
Incremental Service Composition based on

Partial Matching of Visual Contracts

Muhammad Naeem1, Reiko Heckel1?, Fernando Orejas2??, and
Frank Hermann3

1 Department of Computer Science, University of Leicester, United Kingdom
mn105|reiko@mcs.le.ac.uk

2 Departament de L.S.I., Universitat Polit�ecnica de Catalunya, Barcelona, Spain
orejas@lsi.upc.edu

3 Fakult�at IV, Technische Universit�at Berlin, Berlin, Germany
frank.hermann@tu-berlin.de

Abstract. Services provide access to software components that can be
discovered dynamically via the Internet. The increasing number of ser-
vices a requesters may be able to use demand support for �nding and
selecting services. In particular, it is unrealistic to expect that a sin-
gle service will satisfy complex requirements, so services will have to be
combined to match clients' requests.
In this paper, we propose a visual, incremental approach for the compo-
sition of services, in which we describe the requirements of a requester
as a goal which is matched against multiple provider o�ers. After every
match with an o�er we decompose the goal into satis�ed and remain-
der parts. We iterate the decomposition until the goal is satis�ed or we
run out of o�ers, leading to a resolution-like matching strategy. Finally,
the individual o�ers can be composed into a single combined o�er and
shown to the requester for feedback.
Our approach is based on visual speci�cations of pre- and postconditions
by graph transformation systems with loose semantics, where a symbolic
approach based on constraints is used to represent attributes and their
computation in graphs.

1 Introduction

Service-oriented Architecture (SOA)[1] supports dynamic discovery and binding
based on matching requesters' requirements with providers' o�ers. Both require-
ments and o�ers can be expressed as speci�cations of the (expected or given)
semantics of a service's operations in terms of their pre- and postconditions. At
a technical level this is supported by semantic web technologies (e.g. OWL-S [2],
WSML [3]), at modeling level visual contracts have been suggested to describe
service semantics [4].

? Partially supported by the project Sensoria IST-2005-016004
?? Partially supported by the MEC project (ref. TIN2007-66523), the MEC grant

PR2008-0185, the EPSRC grant EP/H001417/1 and a Royal Society travel grant



However, expecting to �nd a single service for each requirement is unrealis-
tic. Often services need to be combined to satisfy the demands of clients. For
example, let us consider a scenario, where a requester is looking to book a trip
for attending a conference. The requester may be interested in 
ight and hotel
reservation. Rather than using a single service, the requester may have to use
two separate service providers.

In this paper we propose an incremental approach for service composition,
where we assume that the requirements are expressed by a single goal stating
pre- and postconditions. A variety of o�ers could contribute to the goal, each
described by pre- and postconditions as well. We propose a notion of partial
matching of o�ers with goal. After every partial match we compute the remaining
requirements by decomposition of the original goal into the satis�ed subgoal and
its remainder. We iterate this process until the goal is achieved or we do not
have any more o�ers.

As a result of this procedure we produce a combined o�er which can be
visualized and reviewed by the client. Our approach thus supports incremental
matching procedure which is based on partial matching of visual contracts.

The rest of the paper is organized as follows. Section 2 discusses related ap-
proaches. Section 3 introduces the basic framework for speci�cation and match-
ing of services. Section 4 presents our approach towards incremental composition
based on the construction of the remainder rule and generation of composed
operation from individual ones, and Section 5 discusses the main results and
concludes the paper.

2 Related Work

As motivated above, we work on the assumption that it is unrealistic to expect
a single o�er to be su�cient to satisfy a goal, i.e., several o�ers will have to be
combined. This raises the �rst three of the following questions to serve as criteria
for approaches to dynamic service composition. The fourth question derives from
the desired integration into mainstream modelling techniques such as the UML,
which use diagrammatic languages to specify software. For service speci�cation
to be integrated into standard software engineering processes, they have to use
compatible visual notations.

{ Partial Match:Does the approach support partial matching of an o�er with
a goal, or is full satisfaction of all requirements necessary for each match?

{ Flexibility: Does the approach allow to match o�ers in 
exible order or
does it follow a given control 
ow?

{ Completeness: Is the approach decidable, i.e., does it provide a complete
and terminating procedure to �nd out if there are combinations of o�ers
satisfying a goal?

{ Visualisation: Does the approach provide a visual language for service spec-
i�cation and feedback on the result of the matching?

2



Table 1. How existing approaches realize the proposed requirements

Approach of: Language Partial Match Flexibility Completeness Feedback

[7] OWL, DAML-S X � � X

[8] DAML-S, SHOP-2 X X X �

[9] FOL X X � �

[10] WSML X X X �

Our Approach Graph Theory, GTS X X X X

While there are many approaches to composition of services, we limit our
discussion to semantics-based approaches using pre- and postconditions, disre-
garding process or work
ow-based orchestration, see [5, 6] for a more complete
picture. We summarise the results of our analysis in Table 1.

In [7] the authors propose a semi-automatic approach for �ltering and com-
position of services using OWL and DAML-S. An inference engine performs an
exact match with available services and shows the resulting list to the user who
selects the ones to be composed. The approach is highly dependent on user in-
put and so avoids the need for a decidable composition procedure required for
automation. In contrast, we would require feedback on the end result of the
automated composition only.

In a number of works, AI planning models are used to construct process
models from goals and operations described by pre- and postconditions. For
example, [8] is based on DAML-S. Their approach is decidable for a �nite number
of services / operations. Partial matching is possible based on the semantic
description. The main di�erence with our approach is the use of logic-based
(rather than visual) descriptions, which makes it di�cult to provide feedback on
the result of the composition to domain and business experts.

The work in [9] is representative of approaches based on �rst-order speci�ca-
tion of goals and services. It allows partial matching and 
exibility in ordering in
addition to goal templates which abstract from the actual input parameters for
invoking services and can thus be matched at design time. Our goals are at the
level of goal templates in [9] in that they are generic with regard to the actual
parameters.

Approaches such as [10] use semantic service web markup languages such
as WSML-MX that are both specialised for the task of service description and
matching and limited in expressiveness to guarantee computability.

3 Graphical Service Speci�cation and Matching

Following [4, 11], in this section we review the basic notions of service speci�ca-
tion and matching used in the rest of the paper.

Visual Service Speci�cation. According to [12], a web service describes a col-
lection of operations that are network accessible, each speci�ed by a pre- and
a postcondition. As usual, a precondition denotes the set of states where that
operation is applicable and the postcondition describes how any state satisfying
the given precondition is changed by the operation. In our case the states can be

3



seen as typed attributed graphs. This means graphs that may include values (the
attributes) in their nodes or edges, all typed by a �xed type graph. For instance,
Fig. 1 describes the type graph of the running example of a travel agency that
we will use along the paper and Fig. 3 is an example of an attributed (instance)
graph typed over that type graph after booking a 
ight.

Fig. 1. Type Graph

In [4, 11] the speci�cation of an operation Op, denoted Op : PRE ) POST is
given by typed attributed graphs, PRE and POST related by an injective partial
graph morphism represented as a pair of injective morphisms, pre : COM !
PRE and post : COM ! POST . Here COM provides the intersection of PRE
and POST , and pre, post are the corresponding injections into PRE and POST .
Usually, attributed graphs PRE, POST and COM include variables, values
or complex expressions as attributes. However, in this paper attributes will be
restricted to variables and basic values only, ruling out complex expressions.
These will be captured, together with other constraints, by a formula � which
constrains the possible values of the variables occurring as attributes in a graph
G and we call (G;�) a constrained graph. In our case the graphs of an operation
have a common condition � relating the variables occurring in PRE and POST .
Hence, an operation speci�cation is denoted by a pair hPRE ) POST; �i (or

hPRE
pre
 COM

post
! POST; �i if we are interested in the intersection COM).

For instance, Fig. 2 describes an operation BookF light for booking a 
ight with
a travel agency service.

Fig. 2. BookF light Operation for Travel Agency (Provider)

4



In the example, graphs PREP and POSTP are the pre- and postconditions
for operation BookF light whereas graph COMP represents the intersection of
PREP and POSTP . Condition � constrains the operation to be 
exible enough
to choose the departure date f:dep within the range of t:dep min and t:dep max

as well as the arrival date f:arr within t:arr min and t:arr max. This way of
dealing with attributed graphs, introduced in [?], has proved essential in order to
support the declarative (as opposed to computational) description of attribute
operations appropriate to the use of graphs as pre- and postconditions (rather
than rewrite rules only). In particular, we allow attributed graphs representing
states to include variables and conditions on attributes, rather than just values,
thus providing a symbolic representation where not all the attributes are fully
evaluated. We refrain from the use of application conditions [13] in the speci�ca-
tion of operations to keep the presentation simple, but believe that they would
not add an essential di�culty.

The semantics of the operation hPRE
pre
 COM

post
! POST; �i is described

using graph transformation. More precisely, given an attributed graph hG;�0i
representing the current state and given a matching morphism m : PRE ! G

such that �0 implies m(�), with m(�) the formula obtained by replacing each
variableX in � by its imagem(X), the result will be the attributed graph hH;�0i
with H de�ned by the following double pushout:

PRE

pom

��

COM

po

preoo post //

��

POST

��
G Doo // H

Intuitively, graph D is obtained by deleting from G all the elements (nodes,
edges, or attributes) which are matched by an element that is present in PRE

but not in COM . Then, the graph H is obtained adding to D all the elements
which are present in POST , but not in COM . For instance, if we apply the
operation BookF light to graph G in the left of Fig. 3, the result will be the
graph H in the right of Fig. 3. Notice that, for readability, these graphs include
some values, such as 200, instead of a variable X and the equality X = 200
included in the associated formula.

Fig. 3. Transformation due to BookF light of Travel Agency

A requester looking for a service must specify the operations they want to
use. Requester speci�cations have the same form as provider speci�cations. They
are seen as inquiries that the requester is making, with the aim of entering into

5



a contract with the provider. In particular, PRE would denote the data and
resources that the requester would accept to provide and POST would describe
the expected result of the operation. In this use case, the semantics of these
speci�cations is a di�erent one because the requester may not (need to) know
all the details of the provider state and cannot thus describe completely all
the changes caused by the operation. Such a semantics has been studied for
graph transformations in terms of double pullbacks [14]. More precisely, given
an attributed graph hG;�0i and a matching morphisms m : PRE ! G such that
�0 implies m(�), a graph H is the result of a double pullback transition if we
can build a double pullback diagram of the same shape like the double pushout
above, but replacing the po by pb squares.

Intuitively, in a double pullback transition, the rule PRE ) POST describes
a lower bound to the e�ects the operation should cause when applied to G. This
means, if an element a is present in PRE but not in COM , then m(a) must be
deleted from G, and if a is present in POST , but not in COM , then it must
be added to G. And if a is present in COM , then it must remain unchanged.
However,Gmay su�er other changes not speci�ed by the operation. For instance,
if the speci�cation of the operation BookF light in Fig. 2 would be part of a
requester speci�cation, then applying that operation to the graph G in Fig. 3
could yield the graph H in Fig. 3 as a result of a double pullback transition.

Matching Visual Contracts. In order to match the requirements for an operation
OpR = hPRER ) POSTR; �Ri of a requestor against a description OpP =
hPREP ) POSTP ; �P i supplied by a provider, we have to guarantee that all
e�ects required by OpR are implemented by OpP . More precisely, assuming that
hG;�i represents the given state, the following conditions must be satis�ed:

a) Whenever a transition for OpR can take place, a corresponding transforma-
tion associated to OpP must be possible.

b) If OpR prescribes that some element must be deleted from the current state,
that element must also be deleted by OpP .

c) If OpR prescribes that some element must be added to the current state,
that element must also be added by OpP .

d) If OpR prescribes that some element remain in the current state, that element
should be part of COMP .

Technically, this means to ask for the existence of three injective morphisms
hPRE : PREP ! PRER, hCOM : COMR ! COMP , and hPOST : POSTR !
POSTP , such that �R implies hPRE(�P ), hPRE and preR are jointly surjective4,
diagram (1) commutes, and diagram (2) is a pullback.

PRER

(1)

COMR

(2)

preRoo postR //

hCOM

��

POSTR

hPOST

��
PREP

hPRE

OO

COMP
prePoo postP // POSTP

4 This means that every element in PRER is the image of an element in COMR or of
an element in PREP

6



In particular, given hG;�i, the existence of hPRE : PREP ! PRER such
that �R implies hPRE(�P ) ensures that if there is a match m : PRER ! G

such that � implies m(�R) then we also have a corresponding match hPRE �
m : PREP ! G such that � implies hPRE(m(�P )). In addition if an element
is in PRER but not in COMR then that element should also be in PREP ,
because hPRE and preR are jointly surjective, but not in COMP since diagram
(1) commutes. This means that according to both rules, OpR and OpP , that
element must also be deleted. If an element is in POSTR but not in COMR

then that element should also be in POSTP but not in COMP because diagram
(2) is a pullback. Finally, if an element is in COMR its image through hCOM
would also be in COMP .

Fig. 4. BookF light Operation of Requester

For instance, in our example the speci�cation in Fig. 2 matches the speci�-
cation in Fig. 4. All the elements in PREP , COMR, and POSTR have an image
in PRER, COMP , and POSTP respectively. So there exist three injective mor-
phisms [15, 13] between PREP and PRER, COMP and COMR, and POSTR
and POSTP .

We have discussed how to match a request with a service o�ered by a provider
in an ideal situation, where the granularity of requirements and o�ered services
coincide and the matching is complete. However, such a lucky outcome is unlikely
in practice.

On one hand, as seen above, a service precondition must describe the data and
resources that may be needed to run that service (and, in addition, through the
associated condition �R, it may also describe the conditions under which a given
service is considered to be acceptable, e.g. its cost). This means to assume that
the requester knows, a priori, all the data and resources that may be required
to satisfy his needs. This may be unrealistic in many cases. For instance, when
booking a trip, the requester may describe in its precondition some basic data,
like their name, date and destination of the travel, credit card or bank account
number, etc. In addition, the requester may specify an overall budget for the
travel. However the provider may also need to know the age of the traveller, to
see if some discount applies, or whether the requester has a discount bonus that
would be consumed when using the service.

7



On the other hand, the postcondition describes the e�ect of using a given
service. In this sense, the requester will describe everything they expect to get
when binding to a certain service. However, there may be two problems here.
On one hand, there may not be a single provider that o�ers a service covering
all the requester needs. For instance, the requester for a travel may want, not
only to book a 
ight and a hotel, but also to get tickets for a play and to have
a dinner in a well-known restaurant. Then, there may be no travel agency that
can take care of all these activities. On the other hand, the speci�cation level of
the requester and the provider may have di�erent granularity. In particular, a
requester may describe as a single operation booking a 
ight and a hotel room,
while a given provider, in his speci�cations, may consider these two bookings
as independent operations. Then, matching this request would mean for that
provider �nding an appropriate combination of the two operations that satis�es
the customer needs.

So, we believe there is a need for matching a request with multiple o�ers. In
the next section we discuss such an incremental procedure for the composition
of services, where we will discuss the partial match of single requester operation
with multiple provider o�ers.

4 Incremental Service Composition

Given a goal of a requester as well as a set of provider o�ers, both expressed
by pre- and postconditions, �rst we select an o�er providing a partial match
of the goal. Then, we compute the remainder of the goal with respect to this
o�er, containing all the requirements not yet satis�ed, and post the result as a
new goal. We iterate these steps until all requirements are satis�ed or we run
out of o�ers to match. Finally, we compose all o�ers used into one global o�er
summarising the overall e�ect of the combined services. Next we describe this
approach in detail.

Partial Matching. Given a request hPRER ) POSTR; �Ri a partial match with
a provided description hPREP ) POSTP ; �P i is given by a partial embedding
of PREP into PRER and of a partial embedding of POSTR into POSTP . Fol-
lowing the previous discussion, the idea is that, on the one hand, not everything
included in the provider's precondition needs to be present in the requester's
precondition, since the latter may have to be completed later. On the other
hand, not everything in the requester's postcondition needs to be present in the
provider's postcondition, since not every e�ect demanded by the requester may
be covered by a single provided operation.

De�nition 1. (partial match, common suboperation) Given requester and

provider operations OpR = hPRER
preR
 COMR

postR
! POSTR; �Ri and OpP =

hPREP
preP
 COMP

postP
! POSTP ; �P i a partial match m consists of embed-

8



dings:
PRER

(1)

COMR

(2)

preRoo postR // POSTR

PREC

(3)mPREP

��

mPRER

OO

COMC

(4)

preCoo postC //

mCOMP

��

mCOMR

OO

POSTC

mPOSTP

��

mPOSTR

OO

PREP COMP
prePoo postP // POSTP

such that diagram (3) commutes, and diagrams (1), (2), and (4) are pullbacks.

The operation OpC = hPREC
preC
 COMC

postC
! POSTC ; �Ci, where �C

is a condition such that �R and �P imply mPRER(�C) and mPREP (�C), re-
spectively, is called a common suboperation of the provider and the requester
operations, since it can be considered to be embedded in both operations. For ex-
ample, the common suboperation is shown by unshaded background in Fig. 5 in
both embeddings, where the circled arrows denote the partial embeddings between
the providers and requesters pre and postconditions.

Fig. 5. Requester goal jointly matched by two consecutive o�ers

The condition �C is obtained from �P when some of its free variables are not
present. In particular, �C may be 9X�P or some stronger condition, where X
is the set of variables included in the provided operation which are not present
in the common suboperation. The fact that we do not ask diagram (3) to be a

9



pullback, while we ask diagrams (1), (2), and (4) to be so, is a consequence of
the fact that we want to express the condition that OpP implements partially
the e�ects of OpR on their common elements. This means, on one hand, that if
a common element is deleted by OpP then that element must also be deleted by
OpR, but not necessarily the other way round. Conversely, this means that every
common element preserved by OpR must also be preserved by OpC (and hence
by OpP ), which means that (1) is a pullback. However, the fact that not every
common element preserved by OpP must also be preserved by OpR means that
(3) is not necessarily a pullback. On the other hand, (2) and (4) are pullbacks,
because we consider that if a common element in POSTC is produced by OpP ,
then it should also be produced by OpR, and vice versa, That is, it makes no
sense to think that an element that is considered to be information used by the
requester's rule is produced by the provider's rule, or the other way round.

The common suboperation of OpP and OpR, while being embedded into both
operations, does not implement their common behaviour. When OpC is applied
to a given state hG;�i, it adds all common elements added by bothOpP andOpR,
but it only deletes common elements that are deleted by OpR, but not necessarily
by OpP . For instance in Figure 5, the requestor goal requires the deletion of
b : Bonus but Prov1 :: FlightRes does not. The common suboperation of
Prov1 :: FlightRes and Req :: FlightRes is constituted by all elements of
Prov1 :: FlightRes not shaded in grey. Hence, b : Bonus is in the precondition
of the common common suboperation but not in the postcondition, i.e., it is
deleted. However, we are interested in a common operation that describes the
shared e�ects of OpP and OpR, i.e., that deletes all elements deleted by both
OpP and OpR and adds all elements added by both operations.

De�nition 2. (shared behaviour suboperation) Given requester and provider
operations OpR and OpP , and given their common suboperation OpC with re-
spect to a partial match m, we de�ne the shared behaviour operation of OpR and

OpP with respect to m as OpSB = hPREC
preSB
 COMSB

postSB
! POSTSB ; �Ci,

where COMSB and POSTSB are given by the following pullback and pushout
diagrams:

PREC

pbmPREP

��

COMSB
preSBoo

mCOMSB

��

COMC

pomCOMC

��

postC // POSTC

mPOSTC

��
PREP COMP

prePoo COMSB postSB // POSTSB

with mCOMC
de�ned by the universal property of the pullback de�ning COMSB.

Intuitively, COMSB includes the elements which are shared by PREP and
PRER and are not deleted by OpP , and POSTSB includes all the elements of
POSTC plus the elements that are not deleted by OpSB . Fig. 6 depicts the shared
behaviour suboperation based on the requestor goal and Prov1 :: FlightRes and
their common sub operation (shown in Fig. 5).

We may consider several special kinds of partial matches which are of interest.

10



Fig. 6. Shared behaviour operation of goal and Prov1::FlightRes of Fig. 5

De�nition 3. (classes of partial matches) Given a partial match m as
above:

{ m provides positive progress if postC is not an isomorphism (or, equiva-
lently, if postSB is not an isomorphism).

{ m provides negative progress if preSB is not an isomorphism.
{ m provides progress if m provides positive progress or negative progress.
{ m is demanding if mPREP is not an isomorphism.
{ m is weakly complete if mPOSTR is an isomorphism.
{ m is complete if diagram (3) is a pullback, mPRER and preR are jointly

surjective, and mPOSTR is an isomorphism.

Two completely unrelated rules may be bound by a trivial partial match. For
instance, a partial match where the common rule is empty, or if the precondition
and the postcondition of the common rule coincide. In this sense, the �rst three
cases describe partial matches where the provider's rule satis�es partially some
of the goals of the requester. In particular, if m provides positive progress this
means that the provider's rule produces some of the elements that the requester
asks to be produced. Similarly, ifm provides negative progress then the provider's
rule consumes some of the elements that the requester asks to be consumed.
Finally, m provides progress if it provides any progress at all.

If m is weakly complete then this means that the provider's rule produces
all the elements that are asked by the requester but it may not consume all the
elements that are speci�ed to be consumed. If m is complete and not demanding
this means that the provider's rule fully satis�es the requester's needs, i.e. m is a
match. A partial match is demanding if the provider's rule demands the requester
to strengthen its precondition. Conversely, this means that ifm is not demanding
then the provider's precondition is embedded in the requester's precondition,
which means that the former can be considered stronger than the latter. This
kind of situation may be part of a negotiation between the provider and the
requester: the contract de�ned by the requester has speci�ed some resources
to satisfy his needs, but the provider is answering that, to satisfy this needs
more resources are needed. If m is weakly complete then the provider's rule
produces everything that the requester's rule asks to be produced. So this means
that the requester's postcondition is embedded in the provider's postcondition.
However, notice that this not necessarily means that the provider's rule consumes

11



everything that the requester's rule asks to be consumed. This only happens if, in
addition, diagram (3) is a pullback and mPRER and preR are jointly surjective,
i.e. m is complete. In particular, the condition that diagram (3) is a pullback
ensures that a common element cannot be preserved by OpP and be deleted by
OpR, and the condition thatmPRER and preR ensures that there are no elements
in PRER which are deleted by OpR and which are not common elements (and,
hence, cannot be deleted by OpP ).

Remainder of Requester Operation. If the match is not complete, then we may
want to know what remains to be done to satisfy the rest of the requester's
needs. In particular, the provider may want to use other operations to satisfy
their requirements. This can be done by computing what we call the remainder
of the requester's rule with respect to the shared behaviour rule.

De�nition 4. (Remainder of an operation) Given operation speci�cations
OpR = hPRER ) POSTR; �Ri and OpP = hPREP ) POSTP ; �P i, we de�ne
the remainder of OpR with respect to OpP and a partial match m as the oper-
ation hPRERem ) POSTR; �Ri, where PRERem is the result of applying the
operation OpSB to PRER with match mPRER .

The idea is quite simple. We know that PRER denotes the class of states where
OpR is expected to be applicable, but also that OpSB speci�es the shared be-
haviour of OpP and OpR, i.e., all the deletions and additions which are shared by
both operations. Then, PRERem would describe the states after these deletions
and additions, and hPRERem ) POSTR; �Ri would specify the e�ects that are
yet to be implemented by another provider operation.

For example in Fig. 5, the left-hand side PRERem of the remainder rule is
obtained by applying the shared behaviour suboperation (shown in Fig. 6) to the
left-hand side PRER of the goal, while the remainder's postcondition is POSTR.
OpRem may be matched with Prov2 :: HotelRes in the same way, leaving empty
remainder.

It is not di�cult to prove that the remainder is the trivial operation, i.e.
PRERem = POSTR, if and only if the match m is complete. Moreover, we
can also prove that if a provider operation Op1P can be partially matched via
m1 to a request OpR leaving OpRem as a remainder, and if another provider
operation Op2P can be partially matched via m2 to OpRem leaving as a new
remainder Op0

Rem, then we can compose Op1P and Op2P to form a new operation
Op3P = hPRE3

P ) POST 3
P ; �

3
P i that can be partially matched to OpR via

m3, which is built from m1 and m2, directly leaving as a remainder Op0

Rem.
This means that the global e�ect of this new operation is the same one as the
sequential application of Op1P and Op2P . In particular, this means that if m2 is
complete then m3 is also complete.

The operation Op3P is built analogously to the so-called concurrent rule for
the consecutive application of two graph transformation rules [15]: Intuitively,
PRE3

P is the union of PRE1
P and (PRE2

P minus POST 1
P ) and POST 3

P is the
union of POST 2

P and (POST 1
P minus PRE2

P ), where in each case elements from

12



di�erent graphs are identi�ed if they are mapping to the same elements of the
requester speci�cation. As for conditions, �3P is the conjunction of �1P , �

2
P , and

all equations x1 = x2, for all variables x1 from �1P and x2 from �2P which are
bound to the same variable x from �R via m1 and m2, respectively. For our
example, Fig. 7 shows the resulting composed operation.

Fig. 7. Composed Operation of both Provider O�ers

Finding Complete Solutions. We describe a resolution-like procedure for building
a complete match to a requester speci�cation. This procedure is terminating,
correct and complete, i.e., given a requester operation OpR, if at all possible this
procedure will combine suitable provider operations into a single composed one
which forms a complete match for the requestor's goal. Moreover, this is done in
a �nite number of steps. The procedure is presented as an inference rule whose
application is non-deterministic, although in practice we could use heuristics to
guide the search and to produce �rst the results which are considered better
according to some criteria.

Let us describe this procedure in detail. We describe the computation states
of our procedure as 3-tuples hOpP ;m;OpRemi, where OpP is a provider operation
(perhaps built from more basic operations), m is a partial match from OpP to
OpR, and OpRem is the remainder associated to m. Intuitively, OpP represents
the partial solution that we have built up to that point, m is the partial match
that tells us in which way OpP partially satis�es the request, and OpRem is the
the part of the request that we still have to satisfy. In this context, we consider
that the initial state is the 3-tuple hTriv; triv;OpRi, where Triv is the trivial
(empty) operation, triv is the trivial empty match and, obviously, the remaining
part to satisfy is the whole request. Then, the procedure is based on the following
inference rule:

13



hOp1P ;m1; Op
1
Remi

hOp2P ;m2; Op
2
Remi

If there is a provider operation Op3P , and a partial match m3 from Op3P to
Op1Rem, such that m3 provides progress, Op

2
Rem is the remainder associated

to m3, and Op2P and m2 are, respectively, the composition of Op1Rem and
Op3Rem and the associated partial match from Op2P to OpR.

An execution of this procedure is a sequence:

hTriv; triv;OpRi =) hOp
1
P ;m1; Op

1
Remi =) : : : =) hOpnP ;mn; Op

n
Remi

where, for each i, hOpi+1
P ;mi+1; Op

i+1
Remi can be inferred from hOpiP ;mi; Op

i
Remi.

Then, an execution is successful if the �nal match mn is complete.
It is not di�cult to show that the above procedure is correct, complete and

terminating. In particular, it is sound in the sense, for every i, mi is a partial
match from OpiP to OpR, and Op

i
Rem is the corresponding remainder. It is com-

plete in the sense that if there is a way of satisfying completely the request by
applying a sequence of provider operations then there exists an execution that
will return a composed operation, together with a complete match. Finally the
procedure is terminating, i.e. there are no executions of in�nite length and, more-
over, there is a �nite number of executions, provided that the graphs involved are
�nite and that there is a �nite number of provider operations. This is due to the
fact that the number of additions and deletions requested in a goal is �nite. Since
we are assuming that all the matchings involved provide progress, the length of
each execution is bounded by the number of additions and deletions speci�ed
in the request. Moreover, with a �nite number of provider operations and �-
nite graphs only, there is a �nite number of partial matches between requester
operation and provider operations.

5 Conclusion

In this paper, we have proposed an approach to the incremental composition of
services using visual speci�cations of pre- and postconditions. The procedure is
based on the repeated partial matching of provider o�ers with a requestor goal,
which is reduced in the process until all requirements are satis�ed or there are no
more o�ers to consider. As a result, the procedure constructs a combined o�er,
which can be presented to the requestor to con�rm if it is acceptable.

The formalization of these notions and constructions is provided in the ap-
pendix for information. In summary, the main theoretical results are as follows.

1. A de�nition of partial matching allowing the comparison of individual o�ers
of services with the global goal of the requestor.

2. An incremental matching procedure based on the construction of a remain-
der of a goal with respect to a chosen partial match. Assuming a �nite num-
ber of o�ers, the incremental matching procedure terminates. Thus, partial
matching is decidable.

14



3. Each combined o�er constructed as result of the matching has the same
overall e�ect as executing the sequence of o�ers from which the combined
o�er is derived. That means, for each sequence of applications of individual
o�er rules there exists an application of the combined o�er rule with the
same e�ect, and vice versa.

In general, there will be several combined o�ers computed for a given request.
These could be presented to the client to let them choose the most suitable
one. Alternatively, the selection could be automated based on a speci�cation of
preferences (non-functional properties) by the client. Once an o�er is computed
it can be stored in the repository of services, such that new requests can be served
more quickly, matching them against existing combined o�ers. Future work will
address the use of non-functional requirements for the selection of o�ers, as well
as a proof-of-concept implementation of the approach.

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and di-
rections. In: Fourth International Conference on Web Information Systems Engi-
neering (WISE'03), Roma, Italy December 2003, IEEE Computer Society (2003)

2. Kim, I.W., Lee, K.H.: Describing semantic web services: From UML to OWL-S.
In: IEEE International Conference on Web Services ICWS 2007), Salt Lake City,
UT, USA, July 2007, IEEE Computer Society (2007) 529{536

3. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling
language WSML: An Overview. In Sure, Y., Domingue, J., eds.: Proc. of the
3rd European Semantic Web Conference (ESWC 2006). Volume 4011 of LNCS.,
Springer (2006) 590{604

4. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based development of web
service descriptions: Enabling a precise matching concept. International Journal
of Web Services Research 2(2) (2005) 67{84

5. Peltz, C.: Web services orchestration and choreography. Computer (2003) 46{52

6. van der Aalst, W.: Don't go with the 
ow: Web services composition standards
exposed. (2003)

7. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using
semantic descriptions. In: Workshop on Web Services: Modeling, Architecture and
Infrastructure. (2002) 17{24

8. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S web
services composition using SHOP2. In Fensel, D., Sycara, K.P., Mylopoulos, J.,
eds.: International Semantic Web Conference. Volume 2870 of Lecture Notes in
Computer Science., Springer (2003) 195{210

9. Stollberg, M., Keller, U., Lausen, H., Heymans, S.: Two-phase web service dis-
covery based on rich functional descriptions. In Franconi, E., Kifer, M., May, W.,
eds.: The Semantic Web: Research and Applications, 4th European Semantic Web
Conference, ESWC 2007, Innsbruck, Austria, June 3-7, 2007, Proceedings. Volume
4519 of Lecture Notes in Computer Science., Springer (2007) 99{113

10. Klusch, M., Kaufer, F.: Wsmo-mx: A hybrid semantic web service matchmaker.
Web Intelli. and Agent Sys. 7(1) (2009) 23{42

15



11. Heckel, R., Cherchago, A.: Structural and behavioral compatibility of graphical
service speci�cations. Journal of Logic and Algebraic Programming 70(1.1) (2007)
15{33

12. Kreger, H.: Web services conceptual architecture (2001) IBM Software Group,
http://www.ibm.com.

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer (2006)

14. Heckel, R., Llabr�es, M., Ehrig, H., Orejas, F.: Concurrency and loose semantics of
open graph transformation systems. Mathematical Structures in Computer Science
12 (2002) 349{376

15. Rozenberg, G., ed.: Handbook of graph grammars and computing by graph trans-
formation: vol. 3: Concurrency, parallelism, and distribution. World Scienti�c Pub-
lishing Co., Inc., River Edge, NJ, USA (1999)

16


