On Designing an £-valued Prolog Engine

Raymond Bisdorff
CRP - Centre Universitaire
162a, avenue de la Faiencerie

L-1511 LUXEMBOURG
bisdorff@crpcu.lu

February 16, 2000

Abstract

This text presents our communication at the 9th Benelux Workshop
on Logic Programming in Amsterdam, November 20, 1998, where we dis-
cussed some theoretical and practical arguments in favour of designing a
multi-truth valued extension of Prolog.

Contents

1 Motivation for extending Prolog 2
1.1 A didactic decision problemo 2
1.2 Solving this problem by using standard Prolog 3
1.3 How "true” is a more or less credible fact 7 4

1.4 The importance of negation by failure for efficient SLD resolution 5

From credibility to truthfulness of logical formulas 6
2.1 Basic credibility calculuso 6
2.2 Defining the L-truthfulness of an £-valued expression 7
Logical Fuzzification and Polarization: an Adjoint Pair 8
3.1 Introducing Logical Fuzzification 9
3.2 On Natural Logical Polarization 11
L-valued logic programs 12
4.1 Syntax e e 12
4.2 L-valued logic programs 12
4.3 SLDL-UF resolution of defining clauses 13
4.4 SLDL-UF resolution of implying clauses 16
A closer look at declarative L-interpretations 17
5.1 L-valued interpretations 17
5.2 SLDCL-UF resolution: a natural extension of SLDNF resolution . 19
5.3 L-valued Herbrand models 20

Introduction

This text presents our communication at the 9th Benelux Workshop on Logic
Programming in Amsterdam, November 20, 1998.

First we will introduce our L-logic (see [4]), i.e. a symmetric multi-valued
logic with split truthfulness and falseness semantics supporting a unique nega-
tional fix-point acting as £-undetermined truth value.

Our main contribution is given by a careful distinction we introduce between
an underlying propositional credibility calculus and the induced multi-valued
truth denotations. This distinction, combined with a special truth/falseness
polarization, allows to naturally (in a categorical sense) extend classic bi-valued
Boolean algebra to a multi-valued case, i.e. all Boolean tautologies and antilo-
gies remain valid in this £-valued setting.

This result gives some hints toward designing a natural £-valued extension
of classic Horn clauses. Trying to design a corresponding L-valued SLDNF
resolution will be the challenge of this communication.

1 Motivation for extending Prolog

Our motivation for designing an L-valued extension of a Prolog engine comes
from practical considerations. In the context of multi-criteria decision aid meth-
ods, we want to compute choice recommendations ! for a given decision-maker.
Such recommendations rely heavily on a logical treatment of multiple and fuzzy
information. If the first point is well served by logic programming techniques,
the second point, i.e. fuzziness of information, is actually not basically support-
ed by such techniques.

1.1 A didactic decision problem

We suppose that a decision-maker has to make a selection from a set A of three
R&D projects represented as A = {a, b, c}. We furthermore assume that a given
decision aid analysis has eventually conducted to the following out-ranking index
on A x A. General semantics of the out-ranking relation is given by “to be at
least as good as”.

1. a weakly out-ranks (credibility = 20%) b;

2. a most certainly out-ranks (credibility = 95%) c;

3. b out-ranks more or less (credibility = 70%) a;

4. b most certainly out-ranks (credibility = 95%) c;

5. ¢ out-ranks more or less (credibility = 70%) a and b.

What R&D project should we recommend the decision-maker to choose ?

IThe example we will discuss, is a variant of an example proposed by Bernard Roy at the
41th meeting of the EURO working group MCAD on “Multi-criteria Aid for Decisions” in
Lausanne, March 1995 on the occasion of a lecture by Marc Roubens on the work about fuzzy
kernels from Leonid Kitainik [11].

1.2 Solving this problem by using standard Prolog

Reasoning about preferences may let come up following relational concepts: two

alternatives X and Y are equivalent if they outrank each other mutually and an

alternative X dominates an alternative Y if X outranks Y but not the converse.
Written in Prolog, these concepts may be formulated as follows:

equivalent (X, Y) :-
outranks(X, Y),
outranks (Y, X).
dominates (X, Y):-
outranks (X, Y),
not (outranks (Y, X)).

The difficulty we are faced with is to represent the factual outranking relation
from the above given outranking statements. Generally, a cutting technique like
the following is used for this purpose: to be considered true, the credibility of an
outranking must be greater than 50%. This gives for instance following (true)
ground facts to consider:

outranks(a, c).
outranks(b, a).
outranks(b, c).
outranks(c, a).
outranks(c, b).

To try a ground query, let us ask whether a and c¢ are equivalent? From the
classical SLDNF resolution with left most selection criteria we get the following
trace:

7- equivalent(a,c). %% example run # 1
CALL equivalent(a, c)
CALL outranks(a, c) %% 1rst literal
EXIT outranks(a, c)
CALL outranks(c, a) %% 2nd literal

EXIT outranks(c, a)
EXIT equivalent(a, c)
yes

The query terminates successful as both required literal can be resolved with a
true ground fact.

As second example, we consider now a general query involving the dominates
predicate containing a negative literal. Following trace may be observed:

7- dominates(X, Y). %% example run # 2
CALL dominates(X, Y)
CALL outranks(X, Y) %% 1rst literal
EXIT outranks(a, c)
CALL not outranks(c, a) %% 2nd literal

CALL outranks(c, a)

EXIT outranks(c, a)

CUT not outranks(c, a)
FAIL not outranks(c, a)

RETRY outranks(X, Y) %% 1rst literal
EXIT outranks(b, a)
CALL not outranks(a, b) %% 2nd literal
CALL outranks(a, b)
FAIL outranks(a, b)
EXIT not outranks(a, b)
EXIT dominates(b, a)
yes(X =b, Y = a) ;

CALL fail

FAIL fail
RETRY outranks(X, Y) %% 1rst literal
EXIT outranks(b, c)
CALL not outranks(c, b) %% 2nd literal

CALL outranks(c, b)

EXIT outranks(c, b)

CUT not outranks(c, b)
FAIL not outranks(c, b)

RETRY outranks(X, Y) %% 1rst literal
EXIT outranks(c, a)
CALL not outranks(a, c) %% 2nd literal

CALL outranks(a, c)

EXIT outranks(a, c)

CUT not outranks(a, c)
FAIL not outranks(a, c)

RETRY outranks(X, Y) %% 1lrst literal
EXIT outranks(c, b)
CALL not outranks(b, c) %% 2nd literal

CALL outranks (b, c)
EXIT outranks(b, c)
CUT not outranks(b, c)
FAIL not outranks(b, c)
FAIL dominates(c, b)
no (more) solutions

Only one clear dominance relation is observed between alternative b and a.

1.3 How ”true” is a more or less credible fact ?

But what happens, if actual truth of the outranking relation requires at least a
credibility of 75% ? This time the only true ground facts remaining are:

outranks(a, c).
outranks(b, c).

and the result of the same queries gives — first following trace:

7- equivalent(a, c) %% example run # 3
CALL equivalent(a, c)
CALL outranks(a, c) %% 1lrst literal
EXIT outranks(a, c)
CALL outranks(c, a) %% 2nd literal

FAIL outranks(c, a)
RETRY outranks(a, c) %% 1rst literal
FAIL outranks(a, c)

FAIL equivalent(a, c)

no

— whereas the second predicate returns:

?- dominates(X, Y) %% example run # 4
CALL dominates(X, Y)
CALL outranks(X, Y) %% 1rst literal

EXIT outranks(a, c)
CALL not outranks(c, a) %% 2nd literal
CALL outranks(c, a)
FAIL outranks(c, a)
EXIT not outranks(c, a)
EXIT dominates(a, c)
yes(X = a, Y = c);

CALL fail
FAIL fail
RETRY outranks(X, Y) %% 1rst literal

EXIT outranks(b, c)
CALL not outranks(c, b) %% 2nd literal
CALL outranks(c, b)
FAIL outranks(c, b)
EXIT not outranks(c, b)
EXIT dominates(b, c)
yes(X=Db, Y = ¢) ;
CALL fail
FAIL fail
no (more) solutions

This time, no equivalence is observed between the alternatives and two new
dominance relations appear. Changing thus the credibility level for accepting
the truth of a ground fact, changes drastically the outcome of the resolutions.
If we accept for instance all outranking facts notwithstanding their credibility,
we get all pairs of alternatives as equivalent and no alternative will dominate
any other.

Choosing an adequate credibility level for accepting the ground facts there-
fore becomes a major methodological and practical problem. We would indeed
be much better off if the logic computation could, from the beginning on and
through all steps, take into account ground credibilities associated with the
ground facts of the program.

1.4 The importance of negation by failure for efficient
SLD resolution

Beside the practical problem above, we are also confronted with a computational
problem. SLDNF resolution, through the Negation as Failure (NF) principle,
makes the logical assumption that all not convincing outranking relations are

to be considered as being false, i.e. absence of information results in negative
information.

The operational need to follow this principle is well illustrated by the trace of
example run #2 above and no implementation of a logic programming paradigm
can bypass this principle without loosing a great deal of efficiency in computa-
tion.

Unfortunately, because of the the NF principle, the incidence of choosing
different credibility levels for acceptance of the outranking statements, as seen
in the traces of example runs #3 and #4 above, is more critical. Most careful
choice of these cut levels becomes therefore crucial for implementing a fruitful
decision aid. That’s why we have great interest in being able to postpone as late
as possible any necessity to de-fuzzify the initially given outranking statements.

Consequently we are looking for a possibility to integrate these credibilities
coherently in our logical computations we want to run, returning the decision-
maker more or less credible results. It is his eventually decision then to accept
as true or not these results.

It is our goal in this paper to introduce a logical extension of classic Prolog
resolution which allows to overcome these two major drawbacks.

2 From credibility to truthfulness of logical for-
mulas

First, we introduce a clear semantic distinction between some underlying cred-
ibility calculus qualifying the truthfulness of given facts and clauses, and the
subsequent acceptation of effective truthfulness of these logical expressions.

2.1 Basic credibility calculus

Definition 2.1. Let a represent an atomic formula or atom with which we
may associate a finite rational degree of credibility r(a) € [0, 1] expressing its
potential truthfulness. If r(a) = 1, atom a is perceived as certainly true, and
if r(a) = 0, atom a is perceived as certainly false. The complete ordered finite
set of involved credibility values is denoted V. The underlying order is denoted
(V,<), where < denotes a complete, reflexive, antisymmetric and transitive
ordering.

Normally, degrees of credibility associated with a given atom a are expressed
as 2-digits percentages. Certainly true atoms are 100% credible whereas cer-
tainly false atoms are 0% credible.

Definition 2.2. Let (A4,r) be a set of atomic formulas a associated with cor-
responding degrees of credibility r: A — V. Let -, V, A and + denote respec-
tively negation, disjunction, conjunction and implication. The set £ of all well
formulated finite expressions will be generated inductively from the following
grammar:

YVae A : a€f (1)
Ve,ye & : -z | (z) |zVy|zAy|z+y €& (2)

The unary operator — has a higher precedence in the interpretation of a
formula, but generally we use bracketing parentheses to control the application
range of a given operator and thus to make all formulas have unambiguous
semantics.

We extend the credibility calculus on such logical expressions in the following
way:

Definition 2.3. Let £ be a set of well formulated expressions. Vz,y € &:

r(-z) = 1-—r(z) (3)
r(zVy) max(r(z),r(y)) (4)
r(z Ay) min(r(z),7(y)) (5)

r@+y) = 1 & r(@)>ry) (6)

From the inductive definition of our well formulated expressions, we are able
to compute credibility of such a formula in a logical evaluation domain £ =
(V, <, max, min, —,0, %, 1). The classic strong negation operator — acts as an
anti-tonic bijection on V with the median value % acting as negational fix-point.
Classical min and max operators implement conjunctive respectively disjunctive
credibilities with 0 and 1 as lower and upper limit. The implication operator <
will be confined in the scope of this paper to certainly true denotation, therefore
a necessary and sufficient condition for this credibility is provided in formula
(6) above. Finally, we denote the couple (£,r) as £F and speak in the sequel
simply of L£-valued expressions.

Two special such £-domains are worthwhile noticing here: — first, the three-
valued domain L3 = ({0, §,1}, <, max, min, -, —,0, 1,1) giving in fact a three-
valued logic, and — secondly, the bi-valued (degenerated) domain B = ({0,1}, <
,max, min, <—, =, 0, 1) isomorphic to the classical Boolean logic.

Noticing the credibility of a given L-valued expression, we are now able to
induce its supposed truthfulness.

2.2 Defining the L-truthfulness of an £-valued expression

In Prolog as well as in classical bi-valued logic, it is general use to work syntac-
tically only on the truth point of view of the logic, the falseness point of view
being redundant through the coercion to the excluded middle. This argument
allows to partly rely on the NF principle for SLD resolution. For instance, writ-
ing “relation(a, b)” means implicitly that we assume this atom being actually
true and its negation false, otherwise, we would write ”— relation(a, b)”. We
are easily trapped by the ”ontologic” property, the materiality of a formulation
gives a fact and we insidiously induce truth from such formal existence.

Or, we will continue to rely syntactically on such an implicit truth point
of view and always denote possible truthfulness induced from an underlying
credibility calculus through a u operator? acting as domain restriction on the
credibility operator r. But we want nevertheless guarantee a coherent, i.e. sym-
metric treatment of affirmation and negation of truth and falseness.

2In fuzzy set theory, the u operator generally denotes a fuzzy membership function. We
choose here the same u symbol on purpose as our main L-valued formulas concern mostly
such £-valued characteristic functions

Definition 2.4. Let 2 € £ be an £-valued expression associated with credi-
bility r(z):

p(z) =r(z) & r(z) 2r(-x)

Truthfulness of a given expression z is only defined in case the expression’s
credibility r(z) exceeds the credibility r(—z) of its negation —z. From our
definition, it follows immediately that our induced L-valued truth calculus is
complete on every set £ of well formulated £-valued expressions in the sense
that for each = € &: either u(z) or p(—z) is defined. We say for short that any
expression x € X is L-true or L-false.

To illustrate our approach, let us now look at £-valued truthfulness of certain
classical tautologies or antilogies. For instance, for the tautology (a V —a),
we have p(a V —a) always defined, as max(r(a),1 —r(a)) > I in any case.
Tautologies appear thus as being L-true in any case. Therefore we call them
L-tautologies. On the other hand, for the antilogy (a A —a), we obtain the
following truthfulness values: p(a A —a) = 1 & a = —a = }. Truthfulness of
this formula is undefined otherwise where as truthfulness of its contradiction,
i.e. —(a A —a) is always defined, i.e. L-true. Therefore, we will call such
contradictory propositions £-antilogies. As a main result of our construction,
we recover all classical tautologies and antilogies as particular limit case £5.

Indeed, let us investigate an implicative L-tautology such as the modus
ponens for instance. If we take a classical (Kleene-Dienes) definition of the
implication, i.e. falseness of the conjunction of a and —b, we obtain that
min(r(a), max(1 — r(a),r(b))) > &+ = r(b) > 1. So that we obtain indeed
the following L-tautology: a and a = b being conjointly L-true always implies
b being L-true.

At this point, one may wonder if our L-logic does not appear as an isomorphic
structure to the classical bi-valued Boolean logic. But this is not the case, as
the natural categorical limit L£-algebra is given by the L3 logic. But we may
force the £-valued truth calculus to take the bi-valued Boolean logic B as limit,
if we exclude explicitly from the set of possible credibility values the negational
fix-point, thus making it impossible to stay logically neutral in the underlying

credibilities and hence also in our truthfulness assumptions.

The semantic difference between the logical fuzziness we introduce, and s-
tandard fuzziness as modelled in fuzzy or multi-valued logic and/or in fuzzy
set theory, remains — first in the operational distinction between the underly-
ing propositional credibility calculus and the induced truthfulness calculus, and
— secondly in the strict splitting of the credibilities into truthfulness support-
ing ones and in falsefulness supporting ones with a possible unique common
intersection only in case of logical undeterminedness.

3 Logical Fuzzification and Polarization: an Ad-
joint Pair
In this section we investigate more categorically the previously introduced se-

mantics through the general techniques of fuzzification and defuzzification. First
we turn to logical fuzzification.

3.1 Introducing Logical Fuzzification

A common sense fuzzification of the classic bi-valued truth calculus consists in
replacing the underlying bi-valued characteristic function with a multi-valued
bounded real-valued characteristic function followed by the attempt to axiom-
atize such real-valued logical calculus in such a way to recover all known (and
so generally accepted as useful) logical properties of the bi-valued case. In our
opinion, this straightforward method suffers from two main drawbacks: — first,
such simple multi-valued generalization of the bi-valued characteristic function
is in contradiction with the necessarily split semantics of the implicitly modelled
truth/falseness point of views and — secondly, some of the structural properties of
a bi-valued logical framework appear as degenerated limit properties, impossible
to observe in the general case without precisely questioning this generalization
again. Our reason for thinking so is given, not so much by the axiomatic dif-
ficulties of the standard attempt, but rather more by the dubious operational
properties of the corresponding standard defuzzification technique, denoted in
the fuzzy literature as A-cuts, where A\ € V represents the level of credibility at
which a given proposition is taken to be true or not.

To illustrate the difficulty, we consider the definition of cut relations as dis-
cussed in Fodor & Roubens (see [9, p.45]). Let us take a fuzzy outranking
index, as shown in table (1). For a given A € V, Fodor & Roubens propose to
consider the relation Ry as being defined as the set of pairs (a,b) € A x A such
that r(a,b) > A\. What has escaped the authors’ minds is the fact that a cut
technique is necessarily either truth or falseness oriented and that the resulting
crisp or bi-valued relation is, in their case, taken from the truth point of view.
But this point of view cannot, in a standard logical frame, where a negational
contradiction principle must exist, be separated from the complementary false-
ness point of view. Stating that for instance there exists a .20-cut relation on

Table 1: Example of Fuzzy Outranking Relation

[rla b c]
a| - .25 .95
b|.55 - .95
c| .55 .55 -

the index r as shown in Table (1) implicitly implies, in case we envisage a credi-
bility calculus with a strong negation, an asymmetric treatment of truthfulness
versus falsefulness. Indeed, we would consider proposition ”(aR b)” to be true,
as r(a,b) = .25 > .20 and conjointly proposition ”(a Rb)” to be also true as
1—r(a,b) = .75 > .20, and thereby we would introduce logical nonsense. But if
we solely envisage A-cut relations with A > %, we may obtain possibly correct
split truthfulness versus falsefulness semantics. Indeed, consider again the same
pair (aRb). This time, we conclude that (a Rb) as r(a,b) = .25 < .50, this
result being coherent with the fact that 1 — r(a,b) = .75 > .50.

Two lessons are to be learned from this example. First, every logical truth
calculus conjointly addresses a mirrored falseness calculus through the necessary
existence of a contradiction principle. Secondly, fuzzification models are not to
be separated from intended defuzzification or logical polarization techniques,

as defuzzification necessarily projects fuzziness into the split complementary
semantics of truthfulness versus falsefulness.

The above considerations give rise to the following question: why does
Boolean calculus nevertheless work, although it does not use such a split se-
mantics?

In this specific case, the reason for this simplification lies in the operational
restriction to two extreme truth values {0,1}, with implied coercion to the ex-
cluded middle, which simplifies the underlying logical algebra to a point making
the necessity to separate truthfulness values from falsefulness values disappear.
Indeed, both points of view are completely determined one by the other, as no
intermediate position is allowed. As soon as intermediate logical positioning
is allowed, the necessity also appears to algebraically separate the truthfulness
point of view from the falsefulness point of view and eventually to introduce a
third term, the necessarily unique common truth/falseness point of view: logical
undeterminedness. It appears from the algebraic framework that, in case we en-
visage a strong negational contradiction, this logical undeterminedness resides
in the necessarily unique negational fix-point, i.e. the truthfulness/falsefulness
value % marking the common border line between appearing truthfulness versus
appearing falsefulness (see Figure 1).

falsefulness truth{ Iness
M\TP) A AM g)
1

1

(NI

\

\

\

\

\

\

\

\

\

\

< ‘ >

r(—p) | 1 (@] r(p)
Figure 1: Split Truth/Falseness Semantics

To illustrate our approach, we consider a simple majority voting procedure
generating atomic propositions with respective credibilities reflecting the posi-
tive or negative results of the individual voting. A proposition is true from the
moment it gets more than half of the possible votes and it is false elsewhere.
The exact result models the greater or lesser truthfulness or falsefulness of the
result. But no proposition may be conjointly accepted and rejected unless it gets
exactly half of the votes. In practice, this blocking case is some times avoided
either by considering only odd numbers of possible voters or by a specific de-
blocking procedure like for instance counting the chairman’s vote for double in
this situation.

One may question the simple majority rule. Why is it just half and not lesser
of the votes that distribute truthfulness and falsefulness? Mostly for practical
reasons: if less than % of positive votes would be sufficient to accept a proposi-

10

tion, a proposition could in practice be both accepted and rejected, which would
produce practical (logical) nonsense. On the contrary, higher qualified majority
rules are very often used in practice and especially for important decisions. How
can we cope with this issue in our logical framework?

3.2 On Natural Logical Polarization

What we are looking for is a defuzzification or logical polarization operator
denoted 7, similar to the A-cut but compatible with our split truth/falseness
semantics.

In Bisdorff & Roubens [5], we have for the first time introduced such a
polarization operator mg, which we named the S-cut3.

Definition 3.1. Let £ be a set of logical expressions associated with credibil-
ity r : €5 - V, where £ = {V, >, =, min, max, <, 0, 5,1} underlies algebraically
the propositional credibility calculus. Let mg represent a logical polarization
operator mg : E£ — ££2 defined as follows: Vz € ££ and VB € |1, 1]:

& r(z) > B
& riz)<1-p
& 1-p<r(@)<p

ma(r(z)) =

= O =

That this polarization operator 7g indeed satisfies our formal expectations
may be summarized by stating the following theorem:

Theorem 3.1. Let £ be a set of L-valued expressions. Let ju denote our truth-
fulness operator, mg the B-cut polarization operator and T the median B-cut
operator. The following categorical equations are verified:

pomL = miopu; (7)
poms 2 mgo . ®)

Indeed, considering equation (7), we must show that the 71 operation is a
natural transformation of £-valued expressions with respect to our u operator.
Let us first consider disjunction (respectively conjunction) of two £-valued ex-
pressions z,y € £X. Let m1(z) and 1 (y) be the associated 1-cut propositions.
w1(u(z vV / Ay)) = max/min(r(z),r(y) & (r(z) >3)V/Aly>3) &
p(my () Vi (z)) = max /min(r(z),r(y)). The same straightforward argument
appfies to the two other logical operators in £, i.e. strong negation and our or-
dinal implication. Considering now equation (8), it is precisely this last ordinal
implication that appears as more restrictive than a negative £-valued Kleene-
Dienes implication, thus generally making the w3 operator only semi-natural for
the p transform (see Bisdorff & Roubens [5]). O

It is clear that the demonstration above is highly dependent on the choice of
the L-algebra and it would be interesting to furthermore characterize naturally
defuzzifiable credibility calculi in the sense above.

Let us now turn to logic programs. What we need here is an L-valued
extension of SLDNF resolution which turns out to be natural with respect to
our S-cutting technique.

3The name we gave this logical polarization operator is derived from the fact that the
standard A-cut is sometimes also named a-cut.

11

4 [L-valued logic programs

In this section we first delimit our definition of logic programs. In a second part
we apply our credibility calculus to such logic programs and we extend SLDNF
resolution to such programs. The rest of this section illustrates these ideas with
the help of our introductory examples.

4.1 Syntax

In the scope of this discussion, we restrict our attention to such atoms a which
may be represented as n-ary relational predicates p(t1,...,t,) among terms, n
being the arity of the predicate p. Furthermore we denote by X, Y and Z the
place-holding variables appearing in such atoms. An atom a is called ground if
no variable occurs in it.

A literal is an atom a or its negation —a and is denoted by the letter [.

Definition 4.1. An implying clause is a formula ¢ € £ of the form:
a+ LN N, (9)

where a is the head atom; I; A ... A l,,, the body of the clause are literals and
m > 1.

Implying clauses allow to implement implicative tautologies under the form
of modus ponens inference schemes. In our construction we introduce further-
more tautological equivalence schemes in order to correctly catch declarative
semantics of truth and falseness of facts and definitions.

Definition 4.2. A defining clause is a formula ¢ € £ of the form:
ae NN, (10)

where the < corresponds to a two-way <—-implication and the number n of
literals in the body is > 0. If the body of a defining clause is empty, i.e. n =0,
we speak of a fact and if the head is empty, we speak of a goal.

Definition 4.3. We call logic program, denoted P, a finite set of facts, defining
and implying clauses. The set of facts is called the ground of P and is denoted
P9. The set of defining (respectively implying) clauses of P is denoted as P?
(respectively P?).

We now extend our credibility calculus to such logic programs.

4.2 [-valued logic programs
Definition 4.4. Let P = (P9, P?, P%) be a logic program.

Yae P! : r(a)eV
Yee (P*UPY) : r(c)=1

Yao iAo Aly)EPE 2

(11)

(12)

V@l A Alp)€PF : r(a) = max(%,r(ll AAln) (13)
(@) =r(ly Ao A ly) (14)

(15)

12

All ground facts P9 may be associated with any credibility from V', where-
as defining and implying clauses are restricted to be considered certainly true
formulas.

Contrary to the Boolean case, we cannot rely on a negative (Kleene-Dienes)
definition of implication, i.e. to infer from the credibility of clause’s body, that
of its head. Indeed, in Boolean logic, the falseness of the antecedent implies,
through negational complementarity, the consequent’s default truthfulness (in
fact a double negation as success principle). We rather prefer in this case to
associate the consequent with an undetermined logical denotation.

For defining clauses, as they implement tautological equivalences, we simply
give the head, the body’s global credibility. In this case indeed, if the body is
rather true (respectively false), the head will be also rather true (respective-
ly false). Notice that a recursive clause may nether be a defining clause as
the recursive part of the definition must be completed by a bottom (initial or
terminal) part.

In order to determine the credibility associated with an individual literal
of the body of a clause, we propagate credibilities through standard SLD res-
olution. Analogue to the NF strategy, we base our resolution strategy on an
L-Untruth as Failure principle and we denote this resolution consequently as
SLDL-UF resolution.

Definition 4.5. The SLDL-UF resolution is based on following principles:
1. Resolution of the literals follows the left most literal selection principle.

2. For implying clauses we fail resolution as soon as the currently resolved lit-
eral gets an L-untrue credibility. Failure transfers the £-undeterminedness
to the clause’s head.

3. For defining clauses we exhaustively resolve the list of literals of the body
and return the body’s resulting credibility (L-true or L-untrue) to the
head.

Let us first illustrate our resolution strategy on ground queries through defin-
ing clauses.

4.3 SLDZL-UF resolution of defining clauses

In a 2-digits percentage credibility evaluation domain, the whole set of ground
facts may be annotated as follows:

outranks(a, b){25}
outranks(a, c){95}
outranks(b, a){55}
outranks(b, c){95}
outranks(c, a){55}
outranks(c, b){55}

We use {..} to indicate credibilities attached to a fact or a clause. Place-holding
credibility variables are denoted C or C1, (s, To distinguish defining clauses
from implying clauses, we use a two-way Prolog body separator ”-:-".

Both relational concepts, i.e. equivalence and dominance may thus be ex-

pressed as defining clauses:

13

equivalent (X, Y){min(C_1, C_2)} -:-

outranks (X, Y){C_1}, %% 1rst literal

outranks (Y, X){C_2}. %% 2nd literal
dominates (X, Y){min(C_1, C_2})} -:-

outranks (X, Y){C_1}, %% 1rst literal

not(outranks(Y, X){1 - C_2}){C_2}. %% 2nd literal

When executing ground queries similar to example run #1 above, we obtain
through SLDL-UF resolution following traces:

7- equivalent(a, c){C}. %% example run # 5 : ground query
CALL equivalent(a, c){C}

CALL outranks(a, c){C_1} %% 1rst literal

EXIT outranks(a, c){95}

CALL outranks(c, a){C_2} %% 2nd literal

EXIT outranks(c, a){55}
EXIT equivalent(a, c){55}
{C = 55}.

7- equivalent(a, b){C}.
CALL equivalent(a, b){C}

CALL outranks(a, b){C_1} %% 1lrst literal
EXIT outranks(a, b){25}
CALL outranks(b, a){C_2} %% 2nd literal

EXIT outranks(b, a){55}
EXIT equivalent(a, c){25}
{C = 25}.

In the cases of example run #5, our resolution strategy returns as L-true the
equivalence between a and ¢ (with credibility 55%) and as L-false the equiva-
lence between a and b (with credibility 1 - 25 = 75%) . If we think that the
credibilities of the results must exceed for instance 70% in order to be considered
as reliable, i.e. certainly true, i.e. we apply a 70%-cut to the results, we remain
solely with the L-false statement as the first one becomes £L-undetermined.

Let us now look for query concerning a non ground instance of a defining
clause.

?7- dominates(X, Y){C}. %% example run # 6 : non ground query
CALL dominates(X, Y){C}

CALL outranks(X, Y){C_1} %% 1rst literal
EXIT outranks(a, b){25}
CALL not outranks(b, a){C_2} %% 2nd literal

CALL outranks(b, a){1 - C_2}
EXIT outranks(b, a){25}
EXIT not outranks(b, a){75}
EXIT dominates{a, b){25}
(X = a, Y =0b){C = 25};

RETRY fail

FAIL fail
RETRY outranks(X, Y){C_1} %% 1rst literal
EXIT outranks(a, c){95}
CALL not outranks(c, a){C_2} %% 2nd literal

14

CALL outranks(c, a){1 - C_2}
EXIT outranks(c, a){55}
EXIT not outranks(c, a){45}
EXIT dominates(a, c){45}
(X = a, Y=c){C = 45};

CALL fail

FAIL fail
RETRY outranks(X, Y){C_1} %% 1rst literal
EXIT outranks(b, a){55}
CALL not outranks(a, b){C_2} %% 2nd literal

CALL outranks(a, b){1 - C_2}
EXIT outranks(a, b){25}
EXIT not outranks(a, b){75}
EXIT dominates(b, a){55}
(X = a, Y =c){C = 55};
CALL fail
FAIL fail

(X =c, Y=0b){C = 5};
CALL fail

FAIL fail

EXIT dominates(X, Y){50}
X=X, Y=Y){C = 50}.

Example run #6 collects all possible combinations of instantiable facts with
their corresponding credibilities. A ”no trace” run shows the complete list of
results:

?- dominates(X, Y){C}
(X = a, Y =b) {25};

(X =a, Y =c) {45};
(X =b, Y =a) {b5};
(X =b, Y =rc) {45};
X =c, Y=2a) {5} ;
X =c, Y=0D) {5} ;

X =X,Y=Y) {50%}.

Applying defuzzification operator p on this list, we obtain the same results as
for example run #2. Indeed, solely ground fact "dominates(b, a)” is L-true
with a credibility of 55%. All other computed facts are L-false. Notice the
last undetermined result. This means that whenever we try to query a fact not
being part of the Herbrand base of the program in question, we get a general
L-undetermined result.

Indeed, let us finally query a non existing ground fact:

7- equivalent(e, £){C}. %% example run # 7
CALL equivalent(e, f){C}
CALL outranks(e, f){C} %% 1rst literal

FAIL outranks(e, f){50}
FAIL equivalent(e, £){50}
{C = 50}.

15

Contrary to standard SLDNF resolution, general failure does not produce a
negative answer, but an £-undetermined one. We may not conclude from the
absence of information about hypothetical alternatives e and f that the out-
ranking relation does not exist between them but rather more we infer that we
don’t know if this outranking statement is to be considered true or false, so that
we qualify this potential ground fact as logically undetermined.

Let us now turn to a more complicated case.

4.4 SLDL-UF resolution of implying clauses

As an example, we investigate the L£-valued computation of following recursive
definition.

path_connected(X, Y, _, _){C} :-
outranks (X, Y){C}.
path_connected(X, Y, N, Nmax){min(C_1, C_2)} :-
N < Nmax,
outranks (X, Z){C_1},
N1 is N + 1,
path_connected(Z, Y, N1, Nmax){C_2}.

Two alternatives X and Y are path-connected if either, they are directly related
through a ground outranking relation, or there exists a third alternative Z such
that X and Z are directly related and there exists a path-connected relation
between Z and Y of length N < Nmax. Executing the following ground query
gives the trace below:

?- path_connected(a, b, 1, 2){C}. %% example run # 7
CALL path_connected(a, b, 1, 2){C} %% implying clause
CALL outranks(a, b){C_1} %% defining clause

EXIT outranks(a, b){25}
FAIL path_connected(a, b, 1, 2){50}

RETRY path_connected(a, b, 1, 2){C} %% implying clause
CALL 1 <2
EXIT 1 <2
CALL outranks(a, Z){C_1} %% defining clause

EXIT outranks(a, c){95}
CALL N2 is 1 + 1
EXIT 2is 1 + 1
CALL path_connected(c, b, 2, 2) {C_2} %% implying clause
CALL outranks(c, b) {C_2_1} %/ defining clause
EXIT outranks(c, b) {55}
EXIT path_connected(c, b, 2, 2) {55}
EXIT path_connected(a, b, 1, 2){55} %% implying clause
{C = 55}.

In this example run #7, we apply our L-Untruth as Failure principle in the same
sense as is implemented the NF principle, and as expected, we get an L-valued
result that is, through our p defuzzification, identical with the crisp bi-valued
SLDNF resolution.

16

Finally we try in last section to explore general semantics of £-valued logic
programs.

5 A closer look at declarative L-interpretations

In this last section, we start by putting up a convenient terminology about
interpretations of logic programs (inspired by [1, 10, 3]). In a second part, we
show that SLDL-UF resolution is a natural extension of SLDNF resolution.
Finally, in a last part, we generalize this result to Herbrand models of £-valued
logic programs.

5.1 L-valued interpretations

Definition 5.1. The Herbrand base H(P) of a logic program P is the set of all
variable-free terms, called facts and denoted a, that may be formed from the
constants and relational predicates appearing in P. By convention we add to
this set a general undetermined term e capturing all possible terms outside of
P, i.e. constants and relational predicates.

Proposition 5.1. Let P* be an L-valued logic program and let P/>% be the
median [-cut restricted program, where we remove all L-untrue ground facts
from P~.

H(P)5y) C H(PE) (16)

Indeed, as P, >1 is a subset of PX, the difference between both bases is
essentially given by the subse of variable-free terms which may be formulated
with potential £-false ground facts appearing in P*. [

Let us now define interpretations on Herbrand bases.

Definition 5.2. Let P be an £-valued logic program and let I be an £-valuation
of H(P), i.e. I:H(P) — V with Va € H(P), I(a) giving the credibility as-
sociated with fact a. Such L-valuations I will be called L-interpretations. We
denote Z* the set of all possible L-interpretations we may associate with a given
Herbrand base. The trivial, all %—Valued interpretation is denoted M.

We may define on Z* a pair of dual operators ‘@’ and ‘O

Definition 5.3. Let I,J € Z* : Va € H(P) :

max [min(I(a), J(@) ¢ I(a)25AJ(a) 2 L,
(Ie|eJ)(a) =¢ min|max(I(a),J(a) < I(a)<1i,AJ(a) <14,
1 elsewhere.

2

These ”additive” operators are linked to a sharpness ordering (cf. Bisdorff
& Roubens [5]) of L-interpretations in the following way:

Definition 5.4. Let I,J € I* be two L-interpretations. We say that I is
sharper than J, noted I 3= J iff Va € H(P) : either (I(a) £ J(a) £ 3) or
1 < J(a) £ 1(a)).

17

The sharpness relation ‘3=’ on the set Z% of all interpretations defined on a
given Herbrand base H(P), gives a partial order (¥, =) with the trivial median-
valued interpretation M as unique minimum element and all possible B-valued
(crisp) interpretations as the set of maximal (sharpest) elements.

Proposition 5.2. Let I,J € T* be two L-valued interpretations defined on a
Herbrand base H(P).

I>J = (IsJ=DANI&J=J), (1)
I=J = (Ix=Ied)A(Jx=I0J). (2)

Indeed, ®-addition (respectively ©-subtraction) of two }=-comparable inter-
pretations gives an overall sharper (respectively fuzzier) interpretation as result.
This is an immediate consequence of definition 5.4 and definition 5.3. [

But we may more precisely isolate the subset of L-valued interpretations
which will give a ®-S-lattice.

Definition 5.5. Let I,J € T* be two L-valued interpretations defined on a
Herbrand base H(P). We say that I and J are non-contradictory iff Va €
H(P): (I(a) £ % = J(a) £3) A (3 £1(a) = % £ J(a)). We shall note this
relation as I = J.

Or “non-contradiction” is precisely the restriction functor on L-valued in-
terpretations we look for.

Proposition 5.3. Let I,J € I be two L-valued interpretations defined on a
Herbrand base H(P).

IZzj & ITeJ=DANIJ=J). (1)
I2J & I=Iod)NJ =I6J). (2)

Verification of these properties is straight forward. O

But then, we may notice that these ”additive” operators @ and © define in
fact on a given =-congruence class of 7, a lattice structure with its associat-
ed median f-cut interpretation as top element and the trivial £-undetermined
interpretation M as bottom element.

Proposition 5.4. Let I € Z* be an interpretation defined on a Herbrand base
H(P). Let I/ﬁE 1 be the ”non-contradictory” congruence class associated with

this interpretation I. If M € T* is the trivial all median-valued interpreta-
tion, and I, 1 its associated median [(-cut interpretation, the algebraic structure

({IE,GB,G,M, I>%) gives a distributive lattice with relation M as bottom and
I>% as top element.

The ®-operator acts as lattice-join and the ©-operator as lattice-meet in a
product of symmetric median-folded £-algebras restricted to non-contradictory
interpretations. The &-operator has a lower limit which is the trivial all-median-
valued interpretation M, whereas the @-operator has an upper limit respective
in the median [-cut interpretation. Double distributivity of & and & easily
follows from the distributivity of the max and min operators of the underlying
truth calculus algebra 4. [0

4The @, O-structure is not directly a boolean algebra (a complemented distributive lat-
tice), as the complement of a given interpretation is in general not unique. We denote these
structures as “projectively” boolean.

18

We are now equipped to compare corresponding interpretations from SLD .-
UF and SLDNF resolutions.

5.2 SLD/L-UF resolution: a natural extension of SLDNF
resolution

It is easily seen that SLD resolutions of a query @ from a program P construct
in fact interpretations I on H(P).

In the classic Prolog case, SLDNF resolution constructs interpretations that
are evaluated in a {YES, FAIL, NO}-valued credibility domain which we may
identify with an L3 domain. For our purpose we denote all FAIL and NO
results as L-untrue instantiations of the query. In the case of general L£-valued
programs, SLD L-UF resolutions construct interpretations that are evaluated in

L.

Proposition 5.5. Let P~ be an L-valued logic program and let P/>% be the

median B-cut restricted program corresponding to P©. Let Q be the same query
addressed to both programs. We denote I(Q) the interpretation constructed
through SLDL-UF resolution of Q on P* and we denote J(Q) the interpre-
tation constructed through SLDNF resolution of) on P/>%. Let M denote the

trivial %-valued interpretation. Then we have:
J(Q) = 1(Q) 7 M (3)

Indeed, definition (4.5) of SLDL-UF resolution gives us the key to this result.

Let us first consider a query (). formulated outside the Herbrand terms
in P/ 1. Failure of Q will be returned in both resolutions so that J(Q.) =
I(Qc) =M.

Let)4 be a closed atomic query on a clause contained in the Herbrand base
H(P/s1). If SLDNF is successful, so will be SLDL-UF with J(Qg) > I(Qg4) > 5

If SLDNF fails, either SLDL-UF succeeds with I(Q,) < £ in case the clause is
a defining one or equally fails with I(Q,) = 3.

More generally, let @), be a generic query on a defining clause. SLDNF reso-
lution will collect all possible successful instantiations denoted as instj(Qs).
Again SLDL-UF resolution, in case @), is a defining clause, will collect al-
| ground instantiations in a set instr(Qz). Or, inst;(Qz) C instr(Q,) and
Va € inst;(Qq) : J(a) > I(a) > ;.

Finally, let @); be a query concerning an implying clause. For such clauses,
SLDNF and SLDL-UF resolutions produce the same run traces and successful
instantiations, i.e. inst;(Q;) = inst;(Q;) and again Va € inst;(Q;) : J(a) >
Ia)>%. O

As a corollary of this proposition we obtain thus that SLDL-UF and SLDNF
resolution of the same query @) on P~ respectively P/>% return non-contradictory
interpretations, i.e. L-interpretations belonging to a same congruence class
I /LE 1(q)> Which is determined by interpretation 1(Q).

SLDL-UF appears through this result as a natural £-valued extension of
SLDNF resolution and we can extend this result to £-valued Herbrand models
of a program.

19

5.3 L-valued Herbrand models

Following the classical Van Emden and Kowalski [14] way, we define now a im-
mediate consequence operator Tp on the set of possible Herbrand interpretations
T* we may associate to a given program P~.

Every possible finite query @ on P requires a finite number n of execution
steps for resolution. We denote Q™ the set of queries taking n steps for ground
resolution. @ may then be partitioned as follows:

9=[Jo (4)

We now define inductively the classic closure operator Tp on the base of the
SLDL-UF resolution.

Definition 5.6.
Tp(0) =
Tp(i)

M
DIEQ) :QeQ}i=1...n
Q

In the recursive step above, I(Q) gives the L-interpretation associated with
the SLDL-UF resolution of query @ and each T'p(¢) ”sums up” interpretations
of all possible queries of resolution length ¢ in P.

Taking powers of the Tp operator allows then to compute the L-valued
Herbrand model of such a program.

Definition 5.7.

Tp1(0) Tp(0)
Tpt(i) = Tpt(i—1)®Tp(),i=1...n

Il

If we restrict our attention to logic programs executing all possible queries
in a finite number of resolution steps, the closure operator Tp is finitary such
that there necessarily exists for Tp a prefixed interpretation which we denote
as Tp1“.

From the definition of the ®-operator and from the fact that Q is parti-
tionned by the length of the resolution, it follows that the Tp operator is neces-
sarily growing, so that consequently, the prefixed interpretation Tp1* becomes a
unique least interpretational fix-point which we identify with the least £-valued
Herbrand model denoted M(PF).

Proposition 5.6.
M(P*) = Tp1* (5)

We may generalize now the previous result concerning naturality of our £-
extension to such £-valued Herbrand models.

Theorem 5.1. Let PX denote the class of L-valued programs, let M* denote
the class of corresponding Herbrand models and let Ty denote the median (-

cut operator. Let P*3 denote the class of L3-valued programs and M*3 their
associated Herbrand models.

20

The following diagram then commutes:

™

'Pll - - pr‘,s

[N

Tp TP

™

ME [NN Mﬁs

[N

The theorem appears as corollary of theorem (3.1) and of proposition (5.5)
above. O

This all important theorem is a major consequence of the naturality of the
B-cut technique as shown in Theorem (3.1) above and it allows us to coherent-
ly extend standard Prolog programs and SLDNF resolution to a multi-valued
logical truth calculus. We may thus either choose to defuzzify the ground facts
and compute in standard Prolog, or compute directly the fuzzy ground facts
and de-fuzzify the results we obtain herewith. The outcome will be the same.

Conclusion

In this paper we have introduced a multi-valued extension of standard Prolog
programs. To the classic SLD resolution with the Negation as Failure principle
we have associated an SLD resolution with a corresponding Undeterminedness
as Failure principle which allows us to coherently extend standard Prolog com-
putation to this multi-valued universe.

Thus our major motivation we exposed in the first section of this paper, i.e.
looking for a possibility to coherently integrate credibilities of ground facts in
our logical computations without loosing the efficiency of the negation as failure
principle in implementing the SLD resolution has received an optimistic answer,
— at least from the theoretically feasibility point of view.

From a practical point of view this result gives us the theoretical possibility
to postpone any de-fuzzification of facts to the instatiated results. It is then the
actual decision-maker’s last and definite responsibility to qualify as true or not
the more or less credible results.

It remains to realize an efficient implementation of such an £-Prolog engine
so as to verify that we are effectively able to solve not only tiny but also real-
sized problems such as we need to solve with standard Prolog engines. So, much
enjoyment appears ahead for enthusiastic and courageous programmers.

Finally, I would like to thank Krzysztof Apt for his kindly insisting to invite
me at the 9th Benelog workshop in Amsterdam. This motivation gave me the
occasion to formulate my intuition.

References

[1] Apt, K.R., Gabbrielli, M. and Pedreschi, D., A closer look at declarative
interpretations, J. Logic Programming, 28(2):147-180,(1996)

21

[2] Apt, K.R. and Doets, K., A new definition of SLDNF-resolution, J. Logic
Programming, 18(2):177-190,(1994)

[3] Apt, K.R., Blair, H.A. and Walker, A., Towards a theory of declarative
knowledge, Foundations of deductive databases and Logic Proamming (L.
Minker, Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 89-148, 1988

[4] Bisdorff, R., Logical foundation of fuzzy preferences with application to
Electre decision aid methods, European Journal of Operational Research,
special issue from EURO XV/INFORMS XXXIV Conference (Barcelona,
1997) (Valares-Tavares, L. and Dean, B.V. Ed.), forthcoming

[5] Bisdorff, R. and Roubens, M., On defining fuzzy kernels from L-valued
simple graphs, In Proceedings of the conference IPMU’96, pages 593-599,
Granada, July 1996

[6] Bisdorff, R. and Roubens, M., On defining and computing fuzzy kernels
from L-valued simple graphs. In Da Ruan et al. (ed.), Intelligent Sys-
tems and Soft Computing for Nuclear Science and Industry, FLINS’96
workshop, pages 113-123, World Scientific Publishers, Singapoure, 1996

[7] Bisdorff, R.,On computing kernels from £-valued simple graphs. In Pro-
ceedings of the conference EUFIT’97, volume 1, pages 97-103, Aachen,
September 1997

[8] De Baets, B., Van de Walle, B. and Kerre, E.E., Fuzzy preference struc-
tures and their characterization, The Journal of Fuzzy Mathematics 3:373-
381,(1995)

[9] Fodor, J. and Roubens, M., Fuzzy preference modelling and multi-criteria
decision support. Kluwer Academic Publishers, 1994

[10] Gire, F., Well-founded and stable semantics, J. Logic Programming,
21(2):95-111,(1994)

[11] Kitainik, L, Fuzzy decision procedures with binary relations: towards a
unified theory, Kluwer Academic Publ., Boston, 1993

[12] Roy, B., Méthodologie Multicritére d’Aide & la Décision. ECONOMICA,
Paris, 1985.

[13] Roy, B., and Bouyssou, D., Aide Multicritere & la Décision: Méthodes et
cas. ECONOMICA, Paris, 1993

[14] Van Emden, M.H. and Kowalski, R.A., The semantics of predicate logic
as a programming language, JACM 23(4):733-742, (1976)

22

