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Abstract
Modern web applications often interact with internal web services, which are not directly
accessible to users. However, malicious user inputs can be used to exploit security vulner-
abilities in web services through the application front-ends. Therefore, testing techniques
have been proposed to reveal security flaws in the interactions with back-end web ser-
vices, e.g., XML Injections (XMLi). Given a potentially malicious message between a web
application and web services, search-based techniques have been used to find input data to
mislead the web application into sending such a message, possibly compromising the target
web service. However, state-of-the-art techniques focus on (search for) one single malicious
message at a time.

Since, in practice, there can be many different kinds of malicious messages, with only a
few of them which can possibly be generated by a given front-end, searching for one sin-
gle message at a time is ineffective and may not scale. To overcome these limitations, we
propose a novel co-evolutionary algorithm (COMIX) that is tailored to our problem and
uncover multiple vulnerabilities at the same time. Our experiments show that COMIX out-
performs a single-target search approach for XMLi and other multi-target search algorithms
originally defined for white-box unit testing.

Keywords Security testing · Code injection vulnerabilities ·
Search-based software engineering

1 Introduction

Web applications often rely on interactions with internal web services, e.g., SOAP (Curbera
et al. 2002) and REST (Fielding 2000). This is a typical case for example in microser-
vice architectures (Newman 2015). When web applications become too large and complex
to develop and maintain, splitting them into smaller services helps to reduce their com-
plexity. Despite being more flexible, scalable and maintainable, microservice architectures
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are characterized by a larger attacks surface due to increased communication complexity
(Sharma and Gonzalez 2017). Indeed, in addition to every single microservice, hackers can
exploit communication channels among microservices (e.g., front-end web applications and
back-end web services) and try to compromise the entire system.

In the context of web applications, a major security concern is the validation and san-
itization of user inputs (e.g., text strings in HTML input forms) which are checking for
malicious content. Input validation discards user-supplied data if it does not conform to a
specified rule or set of rules. On the other hand, input sanitization removes some special
characters (e.g., <) from user inputs to prevent many kinds of possible attacks. These pro-
cedures are usually performed by front-end web applications that process and embed user
inputs into messages (e.g., XML messages) for internal web services.

When input validation and sanitization procedures are not properly implemented, mali-
cious inputs can be used to attack internal web services leading to different kinds of security
attacks, such as XML injection (XMLi) and XSS attacks (Williams and Wichers 2013). Due
to time pressures or lack of familiarity with security issues, such vulnerabilities are common
in practice (Jan et al. 2015, 2016).

For these reasons, researchers have proposed various techniques (Liu and Tan 2008; Jan
et al. 2017a; Kosuga et al. 2007) to test input validation and sanitization routines in web
applications against different types of security attacks.

Recently, we proposed a black-box technique (Jan et al. 2017a, b) based on genetic algo-
rithms (GAs) to generate malicious user inputs that, once validated and processed by the
front-ends, result in malicious XML messages potentially affecting internal web services.
Given a malicious message X that could affect internal web services, search-based soft-
ware testing techniques are then used to find user inputs to the front end (i.e., strings for
web application form) that would lead to the generation of X. The search is guided by the
edit distance (string (Jan et al. 2017a) or real-coded (Jan et al. 2017b) distance) between the
message generated with the given user inputs and the target malicious message X (Jan et al.
2017a). If such user inputs are found, then the front-end is deemed vulnerable since it is not
able to prevent the generation of X.

The main advantage of the aforementioned black-box approach is that it does not need to
access the source code (of neither front-ends nor internal web services) and it can discover
different types of vulnerabilities (Jan et al. 2017a). However, existing techniques focus on
one single message at a time and, therefore, require to run GAs many times, once for each
potential malicious message X. Since the number of messages can be large in practice when
considering multiple types of attacks, searching for a single message/vulnerability at a time
is inefficient (single-target approach) and not scalable to many large applications. First, not
all target messages are feasible since the input validation would likely detect and filter out
many malicious messages. Second, searching for malicious inputs related to some messages
may be more difficult than others. Therefore, when the goal is to detect as many vulner-
abilities as possible within time constraints, the order by which messages are selected for
testing may impact the overall effectiveness (i.e., the number of detected vulnerabilities).

In this paper, we investigate different strategies targeting all malicious messages at the
same time, which aim to overcome potential scalability challenges with the single-target
approach. In the context of white-box unit testing, various search techniques (Panichella
et al. 2015, 2017; Arcuri 2017) have been successfully used to cover multiple structural
targets at the same time (e.g., branches). In our context, these techniques can be adapted
and applied to detect XMLi attacks in front-end web applications. More specifically, in
this paper, we investigate the performance of MOSA (Panichella et al. 2015) and MIO
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(Arcuri 2017), which are the most recent and effective techniques for white-box unit testing.
To tailor it to our context, we adapt MOSA by developing a novel variant, which we call
vMOSA. Moreover, we propose a novel search technique (COMIX), which is based on a
cooperative, co-evolutionary search and is specifically designed for the XMLi testing prob-
lem. Finally, we investigate the usage of an alternative fitness function, which is much less
expensive but possibly provides less guidance than the string edit distance commonly-used
in search-based software testing (Jan et al. 2017a; Alshraideh and Bottaci 2006).

We evaluated these strategies by conducting an empirical study involving different
versions of three web applications. Our results show that (i) all multi-target techniques out-
perform the single-target approach, and (ii) the novel co-evolutionary algorithm (COMIX)
is significantly more effective and more efficient than both vMOSA and MIO, indepen-
dently of the used fitness function. Finally, when the number of target messages increases,
the fitness function we propose clearly helps all techniques to achieve better results.

The paper is organized as follows. Section 2 briefly describes XMLi, prior testing tech-
niques for XMLi, the state-of-the-art multi-target techniques for white-box unit testing, and
background information about co-evolutionary algorithms. Section 3 introduces our novel
co-evolutionary algorithms and the proposed alternative fitness function. Sections 4 and 5
describe our empirical study and report our results, respectively. Section 6 discusses threats
to validity while Section 7 summarizes related work. Finally, Section 8 concludes the paper.

2 Background

This section briefly describes (i) XMLi attacks; (ii) search-based approaches for test-
ing front-end web applications to detect these attacks; (iii) multi-target, search-based
approaches used in white-box unit testing that we adapt to the context of XMLi vulnerability
detection; and (iv) background information about co-evolutionary algorithms.

2.1 XML Injection and Testing Context

Enterprise systems are composed of several components (e.g., SOAP web services, web
applications). Figure 1 depicts a typical three-tiered XML-based business application
(Felderer et al. 2016). It consists of different components: front-end systems (typically web
applications), an XML gateway/firewall, and the back-end web services or databases. In a
typical scenario, the front-ends receive user inputs and generate XML messages, which are
forwarded to the XML gateway/firewall. At this stage, malicious XML messages are filtered
out while the benign ones are sent to the back-end web services (or databases). Attackers
may exploit XML-based vulnerabilities at any tier, e.g., targeting the front-end web appli-
cation or the XML gateway/firewall. However, the front-end web application is at most risk
as an attacker can directly interact with it. If the front-end is vulnerable to XMLi, an attacker
may produce and send malicious XML messages to the back-end web services.

XMLi attacks are the most common XML-based attacks that aim to manipulate or com-
promise the logic of a web application (Williams and Wichers 2013). They are carried out
by injecting malicious strings into user inputs to produce harmful XML messages. This, in
turn, can result in compromising the systems or subsequent components that receive and
process the malicious XML messages. XMLi attacks can be used as a carrier for other types
of attacks, such as SQL Injection, Cross-site Scripting, or Privilege Escalation (OWASP
2016). Their impact depends on the type of malicious content that the XML message carries,
e.g., an attack can result in breaching confidential data.



Empirical Software Engineering

Fig. 1 An example of XML-based Enterprise System

To better understand XMLi attacks, let us consider an example of a web application for
user registration (Jan et al. 2017a) that uses an XML database to store user registration data.
Users can register via a web form by submitting three inputs: (i) username, (ii) password,
and (iii) mail. The application assigns privileges to the user by generating a role, creates an
XML SOAP message and sends it to the central service. Users are not allowed to modify
the role element. We assume that the application directly concatenates the user inputs to the
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XML elements in the SOAP message. Figure 1 contains the resulting SOAP message for
the following malicious inputs:

Username = Tom
Password = Un6Rkb!e</password><!--
E-mail = --><role>administrator</role><mail>admin@email.com

As we can observe in the figure, the original (first) role element with the value of user is
commented out and a new role element having the value of administrator is inserted in
the message. In this way, the malicious user Tom has succeeded in escalating his privileges
to the administrator level. Since this SOAP message is syntactically correct and is valid
according to the associated schema, a validation procedure will not detect this vulnerability.

2.1.1 Testing Front-EndWeb-Applications for XMLi

Testing the input validation and sanitization procedures of front-ends is crucial to guarantee
the security of the internal web services.

In our previous paper (Jan et al. 2017a), we proposed a black-box testing strategy
targeting XMLi vulnerabilities. Such a strategy generates user inputs and inspects the
corresponding XML messages produced by the given front-end web application, which
corresponds to the actual software under test (SUT).

The basic idea is to test whether well-formed and yet malicious XML messages can
be generated by front-ends given some specific user inputs, i.e., input strings of HTML
forms. Given an XML message X known to be harmful to the internal web services, genetic
algorithms (GAs) are used to search for input strings that —once validated and executed
against the SUT— lead to the generation of X. If such input strings are found, it implies
that input validation and sanitization are incomplete as they do not detect malicious inputs
resulting in XMLi attacks.

Coverage criteria. Since the goal is to find as many XMLi vulnerabilities as possible,
multiple XML malicious messages have to be used as targets to cover various types of
attacks. In the following, we refer to the set of malicious XML messages to target with
GAs as Test Objectives (TOs), to be consistent with the terminology used in Jan et al.
(2017a). TOs are defined based on four types of XMLi attacks (Jan et al. 2016), namely
(i) deforming, (ii) random closing tags, (iii) replicating, and (iv) replacing attacks. Each
of these attacks can have a different impact such as creating a malformed XML message
to crash the system, nested attacks like SQL Injection or Privilege Escalation. We use
an automated tool, namely SOLMI, to create a diverse set of TOs. SOLMI is specifically
designed to generate malicious XML messages based on various types of XMLi attacks,
and is very effective compared to other state-of-the-art tools (Jan et al. 2016, 2017a).

Search algorithm. To enable the search for XMLi, Jan et al. (2017a) used a classical GA
with string encoding schema. Given a set of TOs, the GA is executed multiple times,
once for each TO (single-target strategy). Thus, the testing technique terminates when all
TOs have been targeted by the GA.

A candidate solution (also called chromosome or individual) is a list of strings I =
〈I1, I2, . . . , IN 〉 to insert in the target web-form, where Ik denotes the string for the k-th
input of the SUT. The GA is initialized by generating a random pool of chromosomes, called
population, which is evolved across various iterations (or generations). In each generation,
the fittest chromosomes (parents) are selected and combined to form new chromosomes
(offsprings) using crossover and mutation. More specifically, the single-point crossover
creates new input strings by combining the input strings of the two selected parents; the



Empirical Software Engineering

character mutation randomly adds, deletes or changes some characters in the offsprings.
The fitness of each chromosome I is measured by computing the edit distance (Alshraideh
and Bottaci 2006) between the target TO and the message generated when executing I

against the SUT. A zero edit distance value indicates that I covers the target TO, i.e., the
SUT generates the TO when executed using I . The GA terminates if either the target TO is
covered or the maximum search time is reached.

A later variant of the aforementioned single-target strategy (Jan et al. 2017b) uses real-
coded genetic algorithms rather than classical string-coded GAs. The overall idea is to
consider characters forming input strings with the corresponding ASCII code. This allows
the application of real-coded operators, such as the single arithmetic crossover and the gaus-
sian mutation, that are known to work better than classical operators when dealing with
numerical problems (Deb and Deb 2014). Finally, we also investigated the real-coded edit
distance as a substitute of the string edit distance where the difference between characters is
measured as the relative distance between their corresponding ASCII codes. The results of
an empirical study with both open-source and industrial systems showed that the real-coded
GA combined with real-coded edit distance is able to detect more XMLi vulnerabilities and
in less time compared to other combinations of search algorithms and fitness function (Jan
et al. 2017b).

Limitations. While using the real-coded search helped to improve the effectiveness and
the efficiency in detecting XMLi attacks, it does not solve the budget allocation problem.
Given a total search budget B to assess all possible TOs, each TO is assigned a local search
budget equal to BT O = B/|T Os|, where |T Os| is the total number of test objectives to
cover. If one TO is covered and its local budget is not fully consumed, the search budget
for the remaining uncovered TOs is dynamically recomputed, as the total remaining search
budget divided by the yet uncovered TOs.

In such a scenario, the search budget is dynamically divided among the TOs. Therefore,
the order by which the TOs are selected as targets may impact the search effectiveness, i.e.,
the number of TOs covered within the search budget B. Indeed, some TOs can be infeasible
because the input validation routines of the SUT are able to prevent the generation of the
malicious messages regardless of the input string inserted in the web forms. In addition, not
all TOs require the same search budget to be covered: some TOs can be more expensive
than others since, for example, they require more GA generations as the attack may involve
multiple input parameters. If the less expensive TOs are selected first as targets, the saved
search budget can be used to increase the budget assigned to the remaining TOs. Instead,
infeasible TOs or TOs that cannot be covered within their local budget BT O should not
be targeted first as they represent an inefficient budget allocation. However, the feasibility
or the time needed to cover each TO is a priori unknown. Therefore, managing the search
budget allocation in an efficient way is very challenging.

In this paper, we devise the need for more advanced testing strategies that target all TOs
at the same time, thus avoiding the inefficiency of single-target strategies.

2.2 Multi-target Search-Based Techniques inWhite-Box Unit Testing

In the context of white-box unit testing, various strategies (Panichella et al. 2015, 2017;
Fraser and Arcuri 2014) have been investigated in recent years aimed at overcoming the lim-
itations of the single-target strategy. The key idea is considering all coverage targets (e.g.,
branches in white-box testing) as multiple independent objectives to optimize at the same
time. Solving all objectives at once prevents the search from focusing on one single target
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(e.g., branch) that is infeasible or too difficult to cover within a given amount of time.
Although recent research effort focused on unit testing only, the problem of covering mul-
tiple targets can be generalized for different types of testing, including XMLi vulnerability
detection. Indeed, our goal is to generate multiple XMLi attacks, one for each target TO
(malicious XML message).

In the following subsections, we briefly describe the most recent and effective multi-
target testing techniques, as proposed in the context of white-box unit testing.

2.2.1 Many-Objective Sorting Algorithm

MOSA (Panichella et al. 2015, 2017) is a many-objective genetic algorithm that customizes
NSGA-II (Deb et al. 2002), one of the most popular multi-objective genetic algorithms, for
white-box testing. In MOSA, all coverage targets in white-box unit testing (e.g., branches)
correspond to different objectives to optimize. Therefore, a chromosome is a test case and
its fitness (optimality) is based on a vector of scalar values (objective scores) capturing the
distances from all uncovered targets (e.g., uncovered branches). To handle the potentially
large number of targets (objectives) in a program, MOSA uses two preference criteria to
select and evolve (in the next iterations) a subset of test cases in the Pareto front. This
subset should contain the test cases with minimum distance for each uncovered target and,
when multiple test cases show the same distance, shorter test cases should be selected. The
distance for each test τ is measured according to the type of coverage targets (Panichella
et al. 2017). For branch coverage, it is the sum of the normalized branch distance (McMinn
2004a) of τ for branch bi and the corresponding approach level (McMinn 2004a).

To further speed-up the search, the set of objectives to optimize in MOSA at each gen-
eration is kept dynamic and corresponds to the yet uncovered targets. Test cases satisfying
some of the branches are stored within a second population, called archive. The archive is
updated as soon as a new test τ is generated depending on whether (i) it satisfies previously
uncovered targets or (ii) it is shorter than another test τ ∗ in the archive, which covers the
same targets (i.e., τ and τ ∗ are equivalent regarding coverage but the former contains fewer
statements than the latter).

With the exception of these three components (i.e., preference criteria, dynamic selection
of the targets, and archiving strategy), MOSA shares the same main loop with NSGA-II
(or any other GA). Indeed, the initial population is iteratively evolved using mutation and
crossover while the selection is based on the preference criteria. At the end of the search,
the final test suite corresponds to the updated archive from the last generation.

In the context of XMLi, we notice that the original MOSA algorithm cannot be
directly applied for two main reasons. First, in traditional white-box unit testing, it
is very frequent that two or more test cases with different lengths are equivalent in
terms of objective scores (i.e., same coverage). Therefore, prioritizing shorter tests at
the same level of coverage may help in generating better (more concise) tests. In
the context of XMLi, a target TO can be covered by only one single solution (input
strings) and other equivalent shorter strings cannot exist. Second, the crossover opera-
tor is detrimental if it recombines two different chromosomes that are optimizing two
different TOs. For example, let us assume that MOSA selects as parents the two chro-
mosomes I1 = 〈OR 1〉 and I2 = 〈--><role>admn</role>〉. The former has
an edit distance of d(I1, T O1) = 2 for the test objective T O1 = “<test>data
OR 1=1</test>”; the latter is the closest chromosome covering the test objective
T O2 =“--><role>admin</role><mail>admin@ email.com” with a distance
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d(I2, T O2) = 1. Applying the single point crossover to recombine I1 and I2 will result in
offsprings having worse edit distances for both T O1 and T O2. In other words, the crossover
is damaging the original input strings in terms of satisfying uncovered TOs.

To make MOSA applicable in the context of XMLi, we developed a variant, which we
call vMOSA. Such a variant shares the main loop with the original MOSA but it differs
on the following two points: (i) the preference criterion does not include the length of the
chromosomes as a secondary objective; (ii) for the reasons explained above, offsprings are
generated by only using the mutation operator (i.e., the crossover operator is not used).

Please notice that an extension of MOSA, called DynaMOSA, has been recently pro-
posed in the literature (Panichella et al. 2017). It uses control flow analysis to reduce
the number of targets to optimize in each generation. Although being more effective than
MOSA in white-box unit testing, DynaMOSA cannot be applied for XMLi testing as no
structural dependencies exist among the different TOs to cover.

2.2.2 Many Independent Objective Algorithm

The Many Independent Objective (MIO) algorithm (Arcuri 2017) is an evolutionary algo-
rithm designed to improve the scalability of test suite generation for non-trivial programs
with a very large number of testing targets (e.g., in the order of thousands/millions). It
is tailored around the following three main assumptions in white-box testing: (i) testing
targets (e.g., lines and branches) can be sought independently, as test suite coverage can
be increased by adding a new test case; (ii) testing targets can be either strongly related
(e.g., nested branches) or completely independent (e.g., when covering different parts of the
SUT); (iii) some testing targets can be infeasible to cover.

Based on the above assumptions, at a high level, the MIO algorithm works as follows:
it keeps one population of tests for each testing target (e.g., branches). Individuals within
a population are compared and ranked based on their fitness value computed exclusively
for that testing target. At the beginning of the search, all populations are empty and are
iteratively filled with generated tests. At each step, with a given certain probability, MIO
either samples new tests at random or samples (and then mutates) one test from one of the
populations related to uncovered targets. A sampled test is added to all the populations for
uncovered targets and is thus evaluated and ranked independently in each population. Once
the size of a population increases over a certain threshold (e.g., 10 test cases), the worst
test (based on its fitness for that population) is removed. Whenever a target is covered, its
population size is shrunk to one, and no more sampling is done from that population. At the
end of the search, a test suite is created based on the best tests in each population.

Feedback-directed sampling. For each population, there is a counter, initialized to zero.
Every time an individual is sampled from a population X, its counter is increased by one.
Every time a new, better test is successfully added to X, the counter for that population is
reset to zero. When sampling a test from one of the populations, the population with the
lowest counter is chosen. This helps focus the sampling on populations (one per testing
target) for which there has been a recent improvement in the achieved fitness value. This
is particularly effective to prevent spending significant search time on infeasible targets
(Arcuri 2017).

Parameter-control. To dynamically balance the tradeoff between exploration and
exploitation of the search landscape, MIO changes its parameters during the search
(similarly to Simulated Annealing).
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2.3 Cooperative Co-Evolutionary Algorithms

Co-evolutionary algorithms extend more classical genetic algorithms by evolving multi-
ple populations (Potter and De Jong 1994) (often referred to as islands or species) rather
than one single population of solutions. The overall idea consists of solving complex prob-
lems by using the principle of divide and conquer (Goh and Tan 2009): a large problem
is divided into many sub-problems; an island (or sub-population) is initialized and evolved
for each sub-problem separately; finally, the solution to the original problem is obtained by
assembling the best solutions from each island (specie).

Each island is evolved separately using standard genetic algorithms, i.e., selection,
crossover and mutation are used to recombine solutions (parents) within the same islands
to create new solutions (offsprings). Each solution is assigned a local fitness score that
measures its ability to solve the sub-problem (island) it belongs to.

While islands are evolved separately, they interact with each other through periodical
migration (Bali and Chandra 2015; Keerativuttitumrong et al. 2002; Wassermann and Su
2007), which is a genetic operator specific to cooperative co-evolutionary algorithms. It con-
sists of copying and injecting the strongest solution from one of the islands to the other ones
with the goal of increasing genetic diversity and supporting islands with poor performance
(Bali and Chandra 2015) (e.g., no improvements in local fitness scores). During migration,
the island with the largest fitness improvements in local fitness score is selected and the
strongest solution from that island is copied into the other islands. If two or more islands
are equally eligible for selection (i.e., multiple islands have local fitness improvements), the
winner can be selected randomly among them.

3 A New Approach

Test generation for detecting XMLi vulnerabilities features important differences with
respect to white-box unit testing. First, coverage targets in white-box testing (e.g., branches)
are organized into a priority hierarchy according to their positions in the control flow
graph (CFG) (Panichella et al. 2017). For example, in a program with two nested if con-
ditions, the branches of the inner if condition can be covered if and only if the outer
condition is already satisfied. Instead, in security testing, the target TOs are completely
independent of each other and there is no structural relationship among them, i.e., cov-
ering one TO does not depend on whether any other TO has been covered previously.
Another important difference relates to the collateral coverage phenomenon. In white-box
testing, some targets (e.g., branches) can be accidentally covered when optimizing other
coverage targets (McMinn 2004b; Arcuri et al. 2012). In the context of XMLi attack gen-
eration, collateral coverage never happens given the fact that no relationship exists among
different TOs.

To better explain why the TOs are independent of each other, let us consider as an exam-
ple the two TOs, TO1 and TO2, shown in Fig. 2. The two TOs correspond to two different
types of XML Injection attack as described in Jan et al. (2016). The SUT can generate TO1
only with the following inputs:

Username = Tom
Password = Un6Rkb!e</password><!--
E-mail = --><role>administrator</role><mail>admin@uni.lu
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Fig. 2 Example of Test Objectives (TOs)

Therefore, to cover TO1, the search algorithm must find these unique inputs. As shown
in the figure, the malicious content in TO2 is different from TO1. To cover this TO, the
following inputs are needed:

Username = Tom
Password = ' OR '1'='1'
E-mail = admin@uni.lu

Although the Username input is similar for these two TOs, the other two inputs (Pass-
word and Email) are entirely different. Finding the three inputs for TO1 does not depend
on the inputs or coverage of TO2 and vice versa. Also, these TOs can only be covered with
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their corresponding unique inputs as mentioned above. Further, since each TO requires the
unique combination of the three inputs, it is not possible to accidentally cover a TO with the
inputs of another TO during the search.

Starting from these observations, we propose a novel many-objective, co-evolutionary
algorithm that is customized for XMLi. To further speed-up the search process, we also
describe an alternative fitness function with a lower computational complexity compared
to the commonly-used string edit distance (Jan et al. 2017a). While we demonstrate that
the proposed methodology is effective and efficient for XMLi, we believe that the novel
algorithm and fitness function can be adapted or reused to other types of injections attacks.

The details of the novel search algorithm and fitness function are described in the next
subsections.

3.1 Cooperative Co-evolutionary Algorithm for XMLi

In this paper, we introduce a novel many-objective, cooperative, and co-evolutionary
algorithm tailored for XMLi, hereinafter referred to as COMIX (CO-evolutionary algorithm
for MultI-vulnerability testing of Xml injections).
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In our context, the overall problem can be formulated as generating XMLi attacks that
match/cover all target TOs. This problem can be divided into sub-problems: generating one
test case (attack) for each target TO. Therefore, in a co-evolutionary environment, each TO
corresponds to an island to evolve. Once a given sub-problem is solved (i.e., an attack has
been generated for its corresponding TO), its test case is stored in the final test suite. There-
fore, at the end of the search, the test suite will contain all successfully attacks generated
across search iterations.

The pseudo-code of COMIX is detailed in Algorithm 1. COMIX initializes the search by
randomly generating a set of test cases R (line 3), which is used to initialize the islands (loop
in lines 5-6). For each target t , an island islands[t] is created using the routine INITIALIZE-
ISLAND (line 6). Such a routine (i) sorts R in ascending order of fitness value (distance)
for t ; and (ii) it copies the top μ ⊂ R tests in the corresponding islands[t]. After this
initialization process, the islands are evolved independently through subsequent iterations
within the loop in lines 7-26.

In each iteration, islands are evolved separately using three traditional genetic operators:
selection, crossover, and mutation. Given an uncovered target t ∈ T O, two parents are
selected from the corresponding island islands[t] using the binary tournament selection.
Then, the two parents are recombined using crossover and mutation (routine GENERATE-
OFFSPRINGS in line 11) forming two offsprings. These offsprings are evaluated only
against the test objective t ∈ T O and are inserted into an offspring island offsprings[t]. At
the end of each iteration, the total number of new individuals (test cases) generated across
the islands is kept constant (condition in line 8): M − 1 new tests are created using the rou-
tines GENERATE-OFFSPRINGS; the last solution is randomly generated (line 16) to reach
the set population size M and preserve diversity.

Islands selection. There are multiple islands from which we could select and recombine
solutions in each generation.

In COMIX, we use a heuristic similar to the feedback-directed sampling used in MIO
(Arcuri 2017) (the routine SELECT-ISLAND in line 9). More specifically, islands with
recent improvements in their fitness function have a higher likelihood of being selected for
evolution. For each island islands[t], COMIX uses a counter to keep track of the number
of times an island was selected in past generations and the new generated tests did not lead
to any improvements for the corresponding test objective t . Every time the fitness function
for t is improved (decreases) the corresponding counter is reset to zero. Such a counter is
used to assign a selection probability to each island associated with an uncovered TO. Let
C(ti) be the value of the counter for the island island[ti], its probability of being selected
for evolution is computed as:

p(ti) = 1

C(ti) + 1
× 1

∑

tj ∈T O

1
C(tj )+1

(1)

In other words, the larger the value of the counter C(ti), the lower the probability for the
island[ti] to be selected. This heuristic helps to focus the search towards promising islands
and to penalize those with no improvements in recent generations.

Updating the islands. At the end of each iteration, the island of each uncovered tar-
get t is updated with the new individuals stored in the corresponding offspring island
offsprings[t] defined for the same target t (lines 18-20). In particular, the routine
UPDATE-ISLANDS sorts parents and offsprings (that compete with each other) accord-
ing to the fitness function for the given island and the top μ tests survive for the next
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evolutionary iteration. In addition, the random test generated in line 16 is copied to each
island offsprings[t] and competes with offsprings and parents when forming the island
for the next iteration.

Migration policy. Although the islands are evolved independently, migration strategies
are applied in co-evolutionary algorithms in order to migrate (copy) the strongest
individuals in one source island and replace the weaker one in a target island (Keera-
tivuttitumrong et al. 2002; Tan et al. 2006). The motivation is that one good solution in
an island might turn out to be good in another island as well.

In our context, such a strategy might be effective since, though TOs are independent,
some of them might share some commonalities, such as common substrings needed to
evolve for the inputs. For example, when the SUT uses input validation techniques, it pro-
duces error messages when the user-supplied data does not conform to a specific rule set.
In such a scenario, randomly generated input data (test cases) lead to error messages dur-
ing the initial stages of the search. When one island produces the first test case that passes
the input validation, the SUT produces an XML message that is used to compute the fitness
function (distance). This passing test case is useful not only for the island it belongs to but
also for all other islands to evolve.

On the one hand, a migration policy would help spread such good substrings among
the different islands. On the other hand, a too high migration rate could be detrimental, as
it would also share genetic material that is only good for a specific island. Based on our
preliminary results, we found that migrating one single test case per search iteration leads
to a higher percentage of covered TOs. An analysis on the performance of COMIX with
different migration rates is reported in Section 5.4.

In Algorithm 1, the migration is performed in line 22 using the routine APPLY-
MIGRATION. Such a routine randomly selects one uncovered test objective t , copies the
best test case from the corresponding island islands[t] into all the other islands islands[t ′]
(with t ′ �= t) and, evaluates it against the corresponding TOs. APPLY-MIGRATION selects
the test case to migrate exclusively from islands that have improved in recent iterations.
This is meant to avoid repeating the same migrations over iterations and prioritizing the
migration of new, good solutions in recently improved islands.

Archiving. Following the search strategy implemented in MIO and MOSA (Panichella
et al. 2015, 2017), COMIX focuses the search only on the uncovered TOs (see lines 9,
18, and 24). Test cases satisfying previously uncovered TOs are stored into an archive
(Panichella et al. 2015, 2017), which is an external data structure representing the final
test suite. The archive is updated by the routine UPDATE-ARCHIVE whenever new test
cases are generated (lines 4 and 13).

Re-starting strategies. Restarting the search is a common practice in evolutionary algo-
rithms to reduce the probability of converging toward local optima (Jansen 2002). For
this purpose, COMIX restarts the islands for which stagnation is detected (line 25 of
Algorithm 1). Stagnation is detected separately for each island when the fitness func-
tion (distance to the corresponding TO) of the best test case within the island has not
improved in the latest k subsequent iterations. Islands satisfying the condition in line 25
are restarted, i.e., its μ individuals are deleted and replaced with randomly generated
tests (routine RESTART in line 26).

Differences with other multi-target strategies. MIO, vMOSA and COMIX target all TOs
at once. However, there is a substantial difference in how they evaluate the chromosomes.
In vMOSA, all TOs are objectives to optimize in a many-objective scenario; therefore,
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each individual is evaluated against all the uncovered TOs (i.e., the edit distance is com-
puted for each uncovered TO). Even if MIO uses different populations (one for each TO),
it still performs multiple edit distance computations, one for each uncovered TO. Instead,
in COMIX, the TOs are completely independent and, thus, each individual is evaluated
only against the single TO optimized by the island it belongs to. In other words, COMIX
performs one single edit distance computation per individual.

Another important difference is that COMIX uses the crossover operator while MIO and
vMOSA do not. However, it is worth noting that in COMIX the crossover is applied within
each island and therefore it is used to recombine chromosomes optimizing the same target
TO. Instead, MIO does not use the crossover by design (Arcuri 2017) while in vMOSA
we had to disable the crossover because it is detrimental when recombining chromosomes
optimizing different TOs (see Section 2.2.1).

3.2 Linear Complexity Fitness Function

The original fitness function used by Jan et al. (2017a) is the string edit distance (or Lev-
enshtein distance), which is the standard string fitness function used in search-based testing
(Alshraideh and Bottaci 2006). Given two strings A and B, the edit distance d(A, B) is
equal to the minimum number of characters to insert, delete and change in A to obtain B. In
our previous paper (Jan et al. 2017b), we improved the edit distance with a real-coded vari-
ant where, whenever a character c1 is substituted with a character c2, the overall distance is
increased by the difference of the ASCII codes of c1 and c2. In Sections 4 and 5, we explain
why and show how such a modification provides additional guidance to the search.

A potential limitation of the edit distance is its high computational cost, which is O(n ×
m), with n and m being the lengths of the strings being compared. When using multi-
target strategies for testing XMLi vulnerabilities, evaluating each chromosome can be very
expensive when using MIO or vMOSA since it requires to compute the edit distance against
each yet uncovered TO. In this paper, we consider a less expensive fitness function; given
two strings A (with length n) and B (with length m), their distance is defined as:

d(A, B) = |n − m| +
min{m,n}∑

i=1

|ai − bi |
|ai − bi | + 1

(2)

where ai and bi denote the ASCII codes for the characters in position i of A and B, respec-
tively. With its first term, (1) strongly penalizes differences in lengths among strings. The
second term penalizes differences in characters in the shortest string by accounting for char-
acter differences in ASCII code. Such a difference is normalized to be always inferior to
missing characters due to different lengths. The usage of the character differences in ASCII
code has been proposed in previous studies (Jan et al. 2017b; Alshraideh and Bottaci 2006)
and provide better guidance than search based on the classical edit distance.

In the following, we refer to the distance in (2) as linear distance since its computational
complexity is O(min{n, m}). In our empirical evaluation, we compare the linear distance
with the real-coded edit distance (Jan et al. 2017b), which has been proven to be more
effective (i.e., provide better guidance) than the classical edit distance. Though the linear
distance is definitely less expensive to compute than the real-coded edit distance, it provides
less guidance to the search and is more exposed to getting stuck in local optima. This is why
an extensive empirical comparison is required.
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4 Empirical Study

This section describes our empirical evaluation, whose goal is to assess our proposed search-
based approach and compare it with state-of-the-art testing strategies for XML Injection.

4.1 Study Context

We carried out our evaluation on different versions of four web applications, namely
SBANK, SecureSBANK (SSBANK), XMLMAO and M.

The first two subjects are XML-based web applications interacting with a real-world
bank card processing system of a credit card processing company. They are simplified ver-
sions of the actual front-end web applications from one of our industrial collaborators (a
credit card processing company1).

Both SBANK and SSBANK have three versions with a different number of user inputs,
i.e., SBANK1 (SSBANK1), SBANK2 (SSBANK2) and SBANK3 (SSBANK3). These dif-
ferent versions of the same applications are used to analyze to what extent the number of
input parameters affects the ability of solvers and fitness functions to detect XMLi vulnera-
bilities. Each application version receives user inputs, produces XML messages, and sends
them to the back-end web services. All versions of SBANK are vulnerable to XML Injec-
tions as they do not apply any input validation or sanitization routine on user inputs. On the
other hand, SSBANK applications contain validation and sanitization procedures for one of
its user inputs (i.e., IssuerBankCode) that are applied before generating the XML messages.

The third subject of our study is a vulnerable-by-design, open-source web application,
namely XMLMao (Magical Code Injection Rainbow (MCIR) 2016). It is a module of
the Magical Code Injection Rainbow (MCIR) - a framework for building a configurable
vulnerability test-bed and is available on GitHub.2

The fourth subject M is an industrial web application with millions of registered users and
hundreds of thousands of visits per day. The application itself is hundreds of thousands of
lines long, communicating with several databases and more than 50 corporate web services
(both SOAP and REST). Out of hundreds of different HTML pages served by M, in this
paper we focus on one page having a form with two string inputs. As the experiments on
this system had to be run on a dedicated machine (e.g., it could not be run on a research
cluster of computers) due to confidentiality constraints, we could not use all of its web
pages and forms. We chose one example manually, by searching for non-trivial cases (e.g.,
web pages with at least two string input parameters that are not enumerations), albeit not
too difficult to analyze, i.e., given the right inputs, it should interact with at least one SOAP
web service. Due to non-disclosure agreements and security concerns, no additional details
can be provided on M.

The selected systems have varying size and complexity, are written using different pro-
gramming languages and technologies (i.e., Java and PHP) and interact with a variety of
back-end web services. In addition, these web applications differ in the number of user
inputs as well as their processing routines: SBANK and XMLMAO have no input valida-
tion or sanitization, while SSBANK and M use various routines to validate and sanitize
user inputs. Moreover, all these web applications have already been used in the literature
(Jan et al. 2017a) to assess the effectiveness of search-based testing techniques for XMLi
detection.

1The name of the company cannot be revealed due to a non-disclosure agreement
2https://github.com/SpiderLabs/MCIR

https://github.com/SpiderLabs/MCIR
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Test Objectives Generation. In our testing context, a Test Objective (TO) is an XML mes-
sage with malicious content that may result into an XMLi attack on the back-end web
services.

For each subject application, we created 50 Test Objectives (TOs) based on different
types of XMLi attacks (Jan et al. 2016). These TOs are created using SOLMI (Jan et al.
2016), an automated tool designed for generating successful XMLi attacks. We selected this
tool as it outperforms state-of-the-art attack generation tools (Jan et al. 2017a). Moreover,
it creates malicious XML messages (test objectives) covering the four most common and
critical types of XMLi attacks that, if generated by the front-ends, could compromise the
back-end services.

4.2 Research Questions

In this paper, we investigate the following three research questions:

RQ1: What is the best search-based algorithm for generating XMLi attacks? This
research question aims at finding the most effective and efficient algorithm for detecting
XMLi vulnerabilities. In particular, we compare the performance of the proposed COMIX
algorithm with vMOSA, MIO, and the single-target strategy, while using two different
distance functions.

RQ2: Is the execution time to achieve maximum coverage for a given set of TOs accept-
able in practice? We investigate the performance of COMIX, which is the best approach
according to the results from RQ1, from the perspective of security analysts who want to
uncover as many XMLi vulnerabilities as possible within practical execution time.

RQ3: What is the impact of using the linear distance on the fitness calculation time? This
research question investigates the impact of the alternative fitness function proposed in
this paper (linear distance) on the time needed to evaluate candidate solutions. This is
intended to better explain the results in RQ1. Therefore, we compare the amount of time
spent on fitness calculations by COMIX for the two fitness functions: edit distance and
linear distance.

To answer the research questions above, we use the following two performance metrics:
Coverage and the Area Under the Curve (AUC).

Coverage (C) is the ratio |Covered|/|Feasible|, where Covered denotes the TOs cov-
ered by a given algorithm, while Feasible is the set of feasible TOs. To determine the
feasible TOs, we carefully inspected the source code of the front-ends, their input valida-
tion and sanitization routines, and we analyzed each TO generated by SOLMI. Notice that
all evaluated testing strategies are black-box and therefore do not require access the source
code. We performed this analysis only for the purpose of computing the coverage scores.
We found that all 50 TOs generated by SOLMI for the SBANK versions and for XMLMAO
are feasible. In contrast, the number of feasible TOs for all SSBANK versions is 34 (out of
50), whereas for M it is only 2.

While coverage is typically used to assess effectiveness at the completion of the search,
analyzing coverage over time provides more fine-grained information about the efficiency
of each algorithm. The simplest methodology to perform such an analysis consists of plot-
ting coverage over running time, for each iteration/generation of the compared algorithms
(coverage graph). To better quantify the differences among algorithms, we use AUC of the
coverage graphs, computed according to the trapezoidal rule (Davis and Rabinowitz 2007).
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The AUC is a scalar value in the range [0, 1]; higher AUC values indicate that an algo-
rithm achieves higher coverage in less execution time. Since the search time used in our
experiment is to some extent arbitrary and that, in practice, people may have less time than
required to achieve maximum coverage, AUC provides a useful additional indicator about
what search strategy is to be selected.

4.3 Experimental Procedure

We carried out a number of experiments on each version of the web applications with the
four algorithms considered in this paper. For each experiment, and for each algorithm run,
we recorded the time needed to cover each TO (if covered), the total execution time, the time
spent on the fitness calculations, and the time required for executing tests. All execution
times are recorded in minutes.

To account for the randomized nature of the optimization algorithms and to conduct a
reliable statistical analysis, we ran each algorithm 30 times on each version of the sub-
ject applications. There are total seven versions of our open source subjects, i.e., three
for SBANK, three for SSBANK and one for XMLMao. We allocated 30 minutes to each
experiment resulting in an execution time of 420 hours3 for all experiments. Since all these
experiments had to be run twice, i.e., for 5 and 50 TOs, it would normally result in 840
hours of total execution time. To reduce it to a manageable time, we used a cluster of com-
puters. A separate virtual machine (node) was dedicated for the experiments involving each
application version. Hence a total of 14 nodes were used which reduced the total execution
time from 840 hours to 60 hours. In contrast, the experiments on the industrial case study
M had to be run on a dedicated physical machine, and were repeated only 10 times.

For answering RQ1, we first analyzed the coverage and the AUC values obtained by each
algorithm. Next, we applied the Friedman’s test (Garcı́a et al. 2008) to verify whether the
differences among the algorithms are statistically significant. The Friedman’s test is a non-
parametric test for multiple-problem analysis and it is the most suitable statistical test for
comparing different randomized algorithms when considering multiple benchmarks (Garcı́a
et al. 2008), i.e., the software systems in our case. This test has been used in various CEC
competitions (e.g., Chen et al. (2014)) and in the latest SBST competition (Panichella and
Molina 2017) to compare evolutionary algorithms and testing tools. For the level of signifi-
cance, we used α=0.05. While the Friedman’s test indicates whether a group of algorithms
are significantly different, a statistical test for multiple pairwise comparisons is needed to
understand which pair of algorithms are significantly different in terms of AUC values. To
this aim, we used the pairwise Wilcoxon test with a significance level of α=0.05. Because
of the multiple comparisons, the p-values of the Wilcoxon test were further adjusted using
the Holm-Bonferroni procedure (Holm 1979) for correcting the significance level.

To answer RQ2, we analyzed the execution time required to achieve maximum coverage
with COMIX and assessed the practical usability of our approach in a realistic context.
To this aim, we collected the time at which each TO is covered in a given run; then, we
computed the elapsed time between the beginning of the search and the time in which we
detect the last covered TO. Notice that, in practice, security analysts may stop the search
before consuming the entire search budget if no further improvement is observed in the
distance values for all uncovered TOs.

37 app. versions × 4 algorithms × 30 minutes × 30 repetitions = 25200 minutes or 420 hours
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To answer RQ3, we investigated the execution time of the fitness function computations.
For each subject, we compared the execution time spent on the fitness calculation when
using the two distance functions, i.e., the edit and the linear distances. This analysis helped
us understand the magnitude of the benefits obtained from using the linear distance over the
traditional edit distance.

4.4 Parameter Settings

We follow the recommendations in the related literature for setting the parameter values of
the search algorithms, as detailed below:

– Population size: for the single target algorithm and for vMOSA we use a population
size of 50 as recommended by recent studies in search-based software testing (Arcuri
and Fraser 2013; Panichella et al. 2015, 2017). For MIO, the size of each population
was set to 10 individuals (Arcuri 2017). Finally, in COMIX the size of each island is
dynamically computed in each generation as:

λ = round(#Total Size/#Uncovered TOs) + 1 (3)

where #Total Size denotes the total number of test cases generated in each iteration of
COMIX. For a fair comparison with vMOSA, we set #Total Size to 50 test cases.

– Mutation: It has been established in the literature (Briand et al. 2006; Schaffer et al.
1989; Smith and Fogarty 1996; Haupt and Haupt 2004) that a mutation rate based on
population size and chromosome length achieves better performance. We confirmed
this in our context with some preliminary experiments comparing this strategy with
other mutation rates recommended in De Jong (1975) and Grefenstette (1986). There-
fore, we use pm = (1.75)/(λ

√
l) as mutation rate, where l is the length of the

chromosome and λ is the population size.
– Crossover: We use the same crossover rate of 0.8 for the single-target approach as used

in its original implementation (Jan et al. 2017a). As discussed above, for the many-
objective algorithms considered in this paper, we do not apply crossover.

– Search Timeout: For each experiment on the open-source systems, we allocate a search
budget of 30 minutes. For the industrial system M, we use a budget of 180 minutes, as
each test execution takes much longer. The search also stops when all feasible TOs are
covered.

Regarding the other configuration parameters of the experiments, we followed the set-
tings that were empirically found superior in the original implementation of the single-target
approach (Jan et al. 2017a). In particular, we used an initial population consisting of strings
with variable lengths. Further, for generating input strings, we used a reduced alphabet set
consisting of only the characters found in the TOs instead of the complete alphabet of all
possible characters.

5 Results

This section describes the results of our empirical evaluation to answer the research
questions defined in Section 4.2.
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5.1 RQ1: What is the Best Search-Based Algorithm for Generating XMLi Attacks?

Tables 1 and 2 show the coverage results of each algorithm when using the edit and the
linear distances, respectively. The AUC results are shown in Tables 3 and 4.

According to Table 1, with the edit distance as fitness function, COMIX achieves 100%
of coverage most of the time when optimizing only five TOs. For the larger set of TOs, its
coverage ranges between 21% and 100%. Instead, MIO and vMOSA are very competitive
only when dealing with five TOs: the coverage obtained by vMOSA ranges between 75%
and 100% while for MIO it ranges between 80% and 100%. However, when the goal is
to optimize 50 TOs, MIO and vMOSA yield zero coverage in most of the cases. The only
exception is XMLMAO, for which vMOSA and MIO achieve 38% and 61% coverage,
respectively; for the same subject, COMIX reaches a coverage of 100%. The single-target
algorithm turns out to be the worst search strategy: it achieved a low coverage (≤10%) for
SSBANK with two and three inputs even when targeting only five TOs. Similar to MIO and
vMOSA, the single-target algorithm often yields zero coverage when optimizing the largest
set of TOs.

For those cases where COMIX achieves the same level of coverage as MIO and vMOSA,
we compare the corresponding AUC values, as reported in Table 3. As we can observe
from the table, COMIX achieved higher AUC values for all cases where coverage results
were similar to other algorithms. For example, all algorithms achieved 100% coverage for
SBANK with 1 input, but the AUC value for COMIX is higher. This means that, for this
subject, our co-evolutionary algorithm was able to cover all TOs in SBANK in less time
compared to the alternative algorithms.

Coverage results of the algorithms when using the linear distance are shown in Table 2.

Table 1 Coverage achieved when using the edit distance (bold numbers indicate best results across
techniques)

System # Inputs # TOs COMIX MIO vMOSA Single

Mean Sd Mean S.d Mean S.d Mean S.d

SBANK 1 5 1.0000 − 1.0000 − 1.0000 − 1.0000 −
2 5 1.0000 − 0.8800 0.1627 0.9933 0.0365 0.9600 0.0968

3 5 0.9867 0.0507 0.8467 0.2446 0.7533 0.2270 0.8867 0.1252

SSBANK 1 5 1.0000 − 1.0000 − 1.0000 − 1.0000 −
2 5 1.0000 − 0.9800 0.0610 1.0000 − 0.1000 0.1365

3 5 1.0000 − 0.8000 0.4068 0.9400 0.2298 0.0333 0.0758

XMLMAO 1 5 1.0000 − 1.0000 − 1.0000 − 0.9933 0.0365

SBANK 1 50 1.0000 − 0.0140 0.0196 0.0413 0.0389 0.2860 0.1937

2 50 0.4553 0.0918 0.0006 0.0037 − 0.0000 0.0467 0.0579

3 50 0.2120 0.0582 0.0000 − 0.0000 − 0.0000 −
SSBANK 1 50 0.9971 0.0118 0.0108 0.0238 0.0373 0.0540 0.1069 0.0554

2 50 0.8160 0.0482 0.0284 0.0350 0.0275 0.0362 0.0000 −
3 50 0.4108 0.1011 0.0000 − 0.0000 − 0.0000 −

XMLMAO 1 50 1.0000 − 0.6153 0.0985 0.3813 0.0908 0.3247 0.0374

M 2 50 0.7777 0.2635 0.6500 0.3374 0.6500 0.2415 0.0000 −
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Table 2 Coverage achieved when using the linear distance (bold numbers indicate best results across
techniques)

System # Inputs # TOs COMIX MIO vMOSA Single

Mean Sd Mean S.d Mean S.d Mean S.d

SBANK 1 5 1.0000 − 0.9800 0.0610 1.0000 − 0.8467 0.1871

2 5 1.0000 − 0.9333 0.1213 0.9733 0.0691 0.1200 0.1243

3 5 1.0000 − 0.6400 0.1610 0.8600 0.1192 0.0133 0.0507

SSBANK 1 5 1.0000 − 1.0000 − 1.0000 − 0.8200 0.1846

2 5 1.0000 − 0.5067 0.3226 0.9933 0.0365 0.0067 0.0365

3 5 0.8813 0.2583 0.0267 0.1142 0.8800 0.0997 0.0000 −
XMLMAO 1 5 1.0000 0.0000 0.9667 0.0758 1.0000 − 0.8133 0.1814

SBANK 1 50 1.0000 − 0.9807 0.0388 1.0000 − 0.6860 0.0536

2 50 0.9320 0.0469 0.9693 0.0355 0.9667 0.0384 0.1293 0.0489

3 50 0.9716 0.0434 0.5133 0.1342 0.9407 0.0350 0.0307 0.0221

SSBANK 1 50 0.9117 − 0.9961 0.0128 0.8637 0.1762 0.6824 0.0879

2 50 0.4067 0.2628 0.3039 0.1272 0.2167 0.2817 0.0020 0.0075

3 50 0.3510 0.4025 0.1265 0.1983 0.2686 0.3977 0.0000 −
XMLMAO 1 50 1.0000 − 0.8247 0.1217 0.9967 0.0130 0.3967 0.0847

M 2 50 0.2777 0.44095 0.8500 0.2415 0.4500 0.1581 0.0000 −

Table 3 AUC achieved when using the edit distance (bold numbers indicate best results across techniques)

System # Inputs # TOs COMIX MIO vMOSA Single

Mean S.d Mean S.d Mean S.d Mean S.d

SBANK 1 5 0.9759 0.0039 0.8122 0.0283 0.8817 0.0271 0.9689 0.0037

2 5 0.9131 0.0126 0.4945 0.1008 0.6236 0.0589 0.8878 0.1099

3 5 0.8665 0.0465 0.3485 0.1258 0.2824 0.1053 0.8209 0.1165

SSBANK 1 5 0.9781 0.0068 0.8369 0.0286 0.9062 0.0166 0.9790 0.0060

2 5 0.9419 0.0190 0.8131 0.1069 0.8421 0.0342 0.1340 0.1755

3 5 0.9117 0.0242 0.5744 0.2934 0.6165 0.1692 0.0245 0.0646

XMLMAO 1 5 0.9696 0.0057 0.9044 0.0161 0.9165 0.0209 0.9609 0.0367

SBANK 1 50 0.5637 0.0590 0.0010 0.0014 0.0142 0.0166 0.2829 0.1919

2 50 0.1412 0.0394 0.0001 0.0003 0.0000 0.0000 0.0459 0.0570

3 50 0.0540 0.0182 0.0000 − 0.0000 − 0.0000 −
SSBANK 1 50 0.6007 0.0582 0.0018 0.0043 0.0094 0.0150 0.1054 0.0547

2 50 0.3497 0.0399 0.0071 0.0107 0.0061 0.0103 0.0000 −
3 50 0.1185 0.0348 0.0000 − 0.0000 − 0.0000 −

XMLMAO 1 50 0.7983 0.0351 0.3788 0.0496 0.2903 0.0516 0.3250 0.0407

M 2 50 0.3450 0.1646 0.2292 0.1288 0.3013 0.1018 0.0000 −
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Table 4 AUC achieved when using the linear distance (bold numbers indicate best results across techniques)

System # Inputs # TOs COMIX MIO vMOSA Single

Mean S.d Mean S.d Mean S.d Mean S.d

SBANK 1 5 0.9977 0.0005 0.9509 0.0600 0.9934 0.0010 0.8452 0.1869

2 5 0.9901 0.0125 0.8335 0.1054 0.9544 0.0679 0.1197 0.1239

3 5 0.9364 0.1241 0.5861 0.1602 0.8477 0.1158 0.0133 0.0506

SSBANK 1 5 0.9944 0.0010 0.9909 0.0015 0.9913 0.00085 0.8168 0.1844

2 5 0.9825 0.0165 0.4594 0.3091 0.9773 0.03548 0.0066 0.0363

3 5 0.6973 0.2971 0.0090 0.0356 0.7080 0.2808 0.0000 −
XMLMAO 1 5 0.9230 0.0211 0.8400 0.0650 0.9550 0.0097 0.7925 0.1764

SBANK 1 50 0.9216 0.0082 0.7264 0.0629 0.9298 0.0316 0.6845 0.0535

2 50 0.7358 0.0406 0.4334 0.0464 0.8013 0.0571 0.1288 0.0484

3 50 0.8979 0.0464 0.2508 0.1039 0.8607 0.0443 0.0302 0.0218

SSBANK 1 50 0.7724 0.0624 0.7236 0.0240 0.7511 0.1597 0.6800 0.0875

2 50 0.2535 0.1641 0.1892 0.0885 0.1826 0.2176 0.0019 0.0074

3 50 0.2564 0.3413 0.0618 0.0995 0.2035 0.3324 0.0000 −
XMLMAO 1 50 0.74924 0.0508 0.5642 0.0992 0.7533 0.0524 0.3947 0.0839

M 2 50 0.0020 0.0038 0.0154 0.0044 0.0020 0.0060 0.0000 0.0000

With this fitness function, the algorithms achieved 90-100% coverage in 11 (COMIX), 9
(vMOSA) and 7 (MIO) case study settings out of 16.

The corresponding AUC values are also in accordance with the coverage results, as
reported in Table 4. For the smaller set of five TOs, vMOSA achieved higher AUC values
than COMIX in 1 out of 7 experiments. For 50 TOs, COMIX exhibited the highest AUC
values in most of the experiments. Similar to the results with edit distance, the single-target
algorithm was found to be the worst when using the linear distance.

Figure 3 depicts the coverage obtained (during the first five minutes of the search) by the
four algorithms when using linear distance, for the experiment with the one-input version
of SBANK when optimizing 50 TOs. As shown in the figure, COMIX exhibited the best
performance by achieving 100% coverage in less than three minutes, while vMOSA needed
more than four minutes to reach the same level of coverage. In contrast, the single-target
search and MIO could only achieve less than 40% coverage within five minutes. As a result,
COMIX has the highest AUC value among all alternatives.

Statistical analysis. According to the Friedman’s test, the various combinations of dis-
tances and algorithms have statistically different AUC values (p-value = 2.18−5) with
50 TOs. To help understand which are the best combinations, the final ranking produced
by the Friedman’s test is reported in Table 5. The results of the pairwise comparison (the
pairwise Wilcoxon test) are also reported in Table 5. As we can notice, COMIX with
linear distance is ranked first and is significantly better than all other combinations in
the comparison. vMOSA (the MOSA variant customized for XMLi) with linear distance
is ranked second and statistically outperforms all other combinations. Finally, we notice
that MIO with linear distance is ranked third but it is not statistically better then COMIX
with edit distance, which is ranked fourth.
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Fig. 3 % Coverage achieved by different algorithms when using linear distance, for SBANK with one-input
and 50 TOs

5.2 RQ2: Is the Execution Time to AchieveMaximum Coverage for a Given Set of TOs
Acceptable in Practice?

Table 6 reports the execution time required to achieve the maximum coverage by COMIX
with linear distance, which is the most efficient and effective strategy according to the
results of RQ1. For this analysis, we focus only on 50 TOs as, in practice, security ana-
lysts are interested in discovering as many XMLi vulnerabilities as possible within minimum
time. As we can observe from the table, the execution time ranges between 3 and 23 minutes
for SBANK, SSBANK, and XMLMAO. The maximum running time is that of SSBANK
with three inputs. For the industrial case study (e.g., M) the running time is up to 175

Table 5 Ranking produced by
the Friedman’s (smaller values of
Rank indicate better AUC values)
and statistical significance by the
pairwise Wilcoxon test

ID Algorithms Rank Significantly better than

(1) COMIX-Lin 1.88 (2), (3), (4), (5), (6), (7), (8)

(2) vMOSA-Lin 2.25 (3), (4), (5), (6), (7), (8)

(3) MIO-Lin 3.50 (5), (6), (7), (8)

(4) COMIX-Ed 3.75 (6), (7), (8)

(5) MIO-Ed 5.31 (8)

(6) SINGLE-Lin 5.63 −
(7) vMOSA-Ed 6.81 −
(8) SINGLE-Ed 6.88 −
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Table 6 Average time (in minutes) required to reach the maximum coverage for 50 TOs when executing
COMIX with linear distance

System SBANK SSBANK XMLMAO M

# Inputs 1 2 3 1 2 3 1 2

Time 3.83 15.44 5.84 9.04 21.37 22.41 19.96 175.87

minutes (e.g., less than three hours). Such a larger running time is because test cases in M

are more expensive to run compared to the other systems. Indeed, in SBANK, SSBANK,
and XMLMAO, one single test case execution corresponds to 1-2 milliseconds on average
compared to 400ms spent on one single test execution in M , on average. Based on our expe-
rience, finding XMLi vulnerabilities in web-applications in (at most) few hours is reasonable
in practice as the vulnerability analysis can be run overnight.

Therefore, for RQ2, we conclude that:

5.3 RQ3: What is the Impact of the Linear Distance on the Fitness Calculation Time?

To better understand the impact of the fitness function on the running time of COMIX,
Table 7 reports the string distance calculation time when using edit distance (FCed) and
linear distance (FClin), for the set of 50 TOs.

As we can observe from the table, the distance calculations for the edit distance are very
expensive compared to linear distance. For instance, for SBANK with one input, COMIX
spent 84.33% of the total execution time on the string distance calculations. On the other
hand, when using the linear distance, the distance calculations took less than 1% of the total
execution time. Similar differences in the distance calculation times can be observed for the
other applications.

However, the impact of distance calculations is strongly related to the complexity of the
case study. For example, although the edit distance is roughly 1,000 times slower than the
linear distance on M , such cost is only 1% of the fitness evaluation. The more complex an
application is, the less impact the choice of distance will be on performance.

Table 7 Fitness calculation times
(% of total execution time) for
COMIX with 50 TOs when using
Edit Distance (FCed) and Linear
Distance (FClin)

System # Inputs FCed FClin

SBANK 1 85.10 0.59

2 85.07 0.84

3 95.26 1.34

SSBANK 1 80.15 0.64

2 73.43 0.43

3 92.88 1.97

XMLMAO 1 14.03 0.04

M 1 1.04 0.00093
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To summarize, the edit distance is more expensive to compute and can consume most
of the search budget because of its higher computational complexity, i.e., O(n × m), as
opposed to linear distance with its linear time

complexity O(n). While the linear distance may provide less search guidance than the
edit distance, its low computation time is a major advantage in terms of search effectiveness
as it can enable the execution of many more COMIX generations within the same time.

Therefore, for RQ3, we can conclude that:

5.4 The Impact of theMigration Rate on the Performance of COMIX

As described in Section 2.3, in co-evolutionary algorithms, the strongest individual of the
winning island is migrated to others islands to improve genetic diversity. However, in our
context, the TOs are different and independent from each other: if one test case covers one
TO, it cannot cover other TOs at the same time. This specificity may render the migration
ineffective.

In our empirical study, the migration rate was set to one single test case selected from
the island that wins the migration.

To assess whether the migration policy impacts the performance of COMIX, we ran
our algorithm with different migration rates. Table 8 reports the TO coverage achieved by
running COMIX when varying the number of migrated tests from zero (no migration) to
50 (i.e., all test cases are migrated to different islands). For the sake of analysis, we focus
on SBANK with three test inputs and use the linear fitness function. The leftmost column
in the table reports the number of migrated individuals while the second and third columns
report the percentage of TOs covered within two and five minutes of execution, respectively.
Since each experiment was repeated 10 times to account for the randomized nature of the
algorithm, we report the average values for TO coverage.

As we can observe from the table, coverage is very low in the absence of migration: less
than 12% and 30% of the TOs are covered within the first two and five minutes, respectively.

Instead, when the migration rate is increased from 0 to 10%, a drastic increase in cover-
age can be observed within the same execution time, i.e., from 29.60% to 93%-95% for five
minutes. However, further increases in migration rate, from 10% to 100%, lead to a lower

Table 8 TO Coverage (%)
achieved with different migration
percentages when using COMIX
with linear distance for SBANK

# Migrated % Covered TOs

Tests in 2 mins in 5 mins

0 (0%) 11.43 29.60

1 (2%) 53.60 93.11

2 (4%) 46.80 95.77

3 (6%) 47.40 94.40

5 (10%) 33.20 89.20

10 (20%) 35.20 81.80

50 (100%) 7.60 45.60
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number of covered TOs within the same amount of time. This trend in coverage is due to
the increased overhead of the migration policy: every time a test case t is migrated from the
source island to the target ones, t is re-evaluated to compute the distance function to cover
the corresponding TOs. When the migration rate is 100%, then all test cases are migrated
and evaluated against all TOs, similarly to vMOSA and MIO.

Finally, from a statistical point of view (using the Wilcoxon test), COMIX with the
setting used in our empirical study (e.g., one test case migrated per iteration) achieves a
significantly higher coverage than all other settings with two minutes of search budget (all
p-values are <0.01). However, when the search time is set to five minutes, there is no statis-
tically significant difference when varying the migration rate from 2% to 10%, though zero
or rates higher than 10% still lead to significantly lower coverage.

6 Threats to Validity

Threats to internal validity come from the fact that our empirical study is based on a soft-
ware prototype. We implemented different search algorithms, and possible differences in
performance might be due to bugs or inefficiencies in their implementation details.

We carefully tested our implementations, but we cannot guarantee that they are bug-free.
The fact that a web application can be led to send malicious messages to internal web

services does not necessarily mean that such web services will be compromised. It depends
on how such service will process these messages. As a result, the number of found TOs is
only an upper bound to the number of discovered vulnerabilities that can be exploited.

In any case, it is still safer if this kind of malicious messages are never sent, as bugs in
new releases of these internal web services could lead to security breaches.

Regarding conclusion validity, our study is based on randomized search algorithms,
which exhibit some degree of random variation in their results. Therefore, each experiment
was repeated 30 times (10 for the industrial system), and the resulting data were analyzed
with appropriate statistical tests, like for example the Friedman’s test (Garcı́a et al. 2008).

Threats to external validity come from the fact that any feasible empirical study on such
a topic is necessarily limited to a small number of systems and inputs, mostly given the
substantial computational time required to run our experiments (about 800 hours). In our
case, we rely on three open source systems and an industrial one. More case studies are
required to be able to better generalize the findings of this paper.

However, as the used industrial system is a very typical enterprise application, we can
expect that our novel technique could be successful with other similar systems.

7 RelatedWork

In this section, we describe work related to testing techniques for vulnerability detection in
web applications. We also discuss search-based testing and our previous work on XMLi (Jan
et al. 2017a, b) that we extend in this paper.

7.1 Security Testing of Web Applications/Services

Security testing techniques of web applications can be divided into two main categories:
based either on (i) White-box testing or (ii) Black-box testing.
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White-box testing: In White-box testing techniques, information about the internal work-
ings of the SUT (web application) is available to the tester, e.g., source code, bytecode
and/or design documentation. Such information is used to generate test inputs (attacks) to
assess the security of the web application.

Several white-box testing techniques (Livshits and Lam 2005) have been proposed in
the literature (Jovanovic et al. 2006b; Halfond et al. 2008; Kieyzun et al. 2009; Jovanovic
et al. 2006a; Chess and West 2007; Huang et al. 2004; Livshits and Lam 2005) for the
detection of web application vulnerabilities, e.g., SQL Injection and Cross-site Scripting.
One of such white-box security testing techniques is “taint” analysis (Jovanovic et al. 2006b;
Wassermann and Su 2007), which is used to identify vulnerable execution paths by statically
detecting the data coming from untrusted (tainted) sources. Halfond et al. (2006, 2008)
proposed a taint analysis based approach and a tool, namely WASP, for protecting web
applications against SQL Injection attacks. Their approach identifies trusted data sources,
use dynamic tainting to track trusted data at runtime, and allow only trusted data to be used
in SQL queries. Clause and Orso (2009) also proposed an approach and tool, Penumbra,
based on dynamic tainting. Penumbra identifies failure-relevant inputs from a given set of
failure-inducing inputs and an observable faulty behavior of the SUT. Avancini and Ceccato
(Avancini and Ceccato 2010) have also proposed an approach to improve taint analysis by
integrating with genetic algorithms for detecting cross-site scripting vulnerabilities in web
applications. Their approach first identifies the vulnerable execution paths via taint analysis,
and then use genetic algorithms to make the execution flow traverse the identified target
paths. Another white-box testing approach based on static analysis and runtime protection
is proposed by Huang et al. (2004). Their approach uses Type-based (Strom and Yemini
1986) and data-flow analysis (Allen and Cocke 1976) to identify vulnerable parts of the
code (those using untrusted data) and inserts sanitization routines there.

All of the above white-box testing approaches require access to the source code of the
web application and may need to modify it (e.g., by doing code instrumentation) of the web
application. At times, this might not be feasible in practice, e.g.,

when the security testers are not the developers of the application. Even in the pres-
ence of source code, such techniques can only work with known attack patterns that might
become out-dated. Dynamic code analyses have also intrinsic limitations due to their com-
plexity, e.g. tools like WASP do not handle “primitive types, native methods, and reflection”
(Halfond et al. 2008). And a white-box testing tool is limited only to the specific type of lan-
guage it supports, e.g., a tool targeting Java will not be able to handle all the other popular
languages used in web/enterprise development such as C#, PHP, JavaScript, Python, Ruby
on Rails. This is a particular problem considering current trends in industry, where different
languages are often used together in the same microservice architecture. Moreover, none of
these techniques target XMLi vulnerabilities.

In contrast, COMIX and our baselines are black-box security testing techniques targeting
XMLi. They do not rely on source code and search for unknown inputs that can detect XMLi
in the SUT. They can be applied to any type of language in which the web applications are
written (e.g., in our case study, both PHP and Java were used).

Black-box testing: Black-box security testing techniques are widely used in scenarios
where no insights about the internal working (e.g., source code) of the application are pro-
vided to the tester. There is a large research body investigating such techniques for the
detection of web application/services vulnerabilities, e.g., Huang et al. (2005), Mainka et al.
(2012), Chunlei et al. (2014), Chen et al. (2014), and Kieyzun et al. (2009). A common
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issue with most of these approaches is the large number of false positives, which makes
their application in practice difficult.

Bau et al. (2010) performed a study to evaluate the effectiveness of the state-of-the-art
in automated vulnerability testing of web applications. Their results demonstrate that such
approaches are only good at detecting straightforward historical vulnerabilities but there
exist more room for research in detecting advanced forms of vulnerabilities and lowering
the false positive rates of the current state-of-the-art. Besides, none of these approaches are
dedicated to the detection of XML injections, the objective of this paper.

In the following section, we discuss existing literature on XMLi vulnerabilities and
techniques that are closely related to our work, i.e., search-based testing.

7.2 Testing for XML Injections

Unlike SQL injection and cross-site scripting vulnerabilities that received much attention
(e.g., Appelt et al. 2014, 2015; Gallagher 2008; Junjin 2009), only limited research targets
XML injections. An approach for the detection of XML injection attacks is presented by
Rosa et al. (2013). They proposed a strategy to first build a knowledge database from the
known attack patterns and then use it for detecting XML injection attacks, when they occur.
This approach is an improvement over the traditional signature-based detection approaches
but it focuses on intrusion detection and not on security testing. In contrast, our work targets
test data generation to detect XML injection vulnerabilities in web applications.

A basic testing methodology for XML injections is defined by OWASP (Testing for
XML Injection 2016). It suggests to first discover the structure of the XML by inserting
meta-characters in the SUT. The revealed information, if any, combined with XML data/tags
can then be used to manipulate the structure or business logic of the application or web
service. OWASP also provided a tool named WSFUZZER (WSFuzzer Tool 2016) for SOAP
penetration testing with fuzzing features. However, as reported in Jan et al. (2016), the tool
could not be used with WSDLs having a complex structure (nested XML elements) and is
only useful in scenarios where the web services are directly accessible for testing.

In our previous work (Jan et al. 2016), we discussed four types of XML injection attacks
and proposed a novel approach for testing web services against these attacks. Our evaluation
found the approach very effective compared to state-of-the-art tools. However, it focuses
on the back-end web services that consume XML messages and are directly accessible
for testing. In contrast, our current work targets the front-ends (web applications) of SOA
systems that produce XML messages for web services or other back-end systems.

In addition, while in Jan et al. (2016) we used constraint solving and input mutation for
manipulating XML messages, in this paper we use search-based testing techniques to gen-
erate test inputs for the front-end of the SUT that produces malicious XML messages. Such
inputs can then help detect XMLi vulnerabilities in web applications that can be exploited
through the front-ends.

7.3 Search-Based Approaches for Security Testing

Search-based software testing has mostly focused on functional testing (Fraser and Arcuri
2014; Harman 2007; McMinn 2004b; Harman and McMinn 2010) while non-functional
aspects, and especially security testing, have received only limited attention (Afzal et al.
2009; Türpe 2011). Avancini and Ceccato (2011) have used search-based testing for detect-
ing cross-site scripting vulnerabilities in web applications. First, they use static analysis
to detect candidate cross-site scripting vulnerabilities in PHP code. A genetic algorithm
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together with a constraint solver is then used to search for input values that can trigger the
vulnerabilities. In contrast, our approach is a black-box testing technique that targets XMLi
vulnerabilities.

Thomé et al. (2014) also used a search-based technique for the security testing of web
applications. Their approach systematically evolves inputs to expose SQL injection vulner-
abilities by assessing the effects on SQL interactions between the web server and database.
Our search-based testing approach also focuses on evolving test inputs but we address a dif-
ferent type of vulnerabilities, XMLi attacks. Moreover, Thomé et al. used a fitness function
based on a number of factors that indicate the likelihood that the output is resulting from
SQLi attacks. In contrast, we use a fitness function based on the distance between the SUT’s
outputs and automatically derive test objectives based on attack patterns.

There exist other vulnerability detection techniques (Del Grosso et al. 2008; Rawat and
Mounier 2011) that rely on evolutionary algorithms. Unlike our black-box approach for
XMLi testing, these techniques are white-box and are used for buffer overflow detection.

To the best of our knowledge, search-based testing has never been used for the detection
of XMLi vulnerabilities in web applications that deliver XML messages to corporate web
services.

Previous Work and Current Extension In our previous work (Jan et al. 2017a), we
presented a search-based approach for generating test inputs exploiting XML injection vul-
nerabilities in front-end web applications. We used the standard Genetic Algorithm (SGA)
along with the string-edit distance (Ed) to find malicious test inputs. We evaluated our
approach on several web applications including a large industrial application and we also
compared it with random search. We found our proposed search-based testing approach to
be very effective, as it was able to cover vulnerabilities in all case studies while the random
search could not, in any single case. We further extended this work in Jan et al. (2017b)
by investigating two additional optimization algorithms, namely Real-coded Genetic Algo-
rithm (RGA) and Hill Climbing (HC). We also introduced a different fitness function i.e.,
the Real-coded Edit Distance (Rd), which further improves the traditional string edit dis-
tance (Ed). Our empirical evaluation showed that RGA with Rd is significantly superior to
the previous approach (Jan et al. 2017a) in terms of both effectiveness and efficiency.

Both of our previous works (Jan et al. 2017a, b) are based on single-target search-based
techniques (i.e., searching for each malicious message independently), which may face scal-
ability challenges with large applications where the search is required for many potential
malicious messages to uncover multiple vulnerabilities at the same time. The current paper
extends our previous works in several ways. First, we proposed a novel co-evolutionary test-
ing technique, namely COMIX. Second, we investigated and adapted the two multi-target
search techniques, namely MOSA and MIO, which are the two most recent multi-target
white-box unit testing techniques. Finally, we investigated the usage of an alternative fit-
ness function, which is less expensive than our previously used fitness functions (Ed and
Rd). Our results show that the multi-target techniques outperform the single-target and our
novel technique COMIX, when used with our proposed fitness function, is significantly
more effective and efficient than all investigated alternatives.

8 Conclusion and FutureWork

Security testing of the front-ends of enterprise systems is crucial for their overall secu-
rity. Such front-ends are the first point of contact with the user. For example, if they are
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vulnerable to XML Injections (XMLi), then they can be tricked to generate and send
malicious XML messages to internal services (e.g., SOAP web services).

And though there exist testing techniques that can possibly lead to the generation of
malicious, potentially harmful XML messages, these techniques target each malicious XML
message one at a time. Therefore, they are inefficient when testing the security of larger
web applications that require testing for many potential XML messages, especially in the
presence of strict input validation/sanitization routines and time constraints.

In this paper, we have presented a novel co-evolutionary testing technique, namely COMIX,
to address the scalability challenges of the existing single-target approach for XMLi. More-
over, as baselines of comparison, we have investigated and adapted the two most recent
multi-target, white-box unit testing techniques, namely MOSA and MIO, to XMLi testing.
Last, we have proposed and evaluated an alternative fitness function, which is less expensive
than the string edit distance used in the literature to guide the search for matching strings.

We have carried out an experimental evaluation to compare our proposed co-evolutionary
algorithm (COMIX) and fitness function with existing approaches. Our subjects for evalu-
ation include: (i) six different variants of a front-end web application for a real-world bank
card processing system, (ii) one open-source web application vulnerable to XMLi, and (iii)
one large real-world industrial application.

Consistent with our expectations, our case study results provide empirical evidence that
COMIX, when combined with our proposed fitness function, is significantly more effec-
tive and efficient in finding XMLi vulnerabilities, when compared to other combinations of
search algorithms and fitness functions, including both multi-target and single-target tech-
niques. Though more studies are of course required to confirm our results, COMIX is not
based on any assumption that is particularly advantageous for our case studies.

COMIX is not limited to XML Injections. It is a generalizable approach and can be
adapted to test web applications for other types of attacks. To do so, one only needs to
modify the Test Objectives (TOs) according to the corresponding types of attacks. In our
context, TOs are malicious XML messages which are essentially strings for the proposed
search technique (COMIX). For other types of attacks, only such messages (strings) need
to be modified and no changes to the implementation of the search technique are required.

In addition to XML, many systems now use the JSON format for data exchange. There
are two options to apply COMIX to such systems: (1) modify the existing TOs by inserting
malicious content in JSON messages, (2) if the system also supports XML, convert the
JSON inputs to XML and use the same set of TOs. The latter option can easily be integrated
into COMIX as there exist many tools/plugins for converting JSON to XML and vice versa.
In either case, once again, the implementation of the search technique will not require any
modifications.

Our future work will extend the current approach to cover more vulnerabilities and data
exchange formats.
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