task
4:started

2:Person G2

1:Person

3:Task
4:started

2:Person G3

w2:worksOn

1:Person

3:Task 4:started

2:Person G4

1:Person

3:Task
4:started

2:Person

G’1

w1:worksOn

1:Person

3:Task
4:started

2:PersonG0

1:Person

3:Task
4:started

2:Person G’2

1:Person

3:Task
4:started

2:Person G’3

w2:worksOn

1:Person

3:Task
4:started

2:Person G4

1:Person

3:Task
4:started

2:Person

cont,m1⇒
stop,m2⇒

stop,m4
⇒

cont,m3⇒

cont,m1
⇒

stop,m4⇒

stop,m2
⇒

cont,m3
⇒
’ ’ ’’

d:

d’:

continueTask (short: “cont“)

L

:worksOn

1:Person

3:started

K

1:Person

R

1:Person

2:Task

NAC2

:worksOn

1:Person

2:Task

3:started

2:Task

3:started

2:Task

R

:worksOn

1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

NAC1

:worksOn

:Person

2:Task

1:Person

stopTask (short: “stop“)

3:started

3:started

d′ = (G0 =
continueTask,m′3==========⇒ G′1 =

stopTask,m′4=======⇒ G′2 =
continueTask,m′1==========⇒ G′3 =

stopTask,m′2=======⇒ G4)

write causality weak enabling weak disabling
cont1 <wc stop1 stop1<wen[1]cont1 cont1<wdn[1]cont1
cont2 <wc stop2 stop1<wen[1]cont2 cont1<wdn[1]cont2

stop2<wen[2]cont1 cont2<wdn[2]cont2
stop2<wen[2]cont2 cont2<wdn[2]cont1

Figure 3.12: Permutation-equivalent transformation sequences d, d′ and the dependencies
in STS (d)

Example 3.4.17 (Equivalent Sequence). The two transformation sequences d and d′ in Fig.
3.12 are permutation-equivalent as motivated already in Sec. 3.2. The last two steps of d
are moved to the beginning in transformation sequence d′. Using the relations in an STS we
derive the dependencies as listed in Fig. 3.12 for the rule occurrences “cont1, cont2, stop1,
stop2” in Fig. 3.11. Note that the rule names in a derived STS of a transformation sequence

64 Behaviour Analysis of Visual Languages Based on Graph Transformation

are plain numbers and we named them “cont1, cont2, stop1, stop2” for better intuition as
in Ex. 3.3.23. According to Fact. 3.4.3 we can equivalently check the causality relations for
checking independence of two neighbouring transformation steps. We have that “cont1”
<wc “stop1” and “cont2” <wc “stop2”. This means that these pairs are not independent
and therefore, “cont1” has to occur before “stop1” and “cont2” before “stop2”. Accord-
ing to Thm. 3.4.12 and Def. 3.4.10 we can check, whether the sequence seq(d′) can be
derived by the presented relations. First of all, the sequence is derived by switchings of
independent rule occurrences without considering NACs: stop1↔ cont2, stop1↔ stop2,
cont1↔ cont2 and cont1↔ stop2 leading to s = 〈cont2;stop2;cont1;stop1〉 = seq(d′).
Now, for each rule occurrence and NAC in s there is a weak enabling rule before or a weak
disabling rule behind or the rule disables itself. For instance for N1[2] of “cont1” we have
“stop2” with stop2<wen[2]cont1 and therefore, N1[2] is not present in the intermediate ob-
ject. All together s = seq(d′) is a legal sequence with respect to d, which implies that
seq(d′)

π
≈S seq(d) and hence, d′

π
≈ d according to Thm. 3.4.12.

Note that a pairwise switching of the example transformation sequence with NACs is
not possible, because each pair is sequentially dependent - either by causal relation or by
NAC dependency. Therefore, this sequence cannot be derived by standard switching of
completely independent transformation steps according to switch equivalence with NACs
in Def. 3.2.5. This shows that switch equivalence with NACs based on sequential indepen-
dence of transformation sequences with NACs [HHT96, LEO06, LEOP08] only leads to a
subclass of equivalent transformation sequences and in general, many equivalent transfor-
mation sequences cannot be derived. But as the example transformation sequence shows,
all permutation-equivalent transformation sequences are of interest, because a certain per-
son may not be available for a concrete time slot while another person could use the time
and give some support for the task.

3.5 Analysis of Permutation Equivalence Based on Petri
Nets

Based on the construction of the process model of a transformation sequence given by
an STS as presented in Sec. 3.2 and the derived relations according to Sec. 3.3, we now
present the construction of the “dependency net” of the transformation sequence, which is
given by a P/T Petri net that specifies only the dependencies between the transformation
steps leaving out all further details of the involved objects of the transformation sequence.
In the case of graphs we have that all details about the internal structure of the graphs and
the transformation rules are excluded, allowing us to improve the efficiency of the analysis
of permutation equivalence. This means that we provide an analysis of the interleaving

3.5 Analysis of Permutation Equivalence Based on Petri Nets 65

semantics of an M-adhesive transformation system based on the analysis of the firing
behaviour of the generated Petri net.

Given a transformation sequence d and its STS STS (d), then the dependency net
DNet(d) of d is a P/T Petri net which contains a transition qk for each transformation
step dk in in d, where qk is the rule name in STS (d) that corresponds to the step dk. Thus,
a firing of the net will induce a sequence of rule names for the STS. By Thm. 3.5.3 we can
further ensure that this sequence specifies a transformation sequence that is permutation-
equivalent to d.

The dependency net DNet(d) further contains for each transition one place marked with
one token and the place is in the pre-domain of the transition in order to ensure that the
transition may fire at most one time. Moreover, for each element of the causality depen-
dency relations there is a place that ensures the induced partial order given by the causal
dependencies. Finally, there are places that specify the inhibiting effects of the NACs. The
marking of a NAC place defines the absence of parts of the forbidden pattern. Thus, if
a NAC place is empty, the transformation sequence that corresponds to the current firing
sequence of the net will show an object that completely includes the NAC pattern and the
rule, which owns the NAC will not be applicable. Correspondingly the empty NAC place
deactivates the transition that simulates this rule. This means that the inhibiting effects of
the NACs do not require to use inhibitor nets as process model, such that efficient analysis
techniques available for standard P/T nets are applicable.

Definition 3.5.1 (Dependency Net DNet of a Transformation Sequence). Let d be a NAC-
consistent transformation sequence of anM-adhesive TS, let STS(d) = (T, P, π) be the
generated STS of d and let s = seq(d) = 〈q1, . . . , qn〉 = 〈1, . . . , n〉 be the sequence of
rule names in STS(d) according to the steps in d. The dependency net of d is given by the
marked Petri net DNet(d) = (N,M), N = (PL,TR, pre, post), defined as follows:

• TR = {qk | k ∈ {1, . . . , n}}
• PL = {p(k) | qk ∈ TR} ∪ {p(j <x k) | qj <x qk ∧ x ∈ {rc, wc, d} ∪ {p(k,N [i]) |

Nk[i] is a NAC of qk in STS (d) ∧ qk ≮wdn[i] qk}

• pre(qk) = p(k) ⊕
∑
qj<xqk

x∈{rc,wc,d}

p(j <x k) ⊕
∑

qj<wdn[i]qk

j 6=k

p(j,N [i]) ⊕
∑

p(k,N [i])∈PL

p(k,N [i])

• post(qk) =
∑
qk<xql

x∈{rc,wc,d}

p(k <x l) ⊕
∑

qk<wen[i]ql

p(l, N [i]) ⊕
∑

p(k,N [i])∈PL

p(k,N [i])

66 Behaviour Analysis of Visual Languages Based on Graph Transformation

• M =

∑
qk∈TR

p(k) ⊕
∑

qj<wdn[i]qk

p(j,N [i])∈PL

p(j,N [i])

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ

2. For all q,q' ∊ P, q <x q', x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q' ∊ P: q' <wen[i] q

c) For all q' ∊ P: q <wdn[i] q'

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ

2. For all q,q' ∊ P, q <x q', x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q' ∊ P: q' <wen[i] q

c) For all q' ∊ P: q <wdn[i] q'

p(q<xq') q'
+ ++

q p(q<xq') q'
+ ++

q

p(q,N[i]) q
+ +p(q,N[i]) q
+ +

p(q,N[i])q'
+

p(q,N[i])q'
+

q'
+ +

p(q,N[i]) q'
+ +

p(q,N[i])

p(q) q
+ +

+
+

p(q) q
+ +

+
+

Figure 3.13: Visualization of the construction of the dependency net

Fig. 3.13 shows an algorithm how the steps of the construction of the dependency net
are performed. The construction steps are performed in the order they appear in the table.
Each step is visualized as a rule, where gray line colour and plus-signs mark the inserted
elements. The matched context that is not changed by a rule has black line colour, e.g. in
step two the new place “p(q <x q

′)” is inserted between the already existing transitions
q and q′. The tokens of the initial marking of the net are represented by bullets that are
connected to their places by arcs. In the first step each rule of the STS is encoded as
a transition and it is connected to a marked place for ensuring that it cannot fire twice.
In step 2, between each pair of transitions in each of the relations <rc, <wc and <d, a
new place is created in order to enforce the corresponding dependency. The rest of the
construction is concerned with places which correspond to NACs and can contain several
tokens in general. Each token in such a place represents the absence of a piece of the NAC;
therefore if the place is empty, the NAC is complete.

In this case, by step (3a) the transition cannot fire. Consistently with this intuition, if
q <wen[i] p, i.e. transition q consumes part of the NAC N [i] of p, then by step (3b) q
produces a token in the place corresponding to N [i]. Symmetrically, if q <wdn[i] p, i.e.
p produces part of NAC N [i] of q, then by step (3c) p consumes a token from the place
corresponding to N [i]. Notice that each item of a NAC is either already in the start graph
of the transformation sequence or produced by a single rule. If a rule generates part of
one of its NACs, say N [i] (qk<wdn[i] qk), then by the acyclicity of STS (d) the NAC N [i]

cannot be completed before the firing of qk: therefore we ignore it in the third step of the
construction of the dependency net.

3.5 Analysis of Permutation Equivalence Based on Petri Nets 67

Note that the constructed net in general is not a safe one, because the places for the
NACs can contain several tokens. Nevertheless it is a bounded P/T net. The bound is the
maximum of one and the maximal number of adjacent edges at a NAC place minus two.

1=cont1 3=cont2

2=stop1 4=stop2

p(1<wc 2)

p(3)

p(1,N[2])

p(1) p(2)

p(3<wc 4)
p(3,N[1])

p(4)

Figure 3.14: Dependency Net DNet(d) as Petri Net

Example 3.5.2 (Dependency Net). Consider the transformation sequence d from Ex. 3.2.1
and its derived STS in Ex. 3.3.23. The marked Petri net shown in Fig. 3.14 is the de-
pendency net DNet(d) according to Def. 3.5.1. The places encoding the write causality
relation are “p(1 <wc 2)” and “p(3 <wc 4)”. For the NAC-dependencies we have the
places “p(1, N [2])” for the second instantiated NAC in the first transformation step of d
and “p(3, N [1])” for the third transformation step and its first instantiated NAC. The other
two instantiated NACs are not considered, because the corresponding rules are weakly
self-disabling (q<wdn[i] q). At the beginning the transitions cont1 and cont2 are enabled.
The firing sequences according to the transformation sequences d and d′ in Fig. 3.7 can be
executed and they are the only firing sequences of this net. Thus, the net specifies exactly
the transformation sequences which are permutation-equivalent to d.

We now show by Thm. 3.5.3 below that we can exploit the constructed Petri net DNet(d)

for a transformation sequence d to characterise all transformation sequences that are
permutation-equivalent to d, by analysing the firing behaviour of DNet(d). Note that ac-
cording to Def. 3.5.1 each sequence s of rule names in the STS STS (d) can be interpreted
as a sequence of transitions in the derived marked Petri net DNet(d), and vice versa. This
correspondence allows us to transfer the results of the analysis back to the STS. More pre-
cisely, we can generate the set of all permutation-equivalent sequences by constructing the
reachability graph of DNet(d), which therefore can be considered as a compact represen-
tation of this equivalence class.

Recall that a transition complete firing sequence of a Petri net is a firing sequence where
each transition of the net occurs at least once; notice also that in a dependency net according
to Def. 3.5.1, each transition can fire at most once by construction. This means in our case
each transition fires exactly once. The following Thm. 3.5.3 presents a sound and complete
analysis of permutation equivalence by complete firing sequences in the corresponding

68 Behaviour Analysis of Visual Languages Based on Graph Transformation

dependency net. This way, we provide a behaviour analysis technique concerning the
interleaving semantics of anM-adhesive transformation system based on low-level Petri
nets.

Theorem 3.5.3 (Analysis of Permutation Equivalence Based on Petri Nets). Let d be a
transformation sequence with NACs in an STS-compatible M-adhesive transformation
system, let Prc(d) = (S, v) be the process of d and let DNet(d) be its dependency net.
Then a transformation sequence d′ is permutation-equivalent to d (d′

π
≈ d) if and only if

the sequence of rule names sd′ , which contains all the transformation steps of d in the order
they are actually executed in d′, is a transition complete firing sequence of the marked P/T
Petri net DNet(d).

Proof (Sketch). Let d be a transformation sequence with NACs, STS (d) be its derived STS
and DNet(d) be the constructed dependency net. We can interpret a transition complete
firing sequence s of DNet(d) within the STS STS (d) and show that it corresponds to a
valid derivation in STS (d). This allows us to use Thm. 1 in [Her09a] showing that the
transformation sequence derived from s is permutation-equivalent to d. Vice versa, given
a transformation sequence d′, which is permutation-equivalent to d, we can show that the
corresponding sequence sd′ is a transition complete firing sequence in DNet(d). For a
complete proof see the proofs of Thms. 1 and 2 as well as the derived Cor. 1 in [HCEK10b].

1. 000

7. 483. 000

7. 484. 000

2. 000

Switch Equivalence

without NACs

Permutation

Equivalence

720

7.484.400

Amount of Equivalent Sequences for 12 StepsAmount of Equivalent Sequences

Logarithmic Scale

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

4 6 8 10 12

Transformation Steps

E
q

u
iv

a
le

n
t

S
e
q

u
e
n

c
e
s

Switch Equivalence

without NACs

Permutation

Equivalence

Figure 3.15: Comparison of the Amount of Equivalent Sequences

Besides soundness and completeness of the analysis as presented before we now focus
on its efficiency. Therefore, we reconsider the extended example in Ex. 3.2.7 of Sec. 3.2
and compare the analysis efforts of the new technique with those of a direct analysis of the
transformation sequence. This comparison shows a significant advantage of the technique
and the effect is not limited to specific examples. The benefit is high for transformation

3.5 Analysis of Permutation Equivalence Based on Petri Nets 69

sequences, where many steps overlap on matches and include dependencies because of
NACs.

Let us consider to perform a direct analysis based on the definition of permutation equiv-
alence. We call this the brute force variant, where first all switch-equivalent transformation
sequences are generated without considering the NACs, and then those which do not re-
spect the NACs are filtered out. This means that we only have to respect the causality
between the first and the second step of each of the 6 blocks. Therefore, we can always
switch neighbouring steps of different blocks. As explained in Ex. 3.2.7 there are 6! = 720

permutation equivalent transformation sequences and 6!×F = 12!/26 = 7.484.400 switch
equivalent transformation sequences with F = 10.395. Since the complexity of a func-
tion, which is dominated by a factorial expression, is super-exponential, the calculation of
invalid sequences should be avoided in general.

Start

Transformation Sequence with 12 Steps

Amount of permutation-

equivalent sequences:

6!=720 permutations

Figure 3.16: Reachability Graph of the Dependency Net for 12 Steps

70 Behaviour Analysis of Visual Languages Based on Graph Transformation

Figure 3.16 shows the reachability graph of the dependency net, which consists of 12
transitions and 48 places. The graph was generated using the tool AGT-M, which is pre-
sented in Ch. 7. As shown before, the reachability graph contains 6! = 720 paths specifying
the different permutations and each path ends at a separate leaf node, such that each leaf
node marks one specific permutation-equivalent transformation sequence. The reachability
graph shows the symmetric nature of the specific example and future work will encompass
symmetry reduction techniques, such that the size can be reduced for examples with sym-
metry.

Now, let us compare the effort of generating the set of permutation-equivalent trans-
formation sequences using the dependency net DNet(d̃) with the effort of a brute force
generation directly based on Def. 3.2.6. The result according to Ex. 3.5.4 below is that a
lower bound for the effort of the brute force variant is still about 3 orders of magnitude
higher than an upper bound for the analysis based on the dependency net.

Step Nodes in RG

Update of

Markings

Checks of

activated

Transitions contx stopx

0 1 - 288 6 6

1 6 42 240 5 5

2 6 42 1.200 5 5

3 30 210 960 4 4

4 30 210 3.840 4 4

5 120 840 2.880 3 3

6 120 840 8.640 3 3

7 360 2.520 5.760 2 2

8 360 2.520 11.520 2 2

9 720 5.040 5.760 1 1

10 720 5.040 5.760 1 1

11 720 5.040 - 0 0

12 720 5.040 - 0 0

Sum: 27.384 46.848

74.232 Sum of binary operations:

Amount of

remaining rules

Amount of operations

(one per arc and place)

Figure 3.17: Efforts for Constructing the Reachability Graph

Example 3.5.4 (Analysis Efforts). This reachability graph has 3.913 nodes and 3.912
edges, and an upper bound for its computation can be derived as follows. During the
generation of RG(DNet(d̃)), we store the transitions that have fired, since the maximum
of one time firing is ensured by definition. At each node, we check the activation condi-
tion of each transition that has not fired before, i.e. for each “contx” transition we have
to check 1 + 5 =6 pre arcs and for each “stopx” transition we have to check 1 + 1 pre
arcs. After checking the activation, we continue by updating the marking, which means to

3.5 Analysis of Permutation Equivalence Based on Petri Nets 71

perform 1+5+1=7 token modifications for “contx” and 1+1+5=7 token modifications for
the case that a “stopx” transition was fired.
The calculated numbers at each level of the reachability graph are listed in the table of
Fig. 3.17, and we derive an upper bound for the effort eff of constructing RG(DNet(d̃))

given by: eff ≤ 74.232 < 9 · n basic operations (assignments and comparisons), where
n = 12 · 6! = 8.640 is the number of transformation steps in the set of all permutation-
equivalent transformation sequences. Considering the brute force variant we would have
to construct F = 10.395 times as many transformation sequences as the number of
permutation-equivalent transformation sequences. If we count the effort for construct-
ing each transformation step including the check of NACs by only one basic operation we
derive the following very lower bound for the brute force effort EFF : F · n ≤ EFF . In
comparison we have:

eff < 0, 0009× EFF .

Of course, the effort for constructing the Petri net has also to be taken into account, but
it does not change the result. In general, the construction of the process STS (d) with its
relations is shown to be of polynomial time complexity with respect to the length of the
transformation sequence d [Her09a]. Furthermore, the construction of the dependency net
is linear with respect to STS (d) with its dependency relations and in this this example there
are only 48 places in the constructed Petri net. Note that still all steps in d̃ are sequentially
dependent with the NACs and therefore, no direct switching is possible.

Summing up, the new notion of permutation-equivalence is exactly the notion of equiva-
lence needed for transformation systems with NACs and coincides with switch equivalence
for systems without NACs. Since permutation equivalence is by definition a restriction of
switch equivalence without NACs a direct analysis of a given transformation sequence by
first generating all possible switchings without respecting NACs and then filtering out the
inconsistent ones is to inefficient as illustrated by the benchmark. The compact process
model of a transformation sequence given by its derived STS builds the basis for an ef-
ficient analysis, where the costs for pattern matching are reduced massively and avoided
completely during the analysis once the STS is constructed. Matches are given by explicit
inclusions into the superobject.

By Thms. 3.4.12 and 3.5.3 we have shown that the analysis of permutation equivalence
based on the derived STS as well as based on the more compact dependency net are sound
and complete. While the dependency net specifies the possible sequences of steps only, the
corresponding STS provides the information for deriving the actual permutation equivalent
transformation sequences to the sequences generated by the dependency net. The technique
furthermore, allows for partial analysis in the case that only some permutation-equivalent
transformation sequences are required or a specific reordering shall be checked to specify
a permutation-equivalent transformation sequence.

72 Behaviour Analysis of Visual Languages Based on Graph Transformation

Chapter 4

Behaviour Analysis and Optimization of
Visual Enterprise Process Models

Business process models are developed and maintained in order to analyse and improve
running processes of an enterprise as well as to specify new processes that shall be im-
plemented and executed later on, where quality and efficiency measurements may be per-
formed on the models already. Business process modelling itself can be seen as a process,
because business processes need to be updated during the whole lifecycle of an enterprise.
For this reason, the development of business process models is placed within a reengineer-
ing cycle [Off97] starting with the identification of the concrete process which is thereafter
analysed, such that the possibly existing process models can be updated. Based on these
results the process is modified, tested and implemented again. Thus, the next reengineering
cycle can start with the new concrete process whenever there is a need from the business
point of view. Clearly, the additional modelling efforts need to pay off. Besides an in-
creased efficiency of the processes this can be achieved by an increased quality and risk
control, in particular with respect to business continuity management.

This chapter shows how the formal techniques of Ch. 3 can be used to analyse business
process models concerning equivalent modifications and an efficient management of busi-
ness continuity based on intuitive continuity snippets that specify alternative fragments of
the process model for cases of failures. For this purpose we present in Sec. 4.2 a formal
operational semantics for EPC models and show how functional and security requirements
can be validated. As main results we show by Thms. 4.2.7 and 4.2.10 how equivalent and
valid process runs can be generated from the standard process together with its continuity
snippets. Furthermore, we illustrate the application of the analysis and generation tech-
niques for the case study based on prototypical tool support in Sec. 4.3. Moreover, the
formal foundation of EPC business process models in this chapter enables the formal anal-
ysis of business process models concerning their conformance to business service structure
models in Ch. 6.

74 Behaviour Analysis and Optimization of Visual Enterprise Process Models

4.1 Business Process Modelling

Quite a number of different modelling languages exist for business processes, like e.g. the
business process modelling notation [OMG09] by Object Management Group (OMG). In
order to execute BPMN models several approaches have been presented, which transform
BPMN models into executable models using, e.g., the Web Services Business Process Ex-
ecution Language (WS-BPEL) [OAS07, ODtHvdA06, BE09].

The business process modelling language of Event Driven Process Chains (EPCs) as part
of the ARIS framework [SN00, IDS10] has been used already for a relatively long time and
at many enterprises. The ARIS tool suite supports both, EPC models and BPMN models.
Depending on the domain specific modelling purposes and the given requirements for the
respective business processes both languages can be used simultaneously or exclusively,
respectively.

In the case study of this chapter we focus on an EPC model that shows a simplified
loan granting process at a financial institution, which was created and analysed within
a fruitful research project in cooperation with Credit Suisse. Since EPCs provide a very
intuitive notation and they are widely used, it was quite natural for us to chose them as basis
for the development and application of formal analysis techniques. However, in order to
provide important new analysis techniques concerning equivalent process modification and
business continuity management, we slightly extend the language of EPCs.

The next section introduces the case study of a loan granting process based on a concrete
EPC model. Thereafter, Sec. 4.1.2 describes the main challenges within business conti-
nuity management and the derived requirements for business process. Finally, Sec. 4.1.3
discusses main problems in business process modelling.

4.1.1 Event Driven Process Chains

In the case study of this chapter we analyse a generalized and partly simplified loan grant-
ing process as it is executed at financial institutions like, e.g., Credite Suisse. The business
process is modeled as an extended event driven process chain (EPC). Based on the process
model for the standard case we present in Sec. 4.2 and Sec. 4.3 analysis and generation
techniques to support optimization and business continuity management.

The process model shown in Fig. 4.2 was presented in [BHE09a] and provides de-
tailed information for the execution and automated support by a workflow engine using
a slightly modified and extended version of event driven process chains (EPCs) [Sch01]
called workflow engine based and data-flow oriented EPC (WDEPC) which we introduced
in [BHE09a]. EPCs are chosen as domain language for process models, because they are
widely used in the financial domain and in particular at Credite Suisse, which supported the

4.1 Business Process Modelling 75

joint research. Thus, the close relationship to EPCs will serve to keep the models intuitive
for the modellers that are designing and checking the business process models.

Figure 4.1: Meta model of WDEPC diagrams (extended EPCs)

The meta model for the abstract syntax of WDEPCs is shown in Fig. 4.1 and can be
equivalently seen as a type graph TGMeta, such that the abstract syntax graphs of WDEPC
models are typed over TGMeta. Each WDEPC model may contain business functions,
events, organizational entities, data objects, and applications executing business functions
like in usual EPCs. Furthermore, there are edges for the specification of data flow between
business functions and data storage units. Such storage units are either resources, like
databases and paper prints, or, alternatively, actors (organizational entities), like concrete
persons or executable applications. The data flow between these elements is specified using
the edge types “in”, “out”, “atR” and “atA”. This way, the execution of a process on a
workflow engine can be mainly controlled by the data flow, where electronically processed
data is temporarily cached in a local storage of the engine.

Moreover, WDEPC models have to satisfy the following well-formedness constraints, in
order to avoid ambiguity. There are no parallel edges of the same type. Each data node is
either an input data or an output data node, i.e. it has either one adjacent edge of type “in”
or one of type “out”.

One important security requirement for the considered loan granting process is the sep-
aration of the following parts: the customer relationship management process, the credit
approval and administration process and the credit monitoring process. For this reason,
the acting employees in this process have to be distinguished. The client relationship man-
ager (RM) is an expert in the concrete client relationship and executes the main part of the
customer service. The credit advisor (CA) is an expert in the portfolio of credit products
and services which are offered by the financial institution and the credit officer (CO) is
charged with the responsibility of approving credit transactions. The process itself covers
the whole lifespan of a granted loan, starting with the demand for a loan, ending with its
finished payment plan.

76 Behaviour Analysis and Optimization of Visual Enterprise Process Models

The main components of the process are given by the following list:

1. Initiating the customer relation and inquiry of relevant data

2. Evaluation of customer worthiness and decision of customer acceptance
(process termination if customer is not accepted)

3. Product customization, contract approval and contract conclusion

4. Payment, loan repayment and closure

The WDEPC process model of the loan granting process of the case study is shown in
Fig. 4.2 in concrete syntax. From left to right the diagram is arranged in columns consisting
of data storage objects (e.g. documents, data base servers and actors), the data objects
(depicted as light blue rectangles), business functions (green rounded rectangles), events
(red hexagons) and, finally, on the right most column there are actors (yellow ellipses)
as well as acting applications (white rectangles) that execute the business functions. The
execution of an EPC is performed along the sequence of events and some additional control
elements like forks and joins (grey circles).

Once a customer (C) arrives at the bank, he will be interviewed by the relationship man-
ager (RM) (functions F1-F4 in the workflow model in 4.2). At first, he has to give per-
sonal information and the relationship manager will try to make a first estimation about
the possible customer value in an assumed business relationship. Thereafter, the demand
of the client is recorded and all data is entered into IT systems by the relationship man-
ager. Afterwards, the credit worthiness of the client is approximated and a customer rating
is calculated automatically by two different applications (F5-F6). Based on the computed
rating the credit advisor decides whether the client is accepted for a loan or not (F7). In
the case of acceptance, an optimized product is created by the credit advisor and the rela-
tionship manager (F8). Based on this optimized products the relationship manager creates
a contract (F9). This contract is then signed by the customer, the relationship manager and
the credit officer (CO) who approves the contract (F10-F12 in Fig. 4.2). This way, the four-
eye principle – as one typical security requirement – is respected, because the because the
relationship manager and the credit officer must not be identical for one concrete execution
of the process. As soon as the contract is approved the bank pays the granted loan to the
client and the client starts the repayment according to the payment plan of the contract. The
contract is closed after the payment plan is completely fulfilled by the client (F13-F15).

Within the WDEPC process model, the data-flow is specified explicitly by edges be-
tween the data objects and the resources. These information are used in Sec. 4.2.2 for the
generation of equivalent process variants using the induced data dependencies. In order to
specify which data objects of the process are temporarily stored by the workflow engine
the rectangles have either a solid thick line or, for the case that they are stored externally,

4.1 Business Process Modelling 77

Figure 4.2: WDEPC workflow model for the loan granting process

they have a dashed line. This allows us to cover automated and non-automated parts of a
business process by one single human-centric business process model as it was requested
by Credit Suisse. The data which is cached by a workflow engine can be reused if needed.

78 Behaviour Analysis and Optimization of Visual Enterprise Process Models

4.1.2 Business Continuity Management

Business continuity management concerns all kinds of failures that may occur during the
execution of business processes. Since such failures can directly affect business profits and
moreover, business continuity in general, the importance of an efficient as well as ensured
business continuity management is high, in particular for organizations and institutions in
the financial sector, but also for those active in the telecommunication, transport or public
area. This section discusses main problems within business continuity management with
a special focus on financial institutions based on the fruitful cooperation with University
of Luxembourg and Credit Suisse [BHE09a, BHG11], in which we discussed problems
for concrete and realistic scenarios, e.g. the simplified loan granting process presented
in Sec. 4.1.1. Based on the formal results in Ch. 3 we provide powerful analysis and
generation techniques for these problems in Sec. 4.2-4.3.

From the general point of view, a business continuity management is based on a business
continuity plan, which is applied after a critical business process is disrupted. The business
continuity plan has to ensure at least a minimum level of business activity, such that the
survival of the enterprise is guaranteed during the execution of the business recovery pro-
cess. In addition to the functional requirements on business processes that are essential and
necessary, there are usually further non-functional requirements that have to be respected
by the standard process and by the continuity processes. These requirements are given by
e.g. legislative or enterprise specific regulations. Especially in the case of business con-
tinuity management at financial institutions there are several security requirements, which
are defined independently by different parties, such as legislation or standardization insti-
tutions.

The main aim of business continuity management is to control all critical business pro-
cesses of an organization in a way that ensures business continuity in the case that some
these processes fail. In the worst case, the combination of some failures of critical business
processes can be the cause that the company goes out of business. Even if certain failures
occur, the business has to be continued, i.e. alternative business processes must run and
ensure correct but possibly less efficient business execution. Stopping the business is no
option, because of high penalty costs, high losses, high fix costs, and a dramatic decrease of
customer acceptance. This means that an effective business continuity management is not
sufficient if only some continuity plans are developed independent from each other con-
cerning single failures only. An effective business continuity management has to support
the management of combination of several failures occurring at the same time.

In order to evaluate and certify the quality of existing business continuity management
new standards were developed, like the British Standard BS 25999 (BS 25999-1:2006
[Bri06] and BS 25999-2:2007 [Bri07]) on which the the German BSI Standard 100-4
[Fed09] is based. However, according to [Boe09], the survival of an enterprise in the event

4.1 Business Process Modelling 79

of a disaster is not ensured mainly by the pure existence of a business continuity man-
agement system according to BS-25999, but by the output and efficiency of the specified
concrete business continuity plans and disaster recovery plans. Furthermore, the different
regulations the enterprise has to comply to, like e.g. Basel II [Bas06] or the Sarbanes-Oxley
Act [Uni02], induce further constraints on the business processes in general including the
business continuity processes.

From the point of view of Credit Suisse the simplified loan granting process model LG
presented in Sec. 4.1.1 is critical and several failures can occur. Here, we focus on the
availability of organizational agents, IT applications and resources. We will show how ad-
ditional process fragments, called continuity snippets, can be used to generate and provide
back-up solutions, where parts of the standard process are replaced by the snippets. The
snippets can be kept small and simple, which reduces the efforts for continuity modelling.
They are automatically combined in Sec. 4.3.1 using the formal analysis techniques of
Ch. 3.

Figure 4.3: Alternative Continuity Snippet “Rating Customer” (1 of 16 simple snippets)
and Part of the Alternative Workflow

The lower part of Fig. 4.3 shows a continuity snippet (F6(C)) for the function rating
customer (F6). In the case that the rating application that executes the business function

80 Behaviour Analysis and Optimization of Visual Enterprise Process Models

becomes unavailable the process fragment with function (F6) can be replaced by the con-
tinuity snippet with function (F6(C)) where the customer officer will execute the business
function rating customer. Note that in this special case the start event and the end event of
both fragments are equal. However, this strong requirement is not needed for the general
case and we will show in Sec. 4.3.1 how fragments can be inserted in a relaxed way such
that the control events and data dependencies between the fragments are respected.

Definition 4.1.1 (Continuity Snippet). A WDEPC snippet is a small WDEPC model con-
sisting of one business function node and its context elements, which are the connected
actor nodes, event nodes and data nodes with its storage nodes (actor or ressource nodes).
A continuity snippet for a WDEPC model M contains a function (F x(C y)) for a function
(Fx) in M , where x, y ∈ N.

The idea of modelling continuity snippets instead of complete continuity processes was
motivated by organizational requirements at Credit Suisse where knowledge about conti-
nuity scenarios is not necessarily provided by the same people that manage the standard
business processes and where knowledge is distributed among different persons. The ad-
vantage of this approach is the flexibility concerning local changes leading to less efforts
for maintenance during model and enterprise evolution. The complete set of continuity
snippets – in sum 16 – is presented in [BHG10].

While the given process model shows a fixed order of certain functions, many of them
are not directly dependent on each other. But they are partly dependent on the data that is
produced by previous steps. Look e.g. at functions “F1” to “F4” of the WDEPC LG as
depicted again in Fig. 4.4, where customer data is retrieved and stored. Clearly, function
“F1” needs to be executed before “F3” and similarly “F2” before “F4”, but there are no
further dependencies. Thus, leaving out the synthetic events in between we are interested
in all permutations of such steps fulfilling the data dependencies to generate valid process
variants. However, there are some specific control events like “E8”, “E9” or “E14” which
restrict possible permutations in the sense that they play the role of a boundary which can-
not be passed when moving up or down. Critical parts of the workflow are e.g. at functions
“F10” where the contract is signed by the relationship manager and “F12” where it is ap-
proved by the credit officer. Here, the four-eye principle applies as a security requirement
and demands that these functions have to be performed by two different persons. For this
reason, the continuity processes have to ensure this requirement, too. This requirement is
formalized as graph constraint and checked during the generation of process variants in
Sec. 4.3.

4.1 Business Process Modelling 81

Figure 4.4: First four steps of the WDEPC model LG

4.1.3 Problems of Business Process Modelling

The main aim of business process modelling is to design, control, manage and evaluate
already running and future business processes. Semi automated analysis techniques for the
evaluation, simulation and verification of process models as well as for the generation of
derived process models for business continuity management can show high impact for the
effectiveness and efficiency of the whole modelling process. For this reason, this section
first discusses the main problems of business process modelling with a special focus on
business continuity management. We then present formal and efficient techniques for solv-
ing these problems in a suitable way and evaluate in Sec. 4.3.2 the quality and effectiveness
of the developed techniques.

According to Tab. 4.1 below, we detected the following main problems and propose some
modifications for improving the quality and maintenance of the process models. While en-
terprises in the industrial production segment maintain and run their modelled production
processes and in particular their supply chain management by automated enterprise soft-
ware suites, this is not the case for the more organizational business process, which are
of main importance for financial institutions. In this case, process models are partly in-
complete and do not cover all processes. The models are given partly by human-centric

82 Behaviour Analysis and Optimization of Visual Enterprise Process Models

Table 4.1: Problems and goals for business process modelling

Criterion Common Practice Goal
1. Form of Process
Models

Incomplete, human-centric
visual notion, additional text
documents

Comprehensive, extensive,
human-centric visual nota-
tion, decreased amount of
text documents

2. Form of Require-
ments

Mainly text documents Text documents plus formal-
ized constraints

3. Form of Continu-
ity Plans

often plain text documents compact and concise models

4. Evaluation of
Continuity Plans

usually manual without for-
mal verification of require-
ments

semi automated, formally
verified results ensuring
compliance

5. Maintenance manual, modifications of
standard process require
modifications of continuity
plans

improved maintainability,
continuity plans are partly
updated automatically

6. Consistency mainly checked manually,
continuity processes contain
redundant information from
standard processes

partly automated formal anal-
ysis, reduced redundancies

visual models, like EPCs or BPMN models together with additional plain text documents.
The goal in this context is to improve business process modelling to derive comprehensive
models that cover the main processes and to reduce the amount of plain text documents.

In order to check the functional and non-functional requirements, they should be for-
malized in a significant amount, such that formal automated techniques can be used for
validation, which reduces the manual efforts and possible errors. Especially financial in-
stitutions are faced with a high amount of non-functional requirements that need to be
respected.

The modelled continuity plans are quite often not sufficiently formalized and indeed,
they are usually defined by plain text documents [ZSLZ08], which causes two major prob-
lems. The first one is that maintaining and modifying these documents are complex tasks
and errors are hard to detect. Therefore, continuity management can be supported by pro-
viding techniques for a semi automated generation of continuity plans based on precise
and concise snippets. The second problem is that there is no adequate tool support for
analysing the continuity documents with respect to their correctness, consistency and their
conformance to the given functional and non-functional requirements. For this reason, the

4.2 Operational Semantics and Analysis of Business Process Models 83

quality of these documents cannot be ensured by formal techniques, but only by manual
evaluation.

4.2 Operational Semantics and Analysis of Business Pro-
cess Models

In order to analyse WDEPC business process models this section first defines a formal oper-
ational semantics using the concepts of graph transformation and subobject transformation
systems as presented in Ch. 3. Furthermore, we show how functional and non-functional
requirements are formalized and checked verified for concrete process executions.

Based on the formal operational semantics, which is directly generated from the abstract
syntax of a WDEPC model, we present in Sec. 4.2.2 how process runs are computed and
analysed with respect to their equivalent process runs. This analysis includes the combina-
tion of parts of the standard process model with the additional continuity snippets for sup-
porting business continuity management. As main results we show by Thm. 4.2.7 that the
notion of permutation equivalence introduced in Sec. 3.2 leads to the complete set of equiv-
alent process runs to a given one. Furthermore, we show by Thm. 4.2.10 that the equiva-
lence preserves the validity of process runs concerning the functional and non-functional
requirements, where we mainly focus on security requirements as non-functional require-
ments.

The analysis results of this section build the basis for the generation of equivalent stan-
dard process runs and continuity process runs for different combinations of possible fail-
ures in Sec.4.3. The proposed operational semantics and analysis techniques for WDEPC
models, however, are of general nature and can be applied to other process modelling lan-
guages as well with minor changes.

4.2.1 Operational Semantics Based on Graph Transformation

Business process models given by EPCs often consist of chains of functions. The interme-
diate events imply virtual dependencies of consecutive functions, even if these dependen-
cies do not exist in the real process. In the following, we describe the construction of a
graph grammar GG in order to provide a formal operational semantics of the loan granting
process (LGP) modeled in Sec. 4.1.1.

Given a WDEPC model describing a business process then its operational semantics
is derived by constructing a graph grammar, which directly induces a subobject transfor-
mation system according to Sec. 3.3. The construction of the operational semantics can
be performed automatically based on the underlying abstract syntax of WDEPC-models.
Each function in the WDEPC model corresponds to one rule, or, in the case that a junction

84 Behaviour Analysis and Optimization of Visual Enterprise Process Models

node like a fork occurs, the function node induces one rule for each possible continuation.
The induced STS ensures that the semantics is not ambiguous in the way that data elements
with the same name cannot be produced twice during an execution of the model, because
each creation can correspond to different concrete values.

Functional requirements of the process are defined as additional graph transformation
rules within the graph grammar. A functional requirement rule specifies which of the data
elements have to be created during the execution of the process for a certain combination of
control events. In the presented example we have the requirement that either the customer
is not accepted or the contract shall be approved and a closing date has to be set.

Definition 4.2.1 (Operational Semantics of WDEPC models). Given the abstract syntax
graph GM of a WDEPC business process model M , then the corresponding graph gram-
mar GG = (TG , SG , P, π) defining its operational semantics is constructed as follows:

• The type graph TG contains the nodes and edges of the abstract syntax graph GM ,
where nodes with same label and type that occur several times in the WDEPC are
identified and occur only once in TG . Analogously, edges with the same source and
target node and same type are identified and appear only once in TG .

• The start graph SG consists of the nodes for the actors and the resources only.

• The set of rules P contains one rule p = (L ← K → R) for each function node F
in GM . The left hand side L of a rule p contains the actors connected to the function
node as well as the connnected input data elements with its resources and the edges
between these elements. The graph K = L and the right hand side R additionally
contains the function node, the output data elements, and the edges that connect the
nodes as given in GM . A rule may be extended, if it is connected to a control event
as specified in the next item.

• An event in the WDEPC M is a control event, if its frame has an additional line or
the event is the successor of a junction node. If a control event is the successor of
a function, then the RHS of the rule for the function is extended by this event. If a
control event is a direct or indirect predecessor of a function then all rule components
(L, K and R) are extended by this event. A function is an indirect predecessor of
an event, if there is a path of successor edges (nextx, x ∈ {E,F,EJ, JE, FJ, JF})
from the event to the function in the abstract syntax graph GM .

Figure 4.5 shows the abstract syntax graph GLG for the visual WDEPC business pro-
cess model LG in Fig. 4.2. The type graph TG for the graph grammar GGLG =

(TGLG, SGLG, PLG) is obtained from Fig. 4.5 by identifying all nodes with the same label
and some of their adjacent edges according to Def. 4.2.1. The necessary identifications
are visualized in Fig. 4.5 by grey fill colour for nodes and grey line colour for edges. A

4.2 Operational Semantics and Analysis of Business Process Models 85

:atA

:in

:atR

:out
:toF

CustomerArrived:

Event

GetCustomerIdentity:

Function

CuID_E:

External_Data

Address_E:

External_Data

CV_E:

External_Data

RM:

Actor

C:

Actor

RM:

Actor

:toF

:nextF

:out

:out

:atA

:atA

IDCollected:

Event

:nextE

GetCustomerDemand:

Function
CD_E:

External_Data

RM:

Actor

RM:

Actor

C:

Actor

DataCollected:

Event

:nextF

:nextE

toF

toF

:out:atA

StoreIDData:

Function

StoreCDData:

Function

IDDataStored:

Event

DataStored:

Event

:nextF

:nextE

:nextF

:nextE

CuID_E:

External_Data

Address_E:

External_Data

CV_E:

External_Data

RM:

Actor

RM:

Actor

toF

toF

RM:

Actor

RM:

Actor

CD_E:

External_Data

:atA

:atA

:atA
:in

:in

:in
:atA

Credit-Worthiness:

Function

RatingCustomer:

Function

CustomerAcceptance:

Function

CW_Computed:

Event

RatingComputed:

Event

:nextF

:nextF

:nextF

:nextE

:nextE

J1:

Junction

:nextJE :nextJE

:nextFJ

CW_App:

Actor

Rating_App:

Actor

CA:

Actor

toF

toF

:toF

CuID:

Internal_Data

Address:

Internal_Data

:out

:out

CV:

Internal_Data

:out

DB1:

Resource

:atR

:atR

CD:

Internal_Data

DB1:

Resource

:atR
:out

CuID:

Internal_Data

Address:

Internal_Data

:in

:in

DBSchufa:

Resource

:comR

:comF

CW:

Internal_Data

:outDB1:

Resource

:atR

CuID:

Internal_Data

Address:

Internal_Data
CV:

Internal_Data

CW:

Internal_Data

:in

:in

:in

:in

Rating:

Internal_Data

DB1:

Resource

:out:atR

CuID:

Internal_Data

Rating:

Internal_Data

:in

:in

CreateOptimizedProduct:

Function

CA:

Actor

PriceEngine:

Actor

:toF

:toF

:nextF

PriceComputed:

Event

:nextE

Product:

Internal_Data

DB1:

Resource

CV:

Internal_Data

CW:

Internal_Data

CD:

Internal_Data

:in

:in

:in

:out:atR

DB1:

Resource

Product:

Internal_Data

CuID:

Internal_Data

CoID:

Internal_Data

PP:

Internal_Data

Contract:

Resource

DB2:

Resource

PriceComputed:

Event

CreateContract:

Function

ContractCreated:

Event

RMhasSigned:

Event

:atR
:in

:in

:atR

:atR

:atR

:atR

:out

:out

:nextF

:nextE

RMSignature:

Function

CustomerSignature:

Function

ApproveContract:

Function

ContractSigned:

Event

CashPaid:

Event

ContractApproved:

Event

CustomerAccepted:

Event

CustomerNotAccepted:

Event

RM:

Actor

:toF

CoID:

Internal_Data

SRM(RMID):

Internal_Data

Contract:

Resource

DB2:

Resource

:atR

:atR

:in

:out

:nextE

:nextE

:nextE

:nextF

:nextF

:nextF

:nextF

RM:

Actor

:toF

C:

Actor

CO:

Actor

:toF

:toF

Contract:

Resource

DB2:

Resource

DB2:

Resource

Contract:

Resource

DB3:

Resource

CoID:

Internal_Data

SC:

Internal_Data

CoID:

Internal_Data

SRM(RMID):

Internal_Data

SCO(COID):

Internal_Data

:in

:out

:atR

:atR

:in

:in

:out
:atR

:atR

CaschPayment:

Function

J2:

Junction

:nextE

:nextEJ

CaschReturned:

Function

ContractApp:

Actor

C:

Actor

:toF

:toF

J3:

Junction

:nextJF

:nextFJ

OpenPP:

Event

ClosedPP:

Event

:nextJE

:nextEJ

:nextJE

CloseContract:

Function

:nextF

ContractClosed:

Event

:nextE

CoID:

Internal_Data

MT1:

Internal_Data

DB2:

Resource :atR

:in

:out

C:

Actor

ContractApp:

Actor

:toF

:toF

DB3:

Resource

CoID:

Internal_Data

PP:

Internal_Data

:in

:in

MT2:

Internal_Data

PP:

Internal_Data
:out

:out:atR

:atR

ContractApp:

Actor

:toF

CoID:

Internal_Data

MT1:

Internal_Data

ClosingDate:

Internal_Data
:atR

:in

:in

:out

Figure 4.5: Abstract Syntax graph of the Visual WDEPC business process model LG

marked element denotes that it will be identified with an already occurring element, i.e. the
marking denotes multiple occurrence. Thus, e.g. the node “RM” or the edge “atA” from
“CuID” to “RM” in the top left area of the figure occur several times. In order to increase
readability of the edges we only denoted their meta types and leave the explicit type name
within TG given by an additional ID implicit.

Example 4.2.2 (Operational Rule). Figure 4.6 shows the rule “Store CD Data” of the
operational semantics for the example WDEPC LG and the corresponding fragment of the
WDEPC in concrete and abstract syntax. The rule is constructed according to Def. 4.2.1

86 Behaviour Analysis and Optimization of Visual Enterprise Process Models

Figure 4.6: Snippet for business function “Store CD Data” in concrete/abstract syntax and
corresponding rule of the operational semantics GGLG

and it requires by its left hand side that the input data (CD E, i.e. customer demand as
external data) is available and was retrieved before by the relationship manager (actor
“RM”). Furthermore, the database (DB1) has to be available. The effect of the rule is
the creation of the function node “StoreCDData”, the creation of the output data (“CD”
for customer demand, which is cached and therefore internal) and the connecting edges
between them.

The adjacent edges of the event nodes are not used by any rule in general, because they
do not provide additional information required for the analysis. The reason is that the
relevant events are contained in the same rule as the function, which is reading or creating
the event.

4.2 Operational Semantics and Analysis of Business Process Models 87

By construction, the type graph TG of GGLG corresponds to the abstract syntax of the
WDEPC and is typed over the meta type graph TGMeta for WDEPCs, which is shown in
Fig. 4.1 in Sec. 4.1.1. From GGLG we can directly derive an STS S = (T, P, π) with super
object T = TG . Note that by construction, all rule components as well as the start graph
are subobjects of the super object T .

Remark 4.2.3 (Extended Operational Semantics with Continuity Snippets). Since the ad-
ditional continuity snippets (see Sec. 4.1.2) introduce some additional nodes and edges the
type graph TG – therefore also the start graph SG and the super object T – are extended
accordingly to contain also the additional elements. Furthermore, additional rules for the
snippets are created analogous to the creation of rules for the standard WDEPC business
process model.

The graph grammar defines the operational semantics of a WDEPC in the following
sense. Given a possible execution order of the business function nodes in the WDEPC then
the sequence of corresponding rules for the business functions specifies an STS derivation
starting at the start graph SG of the graph grammar GGLG . Each intermediate graph repre-
sents the current state for the execution of the process and each rule application ensures that
the necessary input data elements are available and furthermore, that they are accessible via
the involved resources to which the particular actor has access.

The four rules in Fig. 4.7 are generated for the first four functions (“Get Customer Iden-
tity” (F1) - “Store CD Data” (F4) of the WDEPC process model. The first two functions
produce data elements that are external to the workflow engine, which is specified within
the rules by the suffix “-external”. The rules for functions F3 and F4 automatically ensure
that the involved actor can access the required data based on the edges of meta type “:atA”.
Thus, the generation of the rules makes explicit the dependencies between the steps and
ensures for availability of the required data elements. The complete grammar containing
17 rules is given in [BHG10]. Note that the grammar forms a subobject transformation
system, i.e. each STS derivation step will result in a subobject of the generated type graph
TG . Therefore, the specified types of the nodes and edges within a rule uniquely determine
the matching into an intermediate transformed graph.

Each rule in GGLG corresponds to a function in the WDEPC LG , where some rules
correspond to the same function if the function is connected to a junction element and the
rules specify the different possible execution continuations at this point.

88 Behaviour Analysis and Optimization of Visual Enterprise Process Models

Figure 4.7: First four rules of graph grammar GGLG

The loop within the WDEPC LG at function F14 : “Cash returned” is specified within
the generated grammar by two rules shown in Fig. 4.8. The first rule “CashReturnedLoop”
specifies the effect of one iteration of the loop. This means that the operational semantics
of the WDEPC LG given by the derived graph grammar abstracts from arbitrary amounts
of loop executions and only considers one iteration, because arbitrary amounts would not
allow for the generation of all process variants. An analysis concerning the termination of
process components with loops can be performed separately with additional techniques like
e.g. using the model transformation to the process algebra mCRL2 in [BHG11, BHG10].
The second rule generated from the loop is “CashReturnedEnd”. The only effect of this rule
is the creation of the event node “ClosedPP”, which enables the execution of its successor
steps.

4.2 Operational Semantics and Analysis of Business Process Models 89

Figure 4.8: Rules of graph grammar GGLG concerning the loop

A WDEPC model may be ambiguous. There may be several functions that create the
same data element, i.e. which store the data element but do not read it from a resource. If
there is a possible execution sequence that involves the creation of the same data element
twice we consider this execution as ambiguous, because the data values may be different
and the depending succeeding steps may use one or the other value nondeterministically.
For this reason, our generation does only provide those execution paths in which the same
data element is created only once, which is ensured by checking the dependency condition
called “forward conflict”.

As mentioned before, all executions can be verified to conform to the given functional
and security requirements that are formalized as graph constraints. For this purpose, the
corresponding STS derivation is analysed by checking that the terminal graph satisfies the
graph constraints.

As an important example for a security requirement we illustrate the handling of the
four-eye principle specified by the graph constraint in Fig. 4.9. Thereafter, we will focus
on the functional requirements. The functions “RM Signature (F10)” and “Approve Con-
tract (F12)” have to be performed by different persons in order to ensure a separation of
concerns. The graph constraint is given by a negation of the formal constraint “samePer-
son”, which states the following: If the premise P is fulfilled, then also the conclusion
graph C has to be found, i.e. in this case the two functions are executed by the same person
as specified by the connecting edges. Note that the premise graph is empty, and therefore
its precondition is always satisfied.

90 Behaviour Analysis and Optimization of Visual Enterprise Process Models

Figure 4.9: Graph Constraint: 4 Eye Principle

The shown constraint is a meta constraint, i.e. it is not fully typed over the type graph
TG of the constructed graph grammar for the operational semantics. The conclusion graph
C contains a node of the meta type “Actor”, for which the type within TG is not specified.
Thus the effective constraint is obtained by instantiating the meta constraint into a set
of graph constraints typed over TG . This construction is introduced by the following
definition using the notion of instantiated graphs, which corresponds to Def. 3.3.13 in
Ch. 3.

Definition 4.2.4 (Instantiated Graph). Given a typed graph (G, tG) typed over TGMeta ,
a type graph (TG , tTG) typed over TGMeta , and a partial mapping from G to TG via
the span of injective typed graph morphisms G ←d− D −typeD−−−→ TG typed over TGMeta .
An instantiation of G within TG is given by (G, typeG : G → TG), where typeG is an
injective graph morphism typed over TGMeta and typeG ◦ d = typeD as shown below. The
set of all instantiated graphs for G and TG via d is denoted by Inst(d,G,TG).

TGMeta

TG

tTG

OO

(=)

D
d

//

typeD

::

G

typeG

dd

tG

gg

(=)

Using the notion of instantiated graphs we define meta graph constraints based on in-
stantiated graph constraints.

Definition 4.2.5 (Meta Graph Constraint). Given a graph constraint PC(a) = P −a→ C

with injective a typed over TGMeta , a type graph TG typed over TGMeta , and a partial
mapping from P to TG via a span of injective typed graph morphisms P ←d1−− D −d2−→ TG

typed over TGMeta . The graph constraint (PC(a), d) is called a meta graph constraint. An
instantiated graph constraint of PC (a) is given by (P, typeP) −a→ (C, typeC,i)(i∈I), where
(P, typeP) is an instantiated graph in Inst(d, P,TG) and (C, typeC,i)(i∈I) is an ordered list
of the set Inst(a, C,TG) using the partial mapping from C to TG via the span of injective
typed graph morphisms C ←a− P −typeP−−−→ TG . The set of instantiated graph constraints is
denoted by Inst(d,PC (a),TG).

4.2 Operational Semantics and Analysis of Business Process Models 91

A graph G typed over TG satisfies the meta graph constraint, written G |= (PC (a), d),
if for each instantiated constraint (P, typeP) −a→ (C, typeC,i)(i∈I) of in Inst(d, PC(a),TG)

there is an i ∈ I , such that G |= PC (a) with a : (P, typeP) −a→ (C, typeC,i).

Note that the set of instantiated graph constraints may contain several constraints but it
may also be empty meaning that it is always fulfilled. For the given graph constraint in
Fig. 4.9 we derive exactly one instantiated graph constraint with one conclusion as shown
in Fig. 4.10.

Figure 4.10: Instantiated security graph constraint for the 4-eye principle

Indeed, the complete example with all continuity snippets can lead to a situation where
the four-eye principle is not respected. There are several continuity snippets for the func-
tions “RM Signature (F10)” and “Approve Contract (F12)” and in the case that both, the
relationship manager and the credit officer, are temporarily unavailable there is one com-
bination of snippets where both actors are replaced by the credit advisor. In order to avoid
such a situation we use the graph constraint and generate application conditions for the
graph rules that ensure the four-eye principle.

The considered functional requirements are given by some alternative sets of required
data elements and required events which specify the minimal effect of a valid execution of
the process model. Each set Req induces a graph constraint PC(a : P → C) given by
P = ∅ and C containing all nodes that correspond to the required elements in Req.

Since each set of required elements concerns a particular exeution of the WDEPC model,
only one of the corresponding constraints has to be satisfied valid execution via the oper-
ational rules. Therefore, the combined functional requirement of the WDEPC model is a
disjunction of the single functional requirement constraints.

In our case study the set of required data elements is given by Req1 =

{CustomerAccepted, CoID, SC,ClosedPP,ClosingDate} and Req2 =

{CustomerNotAccepted}. In the first case the customer is accepted and the contract
is created, signed as well as closed. In the second case the customer is not accepted and
therefore, no additional data has to be created.

92 Behaviour Analysis and Optimization of Visual Enterprise Process Models

4.2.2 Equivalent Runs

Based on the formal construction of the operational semantics for business process models
in the previous section we now present how these process models are analysed concern-
ing equivalence of process executions and conformance to functional and non-functional
requirements. For this purpose, we use the general analysis techniques for permutation
equivalence in Ch. 3 and formalize functional requirements and security requirements by
graph constraints [EEPT06]. By checking the specified graph constraints we can verify
compliance of the processes with respect to the security requirements. The first main result
of this section (see Thm. 4.2.7) shows how equivalent process executions are obtained and
that the technique is complete in the sense that for a given execution all equivalent ones
can be derived. Furthermore, for each computed process execution that satisfies the given
functional and security requirements the second result given by Thm. 4.2.10 ensures that
also the generated equivalent process executions satisfy these requirements.

As described in Sec. 4.2.1 the operational semantics of a WDEPC model for a business
process abstracts away most of the more synthetically specified event nodes between the
business function nodes and therefore enables a flexible notion of equivalence, which is
based on the special control events and, most importantly, the implicit data flow dependen-
cies between the business functions and their actors. This way, the order of the execution
steps is not completely fixed, such that a reordering of them is possible, which enables the
generation of several equivalent execution sequences.

In the case that some components are not available, the process execution does not have
to immediately stop, because the workflow engine can offer to continue with another equiv-
alent process run, in which the critical step will appear at a later stage, such that the prob-
lem can be possibly resolved in between. Furthermore, the workflow engine can choose
an alternative execution, which differs only for the subsequent steps, where possibly some
continuity snippets are used.

According to Def. 4.2.6 below, two process runs are equivalent, if they are permutations
of each other. Furthermore, the definition specifies under which conditions a sequence
of steps of the process model is executable with respect to the operational semantics of a
WDEPC. In order to improve efficiency of the analysis and the generation of process vari-
ants in Sec. 4.3 some security requirements can be transformed into application conditions
of the rules of the operational semantics using the construction according to Def. 7.11 in
[EEPT06] for graph constraints. This way, some security requirements are checked on-the-
fly instead of checking them on the terminal graphs of a derivation only. For this reason,
the rules of the operational semantics may contain some negative application conditions
(NACs). Hence, the notion of equivalent process runs is already given for rules with NACs.
Nevertheless, the complete check of process runs concerning the satisfaction of the func-

4.2 Operational Semantics and Analysis of Business Process Models 93

tional requirements and the remaining security requirements includes the validation of the
corresponding constraints.

Definition 4.2.6 (Equivalent Process Runs). Given a business process BP modelled as
a WDEPC and its continuity snippets CS, and let GG be the derived graph grammar
GG = (TG, SG, P, π) with induced STS S defining the operational semantics of BP
and CS, where the rules in P are possibly extended by some NACs ensuring additional
requirements. A sequence s = (p1, . . . , pn) of rules in the set of rules P is called executable
process run, if there is a derivation SG =

p1
=⇒ G1 =⇒ . . . =

pn
=⇒ Gn in the STS S.

Two sequences s1 = (p1, . . . , pn) and s2 = (q1, . . . , qm) of rules in P are called equiva-
lent process runs, if they are both executable and s2 is a permutation of s1.

As first main result of this section we show by Thm. 4.2.7 below that for each executable
process run the set of its equivalent runs can be obtained using the STS that is induced by
the operational semantics of the WDEPC business process model. This means that we can
apply the general techniques of Ch. 3 to analyse equivalence of process runs of WDEPC
models.

Theorem 4.2.7 (Equivalent Process Runs). Given a WDEPC business process model, its
continuity snippets and the derived graph grammar GG = (TG, SG, P, π) specifying the
operational semantics of them, where the rules may contain NACs. Let s1 = (p1, . . . , pn)

be an executable process run via derivation d = (SG =
p1
=⇒ G1 =⇒ . . . =

pn
=⇒ Gn) and let

S = STSd. Then, a sequence s2 is an equivalent process run of s1 iff s1
π
≈S s2, i.e. if s2

and s1 are permutation-equivalent sequences according to Def. 3.4.10.

Proof. “⇒”: Let s2 be an equivalent process run of s1 then we have that s2 is a permutation
of s1 and both sequences induce derivations in S. According to Rem. 3.4.8 switch equiv-
alence without NACs leads to the complete set of equivalent permutations. By Def. 4.2.6
we know that both sequences are executable and therefore, they respect all NACs. By
Thm. 3.4.12 and Cor. 3.4.14 we further know that drv(s1) and drv(s2) being permutation-
equivalent derivations implies that s1 and s2 are permutation-equivalent sequences.

“⇐”: By Thm. 3.4.12 in Sec. 3.4 we have that two permutation equivalent sequences
s1

π
≈S s2 in STS (d) specify two permutation-equivalent transformation sequences

drv(s1)
π
≈ drv(s2). By Fact 3.4.11 we further have that drv(s2) is a derivation in S.

The rules in the induced STS of GG have possibly additional NACs, which cannot be em-
bedded in the super object T of STS (d). Therefore, none of these additional NACs occurs
in an intermediate graph of drv(s2) and thus, drv(s2) is also a derivation in the induced
STS of GG.

Example 4.2.8 (Equivalent Process Runs). There are several equivalent process execu-
tions for WDEPC model LG presented in Fig. 4.2 in Sec. 4.1.1. Consider for example the

94 Behaviour Analysis and Optimization of Visual Enterprise Process Models

case that a client is accepted and all necessary steps are performed. Based on the rules
for the operational semantics we can construct the following derivation in the STS that
corresponds to the graph grammar GG for the operational semantics.
d = (SG =

Get Customer Identity
=============⇒ G1 =

Get Customer Demand
=============⇒ G2 =

Store ID Data
========⇒

G3 =
Store CD Data
=========⇒ G4 =

Credit Worthiness
===========⇒ G5 =

Rating Customer
==========⇒ G6 =

Customer Acceptance
============⇒

G7 =
Create Optimized Product
===============⇒ G8 =

Create Contract
=========⇒ G9 =

RM Signature
========⇒ G10 =

Customer Signature
============⇒

G11 =
Approve Contract
==========⇒ G12 =

Cash Payment
========⇒ G13 =

Cash returned Loop
===========⇒ G14 =

Cash returned End
===========⇒

G15 =
Close Contract
========⇒ G16)

Based on the derived dependency relations of the STS STS (d) there are several
sequences s′ of rule names which are permutation-equivalent to s1 = seq(d) =

〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16〉. Consider, e.g. the following permutation-
equivalent sequences:

s2 = 〈2, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16〉
s3 = 〈1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16〉
s4 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12, 13, 14, 15, 16〉

Sequence s2 is derived from sequence s1 by switching the first two independent steps
meaning that at first the customer is interviewed for retrieving his demand and thereafter,
his personal data is processed. Sequence s3 is obtained by switching the third and the forth
step, which are independent as well, such that the order in which the customer data is typed
in the workflow engine can be performed in any order. Finally, sequence s4 specifies that
the customer may sign the contract(11) before the relationship manager has signed it and
the relationship manager signs thereafter (10). Since all these sequences of the steps are
permutation-equivalent to s1 within STS (d) we can apply Thm. 4.2.7 and have that the
sequences specify equivalent process runs.

In order to additionally ensure the functional and security requirements of the con-
structed process runs for a given WDEPC business process model we introduce the notion
of valid process runs that respect the requirements, which are therefore formalized as graph
constraints.

Definition 4.2.9 (Valid Process Runs). Given a business process BP modelled as a
WDEPC and its continuity snippets CS, and let GG be the derived graph grammar
GG = (TG, SG, P) with induced STS S defining the operational semantics of BP and
CS. Let CON be a set of graph constraints typed over TG that specify functional and
non-functional requirements. A sequence s = (p1, . . . , pn) of rules in the set of rules P is
called valid process run, if it is executable via a derivation SG =

p1
=⇒ G1 =⇒ . . . =

pn
=⇒ Gn in

the STS S, such that for each constraint PC(a) ∈ CON we have that Gn |= PC(a).

Once the validity of one process run is checked we have by Thm. 4.2.10 below that we
can directly derive the equivalent process runs that also respect the functional and security

4.3 Modification and Optimization 95

requirements according to Def. 4.2.9. This means that there is no further need for checking
the constraints.

Theorem 4.2.10 (Valid Process Runs). Given a graph grammarGG = (TG, SG, P) spec-
ifying the operational semantics of a WDEPC process model and its continuity snippets
with induced STS S. Let CON be a set of graph constraints typed over TG that spec-
ify functional and non-functional requirements and let s1 = (p1, . . . , pn) be a valid pro-
cess run. Then any permutation-equivalent sequence s2 of s1 (s1

π
≈S s2) according to

Def. 3.4.10 is a valid process run.

Proof. By Thm. 4.2.7 we have that s2 is an equivalent process run of s1 and therefore,
s2 is executable. By permutation equivalence we further have that the derivations drv(s1)

and drv(s2) are switch-equivalent without NACs and therefore, the terminal graphs are
isomorphic and by definition we know that Gn |= PC(a) for each constraint PC(a) ∈
CON .

The equivalent process runs in Ex. 4.2.8 already satisfy the given functional and security
requirements as given in Sec. 4.2.1. In particular, we have that the customer is accepted,
the required data elements (CoID, SC, Closing Date) are created and the payment plan
is closed. Furthermore, the four-eye principle formalized by the contraint in Fig. 4.9 is
ensured, because we have that the relationship manager and the credit officer sign the
contract. However, Example 4.2.8 only shows some possible reorderings. The automated
and complete generation of the equivalent process runs is presented in the next sections.

4.3 Modification and Optimization

In order to support business continuity management the following section shows how dif-
ferent process executions can be generated from a given WDEPC process model and ad-
ditional continuity snippets. For this purpose we use the analysis techniques in Sec. 4.2
based on the operational semantics of WDEPC business process models.

On the one hand, the generation of equivalent reorderings allows for optimization with
respect to certain criteria, e.g. in order to execute certain business functions in parallel and
to reduce some annotated costs. On the other hand, the additional continuity snippets are
used to derive complete continuity processes for different combinations of failures. This
way, the generation can either purely construct equivalent process runs of the WDEPC pro-
cess model or, for the more general case, construct also those process runs that use combi-
nations of continuity snippets, which enable executions when some components or actors
are not available. Furthermore, the generation technique includes a validation of the func-
tional and security requirements, such that the generated process variants are sound with

96 Behaviour Analysis and Optimization of Visual Enterprise Process Models

respect to these requirements. A summary of the achievements with respect to the problems
of business continuity management and the formulated aims is presented in Sec. 4.3.2.

4.3.1 Generation of Valid Process Variants and Continuity Processes

Once a business process model given by a WDEPC and its continuity snippets are mod-
elled they can be analysed using the presented techniques in Sec. 4.2 based on the formal
operational semantics of these models. This analysis further enables the construction of
concrete valid process runs. Based on such concrete process runs we present in this section
how all equivalent and valid ones are generated. For this purpose, the dependency net of the
corresponding STS is generated according to Sec. 3.5 using the prototypical tool support
described in Ch. 7 and presented in [BHG11]. The generated dependency net purely spec-
ifies the dependencies between the process functions and is used to generate the universe
of the business process variants and the possible continuity processes.

In order to ensure the security requirements during the generation of the reachability
graph the considered example constraint in our case study ensuring the four-eye-principle
is transformed into negative application conditions for the rules as described in Sec. 4.2.1
using the concepts in [EEPT06]. The generation ensures that functional as well as security
requirements are respected in the way that steps that violate the security requirements are
not performed and paths that finally do not fulfil the functional requirements are filtered
out. This way, the universe of valid process paths is generated as shown in Fig. 4.11.

The first graph in Fig. 4.11 shows the possible paths of the standard process in Fig. 4.2,
where the middle node represents the starting point. Each arrow in the graph represents one
step. At first, there are two choices for executing a function, namely, either the relationship
manager records the customer identity or the customer demand. In any case the next step
can be the retrieval of the other data or the storage of the already recorded data. This
flexibility is not directly present in the WDEPC model, but by leaving out the syntactic
events that fix the order of the steps, we derive this user-friendly flexibility.

The overall amount of possible sequences of the standard process is 126. All those se-
quences are semantically equivalent with respect to the given functional requirements. The
second graph (from left) shows the last 6 functions including the loop at function “F14”
leading to 7 steps for each path. Here again, there are two possibilities at the beginning:
either the relationship manager signs the contract first or the customer. Usually the re-
lationship manager will sign first, but there might also be few cases in which this is not
the case because of time constraints of the customer. Finally, we derive 6 functional valid
sequences for this part of the workflow.

4.3 Modification and Optimization 97

Figure 4.11: Universe of Standard and Continutity Paths

The graphs on the right hand side of Fig. 4.11 show the additional continuity process
paths that are possible using one or more continuity snippets in Fig. 4.12 for the business
functions “RM Signature (F10)” and “Approve Contract (F12)”.

One or both of the involved actors (RM and CO) at functions F10 (RM Signature) and
F12 (Approve Contract) may be unavailable. In these cases, the functions can be replaced
using some of the continuity snippets in Fig. 4.12. These functions have to respect the four-
eye principle as discussed in Sect. 4.2.1. Indeed, if the snippets F10(C2) and F12(C2) are
chosen, then both actors are replaced by the credit advisor. But since the generation checks
the security constraint shown in Fig. 4.9 on-the-fly and provides only the valid sequences,
this combination is filtered out.

98 Behaviour Analysis and Optimization of Visual Enterprise Process Models

Figure 4.12: Continuity snippets for the functions F10 and F12

The overall amount of additional continuity paths is 252, i.e. there are 252 additional
possible process runs that contain at least one continuity snippet. For the last 6 functions
of the workflow part there are 12 additional paths as shown by the lower right reachability
graph in Fig. 4.11.

4.3.2 Summary of the Solution

Concerning the discussed list in Sec. 4.1.3 of the main problems of business process mod-
elling on which we focussed in this study we now evaluate to which extend the presented
techniques for the formal analysis of business process models and for the generation of

4.3 Modification and Optimization 99

equivalent as well as validated standard and continuity runs can be used to achieve the
specified goals (see Tab. 4.2 below) for solving the specified problems and improving the
modelling process.

Table 4.2: Goals for business process modelling

Criterion Goal
1. Form of Process Models Comprehensive, extensive, human-centric visual no-

tation, decreased amount of text documents
2. Form of Requirements Text documents plus formalized constraints
3. Form of Continuity Plans compact and concise models
4. Evaluation of Continuity
Plans

semi automated, formally verified results

5. Maintenance improved maintainability, continuity plans are partly
updated automatically

6. Consistency partly automated formal analysis, reduced redundan-
cies

First of all, the introduced extended version of event driven process chains (EPCs), called
workflow engine based and data-flow oriented EPCs provides the basis for analysing data
flow dependencies in a systematic way. For this purpose we defined a formal operational
semantics for WDEPC models, which can be automatically constructed from the underly-
ing abstract syntax. Therefore, the business process models do not have to be specified in
a different notation. This way, we meet the goal for criterion 1 (form of process models) as
follows. The business process models are human-centric using the common existing visual
notation. The presented concept of continuity snippets for modelling alternative process
parts for specific failures improves the modelling of continuity plans and facilitates the
reduction of text documents that specify complete continuity plans separately for certain
failures. Moreover, the continuity snippets can be combined for different possible combi-
nations of possible failures, such that the coverage of the continuity plans can be increased
leading to extensive but still comprehensive models.

Concerning criterion 2 (form of requirements) we presented in Sec. 4.2.1 how functional
and security requirements can be formalized by graph constraints. Based on the formal
operational semantics given by a graph grammar and an induced subobject transformation
system the presented formalized functional and security requirements can be automatically
verified for the generated process runs as presented in Sec. 4.3.1. Usinge the new notion of
continuity snippets we also meet the goal for criterion 3 (form of continuity plans), which
demands compact and concise models and the snippets substantially reduce the size of
the continuity models. By Thms. 4.2.7 and 4.2.10 the validity of the generated equivalent
process runs is formally ensured, which is important for compliance (criterion 4). For

100 Behaviour Analysis and Optimization of Visual Enterprise Process Models

this reason, the generation of equivalent process runs and additional continuity variants
provides formally verified results, which ensure the quality of the models.

Since the continuity snippets are kept small the efforts for maintenance (criterion 4) are
reduced, because modifications of the standard process usually do not require updates of
the snippets, if there if no overlap of business functions. The continuity processes can
be automatically updated using the generation techniques. In comparison to maintaining
complete continuity process models, the amount of redundancies is substantially reduced,
which is required by the goal for criterion 6 (consistency).

Moreover, the presented generation techniques provide several general advantages. In
the case of an emergency the management can look at different options and make informed
decisions. This way, the technique provides a partly automated recommender service. Fur-
thermore, continuity plans can be checked and ranked regarding their effectiveness and
efficiency leading to optimized continuity plans. Depending on the occurring concrete fail-
ures, a workflow engine can select an emergency process based on the already computed
set of continuity process runs. It can reconfigure the running process instance in order to
optimize time and cost functions while respecting the functional and security requirements.
Furthermore, the generation allows for fast reactions of the workflow engine towards up-
coming failures, which is important for real-time requirements concerning financial trans-
actions. Finally, the business process model and its corresponding continuity snippets can
be stored separately, which reduces the complexity of process models and supports ideally
the bank’s decentralized modelling workflows.

Besides the consistency checks with respect to the functional and security constraints we
show in Ch. 6 how the business process models are checked for conformance to their cor-
responding business service structure models using the model transformation techniques
of Ch. 5. Moreover, we presented in [BHG11] how the process models can be analysed for
information-flow properties, like partial distribution of confidential data based on analysis
techniques and tool support for the mCRL2 process algebra.

Summing up, the presented results and techniques substantially support the overall mod-
elling process and provide important contributions concerning the specified goals for busi-
ness process modelling including business continuity management.

Chapter 5

Model Transformation Based on Triple
Graph Grammars

Model transformations based on triple graph grammars (TGGs) have been introduced by
Schürr [Sch94] and are used for the specification and execution of bidirectional model
transformations between domain specific languages (DSLs). The power of bidirectional
model transformations is based on the simultaneous support of transformations in both
forward and backward direction. This way, models can be maintained in two repositories
– one for diagrams in the source domain and one for diagrams in the target domain. The
modellers can work in separated teams, and the specified model transformations are used
to support the interchange between these groups and their models. In particular, a modeller
can generate models in one domain from models in another domain using the concepts for
model transformation in Sec. 5.1 and he can additionally validate and ensure syntactical
correctness and completeness using the results and analysis techniques in Sec. 5.2.

In addition to the general advantages of bidirectional model transformations, TGGs sim-
plify the design of model transformations. A single set of triple rules is sufficient to gen-
erate the operational rules for the forward and backward model transformations. Further-
more, model transformations based on TGGs preserve a given source model by creating a
separate target model together with a correspondence structure. This way, the given mod-
els are not modified, which is especially important for data base driven model repositories.
Moreover, TGGs specify model transformations based on the abstract syntax of DSLs and
are therefore not restricted to specific types of modelling languages.

The first main contribution of this chapter shows the main challenges for model trans-
formations as well as main concepts and constructions for model transformations based
on TGGs. Apart from model transformations based on forward rules (Sec. 5.1.1), in-
cluding an on-the-fly construction, we additionally present model transformations based
on forward translation rules (Sec. 5.1.2), where we improved further the execution of
model transformations by additional translation attributes. As the first main result we

102 Model Transformation Based on Triple Graph Grammars

show the equivalence of both approaches in Thm. 5.1.34. Sec. 5.2 presents the sec-
ond main contribution concerning the analysis of model transformations, where we show
syntactical correctness, completeness and termination of model transformations based on
TGGs (Thm. 5.2.1, Thm. 5.2.2, Thm. 5.2.4 and Cor. 5.2.6). Moreover, we provide pow-
erful results for analysing functional behaviour of model transformations (Thms. 5.2.27
and 5.2.31) and information preservation (Thms. 5.2.34 and 5.2.37). Finally, in Sec. 5.3 we
present techniques for improving a model transformation with respect to efficiency based
on the previous results, techniques for the detection and reduction of unintended behaviour
(Thm. 5.3.7), and we provide a benchmark that validates the power of the approach.

5.1 Concepts and Characteristics

Model transformations appear in several contexts, e.g. in the various facets of model driven
architecture [Gro09] encompassing model refinement and interoperability of system com-
ponents. The involved languages can be closely related or they can be more heterogeneous,
e.g. in the special case of model refactoring, the source language and the target language
are the same. From a general point of view, a model transformation MT : VLS V VLT be-
tween visual languages transforms models from the source language VLS to models of the
target language VLT . Main challenges were described in [SK08] for model transformation
approaches based on triple graph grammars. In [HHK10] we extended this list and also the
scope, and we described general challenges for model transformations. The extended list
of challenges is given below divided into two dimensions. In the subsequent sections of
this chapter we present main results for TGGs concerning these challenges.

There are two dimensions which contain major challenges for model transformations,
concerning on the one hand functional aspects, and on the other hand non-functional
aspects. The first dimension, called functional dimension, concerns the reliability of
the produced results. Depending on the concrete application of a model transformation
MT : VLS V VLT , some of the following properties may have to be ensured.

1. Syntactical Correctness: For each model MS ∈ VLS that is transformed by MT the
resulting model MT has to be syntactically correct, i.e. MT ∈ VLT .

2. Semantic Correctness: The semantics of each model MS ∈ VLS that is transformed
by MT has to be preserved or reflected, respectively.

3. Completeness: The model transformation MT can be performed on each model
MS ∈ VLS . Additionally, it can be required thatMT reaches all modelsMT ∈ VLT .

4. Functional Behaviour: For each source model MS , the model transformation MT

will always terminate and lead to the same resulting target model MT .

5.1 Concepts and Characteristics 103

The second dimension, called non-functional dimension, concerns usability and applica-
bility aspects of model transformations. Therefore, some of the following challenges are
also main requirements.

1. Efficiency: Model transformations should have polynomial space and time complex-
ity. Furthermore, there may be further time constraints that need to be respected,
depending on the application domain and the intended way of use.

2. Intuitive Specification: The specification of model transformations can be performed
based on patterns that describe how model fragments in a source model correspond
to model fragments in a target model. If the source (resp. target) language is a visual
language, then the components of the model transformation can be visualized using
the concrete syntax of the visual language.

3. Maintainability: Extensions and modifications of a model transformation should
only require little efforts. Side effects of local changes should be handled and anal-
ysed automatically.

4. Expressiveness: Special control conditions and constructs have to be available in or-
der to handle more complex models, which, e.g., contain substructures with a partial
ordering or hierarchies.

5. Bidirectional model transformations: The specification of a model transformation
should provide the basis for both a model transformation from the source to the
target language and a model transformation in the inverse direction.

In the following sections we present suitable techniques for the specification of model
transformations based on TGGs. These techniques provide validated and verified capabili-
ties for a wide range of the challenges listed above.

5.1.1 Model Transformation Based on Forward Rules

Triple graph grammars [Sch94] are a well known approach for bidirectional model trans-
formations. Models are defined as pairs of source and target graphs, which are connected
via a correspondence graph and its embeddings into the source and target graphs. In
[KS06], Königs and Schürr formalize the basic concepts of triple graph grammars in a set-
theoretical way, which is generalized and extended in [EEE+07] to typed, attributed graphs.
In this section, we review the corresponding main constructions for model transformations
based on triple graph grammars with further extensions according to [EHS09a, EEHP09b].

Triple graphs combine source and target models via a correspondence structure given
by a correspondence graph and two morphisms linking the correspondence graph with the
underlying graphs, which specify the abstract syntax of the source and target models.

104 Model Transformation Based on Triple Graph Grammars

Definition 5.1.1 (Triple Graph). A triple graph G =(GS ←sG−− GC −tG−→ GT) consists of three
graphs GS , GC , and GT , called source, correspondence, and target graphs, together with
two graph morphisms sG : GC → GS and tG : GC → GT .

Throughout this chapter we use a common case study for model transformations from
UML Class Diagrams [OMG07] to relational data base models. In order to keep our exam-
ples simple but expressive we use simplified diagrams, which contain the main concepts of
both languages. In detail, class diagram models use the concepts inheritance, associations
and attributes and relational data base models use primary as well as foreign keys. Fur-
thermore, we use attribution within the abstract syntax, such that an extension to further
concepts of the DSLs is supported.

Figure 5.1: Triple graph instance for CD2RDBM

Example 5.1.2 (Triple Graph). Fig. 5.1 shows a triple graph which specifies a class dia-
gram in its source and a data base model in its target component. The upper line shows
both diagrams in concrete syntax and the lower part shows them in abstract syntax based
on typed attributed graphs [EEPT06]. The example contains all relevant concepts that we
are going to handle within this case study. The first view shows that classes are going to
be translated to tables, attributes to columns and associations to foreign keys. Since data
base models in the plain form do not provide inheritance information, we relate subclasses
(e.g. the node S7 with name “Customer”) to the table that is connected to the super class
already. We will come back to this example triple graph at the end of this section and see
in detail how the models are transformed into each other. But first, we introduce the main
formal concepts for this purpose.

5.1 Concepts and Characteristics 105

In order to define typed triple graphs and triple rules we first define triple graph mor-
phisms, such that we can set up the category of triple graphs TripleGraphs. A triple
graph morphism m = (mS,mC ,mT) : G → H consists of three graph morphisms
mS : GS → HS , mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦mC and
mT ◦tG = tH◦mC . It is called injective if all components are injective. A typed triple graph
(G, typeG) consists of a triple graph G and a triple graph morphism typeG : G → TG for
the typing over TG .

Definition 5.1.3 (Category of Triple Graphs). The category TripleGraphs consists of
triple graphs and triple graph morphisms. Analogously, category TripleAGraphs of
attributed triple graphs is a diagram category over the category of attributed graphs
AGraphs(cf. Def. 3.1.5 in Sec. 3.1). Moreover, given type graphs TG in TripleGraphs

(resp. ATG in TripleAGraphs) we obtain category TripleGraphsTG consisting of
typed triple graphs (resp. TripleAGraphsATG consisting of typed attributed triple
graphs) as slice categories over TripleGraphs (resp. TripleAGraphs).

In [EEE+07] we have shown that TripleGraphs is an M-adhesive category for
the class M of all injective triple graph morphisms. Accordingly, the categories
(TripleAGraphs,M), (TripleGraphsTG ,M), (TripleAGraphsATG ,M) are shown
to beM-adhesive, whereM is the class of morphisms that are injective on the graph part
and isomorphic on the data part for the case with attribution. Therefore, we can apply
the results shown forM-adhesive categories in general. In particular, the Local-Church-
Rosser and Concurrency Thms. are used for showing the fundamental composition and
decomposition theorem for TGGs (Thm. 5.1.14).

Figure 5.2: Triple type graph for CD2RDBM

106 Model Transformation Based on Triple Graph Grammars

Example 5.1.4 (Triple Type Graph). Fig. 5.2 shows the type graph TG of the triple graph
grammar TGG for our example model transformation CD2RDBM from class diagrams to
database models. The source component TGS defines the structure of class diagrams while
in its target component the structure of relational database models is specified. Classes
correspond to tables, attributes to columns, and associations to foreign keys. Throughout
the example, originating from [EEE+07], elements are arranged left, center, and right
according to the component types source, correspondence and target. Morphisms starting
at a correspondence part are specified by dashed arrows. Furthermore, the triple rules
of the grammar shown in Figures 5.4-5.5 ensure several multiplicity constraints, which
are denoted within the type graph. In addition, the source language only contains class
diagrams where classes have unique primary attributes.

Note that the case study uses attributed triple graphs based on E-graphs as presented in
[EEE+07] in the framework of weak adhesive HLR which are special M-adhesive cate-
gories (see Def. 3.1.11).

Triple rules of a triple graph grammar TGG – called TGG-triple rules – specify how
models in the source and target DSL can be synchronously created including the corre-
spondence structures that relate them. This implies that TGG-triple rules are non-deleting,
while triple rules for other purposes may be also deleting as e.g. the generated forward
translation rules in Sec. 5.1.2, where we extend the notion of triple rules to the deleting
case.

Definition 5.1.5 (Triple Rule and Triple Graph Transformation Step). A triple rule tr is an
injective triple graph morphism tr = (trS, trC , trT) : L→ R and w.l.o.g. we assume tr to
be an inclusion. Given a triple graph morphism m : L→ G, a triple graph transformation
step (TGT-step) G =

tr,m
==⇒ H from G to a triple graph H via tr is given by a pushout in

TripleGraphs with comatch n : R→ H and transformation inclusion t : G ↪→ H .

(LS

trS
��

L LC
sLoo

trC
��

tL // LT)

trT
��

(RSR

tr

��
RC

sR
oo

tR
// RT)

L

m
��

� � tr // R

n
��

(PO)

G �
�

t
// H

A sequence of TGT-steps G0 =
tr1,m1
===⇒ G1 =

tr2,m2
===⇒ . . . =

trn,mn
====⇒ Gn is called TGT-

sequence and we write G0 =
tr∗
=⇒ Gn for short. The trace of a TGT-sequence is given by the

composition of the transformation inclusions, i.e. trace(G0) = idG0 and trace(G0 =
tr∗
=⇒

Gn =
trn+1,mn+1
======⇒ Gn+1) = tn+1 ◦ trace(G0 =

tr∗
=⇒ Gn). Moreover, given a subsequence

Gi =
tr ′∗
==⇒ Gj of a TGT-sequence G0 =

tr∗
=⇒ Gn leaving out the first i steps and the last

n − j steps, then the corresponding subtrace is defined by trace(G0 =
tr∗
=⇒ Gn)i,j =

trace(Gi =
tr ′∗
==⇒ Gj).

5.1 Concepts and Characteristics 107

According to [EEE+07] a pushout in TripleGraphs is constructed componentwise in
Graphsand the morphisms sH and tH of triple graph H are induced by the pushout in the
correspondence component as shown in Fig. 5.3 below.

LS

mS

��

''

LCoo //

mC ��

&&

LT

mT ��

''
RS

nS

��

RCoo //

nC

��

RT

nT

��

(GS

tS

&&

G GCoo //
tC

%%

GT)
tT
&&

(HSH
tr "*

HCsHoo tH // HT)

Figure 5.3: Triple Transformation Step in Graphs

Definition 5.1.6. A triple graph grammar TGG = (TG , SG ,TR) consists of a triple
graph TG , called triple type graph, a triple graph SG , called triple start graph, and a set
TR of triple rules.

We require the start graphs of TGGs to be empty, i.e. SG = ∅, which is common prac-
tice (see [Sch94, SK08, EEE+07]) and necessary already for the fundamental composition
and decomposition result in Thm. 5.1.14 at the end of this section. The effect of a non-
empty start graph can be simulated by an additional TGG-triple rule tr : ∅ → SG also
called axiom (cf. [SK08]). However, if explicit non-empty start graphs become of interest
in future applications the results for TGGs will have to be extended to this case.

The language of integrated models VL is generated by all possible transformation se-
quences via the triple rules of a TGG. In order to formalize the domain and codomain of
correct model transformation sequences we define the sets VLS of source and VLT of tar-
get models by a restriction of the integrated models to the source and target components,
respectively.

Definition 5.1.7 (Triple, Source and Target Language). A set of TGG-triple rules TR

defines the triple language VL = {G |∅⇒∗ G via TR} of triple graphs. Source language
VLS and target language are derived by projection to the triple components, i.e. VLS =

proj S(VL) and VLT = proj T (VL), where projX is a projection defined by restriction to
one of the triple components, i.e. X ∈ {S, T}.

Example 5.1.8 (Triple Rules). The triple rules in Fig. 5.4 are part of the rules of the
grammar TGG for the model transformation CD2RDBM . They are presented in short
notation, i.e. left and right hand side of a rule are depicted in one triple graph. Elements
which are created by the rule are labelled with green ”++” and marked by green line
colouring. The rule “Class2Table” synchronously creates a class with name “n” together

108 Model Transformation Based on Triple Graph Grammars

Figure 5.4: Rules for the model transformation CD2RDBM, Part 1

with the corresponding table in the relational database. Accordingly, subclasses are con-
nected to the tables of its super classes by rule “Subclass2Table”. Attributes with type “t”
are created together with their corresponding columns in the database component via the
rule “Attr2Column”.

According to [EHS09a, EHS09b, EEHP09b], we present negative application conditions
for triple rules. In most case studies of model transformations source-target NACs, i.e.
either source or target NACs, are sufficient and we regard them as the standard case. They
prohibit the existence of certain structures either in the source or in the target part only,
while general NACs may prohibit both at once.

Definition 5.1.9 (Triple Rule with Negative Application Conditions). Given a triple rule
tr = (L → R), a negative application condition (NAC) (n : L → N) consists of a triple
graphN and a triple graph morphism n. A NAC with n = (nS, idLC , idLT) is called source
NAC and a NAC with n = (idLS , idLC , nT) is called target NAC.

A match m : L → G is NAC consistent if there is no injective q : N → G such that
q ◦ n = m for each NAC L −n→ N . A triple transformation G ∗⇒ H is NAC consistent if all
matches are NAC consistent.

Example 5.1.10 (Triple Rules with NACs). Figure 5.5 shows the remaining two triple
rules “Association2ForeignKey” and “PrimaryAttr2Column” for the model transfor-
mation “CD2RDBM ”. NACs are specified in short notation using the label “NAC” with

5.1 Concepts and Characteristics 109

Figure 5.5: Rules for the model transformation CD2RDBM, Part 2

a frame and red line colour within the frame. A complete NAC is obtained by compos-
ing the left hand side of a rule with the red marked elements within the NAC-frame. The
rule “Association2ForeignKey” creates an association between two classes and the cor-
responding foreign key and the NAC ensures that there is only one primary key at the des-
tination table. The parameters “an” and “cn” are used to set the names of the association
and column nodes. The rule “PrimaryAttr2Column” extends “Attr2Column” by creat-
ing additionally a link of type “pkey” for the column and by setting “is primary=true”.
Furthermore, there is a source and a target NAC, which ensure that there is neither a
primary attribute nor a column currently present.

From each triple rule tr we derive a source rule trS for the construction resp. parsing of a
model of the source language and a forward rule trF for forward transformation sequences
(see Fig. 5.6). By TRS and TRF we denote the sets of all source and forward rules derived
from the set of triple rules TR. Analogously, we derive a target rule trT and a backward

110 Model Transformation Based on Triple Graph Grammars

rule trB for the construction and transformation of a model of the target language leading
to the sets TRT and TRB.

L = (LS

tr �� trS ��

LC
sLoo

trC ��

tL // LT)

trT��
R = (RS RC

sR
oo

tR
// RT)

triple rule tr

LS = (LS

trS �� trS ��

∅oo

��

// ∅)
��

RS = (RS ∅oo // ∅)
source rule trS

LT = (∅
trT �� ��

∅oo

��

// LT)

trT ��
RT = (∅ ∅oo // RT)

target rule trT

LF = (RS

trF �� id ��

LC
trS ◦ sLoo

trC ��

tL // LT)

trT��
RF = (RS RC

sR
oo

tR
// RT)

forward rule trF

LB = (LS

trB �� trS ��

LC
sLoo

trC ��

trT ◦tL // RT)
id��

RB = (RS RC
sR

oo
tR

// RT)

backward rule trB

LST = (LS

trST �� trS ��

∅oo

��

// LT)

trT��
RST = (RS ∅oo // RT)

source-target rule trST

LI = (RS

trI �� id ��

LC
trS ◦ sLoo

trC ��

trT ◦ tL // RT)
id��

RI = (RS RC
sR

oo
tR

// RT)

integration rule trI
operational rule derived NACs
source rule
trS = (trS,∅,∅)

target NACs are removed and each source NAC
n = (nS, id, id) : L→ (NS ←sN−− LC → LT) is replaced by
nS = (nS,∅,∅) : LS → (LS ← ∅→ ∅)

target rule
trT = (∅,∅, trT)

source NACs are removed and each target NAC
n = (id, id, nT) : L → (LS ← LC −tN−→ NT) is replaced by
nT = (∅,∅, nT) : LT → (∅← ∅→ NT)

source-target rule
trST = (trS,∅, trT)

each source-target NAC
n = (nS, id, nT) : L → (NS ←sN−− LC −tN−→ NT) is replaced
by nST = (nS,∅, nT) : LST → (NS ← ∅→ NT)

forward rule
trF = (id, trC , trT)

source NACs are removed and each target NAC
n = (id, id, nT) : L→ (LS ←sN−− LC → NT) is replaced by
nF = (id, id, nT) : LF → (RS ←tr

S◦sN−−−−− NC → NT)

backward rule
trB = (trS, trC , id)

target NACs are removed and each source NAC
n = (nS, id, id) : L → (NS ← LC −tN−→ LT) is replaced by
nB = (nT , id, id) : LB → (NS ← LC −tr

T ◦tN−−−−→ RT)

integration rule
tr I = (id, trC , id)

all NACs are removed

Figure 5.6: Derived operational rules of a TGG-triple rule

5.1 Concepts and Characteristics 111

Definition 5.1.11 (Derived Operational Rules). Given a TGG-triple rule tr =

(trS, trC , trT) : L → R with source-target NACs the source (trS), target (trT), for-
ward (trF), backward (trB) as well as source-target (trST) and integration rules (tr I)
are derived according to Fig. 5.6, which shows how the rules are derived by taking tr and
redefining some of their components including their NACs.

Note that a source rule trS may be applicable to triple graphsG even if the corresponding
triple rule tr is not applicable, because the left hand side of trS in theC- and T - component
is smaller or equal. For this reason, the set V LS0 of models that can be generated resp.
parsed by the set of all source rules TRS is possibly larger than VLS in Def. 5.1.7 and we
have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}. Analogously, we have
V LT ⊆ V LT0 = {GT |∅ =⇒∗ (GT ← ∅→ ∅) via TRT}.

In the general case, the DSL LS for the source domain is specified separately from the
TGG for the model transformation. The main approaches for the specification of DSLs
are on the one hand meta modelling based on a meta model and a set of well-formedness
constraints (see the MOF-Approach [MOF06]) and on the other hand graph grammars con-
sisting of a type graph, which corresponds to the meta model, and a set of transformation
rules for the generation of the language (see e.g. the Henshin Tool Suite based on EMF-
transformations [ABJ+10]). For this reason, we do not require that LS is equal to either
VLS0 or VLS . It is sufficient that there is an inclusion LS ⊆ VLS0 implying that the model
transformation is capable to handle any source model GS ∈ LS . This separation of the
specification of the source language LS and the specification of the TGG for the model
transformation additionally enables to reduce the complexity of the developed TGG. The
TGG-triple rules do not need to guarantee certain language constraints of the source DSL,
because we can require that the given source model is already well-formed with respect to
the source language.

In order to perform model transformations based on the derived forward rules the ap-
plication of the rules has to be controlled in a suitable way. As we have shown in
[EEE+07, EHS09a] source consistency is a suitable characterization of a control condition
that ensures both, correctness and completeness, which we present in detail in Sec. 5.2.1
concerning the analysis of model transformations. Intuitively, source consistency ensures
that the elements in the source model are translated exactly once and furthermore, that the
derived target model together with the given source model are related, such that they be-
long to the language of integrated models VL = {G | ∅ =

tr∗
=⇒ G via TR} generated by

the set of triple rules TR of the TGG. Thus a model transformation based on forward rules
MTF : VLS V VLT from a visual source language VLS to a target language VLT consist
of the model transformation sequences (GS, G0 =

tr∗F==⇒ Gn, G
T), where GS ∈ VLS is the

given source model, G0 =
tr∗F==⇒ Gn is a source consistent forward transformation sequence

112 Model Transformation Based on Triple Graph Grammars

with G0 = (GS ← ∅ → ∅), Gn = (GS ← GC → GT), tr ∗F is a sequence of applied
forward rules and GT is the resulting target model.

Definition 5.1.12 (Match and Source Consistency). Let tr ∗S and tr∗F be sequences of source
rules tri,S and forward rules tri,F , which are derived from the same TGG-triple rules

tri for i = 1, . . . , n. Let further G00 =
tr∗S=⇒ Gn0 =

tr∗F==⇒ Gnn be a TGT-sequence with
(mi,S, ni,S) being match and comatch of tr i,S (respectively (mi,F , ni,F) for tr i,F) then

match consistency of G00 =
tr∗S=⇒ Gn0 =

tr∗F==⇒ Gnn means that the S-component of the match
mi is uniquely determined by the comatch ni,S (i = 1, . . . , n). More precisely, we have

that mS
i,F = trace(G00 =

tr∗S=⇒ Gn0)
S
i,n ◦ nSi,S = tSn ◦ · · · ◦ tSi ◦ nSi,S .

A TGT-sequence Gn0 =
tr∗F=⇒ Gnn is source consistent, if there is a match consistent se-

quence ∅ =
tr∗S=⇒ Gn0 =

tr∗F==⇒ Gnn.

Note that by source consistency the application of the forward rules is controlled by the
source sequence, which generates the given source model. Furthermore, if a forward se-
quence is source consistent then the corresponding source sequence is also unique, because
the matches and comatches of the source sequence are uniquely derived from the matches
of the forward sequence. The notion of source consistency builds the basis for the follow-
ing composition and decomposition result which shows the one-to-one correspondence be-
tween TGT-sequences based on TGG-triple rules and source consistent forward sequences.
Each TGT-sequence based on TGG-triple rules can be decomposed into a source and a for-
ward sequence that are match consistent, which means that the forward sequence is source
consistent. Vice versa, each source consistent forward sequence G0 =

tr∗F==⇒ Gn leads to a
source sequence and a forward sequence which are match consistent and can be composed
to the corresponding TGT-sequence based on TGG-triple rules.

Remark 5.1.13 (General Assumption for Model Transoformations). In general, we con-
sider a triple graph grammar TGG = (TG , SG ,TR) having an empty start graph
SG = ∅ and triple rules TR with source and target NACs and derived operational source
rules TRS and forward rules TRF .

Theorem 5.1.14 (Composition and Decomposition of TGT-Sequences with NACs).

1. Decomposition: For each TGT-sequence G0 =
tr1=⇒ G1 =⇒ . . . =

trn=⇒ Gn (1)

with NACs there is a corresponding match consistent TGT-sequence
G0 = G00 =

tr1S==⇒ G10 =⇒ . . . =
trnS==⇒ Gn0 =

tr1F==⇒ Gn1 =⇒ . . . =
trnF==⇒ Gnn = Gn (2)

with NACs.

2. Composition: For each match consistent transformation sequence (2) with NACs
there is a canonical transformation sequence (1) with NACs.

5.1 Concepts and Characteristics 113

3. Bijective Correspondence: Composition and decomposition are inverse to each
other (up to isomorphism).

Proof (Idea). The proof is based on the Concurrency and the Local Church Rosser Thms.
for TripleGraphs and shown in given in [EEE+07] for the case without NACs, ex-
tended to the case with NACs in [EHS09a] for injective matching and extended to general
matching and more general application conditions in [GEH11, Gol10]. Given a TGT-
sequence (1), then each step Gi−1 =

tr i,mi
===⇒ Gi can be split into a sequence Gi−1 =

tr i,S ,mi,S
=====⇒

H =
tr i,F ,mi,F
======⇒ Gi by the Concurrency Thm. with possibly some dependency on the source

component. Furthermore, each derived source step Gi−1 =
tr i,S ,mi,S
=====⇒ H is sequentially in-

dependent from all forward steps H ′ =
trj,F ,mj,F
======⇒ Gj with j < i. This allows by the local

Church-Rosser Thm. to switch the steps such that all source steps are moved infront of
the forward steps leading to a match consistent sequence (2). Vice versa, given a match-
consistent sequence (2) we can reorder the sequentially independent steps as before and
we can construct the concurrent TGT-steps pairwise leading to sequence (1).

The additionally derived source-target rules and integration rules are used for model in-
tegration, i.e. the integration of a pair of models, one of the source and one of the target
domain. Model integration is not in the main focus of this thesis; however model trans-
formation and integration are closely related. In [EEH08a, EEH08b] we show a similar
composition and decomposition result for source-target and integration sequences using
the notions “S-T”-match consistency and “source-target consistency”.

Based on the concept of source consistency we now define model transformations based
on forward rules that are derived from the TGG-triple rules of a triple graph grammar.
Thereafter we present an on-the-fly construction for executing these model transformations.

Definition 5.1.15 (Model Transformation based on Forward Rules). A model transforma-
tion sequence (GS, G0 =

tr∗F=⇒ Gn, G
T) based on forward rules consists of a source graph

GS , a target graph GT , and a source consistent forward TGT-sequence G0 =
tr∗F=⇒ Gn with

GS = GS
0 and GT = GT

n .
A model transformation MT : VLS0 V VLT0 based on forward rules is defined by all
model transformation sequences (GS, G0 =

tr∗F=⇒ Gn, G
T) withGS ∈ VLS0 andGT ∈ VLT0.

All the corresponding pairs (GS, GT) define the model transformation relation MTRF ⊆
VLS0×VLT0 based on forward rules. Moreover, the corresponding backward model trans-
formation is defined analogously, where “source” is replaced by “target”, “forward” by
“backward” and we have in particular GT = GT

0 and GS = GS
n .

A model transformation based on forward rules can be executed using the on-the-fly
construction which we introduced in [EEHP09b]. Compared to a direct construction of the

114 Model Transformation Based on Triple Graph Grammars

possible source and forward sequences, which are then checked to be source consistent, the
on-the-fly construction checks source consistency during the construction, such that mis-
leading sequences can be neglected at early stages leading to fewer cases for backtracking.
The main idea is to synchronously build up the source and the forward sequences and to
check for partial source consistency, i.e. for the current comatch of the source step and its
corresponding match of the forward step. For this purpose, we define partial match consis-
tency of the forward step leading to the notion of partial source consistency for the current
forward sequence.

Definition 5.1.16 (Partial Match Consistency). Let TR be a set of triple rules with source
and target NACs and let TRF be the derived set of forward rules with target NACs . A
NAC -consistent sequence

∅ = G00 =
tr∗S=⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn

defined by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅ and
inclusion gn : Gn0 ↪→ G0 is called partially match consistent, if diagram (2) commutes
for all i, which means that the source component of the forward match mi,F is determined
by the comatch ni,S of the corresponding step of the source sequence with gi = gn ◦
trace(G00 =

tr∗S=⇒ Gn0)i,n = gn ◦ tn,S ◦ · · · ◦ ti+1,S .

Li,S
� � tri,S //

mi,S ��

Ri,S
ni,S��(1)

� � // Li,F
(2) mi,F ��

� � tri,F // Ri,F
ni,F��(3)

Gi−1,0
� �

ti,S
// Gi,0

� �

gi
// G0
� � // Gi−1

� �

ti,F
// Gi

Remark 5.1.17 (Partial Match Consistency).

1. If gn = idG0 , partial match consistency coincides with match consistency, i.e. mS
i,F =

gSi ◦ nSi,S for gi = trace(G00 =
tr∗S=⇒ Gn0)i,n = tn,S ◦ · · · ◦ ti+1,S .

2. For n = 0 the partially match consistent sequence is given by g0 : G00 ↪→ G0.

Definition 5.1.18 (Partial Source Consistency). A NAC -consistent forward sequence
G0 =

tr∗F=⇒ Gn is partially source consistent, if there is a source sequence∅ = G00 =
tr∗S=⇒ Gn0

with inclusion Gn0 ↪−gn−→ G0 such that G00 =
tr∗S=⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn is partially match
consistent.

Analogous to source consistency (see Def. 5.1.12), the corresponding source sequence
of a partially source consistent forward sequence is unique. Each match of the forward
sequence fully determines the comatches of the source sequence and therefore, also the
matches of the source sequence. This builds the basis for the on-the-fly construction of
model transformations according to Thm. 5.1.22, where the source sequence is built up
incrementally, and because of uniqueness we do not have to check further candidates.

5.1 Concepts and Characteristics 115

L1,S

G00 G10

L1,F R1,F

G0

R1,S

(1) (2)

C

C

A
G3

C

C

A

T

(3)

G1

C
g1

t1,S

Figure 5.7: Step 1 of the partially match-consistent sequence

Example 5.1.19 (Partial Match and Source Consistency). Let us consider a sequence start-
ing with triple graph G0 (depicted in the centre of 5.7) which represents a class diagram
consisting of a class with a subclass that has a primary attribute. The figures are simplified
by omitting the attribute values.

In the first step (i = 1), shown in Fig. 5.7, we apply rule tr 1,S = Class2TableS to
the empty start graph G00 yielding the source graph G10 which contains one class. Obvi-
ously, G10 is included in G0. Hence, diagram (2) commutes for step 1. The corresponding
forward rule tr1,F = Class2TableF is applied to G0 and maps the class node to a ta-
ble node, resulting in G1. For step i = 2 (not depicted), we apply the same source, i.e.
tr2,S = Class2TableS , to graph G10. Thus, a separate class node is inserted and the re-
sulting graph is G20 shown on the left of Fig. 5.8. Again, G20 is included in G0, which
is included in G1, and diagram (2) for step 2 commutes. The corresponding forward rule
tr2,F = Class2TableF is applied to G1, resulting in G2, where the two class nodes are
connected to two separate table nodes.

In the third step (i = 3), shown in Fig. 5.8, we apply the source rule tr3,S =

PrimaryAttr2ColumnS , and add an attribute to G20, resulting in source graph G30. This
graph is included in G0, which in turn is included in G2. Diagram (2) commutes for step
3. The application of the corresponding forward rule tr3,F = Attr2ColumnF at the co-
match of tr3,S yields G3, where now the attribute is mapped to a column of the lower table.

L3,F R3,F

G2

L3,S R3,S

C

C

A
G30

(1) (2)

T

T

G3

(3)

C

C

G20 G0

g3

C

C

A

C

C

A

TC

C

A Col

T

Figure 5.8: Step 1 of the partially match-consistent sequence

Since for each considered step, diagram (2) of Def. 5.1.16 commutes, we conclude that

sequence ∅ = G00

tr1,S
=⇒ G10

tr2,S
=⇒ G20

tr3,S
=⇒ G30 ↪−gn−→ G0

tr1,F
=⇒ G1

tr2,F
=⇒ G2

tr3,F
=⇒ G3 is

partially match consistent. Hence, the forward sequence G0

tr1,F
=⇒ G1

tr2,F
=⇒ G2

tr3,F
=⇒ G3

116 Model Transformation Based on Triple Graph Grammars

is partially source consistent. Note that the forward sequence, although being partially
source consistent, cannot be extended to a complete source consistent sequence. There is
no new match for some tr4,F leading to a partially source consistent sequence. The reason
is that the subclass of the class diagram was translated by the rule Class2TableF instead
of Subclass2TableF , such that the edge of type “parent” was not matched and cannot be
translated separately by any rule. In order to derive a complete source consistent sequence
we have to backtrack leading to the source consistent sequence in Ex. 5.1.24.

In order to provide an improved construction of source consistent forward sequences
we characterize valid matches by introducing the following notion of forward consistent
matches. The formal condition of a forward consistent match is given by a pullback dia-
gram where both matches satisfy the corresponding NACs. Intuitively, it specifies that the
effective elements of the forward rule are matched for the first time in the forward sequence
(see Interpretation 1 below).

Definition 5.1.20 (Forward Consistent Match). Given a partially match consistent se-
quence ∅ = G00 =

tr∗S=⇒ Gn−1,0 ↪−gn−→ G0 =
tr∗F==⇒ Gn−1 then a match mn,F :

Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called for-
ward consistent if there is a source match mn,S such
that diagram (1) is a pullback and the matches mn,F

and mn,S satisfy the corresponding target and source
NACs , respectively.

Ln,S
� � //

mn,S
��

Rn,S
� � // Ln,F

(1) mn,F
��

Gn−1,0
� �

gn−1

// G0
� � // Gn−1

Interpretation 1. The pullback property of (1) means that the intersection of the match
mn,F (Ln,F) and the source graph Gn−1,0 constructed so far is equal to mn,F (Ln,S), the
match restricted to Ln,S , i.e. we have

(2) :mn,F (Ln,F) ∩Gn−1,0 = mn,F (Ln,S).
This condition can be checked easily and mn,S : Ln,S → Gn−1,0 is uniquely defined by
restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct consequence of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩Gn−1,0 = ∅.
On the one hand, the source elements of Ln,F \ Ln,S - called effective elements - are the
elements to be transformed by the next step of the forward transformation sequence. On
the other hand, Gn−1,0 contains all elements that were matched by the preceding forward
steps, because matches of the forward sequence coincide on the source part with comatches
of the source sequence. Hence, condition (3) means that the effective elements were not
matched before, i.e. they do not belong to Gn−1,0.

Example 5.1.21 (Forward Consistent Match). In the partial match consistent sequence
from Ex. 5.1.19, all forward rule matches are forward consistent. Consider for example
the situation in step 3, shown in Fig. 5.9, where all mappings have been indicated explic-
itly by equal numbers. We can see that L3,F ∩G20 = L3,S , which implies that Diagram (1)

5.1 Concepts and Characteristics 117

L3,S
R3,S

(PB)

C

G20

C

C

C

A

5

1

m3,S

1

1

L3,F

C

C

A

T

C

A

T

G0

g2

m3,F

G2

1

22

2

1

5C

C

A2

1

5

T

4
3

4
3

6
7

Figure 5.9: Forward consistent match in step 3

from Def. 5.1.20 is a pullback. Analogously, the matches from forward rules in steps 1 and
2 are also forward consistent.

The following on-the-fly construction, introduced in [EEHP09b, EEHP09a], incremen-
tally extends partially source consistent sequences in order to derive complete source con-
sistent sequences, which ensures, e.g., that all elements of the source model are translated
exactly once. The source and forward sequences are synchronously built up. But still, the
procedure may need to backtrack if the sequences cannot be extended to match consistent
ones. Backtracking is also necessary in our case study as e.g. the rule “Class2TableF ”
can be applied to class nodes that are subclasses as presented in Ex. 5.1.19. The procedure
checks at each step whether a forward consistent match can be found and in the positive
case extends the current source and forward sequences accordingly. Both, depth first search
and breath first search can be performed. This allows us to filter the available matches such
that matches that cannot lead to correct model transformations are rejected. Thus, the
procedure checks partial source consistency on-the-fly and we do not have to analyse the
resulting forward sequences for source consistency. In the case that all triple rules are cre-
ating on the source component termination is ensured for all possible source models. A
constructed forward sequence is complete and source consistent if the derived triple graph
Gn,0 of the source sequence is equal to the triple graph (GS ← ∅ → ∅) containing the
source model GS .

Theorem 5.1.22 (On-the-Fly Construction of Model Transformations). Given a triple
graph G0 with GC

0 = GT
0 = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.

2. For n > 0 and an already computed partially source consistent sequence s =

seqG0 =
tr∗F==⇒ Gn−1 with ∅ = G00 =

tr∗S=⇒ Gn−1,0 and embedding gn−1 : Gn−1,0 ↪→ G0

find a (not yet considered) forward consistent match for some trn,F leading to a

partially source consistent sequence G0 =
tr∗F=⇒ Gn−1 =

trn,F
===⇒ Gn with G00 =

tr∗S=⇒

118 Model Transformation Based on Triple Graph Grammars

Gn−1,0 =
trn,S
==⇒ Gn0 and embedding gn : Gn0 ↪→ G0. If there is no such match, s

cannot be extended to a source consistent sequence. Repeat until gn = idG0 or no
new forward consistent matches can be found.

3. If the procedure terminates with gn = idG0 , then G0 =
tr∗F=⇒ Gn is source consistent

leading to a model transformation sequence (GS, G0 =
tr∗F=⇒ Gn, G

T) withGS andGT

being the source and target models of G0 and Gn.

Proof. We have to show that this procedure is well-defined, i.e. that in Step 2, a forward
consistent match leads to an extended partially source consistent sequence G0 =

tr∗F=⇒ Gn.

Given the situation as in Step 2 above, (1) + (2) is a pullback because mn,F is forward
consistent. The construction of pushout (1) leads to the source transformation sequence
Gn−1,0 =

trn,S
==⇒ Gn0, embedding gSn : GS

n,0 ↪→ GS
0 with gSn ◦tSn,S = gSn−1 and gSn ◦nSn,S = mS

n,F

due to (1) being a pushout and (1) + (2) being a pullback overM-morphisms. Here we
use the fact that the category of attributed graphs (AGraphs,M) has effective unions
according to Thm. 2 in [Her08b]. Finally, gSn defines the embedding gn : Gn0 ↪→ G0 with
gCn = ∅ and gTn = ∅. Moreover, Gn−1,0 =

trn,S
==⇒ Gn0 and Gn−1 =

trn,F
===⇒ Gn are NAC-

consistent by assumption. Thus, G0 =
tr∗F=⇒ Gn is partially source consistent.

Ln,S
� � trn,S //

mn,S

��

Rn,S

nn,S

��
(1)

� � // Ln,F
mn,F

��
(2)

Gn−1,0
� � tn,S //
� s

gn−1

99Gn,0
� � gn // G0

� � // Gn−1

Remark 5.1.23. If the on-the-fly construction terminates with gn = id we have by
Thm. 5.1.22 that the constructed forward transformation sequence is source consistent
and specifies a model transformation sequence. Vice versa, if there is a source consistent
forward transformation sequence for a given source model we can also ensure that the
on-the-fly construction will compute one according to Thm. 5.2.2 in Sec. 5.2.1. This means
that the on-the-fly construction is sound and complete in the sense that a source model is
transformed into its corresponding target model via the on-the fly construction if and only
if there is a model transformation sequence for this source model.

The on-the-fly construction provides the basis for both, depth first search and breath first
search. The choice is performed in step 2:

• Depth First: If we increase n after every iteration, and only decrease n by 1 if no
more new forward consistent matches can be found, a depth-first search is performed.

• Breadth First: If we increase n only after all forward consistent matches for n are
considered, the construction performs a breadth-first search.

5.1 Concepts and Characteristics 119

Depending on the type of the model transformation, other search strategies may be rea-
sonable. In Sec. 4 of [EEHP09b] we present how parallel independence of forward trans-
formation steps can be analyed including the handling of partial source consistency in
order to apply partial order reduction techniques that allow to improve the efficiency of the
construction.

Figure 5.10: Triple graph G5 of the example forward sequence

Table 5.1: Steps of Source Consistent Model Transformation
Source Sequence Elements Forward Sequence Elements

Step Matched Created Matched Created
1 S1 S1 C1,T1
2 S5 S5 C3,T8
3 S5 S6,S7 S5-S7,C3,T8 C4
4 S7 S8-S11 S7-S11,C4,T8 C5,T9-T11
5 S1,S5 S2-S4 S1-S5,C1,C3,T1,T8 C2,T2-T7

Example 5.1.24 (Model Transformation Sequence based on Forward Rules). Based on
the on-the-fly construction we derive the following source consistent forward sequence
for our example class diagram shown in the source component of the triple graph in
Fig. 5.10. An example for a source-consistent sequence is the model transformation (GS =

GS
0 , G0 =

tr∗F=⇒ G5, G
T = GT

5), where G5 (shown in Fig. 5.10) is generated by the forward
sequence G0 =

Class2TableF========⇒ G1 =
Class2TableF========⇒ G2 =

Subclass2TableF=========⇒ G3 =
PrimaryAttr2ColF===========⇒

G4 =
Association2FKeyF===========⇒ G5, and G0 is generated by the corresponding source sequence

120 Model Transformation Based on Triple Graph Grammars

∅ =
tr∗S=⇒ G0. All elements in Fig. 5.10 are labelled with numbers. Table 5.1 specifies the

matches and the created objects for each transformation step. Note that we cannot acci-
dentally apply the rule Class2TableF at subclasses, because in this case the transformation
will not become source consistent - the edge of the type “parent” will be missing.

5.1.2 Model Transformation Based on Forward Translation Rules

As presented in Sec. 5.1.1 before the concept of model transformations based on source
consistent forward sequences provides a formal basis for model transformations based on
TGGs in general including formal results concerning the analysis of syntactical correct-
ness, completeness and termination as they are presented in Sec. 5.2.1 following this sec-
tion. But before, we present in this section how the formal condition source consistency
can be equivalently encapsulated within forward rules by generating so-called translation
attributes. This way, we can further extend the analysis capabilities in Sections. 5.2.2-
5.2.2, improve the efficiency of the execution in Sec. 5.3) and finally, we can use standard
and efficient graph transformation tools for these purposes.

The main result in this section shows that model transformations based on source consis-
tent forward TGT-sequences are equivalent to those based on complete forward translation
TGT-sequences as stated by Thm. 5.1.34. The control condition source consistency is en-
sured by the completeness of forward translation TGT-sequences, which are based on the
generated forward translation rules. For this reason, the check of source consistency for
forward TGT-sequences is reduced to a check whether the model is completely translated,
i.e. all translation attributes are set to “T”.

In many practical applications, model transformations are required to preserve the source
model in order to use data base driven model repositories. For this reason, we presented in
[HEGO10a] how the translation attributes can be externalized using the concept of triple
graphs with interfaces. The translation attributes are equivalently replaced by external
pointer structures such that the model transformation can be performed without any modi-
fication of the source model. This concept corresponds to the transformation algorithm in
[SK08] which uses a separate set of translated elements and furthermore, it shows how the
source steps within the on-the-fly construction in the previous section can be performed by
an implementation by additional pointer structures as explained at the end of this section.

The extension of forward rules to forward translation rules is based on new attributes
that control the translation process according to the source consistency condition. For
each node, edge and attribute of a graph a new attribute is created and labelled with the
prefix “tr”. Given an attributed graph AG = (G,D) and a family of subsets M ⊆ G for
nodes and edges, we call AG′ a graph with translation attributes over AG if it extends AG
with one Boolean-valued attribute tr x for each element x (node or edge) in M and one
Boolean-valued attribute tr x a for each attribute associated to such an element x in M .

5.1 Concepts and Characteristics 121

The family M together with all these additional translation attributes is denoted by AttM .
Note that we use the attribution concept of E-Graphs as presented in [EEPT06], where
attributes are possible for nodes and edges.

Definition 5.1.25 (Family with Translation Attributes). Given an attributed graph AG =

(G,D) we denote by |G| = (V G
G , V

D
G , E

G
G , E

NA
G , EEA

G) the underlying family of sets con-
taining all nodes and edges. Let M ⊆ |G| with (V G

M , V
D
M , E

G
M , E

NA
M , EEA

M), then a family
with translation attributes for (G,M) extends M by additional translation attributes and is
given by AttM = (V G

M , V
D
M , E

G
M , E

NA, EEA) with:

• ENA = ENA
M ·∪ {tr x | x ∈ V G

M} ·∪ {tr x a | a ∈ ENA
M , srcNAG (a) = x ∈ V G

G },

• EEA = EEA
M ·∪ {tr x | x ∈ EG

M} ·∪ {tr x a | a ∈ EEA
M , srcEAG (a) = x ∈ EG

G}.

Definition 5.1.26 (Graph with Translation Attributes). Given an attributed graph AG =

(G,D) and a family of subsets M ⊆ |G| with {T,F} ⊆ V D
M and let AttM be a family

with translation attributes for (G,M). Then, AG′ = (G′, D) is a graph with translation
attributes over AG, where |G′| is the gluing of |G| and AttM over M , i.e. the sets of nodes
and edges are given by componentwise pushouts and the source and target functions of
AG ′ are defined as follows:

• srcGG′ = srcGG, trgGG′ = trgGG ,

• srcXG′(z) =
{
srcXG (z) z ∈ EX

G

x z = tr x or z = tr x a
for X ∈ {NA,EA},

• trgXG′(z) =
{
trgXG (z) z ∈ EX

G

T or F z = tr x or z = tr x a
for X ∈ {NA,EA}.

M � � //
� _

��
(PO)

AttM

��
|G| // |G′|

AttvM , where v = T or v = F, denotes a family with translation attributes where all
attributes are set to v. Moreover, we denote by AG ⊕ AttM that AG is extended by the
translation attributes in AttM i.e. AG ⊕ AttM = (G′, D) for AG ′ = (G′, D) defined
above. Analogously, we use the notion AG ⊕ AttvM for translation attributes with value v
and we use the short notation Attv(AG) := AG⊕ Attv|G|.

122 Model Transformation Based on Triple Graph Grammars

Figure 5.11: Triple graph with translation attributes

Example 5.1.27 (Triple Graph with Translation Attributes). Fig. 5.11 shows the triple
graph H = (HS ← HC → HT) which specifies a subgraph of the triple graph G in
Fig. 5.10 that is extended by some translation attributes in the source component. The
translation attributes with value “T” indicate that the owning elements have been trans-
lated during a model transformation sequence using forward translation rules, which are
defined in Def. 5.1.28 hereafter. The remaining elements (edge S6, node S7 and the attribute
“name” of S7) in the source component are still marked with translation attributes set to
“F”. These elements can still be matched and will become translated at later steps. The
translation attributes are used to explicitly specify the elements which have been translated
up to a specific step during the execution of a model transformation.

The concept of forward translation rules, which we introduced in [HEOG10], extends the
construction of forward rules by additional translation attributes in the source component.
As described in Ex. 5.1.27, the translation attributes are used to keep track of the elements
that have been translated so far. This way, we can ensure that each element in the source
graph is not translated twice, but exactly once. At the beginning, the source model of
a model transformation sequence is extended by translation attributes that are all set to
“F” and they are set to “T” when their containing elements are translated by a forward
translation rule. Whenever the model transformation stops at a model whose translation
attributes are all set to “T”, the sequence specifies a source consistent forward sequence by
removing all translation attributes and a valid target model is obtained from the resulting
triple graph. Due to the modification of the translation attributes, the rules are deleting and

5.1 Concepts and Characteristics 123

thus, the triple transformations are extended from a single (total) pushout to the classical
double pushout (DPO) approach [EEPT06]. We call these rules forward translation rules,
because pure forward rules need to be controlled by additional control conditions, such as
the source consistency condition in Sec. 5.1.1 for the on-the-fly construction.

Definition 5.1.28 (Forward Translation Rules with NACs). Given a triple rule tr =

(L→ R), the forward translation rule of tr is given by trFT = (LFT ←lFT−− KFT −rFT−−→ RFT)

defined as follows using the forward rule (LF −trF−→ RF) and the source rule (LS −trS−→ RS)

of tr , where we assume w.l.o.g. that tr is an inclusion:

• LFT = LF ⊕ AttTLS
⊕ AttFRS\LS

• KFT = LF ⊕ AttTLS

• RFT = RF ⊕ AttTLS
⊕ AttTRS\LS

= RF ⊕ AttTRS
,

• lFT and rFT are the induced inclusions.

Moreover, for each NAC n : L → N of tr we define a forward translation NAC nFT :

LFT → NFT of trFT as inclusion with NFT = (LFT +L N)⊕ AttTNS\LS
.

Remark 5.1.29. Note that (LFT +LN) is the union of LFT and N with shared L and for a
target NAC n the forward translation NAC nFT does not contain any translation attributes
because NS = LS .

Example 5.1.30 (Derived Forward Translation Rules). Figure 5.12 shows the derived for-
ward translation rule “Subclass2TableFT” for the triple rule“Subclass2Table” in Fig. 5.4.
Note that we abbreviate “tr x” for an item (node or edge) x by “tr” and “tr x a” by
“tr type(a)” in the figures to increase readability. The compact notation of forward trans-
lation rules specifies the modification of translation attributes by “[F ⇒ T]”, meaning
that the attribute is matched with the value “F” and set to “T” during the transformation
step. The detailed complete notation of a forward translation rule is shown on the right of
Fig. 5.12 for “Subclass2TableFT”.

Fig. 5.13 shows the forward translation rule with NACs “PrimaryAttr2ColumnFT”
derived from the triple “PrimaryAttr2Column”, which is a TGG-triple rule of our case
study CD2RDBM (cf. Fig. 5.5). According to Def. 5.1.28 the source elements of the triple
rule are extended by translation attributes and changed by the rule from “F” to “T”, if the
owning elements are created by the triple rule. Furthermore, the forward translation rule
contains both, the source and the target NACs of the TGG-triple rule, where the NAC-only
elements in the source NACs are extended by translation attributes set to “T”. Thus, the
source NACs concern only elements that have been translated so far.

124 Model Transformation Based on Triple Graph Grammars

Figure 5.12: Forward translation rule Subclass2TableFT (n : String)

Figure 5.13: Forward translation rule with NACs

From the application point of view a model transformation should be injective on the
structural part, i.e. the transformation rules are applied along matches that do not identify
structural elements. But it would be too restrictive to require injectivity of the matches
also on the data and variable nodes, because we must allow that two different variables
are mapped to the same data value. For this reason we introduce the notion of almost

5.1 Concepts and Characteristics 125

injective matches, which requires that matches are injective except for the data value nodes.
This way, attribute values can still be specified as terms within a rule and matched non-
injectively to the same value.

Definition 5.1.31 (Almost Injective Match and Completeness). An attributed triple graph
morphism m : L → G is called almost injective, if it is non-injective at most for the
set of variables and data values in LFT . A forward translation sequence G0 =

tr∗FT==⇒ Gn

with almost injective matches is called complete if no further forward translation rule is
applicable and Gn is completely translated, i.e. all translation attributes of Gn are set to
true (“T”).

Now, we define model transformations based on forward translation rules in the same
way as for forward rules in Def. 5.1.15, where source consistency of the forward sequence
is replaced by completeness of the forward translation sequence.

Definition 5.1.32 (Model Transformation Based on Forward Translation Rules). A model
transformation sequence (GS, G′0 =

tr∗FT==⇒ G′n, G
T) based on forward translation rules

consists of a source graph GS , a target graph GT , and a complete TGT-sequence
G′0 =

tr∗FT==⇒ G′n with almost injective matches, G′0 = (AttF(GS) ← ∅ → ∅) and G′n =

(AttT(GS)← GC → GT).
A model transformation MT : VLS0 V VLT0 based on forward translation rules with
NACs is defined by all model transformation sequences as above with GS ∈ VLS0 and
GT ∈ VLT0. All the corresponding pairs (GS, GT) define the model transformation rela-
tion MTRFT ⊆ VLS0 × VLT0 based on forward translation rules. The model transfor-
mation is terminating if there are no infinite TGT-sequences via forward translation rules
and almost injective matches starting with G′0 = (AttF(GS) ← ∅ → ∅) for some source
graph GS .

Example 5.1.33 (Model Transformation via Forward Translation Rules). Fig. 5.14 shows
the resulting triple graph of a forward translation sequence starting with the same
source model as in Ex. 5.1.24 in Sec. 5.1.1. This time the execution starts by ex-
tending the source model GS with translation attributes according to Def. 5.1.32, i.e.
G′0 = (AttF(GS) ← ∅ → ∅). We can execute the forward translation sequence us-
ing the same sequence of rules as in Ex. 5.1.24 but instead of forward rules we apply
their corresponding forward translation rules. Thus the sequence is G′0 =

Class2TableFT========⇒ G′1

=
Class2TableFT========⇒ G′2 =

Subclass2TableFT==========⇒ G′3 =
PrimaryAttr2ColFT============⇒ G′4 =

Association2FKeyFT============⇒ G′5,

with G′5 being the graph G in Fig. 5.14. Now, the triple graph G′5 is completely trans-
lated, because all translation attributes are set to “T”. No further forward translation
rule is applicable and we derive the resulting target model GT by restricting G′5 to its tar-
get component, i.e. GT = G

′T
5 . According to the equivalence of the model transformation

126 Model Transformation Based on Triple Graph Grammars

Figure 5.14: Triple graph instance with translation attributes for CD2RDBM

concepts based on forward and forward translation rules in Thm. 5.1.34 below we can
further conclude that GT is also a valid result using the on-the-fly construction for model
transformations based on forward rules in Sec. 5.1.1.

By Thm. 5.1.34 below we show that the model transformation sequences based on for-
ward translation rules are one-to-one with model transformation sequences based on for-
ward rules, i.e. based on source consistent forward sequences. For this reason, we can
equivalently use both concepts and chose one of them depending on the particular needs.
While the concept based on source consistency shows advantages in formal proofs the
concept based on forward translation rules shows advantages concerning analysis and effi-
ciency as we will show in Sec. 5.2 and 5.3.

Theorem 5.1.34 (Complete Forward Translation Sequences with NACs). Given a source
model GS ∈ VLS0, then the following are equivalent for almost injective matches.

5.1 Concepts and Characteristics 127

1. ∃ a model transformation sequence (GS, G0 =
tr∗F=⇒ Gn, G

T) based on forward rules
with Gn = (GS ← GC → GT)

2. ∃ a model transformation sequence (GS, G′0 =
tr∗FT==⇒ G′n, G

T) based on forward
translation rules with G′n = (AttT(GS)← GC → GT).

Moreover, the model transformation relation MTRF for the model transformation based
on forward rules coincides with the model transformation relation MTRFT for the model
transformation based on forward translation rules, i.e. MTRF = MTRFT .

In order to proof Thm. 5.1.34 above we use Lem. 5.1.35 below concerning the equiv-
alence of single transformation steps. The proof of Lem. 5.1.35 is given by the proof of
Fact 1 in [HEGO10c].

Lemma 5.1.35 (Forward translation step). Let TR be a set of triple rules with tr i ∈ TR

and let TRF be the derived set of forward rules. Given a partially match consistent forward
sequence ∅ = G00 =

tr∗S=⇒ Gi−1,0 ↪−gi−1−−→ G0 =
tr∗F==⇒ Gi−1 and a corresponding forward

translation sequenceG′0 =
tr∗FT==⇒ G′i−1, both with almost injective matches, such thatG′i−1 =

Gi−1 ⊕ AttFG0\Gi−1,0
⊕ AttTGi−1,0

. Then the following are equivalent:

1. ∃ TGT-step Gi−1 =
tri,F ,mi,F
=====⇒ Gi with forward consistent match mi,F

2. ∃ translation TGT-step G′i−1 =
tr i,FT ,mi,FT
=======⇒ G′i

and we have G′i = Gi ⊕ AttFG0\Gi,0
⊕ AttTGi,0

.

Proof of Thm. 5.1.34. We first show the equivalence of the sequences disregarding the
NACs.

1. ⇔ G0 =
tr1,F ,m1,F
======⇒ G1 =

tr2,F ,m2,F
======⇒ G2 . . . =

trn,F ,mn,F
======⇒ Gn with GS

n = GS , where each
match is forward consistent according to Thm. 5.1.22.

2.⇔ G′0 =
tr1,FT ,m1,FT
=======⇒ G′1 =

tr2,FT ,m2,FT
=======⇒ G′2 . . . =

trn,FT ,mn,FT
========⇒ G′n is complete.

Disregarding the NACs, it remains to show that G′S0 = AttF(GS) and G′Sn = AttT(GS).

We apply Lemma 5.1.35 for i = 0 with G0,0 = ∅ up to i = n with Gn,0 = G0 and using
GS

0 = GS we derive:

G
′S
0 = GS

0 ⊕ AttTG0,0
⊕ AttFGS

0 \GS
0,0

= GS
0 ⊕ AttFGS

0
= GS ⊕ AttFGS = AttF(GS).

G
′S
n = GS

n ⊕ AttTGS
n,0
⊕ AttFGS

0 \GS
n,0

= GS
n ⊕ AttTGS

n,0
= GS ⊕ AttTGS = AttT(GS).

Now, we show that the single steps are also NAC consistent.

128 Model Transformation Based on Triple Graph Grammars

For each step, we have transformations Gi−1,0 =
tri,S ,mi,S
=====⇒ Gi,0, Gi−1 =

tri,F ,mi,F
=====⇒ Gi,

G′i−1 =
tri,FT ,mi,FT
=======⇒ G′i withG′i−1 = Gi−1⊕AttFG0\Gi−1,0

⊕AttTGi−1,0
,G′i = Gi⊕AttFG0\Gi,0

⊕
AttTGi,0

, and mi,FT |Li,F
= mi,F .

For a target NAC n : Li → N , we have to show that mi,F |= n iff mi,FT |= nFT ,
the corresponding forward translation NAC. If mi,FT 6|= nFT , we find a monomorphism q′

with q′ ◦nFT = mi,FT . Since n = nFT |N , define q = q′|N and it follows that q ◦n = mi,F ,
i.e. mi,F 6|= n. Vice versa, if mi,F 6|= n, we find a monomorphism q with q ◦ n = mi,F .
Since NS = Li,S , we do not have any additional translation attributes in NFT . Thus mi,FT

can be extended by q to q′ : NFT → G′i−1 such that mi,FT 6|= nFT .

Similarly, we have to show that for a source NAC n : L → N , mi,S |= n iff mi,FT |=
nFT . As for target NACs, if mi,FT 6|= nFT , we find a monomorphism q′ with q′ ◦ nFT =

mi,FT and for the restriction to Li,S and N it follows that q ◦n = mi,S , i.e. mi,S 6|= n. Vice
versa, if mi,S 6|= n, we find a monomorphism q with q ◦ n = mi,S . Now define q′ with
q′(x) = mi,FT (x) for x ∈ LFT , q′(x) = q(x) for x ∈ N\Li, and for each x ∈ NS\Li,S
we have that q(x) ∈ Gi−1,0. From the above characterization of G′i−1 it follows that the
corresponding translation attributes tr x and tr x a are set to T in G′i−1. Thus, q′ is
well-defined and q′ ◦ nFT = mi,FT , i.e. mi,FT 6|= nFT .

The equality of the model transformation relations follows by the equality of the pairs
(GS, GT) in the model transformation sequences in both cases.

Remark 5.1.36. It can be shown that the model transformation relation MTR defined by
the triple rules TR coincides with the relations MTRF and MTRFT of the model trans-
formations based on forward and forward translation rules TRF and TRFT , respectively.

Applying a rule according to the DPO approach involves the check of the gluing con-
dition in general. However, in the case of forward translation rules and almost injective
matches we have that the gluing condition is always satisfied. This means that the condi-
tion does not have to be checked during the execution of the model transformation.

Fact 5.1.37 (Gluing Condition for Forward Translation Rules). Let trFT be a forward
translation rule and mFT : LFT → G be an almost injective match, then the gluing
condition is satisfied, i.e. there is the transformation step G =

trFT ,mFT=====⇒ H .

Proof. According to Def. 9.8 in [EEPT06] we need to check that DP ∪ IP ⊆ GP . First
of all, the set IP may only contain data elements by the restriction of the match, which
are in GP . Furthermore, the set DP does only contain nodes. The rule is only deleting on
attribution edges and thus, DP ∪ IP ⊆ GP .

During the execution of a model transformation the given source model may be simulta-
neously used by other applications within an MDA environment and therefore, the model
transformation should not modify the source model. Considering our case study, the model

5.2 Analysis 129

transformation transforms class diagrams to data base tables. However, the class diagram
may be additionally used for documenting the system structure and thus, should be avail-
able unchanged for the software development groups. Furthermore, other interrelated mod-
els may rely on a synchronized connection to the class diagram, e.g. a synchronization
with corresponding block diagrams is common in the automotive domain as presented in
[GW09].

For this reason, we presented in Sec. 5 of [HEGO10a] how the concept of model trans-
formations based on forward translation rules with translation attributes can be equivalently
implemented using a marking structure that points to the handled elements of the source
model leaving the source model itself unchanged. This way, the additional structure neces-
sary for ensuring the syntactical correctness and completeness of the model transformation
is externalized from the source model and kept separately. More precisely, a triple graph
consisting of the source, correspondence and target model is extended by an additional
triple graph, called interface graph, which specifies the elements of the source model that
have been translated so far. This means that the Boolean valued translation attributes are
represented by the presence and absence of elements in the interface graph. Moreover, as
shown by the equivalence result we also have that model transformation sequences based
on forward translation rules with interfaces are equivalent to those constructed by the on-
the-fly construction. In fact, both approaches separately construct the source and forward
steps. However, the on-the-fly construction shows advantages in the handling of NACs, as
they are distributed separately to the source and forward steps, while they have to be kept
together for the transformation steps with interfaces. This implies that NACs have to be
specified as pairs of triple graphs while the left and right hand sides of a rule form triple
graphs with interfaces making this concept more complex.

All together, the concept based on interfaces presents one possibility how the source
steps within the on-the-fly construction can be handled by an implementation using an
additional pointer structure. The construction of model transformations itself remains un-
changed compared to the on-the-fly construction in the previous section.

5.2 Analysis

Model transformations based on TGGs as presented in Sec. 5.1 before provide an excellent
framework for analysing and verifying a major part of the properties that may have to be
ensured in an application scenario regarding the first dimension of challenges for model
transformations - the functional dimension - presented at the beginning of this chapter.
This section presents powerful analysis techniques that are based on the introduced model
transformation concepts while Sec. 5.3 thereafter focuses mainly on the second dimension
of challenges - the non-functional dimension.

130 Model Transformation Based on Triple Graph Grammars

As first main results we show in Sec. 5.2.1 that the presented approaches for model trans-
formations ensure syntactical correctness and completeness (see Thms. 5.2.1 and 5.2.2 and
Cor. 5.2.6). Moreover, we provide a sufficient condition for termination (see Thm. 5.2.4
and Cor. 5.2.6), which is often satisfied for practical applications resp. can be usually
achieved with minor efforts.

In Sec. 5.2.2 we furthermore show as a second group of main results how functional be-
haviour of model transformations can be efficiently analysed (see Thms. 5.2.27 and 5.2.31)
with automated tool support. Moreover, we present how model transformations based on
TGGs are analysed with respect to information preservation (see Thm. 5.2.34 and 5.2.37)
based on the developed techniques before. Information preservation is one aspect relevant
for the bidirectional characteristics of model transformations and thus, already concerns
the non-functional dimension of challenges

5.2.1 Correctness, Completeness and Termination

As central challenges for model transformations they have to ensure syntactical correct-
ness and completeness including termination. As a main advantage compared to other
approaches for model transformation we can generally ensure syntactical correctness and
completeness for the presented approaches in Sec. 5.1 (see Thms. 5.2.1 and 5.2.2 and
Cor. 5.2.6) and require a relatively weak condition for ensuring termination (see Thm. 5.2.4
and Cor. 5.2.6), which is satisfied in many cases.

Syntactical Correctness of a model transformation based on TGGs states that each suc-
cessful execution of a model transformation starting with a valid source model GS yields a
target model GT which exactly corresponds to GS according to the language of integrated
models VL generated by the given TGG. Completeness means that all valid source models
can be transformed. Moreover, we do not only show that our model transformations are
left total with respect to source models, but they are also right total. This means that for
each valid target model GT there is a source model, which can be transformed into GT .
By Thm. 5.2.1 below we first show these results for model transformations based on for-
ward rules according to Sec. 5.1.1 and thereafter also show that the on-the-fly construction
as well as the concept of model transformation based on forward translation rules ensure
these properties.

Theorem 5.2.1 (Syntactical Correctness and Completeness). Each model transformation
MT : VLS0 V VLT0 based on forward rules is

• syntactically correct, i.e. for each model transformation sequence (GS,

G0 =
tr∗F==⇒ Gn, G

T) there is G ∈ VL with G = (GS ← GC → GT) implying fur-
ther that GS ∈ VLS and GT ∈ VLT , and it is

5.2 Analysis 131

• complete, i.e. for each GS ∈ VLS there is G = (GS ← GC → GT) ∈ VL

with a model transformation sequence (GS, G0 =
tr∗F==⇒ Gn, G

T). Vice versa, for each
GT ∈ VLT there is G = (GS ← GC → GT) ∈ VL with a model transformation

sequence (GS, G0 =
tr∗F==⇒ Gn, G

T).

Proof. The syntactical correctness and completeness results are based on the proof of
Thm. 3 in [EEH08c]. Note that Thm. 3 in [EEH08c] states a weaker result of cor-
rectness and completeness for source consistent forward transformations. However, the
proof is based on the composition and decomposition result for triple graph transforma-
tion sequences given by Thm. 1 in [EEE+07] and in the general form including NACs by
Thm. 5.1.14.

Now, given a model transformation sequence based on forward translation rules
(GS, G′0 =

tr∗FT==⇒ G′n, G
T) we have by Thm. 5.1.34 that there is model transformation se-

quence based on forward rules (GS, G0 =
tr∗F==⇒ Gn, G

T), which means by definition that

G0 =
tr∗F==⇒ Gn is source consistent. Source consistency implies that there is a source se-

quence ∅ =
tr∗S=⇒ Gn,0 = G0 such that ∅ =

tr∗S=⇒ Gn,0 =
tr∗F==⇒ Gn is match consistent and

can be composed to the triple sequence ∅ =
tr∗
=⇒ Gn ∈ VL by the composition result in

Thm. 5.1.14. This means that the model transformation based on forward rules is syntacti-
cally correct.

Vice versa, given GS ∈ VLS (resp. GT ∈ VLT) we have that there is a Gn ∈ VL with
GS = GS

n (resp. GT = GT
n) and a TGT-transformation sequence ∅ =

tr∗
=⇒ Gn. Using the

decomposition result in Thm. 5.1.14 we derive the model transformation sequence based
on forward rules (GS, G0 =

tr∗F==⇒ Gn, G
T), i.e. the model transformation is complete.

The on-the-fly construction is syntactically correct, which means that if it terminates both
the source and target models of the resulting model transformation sequence correspond to
each other according to the language of integrated models VL generated by the TGG-triple
rules. Moreover, it is also complete, which means that for any source model of the language
VLS the procedure can find a model transformation sequence and vice versa, for any target
model GT there is a source model for which the procedure can find a model transformation
sequence resulting in GT .

Theorem 5.2.2 (Syntactical Correctness and Completeness of the On-The-Fly construc-
tion). The on-the-fly construction is syntactically correct and complete, i.e.:

• Syntactical Correctness: If the on-the-fly construction terminates with gn = idG0 ,

then the resulting model transformation (GS, G0 =
tr∗F=⇒ Gn, G

T) is syntactically cor-
rect, i.e. there is G ∈ VL with G = (GS ← GC → GT) implying further that
GS ∈ VLS and GT ∈ VLT .

132 Model Transformation Based on Triple Graph Grammars

• Completeness: For each GS ∈ VLS there exists GT ∈ VLT with a model transfor-
mation (GS, G0 =

tr∗F=⇒ Gn, G
T), which can be obtained by the on-the-fly construction.

Vice versa, for each GT ∈ VLT there exists GS ∈ VLS with a model transformation
sequence (GS, G0 =

tr∗F=⇒ Gn, G
T), which can be obtained by the on-the-fly construc-

tion.

Proof. Syntactical Correctness: If the procedure terminates with a source consistent
forward transformation G0 =

tr∗F=⇒ Gn and a corresponding source transformation ∅ =

G00 =
tr∗S=⇒ Gn0 = G0 then there is a TGT-sequence∅ = G00 =

tr∗
=⇒ Gn withGS

0 = GS
n = GS

and GT
n = GT and by Def. 5.1.7 GS ∈ VLS and GT ∈ VLT .

Completeness: GS ∈ VLS implies that there is a TGT-transformation sequence ∅ =

G00 =
tr∗
=⇒ Gn with GS

n = GS and tr∗ = (tri)i=1...n, which can be decomposed by Thm.

5.1.14 into a match-consistent sequence G00 =
tr∗S=⇒ Gn0 = G0 =

tr∗F=⇒ Gn with matches
mi,S and mi,F . Vice versa, given GT ∈ VLT we analogously have that there is a TGT-
transformation sequence ∅ = G00 =

tr∗
=⇒ Gn with GS = GS

n and GT = GT
n that can be

decomposed into a match consistent sequence G00 =
tr∗S=⇒ Gn0 = G0 =

tr∗F=⇒ Gn.

In both cases, the on-the-fly construction starts with ∅ = G00 and g0 : G00 ↪→ G0. In

Step 2, for i = 1, . . . n we have a partially match consistent sequence ∅ = G00 =
tr1...iS===⇒

Gi0 ↪−gi−→ G0 =
tr1...iF===⇒ Gi. Choose tri+1,F as the next rule in the forward sequence with match

mi+1,F . For the source match mi+1,S , (1) is a pushout and since the original sequence is
source consistent mi+1,F is uniquely determined by ni+1,S , which means that there is an
inclusion gi+1 : Gi+1,0 ↪−→ Gi such that mS

i+1,F = gSi+1 ◦ nSi+1 and gSi = gSi+1 ◦ tSi+1,S .
With (1) being both pushout and pullback, and gi+1 and G0 ↪→ Gi being monomorphisms
we have that (1) + (2) is a pullback, leading to the fact that mi+1,F is forward consistent.
After performing all n steps we have gn = idG0 such that the termination criterion of the
the on-the-fly construction is satisfied and the procedure stops leading to the target model
GT = GT

n for the source model GS = GS
0 .

Li+1,S
� � tri+1,S //

mi+1,S �� (1)

Ri+1,S

ni+1,S�� (2)

� � // Li+1,F

mi+1,F��
Gi0
� �

ti+1,S

// Gi+1,0
� � gi+1 // G0

� � // Gi

In general, the termination of the on-the-fly construction cannot be guaranteed. But for
the case that all source rules create new elements also the termination of the on-the-fly
construction is ensured under the common assumption that the considered graphs and rules
are finite on the graph part and the amount of rules is finite. Finiteness on the graph part
means that we can still use infinite carrier sets for the algebras that are used for attribution.
Thus an attributed graph G is finite on the graph part, if all sets of nodes and edges of the
underlying E-graph except the set of data values VD are finite (see Def. 3.1.5), or in a more
general notion, if G has finitely manyM-subobjects (see Rem. 5.2.3 below).

5.2 Analysis 133

Remark 5.2.3 (Finite Models). A modelM1 given by an object in anM-adhesive category
is finite, if there are finitely manyM-subobjects M ′ ⊆ [M1] for the equivalence class [M1]

of isomorphic objects of M1. This means for typed attributed graphs, where the classM
is given by morphisms that are injective on the graph part and isomorphisms on the data
part, that the graph component of M1 is a finite and the data algebra for attribution can
have arbitrary data carrier sets.

Theorem 5.2.4 (Termination). Given a source model GS ∈ VLS and a finite set of triple
rules, such thatGS and the rule components are finite on the graph part and the triple rules
are creating on the source component. Then, the on-the fly construction terminates.

Proof. Because the source rules are creating we know that the sequence of inclusions

GS
00 ↪−

tS1,S−−→ GS
10 ↪−

tS2,S−−→ GS
20 . . . is strictly increasing. Because the graph and the rules are

finite on the graph part and the rules are isomorphic on the algebra part we have that such
an increasing sequence is finite. This means that we have, after a finite number of steps,
that either Gn0 = G0 and the procedure terminates, or there are no more forward rules with
forward consistent matches and the procedure aborts. In the case of abortion the construc-
tion may backtrack, but since we have a finite number of rules and a graph that is finite on
the structural part we know that backtracking has to be performed only a finite number of
times.

Using the equivalence of model transformations based on forward rules with those based
on forward translation rules according to Thm. 5.1.34 in Sec. 5.1.2 we can directly con-
clude that the above results also hold for model transformations based on forward transla-
tion rules as stated by Cor. 5.2.6 below. Note that our termination criterion (source rules are
creating) is sufficient and in many cases also necessary to ensure termination. Termination
for model transformations based on forward translation rules means that each transforma-
tion sequence via forward translation rules can be extended only finitely many times and
furthermore, if backtracking occurs then only finitely many sequences are constructed.

Definition 5.2.5 (Termination of Model Transformations Based on Forward Translation
Rules). A model transformation based on forward translation rules TRFT is terminating,
if for each source model GS ∈ VLS we have that each TGT-sequence starting at G′0 =

(GS ← ∅ → ∅) cannot be infinitely often extended by a further transformation step via
TRFT .

Corollary 5.2.6 (Termination, Syntactical Correctness and Completeness - Forward Trans-
lation Rules). Each model transformation MT : VLS0 V VLT0 based on forward trans-
lation rules is

134 Model Transformation Based on Triple Graph Grammars

• terminating, if the set of forward translation rules is finite, all rule components as
well as the given source model are finite on the graph part and each forward trans-
lation rule changes at least one translation attribute from “F” to “T”,

• syntactically correct, i.e. for each model transformation sequence (GS,

G′0 =
tr∗FT==⇒ G′n, G

T) there is G ∈ VL with G = (GS ← GC → GT) implying further
that GS ∈ VLS and GT ∈ VLT , and it is

• complete, i.e. for each GS ∈ VLS there is G = (GS ← GC → GT) ∈ VL

with a model transformation sequence (GS, G′0 =
tr∗FT==⇒ G′n, G

T). Vice versa, for each
GT ∈ VLT there is G = (GS ← GC → GT) ∈ VL with a model transformation

sequence (GS, G′0 =
tr∗FT==⇒ G′n, G

T).

Proof. The syntactical correctness and completeness results follow directly using
Thm. 5.1.34 in Sec. 5.1.34 and Thm.5.2.1 above. By Def. 5.1.28 we have that a rule
changes the translation attributes iff the source rule of the original triple rule is creating,
which is a sufficient criteria for termination by Thm. 5.2.4 above.

In some cases, model transformations do not satisfy the termination criterion for
Thm. 5.2.4. This is also the case for our case study in Ch. 6, because there are rules, which
are not creating on the source component. For this reason, we now present an extended
result for termination, which we apply in Ch. 6 for the case study to show termination.
The main idea is that the source identic rules are independent of each other and contain
additional NACs that prevent the rules to be applied twice at the same match.

In order to ensure independence of the forward translation rules based on critical pair
analysis, we invert rules in the way that the left and right hand side is exchanged and
the negative application conditions are shifted over the rule. For this purpose, the shift
construction for right negative application conditions to left ones is performed using the
construction according to Def. 7.16 in [EEPT06].

Definition 5.2.7 (Shift of NACs over rules). Given a rule p = ((L ← K → R), NL, NR)

with a set NL of left negative application conditions (over L) and a set NR of right

L

n′
��

(1)

Kloo r //

��
(2)

R

n
��

N ′ Z
l∗oo r∗ // N

negative application conditions (over R). The transformation
Lp(ni, Ni) for each right negative application condition (n : R→
N,N) ∈ NR is given as follows. If the pushout complement (2)
exists then Lp(n,N) = {(n′ : L→ N ′)}, where (2) is constructed

as pushout complement and (1) as pushout. Otherwise, the result is given by Lp(n,N) = ∅.
The shift transformation Lp(NR) for the set of right negative application conditions is

given by Lp(NR) =
⋃

(n,N)∈NR
Lp((n,N)). and the new set of left negative application

conditions is given by N ′L = NL ∪ Lp(NR) and the new set of right NACs is given by
N ′R = ∅.

5.2 Analysis 135

Fact 5.2.8 (Shift of NACs over Rules). For every production p with left NACsNL and right
NACsNR the shift transformation Lp(NR) as defined in Def. 5.2.7 leads to a set of left NACs
for p, such that applicability is preserved and reflected, i.e. for all direct transformations
G =

p,m
==⇒ H with comatch n, m |= Lp(NR)⇔ n |= NR.

Proof. The follows from Thm. 7.17 in [EEPT06], which shows the result for general ap-
plication conditions, where NACs are a special kind.

Based on Fact 5.2.8 above we now define independence of rules using the notion of
critical pairs and Fact 5.2.10 below ensures that sequential independence of rules ensures
implies sequential independence of subsequent transformation steps via these rules.

Definition 5.2.9 (Independence of Rules). Given two rules p1 and p2, then they are called
sequentially independent, if there is no critical pair for (p−1

1 , p2) and no critical pair for
(p1, p

−1
2), where p−1 = ((R ←r− K −l→ L), N ′) denotes the inverted rule of the rule p =

((L←l− K −r→ R), N) and N ′ is obtained by shifting all NACs in N over the rule p.

Fact 5.2.10 (Independent Rules). Given two sequentially independent rules r1 and r2, then
any two transformation steps G0 =

r1,m1
===⇒ G1 =

r2,m2
===⇒ G2 and any two transformation steps

G′0 =
r2,m′2===⇒ G′1 =

r1,m′1===⇒ G′2 are sequentially independent.

Proof. According to the proof of the Local Church-Rosser Theorem (see Thm. 5.12 in
[EEPT06] and Thm. 3.4.3 in [Lam09] for the case with NACs) we have that sequen-
tial independence of G0 =

r1,m1
===⇒ G1 =

r2,m2
===⇒ G2 is equivalent to parallel independence

of G0 ⇐
r−1
1 ,n1
==== G1 =

r2,m2
===⇒ G2, where n1 is the comatch of the transformation step

G0 =
r1,m1
===⇒ G1. The analogous results holds for the steps G′0 =

r2,m′2===⇒ G′1 =
r1,m′1===⇒ G′2.

Thus, by completeness of critical pairs (Thm. 3.7.6 in [Lam09]) we can deduce that if the
two steps G0 =

r1,m1
===⇒ G1 =

r2,m2
===⇒ G2 are sequentially dependent, then there is a critical

pair for (r−1
1 , r2) and if the two steps G′0 =

r2,m′2===⇒ G′1 =
r1,m′1===⇒ G′2 are sequentially depen-

dent, then there is a critical pair for (r1, r
−1
2). Therefore, both transformation sequences

are sequentially independent.

In order to define termination NACs that prevent a rule to be applied twice at the same
match, we first define a general shift transformation of NACs over morphisms, which en-
sures by Fact 5.2.12 below that the applicability is preserved and reflected.

Definition 5.2.11 (Shift of NACs over Morphisms). The transformation Shift from mor-
phisms b : P → P ′ and negative application conditions (n : P → N,N) to negative
application conditions (n′ : P ′ → N ′, N ′) is given by

136 Model Transformation Based on Triple Graph Grammars

P

n
��

b
//

(1)

P ′

n′

��
N

b′
// N ′

Shift(b, (n,N)) = {(n′, N ′) | (n′, b′) ∈ F} for
F = {(n′, b′) | (n′, b′) jointly epimorphic, b′ ∈M, (1) commutes}.

Fact 5.2.12 (Shift of NACs over Morphisms). The transformation Shift from morphisms
and NACs to NACs preserves and reflects applicability, i.e. given a morphisms b : P → P ′,
and a NAC (n : P → N,N) then for each morphism m : P ′ → G it holds that:
m ◦ b |= (n,N)⇔ [∀ (n′, N ′) ∈ Shift(b, (n,N)) : m |= (n′, N ′)].

Proof. The follows from Lem. 1 in [EHL10b], which shows the result for general applica-
tion conditions, where NACs are a special kind.

Based on the shift construction for NACs in Def. 5.2.11 above we now define so-called
self-disabling rules, which contain termination NACs that ensure that the rules cannot be
applied twice at the same match.

Definition 5.2.13 (Self-disabling Rule). Given a rule p = ((L ←l− K −r→ R), N), such that
the shift construction Shift(l, (r, R)) (see Def. 5.2.11 yields of p. Furthermore, the rule
contains a NAC (n′1 ◦ n1) for each NAC (n1, N1) ∈ Shift(l, (r, R)) and for each possible
epimorphic match morphism n′1 : N → M , i.e. all possible foldings of N , where some
elements are identified. Then, p is called self-disabling. The NACs in Shift(l, (r, R)) and
their folded NACs are called termination NACs.

Theorem 5.2.14 below generalizes the termination result for model transformations
based on TGGs in Thm. 5.2.4 to the case with rules that are identities on the source com-
ponent, if additional suitable conditions are satisfied. Intuitively, the rules which are not
creating on the source component have to be self-disabling via termination NACs and they
have to be independent from each other, if the termination NACs are not considered.

Theorem 5.2.14 (Termination with Self-Disabling Rules). A model transformation MT :

VLT V VLT via a finite set of forward translation rules TRFT terminates for any
finite source model GS ∈ VLS , if TRFT can be divided into two subsets TRFT =

TRFT ,1 ∪ TRFT ,2, such that:

• TRFT ,1 consists of source-identic and self-disabling forward translation rules, which
are pairwise independent if all NACs are removed and

• TRFT ,2 consists of source changing forward translation rules, i.e. each rule
trFT ,i ∈ TRFT ,2 changes at least one translation attribute.

5.2 Analysis 137

Proof. The termination criteria of Thm. 5.2.4 does not directly apply, because the model
transformation may contain rules which are not creating on the source component, but
they are identical. Therefore, the forward translation rules of TRFT ,1 do not modify any
translation attribute. Each of the forward translation rules in TRFT ,2 changes at least one
translation attribute from F to T, none of them changes a translation attribute from T to
F and none of them increases the amount of translation attributes. Each forward trans-
lation sequence starts with (AttF(GS) ← ∅ → ∅), where (AttF(GS) has finitely many
translation attributes. Therefore, the forward translation rules of TRFT ,2 cannot be applied
infinitely often in any transformation sequence starting with a finite source model, i.e. at a
source model that is finite on the graph part (= result R1).

Now, consider a transformation subsequence s = (Gi =
tr∗FT==⇒ Gk) via forward translation

rules in TRFT ,1 starting at a finite graph Gi. For each rule trFT ,l in TRFT ,1 there are
finitely many matches into Gi. Furthermore, if NACs are neglected then all pairs of rules
in TRFT ,1 are independent. So, consider the transformation sequence s′ obtained from s,
where all NACs of the rules are removed. Then we know by Fact 5.2.10 that all steps in
s′ are sequentially independent. Therefore, we can switch the steps and each step can be
performed already at Gi, i.e. the matches used in s are already available at Gi. Now, since
each step in s is non-deleting we further have that if the NACs of the rules are satisfied
at the steps (Gj−1 =

trj,FT
===⇒ Gj) in s then they are also satisfied in the subgraph Gi ⊆

Gj−1. Thus, all steps of s can be performed at Gi. Furthermore, each rule in TRFT ,1

is self-disabling. By Fact 5.2.12 this implies that each match can only be used for one
application along injective matches and since we additionally have termination NACs for
all foldings according to Def. 5.2.13 we derive the same result for arbitrary matches. For
this reason, each rule in TRFT ,1 is applied finitely many times in s. This implies that s is
finite (= result R2).

Finally there are only finitely many transformation sequences starting with
(AttF(GS) ← ∅ → ∅), because at each intermediate step there are finitely many rules
with finitely many matches. Together with (R1) and (R2) we conclude that the execution
of the model transformation via forward translation rules terminates.

5.2.2 Functional Behaviour and Information Preservation

As shown in Sec. 5.2.1 before, syntactical correctness and completeness are guaranteed in
general for model transformations based on forward rules and equivalently for those based
on forward translation rules, both presented in Sec. 5.1. According to the list of func-
tional properties that may have to be ensured for model transformations only two prop-
erties are remaining - semantic correctness and functional behaviour. In this section we
will concentrate on the analysis of functional behaviour and, as a special property of bidi-
rectional model transformations, information preservation. Semantic correctness of model

138 Model Transformation Based on Triple Graph Grammars

transformations, however, is a huge research field and we have started to develop analysis
techniques that can handle restricted case studies (see e.g. [HHK10]).

Functional behaviour of a model transformation means that each model of the source
language LS ⊆ VLS is transformed into a unique model of the target language. In many
cases model transformations are desired to ensure this crucial property. The first part of
this section presents new techniques especially developed to show functional behaviour of
correct and complete model transformations based on TGGs. The main concepts of these
techniques are presented as well in [HEOG10, HEGO10a, HEGO10b, HEGO10c] and they
are based on the notion of additional filter NACs .

Definition 5.2.15 (Functional Behaviour of Model Transformations). A model transforma-
tion MT based on forward translation rules has functional behaviour if each execution of
MT starting at a source modelGS of the source languageLS ⊆ VLS leads to a unique tar-
get modelGT ∈ VLT . The execution of MT requires backtracking, if there are terminating
TGT-sequences (AttF (GS)← ∅→ ∅) =

tr∗FT==⇒ G′n with G
′S
n 6= AttT (GS).

K
p2,o2

 (
p1,o1

v~
P1

∗
 (

P2

∗
v~

K ′

The classical and general approach for showing functional be-
haviour of a rule based system is to verify that the system is
confluent, i.e. to show that all diverging derivation paths start-
ing at the same model finally meet again. For this purpose, it is
sufficient to show termination and local confluence according to
Newman’s Lemma [New42]. Local confluence means that each two transformation steps
(K =

p1,m1
===⇒ P1) and (K =

p2,m2
===⇒ P2) can be merged to a graph K ′ via some transformation

sequences (P1 =
∗⇒ K ′) and (P2 =

∗⇒ K ′).

In order to show local confluence it is sufficient to consider only the so-called critical
pairs (P1 ⇐ K ⇒ P2), which specify conflicts in minimal context as shown in [EEPT06]
for systems without NACs and extended to systems with NACs in [Lam09]. Minimal
context means that each graph K is a subgraph of a possible overlapping of the rule com-
ponents, such that the two transformation steps are parallel dependent. By completeness of
critical pairs, each pair of parallel dependent transformation steps embeds a critical pair. In
order to ensure that the meeting transformation sequences of the critical pair induce meet-
ing transformation sequences for the bigger context, pure confluence of the critical pairs
is not sufficient as shown by Plump [Plu93, Plu05]. For this reason the notions of strict
confluence (see [EEPT06]) and NAC-strict confluence (see [Lam09]) were introduced and
shown to be sufficient for systems without and with NACs, respectively. Strict confluence
requires that the preserved elements of the given steps are preserved in the merging steps.
Furthermore, in the presence of NACs, we also have to ensure that NAC-consistency of
the merging steps for the confluence conflict is implied by the NAC-consistency of the di-
verging steps of the critical pair. NAC-consistency of an embedding k : G → G′ for a
transformation step G =

p,m
==⇒ H means that there is a transformation step G′ =

p,m′
==⇒ H ′ with

5.2 Analysis 139

K
p2,o2
�%

p1,o1
y�

P1

∗
�%

P2

∗
y�

K ′

K

N1

v1
::

w1{{

N2

v2
dd

w2 ##
P1 N

z2
;;

z1
dd

z4 $$z3{{

(1)

(4)

(2) (3) P2

N3

v3
cc

w3 $$

N4

v4
;;

w4zz
K ′

G

K p2,o2
 (

p1,o1
v~

k0
OO

P1

∗t1
�'

P2

∗ t2
w�

K ′

Figure 5.15: NAC-strict confluence

m′ = k ◦m which satisfies the NACs of p. Concerning a transformation sequence, NAC-
consistency can be checked by constructing the concurrent rule of the sequence [Lam09],
which combines the involved NACs in a suitable way. Let us recall the basic notions for
critical pairs according to [EEPT06, Lam09].

Definition 5.2.16 (NAC-strict Confluence of Critical Pairs). A critical pair CP =

(P1 ⇐p1,o1=== K =
p2,o2
==⇒ P2). is called strictly confluent, if we have the following:

1. Confluence: the critical pair is confluent, i.e. there are transformations t1 : P1
∗⇒ K ′

and t2 : P2
∗⇒ K ′ with derived spans der(ti) = (Pi ←vi+2−−− Ni+2 −wi+2−−→ K ′) for

i = 1, 2.

2. Strictness: Let der(K =
pi,oi
==⇒ Pi) = (K ←vi−− Ni −wi−→ Pi) for i = 1, 2, and let N be the

pullback object of the pullback (1). Then, there are morphisms z3 and z4 such that
(2), (3), and (4) in Fig. 5.15 commute.

3. NAC-consistency: For every injective morphism k0 : K → G that is NAC consistent
with respect to K =

p1,o1
==⇒ P1 and K =

p2,o2
==⇒ P2 in Fig. 5.15 it follows that k0 is also

NAC consistent with respect to t1 and t2 .

However, while termination of model transformations based on forward rules respec-
tively forward translation rules can be ensured quite easily by checking that all TGG-triple
rules are creating on the source component, this is not the case for local confluence. In
fact, the system of forward translation rules of our case study CD2RDBM is not locally
confluent, but we can show in Ex. 5.2.32 that the model transformation has functional
behaviour. Indeed, functional behaviour of a model transformation does not require gen-
eral confluence of the underlying system of operational rules. Confluence only needs to
be ensured for transformation paths which lead to completely translated models. More
precisely, derivation paths leading to a point for backtracking do not influence the func-
tional behaviour. For this reason, we introduce so-called filter NACs that extend the model
transformation rules in order to avoid misleading paths that cause backtracking, such that

140 Model Transformation Based on Triple Graph Grammars

Figure 5.16: Step G1 =
Class2TableFT========⇒ G2 with misleading graph G2

the backtracking for the extended system is reduced substantially. By Fact 5.2.25 we en-
sure that the overall behaviour of the model transformation w.r.t. the model transformation
relation is still preserved. As first important result we show by Thm. 5.2.27 that func-
tional behaviour of a model transformation is ensured by confluence (termination and local
confluence) of the system of forward translation rules enriched by filter NACs. Further-
more, we characterize strong functional behaviour of a terminating model transformation
based on forward translation rules with filter NACs in Thm. 5.2.31 by the condition that
all significant critical pairs, which are a subset of all critical pairs, are strictly confluent.
Compared with functional behaviour we additionally require the uniqueness of the model
transformation sequence up to switch equivalence for strong functional behaviour.

The addition of filter NACs therefore has two advantages. On the one hand, the analysis
of functional behaviour is improved, because the possible conflicts between the transfor-
mation rules are reduced and we will show in this section that filter NACs allow us to
verify functional behaviour for our case study CD2RDBM. On the other hand, filter NACs
improve the efficiency of the execution by cutting off possible backtracking paths and
in Sec.5.3.2 we show the power of this reduction technique based on a clear benchmark
concerning the case study CD2RDBM. Filter NACs are based on the following notion
of misleading graphs, which can be seen as model fragments that are responsible for the
backtracking of a model transformation.

Definition 5.2.17 (Translatable and Misleading Graphs). A triple graph with translation
attributes G is translatable if there is a transformation G ∗⇒ H such that H is completely
translated. A triple graph with translation attributes G is misleading, if every triple graph
G′ with translation attributes and G′ ⊇ G is not translatable.

Example 5.2.18 (Misleading Graph). Consider the transformation step shown in Fig. 5.16.
The resulting graph G2 is misleading according to Def. 5.2.17, because the edge S2 is
labelled with a translation attribute set to “F”, but there is no rule which may change
this attribute in any bigger context at any later stage of the transformation. The only

5.2 Analysis 141

rule which changes the translation attribute of a “parent”-edge is “Subclass2TableFT”,
but it requires that the source node S3 is labelled with a translation attribute set to “F”.
However, forward translation rules do not modify translation attributes if they are set to
“T” already and additionally do not change the structure of the source component.

Definition 5.2.19 (Filter NAC). A filter NAC n for a forward translation rule trFT :

LFT → RFT is given by a morphism n : LFT → N , such that there is a TGT step
N =

trFT ,n===⇒ M with M being misleading. The extension of trFT by some set of filter NACs
is called forward translation rule trFN with filter NACs.

Figure 5.17: A forward translation rule with filter NAC: Class2TableFN

Example 5.2.20 (Forward Translation Rule with Filter NACs). The rule Class2TableFT

is extended by a filter NAC in Fig. 5.17, which is obtained from the graph G1 of the
transformation step G1 =

Class2TableFT========⇒ G2 in Fig. 5.16, where G2 is misleading accord-
ing to Ex. 5.2.18. In Fact 5.2.21 below we present how such filter NACs are generated
automatically.

A direct construction of filter NACs according to Def. 5.2.19 would be inefficient, be-
cause the size of the considered graphs to be checked is unbounded. For this reason we
now present efficient techniques which support the generation of filter NACs and we can
bound the size without losing generality. At first we present a static technique for a subset
of filter NACs and thereafter, a dynamic generation technique leading to a much larger set
of filter NACs. The first procedure in Fact 5.2.21 below is based on a sufficient criterion
for checking the misleading property. Concerning our example this static generation leads
to the filter NAC shown in Fig. 5.17 for the rule Class2TableFT for an incoming edge of
type “parent”.

Fact 5.2.21 (Static Generation of Filter NACs). Given a triple graph grammar, then the
following procedure applied to each triple rule tr ∈ TR generates filter NACs for the
derived forward translation rules TRFT leading to forward translation rules TRFN with
filter NACs:

142 Model Transformation Based on Triple Graph Grammars

• Outgoing Edges: Check whether the following properties hold

– tr creates a node (x : Tx) in the source component and the type graph allows
outgoing edges of type “ Te” for nodes of type “ Tx”, but tr does not create an
edge (e : Te) with source node x.

– Each rule in TR which creates an edge (e : Te) also creates its source node.

– Extend LFT to N by adding an outgoing edge (e : Te) at x together with a
target node. Add a translation attribute for e with value F. The inclusion
n : LFT → N is a NAC-consistent match for tr .

For each node x of tr fulfilling the above conditions, the filter NAC (n : LFT → N)

is generated for trFT leading to trFN .

• Incoming Edges: Dual case, this time for an incoming edge (e : Te).

• TRFN is the extension of TRFT by all filter NACs constructed above.

Proof. Consider a generated NAC (n : LFT → N) for a node x in tr with an outgoing edge
e inN \L. A transformation stepN =

trFT ,n===⇒ M exists according to Fact 5.1.37 and leads to
a graph M , where the edge e is still labelled with a translation attribute set to “F”, but x is
labelled with “T”, because it is matched by the rule. Now, consider a graph H ′ ⊇M , such
that H ′ is a graph with translation attributes over a graph without translation attributes H ,
i.e. H ′ = H ⊕ AttH0 for H0 ⊆ H ′ meaning that H ′ has at most one translation attributes
for each element in H without translation attributes.

In order to have that M is misleading (Def. 5.2.17), it remains to show that H ′ is not
translatable. Forward translation rules only modify translation attributes from “F” to “T”,
they do not increase the amount of translation attributes of a graph and no structural element
is deleted. Thus, each graph Hi in a TGT sequence H ′ =

tr∗FT==⇒ Hn will contain the edge
e labelled with “F”, because the rules, which modify the translation attribute of e are not
applicable due to x being labelled with “T” in each graph H i in the sequence and there
is only one translation attribute for x in H ′. Thus, each Hn is not completely translated
and therefore, M is misleading. This means that (n : LFT → N) is a filter NAC of trFT .
Dualizing the proof leads to the result for a generated NAC w.r.t. an incoming edge.

The following dynamic technique for deriving relevant filter NACs is based on the gen-
eration of critical pairs, which define conflicts of rule applications in a minimal context. By
the completeness of critical pairs (Lemma 6.22 in [EEPT06]) we know that for each pair of
two parallel dependent transformation steps there is a critical pair which can be embedded.
For this reason, the generation of critical pairs can be used to derive filter NACs. A criti-
cal pair either directly specifies a filter NAC or a conflict that may lead to non-functional
behaviour of the model transformation.

5.2 Analysis 143

In order to provide tool support for the dynamic generation of filter NACs and the anal-
ysis of functional behaviour of model transformations we apply the flattening construction
for triple graphs, which we presented in [EEH08c, EEH08d], and derive a “plain” graph
grammar GG . The analysis of GG can be performed using the implemented critical pair
analysis of the tool AGG [AGG10] for typed attributed graph grammars which allows the
designer to generate and analyse all critical pairs of a grammar. In order to apply the flat-
tening construction we additionally require that the correspondence component TGC of
the type graph TG is discrete, i.e. has no edges. This condition is fulfilled for our case
study and many others as well. An extension of the tool AGG to general triple graphs will
be part of future work.

The flattening of a triple graph G = (GS ←sG−− GC −tG−→ GT) is a (single plain) graph
F(G) obtained by disjoint union of the componentsGS, GC andGT extended by additional
edges LinkS and LinkT , which encode the internal morphisms sG and tG. Moreover, the
flattened type graph F(TG) contains new edge as well and they define the edge types for
the additional edges that occur in the flattened triple graphs F(G). In the examples we will
denote the additional edge type equally by the suffix “:morph”.

Definition 5.2.22 (Flattening Construction). Let G = (GS ←sG−− GC −tG−→ GT) be a triple
graph. The flattening F(G) of G is a plain graph defined by the disjoint union F(G) =

GS +GC +GT + LinkS(G) + LinkT (G) with links (additional edges) defined by
LinkS(G) = {(x, y) |x ∈ VGC , y ∈ VGS , sG(x) = y},
LinkT (G) = {(x, y) |x ∈ VGC , y ∈ VGT , tG(x) = y}
with srcF(G)((x, y)) = x and tgtF(G)((x, y)) = y for (x, y) ∈ LinkS ∪ LinkT .

As shown by Thm. 2 in [EEH08c] there is a one-to-one correspondence between a triple
graph transformation sequences and its flattened plain transformation sequence starting
at the flattened start graph and applying the flattened triple rules. Hence, we can analyse
confluence, in particular critical pairs, of a set of triple rules by analysing the corresponding
set of flattened rules. This allows us to flatten the forward translation rules of a model
transformation and generate the critical pairs in AGG in order to analyse the functional
behaviour of the model transformation.

Figure 5.18: Flattening of the forward translation rule Subclass2TableFT

144 Model Transformation Based on Triple Graph Grammars

Example 5.2.23 (Flattened Forward Translation Rule). Figure 5.18 shows the result of the
flattening construction applied to the forward translation rule Subclass2TableFT , which
is depicted in the right part of Fig. 5.12. The triple graphs are flattened to plain graphs,
where each mapping of the internal graph morphisms of the triple graphs is encoded as an
explicit edge of type morph denoted by a solid line.

Based on the flattening construction we derive an equivalent plain graph transformation
system from the system of forward translation rules. This allows us to use the critical pair
generation and analysis of the tool AGG [AGG10] for the dynamic generation of filter
NACs. A critical pair P1 ⇐

tr1,FT
==== K =

tr2,FT
===⇒ P2 consists of a pair of parallel dependent

transformation steps. If a critical pair contains a misleading graph P1, we can use the
overlapping graph K as a filter NAC of the rule tr 1,FT . However, checking the misleading
property needs human assistance, such that the generated critical pairs can be seen as filter
NAC candidates. But we are currently working on a technique that uses a sufficient criteria
to check the misleading property automatically, and we are confident that this approach
will provide a powerful generation technique.

Fact 5.2.24 (Dynamic Generation of Filter NACs). Given a set of forward translation rules,
then generate the set of critical pairs P1 ⇐

tr1,FT ,m1
====== K =

tr2,FT ,m2
=====⇒ P2. If P1 (or similarly

P2) is misleading, we generate a new filter NAC m1 : L1,FT → K for tr 1,FT leading to
tr 1,FN , such thatK =

tr1,FN ,m1
=====⇒ P1 violates the filter NAC. Hence, the critical pair for tr 1,FT

and tr 2,FT is no longer a critical pair for tr 1,FN and tr 2,FT . But this construction may lead
to new critical pairs for the forward translation rules with filter NACs. The procedure is
repeated until no further filter NAC can be found or validated. This construction starting
with TRFT always terminates if the structural part of each graph of a rule is finite.

Proof. The constructed NACs are filter NACs, because the transformation step
K =

tr1,FT ,m1
=====⇒ P1 contains the misleading graph P1. The procedure terminates, because

the critical pairs are bounded by the amount of possible pairwise overlappings of the left
hand sides of the rules. The amount of overlappings can be bounded by considering only
constants and variables as possible attribute values.

For our case study the dynamic generation terminates already after the second round,
which is typical for practical applications, because the amount of already translated ele-
ments in the new critical pairs usually decreases. Furthermore, the amount of NACs can
be reduced by combining similar NACs differing only on some translation attributes. The
remaining critical pairs that do not specify filter NACs show effective conflicts between
transformation rules, and they can be provided to the developer of the model transforma-
tion to support the design phase.

As shown by Fact 5.2.25 below, filter NACs do not change the behaviour of model
transformations. The only effect is that they filter out derivation paths, which would lead

5.2 Analysis 145

to misleading graphs, i.e. to backtracking for the computation of the model transformation
sequence. This means that the filter NACs filter out backtracking paths. This equivalence
is used on the one hand for the analysis of functional behaviour in Thms. 5.2.27 and 5.2.31
and furthermore, for improving the efficiency of the execution of model transformations as
explained in Sec. 5.3.

Fact 5.2.25 (Equivalence of Transformations with Filter NACs). Given a triple graph
grammar TGG = (TG ,∅,TR) and a triple graph G0 = (GS ← ∅ → ∅) typed over
TG . Let G′0 = (AttF(GS) ← ∅ → ∅), then the following are equivalent for almost
injective matches:

1. ∃ a complete TGT-sequence G′0 =
tr∗FT ,m

∗
FT=====⇒ G′ via forward translation rules.

2. ∃ a complete TGT-sequence G′0 =
tr∗FN ,m

∗
FT=====⇒ G′ via forward translation rules with

filter NACs.

Proof Idea. Sequence 1 consists of the same derivation diagrams as Sequence 2. The addi-
tional filter NACs in sequence 2 prevent a transformation rule to create a misleading graph.
Both sequences lead to completely translated models, such that we know that the matches
in sequence 1 also fulfil the filter NACs of the rules in sequence 2. The full proof is given
in [HEGO10c].

In order to analyse functional behaviour we generate the critical pairs for the system of
forward translation rules and show by Thm. 5.2.27 that strict confluence of “significant”
critical pairs ensures functional behaviour. A critical pair is significant if it can be embed-
ded into two transformation sequences via forward translation rules that start at the same
source model GS , which belongs to the source language VLS .

Definition 5.2.26 (Significant Critical Pair). A critical pair (P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒ P2)

for TRFN is called significant if it can be embedded into a parallel dependent pair
(G′1 ⇐

tr1,FN
==== G′ =

tr2,FN
===⇒ G′2) such that there is GS ∈ LS ⊆ VLS for the language of source

models LS and G′0 =
tr∗FN==⇒ G′ with G′0 = (AttF(GS)← ∅→ ∅).

G1′

G′0
∗ +3 G′

tr2,FN
(0

tr1,FN .6

G′2

Theorem 5.2.27 (Functional Behaviour). Let MT be a model transformation based on
forward translation rules TRFT and let TRFN extend TRFT with filter NACs such that
TRFN is terminating and all significant critical pairs are strictly confluent. Then, MT

has functional behaviour. Moreover, the model transformation MT ′ based on TRFN

does not require backtracking and defines the same model transformation relation, i.e.
MTR′ = MTR.

146 Model Transformation Based on Triple Graph Grammars

Remark 5.2.28. TRFN is terminating if TRFT is terminating. A sufficient condition for
termination of TRFT is given in Cor. 5.2.6. Termination of TRFN with strict confluence of
critical pairs implies unique normal forms by the Local Confluence Theorem in [Lam09].

Proof. For functional behaviour of the model transformation we have to show that each
source model GS ∈ VLS is transformed into a unique (up to isomorphism) completely
translated target model GT , which means that there is a completely translated triple model
G′ with G′T = GT , and furthermore GT ∈ VLT .

For GS ∈ LS ⊆ VLS we have by definition of VL that there is a GT ∈ VLT and a
TGT-sequence ∅ =

tr∗
=⇒ (GS ← GC → GT) via TR and using the decomposition theo-

rem with NACs in [EHS09a] we obtain a match consistent TGT-sequence ∅ =
tr∗S=⇒ G0 =

(GS ← ∅→ ∅) =
tr∗F==⇒ (GS ← GC → GT) and by Thm. 5.1.34 a complete TGT-sequence

G′0 = (AttF(GS)← ∅→ ∅) =
tr∗FT==⇒ (AttT(GS)← GC → GT) = G′.

This means that (GS, G′0 =
tr∗FT==⇒ G′, GT) is a model transformation sequence based

on TRFT . Assume that we also have a complete forward translation sequence G′0 =

(AttF(GS) ← ∅ → ∅) =
tr
∗
FT==⇒ (AttT(GS) ← GC → GT) = G

′
. By Fact. 5.2.25 we

also have the complete TGT-sequences (GS, G′0 =
tr∗FN==⇒ G′, GT) and G′0 =

tr∗FN==⇒ G′ and

G′0 =
tr∗FN==⇒ G

′
. Using the precondition that TRFN is terminating and all significant criti-

cal pairs are strictly confluent we show that all diverging transformation sequences can be
merged again. Consider the possible transformation sequences starting at G′0 (which form
a graph of transformation steps). If two diverging steps (G′i+1 ⇐

p1,m1
==== G′i =

p2,m2
===⇒ G′′i+1). If

they are parallel independent, we can apply the local Church Rosser Thm (LCR) [Lam09]

and derive the merging steps (G′i+1 =
p2,m′2===⇒ H ⇐

p1,m′1==== G′′i+1). If they are parallel dependent
diverging steps we know by completeness of critical pairs (see Thm. 3.7.6 in [Lam09]) that
there is a critical pair and by Def. 5.2.26 we know that this pair is significant, because we
consider transformations sequences starting at G′0. This pair is strictly confluent by pre-
condition. Therefore, these steps can be merged again. Now, any new diverging situation
can be merged by either LCR for parallel independet steps or by strict confluence of the
critical pair for the parallel dependent steps. By precondition the system is terminating. In
combination, this implies that G′ ∼= G

′
and hence, GT ∼= G

T
.

Backtracking is not required, because termination of TRFN with strict confluence of
significant critical pairs implies unique normal forms by as shown above. Therefore, any
terminating TGT-sequence (AttF (GS) ← ∅ → ∅) =

tr∗FN==⇒ G′n leads to a unique G′n up
to isomorphism and by correctness and completeness (Cor. 5.2.6) we have that G′Sn =

AttT (GS).

The model transformation relation is the same, because we have by Fact 5.2.25 the equiv-
alence of the model transformation sequences of MT and MT ′.

5.2 Analysis 147

If the set of generated critical pairs of a system of forward translation rules with filter
NACs TRFN is empty, we can directly conclude from Thm. 5.2.27 that the corresponding
system with forward translation rules TRFT has functional behaviour. From an efficiency
point of view, model transformations should be based on a compact set of rules, because
large rule sets usually involve more attempts of matching until finding a valid match. In the
optimal case, the rule set ensures that each transformation sequence of the model transfor-
mation is itself unique up to switch equivalence. For this reason, we introduce the notion
of strong functional behaviour.

Definition 5.2.29 (Strong Functional Behaviour of Model Transformations). A model
transformation based on forward translation rules TRFN with filter NACs has strong func-
tional behaviour if for eachGS ∈ LS ⊆ VLS there is aGT ∈ VLT and a model transforma-
tion sequence (GS, G′0 =

tr∗FN==⇒ G′n, G
T) based on forward translation rules, and moreover,

• any partial TGT-sequence G′0 =
tr i,∗FN==⇒ G′i terminates, i.e. there are finitely many

extended sequences G′0 =
tr i,∗FN==⇒ G′i =

trj,∗FN==⇒ G′j , and

• each two TGT-sequences G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m with completely trans-

lated graphs G′n and G
′
m are switch-equivalent up to isomorphism.

Remark 5.2.30 (Strong Functional Behaviour).

1. The sequences are terminating means that no rule in TRFN is applicable any more.
However, it is not required that the sequences are complete, i.e. that G′n and G

′
m are

completely translated.

2. Strong functional behaviour implies functional behaviour, because G′n and G
′
m com-

pletely translated implies that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are terminating

TGT-sequences.

3. Two sequences t1 : G0 ⇒∗ G1 and t2 : G0 ⇒∗ G2 are called switch-equivalent,
written t1 ≈ t2, if G1 = G2 and t2 can be obtained from t1 by switching sequen-
tial independent steps according to the Local Church Rosser Theorem with NACs
[Lam09]. The sequences t1 and t2 are called switch-equivalent up to isomorphism
if t1 : G0 ⇒∗ G1 has an isomorphic sequence t1′ : G0 ⇒∗ G2 (using the same
sequence of rules) with i : G1 −∼→ G2, written trace(t1′) = i ◦ trace(t1), such that
t1′ ≈ t2. This means especially that the rule sequence in t2 is a permutation of that
in t1.

The third main result of this paper shows that strong functional behaviour of model
transformations based on forward translation rules with filter NACs can be completely
characterized by the absence of significant critical pairs.

148 Model Transformation Based on Triple Graph Grammars

Theorem 5.2.31 (Strong Functional Behaviour). A model transformation based on termi-
nating forward translation rules TRFN with filter NACs has strong functional behaviour
and does not require backtracking iff TRFN has no significant critical pair.

Proof.

Direction “⇐”: Assume that TRFN has no significant critical pair. Similar to the proof
of Thm. 5.2.27 we obtain for each GS ∈ VLS a GT ∈ VLT and a complete TGT-
sequenceG′0 =

tr∗FT==⇒ G′ and a model transformation (GS, G′0 =
tr∗FT==⇒ G′, GT) based on

TRFT underlying TRFN . By Fact. 5.2.25 we also have a complete TGT-sequence
G′0 =

tr∗FN==⇒ G′ and hence, also a model transformation (GS, G′0 =
tr∗FT==⇒ G′, GT)

based on TRFT underlying TRFN . In order to show strong functional behaviour let

G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m be two terminating TGT-sequences with m,n ≥ 1.

We have to show that they are switch-equivalent up to isomorphism. We show by
induction on the combined length n + m that both sequences can be extended to
switch-equivalent sequences.

For n +m = 2 we have n = m = 1 with t1 : G′0 =
trFN ,m====⇒ G′1 and t1 : G′0 =

trFN ,m====⇒
G
′
1. If trFN = trFN and m = m, then both are isomorphic with isomorphism

i : G
′
1 −∼→ G′1, such that t1 ≈ i ◦ t1. If not, then t1 and t1 are parallel indepen-

dent, because otherwise we would have a significant critical pair by completeness of
critical pairs in [Lam09]. By the Local Church Rosser Theorem [Lam09] we have
t2 : G′1 =

trFN==⇒ G′2 and t2 : G
′
1 =

trFN==⇒ G′2, such that t2 ◦ t1 ≈ t2 ◦ t1 : G′0 ⇒∗ G′2.

Now assume that for t1 : G′0 ⇒∗ G′n−1 and t1 : G′0 ⇒∗ G
′
m we have extensions

t2 : G′n−1 ⇒∗ H , t2 : G
′
m ⇒∗ H , such that t2 ◦ t1 ≈ t2 ◦ t1.

G′0
t1 +3∗

t1
��∗

G′n−1
t +3

t2

�� ∗

G′n

t3

�� ∗
G
′
m t2

+3∗H
t3

+3∗K

Now consider a step t : G′n−1 ⇒ G′n, then we have to show that t ◦ t1 and t1 can be
extended to switch-equivalent sequences. By induction hypothesis and definition of
significant critical pairs also t and t2 can be extended by t3 : G′n ⇒∗ K, t3 : H ⇒∗
K, such that t3◦t ≈ t3◦t2. Now, composition closure of switch equivalence implies
t3 ◦ t ◦ t1 ≈ t3 ◦ t2 ◦ t1 : G′0 ⇒∗ K. This completes the induction proof.

Now, we use that G′n and G
′
m are both terminal which implies that t3 and t3 ◦ t2

must be isomorphisms. This shows that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are switch-

equivalent up to isomorphism.

Direction “⇒”: Assume now that TRFN has strong functional behaviour and that TRFN

has a significant critical pair. We have to show a contradiction in this case.

5.2 Analysis 149

Let P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒ P2 be the significant critical pair which can be embed-

ded into a parallel dependent pair G1 ⇐
tr1,FN
==== G′ =

tr2,FN
===⇒ G2, such that there is

GS ∈ VLS with G′0 =
tr∗FN==⇒ G′ and G′0 = (AttF(GS) ← ∅ → ∅). Since TRFN is

terminating we have terminating sequences G1 ⇒∗ G1n via TRFN and G2 ⇒∗ G2m

via TRFN . By composition we have the following terminating TGT-sequences

1. G′0 =
trFN==⇒ G′ =

tr1,FN
===⇒ G1 ⇒∗ G1n

2. G′0 =
trFN==⇒ G′ =

tr2,FN
===⇒ G2 ⇒∗ G2m

Since TRFN has strong functional behaviour both are switch-equivalent up to iso-
morphism. For simplicity assume G1n = G2m instead of G1n

∼= G2m. This
implies that n = m and G′ =

tr1,FN
===⇒ G1 =⇒∗ G1n is switch-equivalent to

G′ =
tr2,FN
===⇒ G2 =⇒∗ G1n. This means tr 2,FN occurs in G1 =⇒∗ G1n and can be shifted

in G′ =
tr1,FN
===⇒ G1 =⇒∗ G1n, such that we obtain G′ =

tr2,FN
===⇒ G2 ⇒∗ G1n.

But this implies that in an intermediate step we can apply the parallel rule tr 1,FN +

tr 2,FN leading to parallel independence of G′ =
tr1,FN
===⇒ G1 and G′ =

tr2,FN
===⇒ G2, which

is a contradiction. Hence, TRFN has no significant critical pair.

It remains to show that strong functional behaviour implies that backtracking is not re-
quired. This is a direct consequence of Thm. 5.2.27, since we have no significant critical
pair and therefore, all of them are strictly confluent.

Figure 5.19: Critical pair for the rules Subclass2TableFT and Class2TableFT

150 Model Transformation Based on Triple Graph Grammars

Example 5.2.32 (Functional Behaviour). We analyse functional behaviour of the
model transformation CD2RDBM . First of all, CD2RDBM is terminating accord-
ing to Cor. 5.2.6, because all TGG-triple rules are creating in the source com-
ponent as well as finite on the graph part and thus, the possible source mod-
els are finite on the graph part. For analysing local confluence we use the tool
AGG [AGG10] for the generation of critical pairs. The set of derived forward
translation rules from the rules TR in Figs. 5.4 and 5.5 is given by TRFT =

{Class2TableFT , Subclass2TableFT ,Attr2ColumnFT ,Class2TPrimaryAttr2ColumnFT ,

Association2ForeignKeyFT}. We exchange the forward translation rule Class2TableFT
by the extended rule with filter NACs Class2TableFN as shown in Fig. 5.17, and ad-
ditionally extend it by a further filter NAC obtained by the static generation accord-
ing to Fact 5.2.21. AGG detects two critical pairs showing a conflict of the rule
“PrimaryAttr2Column” with itself for an overlapping graph with two primary attributes.
Both critical pairs lead to additional filter NACs by the dynamic generation of filter NACs
in Fact 5.2.24 leading to a system of forward translation rules with filter NACs without
any critical pairs. Thus, we can apply Thm. 5.2.31 and show that the model transforma-
tion based on the forward translation rules with filter NACs TRFN has strong functional
behaviour and does not require backtracking. Furthermore, by Thm. 5.2.27 we can con-
clude that the model transformation based on the forward translation rules TRFT without
filter NACs has functional behaviour and does not require backtracking. As an example,
Fig. 5.10 shows the resulting triple graph (translation attributes are omitted) of a model
transformation starting with the class diagram GS .

While functional behaviour of a model transformation ensures unique results, we are
faced with a further challenge concerning bidirectional model transformations - the anal-
ysis whether and to which extent a source model can be reconstructed from the computed
target model. For example, a transformation of a domain-specific model to some formal
model for the purpose of validation should be reversible to transform back analysis results
stemming from the formal model, and the derived new source model should not differ too
much from the given one. Reversible model transformations also play an important role in
the presence of system evolution. Having usually a variety of different models around in
the engineering process, the evolution of one model depends on the evolution of other mod-
els. To keep models coherent to each other, model transformations have to be reversible
and to a certain extent information-preserving in the sense defined below.

Hence we now present techniques for analysing model transformations based on TGGs
with respect to information-preservation and complete information preservation. Interest-
ingly, it turns out that complete information preservation, i.e. the complete reconstruction
of the source model, is ensured by functional behaviour of the backward model transfor-
mation. We present the techniques for model transformations based on forward rules, but
according to the equivalence result in Thm. 5.1.34, we also know that these techniques

5.2 Analysis 151

provide the same results for model transformations based on forward translation rules with
and without filter NACs.

Definition 5.2.33 (Information Preserving Model Transformation). A model transforma-
tion based on forward rules is backward information preserving, if for each forward model
transformation sequence (GS, G0 =

tr∗F==⇒ Gn, G
T) there is a backward model transforma-

tion sequence (GT , G′0 =
tr
′∗
B==⇒ G′m, G

′S) with GS = G′S , i.e. the source model GS can be
recreated from the resulting target model GT via a target consistent backward transforma-
tion sequence. For backward transformations the term forward information preserving is
defined dually.

The condition under which we obtain standard backward information preservation is
source consistency, i.e. model transformations based on forward rules and model transfor-
mations based on forward translation rules are backward information preserving in general
as stated by Thm. 5.2.34 below.

Theorem 5.2.34 (Information Preserving Model Transformation). Each model transfor-
mation based on forward rules is backward information preserving.

Proof. By Thm. 5.2.1 we know that the forward sequence G0 =
tr∗F=⇒ Gn is source con-

sistent, and by Thm. 5.1.14 we derive the target consistent backward transformation
G′0 = (GT ← ∅ → ∅) =

tr∗B=⇒ Gn with GS
n = GS . This means that we have a back-

ward model transformation sequence (GT , G′0 =
tr∗B==⇒ Gn, G

′S) with GS = G′S .

Figure 5.20: Two possible target consistent backward transformations

152 Model Transformation Based on Triple Graph Grammars

Example 5.2.35 (backward information preserving model transformation CD2RDBM).
The model transformation CD2RDBM is information preserving, because it consists of
model transformation sequences based on forward rules, which ensure source consistency
of the forward sequences by definition. Therefore, the presented source model GS of the
triple graph in Fig. 5.10 can be reconstructed by a target consistent backward transforma-
tion sequence starting at the model G′0 = (∅← ∅→ GT). But there are several possible
target consistent backward transformation sequences starting at G′0. The reason is that the
rule Subclass2TableB can be applied arbitrarily often without having an influence con-
cerning the target consistency, because the rule is identical on the target component. This
means that the inheritance information within a class diagram has no explicit counterpart
within a relational data base model.

Two possible target consistent backward transformation sequences for the same derived
target model GT are presented in Fig. 5.20. The source model GS can be transformed into
G = (GS ← GC → GT). But starting with GT , both depicted backward transformation
sequences are possible and target consistent. The resulting source graphs GS and G′S ,
however, differ with respect to the class node S7 and the edge S6 in GS . Hence, not all
information of GS can be reconstructed uniquely and therefore, i.e. some information gets
lost in the target model GT .

According to Thm. 5.2.34 each model transformation based on forward rules as pre-
sented in Sec. 5.1.1 is backward information preserving. But the reconstruction of a cor-
responding source model from a derived target model is in general not unique. In order to
ensure uniqueness of the reconstruction we now present the notion of complete information
preservation. This stronger notion ensures that all information contained in a source model
can be reconstructed from the derived target model itself. More precisely, starting with
the target model, each backward model transformation sequence will produce the original
source model. This means in particular that only one backward model transformation se-
quence has to be constructed. Hence, from an intuitive point of view, all information that
were present in the given source model is completely preserved during the forward model
transformation and stored within the constructed target model.

Definition 5.2.36 (Complete Information Preservation). A model transformation is com-
pletely information preserving if it is backward information preserving and furthermore,
given a source modelGS ∈ LS and the resulting target modelGT of a forward model trans-
formation sequence, then each partial backward transformation sequence starting withGT

using the on-the-fly construction (Thm. 5.1.22) terminates and produces the given source
model GS as result.

As the definition of complete information preservation already states, we can verify that a
model transformation satisfies this property by showing that each backward transformation
sequence starting at a derived target model produces unique results. Thus, we can verify

5.2 Analysis 153

complete information preservation by showing functional behaviour of the corresponding
backward model transformation with respect to the derived target models MT (LS) ⊆ VLT .
According to the definition of functional behaviour (Def. 5.2.15) applied to the backward
model transformation, we have to concern the target DSL L′T = MT (LS).

Theorem 5.2.37 (Completely Information Preserving Model Transformation). Given a
model transformation MT based on forward rules. Then, MT is completely information
preserving if the corresponding backward model transformation according to Def. 5.1.15
has functional behaviour with respect to the target language L′T = MT (LS).

Proof. By Thm. 5.2.34 we know that MT is backward information preserving. Now,
given a model transformation sequence (GS, G0 =

tr∗F=⇒ Gn, G
T), we additionally know

that GT ∈ VLT by Thm. 5.2.1, and furthermore, we know that GT ∈ L′T = MT (LS).
Using the functional behaviour of the corresponding backward model transformation ac-
cording to Def. 5.2.15 for the language L′T we know that for each model HT the back-
ward model transformation yields a unique HS ∈ VLS . Therefore, each backward model
transformation sequence (GT , G′0 =

tr∗B=⇒ G′n, G
′S) leads to a unique G′S ∈ VLS . Further-

more, we know by Thm. 5.2.34 that there is a backward model transformation sequence
(GT , G′′0 =

tr∗B=⇒ G′′n, G
S) implying GS ∼= G′S , i.e. the model transformation is completely

information preserving.

Remark 5.2.38 (Complete Information Preservation).

1. As stated in Sec. 5.1.1 we generally assume that LS ⊆ VLS . In our case study we
have the special case LS = VLS and LT = VLT . In the general case, the condition
LS ⊆ VLS has to be shown for a concrete DSL LS separately.

2. If we additionally have the case that LS = VLS , then the given condition for com-
plete information preservation is not only sufficient but also necessary. The reason is
that the required unique resulting source model of the model transformation directly
corresponds in this case with the definition of functional behaviour by replacing L′T
with VLT .

Example 5.2.39 (Complete Information Preservation). The model transformation MT 1 =

CD2RDBM is not completely information preserving. Consider e.g. the source model GS

in Fig. 5.20 of Ex. 5.2.35, where two backward model transformation sequences are possi-
ble starting with the same derived target model GT . This means that the backward model
transformation has no functional behaviour with respect to MT 1(LS) = MT (VLS) =

VLT = LT .

However, we can also consider the inverse model transformation, i.e. swapping the
forward and backward direction leading to the model transformation MT 2 = RDBM2CD

154 Model Transformation Based on Triple Graph Grammars

from relational data base models to class diagrams. In this case, the model transformation
is completely information preserving meaning that each relational data base model MDB

can be transformed into a class diagramMCD, and each data based model modelMDB can
be completely and uniquely reconstructed from its derived class diagram MCD. In other
words, each class diagram resulting from a model transformation sequence of RDBM2CD
contains all information that were present in the given data base model. According to
Ex. 5.2.32 we know that the model transformation CD2RDBM has functional behaviour
and hence, the backward model transformation of RDBM2CD has functional behaviour
with respect to VLT being equal to the source language VLS of CD2RDBM. For this
reason, we can apply Thm. 5.2.37 and have that RDBM2CD is completely information
preserving. In particular, foreign keys are completely represented by associations, and
primary keys by primary attributes. There is no structure within the data base model which
is not explicitly represented within the class diagram.

In some cases, a model transformation should also ensure that the derived target models
are included in the considered target DSL LT . This gives rise to the stricter notion of
syntactical correctness, called strong syntactical correctness, which furthermore provides
part of a sufficient condition for complete information preservation according to Cor. 5.2.41
below.

Definition 5.2.40 (Strong Syntactical Correctness). Given the source DSL LS and the tar-
get DSL LT of a model transformation MT . Then, MT is called strongly syntactically cor-
rect if it is syntactically correct and furthermore, given a model transformation sequence
(GS, G0 =

tr∗F=⇒ Gn, G
T) with GS ∈ LS , then GT ∈ LT . This means that the set of derived

target models belongs to the target DSL, i.e. MT (LS) ⊆ LT

Corollary 5.2.41 (Completely Information Preserving Model Transformation). Given a
strongly syntactically correct model transformation MT based on forward rules. Then,
MT is completely information preserving if the corresponding backward model transfor-
mation according to Def. 5.1.15 has functional behaviour.

Proof. Assume that MT is strongly syntactically correct, then we know that MT (LS) ⊆
LT . Assume further that the corresponding backward model transformation has functional
behaviour with respect to LT . Thus, we also have that the backward model transforma-
tion has functional behaviour with respect to MT (LS) and by Thm. 5.2.37, we directly
conclude that MT is completely information preserving.

Summing up, the analysis techniques and results concerning functional behaviour as
presented in this section can be used to ensure unique results, and in addition, they can
be used to ensure a complete preservation of information when transforming a model of
a source DSL into a model of a considered target DSL. Moreover, the next section on

5.3 Optimization and Evaluation 155

optimization shows how some of these results are additionally used to improve and ensure
efficient executions of model transformations.

5.3 Optimization and Evaluation

Bidirectional model transformations are a key concept for supporting model driven inter-
operability. The main aim in this context is that models in one domain are maintained sepa-
rately from models in other domains, while model modifications are reflected and commu-
nicated to the interrelated models. For this purpose, the execution of model transformations
has to respect certain efficiency constraints. But also in the general case, efficiency plays
an important role for ensuring high usability of model transformation techniques.

In order to improve and – in the best case – guarantee efficient executions of model trans-
formations, we present in this section several techniques for the optimization of model
transformations based on TGGs, while the fundamental results concerning correctness,
completeness, and termination, as well as functional behaviour and information preserva-
tion remain valid. We also show how model transformations can be improved by detecting
and reducing inadequate translations of certain models based on automated tool support.
Finally, we summarize and evaluate the main results of our approach to model transforma-
tion according to the listed challenges at the beginning of this chapter.

At first we show in Sec. 5.3.1 how model transformations are analysed in order to detect
conflicting pairs of rules. The analysis results support the designer of a model transforma-
tion by improving the adequateness and efficiency of the model transformation. Sec. 5.3.2
thereafter explains how the results in Sec. 5.3.1 and, additionally, Sec. 5.2.2 are used for
the reduction of backtracking efforts during the execution of a model transformation. By
Thm. 5.2.27 in Sec. 5.2.2 we can – in the best case – guarantee executions in polynomial
time and space if all significant critical pairs are strictly confluent for the improved rule set.
As a benchmark we evaluate our case study concerning execution times and show that the
additional overhead caused by the insertion of filter NACs is rather small and does not lead
to exponential efforts, while backtracking usually does. In some cases filter NACs suffice
to show functional behaviour, and in this case backtracking can be avoided in general (see
Thms. 5.2.27 and 5.2.31). For the cases where backtracking is necessary, we addition-
ally provide results for analysing parallel independence (Thm. 5.3.10, Fact 5.3.11), which
build the basis for partial order reduction techniques. Based on the results in Ch. 3 we
furthermore show how backtracking efforts can be reduced with respect to time and space.
Finally, we evaluate our approach to model transformations based on TGGs according to
the list of challenges in Sec. 5.1 and show that we provide powerful results for the main
part of it.

156 Model Transformation Based on Triple Graph Grammars

5.3.1 Detection, Reduction and Elimination of Conflicts

The design of model transformations involves several decisions concerning the interrela-
tionship of the involved DSLs and how the underlying correspondences between the differ-
ent model elements of two models shall be established by the triple rules. The designer is
faced with several important goals at the same time, like adequateness of the model trans-
formation relation with respect to the application domains, efficiency of the execution and
- if required - functional behaviour and complete information preservation. For this reason,
we now present automated techniques for providing tool support at the design phase. The
techniques are based on the results in Sec. 5.2.2 and provide analysis results with respect
to the interplay of the triple rules, their possible conflicts and the interpretation, evaluation
and resolution of such conflicts. These techniques are additionally used in Sec. 5.3.2 for
improving the efficiency of a model transformation.

One important question at the design phase usually is whether a particular triple rule shall
create relatively large and complex patterns or, alternatively, rather less complex ones. In
most cases the simpler the triple rules are the easier they are to understand. Moreover,
compact rules usually reduce the size of the triple graph grammar given by the sum of the
type graph and the rule components. However, triple rules sometimes have to be – to a
certain extent – larger, because there are interrelationships between DSLs that cannot be
achieved by relatively small rules only. In more detail, if the translation of a particular
pattern P of a source model cannot be uniquely specified by the compact pattern P itself,
because the translation depends on some further context, the rules have to contain some
additional context around P as well. In many cases, these situations can be detected by
conflict detection, because the variants for a translation are usually specified by different
rules and thus, there are at least two rules with a different behaviour on the particular
pattern.

In addition to the detection of conflicts the designer needs support for conflict resolution
and elimination, respectively. For this purpose we specify a special class of conflicts, called
MTR-diverging conflicts, that cause a model transformation to be ambiguous for at least
one particular source model GS , i.e. there are two corresponding target models GT

1 6∼= GT
2

with (GS, GT
1) ∈ MTR and (GS, GT

2) ∈ MTR. From the application point of view, model
transformations sometimes do not have to ensure functional behaviour, but the possible
target models for a given source model have to be semantically equivalent. If this is not
the case for the considered target models G1,T , G2,T , then the detected conflict needs to
be eliminated, because one of the target models is not intended to be a valid result. By
Thm. 5.3.7 we can ensure that the technique of conservative conflict resolution ensures
that the derived new model transformation relation is contained in the original one. This
ensures that no new pairs are inserted by the rule modifications and thus, the amount of
invalid translations from the semantic point of view is reduced.

5.3 Optimization and Evaluation 157

Conflicts of transformation steps are caused by the non-deterministic choice concern-
ing the current rule and match for the next transformation step during the execution of a
transformation. This general flexible concept for graph transformation systems has the ad-
vantage that the designer of a model transformation does not have to specify a detailed and
possibly complex control structure, which completely determines the order of the steps for
each possible input model. Moreover, the model transformation can be build up iteratively
rule by rule, i.e. feature by feature, and each transformation rule can be maintained more
or less separately when the involved DSLs evolve or other context constraints change.

But the non-determinism may cause some side effects of some rules with respect to
other rules, because the application of one rule may exclude the execution of another rule
from the possible continuations of the transformation sequence. In the general case this
may lead to non-functional behaviour. Furthermore, even if functional behaviour is not
required, there may be parts of models that should always be translated by one specified
transformation rule. Vice versa, there may be specific parts of models that should never be
translated by one particular rule.

We now show by the following example how the conflict analysis techniques for model
transformation rules are used to provide visualized results to the designer, who may become
aware of possibly unintended behaviour of the concrete model transformation at certain
models. The analysis is based on the presented techniques in Sec. 5.2.2 for analysing
functional behaviour based on critical pairs [EEPT06, Lam09]. The visualized conflicts are
presented in minimal context, and the designer has the choice whether to keep the model
transformation unchanged or to modify some transformation rules by e.g., the insertion of
derived NACs that exclude the detected conflict.

Figure 5.21: Original TGG-rule “Attr2Column” and modified rule “A2CReduced”

Example 5.3.1 (Conflict detection). During the design of the model transformation
CD2RDBM the modeller may inspect the rule “Attr2Column” (left of Fig. 5.21) and ob-
serve that value of the attribute “is primary” of node “S3” is not used for the correspond-
ing part in the data base. He concludes that the attribute could be handled separately by
another rule, which would add the Boolean value “is primary = false” in the class dia-
gram and would keep the data base unchanged. The resulting reduced rule “A2CReduced”

158 Model Transformation Based on Triple Graph Grammars

is shown on the right of Fig. 5.21. In order to check the effect of this change for the be-
haviour of the model transformation we can now use the critical pair analysis engine of
AGG [AGG10] for the derived forward translation rules as described in Sec. 5.2.2. AGG
can purely generate the conflicts of rules that contain the new rule. There are three crit-
ical pairs concerning attributes (attribute-change) and three concerning NACs (produce-
forbid). The first three only differ on how many elements are commonly matched, and the
remaining three can be neglected because they contain overlapping graphs, which violate
the language constraints of the source language. Thus, we show one representative critical
pair in Fig. 5.22. In Ex. 5.3.3 we explain how the designer can interpret the situation and
how he can solve the problematic situation.

Remark 5.3.2 (Creation of nodes with attributes). Note that the reduced rule
“A2CReduced” in Ex. 5.3.1 is well-defined, although one attribute of “S3” is not set.
This is possible by the underlying concept of E-graphs (See Sec. 3.1 and [EEPT06]) for
attributed graphs, which allows for matching and creation of nodes where not all attributes
are set. However, rules can also be restricted to create only nodes where all attributes are
specified. In this case we can imagine another example with a more complex rule, where
some additional context is not needed for the translation directly, but for the restriction
of matches. In the simplest case consider for example, that the attribute “is primary”
is equivalently specified within the abstract syntax by an external node. This means
that the type graph would contain the additional node type “Is primary”, and the rule
“A2CReduced” would respect the requirement that all attributes of created nodes are set.

Figure 5.22: Critical pair for TGG-rules modified rule “A2CReduced” and
“PrimaryAttr2Column”

Example 5.3.3 (Conflict Resolution). The critical pair in Fig. 5.22 shows a conflict be-
tween the modified rule “A2CReduced” and “PrimaryAttr2Column”. Obviously, the

5.3 Optimization and Evaluation 159

graph P1 shows a pattern that is problematic, because the node of type “Attribute” with
attribute value “is primary = true” is already translated, but the corresponding column
is not marked as primary attribute. The designer has the following options.

1. The overlapping graph K can be used as additional NAC of rule “A2CReduced” to
avoid an application in this context. AGG offers a direct extension of the rule with
K as NAC. The conflict analysis has to be executed again to detect new conflicts
that may appear. The resulting behaviour of “A2CReduced” becomes more or less
equivalent to the original rule “Attr2Column”, and the model transformation rela-
tion is the same as for the original system. This conflict resolution gives rise to the
general notion of conservative conflict resolution, which is defined in Def. 5.3.6 later
on in this section.

2. Rule “PrimaryAttr2Column” can by reduced now to a rule that only translates
the attribute “is primary = true” of a node of type “Attribute”. Furthermore,
there would be the need for an additional rule that create the attribute value
“is primary = false” without creating an edge of type “pkey” in the target compo-
nent.

3. Since the designer is aware of the conflict, which shows an unintended behaviour
of the model transformation, he can decide to keep the original rule and delete the
modified rule “A2CReduced”.

Which decision the designer takes depends on the further possible extensions he has in
mind. All three possibilities will lead to the same model transformation relation as in the
original system.

As shown by Examples 5.3.1 and 5.3.3, the design decisions within the modelling pro-
cess can be supported by automated techniques for conflict detection. Most importantly,
the automated techniques can detect unintended side effects of transformation rules and
concretely visualize the conflicts in minimal contexts. We now specify a class of conflicts
between TGG-rules that are similar to the conflicts of the example. Analogously to the
analysis of functional behaviour in Sec. 5.2.2, we define a special class of critical pairs that
show a so-called MTR-divergence conflict. If a critical pair shows an MTR-divergence
conflict, we know that there is a pattern of a source model that can be translated into two
different ways leading to different resulting target models. In this situation, the designer
has to judge whether both possibilities are intended, because they are e.g. semantically
equivalent in the target domain, or whether one of them is not intended and should be elim-
inated. An elimination can be performed directly by specifying the overlapping graph K
as NAC for the rule of the unintended step.

160 Model Transformation Based on Triple Graph Grammars

Definition 5.3.4 (MTR-divergence Conflict). Let MTR be the model transformation re-
lation of a model transformation based on forward translation rules. A critical pair
P1 ⇐

tr1,FN
==== K =

tr2,FN
===⇒ P2 shows an MTR-divergence Conflict, if it can be embedded

in a pair G′i+1 ⇐
tr1,FN
==== G′i =

tr2,FN
===⇒ G′′i+1, where (GS, G′0 =

tr i,∗FN==⇒ G′i =
tr1,FN
===⇒ G′i+1 =

trj,∗FN==⇒

G′n, G
T) and (GS, G′0 =

tr i,∗FN==⇒ G′i =
tr2,FN
===⇒ G′′i+1 =

trk,∗FN==⇒ G′′m, G
T
) are model transformation

sequences with GT 6∼= G
T

.

Remark 5.3.5 (Analysis of MTR-divergence Conflicts). In Sec. 5.2.2 we presented how
AGG [AGG10] is used for the analysis of critical pairs based on the flattening construction.
Besides the full generation of all critical pairs, AGG can optionally generate the critical
pairs for some particular rule combinations, thus we can restrict the analysis to the rule
that is currently developed by the designer. Given a critical pair (P1 ⇐ K ⇒ P2), the
question now is whether it shows an MTR-divergence conflict or not.

A critical pair does not show an MTR-divergence conflict if P1, P2 or both are mislead-
ing graphs according to Def. 5.2.17. By Fact 5.2.21 we have presented a static generation
technique for filter NACs which can be used as well to generate a set of misleading graphs
in order to check whether P1 or P2 are included showing that the critical pair does not
show an MTR-divergence conflict.

Vice versa, given a generated critical pair, we can start a search for corresponding model
transformation sequences by taking the source component KS of K without translation
attributes and extending it to possible source models GS on which we can execute the
model transformation and store the found sequences. If the procedure finds two diverging
sequences where the critical pair is embedded the designer of the model transformation
can be notified that the critical pair shows an MTR-divergence conflict.

Once a particular conflict is detected it can be resolved in a conservative way as defined
below, where one rule is extended by a new NAC in order to forbid the application of
this rule in situations where the conflict may occur independent of additional context. The
overlapping graph is used to specify this NAC.

Definition 5.3.6 (Conservative Conflict Resolution). Let (P1 ⇐
tr1,FN ,m1
====== K =

tr2,FN ,m2
=====⇒ P2)

be a critical pair of the set TRFN containing forward translation rules with filter NACs.
A new set TR′FN is derived from TRFN by conservative conflict resolution, if TR′FN =

(TRFN \ {tr 1,FN}) ∪ {tr ′1,FN}, where tr ′1,FN is given by tr 1,FN extended with a new NAC
(n : L1,FN → N) with n = m1 and N = K.

By Thm. 5.3.7 we show that the new induced model transformation relation conforms
to the original one in the way that only some pairs may be deleted, but no new pair is
inserted. Since the additional NAC restricts the rule application for an arbitrarily bigger
context, there may be several pairs of MTR that are deleted, and if the NAC cannot be

5.3 Optimization and Evaluation 161

found in an valid intermediate model during the execution of the model transformation,
then the model transformation relation remains unchanged after the insertion of the NAC.

Theorem 5.3.7 (Conservative Conflict Resolution). Given a model transformation based
on forward translation rules with filter NACs TRFN with model transformation relation
MTR. Let TR′FN be derived from TRFN by stepwise conservative conflict resolution, then
the corresponding new model transformation relation MTR′ for TR′FN is included in the
original model transformation relation MTR:

MTR′ ⊆ MTR

Proof. Let (GS, GT) ∈ MTR′. This implies that there is a model transformation sequence

(GS, G′0 =
tr
′∗
FT==⇒ G′n, G

T). MTR′ is based on TR′ and TR′ contains the same rules as
TR, but each rule may contain some additional NACs. Therefore, the TGT-sequence

(G′0 =
tr
′∗
FT==⇒ G′n) = (G′0 =

tr
′
1,FT ,m1,FT

=======⇒ G′1 =
tr
′
1,FT ,m1,FT

=======⇒ . . . G′n−1 =
tr
′
n,FT ,m1,FT

=======⇒ G′n)

based on TR′ implies the sequence
(G′0 =

tr∗FT==⇒ G′n) = (G′0 =
tr1,FT ,m1,FT
=======⇒ G′1 =

tr1,FT ,m1,FT
=======⇒ . . . G′n−1 =

trn,FT ,m1,FT
=======⇒ G′n) based

on TR. Thus, (GS, GT) ∈ MTR.

As described in Rem. 5.3.5 above, we presented some techniques for the analysis of con-
flicts and in particular, an analysis to check whether certain detected conflicts are MTR-
divergence conflicts. By Thm. 5.3.7 we can ensure that a conservative resolution of con-
flicts of the critical pairs generated by the tool AGG may only reduce the model transfor-
mation relation by eliminating some pairs of source and target models. This means that no
new pairs can be introduced, which is important for the design of model transformations.
This way, the designer is enabled to first create model transformation rules that are perhaps
too flexible, and he can restrict their application thereafter without any risk that he may
insert new possible translation variants for some source models.

5.3.2 Reduction and Elimination of Backtracking

While many functional properties, such as syntactical correctness and completeness of
model transformations based on TGGs can be ensured in general as presented in Sec. 5.2.1,
this is not the case for the efficiency of its execution caused by the non-deterministic nature
of graph transformation systems in general. However, efficiency plays a big role when
applying model transformations in running modelling environments with a variety of DSLs.

In order to improve the efficiency of model transformations based on TGGs we mainly
have to reduce the costs of backtracking. For this purpose we present in this section differ-
ent techniques which help to reduce the amount of the cases for backtracking by cutting off
backtracking paths and filtering out equivalent ones. Moreover, we show how the memory
consumption can be kept relatively low even if the models itself are big.

162 Model Transformation Based on Triple Graph Grammars

Here we can again reuse results from previous sections. First of all, the reduction of
backtracking cases is based on the detection and elimination of conflicts in Sec. 5.3.1 and,
moreover, based on the results on functional behaviour in Sec. 5.2.2 we can avoid back-
tracking completely if some sufficient conditions hold. Based on the results on behaviour
analysis of general graph transformation systems in Ch. 3 we can, furthermore, filter out
equivalent transformation paths and reduce the memory consumption by constructing the
corresponding subobject transformation system (STS) allowing us to omit the storage of
intermediate models.

Filter NACs introduced in Sec. 5.2.2 on the one hand support the analysis of functional
behaviour, and on the other hand, also improve the efficiency of the execution. By defini-
tion, the occurrence of a filter NAC at an intermediate model means that the application of
the owning rule would lead to a model that cannot be translated completely, i.e. the execu-
tion of the model transformation would perform backtracking at a later step. This way, a
filter NAC cuts off possible backtracking paths of the model transformation. As presented
in Fact 5.2.21 some filter NACs can be generated automatically, and using Fact 5.2.24, a
larger set of them can be obtained based on the generation of critical pairs.

As shown by Thm. 5.2.27, we can completely avoid backtracking if all critical pairs of
the system of forward translation rules, possibly enriched by additional filter NACs, are
strictly confluent. Furthermore, we have shown by Thm. 5.2.31 that backtracking can be
avoided as well, if the constructed filter NACs lead to a set of rules TRFN that has no
significant critical pair.

Table 5.2: Benchmark, Tool: AGG [AGG10]

Example 5.3.8 (Benchmark: Execution of Model Transformations). Table 5.2 shows ex-
ecution times using the transformation engine AGG [AGG10]. The additional overhead
caused by filter NACs is fairly small and lies in the area of 10% for the examples in the
benchmark, which is based on the average execution times for 100 executions concerning
models with 11, 25, 53 and 109 elements (nodes and edges), respectively. The first model
with 11 elements is the presented class diagram in the source component of Fig. 5.10. We

5.3 Optimization and Evaluation 163

explicitly do not compare the execution times of the system with filter NACs with one par-
ticular system with backtracking, because these times can vary heavily depending on the
used techniques for partial order reduction and the chosen examples. Instead we present
the computed success rates for the system without NACs, which show that backtracking
will cause a substantial overhead in any case. Thus, the listed times concern success-
ful execution paths only, i.e. those executions that lead to a completely translated model.
The success rate for transformations without filter NACs decreases fast when considering
larger models, and in particular, for the model with 109 elements the success rate is below
0.2%. This means that the error rate is above 99.8%, while the success rate for the system
with filter NACs is always 100%.

The system without filter NACs requires backtracking in order to ensure completeness,
because there are transformation paths which do not lead to completely translated models.
The times for the unsuccessful executions that end at a partially translated model are not
measured, i.e. the additional overhead of backtracking is not contained in the numbers.
This overhead is caused on the one hand by the execution of unsuccessful transformation
sequences and on the other hand by the additional efforts for storing the transformation de-
tails in order to restart the transformation process at intermediate steps. In the worst case,
backtracking leads to the complete construction of all possible transformation sequences
for a given source model, i.e. the construction of the full derivation tree, because the suc-
cessful path may be constructed as the last one or the source model cannot be translated
at all, because it does not belong to VLS . Even if partial order reduction techniques are
applied to remove equivalent paths, the worst case still leads in general to a derivation tree
implying that the complexity of backtracking is still exponential with respect to the length
of one transformation sequence for the given input model. In our case study misleading
graphs appear already at the beginning of many transformation sequences. This implies
that backtracking will cause in the worst case the construction of wide derivation trees,
which is costly.

Backtracking for general model transformation systems is reduced by filter NACs and
avoided completely in the case that no “significant critical pair” remains present (see
Thm. 5.2.31), which we have shown to be fulfilled for our example. The additional over-
head of about 10% for filter NACs is in most cases much smaller than the efforts for back-
tracking.

Moreover, in order to perform model transformations using highly optimized transforma-
tion machines for plain graph transformation, such as Fujaba and GrGen.Net [TBB+08],
we have presented how the transformation rules and models can be equivalently repre-
sented by plain graphs and rules. First of all, triple graphs and morphisms are flattened
according to the construction presented in Sec. 5.2.2 and in [EEH08c, HEOG10]. Further-
more, we presented how forward rules with NACs are extended to forward translation rules
with NACs, such that the control condition “source consistency” [EEE+07] and the gluing

164 Model Transformation Based on Triple Graph Grammars

condition (Fact 5.1.37) are ensured automatically for complete sequences, i.e. they do not
need to be checked during the transformation.

In order to perform partial order reduction when backtracking cannot be completely
avoided, we now present several results concerning parallel independence.

For model transformations based on forward rules we can analyse the execution paths
during the on-the-fly construction presented in Sec. 5.1.1. Two partially match consistent
sequences which differ only in the last rule application are parallel independent if the last
rule applications are parallel independent both for the source and forward sequence, and,
in addition, if the embeddings into the given graph G0 are compatible.

Definition 5.3.9 (Parallel Independence of Partially Match Consistent Extensions). Two
partially match consistent sequences
∅ = G00 =

tr∗S=⇒ Gn0 =
tr1,S
==⇒ Gn+1,0 ↪−gn+1−−→ G0 =

tr∗F==⇒ Gn =
tr1,F
==⇒ Gn+1 and

∅ = G00 =
tr∗S=⇒ Gn0 =

tr2,S
==⇒ G′n+1,0 ↪−

g′n+1−−→ G0 =
tr∗F=⇒ Gn =

tr2,F
==⇒ G′n+1

are parallel independent if Gn0 =
tr1,S
==⇒ Gn+1,0 and Gn0 =

tr2,S
==⇒ G′n+1,0 as well as Gn =

tr1,F
==⇒

Gn+1 and Gn =
tr2,F
==⇒ G′n+1 are parallel independent leading to the diagram (1S) and (1F),

and diagram (2) is a pullback.

Gn0

tr1,S +3

tr2,S
��

Gn+1,0

(1S) tr2,S
��

G′n+1,0 tr1,S
+3 Gn+2,0

Gn

tr1,F +3

tr2,F
��

Gn+1

(1F) tr2,F
��

G′n+1 tr1,F
+3 Gn+2

Gn0
� � t1,S //

� _
t2,S
��

Gn+1,0

(2)

� _

gn+1

��
G′n+1,0

� �

g′n+1

// G0

In the case of parallel independence of the extensions, both extensions can be extended
both in the source and forward sequences leading to two longer partially match consistent
sequences which are switch-equivalent.

Theorem 5.3.10 (Partial Match Consistency with Parallel Independence). If∅ = G00 =
tr∗S=⇒

Gn0 =
tr1,S
==⇒ Gn+1,0 ↪−gn+1−−→ G0 =

tr∗F==⇒ Gn =
tr1,F
==⇒ Gn+1 and ∅ = G00 =

tr∗S=⇒ Gn0 =
tr2,S
==⇒

G′n+1,0 ↪−
g′n+1−−→ G0 =

tr∗F==⇒ Gn =
tr2,F
==⇒ G′n+1 are parallel independent then the following upper

and lower sequences are partially match consistent and called switch equivalent.

Gn+1,0 tr2,S
!)

Gn+1 tr2,F
�'

∅ = G00

tr∗S +3 Gn0

tr1,S 7?

tr2,S
�'

Gn+2,0
� � // G0

tr∗F +3 Gn

tr1,F 9A

tr2,F
�$

Gn+2

G′n+1,0

tr1,S

5=

G′n+1

tr1,F

7?

Proof. The proof of Thm. 5.3.10 above is given by the proof for Thm. 5 in [EEHP09a].

While we construct the source and forward sequences separately for model transforma-
tions based on forward rules using the on-the-fly construction, they are constructed in an

5.3 Optimization and Evaluation 165

integrated way for model transformations based on forward translation rules. Therefore,
we can reduce the analysis of parallel independence to the common notion of parallel in-
dependence for typed attributed graph transformation systems as shown by Fact. 5.3.11
below.

Fact 5.3.11 (Parallel Independence of Forward Translation Steps). Given a TGT-sequence

G′0 =
tr∗FT==⇒ G′n and let G′n =

trFT ,1,m
′
1,FT

=======⇒ H ′1 and G′n =
trFT ,2,m

′
2,FT

=======⇒ H ′2 be two parallel
independent transformation steps according to Def. 3.2.4 in Sec. 3.2. Then, there are se-
quentially independent transformation steps

H ′1 =
trFT ,2,m

′
2a,FT

========⇒ H ′ and G′2 =
trFT ,1,m

′
1a,FT

========⇒ H ′.

Proof. This result follows directly by the local Church-Rosser Thmeorem for typed at-
tributed graph transformation systems with NACs as shown by Thm. 3.4.3 in [Lam09] for
weak adhesive HLR systems, and we know by Thm. 11.11 in [EEPT06] that typed at-
tributed graphs form a weak adhesive HLR category. Note that the distinguished classQ in
[Lam09] coincides withM for the notion of typed attributed graph transformation systems
in this thesis, which is also the usual case. Note further that the notion of M-adhesive
categories is a generalisation of weak adhesive HLR categories.

During the execution of a model transformation based on forward translation rules we
can apply the analysis techniques of Ch. 3 and construct the subobject transformation sys-
tem (STS) of the current transformation sequence. An STS S = (T, P, π) can be used
to store all relevant information of the transformation sequence in a compact way such
that the possibly quite complex intermediate models and relating morphisms do not have
to be stored separately. The sequence s = 〈r1; . . . ; rn〉 of rule names in P specifies the
executed steps of the transformation sequence and using the STS backtracking is possible
to all intermediate steps. Furthermore, the STS is constructed iteratively, and therefore, it
can be updated iteratively for the current considered transformation sequence within the
derivation tree during the backtracking phase.

A further improvement of backtracking can be achieved by generating the dependency
net of the constructed STS, which can be used to generate all permutation-equivalent paths.
Depending on the strategy for partial order reduction the derived information can be used
to reduce the amount of explicit transformation steps that have to be executed.

Summing up, the presented results on parallel independence (Thm. 5.3.10 Fact 5.3.11)
provide a formal basis for partial order reduction techniques. The construction of the STS
during the backtracking phase enables a further reduction of the required space and there-
fore, it can reduce the execution time by reducing the efforts for write and read operations
that have to be performed. As main contribution we have shown by the benchmark in
Ex. 5.3.8 that the generation and specification of filter NACs generally reduces backtrack-
ing, and in some cases, filter NACs ensure strong functional behaviour of the model trans-

166 Model Transformation Based on Triple Graph Grammars

formation such that backtracking is avoided completely. Using the flattening construction
as explained in Sec. 5.2.2 we can use the best available tools for executing graph trans-
formations including the available partial order reduction techniques, while still ensuring
correctness and completeness.

5.3.3 Evaluation of the Approach

By comparing the listed challenges at the beginning of this chapter concerning properties of
the functional and non-functional dimensions of model transformations, we can state that
the presented approach of model transformations based on TGGs provides important and
powerful results that encompass the major part of the specified challenges. In the following
we will summarize the main achievements in this direction.

1. Syntactical Correctness: Model transformations based on forward rules and equiva-
lently those based on forward translation rules (see Sec. 5.1) are syntactically correct
with respect to the language VL = {G | ∅ =⇒∗ G in TGG} containing the integrated
models generated by the triple rules (Thms. 5.2.1 and 5.1.22 and Cor. 5.2.6).

2. Semantic Correctness: Techniques for analysing the semantic correctness of a model
transformation are not in the focus of this thesis. First results in this direction are
presented in [HHK10], where we prove the semantic correctness of a rather sim-
ple model transformation, and we show how this approach has the potential to be
generalized to other model transformations as well.

3. Completeness: Model transformations based on forward rules and equivalently those
based on forward translation rules (see Secs. 5.1) are complete with respect to the lan-
guage VLS of source models and VLT of target models (Thms. 5.2.1, 5.2.4 and 5.1.22
and Cor. 5.2.6).

4. Functional Behaviour: The presented techniques for analysing functional behaviour
in Sec. 5.2.2 are general, powerful and distinguish between functional behaviour
(Thm. 5.2.27) in general and strong functional behaviour (Thm. 5.2.31), where also
the model transformation sequences are unique up to switch-equivalence. The tech-
niques are based on the generation of translation attributes, and we provide tool sup-
port by the critical pair analysis engine of AGG [AGG10].

The following list describes the achievements concerning the non-functional dimension
about usability and applicability aspects of model transformations.

1. Efficiency: The on-the-fly-construction in Sec. 5.1.1 provides an efficient execution
of source consistent model transformations for which termination is ensured if the

5.3 Optimization and Evaluation 167

source rules are creating. As a second optimization, suitable conditions for parallel
independence were defined in [EEHP09b] in order to perform partial order reduc-
tions. The efficiency is further improved in Sec. 5.3.2 by providing a sufficient con-
dition to avoid backtracking completely. The presented benchmark shows that the
additional filter-NACs produce an overhead of approx. 10 %, such that the execu-
tion in the case without backtracking stays within the required bound of polynomial
space and time.

2. Intuitive Specification: TGGs provide a pattern based specification that allows the
designer to intuitively define the model transformation rules based on example frag-
ments of integrated models. In many cases, the concrete syntax of visual languages
can be used for the specification of triple rules as long as all effects of a transforma-
tion rule are visible within the concrete syntax. In any case, triple rules in abstract
syntax can be visualized using the concrete syntax in order to provide a better intu-
ition to the designer.

3. Maintainability: As described in Sec. 5.3.1, model transformation rules can be in-
serted and modified in a sophisticated way, where side effects of local changes can
be analysed automatically, and detected conflicts can be resolved with tool support
(see Thm. 5.3.7).

4. Expressiveness: NACs are commonly used in order to define expressive model trans-
formations, and therfore, we integrated NACs in our approach (see Sec. 5.1). Mean-
while, model transformations based on TGGs were further extended to the more
general nested application conditions [GEH11, HP09], which provide the expres-
sive power of first order logic on graphs. Since the special control condition source
consistency that ensures syntactical correctness and completeness is handled auto-
matically in our approach, we do not need to specify additional control structures for
this purpose.

5. Bidirectional model transformations: Model transformations based on forward rules
and equivalently, those based on forward translation rules (see Secs. 5.1), are bidirec-
tional. Their execution does not change the given models, which especially important
for model based interoperability and for distributed coevolution of models. Further-
more, our approach to model transformation ensures information preservation, and
we can ensure complete information preservation (see Thms. 5.2.34 and 5.2.37) for
the case that the corresponding backward transformation is terminating and has func-
tional behaviour.

Summing up, the presented approach to model transformations based on triple graph
grammars provides an intuitive, expressive, formally well-founded and efficient frame-
work for bidirectional model transformations including powerful results for analysis and

168 Model Transformation Based on Triple Graph Grammars

optimization. According to the listed achievements above there are several important ad-
vantages in comparison to other existing approaches, like [SK08, KS06, KW07, GW09,
GH09], which are mainly software engineering focused, and therefore, do not offer similar
formal results. However, these approaches are very similar and stimulated the develop-
ment of some constructions in this thesis. This means that there is a basis to transfer the
presented results to the related approaches with some modification efforts. In Ch. 7 we
present the details of a implemented prototypical reference model transformation engine,
which can be used to test and adapt available tools that have been optimized already with
respect to efficiency.

Chapter 6

Conformance Analysis of Enterprise
Process and Service Models

Besides the modelling of relevant business processes as presented in Ch. 4 there are several
further dimensions in enterprise modelling as already described in Ch. 2. All dimensions of
enterprise modelling can overlap and influence each other. In particular, business process
models have to conform to the specified guidelines and structure of the enterprise. For this
reason, we present in this chapter how conformance of business process models to a given
business service structure model can be analysed based on automated formal techniques
and tool support using the formal results for model transformation in Ch. 5.

At first, Sec. 6.1 introduces business service structure models (BSS models). They can
be seen as integrated models which are obtained from the following types of models. Struc-
ture models are used to integrate the specified hierarchy or matrix of the actors (persons
and software applications) of the enterprise. Moreover, we use models which specify the
communication channels in order to restrict communication to these channels. Finally,
BSS models integrate the specification of access rights, i.e. models for the definition of
permissions concerning read and write access rights of actors to resources.

Section 6.2 presents the triple graph grammar which relates WDEPC business process
models as given in Ch. 4 and business service structure models. This way, we also derive
a bidirectional model transformation between both model types by generating the forward
and backward model transformations from the specified TGG. Based on the results for
TGGs in Ch. 5, we formalize the notion of conformance in Sec. 6.3 and show by Thm. 6.3.3
how conformance is analysed with formal and automated techniques. Moreover, we show
that the TGG of Sec. 6.2 satisfies the conditions of Thm. 6.3.3, which allows us to show
that the business process model of the case study conforms to the business service structure
model. Furthermore, by Def. 6.3.8 we can directly apply Thm. 6.3.3 for showing that
the business process model with additional continuity snippets conforms to the business
service structure model. By Cor. 6.3.4, we additionally show how service structure models

170 Conformance Analysis of Enterprise Process and Service Models

are generated out of given business process models, such that conformance of the business
process models to the generated service structure models is guaranteed. Therefore, the
generated models can be used for further refinement in the modelling process. Finally,
Sec. 6.4 presents some optimization techniques and strategies for conformance analysis
and shows by Thm. 6.4.1 how conformance checks can be ensured to be efficient based on
the results in Ch. 5.

6.1 Business Service Modelling

Business service structure models (BSS models) are introduced in this section to provide
specifications concerning, on the one hand, the available actors and resources of an enter-
prise and, on the other hand, concerning the provided communication channels as well as
the permitted access to resources. In the case study of this chapter we consider one com-
bined service structure model which can be obtained by integrating the different available
visual and textual models and specifications in this context, respectively.

Abstract Syntax

TGBSS

Actor

name:String

Channel

name:String

Resource

name:String

chan

w
r

Concrete Syntax

Actor.name

r

w

Channel.name

Resource.name

TGBSS

Models also contain an inheritance

relation I with pairs (a1,a2) of actors.

actor

Figure 6.1: Type graph for business service structure models (BSS models)

According to the meta model in Fig. 6.1, given by the type graph TGBSS , BSS models
consist of actors, channels for communication between actors and resources to which actors
may have access. Furthermore, BSS models specify an inheritance relation I of actor roles,
which is visualized in concrete syntax by lines with white arrowheads. This way, BSS
models consist of the following components, which are explicitly emphasized in Fig. 6.2
showing the example BSS model of our case study.

The first component (top most part of the figure) defines the inheritance relation between
the different kinds of actors. Since the actors are also involved in the further components
the actors are depicted again at the relevant places, but they do only occur once in the

6.1 Business Service Modelling 171

w
w

w
r wwrwr ww

DB2 DB3DBSchufa

Product

Development

Payment

Consultation

DB1

Relationship_Manager

Customer

Credit_Advisor

Credit_Officer

Contract_Application Rating_Application

Credit_Worthiness_Application

Credit_Worthiness_Application

Credit_Advisor

Rating_Application

Relationship_Manager

Credit_Officer

Contract_Application

Application

Person

A
c
c
e

s
s
 R

ig
h

ts

External Employee

C
o

m
m

u
n

ic
a

tio
n

H
ie

ra
rc

h
y

Price_Engine

Manager

Relationship_ManagerCustomer Credit_Advisor

Credit_OfficerManager

Contract_Application

Price_EngineEmployee Credit_Advisor

In
h

e
rita

n
c
e

 fo
r R

o
le

s

Price_Engine

w

Figure 6.2: Visual business service structure model (BSS model)

abstract syntax as it is common praxis in visual modelling languages, like also in UML
models.

Organizational structure models form the second component of BSS models, which are
given by common organizational charts [Cha69, VIS09] specifying the structure of the
actors. While the example of our case study shows a hierarchical structure the more general
case also concerns so-called matrix structures (organigraphs [Min79]), i.e. structures that
form a graph with at most one edge between two nodes, but not necessarily a tree.

The third component of BSS models concerns the communication between actors, where
communication channels are specified that shall be provided by additional IT support. This
way, the possible information flow between different groups and departments of an enter-

172 Conformance Analysis of Enterprise Process and Service Models

prise are specified explicitly and unspecified data flow can be detected by the system and
either blocked or only logged for a possible later evaluation. By default, each actor has its
own private channel and only the additional channels for communication with other actors
are shown in concrete syntax. Note that we present in Sec. 6.2 how the required channels
can be generated out of the available business process models and refined thereafter, such
that the modelling efforts can be kept low.

Finally, the last component, shown in the lower part of the figure, supports the specifi-
cation of access rights, i.e. the definition of permissions concerning read and write access
rights of actors to resources. The access rights in our case study are not further differen-
tiated concerning, e.g., location and legislative dependencies as in [SE09], but the BSSS
models can be extended accordingly as well.

Example 6.1.1 (Visual Business Service Structure Model). The BSS model in Fig. 6.2
specifies the simplified organizational structure of a team in a financial institution. Head
of the team is the manager and he is responsible for the credit officer, the credit advisor
and the relationship manager. The model specifies some communication channels, e.g. the
customer may have contact to any employee via the channel “consultation”. This way,
the inheritance relation reduces the modelling efforts and increases the conciseness. The
lower part shows the specified access rights, where for instance a relationship manager
has read access to data base “DB1”, write access to “DB2”, but he does not have access
to “DBSchufa” or “DB3”.

The different aspects of a BSS model can also be kept in separate models. In this case
conformance of business process models can be checked separately for each of the models
concerning the chosen aspect only.

6.2 Model Transformation: Business Process to Business
Service Models

Based on the presented language of business service structure models in Sec. 6.1 we show
in this section how (type restricted) WDEPC models as presented in Sec. 4.1.1 and BSS
models are related via a triple graph grammar, from which we derive a bidirectional model
transformation Process2Service between both languages in order to analyse conformance
in Sec. 6.3. Since there are some elements in an WDEPC model which are independent of
the related BSS models and vice versa, we use a generalized notion of conformance, where
a given WDEPC model is first restricted to form a model of the source language VLS of
the triple graph grammar and the target language VLT does only contain a subset of all
BSS models.

6.2 Model Transformation: Business Process to Business Service Models 173

Source TargetCorrespondence

A
b

s
tra

c
t S

y
n

ta
x

TG
S

TG
C

TG
T

A2A

R2R

F2C

Actor

name:String
Actor

name:String

Function
Channel

Resource

name:String

Resource

name:String

chan

w
r

toF

atR

comR

comF

CachedData

name:String

inout

C
o

n
c
re

te
 S

y
n

ta
x

Source TargetCorrespondence

Actor.name Actor.nameA2A

R2RResource.name

Function F2C

CachedData.name

r w

Channel

Resource.name

TG
S TG

C
TG

T

actor

Models also contain an inheritance

relation I with pairs (a1,a2) of actors.

Figure 6.3: Triple Type graph for the model transformation Process2Service

According to Ch. 5 a triple graph grammar TGG = (TG , SG ,TR) consists of a type
graph TG , a start graph SG and a set of triple rules TR. The type graph of our case study
for conformance analysis is shown in Fig. 6.3 and the start graph is the empty graph as
usual for TGGs. First of all, actors and resources occur on both sides, i.e. the source and
target component, and they are related with each other. Based on the interaction of actors
at certain functions the communication channels are derived and related to the functions
at which they are used. Finally, the edges for read and write access rights (“r” and “w”)
specify the actors who have permission to send or retrieve data from certain resources as
specified in WDEPC models.

In order to consistently relate WDEPC and BSS models we slightly extend the WDEPC
models in the way that the labels occurring in a WDEPC model are made explicit by at-

174 Conformance Analysis of Enterprise Process and Service Models

tributes “name:String” in the abstract syntax. Note further that some elements of the meta
model TGMeta for WDEPC models in Ch. 4 are not relevant for the conformance check in
Sec. 6.3 and therefore, they do not occur in the triple type graph. In order to check confor-
mance the given WDEPC models will be restricted first to the relevant types of elements
according to [EEEP09] as described in Def. 6.3.6.

Triple Rule Resource2ExistingResource(nameR:String)

:R2R

++
++ ++

++

:R2R nameRnameR

L=

R=

E
x
p

lic
it n

o
ta

tio
n

w
ith

 L
H

S
 a

n
d

 R
H

S
,

a
b

s
tra

c
t s

y
n

ta
x

C
o

m
p

a
c
t

n
o

ta
tio

n
,

c
o

n
c
re

te
 s

y
n

ta
x

:Resource

name=nameR

:Resource

name=nameR

:Resource

name=nameR

Figure 6.4: Triple rule in explicit and compact notation

Triple Rule Actor2Actor(n:String)

++
++ ++

++
++

:A2A

Triple Rule Actor2ExistingActor

++
++ ++

++

:A2A

NAC1

:Actor

name=n

:Actor

name=n

:Actor

name=n

:Actor

name=n

:Actor

name=n

Resource2Resource(nameR:String)

++
++ ++++

++

:R2R

NAC1

nameRnameR nameR

A
b

s
tra

c
t

s
y
n

ta
x

A
b

s
tra

c
t

s
y
n

ta
x

C
o

n
c
re

te

s
y
n

ta
x

Figure 6.5: Further triple rules for actors and resources

Example 6.2.1 (Triple Rules for the Model Transformation Process2Service (First part)).
The triple rules of the TGG of our case study are shown in Figs. 6.4 to 6.6 and they are

6.2 Model Transformation: Business Process to Business Service Models 175

typed over the triple type graph in Fig. 6.3. Rule “Resource2ExistingResource” in Fig. 6.4
specifies how an integrated model that already contains a resource in the target component
(BSS model part) is extended by a further resource node with the same name in the source
component, which is therefore also related with the existing resource. The upper part of the
figure shows the rule in abstract syntax and with explicit left and right hand sides. For all
following rules, we use the compact notation (bottom part) based on the concrete syntax.
In this case, the left and right hand sides are shown as one graph and the right hand side
only elements are marked by double plus signs and additionally by green line colour. In
order to initially create resources in the target component the rule “Resource2Resource”
in Fig. 6.5 is used, where the additional negative application condition (NAC1) ensures
that the BSS model part does not already contain a resource with the same name. In the
same way as for resources there are two rules for synchronously creating and relating the
actors between the source and target component, but the rules are given in abstract syntax,
because there are different visualizations for actors (for persons and applications).

The second part of triple rules for the model transformation Process2Service contains
the rules “readAccess” and “writeAccess”, which do not satisfy the standard termination
criterion for forward transformations, which requires that each TGG-triple rule is creat-
ing on the source component. However, we can show termination also in this case by
Fact. 6.2.4 using the more general termination result given by Thm. 5.2.14 in Ch. 5.

Example 6.2.2 (Triple Rules for Process2Service (Second part)). Further TGG-triple
rules for the model transformation Process2Service are shown in Fig. 6.6. Note that some
rules do not specify all attributes if they are not necessary for the matching. Rule “Func-
tion2Channel” synchronously creates a function node and the corresponding channel. The
next rule “execute” creates a link between an actor and the function he executes in the
source component and it creates a connection between the corresponding channel node
and the involved actor in the target component, which specifies the permitted communi-
cation at this function. The following four rules (“input”, “output”, “atResource” and
“directCommunication”) create data elements and the corresponding connections in the
source component and do not change the target component. Intuitively, they prepare for
the translation of these elements by the subsequent rules, because the interrelation of these
elements with the BSS model elements is more complex. The rule “readAccessDirect” as
well as “readAccess” establish new links in the target component specifying read access of
actors to resources, if such a link is not present already, which is ensured by the NACs. Sim-
ilar to the rule “readAccess” there is the rule “writeAccess” (not depicted), which requires
a data flow in opposite direction and creates a link for write access (“w”). Even though the
last three rules are not source creating, termination of the derived model transformation
we will show termination using the extended criterion given by Thm. 5.2.14.

176 Conformance Analysis of Enterprise Process and Service Models

r r

Function2Channel

++ ++ ++
++

:F2CFunction Channel

++

execute

:A2A

Function :F2C Channel

++ ++

input(nameD:String)

Function

nameD

++

++

readAccess

:A2A:Actor :Actor

:R2R

++

NAC1

readAccessDirect

:A2A:Actor

Function

:Actor

:R2R

r

++

:Actor :Actor

Function

atResource

++

directCommunication

Function

++

output(nameD:String)

Function

nameD

++

++

r

NAC1

Figure 6.6: Further triple rules (second part)

Note that the attribute values for the node names in rule “readAccess” are not specified.
This simplifies the rule. Indeed, the attribute values are not necessary and this way, one
single NAC is sufficient. If the rule would additionally contain variables for the names
then – in order to ensure termination – the rule would also contain further folded NACs of
NAC1, where some of the variables are equal, i.e. identified by the folding. Without the
additional NACs the forward translation rules could be applied at non-injective matches
(identified data values) arbitrary often. The tool AGG provides a user friendly feature in
this context. NACs are always interpreted to by possibly further folded on the elements that
also occur in the left hand side of the rule, i.e. the user does not have to explicitly specify

6.2 Model Transformation: Business Process to Business Service Models 177

these foldings. A formal specification of the induced folded NACs and NAC consistency
checks is presented in [KHM06].

As presented in Ch. 5 model transformations based on TGGs are executed via the derived
operational rules. In our case study we present one derived source rule and the correspond-
ing forward rule. The complete model transformation was developed using the tool AGG
based on the derived forward translation rules, which extend the forward rules by additional
translation attributes for embedding the effect of the source rules as described in Sec. 5.1.2.

Source rule executeS

Function

++

:Actor

Forward rule executeF

:A2A

Function :F2C Channel

++

:Actor :Actor

Figure 6.7: Derived source and forward rules for the triple rule “execute”

Example 6.2.3 (Operational Rules for Process2Service). Figure 6.7 shows the derived
operational rules for the TGG-triple rule “execute” in Fig. 6.6. The source rule – denoted
by the subindex “S” – is obtained by restricting the rule to the source component and it
is used for parsing a given source model. The forward rule – denoted by the subindex
“F” – does not change the source component and completes the missing elements in the
correspondence and target component, which is just the link between the actor and the
channel for the forward rule “executeF”.

Figure 6.8: Correctness and completeness results for TGGs

178 Conformance Analysis of Enterprise Process and Service Models

Based on the developed model transformation techniques in Ch. 5 and the derived oper-
ational rules for the TGG of our case study, we can now execute the model transformation.
Therefore, we can also apply the formal results shown in Ch. 5 and we will apply in partic-
ular the results concerning syntactical correctness, completeness and termination. For this
reason, we briefly review these results from an intuitive point of view.

Syntactical correctness means that the resulting target model GT of a performed model
transformation corresponds to the given source model GS according to the language of
integrated models that is generated by the TGG-triple rules. More precisely, there is an
integrated model (GS ← GC → GT) ∈ VL = {G | ∅ =⇒∗ G via triple rules TR}.As
shown in Fig. 6.8 this property is ensured by the control structure source consistency to-
gether with termination, which ensures that for each source consistend forward transfor-
mation there is a corresponding source sequence, such that both sequences can be com-
posed leading to a triple graph transformation sequence which synchronously builds up the
source and target models. Vice versa, completeness ensures that for each integrated model
(GS ← GC → GT) ∈ VL there is a source consistent forward transformation sequence,
which means in particular that the model transformation can be performed for any valid
source model.

Figure 6.9: Dependencies between the transformation rules, generated by AGG

Fact 6.2.4 (Termination of Process2Service). The model transformation Process2Service

based on forward translation rules terminates for each finite business process model
M1 ∈ VLS .

6.2 Model Transformation: Business Process to Business Service Models 179

Proof. We apply Thm. 5.2.14 of Ch. 5 by dividing the rule into the subsets TRFT ,1 =

{readAccessFT , readAccessDirectFT , writeAccessFT} and TRFT ,2 = TRFT \TRFT ,1.
First of all, the rules in TRFT ,2 are source creating. It remains to show that all rules in
TRFT ,1 are self-disabling and pairwise independent if all NACs are removed. Each rule
trFT ,1 ∈ TRFT ,1 has a NAC NAC1. The shift construction Shift(lFT ,1, (rFT ,1, RFT ,1)

yields exactly this NAC, because lFT ,1 is the identity and the right hand side contains
only one additional element, which is an edge. Furthermore, there are no further possible
foldings ofNAC1 via almost injective matches, i.e. matches that are injective on the graph
part, because the types of the elements are different. Therefore, the rules are self-disabling.
All three rules are non-deleting and only create edges of types that do not occur in the
left hand side of one of the rules. Therefore, they are independent if NACs are neglected,
which can be seen as well at the dependency matrix in Fig. 6.9 generated by AGG, where
no combination of rules in TRFT ,1 shows a dependency. Therefore, Process2Service is
terminating.

w

DB1

Credit_Advisor

Price_Engine

w

Price_EngineCredit_Advisor

 CV,

CW,CD

Product

CA

(availability)

Price Engine

(availability)

DB1

(availability)

MT

GS GT

Figure 6.10: Model Transformation with source model GS and target model GT

Example 6.2.5 (Model Transformation). Fig. 6.10 shows a source model GS and the de-
rived target model GT by applying the forward translation rules of the triple graph gram-
mar TGG for the model transformation Process2Service. The credit advisor uses the price
engine at the same function. For this reason, both actors are connected via a communica-
tion channel in the resulting BSS model. Furthermore, both actors create some output data
and store it on the data base “DB1”. For this reason, the generated BSS model specifies
the necessary write access rights for both actors.

In order to improve intuition, the icons for the different types of actors (external person,
employee and application) are used in the concrete syntax, but the distinction is not derived
from the model transformation but from the modelled inheritance relation in Fig. 6.2.

The model transformation sequence (GS, G
′
0 =

tr∗FT==⇒ G′n, GT) consists of the follow-
ing steps G′0 =

Actor2ActorFT========⇒ G′1 =
Actor2ActorFT========⇒ G′2 =

Function2ChannelFT============⇒ G′3 =
executeFT=====⇒

G′4 =
executeFT=====⇒ G′5 =

inputFT====⇒ G′6 =
inputFT====⇒ G′7 =

inputFT====⇒ G′8 =
outputFT=====⇒ G′9 =

atResourceFT=======⇒

180 Conformance Analysis of Enterprise Process and Service Models

 Abstract Syntax

A
b

s
tra

c
t S

y
n

ta
x

Gn
S

Gn
C

Gn
T

:A2A

:R2R

:F2C
:Function

:Channel

:Resource

name:"DB1"

:Resource

name="DB1"

chan

w

toF

atR

:CachedData

name="Product"

in
out

:Actor

name=“Credit_Advisor”
:Actor

name=“Price_Engine”

toF

:Actor

name=“Credit_Advisor”

:Actor

name=“Price_Engine”

w

chan

:CachedData

name="CV"

:CachedData

name="CD"

:CachedData

name="CW"

in

in

:A2A

Figure 6.11: Resulting triple graph Gn of the model transformation in abstract syntax

G′10 =
writeAccessFT========⇒ G′11 =

writeAccessFT========⇒ G′12. The triple graph G′12 after removing the trans-
lation attributes is shown in Fig. 6.11 in abstract syntax and the triple graph contains the
resulting target model GT = GT

n in its target component as shown in concrete syntax in
Fig. 6.10.

6.3 Analysing Conformance of Business Process to Busi-
ness Service Models

Business service structure models specify available resources and certain structures which
constrain the execution of business processes. For this reason, business process models
have to conform to the given business service structure models. This section presents
formal techniques and results based on Ch. 5 which support the analysis of conformance of
business process models and we apply these techniques to the case study Process2Service.

At first, we consider the basic case, where models of different domains are completely
interrelated, i.e. we can define a triple graph grammar for integrated models containing
complete domain models. By Thm. 6.3.3 we show that conformance can be checked with
complete automation in this case by applying the corresponding model transformation.
Furthermore, by Cor. 6.3.4 we can generate business service models out of business process
models, such that conformance is ensured. This is an important result from the application
point of view, because the generated business service structure models can be used as basis
for further refinement, which substantially improves the efficiency of modelling in the
business service structure domain. In several cases, the domain models are only partially
interrelated. For this reason, we also consider restricted conformance (Def. 6.3.6) for which

6.3 Analysing Conformance of Business Process to Business Service Models 181

we can directly apply the previous results, which allows us to show restricted conformance
for our case study.

Standard conformance with respect to a given triple graph grammar is formalized as
follows. Given a model M1 of the source language and a model M2 of the target language
then M1 conforms to M2 if there is an integrated model containing M1 as source model
and its corresponding target model M2.

Definition 6.3.1 (Conformance). Let TGG = (TG , ∅,TR) be a triple graph grammar. A
model M1 ∈ VLS in the source language conforms to a model M2 ∈ V LT in the target
language iff there is an integrated model (M1 ←MC →M2) ∈ VL.

However, in some cases, like in our case study, the given source models usually do not
contain all necessary information for deriving the target model (BSS model). In particular,
WDEPC models do not provide information about the inheritance relation within BSS
models. For this reason, we generalize the notion of conformance to forward conformance,
which does not require that the model M2 is a model of the target language VLT , but only
typed over TGT . Forward conformance is satisfied, if there is a modelM ′

2 that corresponds
to the given model M1 via the TGG, such that M ′

2 can be mapped to M2 via a conformance
morphism. For this reason, we distinguish the special class of Morphisms CON , which
contains all conformance morphisms and at least all identity morphisms.

Definition 6.3.2 (Forward Conformance). Let TGG = (TG , ∅,TR) be a triple graph
grammar and CON be the class of conformance morphisms. A model M1 ∈ VLS in the
source language forward conforms to a model M2 w.r.t. TGG and CON iff M2 is typed
over TGT and there is a model M ′

2 ∈ VLT , such that M1 conforms to M ′
2 and there is a

conformance morphism: m :M ′
2 →M2.

In our case study, the class CON of conformance morphisms consists of morphisms that
are identities on data values, i.e. attribute values are preserved. The explicit definition of
CON is given in Ex. 6.3.5.

Based on Def. 6.3.2 and the formal results in Ch. 5 for model transformations we show
by Thm. 6.3.3 below that the analysis of conformance can be performed by executing the
corresponding model transformation and performing pattern matching for the derived cor-
responding model M ′

2 into M2. An example of our case study, where we apply Thm. 6.3.3
is given by Ex. 6.3.7 for the more general notion of restricted forward conformance (see
Def. 6.3.6).

Theorem 6.3.3 (Forward Conformance). Let TGG = (TG , ∅,TR) be a triple graph
grammar with derived model transformation MT : VLS → VLT based on forward rules
and let CON be the class of conformance morphisms. Then, a model M1 ∈ VLS forward

182 Conformance Analysis of Enterprise Process and Service Models

conforms to a model M2 typed over TGT w.r.t. TGG and CON iff there is a model trans-
formation sequence (M1, G0 =

tr∗F==⇒ Gn,M
′
2) via MT for which a conformance morphism

m :M ′
2 →M2 exists.

Proof. Direction “⇐”
Since M1 conforms to M2 we can conclude according to definition Def. 6.3.1 that there is
a target model M ′

2 ∈ VLT with (M1 ← MC → M ′
2) ∈ VL and there is a conformance

morphism m :M ′
2 →M2. By Thm. 5.2.1 we know that MT is complete and therefore, the

model transformation sequence (M1, G
′
0 =

tr∗F==⇒ G′n,M
′
2) exists.

Direction “⇒”
Since MT is syntactically correct by Thm. 5.2.1 the model transformation sequence
(M1, G

′
0 =

tr∗F==⇒ G′n,M
′
2) implies that (M1 ← MC → M ′

2) ∈ VL. Thus, the existence
of the conformance morphism m implies that M1 conforms to M2 according to definition
Def. 6.3.1.

As a direct consequence of Thm. 6.3.3 we have by Cor. 6.3.4 that each model transfor-
mation with functional behaviour generates target models to which the given source model
conform to. This allows for an agile development process, where business process mod-
els are developed before all details of the corresponding business service structure models
are known and specified. The developed business process models can be transformed to
business service structure models, which are then used as basis for further refinement.

Corollary 6.3.4 (Sound Completion). Let TGG = (TG , ∅,TR) be a triple graph gram-
mar with derived model transformation MT : VLS → VLT based on forward rules and let
CON be the class of conformance morphisms. Let M1 ∈ VLS be a source model and let
(M1, G0 =

tr∗F==⇒ Gn,M2) be a model transformation sequence via MT . Then, M1 forward
conforms to M2 ∈ VLT w.r.t. TGG and CON .

Proof. We use the conformance morphism m = id : M2 → M ′
2 for M ′

2 = M2. By
Thm. 6.3.3 we then have that M1 conforms to M2.

The concept of node type inheritance is used in several domain specific languages for
structure models in order to reduce the size of models and to improve conciseness. This is
the case, for instance, in UML class diagrams [OMG10] or the business service structure
models of our case study. From the formal point of view, this means that we consider the
category of graphs with inheritance [EEH09], called IGraphs. This means that checking
whether a business process model M1 conforms to a business service structure model M2

requires to validate the existence of an IGraph morphism f : M1 → M2, which does not
necessarily have to be a pure graph morphism. Instead, the notion of IGraph morphisms
generalizes graph morphisms in the sense that source and target nodes of an edge e can also
be mapped to descendent of the source and target nodes of the image fE(e) of the edge.

6.3 Analysing Conformance of Business Process to Business Service Models 183

This more general form of morphism allows for a suitable notion of conformance, because
the communication channels and access rights used by a business process model M1 may
be generally defined in the corresponding service structure model M2 for node types that
occur higher in the hierarchy.

Remark 6.3.5 (Graphs with Inheritance). Graphs with inheritance are given by a pair
IG = (G, I) consisting of a graph G and an inheritance relation I ⊆ VG × VG defining
the parent-children relations between the node VG of G. The clan of a node contains
all its descendants according to I , i.e. clan(n) = {n′ ∈ VG | (n′, n) ∈ I∗} with I∗

being the reflexive and transitive closure of I . Morphisms in IGraphs are general clan
morphisms, i.e. an IGraph morphism f : IG = (G, I)→ IH = (H, I) given by a mapping
f = (fV , fE) : G → H from a graph G to a graph H generalizes the notion of graph
morphism. The node mapping fV is required to map source and target nodes of an edge
e to nodes in H which are soure and target nodes of fE(e) or some of their children, i.e.
fV (sourceG(e)) ∈ clan(sourceH(fE(e))) and fV (targetG(e)) ∈ clan(targetH(fE(e))).

As mentioned before, there are some elements of the WDEPC models in Ch. 4, which are
not relevant for checking conformance w.r.t. a BSS model and therefore, we first reduce the
WEPC model by a restriction to the relevant types. This idea leads to the general notion
of restricted forward conformance, where a model M1 typed over TG1 is restricted to a
model M1|TGS typed over TGS by removing all elements in M1 that are not typed over
TGS . A type restriction r1 : TGS ↪→ TG1 specifies that TGS is a subgraph of TG1 and
therefore, TGS usually contains less types than TG1.

Definition 6.3.6 (Restricted Forward Conformance). Let TGG = (TG , ∅,TR) be a triple
graph grammar and let CON be the class of conformance morphisms, r1 : TGS ↪→ TG1

be a type restriction and letM1 be a model typed over TG1. Then,M1 forward conforms to
M2 ∈ VLT w.r.t. r1, if the restricted model M1|TGS of M1 is a model in VLS and M1|TGS

forward conforms to M2 w.r.t. TGG and CON .

In order to analyse restricted conformance the given model M1 is first restricted, which
is performed as a pullback construction according to [EEEP09]. Intuitively, all elements
whose types do not occur in the restriction type graph TGS are removed as shown for
our case study in Fig. 6.12. Based on the restricted model we can perform the model
transformation and in the case of success we have by Thms. 5.2.1 and 5.1.14 that it is a
model in VLS . Thereafter, we can apply Thm. 6.3.3 to check for (complete) conformance
to M2. This way, the analysis is performed using completely automated techniques.

Example 6.3.7 (Conformance of Business Process Models). In order to check confor-
mance of the WDEPC process model in Fig. 4.2 of Ch. 4 we first define the class CON of
conformance morphisms. They are given by clan morphisms that are identities on the at-
tribute values. This means that a clan morphism m = ((mV ,mD,mE,mNA,mEA),mA) :

184 Conformance Analysis of Enterprise Process and Service Models

CuID,

Address,

CV

CD

CuID,

Address,

CV

CuID,

Address

 CW

Rating

CuID,

Address,

CV

CuID,

Rating

C

C

 CV,

CW,CD

Product

CD

CD

RM

(availability)
RM

(availability)

RM

(availability)

RM

(availability)

RM

(availability)

CA

(availability)

CA

(availability)

Price Engine

(availability)

DB1

(availability)

DB1

(availability)

DB1

(availability)

DBSchufa

(availability)

DB1

(availability)

RM

(availability)

DB1

(availability)

RM

(availability)

CuID,Address,

CV, CW Rating App

(availability)

CW App

(availability)

RM

(availability)

CoID

CoID,

 PP

CoID,

MT1

 MT1

MT2, PP

Closing-

Date

CoID

SC

C

(ID)

SRM(RMID)

CoID,

SRM(RMID)

 SCO(COID)

DB2

(availability)

DB2

(availability)

DB2

(availability)

DB2

(availability)

DB3

(availability)

DB3

(availability)

Contract

App

(availability)

Contract

App

(availability)

Contract

App

(availability)

C

(availability)

CO

(availability)

RM

(availability)

C

(availability)

CoID

CuID

CoID, PP

RM

(availability)

DB2

(availability)

Product
DB1

(availability)

App Application

C Customer

CA Credit Advisor

CD Customer Demand

CoID Contract ID

MT Money Transfer

PP Payment Plan

RM Relationship Manager

SC Signature of Customer

SCO Signature of Credit Officer

list of abbreviations

CO Credit Officer

CuID Customer ID

CV Customer Value

CW Credit-Worthiness

DB Data Base

SRM Signature of Relationship Manager

RMID Relationship Manager ID

Figure 6.12: WDEPC process model after type restriction

IG1 → IG2 is a conformance morphism, if the mapping mD for data value nodes is the
identity. (see Def. 3.1.2 and Def. 3.1.3 for attributed graph morphisms), i.e. the data value
edges point to the same values in the image graph IG2 as they do in the domain graph IG1.

Recall, that we first extend the WDEPC model by attributes “name:String” to make
the labels explicit as described before Ex. 6.2.1 in Sec. 6.2. Furthermore, we remove the
resources of type “contract” to simplify the example and derive the WDEPC model M1. If
these resources are kept, however, then the corresponding BSS model would also contain
them to provide conformance.

6.3 Analysing Conformance of Business Process to Business Service Models 185

Customer

A
c
c
e

s
s
 R

ig
h

ts
C

o
m

m
u

n
ic

a
tio

nContract_Application

Price_EngineRelationship_Manager Credit_Advisor

w
w

w
r wwrwr ww

DB2 DB3DBSchufa DB1

Credit_Worthiness_Application

Credit_Advisor

Rating_Application

Relationship_Manager

Credit_Officer

Contract_Application

Price_Engine

w

Empty

Empty Hierarchy

Inheritance for Roles

Figure 6.13: Generated business service structure model M ′
2 ∈ VLT (BSS model)

The type restriction is given by the morphism r1 : TGS → TGMeta from the type graph
TGS of the triple graph grammar as shown in Fig. 6.3 into the meta type graph TGMeta

for WDEPC models in Fig. 4.1 of Ch. 4. Thus, e.g. the event nodes and adjacent edges
are removed. The restriction of the WDEPC model M1 in Fig. 4.2 leads to the restricted
model M1|TGS shown in Fig. 6.12. The model transformation was executed using the
tool AGG based on the derived forward translation rules of the triple graph grammar in
Sec. 6.2 and the resulting target model is the generated BSS model M ′

2 in Fig. 6.13. The
successful execution of the model transformation implies in particular that the restricted
model M1|TGS is a model in VLS .

As mentioned in Sec. 6.1 each actor in a BSS model has his own private communication
channel and only the additional channels for communication with other actors are shown in
concrete syntax. Furthermore, also mentioned in already in Sec. 6.1, nodes in a BSS model
with the same name may occur multiple times in the concrete syntax but they refer to the
same element in the abstract syntax as it is common praxis in visual modelling techniques
like, e.g., UML [OMG10].

Now, there is a conformance morphism m : M ′
2 → M2 from the generated BSS model

into the given BSS model in Fig. 6.2. In order to explain this mapping, the given BSS model
M2 is depicted again in Fig. 6.14. The mapping is given by the position in visual notation,

186 Conformance Analysis of Enterprise Process and Service Models

w
w

w
r wwrwr ww

DB2 DB3DBSchufa

Product

Development

Payment

Consultation

DB1

Relationship_Manager

Customer

Credit_Advisor

Credit_Officer

Contract_Application Rating_Application

Credit_Worthiness_Application

Credit_Worthiness_Application

Credit_Advisor

Rating_Application

Relationship_Manager

Credit_Officer

Contract_Application

Application

Person

A
c
c
e

s
s
 R

ig
h

ts

External Employee

C
o

m
m

u
n

ic
a

tio
n

H
ie

ra
rc

h
y

Price_Engine

Manager

Relationship_ManagerCustomer Credit_Advisor

Credit_OfficerManager

Contract_Application

Price_EngineEmployee Credit_Advisor

In
h

e
rita

n
c
e

 fo
r R

o
le

s

Price_Engine

w

Figure 6.14: BSS model M2 /∈ VLT for conformance analysis

except for the node “Relationship Manager” in the communication part. According to
the conformance morphism condition we have that attribute values do not change, i.e. m
maps the node “Relationship Manager” to the node “Relationship Manager” and also the
attribute value. Furthermore, according to the visual position, the conformance morphism
maps the left channel node (between the customer and the relationship manager in the
communication part) to the channel node “Consultation”. This mapping is compatible
with the inheritance relation, because the relationship manager is an employee. Note that
the channel nodes in M ′

2 do not have name attributes, because this information is not
available in the WDEPC models. But the missing attributes are not problematic for the
conformance morphism m, because we use the flexible attribution concept based on E-

6.4 Optimization of Conformance Analysis 187

Graphs [EEPT06], where attribute values of structure nodes may be undefined. Thus, the
WDEPC model M1 in Fig. 4.2 conforms to the BSS model M2 in Fig. 6.14.

The conformance morphism in our case study is injective, but in the general case a con-
formance morphism does not have to be injective. In particular for our case study, we can
consider a process model which induces a communication channel between the relation-
ship manager and the customer as well as between the credit officer and the customer. In
this case, both channels are mapped to the same channel “Consultation”in M2.

Finally, there are usually several WEDPC process models and all of them are required to
conform to a given business service structure model. For this purpose, we can extend the
notion of conformance by Def. 6.3.8, which effectively requires that each WDEPC model
of a given set has to conform separately to the given BSS model in order to satisfy combined
conformance. Moreover, we can therefore check WDEPC models in combination with
their continuity snippets for combined conformance.

Definition 6.3.8 (Combined Conformance). Let TGG = (TG , ∅,TR) be a triple graph
grammar and let CON be the class of conformance morphisms, r1 : TGS ↪→ TG1 be
a type restriction and let S1 be a set of visual models typed over TG1. Then, S1 forward
conforms to M2 w.r.t. r1, if each M1 ∈ S1 forward conforms to M2 w.r.t. r1.

The analysis of combined conformance is performed as for restricted forward confor-
mance before, but iteratively for each model in the set of given process models.

6.4 Optimization of Conformance Analysis

The presented techniques for checking conformance of WDEPC process models to BSS
service models are performed using the model transformation techniques of Ch. 5. In this
section we briefly discuss possible optimizations, which are partly based on the results in
Ch. 5 as well as Ch. 3 and partly concern the specific nature of the conformance analysis
in possible application domains.

Conformance checks during the modelling phase should ensure quick response times
in order to provide adequate usability and fast conflict resolutions. For this reason, the
applied model transformation techniques have to be efficient. As shown by Thm. 5.2.27
we can ensure that a model transformation based on forward translation rules with func-
tional behaviour does not require backtracking. Therefore, the execution is ensured to have
polynomial time complexity, which is a good result in this context.

Theorem 6.4.1 (Efficient conformance check). Let TGG = (TG , ∅,TR) be a triple
graph grammar with derived model transformation MT : VLS → VLT based on for-
ward translation rules TRFT (Def. 5.1.28), such that all significant critical pairs of TRFT

188 Conformance Analysis of Enterprise Process and Service Models

are strictly confluent according to Def. 5.2.16. Let CON be the class of conformance mor-
phisms, r1 : TGS ↪→ TG1 be a type restriction and let M1 be a model typed over TG1

with M1|TGS ∈ VLS being the restricted model of M1. Then, M1 forward conforms to
M2 ∈ VLT w.r.t. r1, if the model transformation of the restricted model M1|TGS leads
to a model M ′

2 for which a conformance morphism m : M ′
2 → M2 exists. Moreover, the

execution of the model transformation does not require backtracking.

Proof. By Thm. 5.2.27 we know that strict confluence of all significant critical pairs en-
sures functional behaviour and the model transformation does not require backtracking.
Functional behaviour of MT ensures termination for each source model M ∈ VLS and
unique results for the execution of MT . Thus, the model transformation can be executed for
M1|TGS ∈ VLS leading to a model transformation sequence (M1|TGS , G′0 =

tr∗FT==⇒ G′n,M
′
2)

with unique result M ′
2. By Thm. 6.3.3 we can therefore conclude that M1 conforms to M2

iff a conformance morphism m :M ′
2 →M2 exists.

critical pairs

which are not significant

These pairs do not occurr in

valid transformation sequens

These pairs can be merged

in a direct way

significant critical pairs

which are strictly confluent

Figure 6.15: Critical pair analysis with the tool AGG

Example 6.4.2 (Efficient Conformance Check). In order to analyse the critical pairs of
the forward translation rules using the tool AGG we flatten the forward translation rules to

6.4 Optimization of Conformance Analysis 189

plain rules according to Def. 5.2.22. Based on the critical pair analysis engine of the tool
AGG we verified that the significant critical pairs are strictly confluent. Critical pairs are
significant, if they can be embedded in valid transformation sequences, i.e. transformation
sequences that start at valid source models.

The amounts of generated critical pairs by AGG are listed for each combination in
Fig. 6.15. The pairs with same rule and match are already filtered out, because in these
cases the pairs (P1 ⇐pi,mi

==== K =
pi,mi
===⇒ P1) are strict confluent by the empty transformations

(P1 =⇒∗P1
∗⇐= P1), i.e. no rule is applied. Moreover, 4 non-significant critical pairs were

automatically filtered out by AGG using the well-formedness constraints of the language
of WDEPC models given in Sec. 4.1.1, which were formalized as graph constraints. In
addition to that, AGG filtered out 44 critical pairs that are strictly confluent in the follow-
ing direct way. The critical pairs are of the form (P1 ⇐pi,mi

==== K =
pj ,mj
===⇒ P1), i.e. both

rules have the same effect and they create elements at the same context and preserve
the common parts. Therefore, we derive strict confluence by the empty transformations
(P1 =⇒∗P1

∗⇐= P1), i.e. no rule is applied.

The remaining critical pairs are shown in the generated table of AGG in
Fig. 6.15. They concern the rules p2 =“Actor2ActorF”, p3 =“Actor2ExistingActorF”,
p11 =“Resource2ResourceF”, and p12 =“Resource2ExistingResourceF” with combina-
tions (p2, p2), (p3, p3), (p11, p11), and (p12, p12). The combinations (p3, p3) and (p12, p12)

contain overlapping graphs, which show either two equally named resources or two equally
named actors in the target component. This situation cannot occur, because the only cre-
ating rule for resource nodes (p11) and the only rule for creating actor nodes (p2) in the
target component ensure by their NAC that no equally named node is present already and
the target component is empty at the beginning of the transformation. Therefore, these
pairs are not significant since they cannot be embedded in transformation sequences start-
ing at a valid source model. Furthermore, the other two critical pairs are strictly conflu-
ent. For (p2, p2) the merging steps are P1 =

p3,m3
===⇒ K ′ and P2 =

p3,m4
===⇒ K ′ and rule p3 does

not have any NAC. Analogously, for (p11, p11) the merging steps are P1 =
p12,m3
===⇒ K ′ and

P2 =
p12,m4
===⇒ K ′ and rule p12 does not have any NAC.

Therefore, we have by Thm. 5.2.27 that MT has functional behaviour and does not
require backtracking.

If however, functional behaviour cannot be ensured, but termination is ensured, we can
perform backtracking and calculate all valid target models to a given source model. This
process can be improved with respect to efficiency by iteratively constructing a correspond-
ing subobject transformation system as described at the end of Sec. 5.3.2. By Def. 6.3.1
we have that the existence of one corresponding model M ′

2 with conformance morphism
is sufficient. Thus, the backtracking procedure can be stopped as soon as such a model
is derived, because we have by the correctness result (Cor. 5.2.6) for model transforma-

190 Conformance Analysis of Enterprise Process and Service Models

tions based on forward translation rules that each resulting target model is part of a valid
integrated model that also contains the given WDEPC model.

Finally, concerning combined conformance, the efficiency of the analysis can be im-
proved in cases, where models are stored in data bases, which is a common praxis in
distributed development processes. Furthermore, we assume that also the model transfor-
mation techniques are implemented as data base operations, which is already planned in a
current research project. In this case, the WDEPC process models is first combined to a
single process model by disjoint union. Thereafter, the conformance check is performed
for the combined model. This approach usually increases efficiency, because only one sin-
gle data base query has to be sent in order to check for conformance. This means that the
respond times for sending the queries to a server are reduced to only one and indeed, these
response times are usually very significant concerning the overall efficiency.

Summing up, the provided model transformation techniques allow for efficient confor-
mance checks during the development process and further improvements can be achieved
for data base driven model repositories.

Chapter 7

Prototypical Tool Support: AGT-M

During the study of the various problems occurring in enterprise modelling we devel-
oped the prototypical tool AGT-M (algebraic graph transformation based on Mathematica),
which shows the applicability and efficiency of the developed formal techniques of Chap-
ters 3 to 6. Furthermore, we used some highly optimized components of the already exist-
ing tool AGG [AGG10] (attributed graph grammar system) for specific tasks. This chapter
presents an overview of the package structure of the provided tool support and compares
the main features as well as capabilities with those of other available graph transformation
tools.

7.1 AGT-M: Algebraic Graph Transformation Based on
Wolfram Mathematica

During the evaluation of existing transformation engines, in particular the tool AGG, we
decided in cooperation with the project partners to provide a separate prototypical tool for
the new developed techniques instead of extending an existing tool. The main reasons
are the following. The overall structure of AGG has already become quite complex and
the transformation engine uses optimized constructions, where morphisms and objects are
not completely created and only the current host graph is stored during the transforma-
tion. However, the developed analysis techniques in Ch. 3 – also applied in the subsequent
chapters – are based on the explicit construction of morphisms and graphs during the ex-
ecution of a transformation sequence. Wolfram Mathematica [Wol10, Don09] provides
optimized graph libraries and enables compact and fast implementations of mathematical
constructions. Indeed, the developed implementation shows a one to one correspondence
between the formal constructions of the DPO approach [EEPT06] and the implemented
functions including the explicit construction of morphisms. Furthermore, AGG is based on
Java which restricts the the maximal graph size to the available memory of the system. The

192 Prototypical Tool Support: AGT-M

project partners, however, asked for more scalable systems that can additionally provide
distributed execution engines. Wolfram Mathematica already provides several libraries for
these requirements, such that AGT-M can be extended to scalable, parallel and distributed
concepts based on the existing libraries in a later stage. The main components of AGT-M
and the used components of AGG are visualized in Fig. 7.1.

Figure 7.1: Overview of Tool Support

Package P1 is the basis of AGT-M and provides a transformation engine for plain graph
transformations, which is presented in detail in [Ada10]. This engine supports the transfor-
mation of typed attributed graphs including the concept of node type inheritance according
to [EEPT06]. This way, rules may contain abstract node types, which improves the mod-
elling capabilities. Moreover, negative and positive application conditions are supported,
which restrict the possible matches of a rule. The implementation is directly based on the
formal definitions for typed attributed graph transformation using the double pushout ap-
proach, such that all graphs and morphisms that are involved in the transformation steps
are created and thus, they are available for further formal analysis.

Package P2 of AGT-M provides the process analysis engine. This includes the construc-
tion of the subobject transforamtion system STS (d) according to Ch. 3 for a given graph
transformation sequence d that is executed by the transformation engine of package P1.

7.2 Comparison of AGT-M with other Tools for Behaviour Analysis of Graph
Transformation Systems 193

Based on this STS the engine provides the analysis of permutation equivalence of transfor-
mation sequences. For this purpose, at first the STS relations are generated and in a next
step the dependency net DNet(d) is generated. This dependency net is a standard place
transition Petri net and specifies all possible equivalent executions of a given one. Finally,
the generation of the reachability graph provides the explicit possible equivalent execu-
tions. Moreover, these components provide the bases for the analysis of business process
models with respect to valid and equivalent business process runs, which additionally sup-
ports business continuity management according to Ch. 4. All these features of package P2
are applied for the case studies of Chapters 3 and 4.

The third package of AGT-M contains the triple graph transformation engine [Klj10].
This package uses the transformation engine of P1 and provides the execution of triple
graph transformations according to the formal definitions in [Sch94, EEE+07]. This in-
cludes the generation of operational rules for model transformation (source rules and for-
ward rules) as well as for model integration (source-target rules and integration rules) from
a specified triple graph grammar. Thus, this package provides a formal triple graph trans-
formation engine for model transformation and integration. According to the formal results
concerning the analysis of model transformations based on TGGs we use the critical pair
(CPA) analysis engine of AGG. Moreover, due to the shown equivalence of model trans-
formations based on forward rules and those based on flattened forward translation rules
we used AGG for executing the analysed optimized model transformations as presented
in Ch. 5. In particular, AGG provides the analysis and verification of termination and
functional behaviour. Moreover, AGG is used for the conflict detection of model transfor-
mation rules for which we can apply the conflict resolution results in Sec. 5.3.1. Finally,
we applied AGG for analysing and checking conformance in Ch. 6.

We now compare the provided tool support by AGT-M together with the used compo-
nents of AGG with other available tools concerning the main challenges of the research
problems studied in this thesis.

7.2 Comparison of AGT-M with other Tools for Be-
haviour Analysis of Graph Transformation Systems

The behaviour analysis engine of AGT-M provides an efficient support for analysing per-
mutation equivalence. This engine was successfully applied for the analysis of equivalent
process runs with applications to mobile systems in Ch. 3 and business process analysis as
well as business continuity management in Ch. 4.

There are some tools which provide capabilities for the verification of properties of graph
transformation systems. The tool Groove [Gro10, Ren04b] provides a model checking en-
gine for analysing the behaviour of a transformation system in general by generating the

194 Prototypical Tool Support: AGT-M

complete state space, where isomorphic states are merged for improving efficiency. A
further tool for the verification of properties of a graph transformation system is Augur
[Aug10, KK08], which performs an over-approximation based on an unfolding of the sys-
tem. This way, both tools are not appropriate for analysing equivalence for one particular
execution, because all possible executions of the system are generated, where most of them
are not relevant for the considered concrete execution. Furthermore, termination of the un-
derlying graph transformation systems may be not ensured, such that in these cases certain
bounds have to be specified manually.

The tool AGG also provides an engine for analysing graph transformation systems. Its
CPA engine provides the generation and analysis of critical pairs for analysing possible
conflicts and dependencies of rules. In general, there are many cases where rules can be
applied in a dependent way, but for a given transformation sequence several concrete steps
are often independent while the rules show possible dependencies. Therefore, the analysis
of permutation equivalence using the CPA engine is not complete. Furthermore, the CPA
analysis is complex, because it generates the complete set of all possible conflicts in an
arbitrary context. The analysis of permutation equivalence with AGT-M instead uses the
matches of the given transformation sequence, such that the costs of pattern matching are
avoided. All together, the CPA engine of AGG is not adequate for analysing permutation
equivalence.

Thus, the behaviour analysis engine of AGT-M fits best the requirements for tool sup-
port concerning the process analysis of graph transformation systems, i.e. the analysis of
the equivalent concurrent behaviour for a concrete transformation sequence. Based on the
execution of one particular run d of a graph transformation system the engine can generate
the process model given by a subobject transformation system STS (d), the derived depen-
dency relations, the dependency net DNet(d) with initial marking as well as its reachability
graph. As shown in Ch. 3 this generation is efficient compared to a direct analysis of per-
mutation equivalence and can be used for the analysis of equivalent business process runs
and business continuity management as shown in Ch. 4.

7.3 Comparison of AGT-M with other Tools for Model
Transformation

AGT-M provides a formally well founded implementation of model transformations based
on triple graph grammars (TGGs), which strictly corresponds to the constructions pre-
sented in Ch. 5. All involved morphisms and objects during a TGG transformation are
constructed and available for further analysis. This way, the formal results concering cor-
restness and completeness are ensured and the formal results concerning termination, func-
tional behaviour and information preservation can be applied for verifying these properties.

7.3 Comparison of AGT-M with other Tools for Model Transformation 195

Furthermore, the tool can be directly extended for improving the efficiency of the execu-
tion of model transformations using the behaviour analysis engine according to Sec. 5.3.2.
Moreover, the Mathematica environment provides highly optimized libraries including
graph algorithms and libraries for grid computing, which ensures scalability of the im-
plemented techniques.

Several plain graph transformation tools are available, like EMF Henshin [ABJ+10], the
FUJABA tool suite [Fuj07], GrGen [grg06] or ATOM3 [dV07], in which in-place model
transformations can be specified, where the source model may be modified during the trans-
formation till the resulting target model is derived. This additionally complicates the anal-
ysis and verification of termination. But in this case, the formal results available for triple
graph grammars are not ensured, because the in-place rules usually do not correspond to
operational triple rules and all control structures are manually specified. However, several
case studies have been successfully performed using this in-place transformation approach
[BE09, BESW11].

Some TGG implementations are available. The TGG extension for FUJABA [Fuj07]
presented in [KW07] does not use the explicit formal notion of triple graphs, where the
correspondence graph is connected to the source and target graphs via graph morphisms.
Instead, the correspondence graph may contain elements that are not mapped to elements
in the source or target graphs (violates left totality) and moreover, one correspondence
element can be connected to more than one source element (violates right uniqueness). The
FUJUBA based TGG tool MOFLON [TU 10, KKS07] solves this problem by restricting
the editing of triple rules, such that each correspondence node is connected to exactly
one source and one target element. Furthermore, the execution is controlled by iteratively
updating a the set of translated nodes [SK08], which is intuitively similar to the notion of
partial source consistency in Sec. 5.1.1, but there a formal proof showing that a successfully
executed transformation ensures source consistency is missing up to now. However, source
consistency concerns all elements, i.e. also attributes and edges and not only nodes, such
that source consistency cannot be ensured by the algorithm in [SK08] for all valid source
models, i.e. the algorithm does not guarantee completeness, even if backtracking is not
necessary according to Sec. 5.2.2. Moreover, there is an extension for the tool Atom3

[dV07, Gd06b], but again source consistency is not ensured.

Since the tools do not ensure source consistency, which is a sufficient and necessary con-
trol condition for correct and complete model transformations based on TGGs the results
produced by these tools are not formally verified. Furthermore, in order to ensure efficient
executions the tools usually do not perform any backtracking, such that for several valid
input source models the tools will not be able to compute any target model as output result.

Fortunately, as presented in Sec. 5.1.2 correctness and completeness of model transfor-
mations based on TGGs can be ensured using the flattened version of the derived forward
translation rules, where source consistency for complete sequences is ensured by the ad-

196 Prototypical Tool Support: AGT-M

ditional translation attributes. This way, any graph transformation engine that soundly
implements the DPO approach for plain typed attributed graph transformations [EEPT06]
including a sound backtracking mechanism, can be used to perform correct and complete
model transformations. Moreover, by Thms. 5.2.27 and 5.2.31 in Sec. 5.2.2 we can analyse
TGGs using the tool AGG whether backtracking is required. This way, model transforma-
tions that do not require backtracking can also be performed on tools that do not support
backtracking. Clearly, the usage of existing tools requires that the forward translation rules
have to be derived first and it would be more user friendly to provide an additional graphical
user interface for editing the triple graph grammar and generating the forward translation
rules automatically.

Based on the formal results in Ch. 5 we have successfully analysed and executed model
transformations based on TGGs for the case study in Ch. 5 using AGT-M and AGG and for
the case study in Ch. 6 using the tool AGG.

Chapter 8

Related Work

In this chapter, we discuss on the one hand, how the developed techniques and results are
placed within the area of graph and model transformation and how they are related to exist-
ing results in this area. On the other hand, we discuss and compare the presented solutions
with related approaches concerning the support of enterprise modelling and business con-
tinuity management. The following Sections 8.1-8.4 discuss the related work concerning
Chapters 3, 4, 5 and 6, respectively, while Chapters 2 and 7 include already related work.

8.1 Process Analysis of Graph Transformation Systems

Transformation systems based on the double pushout (DPO) approach [Roz97, EEKR99,
EKMR99] with negative application conditions (NACs) [HHT96, EEPT06] are a suitable
modelling framework for several application domains in the area of distributed and con-
current systems. The behaviour of these systems is formalized by an operational semantics
given by a graph transformation system, where each transformation rule can simulate a
step of the modelled system.

A process of a particular execution describes all possible equivalent executions. Corre-
spondingly, a process of a transformation sequence via the rules of the operational seman-
tics defines an equivalence class of transformation sequences. Processes of graph transfor-
mation systems based on the DPO approach are introduced in [CMR96] and characterized
as occurrence grammars in [Bal00]. These concepts generalise the notion of processes
available for the classical formal models in this context – namely Petri nets [Rei85] – which
can be completely defined by restricted graph transformation systems (GTSs), while gen-
eral GTSs are more expressive. In [BCH+06], processes of graph transformation systems
are lifted to the abstract setting of adhesive rewriting systems in order to generalise the
process construction and analysis. This way, the analysis techniques can be instantiated

198 Related Work

for transformation systems based on arbitrary adhesive categories [LS04], such as typed
graphs, graphs with scopes and graphs with second order edges.

The concept and analysis of processes of transformation systems with negative ap-
plication conditions (NACs) is more complex. As presented by the case study, the
notion of switch equivalence with NACs is in general to strict for analysing equiva-
lence of transformation sequences in this context. The reason is that switch equivalence
with NACs based on sequential independence of transformation sequences with NACs
[HHT96, LEO06, LEOP08, Lam09] does not relate all transformation sequences, which
are intuitively equivalent in the way that they are switch equivalent without NACs and ad-
ditionally, each transformation step satisfies the NACs of its rule. The reason is that several
switchings of NAC-dependent steps have to be performed in order to derive a new transfor-
mation sequence that is again NAC-consistent, while the derived transformation sequences
in between are not NAC-consistent. However, the derived new NAC-consistent transforma-
tion sequences are considered to be equivalent. Similarly, the notion of shift equivalence
[Roz97, Kre86] for transformation sequences cannot be extended appropriately to the case
with NACs, because it is also based on sequential independence of neighbouring steps.
For this reason, we introduced the notion of permutation equivalence, which is by defini-
tion exactly the required equivalence relation as described above. Moreover, we extended
the construction and analysis of processes to the more general framework ofM-adhesive
transformation systems, such that the important category of typed attributed graphs is in-
cluded. Furthermore, the developed techniques are extended to transformation sequences
with general match morphisms, i.e. matches do not have to be injective as in the cases
before.

The extended process construction leads to the new notion of subobject transformation
systems (STSs), which generalise the concept of elementary Petri nets [RE96] being the
class of process models for P/T Petri net processes, such that STSs form the class of pro-
cess models for arbitraryM-adhesive transformation systems. In order to provide a sound,
complete and efficient analysis technique for permutation equivalence we presented how
the dependency net for the given transformation sequence can be constructed, which purely
specifies the dependencies between the transformation steps including the inhibiting effects
of the NACs. Based on the reachability graph of the dependency net, all valid and equiv-
alent permutations of the transformation sequence are derived. This way we have shown
that the interleaving semantics of anyM-adhesive transformation system can be described
using pure P/T Petri nets, which specify all equivalent permutations of the steps. The con-
crete transformation steps of the equivalent transformation sequences are derived from the
firing sequence of the Petri net using the corresponding STS.

Some of the problems addressed in this paper are similar to those considered in the
process semantics [KK04] and unfolding [Bal00, BKS04a] of Petri nets with inhibitor arcs,
and actually we could have used some sort of inhibitor arcs to model the inhibiting effect

8.2 Reconfiguration in Business Continuity Management 199

of NACs in the dependency net of a transformation sequence. However, we would have
needed some kind of “generalised” inhibitor nets, where a transition is connected to several
(inhibiting) places and can fire if at least one of them is unmarked. To avoid the burden
of introducing yet another model of nets, we preferred to stick to a direct encoding of the
process of a derivation into a standard marked P/T net, leaving as a topic for future research
the possible use of different models of nets for our dependency net.

8.2 Reconfiguration in Business Continuity Management

The main purpose of business continuity is to provide continuity plans for the cases in
which some failures occur during the execution of critical business processes in order to
ensure business activity.

There are several approaches on adaptive processes which allow for dynamic changes
of the process graphs. The ADEPT system [RD98] provides general reconfiguration op-
erations and additional conditions that restrict the possible dynamic modifications during
runtime in order to ensure that the modifications do not introduce inconsistencies. For ex-
ample, the conditions ensure that new steps are only inserted as possible successor steps of
the current state. In [RMRW08], the ADEPT system is extended by a trace based semantics
for general change patterns for which the effect must be precisely defined. Moreover, the
ADEPT system provides an interface for end users to perform general modifications of the
process graph [DR09] and checks data dependencies before performing a transformation.
A context-aware selection of options including preconfigured and checked process variants
are available for the Provop approach presented in [HBR09], where users specify the de-
pendencies between the available options by constraints. Further checks for basic semantic
constraints concerning dependencies and mutual exclusions are performed in the SeaFlows
project [LRD08].

However, our presented approach in Ch. 4 focuses on rather orthogonal aspects. Instead
of providing general modification operations which are manually applied by some oper-
ational supervisors or actors within the process, our techniques are based on small conti-
nuity snippets and formalized functional and non-functional requirements from which we
generate complete alternative process runs for different combinations of failures. These
alternatives are already verified in advance in order to meet the formalized functional and
non-functional requirements. For this reason, the active persons within the running busi-
ness process do not have to manage and control all modifications and reconfigurations,
but can concentrate on their business tasks. This reduces the risk of making incorrect ad
hoc decisions. The actors can choose an alternative from a set of validated alternatives,
which are possibly ranked by business values. Moreover, the procedure enables partial de-
cisions, in the way that at first a subset of possible continuations is selected and the explicit

200 Related Work

choice regarding the concrete continuation alternative is made at a later stage. All together,
the efforts for modelling as well as management are kept low by providing an automated
IT-support.

Concerning the analysis of business workflow models there are several studies on work-
flow patterns [vdAHKB03], which specify suitable model fragments for certain applica-
tion scenarios as well as data-flow anti-patterns [TvdAS09], which specify substructures
that may lead to inconsistencies including ambiguous data flow. The underlying process
models are given by Petri nets or simple models consisting of action, event and control
nodes. This means that only a few aspects of the business process models in Ch. 4 are cap-
tured. The data modifications are specified by inscriptions within the transitions of a Petri
net (read, write and destroy operations). This way the patterns and anti-patterns support
the detection of inconsistencies within models, but they cannot guarantee the correctness
of them concerning, e.g., that the specified data manipulations can be effectively executed.
Further analysis techniques for event driven process chain (EPC) models are presented in
[Men07], which mainly focus on heuristics for the detection of possible deadlocks caused
by inconsistent combinations of split and join control structures, like e.g. a combination of
an XOR split with an AND join.

A more abstract way of modelling business processes is presented in [vdADG+08],
where concrete configurations depending on the particular application scenario can be de-
rived from a reference model. In this context, business process models are given by work-
flow nets, which are special Petri nets satisfying the following restrictive well-formedness
criteria: (1) there is exactly one input place, (2) one output place, (3) all transitions and
markings are reachable from the initial marking and (4) they are successors of the output
place resp. final marking. The main result of this study shows that given a sound refer-
ence process model, then a configuration of this model which satisfies the workflow net
conditions is sound as well, meaning that it can be completely executed and each action
node can be used in at least one execution variant. While this approach is quite specific and
does not concern the various side constraints like access rights to resources and additional
security constraints, the general concept of reference models can be considered for further
extensions of our techniques.

The above analysis techniques are mainly orthogonal to the generation techniques for
business continuity management (BCM) based on extended EPCs and continuity snippets
in Sec. 4.3.1, which ensure that the generated process runs can be executed, respect the data
flow dependencies, and satisfy the additional functional and non-functional constraints.
For this reason, there is a good potential that the above analysis techniques can be used
to extend the presented BCM techniques. In particular, the general process reconfigura-
tions available in the ADAPT Framework or presented for reconfigurable mobile ad hoc
networks [PEH07] can be possibly combined with our approach in an orthogonal way.

8.3 Model Transformation 201

8.3 Model Transformation

Model transformations are a key concept for the generation of domain and platform specific
models and system components within model driven architecture (MDA, see [OMG01])
including the transformation concept QVT (query view transformations) [QVT08]. Apart
from the usual focus of MDA on pure top-down generation strategies – like code gener-
ation – bidirectional model transformations are an important concept for integrating sev-
eral domain specific languages and for supporting model based interoperability. A dis-
cussion on challenges and possible consequences for QVT transformations is given in
[Ste10] including non-bijective model transformations and proposing triple graph gram-
mars (TGGs) [Sch94, SK08] as one possible concept for further consideration.

Indeed, TGGs have been successfully applied with different purposes in a variety of
domains [Gd06a, Gd06b, KW07, KS06, TEG+05]. Pattern-based model-to-model trans-
formations have been introduced in [dLG08] and corresponding correctness, completeness
and termination results have been presented in [OGdLE09], which are, however, limited in
comparison with the results in this thesis. The triple rules for the triple language are itself
generated from the modelled patterns and the presented notion of correctness is not sym-
metric, i.e. there is a distinction between forward and backward satisfaction. Moreover,
the results consider NACs only for ensuring termination, but not for the specification of
the triple language. The presented theory of model transformations based on forward rules
has been extended in [GEH11, Gol10] from systems with NACs to systems with general
application conditions called nested application conditions.

The developed techniques in Sec. 5.2.2 for analysing functional behaviour and informa-
tion preservation of model transformations based on TGGs provide a systematic approach
for analysing non-bijective model transformations and verifying several properties. Func-
tional behaviour for a case study on model transformations based on “plain graphs” is
already studied in [EEPT06] using also critical pair analysis in order to show local conflu-
ence. But the additional main advantage of our techniques for TGGs is that we do not have
to require full confluence, but instead the weaker notion of translation confluence. Further-
more, we can ensure the strong results concerning correctness and completeness. A first
approach to local confluence and functional behaviour for model transformations based on
TGGs was already given in [EP08]. This approach, however, is very restrictive, because it
is based on triple rules with kernels, which can be applied only to very simple examples.

Moreover, there is an enormous need for suitable formal analysis techniques for model
transformations in order to detect inconsistencies, but also to ensure and verify the con-
sistency of the enterprise model in the whole. Several existing model transformations
in practice are encoded as XSLT-transformations, but a formal analysis technique con-
cerning correctness and completeness is not available for them. Triple graph grammars
have been used extensively for specifying model transformations and they provide a for-

202 Related Work

mal foundation based on algebraic graph transformation [EEPT06], an intuitive visual
notation and they show a high degree of maintainability. In comparison to plain graph
transformation approaches for model transformation, like e.g. EMF model transformations
[BET08, ABJ+10], TGGs provide formal results that can by analysed efficiently for qual-
ity assurance, e.g. concerning correctness and completeness. Furthermore, they facilitate
bidirectional model transformations. Moreover, the operational rules including the nec-
essary control structures are generated automatically from a single set of triple rules as
presented in Sec. 5.1.2. This substantially reduces the modelling and specification efforts.
The modeller purely specifies the interrelationship of source and target models by patterns,
i.e. by defining how model fragments may be extended simultaneously on the source and
target component. According to Sec. 5.3.3 we were able to master the major part of the
main challenges of model transformations based on triple graph grammars as presented
in [SK08, HHK10] concerning – in particular – correctness, completeness, termination,
efficiency and expressiveness.

Finally there is a strong relationship with the model transformation algorithm in [SK08],
which provides a control mechanism for model transformations based on TGGs by keeping
track of the elements that have been translated so far at an intermediate step. In Sec. 5.1.1
we formalized the notion of elements that are translated at a current step by so-called
effective elements and in Sec. 5.1.2 we have shown that the new translation attributes can
be used to automatically keep track of the elements that have been translated so far.

8.4 Consistency Analysis of Heterogeneous Models

Enterprise modelling encompasses several different aspects, which are usually modelled by
different heterogeneous types of models. These models are developed partly independent
from each other in a decentralized way, where models are modified by different teams,
who have specified knowledge in their domains. In order to analyse and ensure consis-
tency between the different enterprise models, different approaches and techniques were
developed.

A common strategy in software engineering for reducing the complexity of the consis-
tency problem in whole is to define separate views [GEMT00, EEHT97] and to develop
domain focussed models in these views that specify some partial aspects of the system.
The integrated meta model of UML [OMG10] enables, on the one hand, the modelling in
different visual notations using the different types of UML models and, on the other hand,
specifies the syntactical overlappings between these models. Additional constraints (OCL
and natural language) describe additional requirements that induce dependencies between
the models. But this concept is too strict for enterprise modelling, where several differ-
ent domain languages are used, which cannot be mapped directly to some UML model,

8.4 Consistency Analysis of Heterogeneous Models 203

even if stereotypes are used for customization. Furthermore, decentralised modelling may
introduce inconsistencies, which cannot be directly analysed and resolved.

The concept of views is generalised in [EEEP09] by providing a formal framework for
views along type hierarchies given by hierarchies of meta models (resp. type graphs with
constraints) in a flexible way. The assumption is that all partial models can be combined
to form one integrated model typed over the integrated type graph, where the different
modelling teams have only restricted knowledge about the complete meta model. Two
models are considered to be consistent, if they are isomorphic on the common types with
respect to the intersection of the domain type graphs. Further semantic consistency checks
for the integration of viewpoint models are presented in [BKS04b].

However, this notion of consistency is still too strict for our scenario, where dependen-
cies between heterogeneous models exist and have to be respected. The models usually do
not coincide completely on the structure that is relevant for the dependencies. In particu-
lar, this is the case in our case study, where business process models may contain several
fragments that have to conform to a single fragment of the corresponding business service
structure model. Moreover, fragments of one domain have a different structure as the frag-
ments in the other domain. For this reason, the main part of the dependencies between
these models cannot be handled by the above concept based on an intersection of the type
graphs.

In order to provide a general approach for analysing consistency between heterogeneous
models we introduced the concept of conformance in Ch. 6, which is much more flexible,
can be performed by automated formal techniques and allows for checking dependencies
between models that do not necessarily share common substructures.

Summing up, there are several related techniques and approaches, which are partly fo-
cussed on different aspects. However, they do not provide the optimal solutions for the
considered challenges and problems in the application domains of this thesis concerning
the formal and automated support of decentralised enterprise modelling. Nevertheless,
some concepts may be used for further extensions of the presented techniques.

204 Related Work

Chapter 9

Conclusion and Future Work

In order to improve the capabilities and benefits of visual enterprise modelling and to solve
main problems in this area we developed and presented new powerful and efficient tech-
niques for the analysis and optimization of the involved models and the improvement of the
modelling process based on new formal concepts and results in the area of graph and model
transformation. This chapter summarizes and discusses the main contributions concerning
the theoretical results from the general point of view (Sec. 9.1), the results for visual enter-
prise modelling (Sec. 9.2), the relevance for model driven software engineering (Sec. 9.3)
and, finally, we discuss future work including further application domains (Sec. 9.4).

9.1 Summary of Theoretical Results

From the theoretical foundation point of view, this thesis provides new concepts and re-
sults, on the one hand, for behaviour analysis and concurrent semantics of M-adhesive
transformation systems and in particular for graph transformation systems as presented in
Ch. 3. On the other hand, it provides new techniques and results for model transformations
based on triple graph grammars as presented in Ch. 5.

Behaviour Analysis of Visual Languages Based on Graph Transformation

The general framework ofM-adhesive transformation systems provides an abstract view
on many important instantiations, such as different types of graph transformation systems,
and Petri net transformation systems - in particular for the modelling of workflows of re-
configurable mobile ad hoc networks [EHP+07, HEP07]. Each of these instantiations pro-
vides specific features relevant for their application domain.

The concurrent semantics ofM-adhesive transformation systems was studied up to now,
only for the more restrictive setting of adhesive transformation systems [BCH+06] and

206 Conclusion and Future Work

low-level Petri nets. The main contribution of this thesis in this context is a general notion
of concurrent semantics forM-adhesive transformation systems in the sense of an inter-
leaving semantics together with suitable and efficient analysis techniques. This builds the
basis for a future extension to a true concurrent semantics in this general framework, where
several independent steps can be equivalently executed by one current step.

While negative application conditions (NACs) are an important and widely used control
structure forM-adhesive transformation systems the available results concerning the con-
current semantics of transformation systems do not consider NACs. Moreover, the standard
notion of switch-equivalence based on sequential independence of neighbouring steps is
too strict in the presence of NACs, i.e. there are equivalent transformation sequences with
NACs which are not switch-equivalent with NACs as shown by the presented case study.
For this reason, we introduced the new notion of permutation equivalence in Sec. 3.2 as
a generalisation of switch equivalence with NACs. By definition, two transformations are
permutation-equivalent, if they are switch-equivalent without NACs and moreover, each
step of the transformation sequences satisfies the NACs. Therefore, all possible permuta-
tions of the transformation steps are considered.

Continuing, we presented the new concept of subobject transformation systems (STSs)
in order to define the interleaving semantics ofM-adhesive transformation systems. They
generalise the notion of occurrence grammars, which specify the interleaving semantics of
adhesive transformation systems [BCH+06]. In the case of low-level P/T Petri nets, they
correspond to the notion of elementary nets. Furthermore, we extended the constructions
to the case of transformation systems with general matching. This extension is important
in the case of attributed graph transformation systems, where injective matching is too
restrictive. Based on the new constructions we defined the process of a transformation
sequence as a pair consisting of the derived STS and a relating mapping into the original
M-adhesive transformation system. As a first main result, we have shown by Thm. 3.4.12
that the analysis of the interleaving semantics of an M-adhesive transformation system
based on the new notion of processes is sound and complete. This means that we derive
the set of all permutation-equivalent transformation sequences to a given transformation
sequence d of anM-adhesive transformation system by generating all legal sequences of
rule names within the process of d. Moreover, we can guarantee an efficient construction
of the process model according to Fact. 3.4.15, which states that the construction together
with its dependency relations is performed in polynomial time with respect to the size of
the given transformation sequence and its components.

In a further step, we presented an efficient analysis of the interleaving semantics ofM-
adhesive transformation systems. This analysis is performed on a generated corresponding
dependency net, which purely specifies the dependencies of a transformation sequence
leaving out all concrete information about the involved objects. According to Thm. 3.5.3,
the set of transition complete firing sequences of the dependency net exactly specifies the

9.1 Summary of Theoretical Results 207

set of permutation-equivalent transformation sequences to a given one. Therefore, the
reachability graph of the dependency net, restricted to the transition complete firings, shows
all permutation-equivalent transformation sequences. This way, we have shown that the
interleaving semantics of an arbitrary M-adhesive transformation system can be studied
based on a fundamental model of concurrency – a marked low-level P/T Petri net.

Finally, we evaluated the efficiency of the analysis based on a convincing benchmark.
The efficiency of the Petri net approach is based on two advantages. First of all, the con-
structed Petri net only specifies the dependencies among the steps of the derivation, ignor-
ing the concrete structure of the involved graphs. Secondly, all NACs are respected already
during the generation of the permutation-equivalent sequences.

Model Transformations Based on Triple Graph Grammars

Model transformation based on triple graph grammars [Sch94, SK08] have been applied
in several application domains in model driven development and we have presented the
main new results based on a quasi-standard case study in this area – namely the model
transformation from class diagrams to relational data base models. The main advantages
of model transformations based on TGGs are the intuitive specification, the bidirectional
character, the automatic generation of operational rules, the formal foundation, the avail-
able expressive control structures like negative application conditions, the powerful results
for analysis and optimization, and the preservation of the given source models in contrast
to common in-place model transformation approaches [ABJ+10].

The main contributions for model transformations based on TGGs in this thesis are given
by new powerful execution, analysis and optimization techniques, which ensure the funda-
mental properties of syntactical correctness and completeness. As presented in Sec. 5.3.3,
the new developed concepts and results provide adequate solutions for most of the main
challenges for model transformations based on TGGs according to [SK08] and according
to the extended list of challenges in Sec. 5.1. In the following, we discuss the main re-
sults for these challenges concerning functional and non-functional requirements of model
transformations.

Starting with the functional requirements of model transformations, we have shown that
the presented model transformation approaches based on forward and forward translation
rules in Ch. 5 ensure syntactical correctness and completeness. Both properties are defined
with respect to the language of integrated models generated by the specified TGG, whose
rules define how source and target models can be synchronously created. Syntactical cor-
rectness of a model transformation means that each executed model transformation starting
at a valid source model generates a valid target model and, moreover, there is an integrated
model containing both models. Completeness in this context means that each valid source
model can be transformed into a target model, and vice versa, for each valid target model

208 Conclusion and Future Work

there is a source model that can be transformed into this target model via the model trans-
formation. By Thm. 5.2.1 we have shown that model transformations based on forward
rules ensure syntactical correctness and completeness in general. Moreover, by Thm. 5.2.4
and 5.2.14 we provided sufficient conditions for ensuring termination of model transfor-
mations, which are very general and can be applied to many case studies. In particular,
they suffice to show termination of the model transformations in our case studies.

Based on the new concept of forward translation rules we have shown new results for
the analysis of functional behaviour, i.e. that the execution ensures unique results. While
the general notion of functional behaviour of graph transformation systems is equivalent
to the notion of confluence, this is not the case for model transformations, where not all
transformation sequences are relevant, but only those which transform a valid source model
into some target model and which are complete with respect to the execution strategy of
the model transformation. And indeed, many model transformations are not generally
confluent and therefore, the available techniques based on critical pairs [EEPT06, Lam09]
for showing confluence cannot be applied. For this reason, we introduced the new notion of
significant critical pairs and the concept of filter NACs, which filter out execution paths that
would lead to a point for backtracking and additionally reduce the amount of significant
critical pairs. By Thm. 5.2.27 we have shown that strict confluence of significant critical
pairs ensures functional behaviour. This way we were able to show functional behaviour for
the model transformations in Chapters 5 and 6. Moreover, we have shown by Thm. 5.2.31
that the absence of significant critical pairs ensures strong functional behaviour, which
additionally ensures that the execution sequences of the model transformation are unique
up to switch-equivalence.

In addition to the functional requirements, we provided further results concerning non-
functional requirements. In particular, we presented a new technique for showing that a
model transformation is (complete) information preserving. Standard information preser-
vation requires that for each forward model transformation sequence there is also a back-
ward model transformation sequence from the resulting target model into the given source
model. By Thm. 5.2.34 we have shown that model transformations based on TGGs accord-
ing to the presented approaches in Ch. 5 always ensure standard information preservation.
Complete information preservation ensures that the original source model can be uniquely
reconstructed from a given target model, i.e. no detail of the source model is lost during the
model transformation. By Thm. 5.2.37 we have shown that complete information preser-
vation is ensured, if the derived backward model transformation of the TGG has functional
behaviour.

In order to improve the efficiency of the execution of model transformations based on
TGGs we provided an on-the-fly construction for model transformations based on for-
ward rules in Sec. 5.1.1. Furthermore, we presented the generation of forward translation
rules 5.1.2, which enable the correct execution and analysis of model transformations using

9.2 Summary of Results for Visual Enterprise Modelling 209

highly optimized plain graph transformation engines. For this purpose, we have shown by
Thm. 5.1.34 that both transformation concepts are equivalent, i.e. the formal control condi-
tion “source consistency” is automatically ensured for complete transformation sequences
due to the additional translation attributes. Therefore, the results on syntactical correctness,
completeness and termination are also available as shown by Cor. 5.2.6.

Further optimizations of model transformations are presented in Sec. 5.3. For this pur-
pose, we provided powerful analysis techniques for the detection of possible conflicts be-
tween model transformation rules. Based on these results, the designer of a model trans-
formation can detect and eliminate inconsistencies with respect to given requirements and
he can reduce the conflicts by modifying the rules in order to improve efficiency. By
Thm. 5.3.7 we have shown how conflicts can be resolved in a conservative way, such that
the resulting model transformation relation is contained in the previous one. Moreover, we
presented a static and a dynamic generation techniques for filter NACs, which filter out
backtracking paths and therefore, improve efficiency. By Thm. 5.2.27 we have also shown
that we can guarantee executions in polynomial time and space if all significant critical
pairs for the improved rule set are strictly confluent. For the cases where backtracking
cannot be avoided, we additionally provide results for analysing parallel independence
(Thm. 5.3.10, Fact 5.3.11), which build the basis for partial order reduction techniques.
Moreover we have shown how backtracking efforts can be reduced based on the process
analysis results in Ch. 3.

9.2 Summary of Results for Visual Enterprise Modelling

In order to improve today’s solutions concerning security, risk and conformance in en-
terprise modelling, we provided adequate automated, formal and powerful techniques for
the following two typical problem areas based on the general theoretical techniques and
results for graph and model transformation. The first problem area concerns the analysis
and optimization of visual enterprise process models, in particular the improved support
for business continuity management. The second problem area concerns the sound inte-
gration of the different existing heterogeneous model types by checking for conformance
of enterprise process and enterprise service models. In particular, we provided suitable re-
sults and techniques for satisfying the requirements and solving the problems in enterprise
modelling, which we described in Ch. 2.

Behaviour Analysis and Optimization of Visual Enterprise Process Models

In the area of business process modelling, we presented in Ch. 4 how the modelling process
is improved concerning efficiency and quality using the new techniques for the analysis of
interleaving semantics of transformation systems in Ch. 3. For this purpose, we presented

210 Conclusion and Future Work

an operational semantics for the common domain specific modelling language of event
driven process chains (EPCs), on which the techniques are applied. In order to addition-
ally validate and guarantee functional and non-functional requirements of these models we
provided an extended notion of EPCs called WDEPCs, which integrates additional infor-
mation for data flow.

In order to improve the support for business continuity management, we presented new
modelling techniques that allow for the specification of small continuity fragments, which
handle single possible failures, instead of requiring the modelling of complete continuity
processes. Furthermore, we presented how functional and non-functional requirements for
the process can be formalized by visual graph constraints including, in particular, security
constraints and external legislative requirements. Based on the standard process, the ad-
ditional continuity snippets, and the formalized requirements, we provided an automated
generation of complete business continuity process runs. By Thms. 4.2.7 and 4.2.10 based
on Thms.3.4.12 and 3.5.3 we have shown that the generation is sound and complete with
respect to the given functional and non-functional requirements.

This generation and analysis approach substantially reduces the modelling efforts and the
amount of duplicates in models. Therefore, it reduces the risk of inconsistencies during the
lifetime of the models, which is highly relevant due to the increasing complexity of models
in several domains. Moreover, the generated process runs can be used in combination with
workflow engines, such that the generated and verified continuations of running processes
can be displayed in a user-friendly way and used for dynamic and fast decisions. This
automated support can substantially improve the efficiency and quality of the models as
well as the modelling process.

Conformance Analysis of Enterprise Process and Service Models

In order to provide automated support for the consistent integration of different domain
specific enterprise modelling languages, we presented new techniques for relating hetero-
geneous models based on the developed techniques and results for model transformation in
Ch. 5. In this context, we analysed the interdependencies between the domains of business
process models and business service structure models (BSS models). BSS models specify
available resources and certain structures which constrain the execution of business pro-
cesses. For this reason, business process models have to conform to the given business
service structure models.

The new concept of forward conformance is used to check whether models of the source
domain respect the provided structures of a model in the target domain. In particular,
we presented how the automated model transformation techniques in Sec. 5.1 are used
for analysing and checking whether business process models conform to the given service
structure model, which contains the specified available actor roles, communication chan-

9.3 Relevance for Model Driven Software Development 211

nels and access rights. By Thm. 6.3.3 we have shown that the automated conformance
checks based on model transformation are sound and complete using the formal results
correctness and completeness (Thms. 5.2.1, 5.2.14) for model transformations based on
TGGs.

Furthermore, Cor. 6.3.4 shows that the generation of business service models out of busi-
ness process models automatically ensures conformance (using Thm. 5.2.1), such that the
generated business service structure models can be used as basis for further refinement.
This strategy can substantially improve the efficiency of modelling in the business service
structure domain. By Thm. 6.4.1 we furthermore provide criteria for guaranteeing poly-
nomial execution times for the conformance checks based on Thm. 5.2.27. Moreover, we
additionally provided the notion of restricted forward conformance for the more general
case, in which correspondences and dependencies between heterogeneous models concern
only some structures of the models while others are not relevant. In this case, conformance
checks are performed on a subset of the types of the model elements, i.e. conformance is
checked for a specified view on the models.

Based on these techniques and results, models can be maintained in a decentralised and
distributed way to cope with increasing complexity, which is especially important for en-
terprises in the financial sector, where our case study is placed.

9.3 Relevance for Model Driven Software Development

Model transformations are a key concept within model driven architecture (MDA, see
[OMG01]) and model driven engineering (MDE). They are applied for transformations
between different domain specific modelling languages on the same abstraction level, but
also for the generation of more specific models, like program code, that can be further re-
fined. Triple graph grammars (TGGs) have been already successfully applied in this area
and the new formal concepts, results, and techniques for analysis as well as optimization
further extend and improve the advantages and benefits of TGGs. Moreover, the presented
techniques for behaviour analysis provide new general techniques for verifying properties
of behavioural models and checking non-functional requirements as presented for busi-
ness process models in Ch. 4. They additionally show good potential to be applicable to
behavioural software models in an efficient way.

In the following, we discuss the main benefits of the new results for model transfor-
mations based on TGGs for model driven software development, the results of the pro-
vided case studies, further existing case studies on TGGs, and the provided tool support
in this area. In particular, the presented model transformation approach ensures syntacti-
cal correctness and completeness and provides an intuitive visual notation. Moreover, the
presented automated techniques for analysing and ensuring functional behaviour enable

212 Conclusion and Future Work

more efficient validations of the generation of more specific models, because the amount
of possible generated models is reduced to one per valid input model. Concerning model
transformations on the same abstraction level, functional behaviour additionally enables
the sound reflection of model changes in one model to its corresponding model in another
domain.

From the application point of view, the additional techniques for the optimization of
model transformations improve the efficiency of the execution and – if possible – can guar-
antee polynomial execution times by eliminating backtracking while completeness is still
ensured. This way, model driven engineering and model based interoperability can be sup-
ported by efficient model transformations which are syntactically correct and complete and
which require low maintenance efforts based on its intuitive specification and automated
generation of operational rules.

Case Studies

The power and efficiency of the developed formal techniques has been shown by several
case studies as summarised in the following.

The new behaviour analysis techniques concerning the interleaving semantics of general
M-adhesive transformation systems were first applied to a typed attributed graph transfor-
mation system defining the operational semantics of simplified mobile workflow oriented
systems. Generation techniques were applied for deriving the complete set of equivalent
system executions and for checking specific ones for equivalence. The analysed executions
of the modelled system show that the new notion of permutation equivalence is the ade-
quate notion for analysing the interleaving semantics, while the existing notions on switch
equivalence are either to strict or to weak. This case study includes a benchmark, which
shows the efficiency benefits of the approach compared to a direct analysis.

The above techniques were also applied for the case study on business process models,
where we used the domain specific modelling language of extended event driven process
chains (WDEPCs). The presented WDEPC model shows a partly simplified loan grant-
ing process, which is based on real-world processes in the financial sector. In order to
analyse WDEPC models, we introduced a formal operational semantics for WDEPCs and
presented, how functional and non-functional requirements can be checked and verified.
In particular, we verified the four-eye principle. Furthermore, we presented how business
continuity management can be supported by the automated generation and validation tech-
niques, where we generated 126 validated standard and 252 additional continuity process
runs, which can be used for dynamic decision support by a workflow engine.

The new techniques for model transformations based on TGGs were applied to the well-
known case study from class diagrams to relational data base models and have shown to be
of high impact. In fact, the different properties of model transformations were verified in-

9.3 Relevance for Model Driven Software Development 213

cluding correctness, completeness, termination, strong functional behaviour and complete
information preservation. Moreover, we presented a benchmark showing that the optimiza-
tion techniques are powerful and can substantially reduce complexity. Moreover, we ap-
plied the model transformation techniques for case studies from business process models to
process algebra in [BHG11] and from machine-centric business service to machine-centric
IT service models in [BH10].

Several further case studies on model transformations based on graph transformation
have been presented in the literature. For example, BPMN business process models are
transformed into executable BPEL process models in [BE09] and UML sequence diagrams
are transformed into UML state machines in [GMP10]. A model transformation from state
machines to Petri nets is presented in [EEPT06], which is extended in [Gol10] based on
the concept of TGGs with general application conditions in order to include more complex
state machines. Furthermore, semantic correctness of the extended TGG model transfor-
mation has been verified. A model transformation from a DSL for production systems to
Petri nets is presented in [EE08a], where additionally the rules of the operational semantics
are transformed in order to show that the model transformation is behaviour preserving.

Finally, the new results for conformance analysis have been applied for the case study in
Ch. 6. Conformance means that a model in one domain satisfies the structural requirements
specified by a model in another domain. In the case study, we verified that the business
process model in Ch. 4 specifying a loan granting process conforms to the given business
service structure model using the notion of restricted forward conformance. In this case
study, the notion of pure conformance is not applicable, because the domains of business
process models and business service structure models are related only partially, i.e. the
interdependencies between both models do not concern all model element types. There-
fore, we restricted the process model to the relevant types and were able to show restricted
forward conformance. This way, we verified that the process model including possible
continuity snippets satisfies all requirements of the business service structure model con-
cerning the specified permissions of actors for using certain communication channels and
having access to resources.

Tool Support

The developed prototypical tool AGT-M (algebraic graph transformation based on Math-
ematica) provides a transformation and analysis environment for typed attributed graph
transformation systems as well as for typed attributed triple graph transformation systems.
The formal results and techniques of this thesis were applied in the different case studies
using AGT-M and partly the existing tool AGG (attributed graph grammar system), which
provides a powerful critical pair analysis engine. The case studies have shown that the new
concepts and techniques in this thesis can be efficiently applied in a user friendly way.

214 Conclusion and Future Work

As presented in detail in Ch. 7, the basis of AGT-M is the transformation engine for
typed attributed graph transformation with node type inheritance and negative application
conditions (NACs) for controlling the application of the transformation rules. The compo-
nents of this transformation engine explicitly construct and store all graphs and morphisms
according to the formal definitions, which is the basis for the behaviour analysis techniques
in Ch. 3. Existing tools like AGG, however, focus only on the resulting objects of a trans-
formation and do not provide the intermediate details for each step.

The AGT-M package for process analysis supports the analysis of interleaving seman-
tics of graph transformation systems as presented in Ch. 3 and applied in Ch. 4 for the
case study on business process analysis and business continuity management. Based on an
executed transformation sequence in AGT-M the behaviour analysis engine generates the
corresponding process model given by an STS. Furthermore, the engine provides the gen-
eration of the STS relations, the dependency net and the corresponding reachability graph
of the dependency net. This way, the complete analysis of interleaving semantics based
on the notion of permutation equivalence can be performed and was executed for the case
studies.

Furthermore, AGT-M supports model transformations based on triple graph grammars
(TGGs) and additionally model integrations according to [EEH08a]. In particular, AGT-M
supports the specification and execution of formal triple graph transformation sequences
including the control structure “source consistency”. In order to use the already existing
powerful critical pair analysis engine of AGG for analysing important properties of model
transformations, we have shown in Sec. 5.2.2 how triple graph transformation sequences
can be equivalently performed as plain graph transformation engines. This way, we were
able to analyse (strong) functional behaviour, (complete) information preservation, termi-
nation with AGG and we applied further analysis results for an optimization of the model
transformations used in the case studies in Ch. 5 and 6.

To summarise, the provided results and techniques have been shown to solve main prob-
lems in current practice of enterprise modelling. In particular, they realize the main aims of
the thesis as listed in Ch. 1 and especially improve the benefits of enterprise modelling con-
cerning business continuity management and conformance analysis. Moreover, the overall
general and formal foundation for the results concerning behaviour analysis and model
transformation provides the basis for successful and beneficial applications in several im-
portant other domains, like model driven software development and system analysis.

9.4 Future Work

The presented techniques for behaviour analysis and model transformation have been de-
veloped with a focus on visual enterprise modelling, but they can be applied in several other

9.4 Future Work 215

domains as well. Furthermore, the results have been verified within the general framework
of M-adhesive transformation systems, such that they can be also instantiated for appli-
cations using other high level replacement systems. In this section, we give an overview
on future work concerning the general framework for graph and model transformation and
visual enterprise modelling.

General Framework for Graph and Model Transformation

Different categorical frameworks for HLR systems and their interrelationship have been
presented in [EGH10]. As the main result, we have shown that the framework of M -
adhesive transformation systems (called vertical weak adhesive in [EGH10]) covers most
of the other available frameworks. For this reason, the developed techniques in this thesis
also fit in the more specific frameworks being adhesive, adhesive HLR, weak adhesive
HLR and partial map adhesive transformation systems. Future work will encompass case
studies for relevant instantiations in these frameworks.

In particular, we will apply the behaviour analysis techniques of Ch. 3 to the framework
of reconfigurable Petri nets, which are used for modelling mobile ad hoc networks. As
shown in [MGE+09], reconfigurable Petri nets form an M-adhesive category. Together
with Sarkaft Shareef [Sha10] we have shown that this category additionally has effective
unions, such that we plan to apply the behaviour analysis techniques of Ch. 3 to suitable
case studies.

The presented techniques for behaviour analysis and the notion of processes for M-
adhesive transformation systems in Ch. 3 have been provided concerning interleaving se-
mantics. In a future step, the existing results will be extended towards a truly concur-
rent semantics, where transformation steps can be composed to concurrent steps. In some
initial case studies, we experienced that a refined notion of parallel independence is nec-
essary, in order to ensure that the modelled systems can execute these steps. Therefore,
we plan to provide a new restricted notion of parallel independence based on the co-span
DPO approach presented in [EHP09], which provides a more intuitive view on the rel-
evant aspects in this case. Moreover, we plan to extend the results from transformation
systems with NACs to transformation systems with general (nested) application conditions
[HP09, EHL+10a]. Further improvements of efficiency could be obtained by observing
the occurring symmetries in the P/T Petri net by applying symmetry reduction techniques.
Additionally, the space complexity of the analysis could be reduced by unfolding the net
and then representing all permutation-equivalent derivations in a more compact, partially
ordered structure.

The presented techniques on model transformation in Ch. 5 are mostly defined for the
general framework ofM-adhesive transformation systems already, but the results for for-
ward translation rules are defined for the specific instantiation of typed attributed triple

216 Conclusion and Future Work

graph transformation systems. As shown already in [HEGO10a], the general concept of in-
terfaces can adequately provide an abstract representation of the used translation attributes
within forward translation rules. In a next step we plan to extend the results, especially
concerning functional behaviour, to the framework ofM-adhesive transformation systems
based on the concept of interfaces. As shown in [GEH11], we already extended several re-
sults from triple graph grammars with NACs to systems with general (nested) application
conditions.

Moreover, as presented in [BHEE10], we work on extended techniques which enable
model transformations of constraints, such that model properties and requirements can
be transferred to related domains. Furthermore, we aim to study semantic correctness of
model transformations based on relating the operational semantics of one domain to the one
of a related domain by applying the model transformation onto the rules of the operational
semantics using similar ideas as presented in [EEE09] and using the concept of borrowed
context [EK06]. We also plan to study additional efficient techniques for analysing and
resolving conflicts between model transformation rules based on sufficient conditions for
determining the type of conflict. Finally, we plan to extend the results for model integration
[EEH08a] to the more general notion of model synchronization as presented in [GW09,
GH09].

Visual Enterprise Modelling

While the enterprise models in the case studies of this thesis were placed in two domains,
there are several further dimensions in enterprise modelling as presented in [BH10], which
can be studied in more detail including further case studies. The extended enterprise mod-
elling framework contains human-centric and machine-centric models of services, pro-
cesses and rules of the Business and IT universe. The main purpose of the extended frame-
work is to collect the distributed knowledge and requirements in order to integrate or align
them in a consistent way. In this context, we plan to apply extended concepts for model
integration and synchronization and to check for conformance between the new types of
models.

Furthermore, the extended framework leads to new types of integration tasks, namely the
integration and synchronization of several models. For this purpose, the synchronization
can be performed either pairwise or in a way that synchronously considers all involved
models and it is worth to study the differences concerning efficiency and applicability.
Moreover, the tool support can be extended by several further techniques mentioned above
and by combining a workflow engine for EPCs with the analysis and generation techniques
for business processes of AGT-M.

Bibliography

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced Concepts and Tools for In-Place EMF Model Trans-
formations. In Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen, edi-
tors, Proc. Int. Conf. on Model Driven Engineering Languages and Systems (MoD-
ELS’10), volume 6394 of Lecture Notes in Computer Science, pages 121–135.
Springer, 2010.

[ABV07] Vı́ctor Anaya, Giuseppe Berio, and Maria Jose Verdecho. Evaluating Quality of En-
terprise Modelling Languages: The UEML solution. In Ricardo Jardim-Gonçalves,
Jörg P. Müller, Kai Mertins, and Martin Zelm, editors, Enterprise Interoperability
II - New Challenges and Industrial Approaches, Proc. Int. Conf. on Interoperability
for Enterprise Software and Applications (IESA 2007), pages 237–240. Springer,
2007.

[Ada10] Jochen Adamek. Konzeption und Implementierung einer Anwendungsumgebung
für attributierte Graphtransformation basierend auf Mathematica. Technical Report
2009/15, TU Berlin, Fak. IV, 2010.

[AGG10] TFS-Group, TU Berlin. AGG, 2010. http://tfs.cs.tu-berlin.de/agg.

[Aug10] Universität Duisburg-Essen. Augur 2, 2010. http://www.ti.inf.uni-due.de/
research/augur/index.html.

[Bal00] Paolo Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to
Graph Grammars. PhD thesis, Computer Science Department - University of Pisa,
2000.

[Bas06] Basel Committee on Banking Supervision. Basel II: International Convergence of
Capital Measurement and Capital Standards: A Revised Framework - Comprehen-
sive Version, 2006. http://www.bis.org/publ/bcbsca.htm.

[BBE+07] Benjamin Braatz, Christoph Brandt, Thomas Engel, Frank Hermann, and Hartmut
Ehrig. An approach using formally well-founded domain languages for secure
coarse-grained IT system modelling in a real-world banking scenario. In Proc.
Australasian Conf. on Information Systems (ACIS’07), pages 386–395, 2007.

http://tfs.cs.tu-berlin.de/agg
http://www.ti.inf.uni-due.de/research/augur/index.html
http://www.ti.inf.uni-due.de/research/augur/index.html

218 BIBLIOGRAPHY

[BCH+06] Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawel
Sobocinski. Processes for Adhesive Rewriting Systems. In Luca Aceto and Anna
Ingólfsdóttir, editors, FoSSaCS, volume 3921 of Lecture Notes in Computer Sci-
ence, pages 202–216. Springer, 2006.

[BE09] Enrico Biermann and Claudia Ermel. Transforming BPMN to BPEL with EMF
Tiger. In Proc. Graph-based Tools (GraBaTs’09), 2009. http://is.tm.tue.nl/staff/
pvgorp/events/grabats2009/.

[BEEH08] E. Biermann, K. Ehrig, C. Ermel, and J. Hurrelmann. Flexible Visualization of
Automatic Simulation based on Structured Graph Transformation. In P. Bottoni and
M. B. Rosson, editors, Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing (VLHCC 2008), pages 21–28. IEEE Computer Society, 2008.

[BEEH09] E. Biermann, K. Ehrig, C. Ermel, and J. Hurrelmann. Generation of Simulation
Views for Domain Specific Modeling Languages based on the Eclipse Modeling
Framework. In G. Taentzer and M. Heimdahl, editors, Automated Software Engi-
neering (ASE’09), pages 625 – 629. IEEE Computer Society, 2009.

[BESW11] E. Biermann, C. Ermel, J. Schmidt, and A. Warning. Visual Modeling of Con-
trolled EMF Model Transformation using Henshin. In Proc. 4th Intern. Workshop
on Graph-Based Tools (GraBaTs’10), 2011. To appear.

[BET08] E. Biermann, C. Ermel, and G. Taentzer. Precise semantics of EMF model transfor-
mations by graph transformation. In K. Czarnecki, editor, Proc. ACM/IEEE 11th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS’08), volume 5301 of Lecture Notes in Computer Science, pages 53–67.
Springer, 2008.

[BH10] Christoph Brandt and Frank Hermann. How Far Can Enterprise Modeling for Bank-
ing Be Supported by Graph Transformation? In Hartmut Ehrig, Arend Rensink,
Grzegorz Rozenberg, and Andy Schürr, editors, Int. Conf. on Graph Transforma-
tion (ICGT 2010), volume 6372 of Lecture Notes in Computer Science, pages 3–26.
Springer, 2010.

[BHE09a] Christoph Brandt, Frank Hermann, and Thomas Engel. Modeling and Reconfigu-
ration of critical Business Processes for the purpose of a Business Continuity Man-
agement respecting Security, Risk and Compliance requirements at Credit Suisse
using Algebraic Graph Transformation. In Enterprise Distributed Object Comput-
ing Conference Workshops, 2009. EDOCW 2009. 13th, Proc. International Work-
shop on Dynamic and Declarative Business Processes (DDBP 2009), pages 64–71.
IEEE Xplore Digital Library, 2009.

[BHE09b] Christoph Brandt, Frank Hermann, and Thomas Engel. Security and Consistency
of IT and Business Models at Credit Suisse realized by Graph Constraints, Trans-
formation and Integration using Algebraic Graph Theory. In Proc. Int. Conf. on Ex-

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

BIBLIOGRAPHY 219

ploring Modeling Methods in Systems Analysis and Design 2009 (EMMSAD’09),
volume 29 of Lecture Notes in Business Information Processing, pages 339–352,
Heidelberg, 2009. Springer Verlag.

[BHEE10] Christoph Brandt, Frank Hermann, Hartmut Ehrig, and Thomas Engels. Enterprise
Modelling using Algebraic Graph Transformation - Extended Version. Technical
Report 2010/6, TU Berlin, Fak. IV, 2010.

[BHG10] Christoph Brandt, Frank Hermann, and Jan Friso Groote. Modeling and Recon-
figuration of critical Business Processes for the purpose of a Business Continuity
Management respecting Security, Risk and Compliance requirements at Credit Su-
isse using Algebraic Graph Transformation: Extended Version. Technical Report
2010/11, TU Berlin, Fak. IV, 2010.

[BHG11] Christoph Brandt, Frank Hermann, and Jan Friso Groote. Generation and Eval-
uation of Business Continuity Processes; Using Algebraic Graph Transformation
and the mCRL2 Process Algebra. Journal of Research and Practice in Information
Technology, 2011. To appear.

[BKS04a] Paolo Baldan, Barbara König, and Ingo Stürmer. Generating Test Cases for Code
Generators by Unfolding Graph Transformation Systems. In Hartmut Ehrig, Gregor
Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Graph Trans-
formations, Second International Conference (ICGT’04), volume 3256 of Lecture
Notes in Computer Science, pages 194–209. Springer, 2004.

[BKS04b] Benjamin Braatz, Markus Klein, and Gunnar Schröter. Semantical Integration of
Object-Oriented Viewpoint Specification Techniques. In Hartmut Ehrig, Werner
Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard Schnieder, and
Engelbert Westkämper, editors, Integration of Software Specification Techniques for
Applications in Engineering, volume 3147 of Lecture Notes in Computer Science,
pages 602–626. Springer, 2004.

[BN96] Peter Bernus and Laszlo Nemes. A framework to define a generic enterprise refer-
ence architecture and methodology. Computer Integrated Manufacturing Systems,
9(3):179 – 191, 1996.

[Boe09] Wolfgang Boehmer. Survivability and Business Continuity Management System
According to BS 25999. In Proc. Int. Conf. on Emerging Security Information,
Systems and Technologies (SECURWARE ’09), pages 142–147. IEEE Computer
Society, 2009.

[Bri06] British Standards Institution (BSi). Business continuity management. Code of prac-
tice, 2006.

[Bri07] British Standards Institution (BSi). Business continuity management. Specification,
2007.

220 BIBLIOGRAPHY

[Cha69] Alfred D. Chandler. Strategy and Structure: Chapters in the History of the Ameri-
can Industrial Enterprise. The MIT Press, 1969.

[CHS08] Andrea Corradini, Frank Hermann, and PawełSobociński. Subobject Transforma-
tion Systems. Applied Categorical Structures, 16(3):389–419, 2008.

[CMR96] Andrea Corradini, Ugo Montanari, and Francesca Rossi. Graph processes. Funda-
menta Informaticae, 26(3/4):241–265, 1996.

[dLG08] Juan de Lara and Esther Guerra. Pattern-Based Model-to-Model Transformation.
In Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, edi-
tors, Proc. 4th Int. Conf. on Graph Transformations (ICGT 2008), volume 5214 of
Lecture Notes in Computer Science, pages 426–441. Springer, 2008.

[Don09] Eugene Don. Schaum’s Outline of Mathematica. McGraw Hill, 2009.

[DR09] Peter Dadam and Manfred Reichert. The ADEPT project: a decade of research and
development for robust and flexible process support. Computer Science - R&D,
23(2):81–97, 2009.

[dV07] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
Modelling, 2007. http://atom3.cs.mcgill.ca/.

[Ecl10] Eclipse Consortium. Eclipse – Version 3.6, 2010. http://www.eclipse.org.

[EE08a] H. Ehrig and C. Ermel. Semantical Correctness and Completeness of Model Trans-
formations using Graph and Rule Transformation. In Proc. International Confer-
ence on Graph Transformation (ICGT’08), volume 5214 of Lecture Notes in Com-
puter Science, pages 194–210, Heidelberg, 2008. Springer.

[EE08b] C. Ermel and K. Ehrig. Visualization, Simulation and Analysis of Reconfigurable
Systems. In A. Schürr, M. Nagl, and A. Zündorf, editors, Applications of Graph
Transformation with Industrial Relevance, Proceedings of the Third International
AGTIVE 2007 Symposium, volume 5088 of Lecture Notes in Computer Science,
pages 265–281, Heidelberg, 2008. Springer.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information Preserving Bidirectional Model Transformations. In
Matthew B. Dwyer and Antónia Lopes, editors, Fundamental Approaches to Soft-
ware Engineering, volume 4422 of Lecture Notes in Computer Science, pages 72–
86. Springer, 2007.

[EEE09] Hartmut Ehrig, Claudia Ermel, and Karsten Ehrig. Refactoring of Model Transfor-
mations. In Reiko Heckel and Artur Boronat, editors, Proc. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT’09), volume 18. Euro-
pean Association of Software Science and Technology, 2009.

http://atom3.cs.mcgill.ca/
http://www.eclipse.org

BIBLIOGRAPHY 221

[EEEP09] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, and Ulrike Prange. Consistent Inte-
gration of Models based on Views of Meta Models. Formal Aspects of Computing,
22 (3):327–345, 2009.

[EEH08a] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Inte-
gration based on the Algebraic Approach to Triple Graph Grammars. Electronic
Communications of the EASST, 10(2), 2008.

[EEH08b] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Integra-
tion based on the Algebraic Approach to Triple Graph Grammars (Long Version).
Technical Report 2008/03, TU Berlin, Fak. IV, 2008.

[EEH08c] H. Ehrig, C. Ermel, and F. Hermann. On the Relationship of Model Transformations
Based on Triple and Plain Graph Grammars. In G. Karsai and G. Taentzer, editors,
Proc. Int. Workshop on Graph and Model Transformation (GraMoT’08). ACM,
2008.

[EEH08d] H. Ehrig, C. Ermel, and F. Hermann. On the Relationship of Model Transformations
Based on Triple and Plain Graph Grammars (Long Version). Technical Report
2008/05, TU Berlin, Fak. IV, 2008.

[EEH09] H. Ehrig, C. Ermel, and F. Hermann. Transformation of Type Graphs with In-
heritance for Ensuring Security in E-Government Networks. In M. Wirsing and
M. Chechik, editors, Proc. International Conference on Fundamental Aspects of
Software Engineering (FASE’09), volume 5503 of Lecture Notes in Computer Sci-
ence, pages 325–339. Springer, 2009.

[EEHP09a] H. Ehrig, C. Ermel, F. Hermann, and U. Prange. On-the-Fly Construction, Correct-
ness and Completeness of Model Transformations based on Triple Graph Gram-
mars: Long Version. Technical Report 2009/11, TU Berlin, Fak. IV, 2009.

[EEHP09b] H. Ehrig, C. Ermel, F. Hermann, and U. Prange. On-the-Fly Construction, Cor-
rectness and Completeness of Model Transformationsbased on Triple Graph Gram-
mars. In A. Schürr and B. Selic, editors, Proc. ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems (MODELS’09), volume 5795 of Lec-
ture Notes in Computer Science, pages 241–255. Springer, 2009.

[EEHT97] G. Engels, H. Ehrig, R. Heckel, and G. Taentzer. A Combined Reference Model-
and View-Based Approach to System Specification. Int. Journal of Software and
Knowledge Engineering, 7(4):457–477, 1997.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of Visual Editors as
Eclipse Plug-Ins. In David F. Redmiles, Thomas Ellman, and Andrea Zisman, edi-
tors, Proc. IEEE/ACM Int. Conf. on Automated Software Engineering (ASE 2005),
pages 134–143. ACM, 2005.

222 BIBLIOGRAPHY

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages and Tools. World Scientific, 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

[EGH10] Hartmut Ehrig, Ulrike Golas, and Frank Hermann. Categorical Frameworks for
Graph Transformation and HLR Systems based on the DPO Approach. Bulletin of
the EATCS, 102:111–121, 2010.

[EHL+10a] Hartmut Ehrig, Annegret Habel, Leen Lambers, Fernando Orejas, and Ulrike Golas.
Local Confluence for Rules with Nested Application Conditions. In Hartmut Ehrig,
Arend Rensink, Grzegorz Rozenberg, and Andy Schürr, editors, Proc. Intn. Conf.
on Graph Transformation (ICGT’10), volume 6372 of Lecture Notes in Computer
Science. Springer, 2010.

[EHL10b] Hartmut Ehrig, Anngegret Habel, and Leen Lambers. Parallelism and Concur-
rency Theorems for Rules with Nested Application Conditions. In Frank Drewes,
Annegret Habel, Berthold Hoffmann, and Detlef Plump, editors, Manipulation
of Graphs, Algebras and Pictures: Essays Dedicated to Hans-Jörg Kreowski on
the Occasion of His 60th Birthday, volume 26. Electronic Communications of the
EASST, 2010.

[EHP+07] H. Ehrig, K. Hoffmann, J. Padberg, U. Prange, and C. Ermel. Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems. In
Jetty Kleijn and Alex Yakovlev, editors, Proc. of 28th International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency, volume
4546 of Lecture Notes in Computer Science, pages 104–123. Springer, 2007.

[EHP09] Hartmut Ehrig, Frank Hermann, and Ulrike Prange. Cospan DPO Approach: An
Alternative for DPO Graph Transformations. Bulletin of the EATCS, pages 139–
146, 2009.

[EHS09a] Hartmut Ehrig, Frank Hermann, and Christoph Sartorius. Completeness and Cor-
rectness of Model Transformations based on Triple Graph Grammars with Negative
Application Conditions. Electronic Communications of the EASST, 18(6), 2009.

[EHS09b] Hartmut Ehrig, Frank Hermann, and Christoph Sartorius. Completeness and Cor-
rectness of Model Transformations based on Triple Graph Grammars with Negative
Application Conditions (Long Version). Technical Report 2009/3, TU Berlin, 2009.

[EK06] Hartmut Ehrig and Barbara König. Deriving Bisimulation Congruences in the DPO
Approach to Graph Rewriting with Borrowed Contexts. Mathematical Structures
in Computer Science, 16(6):1133–1163, 2006.

BIBLIOGRAPHY 223

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation. Vol 3: Concurrency,
Parallelism and Distribution. World Scientific, 1999.

[EP08] H. Ehrig and U. Prange. Formal Analysis of Model Transformations Based on
Triple Graph Rules with Kernels. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, Proc. International Conference on Graph Transformation
(ICGT’08), volume 5214 of Lecture Notes in Computer Science, pages 178–193,
Heidelberg, 2008. Springer.

[EPS73] H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

[Erm06] C. Ermel. Simulation and Animation of Visual Languages based on Typed Algebraic
Graph Transformation. PhD thesis, Technische Universität Berlin, Fak. IV, Books
on Demand, Norderstedt, 2006.

[Erm09] Claudia Ermel. Visual Modelling and Analysis of Model Transformations based on
Graph Transformation. Bulletin of the EATCS, 99:135 – 152, 2009.

[Fed09] Federal Office for Information Security (BSI). BSI Standard 100-4: Business Con-
tinuity Management, 2009.

[FG98] Mark S. Fox and Michael Grüninger. Enterprise Modeling. AI Magazine,
19(3):109–121, 1998.

[Fra02] Ulrich Frank. Multi-perspective Enterprise Modeling (MEMO) - Conceptual
Framework and Modeling Languages. In Proc. Hawaii Int. Conf. on System Sci-
ences (HICSS 2002), page 72, 2002.

[Fuj07] Software Engineering Group, University of Paderborn. Fujaba Tool Suite,
2007. http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/
projects/tgg/index.html.

[Gd06a] E. Guerra and J. de Lara. Attributed typed triple graph transformation with inher-
itance in the double pushout approach. Technical Report UC3M-TR-CS-2006-00,
Universidad Carlos III, Madrid, Spain, 2006.

[Gd06b] E. Guerra and J. de Lara. Model View Management with Triple Graph Grammars.
In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors,
Proc. Intern. Conf. on Graph Transformation (ICGT’06), volume 4178 of Lecture
Notes in Computer Science, pages 351–366, Heidelberg, 2006. Springer.

[GEH11] Ulrike Golas, Hartmut Ehrig, and Frank Hermann. Enhancing the Expressiveness of
Formal Specifications for Model Transformations by Triple Graph Grammars with
Application Conditions. In Proc. Int. Workshop on Graph Computation Models
(GCM’10), 2011. To appear.

http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/projects/tgg/index.html
http://wwwcs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/Fujaba/projects/tgg/index.html

224 BIBLIOGRAPHY

[GEMT00] M. Goedicke, B. Enders, T. Meyer, and G. Taentzer. ViewPoint-Oriented Software
Development: Tool Support for Integrating Multiple Perspectives by Distributed
Graph Transformation. In Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, Berlin, Germany, volume 1785 of Lecture Notes in Computer
Science, pages 43 – 47. Springer, 2000.

[GH09] H. Giese and S. Hildebrandt. Efficient Model Synchronization of Large-Scale Mod-
els . Technical Report 28, Hasso Plattner Institute at the University of Potsdam,
2009.

[GHHN08] J. Grundy, J. Hosking, J. Huh, and K. Na-Liu Li. Marama: An Exclipse Meta-
toolset for Generating Multi-view Environments. In Proc. Intern. Conf. on Software
Engineering (ICSE’08), pages 819–822. ACM Press, 2008.

[GMF07] Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF), 2007. http:
//www.eclipse.org/gmf.

[GMP10] Roy Grønmo and Birger Møller-Pedersen. From Sequence Diagrams to State Ma-
chines by Graph Transformation. In Laurence Tratt and Martin Gogolla, editors,
Proc. Int. Conf. on Theory and Practice of Model Transformations (ICMT 2010),
volume 6142 of Lecture Notes in Computer Science, pages 93–107. Springer, 2010.

[Gol10] Ulrike Golas. Correctness and Analysis of Graph and Model Transformations. PhD
thesis, Technische Universität Berlin, Fakultät IV, 2010.

[grg06] Universität Karlsruhe. Graph Rewrite GENerator (GrGen), 2006. http://www.info.
uni-karlsruhe.de/software.php/id=7&lang=en.

[Gro09] Object Management Group. MDA Specifications. http://www.omg.org/mda/
specs.htm, 2009.

[Gro10] GRaphs for Object-Oriented VErification (GROOVE), 2010. http://groove.
sourceforge.net/groove-index.html.

[GW09] H. Giese and R. Wagner. From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling, 8(1):21–43, 2009.

[HBR09] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Guaranteeing Soundness
of Configurable Process Variants in Provop. In Birgit Hofreiter and Hannes Werth-
ner, editors, Proc. IEEE Conf. on Commerce and Enterprise Computing, (CEC’09),
pages 98–105. IEEE Computer Society, 2009.

[HCEK10a] Frank Hermann, Andrea Corradini, Hartmut Ehrig, and Barbara König. Efficient
Analysis of Permutation Equivalence of Graph Derivations Based on Petri Nets .
Electronic Communications of the EASST, 29(13), 2010.

http://www.eclipse.org/gmf
http://www.eclipse.org/gmf
http://www.info.uni-karlsruhe.de/software.php/id=7&lang=en
http://www.info.uni-karlsruhe.de/software.php/id=7&lang=en
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm
http://groove.sourceforge.net/groove-index.html
http://groove.sourceforge.net/groove-index.html

BIBLIOGRAPHY 225

[HCEK10b] Frank Hermann, Andrea Corradini, Hartmut Ehrig, and Barbara König. Efficient
Process Analysis of Transformation Systems Based on Petri nets. Technical Report
TR 2010/3, TU Berlin, 2010.

[HE08] Frank Hermann and Hartmut Ehrig. Process Definition using Subobject Transfor-
mation Systems. EATCS Bulletin, 95:153–163, 2008.

[HEGO10a] Frank Hermann, Hartmut Ehrig, U. Golas, and F. Orejas. Formal Analysis of Func-
tional Behaviour for Model Transformations Based on Triple Graph Grammars -
Extended Version. Technical Report TR 2010/8, TU Berlin, Fak. IV, 2010.

[HEGO10b] Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Efficient
Analysis and Execution of Correct and Complete Model Transformations Based on
Triple Graph Grammars. In Proc. Int. Workshop on Model Driven Interoperability
(MDI’10), pages 22–31. ACM, 2010.

[HEGO10c] Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Efficient
Analysis and Execution of Correct and Complete Model Transformations Based
on Triple Graph Grammars - Extended Version. Technical Report TR 2010/13, TU
Berlin, Fak. IV, 2010.

[Hei10] Tobias Heindel. Hereditary pushouts reconsidered. In Hartmut Ehrig, Arend
Rensink, Grzegorz Rozenberg, and Andy Schürr, editors, Proc. Int. Conf. on Graph
Transformation (ICGT 2010), volume 6372 of Lecture Notes in Computer Science,
pages 250–265. Springer, 2010.

[HEOG10] Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ulrike Golas. Formal Anal-
ysis of Functional Behaviour of Model Transformations Based on Triple Graph
Grammars. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy
Schürr, editors, Proc. Int. Conf. on Graph Transformation (ICGT’ 10), volume
6372 of Lecture Notes in Computer Science, pages 155–170. Springer, 2010.

[HEP07] K. Hoffmann, H. Ehrig, and J. Padberg. Flexible Modeling of Emergency Scenarios
using Reconfigurable Systems. In Proc. of the 10th World Conference on Integrated
Design & Process Technology, page 15, 2007. CDROM.

[Her08a] Frank Hermann. Process Construction and Analysis for Workflows Modelled by
Adhesive HLR Systems with Application Conditions. In H. Ehrig, R. Heckel,
G. Rozenberg, and G. Taentzer, editors, Proc. International Conference on Graph
Transformation (ICGT’08), volume 5214 of Lecture Notes in Computer Science,
pages 496–498, Heidelberg, 2008. Springer.

[Her08b] Frank Hermann. Process Definition of Adhesive HLR Systems (Long Version) .
Technical Report 2008/09, TU Berlin, Fak. IV, 2008.

226 BIBLIOGRAPHY

[Her09a] Frank Hermann. Permutation Equivalence of DPO Derivations with Negative Ap-
plication Conditions based on Subobject Transformation Systems. Electronic Com-
munications of the EASST, 16(6), 2009.

[Her09b] Frank Hermann. Permutation Equivalence of DPO Derivations with Negative Ap-
plication Conditions based on Subobject Transformation Systems: Long Version.
Technical Report 2009/10, TU Berlin, Fak. IV, 2009.

[HHK10] Frank Hermann, Mathias Hülsbusch, and Barbara König. Specification and Ver-
ification of Model Transformations. Electronic Communications of the EASST,
30(13), 2010.

[HHT96] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

[Hoa85] Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transforma-
tion systems relative to nested conditions. Mathematical Structures in Computer
Science, 19(2):245–296, 2009.

[IDS10] IDS Scheer AG. ARIS, 2010. http://www.ids-scheer.com/.

[ISO06] International Organization for Standardization (ISO). ISO Standard 19439:2006:
Enterprise integration – Framework for enterprise modelling, 2006.

[KHM06] Harmen Kastenberg, Frank Hermann, and Tony Modica. Towards Translating
Graph Transformation Systems by Model Transformation. Electronic Communi-
cations of the EASST, 4(6), 2006.

[KK04] H. C. M. Kleijn and M. Koutny. Process semantics of general inhibitor nets. Infor-
mation and Computation, 190(1):18–69, 2004.

[KK08] Barbara König and Vitali Kozioura. Augur 2—A New Version of a Tool for the
Analysis of Graph Transformation Systems. In Proc. of GT-VMT ’06 (Workshop on
Graph Transformation and Visual Modeling Techniques), volume 211 of ENTCS,
pages 201–210. Elsevier, 2008.

[KKS07] F. Klar, A. Königs, and A. Schürr. Model Transformation in the Large. In Proceed-
ings of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM
Digital Library Proceedings, pages 285–294, New York, 2007. ACM Press.

[Klj10] Olegs Kljus. Concept and Implementation of an Application Environment for
Model Transformations Based on Triple Graph Grammars and Mathematica. Diplo-
marbeit (master’s thesis), TU Berlin, Fak. IV, 2010.

http://www.ids-scheer.com/

BIBLIOGRAPHY 227

[Kre86] Hans-Jörg Kreowski. Is parallelism already concurrency? Part 1: Derivations in
graph grammars. In Graph-Grammars and Their Application to Computer Science,
volume 291 of Lecture Notes in Computer Science, pages 343–360. Springer, 1986.

[KS06] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
In Proc. SegraVis School on Foundations of Visual Modelling Techniques, volume
148, pages 113–150. Electronic Notes in Theoretical Computer Science, Elsevier
Science, 2006.

[KW07] E. Kindler and R. Wagner. Triple Graph Grammars: Concepts, Extensions, Im-
plementations, and Application Scenarios. Technical Report TR-ri-07-284, Depart-
ment of Computer Science, University of Paderborn, Germany, 2007.

[Lam09] Leen Lambers. Certifying Rule-Based Models using Graph Transformation. PhD
thesis, Technische Universität Berlin, 2009.

[LBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed
Graph Transformation with Node Type Inheritance. Theoretical Computer Science,
376(3):139–163, 2007.

[LBM+01] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing domain-specific design envi-
ronments. IEEE Computer, pages 44–51, November 2001.

[LEO06] L. Lambers, H. Ehrig, and F. Orejas. Conflict Detection for Graph Transformation
with Negative Application Conditions. In Proc. Third International Conference
on Graph Transformation (ICGT’06), volume 4178 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2006.

[LEOP08] L. Lambers, H. Ehrig, F. Orejas, and U. Prange. Parallelism and Concurrency in
Adhesive High-Level Replacement Systems with Negative Application Conditions.
In H. Ehrig, J. Pfalzgraf, and U. Prange, editors, Proceedings of the ACCAT work-
shop at ETAPS 2007, volume 203 / 6 of ENTCS, pages 43–66. Elsevier, 2008.

[LRD08] Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Integration and verification of
semantic constraints in adaptive process management systems. Data Knowl. Eng.,
64(1):3–23, 2008.

[LS04] S. Lack and P. Sobociński. Adhesive Categories. In Proc. FOSSACS 2004, volume
2987 of Lecture Notes in Computer Science, pages 273–288. Springer, 2004.

[LS05] S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications, 39(2):511–546, 2005.

[Mar00] Chris Marshall. Enterprise modeling with UML: designing successful software
through business analysis. Addison-Wesley Longman Ltd., Essex, UK, UK, 2000.

228 BIBLIOGRAPHY

[Men07] Jan Mendling. Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Institute of Information Systems and New Media, Vienna University of
Economics and Business Administration, 2007.

[MGE+09] Tony Modica, Karsten Gabriel, Hartmut Ehrig, Kathrin Hoffmann, Sarkaft Shareef,
Claudia Ermel, Ulrike Golas, Frank Hermann, and Enrico Biermann. Low- and
High-Level Petri Nets with Individual Tokens. Technical Report 2009/13, Technis-
che Universität Berlin, 2009.

[Mic10] Microsoft. Domain specific language tools, 2010. http://msdn.microsoft.com/
vstudio/DSLTools/.

[Min79] Henry Mintzberg. The structuring of organizations: A synthesis of the research.
Prentice-Hall (Englewood Cliffs, N.J.), 1979.

[Min07] M. Minas. DiaGen / DiaMeta – The Diagram Editor Generator, 2007. Available at
http://www.unibw.de/inf2/DiaGen/.

[MOF06] Object Management Group. Meta-Object Facility (MOF), Version 2.0, 2006. http:
//www.omg.org/technology/documents/formal/mof.htm.

[New42] Maxwell Herman Alexander Newman. On theories with a combinatorial definition
of ”equivalence”. Annals of Mathematics, 43(2):223–243, 1942.

[NHOH10] Muhammad Naeem, Reiko Heckel, Fernando Orejas, and Frank Hermann. Incre-
mental Service Composition Based on Partial Matching of Visual Contracts. In
D. Rosenblum and G. Taentzer, editors, Proc. Intern. Conf. on Fundamental As-
pects of Software Engineering (FASE’10), volume 6013 of Lecture Notes in Com-
puter Science, pages 123–138. Springer, 2010.

[OAS07] Organization for the Advancement of Structured Information Standards. Web
Services Business Process Execution Language Version 2.0, 2007. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[OCL03] Object Management Group. UML 2.0 OCL Specification, 2003. http://www.omg.
org/docs/ptc/03-10-14.pdf.

[ODtHvdA06] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and Wil M. P. van der
Aalst. From BPMN process models to BPEL web services. In IEEE International
Conference on Web Services (ICWS 2006), 18-22 September 2006, Chicago, Illi-
nois, USA, pages 285–292. IEEE Computer Society, 2006.

[Off97] United States General Accounting Office. Business Process Reengineering Assess-
ment Guide, 1997.

[OGdLE09] Fernando Orejas, Esther Guerra, Juan de Lara, and Hartmut Ehrig. Correctness,
Completeness and Termination of Pattern-Based Model-to-Model Transformation.

http://msdn.microsoft.com/vstudio/DSLTools/
http://msdn.microsoft.com/vstudio/DSLTools/
http://www.unibw.de/inf2/DiaGen/
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf

BIBLIOGRAPHY 229

In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Int. Conf. on
Algebra and Coalgebra in Computer Science (CALCO’09), volume 5728 of Lecture
Notes in Computer Science, pages 383–397. Springer, 2009.

[OMG01] Object Management Group. Model Driven Architecture (MDA), 2001. http://www.
omg.org/cgi-bin/doc?ormsc/01-07-01.pdf.

[OMG07] Object Management Group. Unified Modeling Language: Superstructure – Ver-
sion 2.1.1, 2007. formal/07-02-05, http://www.omg.org/technology/documents/
formal/uml.htm.

[OMG09] Object Management Group. Business Process Model and Notation (BPMN) Version
1.2, 2009. http://www.omg.org/spec/BPMN/1.2.

[OMG10] Object Management Group. Unified Modeling Language: Superstructure – Ver-
sion 2.3, 2010. http://www.omg.org/technology/documents/modeling spec
catalog.htm.

[PEH07] J. Padberg, H. Ehrig, and K. Hoffmann. Formal Modeling and Analysis of flexible
Processes in Mobile Ad-Hoc Networks. Bulletin of the EATCS, 91:128–132, 2007.

[Pen09] Karl-Heinz Pennemann. Development of Correct Graph Transformation Systems.
PhD thesis, Department of Computing Science, University of Oldenburg, Olden-
burg, 2009. http://oops.uni-oldenburg.de/volltexte/2009/948/Electronic Disser-
tation.

[Plu93] Detlef Plump. Hypergraph Rewriting: Critical Pairs and Undecidability of Conflu-
ence. In Term Graph Rewriting: Theory and Practice, pages 201–213. John Wiley,
1993.

[Plu05] Detlef Plump. Confluence of Graph Transformation Revisited. In Processes, Terms
and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop
on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 280–308. Springer, 2005.

[PS07] Viara Popova and Alexei Sharpanskykh. A Formal Framework for Modeling
and Analysis of Organizations. In Jolita Ralyté, Sjaak Brinkkemper, and Brian
Henderson-Sellers, editors, Proc. IFIP WG 8.1 Working Conf. on Situational
Method Engineering: Fundamentals and Experiences 2007, volume 244 of IFIP,
pages 343–358. Springer, 2007.

[QVT08] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Version 1.0 formal/08-04-03.
http://www.omg.org/spec/QVT/1.0/, 2008.

[RD98] Manfred Reichert and Peter Dadam. ADEPT flex -Supporting Dynamic Changes
of Workflows Without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

http://www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf
http://www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://oops.uni-oldenburg.de/volltexte/2009/948/

230 BIBLIOGRAPHY

[RE96] G. Rozenberg and J. Engelfriet. Elementary Net Systems. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 12–121. Springer, 1996.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on
Theoretical Computer Science. Springer, 1985.

[Ren04a] A. Rensink. Representing First-Order Logic Using Graphs. In H. Ehrig, G. En-
gels, F. Parisi-Presicce, and G. Rozenberg, editors, International Conference on
Graph Transformations (ICGT), volume 3256 of Lecture Notes in Computer Sci-
ence, pages 319–335, Berlin, 2004. Springer Verlag.

[Ren04b] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
J. Pfalz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer
Science, pages 479–485. Springer-Verlag, 2004.

[RMRW08] Stefanie Rinderle-Ma, Manfred Reichert, and Barbara Weber. On the Formal Se-
mantics of Change Patterns in Process-Aware Information Systems. In Qing Li,
Stefano Spaccapietra, Eric S. K. Yu, and Antoni Olivé, editors, Proc. Int. Conf. on
Conceptual Modeling (ER’08), volume 5231 of Lecture Notes in Computer Science,
pages 279–293. Springer, 2008.

[Roz97] Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[SAB98] Monique Snoeck, Rakesh Agarwal, and Chiranjit Basu. Enterprise Modelling. In
Serge Demeyer and Jan Bosch, editors, Proc. Workshops at the Europ. Conf. on
Object-Oriented Programming (ECOOP 1998), volume 1543 of Lecture Notes in
Computer Science, pages 222–227. Springer, 1998.

[Sch86] David A. Schmidt. Denotational semantics: a methodology for language develop-
ment. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science, volume 903 of Lecture Notes in Computer Science, pages 151–
163, Heidelberg, 1994. Springer Verlag.

[Sch01] August-Wilhelm Scheer, editor. ARIS-Modellierungs-Methoden, Metamodelle, An-
wendungen. Springer, 2001.

[SE09] Michael Stieghahn and Thomas Engel. Law-aware access control for international
financial environments. In Yannis Kotidis, Pedro José Marrón, Le Gruenwald, and
Demetrios Zeinalipour-Yazti, editors, International Workshop on Data Engineering
for Wireless and Mobile Access (MobiDE’09), pages 33–40. ACM, 2009.

BIBLIOGRAPHY 231

[Sha10] Sarkaft Shareef. Formal Modelling and Analysis of Reconfigurable Object Nets
Based on the RON Editor. Diplomarbeit (master’s thesis), TU Berlin, Fak. IV,
2010.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Proc. Int. Conf.
on Graph Transformation (ICGT 2008), pages 411–425, 2008.

[SN00] August-Wilhelm Scheer and Markus Nüttgens. ARIS Architecture and Reference
Models for Business Process Management. In Wil M. P. van der Aalst, Jörg Desel,
and Andreas Oberweis, editors, Business Process Management, volume 1806 of
Lecture Notes in Computer Science, pages 376–389. Springer, 2000.

[Ste10] Perdita Stevens. Bidirectional model transformations in QVT: semantic issues and
open questions. Software and System Modeling, 9(1):7–20, 2010.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[Tae06] G. Taentzer. Towards Generating Domain-Specific Model Editors with Complex
Editing Commands. In Proc. International Workshop Eclipse Technology eX-
change (eTX), Satellite Event of European Conf. on Object-Oriented Programming
(ECOOP), 2006.

[TBB+08] G. Taentzer, E. Biermann, D. Bisztray, B. Bohnet, I. Boneva, A. Boronat, L. Geiger,
R. Geis̈, A. Horvath, O. Kniemeyer, T. Mens, B. Ness, D. Plump, and T. Vajk.
Generation of Sierpinski Triangles: A Case Study for Graph Transformation Tools.
In A. Schürr, M. Nagl, and A. Zündorf, editors, Proc. Int. Symp. on Applications of
Graph Transformation with Industrial Relevance (AGTIVE 2007), volume 5088 of
Lecture Notes in Computer Science, pages 514 – 539, Heidelberg, 2008. Springer.

[TCSE08] G. Taentzer, A. Crema, R. Schmutzler, and C. Ermel. Generating Domain-Specific
Model Editors with Complex Editing Commands. In A. Schürr, M. Nagl, and
A. Zündorf, editors, Proc. Int. Symp. on Applications of Graph Transformation with
Industrial Relevance (AGTIVE 2007), volume 5088 of Lecture Notes in Computer
Science, pages 98–103, Heidelberg, 2008. Springer.

[TEG+05] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky, U. Prange,
D. Varro, and S. Varro-Gyapay. Model Transformation by Graph Transformation:
A Comparative Study. In Proc. Workshop Model Transformation in Practice, Mon-
tego Bay, Jamaica, October 2005.

[Tig10] Tiger Project Team, Technische Universität Berlin. Tiger: Generating Visual Envi-
ronments in Eclipse, 2010. http://www.tfs.cs.tu-berlin.de/tigerprj.

[TK09] Juha-Pekka Tolvanen and Steven Kelly. MetaEdit+: defining and using integrated
domain-specific modeling languages. In Shail Arora and Gary T. Leavens, editors,

http://www.tfs.cs.tu-berlin.de/tigerprj

232 BIBLIOGRAPHY

Companion to the ACM SIGPLAN Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2009), pages 819–820. ACM, 2009.

[Tol07] Juha-Pekka Tolvanen. MetaEdit+: Domain-Specific Modeling and Product Gener-
ation Environment. In Int. Conf. on Software Product Lines (SPLC 2007), pages
145–146. Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007.

[TU 10] TU Darmstadt. MOFLON 1.4, 2010. http://www.moflon.org.

[TvdAS09] Nikola Trcka, Wil M. P. van der Aalst, and Natalia Sidorova. Data-Flow Anti-
patterns: Discovering Data-Flow Errors in Workflows. In Pascal van Eck, Jaap
Gordijn, and Roel Wieringa, editors, Int. Conf. on Advanced Information Systems
Engineering (CAiSE 2009), volume 5565 of Lecture Notes in Computer Science,
pages 425–439. Springer, 2009.

[Uni02] United States Code. Sarbanes-Oxley Act of 2002, PL 107-204, 116 Stat 745. Cod-
ified in Sections 11, 15, 18, 28, and 29 USC, 2002.

[vdADG+08] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur H. M. ter Hof-
stede, Marcello La Rosa, and Jan Mendling. Correctness-Preserving Configuration
of Business Process Models. In José Luiz Fiadeiro and Paola Inverardi, editors, Int.
Conf. on Fundamental Approaches to Software Engineering (FASE 2008), volume
4961 of Lecture Notes in Computer Science, pages 46–61. Springer, 2008.

[vdAHKB03] W. M. P. van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[Ver02] F. Vernadat. UEML: Towards a Unified Enterprise Modelling Language. Interna-
tional Journal of Production Research, 40(17):4309 – 4321, 2002.

[VIS09] Microsoft. Microsoft Visio, 2009. http://office.microsoft.com/en-us/visio/.

[Win93] Glynn Winskel. The formal semantics of programming languages: an introduction.
MIT Press, Cambridge, MA, USA, 1993.

[Wol10] Wolfram Research. Wolfram Mathematica 7.0, 2010. http://www.wolfram.com.

[ZSLZ08] A. Zalewski, P. Sztandera, M. Ludzia, and M. Zalewski. Modeling and Analyzing
Disaster Recovery Plans as Business Processes. In SAFECOMP ’08: Proc. Int.
Conf. on Computer Safety, Reliability, and Security, volume 5219 of Lecture Notes
in Computer Science, pages 113–125. Springer, 2008.

http://www.moflon.org
http://office.microsoft.com/en-us/visio/
http://www.wolfram.com

Index

Almost injective match, 125
Attributed graphs, 24

Business Process
Analysis of Equivalent Process Runs, 93
Analysis of Valid Process Runs, 95
Equivalent Process Runs, 93
Valid Process Runs, 94

Canonical equivalent transformation sequences,
62

Category
AGraphs, 24
AGraphsATG , 25
EGraphs, 23
Graphs, 23
SubM(T), 41
TripleGraphs, 105

Complete forward translation sequence
Definition, 125
Equivalence to forward case, 126

Composition of TGT-sequences, 112
Conformance

Check of Forward Conformance, 181
Combined Conformance, 187
Conformance, 181
Efficient Conformance Check, 187
Forward Conformance, 181
Restricted Forward Conformance, 183
Sound Completion, 182

Conservative conflict resolution, 160, 161
Continuity Snippet, 80

Decomposition of TGT-sequences, 112
Dependency net, 65
Distributivity in SubM(T), 43

E-M factorization
General notion, 48
In AGraphsATG, 48

Effective Union forM-subobjects, 41

Filter NAC, 140
Flattening construction, 143
Forward consistent match, 116
Forward Translation Rule, 123
Functional behaviour

Analysis, 145
Analysis of strong functional behaviour,

148
Definition, 138
Strong functional behaviour, 147

Graph, 22

Independence of rules, 135
Information preservation

Analysis of complete information preserva-
tion, 153

Complete information preservation, 152
Definition, 151
Guarantee, 151

Instantiated Graph, 90
Instantiation of a Transformation Sequence, 49
Intersection forM-subobjects, 41

Legal sequence, 60

M-adhesive category, 27
Match consistency

Partial, 114
Standard, 112

Meta Graph Constraint, 90
Misleading graph, 140

234 INDEX

Model Transformation
Based on Forward Rules, 113
Based on Forward Translation Rules, 125

MTR-divergence conflict, 160

Negative application condition, 29

On-the-fly construction, 117
Operational Semantics of an WDEPC, 84
Operational triple rules, 111

Parallel independence
Analysis for forward rules, 164
For forward rules, 164
With NACs, 35
Without NACs, 34

Partial match consistency, 114
Partial source consistency, 114
Permutation equivalence

Analysis based on Petri nets, 68
Analysis based on STSs, 61
General notion, 37
In an STS, 61

Process of a Transformation Sequence, 53

Schift of NACs over rules, 134
Self-disabling rule, 136
Sequential independence

With NACs, 35
Without NACs, 34

Shift of NACs over morphisms, 136
Significant critical pair, 145
Source consistency

Partial, 114
Standard, 112

Strict confluence, 139
Strong syntactical correctness, 154
STS-compatibleM-adhesive Transformation Sys-

tem, 52
Subobject transformation system

Derivation step, 44
STS of a Transformation Sequence, 52

Subobject transformation systems
STS with NACs, 44

Derivation of an STS-sequence, 53
Instantiated NACs, 48
Pure STS, 45
Relations, 55
Sequence of rule occurrences of an STS-

derivation, 54
Transformation sequence of an STS-sequence,

54
Switch equivalence

With NACs, 36
Without NACs, 35
Without NACs within an STS, 59

Syntactical correctness and completeness
Based on forward rules, 131
On-the-fly construction, 132

Termination
Model transformation based on forward

translation rules, 133
On-the-fly construction, 133
Self-disabling rules, 136

Transformation rule, 29
Transformation step, 30
Transformation system, 30
Translation attributes

Family with translation attributes, 121
Graph with translation attributes, 121

Triple graph, 104
Triple graph grammar, 107
Triple language, 107
Triple rule, 106
Triple rule with NACs, 108
Typed attributed graphs, 25

Union forM-subobjects, 41
Union in AGraphsATG , 42

	Introduction
	Visual Enterprise Modelling
	Behaviour Analysis of Visual Languages Based on Graph Transformation
	Specification of Visual Languages Based on Graph Transformation
	Behaviour Analysis Based on Switch and Permutation Equivalence
	Interleaving Semantics of M-adhesive Transformation Systems
	Analysis of Permutation Equivalence Based on Subobject Transformation Systems
	Analysis of Permutation Equivalence Based on Petri Nets

	Behaviour Analysis and Optimization of Visual Enterprise Process Models
	Business Process Modelling
	Event Driven Process Chains
	Business Continuity Management
	Problems of Business Process Modelling

	Operational Semantics and Analysis of Business Process Models
	Operational Semantics Based on Graph Transformation
	Equivalent Runs

	Modification and Optimization
	Generation of Valid Process Variants and Continuity Processes
	Summary of the Solution

	Model Transformation Based on Triple Graph Grammars
	Concepts and Characteristics
	Model Transformation Based on Forward Rules
	Model Transformation Based on Forward Translation Rules

	Analysis
	Correctness, Completeness and Termination
	Functional Behaviour and Information Preservation

	Optimization and Evaluation
	Detection, Reduction and Elimination of Conflicts
	Reduction and Elimination of Backtracking
	Evaluation of the Approach

	Conformance Analysis of Enterprise Process and Service Models
	Business Service Modelling
	Model Transformation: Business Process to Business Service Models
	Analysing Conformance of Business Process to Business Service Models
	Optimization of Conformance Analysis

	Prototypical Tool Support: AGT-M
	AGT-M: Algebraic Graph Transformation Based on Wolfram Mathematica
	Comparison of AGT-M with other Tools for Behaviour Analysis of Graph Transformation Systems
	Comparison of AGT-M with other Tools for Model Transformation

	Related Work
	Process Analysis of Graph Transformation Systems
	Reconfiguration in Business Continuity Management
	Model Transformation
	Consistency Analysis of Heterogeneous Models

	Conclusion and Future Work
	Summary of Theoretical Results
	Summary of Results for Visual Enterprise Modelling
	Relevance for Model Driven Software Development
	Future Work

	
	

