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Nanotopographies bioactives pour le contréle de la différencia-
tion des cellules souches mésenchymateuses pour applications

en ingénierie de tissu osseux

Résumé

Les nanotopographies de surface présentant des dimensions comparables a celles des
éléments de la matrice extracellulaire offrent la possibilité de réguler le comportement
cellulaire. L’étude de I'impact de la nanotopographie de surface sur la réponse cellulaire
a été toujours limitée compte tenu des précisions limitées sur les géométries produites,
en particulier sur les grandes surfaces. Des matériaux base silicium présentant des
nanopiliers avec des géométries parfaitement controlées ont été fabriqués et leur im-
pact sur la différentiation ostéogénique de cellules souches mésenchymateuses humaines
(hMCSs) a été étudié. Des matériaux avec des nanopiliers de dimensions critiques com-
prises entre 40 et 200 nm et des écarts types inférieurs a 15% sur un wafer de silicium
ont été réalisés en profitant de la capacité d’auto-assemblage des copolymeres a blocs.
Pour mettre en évidence si des modifications de la chimie de la surface des nanopiliers
pourraient favoriser la différenciation des MSCs, des peptides mimétiques ont été greffés
sur les matériaux fabriqués. Un peptide connu pour sa capacité d’améliorer ’adhésion
cellulaire (peptide RGD), un peptide synthétique capable d’améliorer 1'ostéogenese
(peptide mimétique BMP-2) et une combinaison de ces deux peptides ont été immo-
bilisés de maniere covalente sur les matériaux silicium présentant des nanopiliers de
différentes géométries (diametre, espacement et hauteur).

Les essais d’'immunofluorescence et de réaction en chaine de la polymérase quan-
titative (RT-qPCR) révelent un impact des nanotopographies sur la différenciation
ostéogénique des hMSCs. De plus, il a été constaté que la différenciation des cellules
dépendait de I’age du donneur. La fonctionnalisation de surface a permis une aug-
mentation supplémentaire de I'expression des marqueurs ostéogéniques, en particulier
lorsque le peptide RGD et le peptide mimétique BMP-2 sont co-immobilisés en surface.
Cette étude met clairement en évidence 'impact de nanostructures avec différentes
bioactivités sur la différentiation de MSCs. Ces matériaux pourront trouver leur place
dans des cultures in vitro, dans I’élaboration de nouveaux biomatériaux osseux et dans

de nouveaux produits d’ingénierie tissulaire.

Mots clés: Cellules souches mésenchymateuses, Biomatériaux, Nano-structuration de

matériaux, Autoassemblage de polymeres, Chimie de surface.
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Bioactive nanotopographies for the control of mesenchymal
stem cell differentiation for applications in bone tissue engi-

neering

Abstract:

Nanotopography with length scales of the order of extracellular matrix elements offers
the possibility of regulating cell behavior. Investigation of the impact of nanotopog-
raphy on cell response has been limited by inability to precisely control geometries,
especially at high spatial resolutions, and across practically large areas. This work
allowed the fabrication of well-controlled and periodic nanopillar arrays of silicon to
investigate their impact on osteogenic differentiation of human mesenchymal stem cells
(hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm,
exhibiting standard deviations below 15% across full wafers were realized using self-
assembly of block copolymer colloids. To investigate if modifications of surface chem-
istry could further improve the modulation of hMSC differentiation, mimetic peptides
were grafted on the fabricated nanoarrays. A peptide known for its ability to ameliorate
cell adhesion (RGD peptide), a synthetic peptide able to enhance osteogenesis (BMP-2
mimetic peptide), and a combination or both molecules were covalently grafted on the
nanostructures. Immunofluorescence and quantitative polymerase chain reaction (RT-
qPCR) measurements reveal clear dependence of osteogenic differentiation of hMSCs
on the diameter and periodicity of the arrays. Moreover, the differentiation of hMSCs
was found to be dependent on the age of the donor. Surface functionalization allowed
additional enhancement of the expression of osteogenic markers, in particular when
RGD peptide and BMP-2 mimetic peptide were co-immobilized. These findings can
contribute for the development of personalized treatments of bone diseases, namely

novel implant nanostructuring depending on patient age.

Keywords: Mesenchymal stem cells, Biomaterials, Material nanostructuration, Block

copolymer self-assembly, Surface chemistry.
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Résumé

Nanotopographies bioactives pour le contréle de la différencia-
tion des cellules souches mésenchymateuses pour applications

en ingénierie de tissu osseux

Dans le but de guider de maniere contrélée la réponse cellulaire (e.g. migration,
prolifération, différentiation), des biomatériaux bioactifs capables de mimer le microen-
vironnement cellulaire in vivo (c’est-a-dire la matrice extracellulaire (MEC)) sont a
I'étude [11,2]. La compréhension des interactions biomatériau-cellule a 1’échelle cellulaire
(micrometre) ou méme moléculaire (nanometre) est donc essentielle pour la conception
er I’élaboration d’implants de nouvelle génération utilisables en dentaire ou orthopédie,
la synthese de nouveaux produits d’ingénierie tissulaire ou pour la compréhension du
microenvironnement cellulaire in vivo [3]. En particulier, pour l'ingénierie du tissue
osseux, les cellules souches mésenchymateuses (MSC) représentent les cellules le plus
utilisées en raison de leur capacité a proliférer et a se différencier vers divers lignages
y compris le lignage ostéoblastique [4]. Ces cellules peuvent étre isolées de différents
tissus, notamment de la moelle osseuse, du tissu adipeux et des tissus dentaires [3], [6].

Les méthodes de nanofabrication classiquement utilisées dans 1’électronique four-
nissent des outils intéressants pour fabriquer des substrats nanostructurés que peuvent
étre utilisés comme plateformes pour ces études d’interaction entre une cellule et le
substrat. Ces techniques ont été majoritairement développées puis utilisées pour la
structuration du silicium. Le silicium est considéré comme non cytotoxique, et toutes
les particules susceptibles d’étre libérées sont dégradées en acide silicique, également
non toxique [7, [§].

Des études sur les interactions cellule-matériau ont été relevées a différents régimes
d’échelle. Concernant la nano-échelle, des structures comprenant trous, piliers ou stries
on été capables de produire des réponses cellulaires spécifiques sur plusieurs types cel-

lulaires comme les MSC, les fibroblastes, les neurones, les ostéoblastes et les cellules

vii



musculaires lisses, sans besoin de facteurs de croissance supplémentaires [9-11]. Cepen-
dant, il n’est pas encore compris comment chaque parametre géométrique d’une nano-
structure influence la différenciation des MSC en ostéoblastes. De plus, des résultats
contradictoires sont souvent trouvés dans la littérature probablement car des protocoles
de culture cellulaire différents sont utilisés [12] [13].

Par conséquent, dans cette étude, nous avons étudié 'influence des réseaux de nano-
piliers controlés sur la différenciation des MSC humaines vers le lignage ostéoblastique.
Les cellules ont été cultivées sur des échantillons nanostructurés dans un milieu mini-
mum ne contenant que les molécules essentielles a la survie des cellules, afin d’éviter
I'influence de tout autre parametre que la topologie du matériau. La fabrication des
réseaux de piliers a 1’échelle nanométrique était basée sur I'auto-assemblage de copo-
lymeres diblocs (BCP) amphiphiles. Ces modeles a base de micelles inverses constituent
une alternative a d’autres techniques lithographiques, comme par exemple la lithogra-
phie par faisceau d’électrons, en raison de leur facilité de formation des structures
sur grandes surfaces, d’'un controle orthogonal des variables géométriques, des cotts
réduits et de leur compatibilité avec une large gamme de substrats [14]. Cette tech-
nique lithographique est largement utilisée dans les applications en nanoélectronique
car elle permet la fabrication de matrices ordonnées a ’échelle nanométrique [15].

En ce qui concerne le controle de la réponse cellulaire par le biais de modifications
de la chimie de surface d’un biomatériau, des molécules de différentes tailles, allant des
protéines de la MEC aux peptides linéaires courts, ont été étudiées dans la littérature
comme moyens possibles d’attribuer la bioactivité a la surface d’'un matériau [16]. Des
peptides sont normalement utilisés au détriment des protéines car ils peuvent étre
synthétisés avec une grande pureté, a un cout inférieur, et des sites actifs peuvent étre
crées de maniere controlée [17]. Le motif le plus représentatif utilisé pour améliorer
I’adhésion cellulaire est la séquence d’acides aminés arginine-glycine-acide aspartique
(RGD), qui intervient in vivo dans la liaison des protéines de la MEC aux récepteurs
transmembranaires de type intégrine [I8] [19]. Les protéines morphogénétiques osseuses
(BMP), en particulier la BMP-2, et ses peptides dérivés sont utilisées pour soutenir
la différenciation ostéogénique des MSC [20H22]. Des effets synergiques de la com-
binaison d’un peptide favorisant ’adhérence cellulaire et d’un peptide favorisant la
différenciation cellulaire ont été rapportés dans la littérature [21, 23].

Cette étude vise a étudier la différenciation ostéogénique de MSC humaines cultivées
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sur des matrices de nanopiliers de silicium non-fonctionnalisées ou greffés avec un pep-
tide RGD et / ou un peptide mimétique de la BMP-2. Les surfaces préparées ont été
caractérisées par microscopie a force atomique (AFM), microscopie électronique a ba-
layage (MEB) et spectroscopie photoélectronique a rayons-X (XPS). Pour évaluer dans
quelle mesure la différenciation des MSC était favorisée, ’expression de marqueurs de
différenciation ostéogéniques (facteur de transcription 2, Runx2, collagene de type I,
CollA1l, ostéopontine, OPN, et ostéocalcine, OCN) a été étudiée par immunofluores-
cence et réaction en chaine de la polymérase quantitative (RT-qPCR) [24].

Les micelles inverses des BCP ont permis la fabrication de matrices polymériques
ordonnées avec une bonne uniformité sur grandes surfaces (wafers), qui pourraient
ensuite étre utilisées comme masques pour la structuration du substrat avec une repro-
ductibilité élevée. Ces caractéristiques sont essentielles pour 1'utilisation subséquente
des nanopiliers de silicium dans les études de différenciation des MSC.

La caractérisation des surfaces réalisées par XPS avant et apres le greffage de pep-
tides (RGD ou BMP-2) a montré que la fonctionnalisation de surface se réalisait suivant
le schéma théorique que ce soit sur les surfaces planes ou nanostructurées. La fonction-
nalisation peptidique apparait homogene sur les cing régions analysées sur un méme
matériau. De plus, aucune différence significative dans la chimie de surface n’a pas été
observée entre les échantillons, méme avec différentes topographies.

Des MSC ont été cultivées pendant deux semaines dans un milieu basal indé-
pendamment du test biologique a réaliser (immunofluorescence ou RT-qPCR). Des
échantillons plats ou nanostructurés ont été testés soit juste apres la fabrication, soit
apres leur fonctionnalisation avec un peptide mimétique de RGD et / ou de BMP-2
afin de déterminer quelle était la meilleure surface bioactive pour la promotion de la
différenciation ostéogénique des MSC.

Les résultats obtenus par immunofluorescence et RT-qPCR ont démontré que les
nanopiliers longs, de grand diametre et espacement réduit, non-fonctionnalisés sem-
blaient étre la meilleure surface pour favoriser la différenciation des MSC vers le lignage
ostéoblastique. En comparant 'expression des différents marqueurs (par immunofiuo-
rescence et par RT-qPCR) des cellules cultivées sur ces matrices non-fonctionnalisées
et fonctionnalisées (RGD et/ou BMP-2), il apparait des niveaux d’expression des mar-
queurs ostéoblastiques plus élevés das le case des matériaux fonctionnalisés.

Le greffage d’un seul peptide (RGD ou BMP-2) sur les surfaces planes ou nano-
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structurées n’a pas contribué a favoriser la différenciation cellulaire ; au contraire, 1’ex-
pression des marqueurs a été réduite sur les surfaces fonctionnalisées avec les peptides
RGD ou BMP-2 comparativement aus surfaces vierges. Quand les deux peptides ont
été greffés simultanément, ’expression des marqueurs de différentiation sélectionnés a
augmentée (en comparaison avec le greffage d’'un peptide) et est restée constante sur
toutes les topographies étudiées. Cette expression est similaire a ’expression observée
pour les cellules cultivées sur les nanopiliers de grands diametre et hauteur mais avec
un espacement réduit (sans aucune fonctionnalisation.

Aucun effet synergique entre les modifications de chimie de surface et de la topogra-
phie n’a pas été observé concernant la différenciation cellulaire apres deux semaines de
culture. Au lieu de cela, nous avons observé que les nanopiliers ou la biofonctionnalisa-
tion de la surface (avec la combinaison d’un peptide adhésif et un peptide mimétique
favorisant la différentiation en ostéoblastes) ont été capables d’induire la différenciation
des MSC au méme niveau. Un tel résultat indique que les deux approches peuvent étre
efficaces pour la modulation du comportement cellulaire. Ces conclusions peuvent étre
intéressantes pour le développement de nouveaux biomatériaux ou surfaces modeles ou
les deux types de stimuli ne peuvent pas étre appliqués simultanément, car des signaux
physiques ou chimiques peuvent étre utilisés de maniere indépendante pour promouvoir

la différenciation des MSC vers un lignage spécifique.
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1 Introduction

The main considerations and objectives behind this project are introduced in this
chapter. The basic theoretical concepts and previous works on the subject report in
the literature are analyzed. Finally, the main nanofabrication approaches allowing the

creation of nanostructure arrays for cell studies are summarized.

1.1 Problems and Objectives

The interaction of a material with biological tissues is known to impact the initial
protein adsorption on its surface, and the subsequent cell response, namely its adhe-
sion, proliferation or death [25, 26]. The cell-material interface can therefore be seen as
a complex system comprising three main players: material properties, molecules on the
material surface, and adherent cells. The understanding of this interplay at the length
scales of cells (microscale) or even molecules (nanoscale) is of extreme interest for the
improvement of implants used in dentistry or orthopedics, for the improvement of the
properties of other biomaterials for tissue engineering applications, and for the under-
standing of the in vivo cell microenvironment [3]. Multiple cell types (including mouse
Mesenchymal Stem Cells (MSCk), osteoblasts, cancer cells) have been extensively uti-
lized for investigation of cell-substrate interactions. Nevertheless, it is important to
keep in mind that the same material cue can induce a distinct response in two different
cell types.

Human Mesenchymal Stem Cells (LMSCk) appear as promising candidates for cell-
substrate interaction studies for bone tissue engineering applications, as they can be
harvested from adult tissues, they can be easily cultured in wvitro, and they have the
ability to proliferate and to differentiate into various lineages, including the osteoblastic
lineage [4]. These stem cells can be isolated from different tissues, including bone

marrow, adipose tissue, and dental tissues, which potentiates their use in cell therapies



from the patient own cells (autologous cells), avoiding the risk of immune reactions,
often associated with utilization of cells from a different donor [5, [6].

As referred, nanotopography with length scales of the order of Extracellular Matrix
(ECM]) elements offers the possibility of regulating cell behavior. Nonetheless, the
investigation of the impact of nanotopography on cell response has been limited by
inability to precisely control geometries, especially at high spatial resolutions, and
across practically large areas. Moreover, biofunctionalization of biomaterial surfaces
can be also engineered in order to further improve cell response.

Therefore, the present study aimed at creating well-controlled and periodic nanopil-
lar arrays of silicon with critical dimensions close to the dimensions of elements of [ECM]
on full wafers, to ensure that the number of samples required for biological studies was
achieved. The nanostructures were afterwards functionalized with peptides or com-
bination of peptides known to improve cell adhesion and osteoblastic differentiation
of BMSCE. The impact of these physical and chemical cues on adhesion and
differentiation was evaluated via the investigation of expression of proteins and genes

related with such cell behaviors.

1.2 State of Art

1.2.1 Biomaterials and bone tissue engineering

The concept of biomaterials has been developed and expanded since its first defi-
nition in 1980s as non viable materials used in a medical device intended to interact
with biological systems [27]. Nowadays, since it is well understood that the cells are
able to interact and sense changes (of chemistry, topography or stiffness) on a material
surface down to nanometer scale, a biomaterial can now have a broader definition as
an engineered material that can be used alone or as a part of a complex system to
regulate processes of living systems in order to control the course of any therapeutic or
diagnostic procedure for medical purposes (in humans or veterinary) [I]. Biomaterials
field is expected to have a continuous development, considering the aging population,
the increasing standard of living in developing countries, and the growing ability to
address previously untreatable medical conditions [28].

According to Rabkin and Schoen, the development of biomaterials and biomaterial



science can be divided in three main periods/generations, each one with distinct ob-
jectives [29]. Biomaterials used in the 1950s, which are described as first generation of
biomaterials, were selected according to their physical properties — that should match
the ones of the replaced tissue — and their bioinertness, since they should elicit the min-
imum possible host reaction, hence being biocompatible. Later, with improvements in
technology areas, a second generation of biomaterials could be developed, aiming at
creating a controlled response of the tissues into which the biomaterial had been im-
planted. Such bioactive biomaterials included resorbable materials, or materials able
to release a drug in a controlled-localized way, for instance [2§].

With respect to bone tissue, a biomaterial must meet a few basic requirements,
namely biocompatibility, nontoxicity, corrosion resistance, durability, strength and duc-
tility, and a low elasticity modulus (moduli of the biomaterials most commonly used
in bone replacement are summarized in Table [30]. Biocompatibility is an essen-
tial property of any biomaterial, since it must interact with the living systems and
perform its function without causing immune responses or foreign body reactions [28].
According to the definition of Williams (2008), biocompatibility refers to the ‘ability
of a biomaterial to perform its desired function with respect to a medical therapy,
without eliciting any undesirable local or systemic effects in the recipient or benefi-
ciary of that therapy, but generating the most appropriate beneficial cellular or tissue
response in that specific situation, and optimizing the clinically relevant performance
of that therapy’ [31]. In the same way, it is required that no ions or other harmful
sub-products are released by a material, to impede any possibilities of allergy, inflam-
mation, or necrosis, for instance. Alongside with nontoxicity, a biomaterial used in an
implant in orthopedics must have a high corrosion resistance, to have a longer life in
the host’s body. Moreover, failures of an implant can be more likely avoided if the
material has a high durability, that is, high fatigue strength, which is directly related
with its resistance to corrosion and to releasing particles. Finally, the materials used in
bone replacement should have a lower Young’s modulus than the materials currently
used in such applications, as they have elastic moduli 5 to 10 times higher than bone.
This difference is often a cause of stress shielding, i.e. the implant bears more load
than the surrounding bone which leads to the death of bone cells over time [28]. Table

summarizes the main properties of commonly used materials in bone implants.



Table 1.1 — Properties of examples of metal biomaterials. Comparison with cortical bone.

[30]
Material  Density / g.cm™ Young’s modulus / GPa
Stainless steel 8.0 200
CoCr alloys 8.5 210-250
Ti-6Al-4V 4.4 90-115
Cortical bone 2.0 7-30

1.2.2 Stem cells

Regenerative medicine and tissue engineering rely on the utilization of stem cells
since they have two unique and advantageous properties: self-renewal and potency

(Figure[L.1]). Stem cells are able to proliferate maintaining their undifferentiated char-

Self-renewal

Differentiation

Stem cell Differentiating cell

Figure 1.1 — Schematic representation of the capacities of stem cells to self-renewing and
to differentiate into a more committed cell.

acteristics, and consequently maintaining a stem cell population. Moreover, they have
the ability to differentiate into a more specialized cell type [32]. According to their
differentiation capacity, stem cells can be divided into two main categories (Figure :
pluripotent, if they are able to differentiate into cells of the three germ layers (endo-
derm, mesoderm, and exoderm), or multipotent, if they can differentiate only into cells
of a specific germ layer.

Adult stem cells are normally defined as multipotent stem cells, even if in particular
cases some of them may have the capacity to transdifferentiate into a cell type from
other germ layer (e.g. differentiation of into neurons). Examples of pluripotent
stem cells are embryonic stem cells and Induced Pluripotent Stem Cells ({PSk). Em-
bryonic stem cells are collected from the inner mass of the blastocyst from an embryo,

which gives rise to a number of ethical factors concerning the use of human embryos
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for research [33]. Alternatively, pluripotent cells can be created via the reprogramming

of somatic cells into with the help of key transcription factors (Figure .
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Figure 1.2 — Stem cell hierarchy. Progression of stem cells during development, highlighting
their ability to self-renew or to differentiate into a more compromised state [34].
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Figure 1.3 — cell technology. Somatic cells from a patient can be reprogrammed,
generating pluripotent cells. These cells can be differentiated into specialized cells and be
applied in regenerative medicine, or in the development of disease models, for instance [35].

Such cells were first described for humans in 2007 (findings had been previously
shown for mice) by the team of Yamanaka [36]. The generation of human [PSopened up

the potential for the creation of autologous cells in sufficient number for applications in



regenerative medicine. Nevertheless, a few shortcomings still need to be overcome. For
instance, there is no screening method to ensure that cells were fully reprogrammed.
If cells are not correctly reprogrammed, they may not exhibit all the properties of

stem cells, and there can be an increased risk of teratoma formation due to aberrant

reprogramming [35].

1.2.2.A Mesenchymal stem cells

In 1990s, IMSCk were described as progenitor cells from bone marrow, which are
able to proliferate almost indefinitely and to give rise to skeletal tissues, namely bone,
and cartilage [37]. More recently, it was understood that these stem cells exist in other
tissues besides the bone marrow, including adipose tissue, and that they actually have
the ability to differentiate or trans-differentiate in numerous cell types from all germ

lines, as represented in Figure [38].
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Figure 1.4 — [MS( differentiation. Bone marrow [MSCk have the capacity to self-renew and
to differentiate into cells of mesoderm. It has also been reported that these stem cells may
transdifferentiate across the other germ lines during in vitro culture. [3§].

Although the fraction of [MSCk in the body is rather low (between 1:10* cells in
a new-born and 1:10° cells in an 80 year old person), their use in tissue engineering
is preferred over other stem cell type, as [39]. [MSCk are advantageous for tissue

engineering and cell therapy applications mainly due to their simple harvesting process



and in vitro culture, the potential to use patient-derived cells, which eliminates the
risk of immune reactions, their immunomodulatory effect, and the reduced ethical

constraints related with their utilization [38], 40].

1.2.3 Bone tissue

Bone is a mineralized connective tissue that constitutes the skeleton, together with
the cartilage. It works closely together with the bone marrow almost as a single entity,
ensuring the interactions between different types of cells which are critical for the equi-
librium of hematopoiesis and the maintenance of skeletal health [41]. Bone is organized
in a hierarchical way (Figure and it comprises structures whose dimensions range
from mili- to nanometer scale. Bone tissue can be either very dense, denominated

cortical bone, or more cancellous, being called trabecular bone [42].
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Figure 1.5 — Hierarchical organization of bone. Representation of bone organization from
macro- to nanoscale levels [42].

Bone is composed mainly by a mineral phase (mostly carbonated apatite) cor-
responding to approximately 65 % of its weight, an organic matrix (mainly type I
collagen), and around 10 % of water [42]. Collagen is the main responsible for bone
viscoelasticity and structure organization. Other types of collagen together with a
large number of non-collagenous proteins, as Osteocalcin ([OCNI), Osteopontin (OPN]),
bone sialoprotein, proteoglycans, glycoproteins, constitute a rather smaller fraction of

the organic matrix. Non-collagenous proteins play a vital role on the regulation and



maintenance of bone’s [ECM] [43].

Four main cell types constitute bone: osteoblasts, osteocytes, osteoclasts, and bone
lining cells. These cells are responsible for the maintenance of the equilibrium between
bone formation and resorption (Figure , complex processes relying on cell-cell com-

munications for the preservation of skeletal integrity.
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Figure 1.6 — Schematic representation of bone remodeling process. [44]

Perturbation of such communications is known to be related with abnormal bone
density, leading to bone diseases as osteoporosis (characterized by loss of bone mass and
structural deterioration of bone tissue) or osteopetrosis (when bone formation occurs
faster than bone resorption, leading to very dense, but brittle bones)[45].

Bone cells originate from two types of stem cells: hematopoietic stem cells, in the
case of osteoclasts, and mesenchymal stem cells, in the case of osteoblasts, osteocytes,
and bone lining cells. Osteoclasts are large multinucleated cells (with four to twenty nu-
clei) derived from hematopoietic precursors of the monocyte-macrophage lineage that
are found on bone surfaces. These cells are responsible for bone resorption, process
that comprises two main steps: dissolution of hydroxyapatite crystals, and subsequent
digestion of the organic compounds of bone matrix. In parallel, osteoclasts release fac-
tors limiting their own activity, and promoting osteoblast function. Osteoblasts derive
from the differentiation of into osteoprogenitor cells which then differentiate into
osteoblasts. These cells can later differentiate into osteocytes. The process of differ-
entiation of bone marrow into the osteoblastic lineage is summarized in Figure
L7

Osteoblasts are responsible for the production of new bone, as they synthesize and

secrete new collagen matrix and calcium salts in the growing portions of the bone.
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Figure 1.7 — Schematic representation of differentiation steps of bone marrow MSCs into
osteoblasts and osteocytes. [46]

Osteoblasts express various osteogenic factors, namely Alkaline Phosphatase (ALP]),
[OPN| [OCN| and bone sialoprotein, known to be involved in the formation of the
organic bone matrix (osteoid). As osteoblasts get surrounded by their secreted matrix
which gets calcified and entraps them, these cells differentiate into mature osteocytes
(most common type of bone cell) [41], 46]. Also, during bone formation, close to
the growing bone tissue form a layer of undifferentiated cells forming the periosteum,
which will be a reservoir for bone forming cells for later bone maintenance [47]. Bone
lining cells derive from osteoblasts that are no longer synthesizing matrix, and become

flattened, covering the inactive bone surface, and becoming bone lining cells [42].

1.2.4 Cell-substrate interactions

The control of the properties of biomaterials can be a powerful tool for the modeling
of celHECM] interactions. Furthermore, engineering of surface chemistry, topography
or physical properties of a material at nanoscale has been reported to influence cell
behavior, namely in the case of (Figure [L.8)[16] 148, 49]. The investigation of
cell-substrate interfaces at nanoscale can provide important insights on aspects of cell
interactions with their in vivo microenvironment (e.g. different components of [ECM]),
as well as ideas for the development of better scaffolds for bone tissue engineering or

model systems for disease studies, for instance.
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Figure 1.8 — Schematic representation of the control of cell response due to modifications
of material chemistry(A), stiffness (B), and topography (C). Cells extend filopodia to ‘find’
adhesion ligands (in red). Binding of the cell through focal adhesions to ligands creates
tension and activates signaling. Chemical functionality can be used to fabricate areas of high
adhesion (red) or low adhesion for the cells to respond to. Stiffness will affect the cells ability
to produce tension through focal adhesions formation. Topography will present the adhesion
ligands to the cells in either a favorable or unfavorable manner, again affecting adhesion and
subsequent tension and signaling. [50]

1.2.4.A Biochemical surface modification

Surface modification processes that can add specific biological functions on the
surface of a material, without impacting their bulk properties, can be called biofunc-
tionalization methods, as they are able to turn a bioinert material into a bioactive
cell-instructive one (Figure [1.9). These bioactive biomaterials can be engineered in
such way that they are able to accurately reproduce the signaling microenvironment
required for a cell response of interest, namely for bone development [49]. Alterna-
tively, as the surface chemistry can be fine-tuned, it can be possible to investigate the

impact of specific [ECMl components on cell behavior (Figure [1.10]) [49].
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Figure 1.9 — Schematic representation of possible functionalization of hydrogels. Various
bioactive molecules can be used in surface modification to create biomimetic cell instructive
matrices [51].
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Figure 1.10 — Schematic representation of cel HECM]interactions. The interactions between
cells and their surrounding [ECM] activate specific signaling pathways which can influence cell
behaviour, namely their proliferation, differentiation, or protein synthesis.[28]

Nevertheless, it is essential to keep in mind that the [ECM]is a complex microen-
vironment comprising soluble (e.g. Growth Factors (GEk)) and non-soluble molecules.
In addition, surface biofunctionalization is often advantageous over soluble presenta-

tion of biomolecules from the [ECM| (Figure [1.11]), as it can enhance their biological
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function due to a better mimicking of the in vivo microenvironment (given that most

molecules are normally tethered to the [ECM]).
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Figure 1.11 — Schematic representation of soluble and matrix-bound delivery of [16].

Moreover, this approach allows the possibility of a local delivery of biomolecules, in
a controlled dose (much lower than the dose necessary for the delivery of such factors
in solution), as well as it facilitates eventual crosstalking between integrins and
receptors. [16].

Tailoring of surface chemistry is more often related with the covalent binding or
adsorption of bioactive molecules onto the material, but the introduction of specific
moieties has also been investigated as a possible tool for the control of cell response. It
has been seen that differentiation can be controlled if chemical groups such as
-OH, -CHjs, -COOH, or -NH; are created on the material surface [52]. These groups add
specific surface properties to the materials, namely hydrophilicity (-OH), hydrophobic-
ity (-CHs), or positive (-NHy) or negative (-COOH) charge at physiological pH, and
are able to impact initial cell adhesion [53]. Phillips et al. reported that osteogenic
differentiation was predominantly observed on surfaces modified with amine groups
(positively-charged surfaces), when were cultured for twelve days in osteogenic
differentiation medium (Figure [52]. Mineralized nodules were observed only
on NHs-functionalized surfaces (Figure ) Alizarin red staining was performed

for investigation of matrix mineralization. The authors observed, in agreement with
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Figure 1.12 — Osteogenic differentiation of hMSCs on chemically modified surfaces. (A)
Phase-contrast micrographs of cells after 12 days in culture. Scale bar 100 nm. (B) Alizarin
red staining for investigation of matrix mineralization. Scale bar 50 pm. (C) Calcium content
after 10 days in culture. ANOVA, p<0.05, * vs. control, ** vs. control and OH). [52]

phase contrast images, enhanced intensity on amine-modified surfaces compared with
all other conditions, indicating higher calcium content on this surface (Figure
and [1.12f).

Although the introduction of chemical moieties can be an interesting method of
surface modification of a material, functionalization with proteins (usually from the
[ECM)) or mimetic peptides representing specific sequences of such proteins appears to
be a more congruous approach (idea which is supported by the much higher number
of published studies of surface modification using peptides or proteins). The use of
bioactive molecules for surface functionalization is a more robust method to mimic the
in vivo [ECM], therefore conveying stronger cues for the modulation of cell behavior
[17]. Biofunctionalization of bone implant surfaces with peptide sequences from
proteins (e.g. fibronectin) has been investigated extensively (a list of some of such
studies is presented in Table, and their action in improvement of cell adhesion and

implant integration has been demonstrated.
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Table 1.2 — Peptides derived from [ECM]proteins and growth factors known to have an impact on [bMSClbehavior.

Peptide sequence Source Function Ref.

RGD Fibronectin, Vitronectin, Colla- Cell adhesion [54] B5]
gen [

PHSRN Fibronectin Cell adhesion [56] 57

GFOGER Collagen I Cell adhesion [58] 59

P15 Collagen 1 Cell adhesion [58]

DGEA Collagen I Cell adhesion [58]

KRSR Fibronectin, vitronectin (heparin Cell adhesion [60]
binding domain)

FHRRIKA Fibronectin, vitronectin (heparin Cell adhesion [60]

KRIPKASSVPTELSAISTLYL

binding domain)

BMP-2

hMSCs osteogenic differentiation  [19] 21]




Being highly complex molecules, proteins can offer a plethora of signals to cells,
alongside with multiple binding sites (for integrin, heparin, or binding) showing
great affinity towards specific receptors [61]. Nonetheless, the use of full [ECM] proteins
in such applications is not straightforward, due to their poor stability, safety concerns,
difficult handling and complexity in production in large quantities [I7]. Since most
proteins are still produced by recombinant methods in living organisms, chemically
defined products are not always obtained, which results in batch-to-batch variations,
and different biological activity of these molecules. Furthermore, contaminants main
remain after protein purification, which contributes to the possibility of infection or
immunogenicity. Additionally, long-term stability of proteins cannot be always ensured
since they can be enzymatically degraded, and are very sensitive to changes of pH and
temperature, as well as to solvents [62]. Finally, biofunctionalization of large areas
demand large quantities of molecules, which, in the case of full-length proteins, may
be very costly, considering the necessary steps of extraction and purification. Other
extremely demanding step is the control of conformation when binding to the surface,
i.e. the control of available motifs for receptor binding is not possible which can hamper
the biofunctionality of the bound proteins [63].

Such drawbacks may be circumvented using short synthetic peptides containing
only the amino acid sequence necessary to support a given biological response, like
cell adhesion (e.g. RGD peptide). [ECMlderived peptides present several advantages
over full-length proteins as ligands for surface functionalization. First and foremost,
production methods of synthetic peptides allow their production in large scale with
high purity, at low costs; therefore, batch-to-batch variability is eliminated, and there
is no risk of immune reactions [I7]. Moreover, synthetic peptides have better stability
to pH and temperature changes, to solvents, and can be modified to be resistant to
enzymatic degradation [62]. Also, the grafting of a synthetic molecule onto the material
may be controlled specifically (and at high densities) without loss of biological activity,
through the introduction of specific anchoring units in the peptide sequence [17].

Despite being a good alternative to full-length proteins for surface functionaliza-
tion, synthetic peptides still show some limitations, mainly related with their inability
to reproduce the biological activity and receptor specificity of [ECM| proteins. Usu-
ally this issue arises from the high flexibility of linear peptides, which, contrary to

proteins, can exhibit several different conformations, thus being able to bind to struc-
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turally related receptors, decreasing the expected biological response. Furthermore,
synthetic peptides normally encompass only one functional site, whereas proteins are
multifunctional, which grants them much higher biological activity, with the possibility
of exerting multiple interactions given their complementary domains, when compared
with synthesized molecules. Such synergies are often required to trigger specific cell
responses, which may not be achievable using only one synthetic ligand [17].
Functionalization of a material requires the immobilization of the biomolecules of
interest on its surface. Two main approaches can be followed for that end: adsorption
or covalent immobilization (Figure . If the functionalized material is porous, then
biomolecules can get entrapped within its pores. A brief comparison of the advantages

of these three methods is presented in Table
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Figure 1.13 — Representation of immobilization of RGD on titania surfaces. (A) Poly-l-
lysine-g-poly(ethylene glycol) layer adsorbed electrostatically onto a titania surface, followed
by grafting of poly(ethylene glycol) side chains. RGDC peptide binds to the polymer brush
by a double thiol binding (possible thanks to the cysteine). (B) Silanization of the TiO2 by
[APTES| and covalent attachment of a heterobifunctional maleimide crosslinker followed
by specific thiol tethering of the cysteine residue of a cyclic RGDfC peptide. (Adapted from

[641)
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Table 1.3 — Comparison of biomolecule immobilization methods (Adapted from [28§]).

Method Adsorption Entrapment Covalent Binding
Difficulty Low Moderate High
Loading possible Low High Depends on S/V
(unless high S/V) and site density
Leakage High Low to none Low to none
Cost Low Moderate High

S/V: surface/volume ratio.

Molecule adsorption can be achieved by dipping a material into the appropriate
solution, being therefore a very fast and simple method. However, since it is based
on weak interactions, as electrostatic interactions and van der Waals forces, changes in
environmental conditions (e.g. pH) can cause a uncontrolled desorption of immobilized
molecules [65]. On the other hand, covalent grafting of bioactive molecules ensures a
stable immobilization of such molecules, which makes it a widely followed approach
[18, 23] 166, [67]. Such strong and stable binding is advantageous when the biomolecules
are able to interact with transmembrane cell receptors, like integrins. Nevertheless,
if a controlled release of the molecules is necessary for their internalization by cells,
an alternative method must be implemented due to the irreversible nature of covalent
bonds [65].

With the aim of enhancing the biological performance of the simplest synthetic pep-
tides, that is, linear peptides, several approaches have been investigated, including the
grafting of a mixture of peptides, or the synthesis of cyclic peptides of peptidomimet-
ics [18, [66), 68]. The co-immobilization of several synthetic peptides on a material is
a simple strategy to increase a biological response or to add extra functions to a sur-
face [I7, [66]. For instance, it has been demonstrated that the concomitant grafting
of RGD (Arg-Gly-Asp) and PHSRN (Pro-His-Ser-Arg-Asn) peptides has a synergistic
effect on the improvement of osteoblast adhesion on titanium surfaces when compared
with the biofunctionalization only with the RGD motif [56]. Similary, Bilem and col-
leagues showed that the co-immobilization of RGD and a Bone Morphogenetic Protein

2 (BMP-2) mimetic peptide enhances the osteogenic commitment of [MSCk as compared
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to BMP-2l modified surfaces [20} 23]. Alternatively, peptide structures comprising more
than one peptide sequence have been shown to have greater efficiency on the modula-
tion of cell response than the simple combination of peptides on the surface, as their
disposition and spacing can be controlled. That could be achieved creating linear se-
quences with spacers between the different peptides, or branched structures, for exam-
ple [69, [70]. Furthermore, increased stability against enzymatic degradation of peptides
have been demonstrated by restraining their conformational freedom. Such restraint
can be attained through the creation of cyclic peptides instead of linear [I8], [68]. An
alternative approach for the increase of stability and receptor selectivity is the use of
peptidomimetics [2], [71]. These small protein-like molecules are synthetically designed
to mimic natural peptides or proteins, and to bind to their receptors with similar affin-
ity of the natural proteins from which they were derived. Hence, similar biological
effects can be obtained using peptidomimetics [72]. The molecules can be designed not
only to have a specific bioactivity, but also to have increased stability to enzymatic

degradation, increased selectivity or potency [72].

Improvement of cell adhesion
In wvivo, cell adhesion is mediated by Cell Adhesion Molecules (CAME) located on
cell surface. These proteins are involved in the binding of the cell with its surrounding

ECM] or with other cells (Figure [1.14)).
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Figure 1.14 — Representation cell interactions with a material (via integrins) and other cells
(via cadherins) [73].
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Typically, are transmembrane receptors composed of three domains: an in-
tracellular domain that interacts with the internal cell skeleton, a transmembranar
spanning section, and an extracellular domain that interacts with the [ECM or with
other [74]. As previously referred, [ECM] proteins are large proteins with multi-
ple binding sites for adhesion receptors, namely collagens, fibronectin, and elastin. The
most important [ECM] adhesion receptors are integrins, though there are other receptor
families, as syndecans [75]. Integrins are heterodimeric, transmembrane proteins com-
prising two subunits (o and ) [74]. Different combinations of o and 3 subunits grant
the possibility of cell binding to one or more [ECM] ligands, as summarized in Table
Moreover, various [ECM] proteins can act as ligands for more than one integrin
[63]. Integrins exist in two states: a resting state, in which the two subunits do not
interact with the [ECM] and an activated state in which the subunits are able to bind
to [ECM] proteins (schematic representation in Figure .

Active state Resting state
Ligand

E—. A —

R T

Integrin —

Outside—in
signalling
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!

Cell polarity, survivial and proliferation,
cytoskeletal structure and gene expression

Figure 1.15 — Representation of integrin activation upon binding to a ligand (Adapted from

[76])-

Once the binding occurs, intracellular protein aggregates, known as Focal Adhesions
(EBK) (Figure [1.16), start to form. A series of proteins form a[FA} talin and vinculin,
actin-binding proteins are responsible for the linkage of the integrin receptor to the

actin fiber, and o-actinin, an actin crosslinker [77].
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Table 1.4 — Possible combinations of integrin subunits and their ligands (Adapted from
[73 [78]).

Subunits Ligands

Bl ol  Collagens, Laminins
a2 Collagens, Laminins
a3 Laminins, Fibronectin, Thrombospondin
a4 Vitronectin, VCAM
a5 Fibronectin
a6 Laminins
o7 Laminins
a8  Fibronectin, Tenascin
a9  Tenascin
al0  Collagens
all  Collagens

av  Fibronectin, Vitronectin

B2 ol ICAM
oM Fibrinogen, ICAM, iC3b
oX  Fibrinogen, iC3b
oD VCAM, ICAM

63 T Collagen, Fibronectin, Vitronectin, Fibrinogen,
o

Thrombospondin

Fibronectin, Vitronectin, Fibrinogen, Throm-
v

bospondin
B4 o6  Laminins
5 av  Vitronectin
6 av  Fibronectin, Tenascin

7 o4 Fibronectin, VCAM, MAACAM
ol E-cadherin

8  av  Collagens, Laminins, Fibronectin

Vascular Cellular Adhesion Molecule (VCAM]); Intercellular Adhesion Molecule (ICAM]) .
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Figure 1.16 — Representation of nanoscale structure of a [FA]l highlighting the integrin ex-
tracellular domain, integrin signaling layer, force transduction layer, actin regulatory layer
and actin stress fiber (Adapted from [79]).

Since integrins are one of the most relevant messengers between cells and their
surrounding [ECM] functionalization of biomaterials with integrin-binding molecules
(namely RGD) have been extensively reported in the literature for the investigation of
modulation of cell behavior by biomaterials.

RGD (Arg-Gly-Asp), the major recognition sequence for integrins, is present in
different [ECM] proteins, as fibronectin, collagen, laminin, pronectin and vitronectin
[80]. Almost half of the known integrins are able to bind to [ECM| proteins due to
the presence of RGD sequences, namely o331, adf31, o831, olIbB3, avfl, avi33, av{35,
ov(36, ovB8, 02B1, 04Bl [63]. Therefore, this amino acid sequence is the most widely
used in ligands for the promotion of cell adhesion, either alone, either as part of longer
peptide sequences which may improve RGD effect [81]. As previously referred, sev-
eral studies have shown that the combination of RGD and PHSRN peptides can have
a synergistic effect, contributing to enhanced cell adhesion of and osteoblasts,
when compared with the utlization of only RGD [57, [69] [70]. Conversely, the collagen-
mimetic peptide GFOGER, (Gly-Phe-Pyl-Gly-Arg) has also been reported as an effec-
tive motif for surface functionalization due to its capacity of improving not only cell
adhesion but also osteoblastic differentiation of [58, 59]. Improvement of bone
repair in critically-sized defects was observed in rat models after the implantation of
Polycaprolactone (PCLI) scaffolds coated with GFOGER, even after 4 weeks of treat-
ment, without the need of implanted cells or [59]. These results are summarized
in Figure [I.17]

Other studies have also shown good prospects on the utilization of two heparin

binding domains for amelioration of cell adhesion, especially with regard to osteoblasts:
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KRSR (Lys-Arg-Ser-Arg) and FHRRIKA (Phe-His-Arg-Arg-Ile-Lys-Ala) (Figure [1.18)
[60].
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Figure 1.17 — GFOGER-coated scaffolds significantly enhance bone formation in critically-
sized defects in rat models compared to uncoated [PCI] scaffolds and empty defect controls.
(A) MicroCT shows enhanced bone formation in GFOGER-coated [PCI] at 12 weeks after
implantation. (B) Likewise, bone volume is significantly greater in GFOGER-treated scaffolds
at 4 and 12 weeks. * represents p-value < 0.05. (Adapted from [59])
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Figure 1.18 — [ALP] activity of rat [MSCk on untreated, plasma treated, and functionalized
substrates after 21 days of culture. * represents p-value < 0.05, and ** p < 0.01 [82]

The authors observed that materials functionalized with the two peptides signif-
icantly enhanced [ALP] activity of [MSCk cultured in osteogenic medium. It was pro-
posed that such increase in activity could be mainly related with the presence of the

FHRRIKA peptide, known to improve bone mineralization, whereas KRSR has been
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shown to improve cell adhesion[82]. Furthermore, targeting integrin and heparin sig-
naling pathways simultaneously has been reported to further improve cell adhesion of
osteoblasts when compared with the use of one of the peptides alone [60, [83], 84]. Yet,
other studies reported that little or no cell response improvement is observed when
functionalizing a surface with a combination of these peptides both in vitro as well
as in vivo 89, 86]. Mas-Moruno (2018) advocated that different concentration and
proportion of peptides used along with their spatial presentation may be factors re-

sponsible for such contradictory results reported in literature [17].

Promotion of osteoblastic differentiation of hMSC's

In addition to the peptides and peptide combinations already presented in the pre-
vious section (e.g. GFOGER, FHRRIKA), improvement of osteoblastic differentiation
of through surface functionalization with Bone Morphogenetic Proteins (BMDPk)
(in particular BMP-2)) or their mimetic peptides has been the main strategy reported
in literature. constitute a group of proteins of the Transforming Growth Factor
Beta family, known for their ability to regulate cell proliferation and differen-
tiation [87]. acts in synergy with Runt-related Transcription Factor 2 (Runx2])
to promote osteoblastic differentiation of [88]. regulate a large set of pro-
cesses including skeletal formation, hematopoiesis, neurogenesis, or cell differentiation
during embryonic development [89]. From this group, is the most powerful
for the induction of bone formation, being even approved for use in clinic for bone
therapy, along with [BMPF7 [90].

Zouani et al. (2010, 2013) showed that Polyethylene terephthalate (PET]) substrates
functionalized with a [BMP-2] mimetic peptide (KIPKACCVPTELSAISMLYL) were
able to significantly enhance osteoblast precursor differentiation when compared with
the control substrate, or with in solution (Figure [21], 22].

Since no differentiation was observed on cells cultured in growth medium with
[BMP-2 mimetic peptide in solution, the authors suggested that binding of [BMP-2| to
the matrix is essential for induction of osteoblastic differentiation [22]. Following a
similar rationale, Bilem et al. (2016) reported enhanced osteoblastic differentiation
of on glass functionalized with a BMP-2| peptidomimetics (Figure [1.20]) [20].
Moreover, the authors observed a synergistic effect of the combination of RGD peptide

with the [BMP-2l mimetic peptide, as represented in Figure [1.20}
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Figure 1.19 — Osteoblast precursor response to [PET] and [PET] grafted with [BMP-2] pep-
tidomimetics after 24 hours of culture. Scale bar 20 pm (Adapted from [22])
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Figure 1.20 — Osteogenic comitment of cultured for 4 weeks on glass (a, e), glass
functionalized with RGD (b, f), (¢, g), and RGD/BMP-2] (d,h). Staining in red for
STRO-1 (stemness marker) (a-d), or Runx2| (e-h) analyzed in (i) and (j), respectively. Blue
— nucleus, green — F-actin. Scale bar 50 pm [20]
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A very detailed study of the influence of short peptide sequences on [MSC| differen-
tiation was patented by Zouani (2018) [91].

1.2.4.B Biological responses to surface topographies

The change of topography of a biomaterial is a way of creating physical cues to
modulate cell behavior, and to study the mechanisms of mechanotransduction. Such
process describes the transduction of a mechanical stimulus into a chemical signal in-
side a cell, giving rise to alterations of gene expression [49]. The investigation of the
impact of surface topography on cell response was first described in 1960s, when con-
tact guidance of fibroblastic cells was observed, i.e., it was observed that fibroblasts
were sensitive to surface topology, aligning to grooves created in materials [92]. Con-
tact guidance is now currently understood as being a mechanism through which cells
respond to the underlying surface topology, namely by altering their cytoskeleton orga-
nization, proliferating, or migrating. With the development of semiconductor industry
for electronics, the creation of a large variety of patterns on different materials, and
the decrease in feature dimensions — down to nanoscale — became possible. This al-
lowed further investigations of contact guidance, but also of the impact of topographic
features whose dimensions are in the range of those of proteins and other components
of [ECM] [49]. A simplified representation of interactions of cells with a bone implant
topography at different scales is illustrated in Figure [1.21]

Macroscale surface modifications are valuable mainly for the improvement of me-
chanical support of bone tissue and to facilitate osseointegration of the prosthesis.
Microscale structures, being at the same scale range of cells, can potentially boost in-
teractions between cells and implant, contributing as well for a better osseointegration.
The investigation of how nanoscale topography of a biomaterial can elicit a specific cell
behavior, including alterations in cell adhesion, cell migration, cytoskeletal changes,
and gene expression started to be reported in the late 1990s, beginning of 2000 [94-96].
Nanoscale features appear to be more advantageous than microscale for modulating
cell response since they offer an exceptionally large surface area for protein adsorption
as well as more adhesion sites for integrins, which facilitates the interaction of inte-
grins with the proteins adsorbed on the surface [97]. Nonetheless, there is still the need
for further investigation on this subject, as it was not yet possible to encompass and

interpret all the complex cell-substrate interactions happening at nanoscale level.

25



Submicroscale Nanoscale
Topography Topography

Integrins

Cells

i

o | LERYY

oo,
RRats i o s

Collagen &
Proteins

Figure 1.21 — Schematic representation of the interactions of cells with bone implants at
different scale. Nanoscale topographies are at the same size regime of subcellular structures.
Integrins (in green) and other transmembrane receptors are able to interact with the struc-

tures at nanoscale as well as with collagen and other proteins (represented by the lines in
blue, red and black) (Adapted from [93]).

Not only the shape and dimensions of surface topography have the capability of
regulating cell response, but also their degree of order is know to influence cell fate [97].
Such degree of organization of topography features on a surface can be categorized
as random, partially ordered, or ordered. If limited or no control is exerted over
orientation and pattern geometry during material structuring, then randomly organized
features are obtained. Random patterns include for example, the increase of surface
roughness or porosity, or the creation of fibrous surfaces, which can be fabricated by
wet etching, anodization, or electrospinning, for instance [98-I0T]. If the patterns
show features of controlled dimension and short-range order, they can be classified as
partially ordered, whereas if the array features show a precise organization at long-
range, they may designated periodically ordered arrays, as illustrated in Figure [1.22
[11, @7, 102], 103].

Tubes are the most common example of partially ordered surface patterns in bio-
materials [I1], [104], 105]. Ordered patterns comprise arrays of pillars/protrusions, pits,
grooves, or more intricate matrices, for instance [I06-109].

With regard to partially to well ordered nanoarrays, features such as pillars, tubes,
pits, or a combination of micro- and nanostructures have been fabricated for cell fate

studies, as summarized in Table [I.5]
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Table 1.5 — Examples of studies of the impact of nanoscale topographies on hMSC behavior.

Pattern Material Diameter Height Spacing Culture Outcome Ref.
/ Width medium
Pillars Si0s 10-30 nm  20-50 nm  50-120 nm  Basal Adhesion and proliferation independent of [106]
feature dimensions. Higher pillars promote
osteogenesis.
TiOq 50-200 nm  50-200 nm  90-185 nm  Osteogenic Larger features favor cell adhesion, spread- [110]
ing, and osteoblastic differentiation.
TiO, 25 nm 8-15 nm 20-50 nm Basal Larger features promote osteogenesis. hM- [I11]
SCs interact with topographies down to 8 nm
height.
TiO, 20-55 nm 8-100 nm 30-115 nm  Basal Smaller features promote osteogenesis. [0} 102
112]
Grooves  Polyimide 2-15 pm 200 nm, 2 2-15 pm, Osteogenic Topography supports differentiation initi- [113]
pm 650 nm ated by induction medium.
PMMA 140-415 100-200 140-415 Osteogenic  Poor osteogenesis. [114]
nm nm nm
PDMS 250 nm 250 nm 500 nm Basal Neurogenic differentiation is promoted. [115]
PDMS 350 nm 280 nm 700 nm Basal Fibronectin coating. Cells align according to  [116]

pattern, but their adhesion is low.
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Table 1.5 — Examples of studies of the impact of nanoscale topographies on hMSC behavior.

Pattern Material Diameter Height Spacing Culture Outcome Ref.
/ Width medium
Polyurethane 400-1400 300 nm 400-1400 Osteogenic  Smaller width/pitch improves osteogenesis.  [108§]
nm nm
Tubes TiOs 30-100 nm n/a n/a Basal Improved cell adhesion on smaller tubes. Im-
proved osteogenesis on larger features.

TiO, 15-100 nm  n/a n/a Osteogenic  BMP-2 coating. Smaller diameter tubes pro- [117]
mote osteogenesis, whereas larger diameter
promotes chondrogenesis.

TiO, 45 nm n/a n/a Basal Decrease of cell adhesion compared with flat  [100]
TiO,.

Pits PCL 120 nm 100 nm 300 nm Basal Topography can maintain stemness up to 8 [I18§]

weeks.

YPCL: Polycaprolactone; PDMS: Polydimethylsiloxane; PMMA: Polymethyl methacrylate. n/a: not applicable.
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Figure 1.22 — Schematic representation of topographic features used for the studies of cell
response for applications in bone tissue [97].
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Microwaved surface

Pillars

Nanoscale pillars are typically fabricated in titanium oxide or silicon oxide by
Electron Beam Lithography (EBL) or reverse micelle lithography followed by elec-
trochemical anodization or Reactive Ion Etching (RIE]) of the material.

Fiedler et al. (2013) investigated the behavior of cultivated in basal medium,
on silica nanopillars. They observed that even though adhesion and proliferation of
were similar on all the patterns, their osteoblastic differentiation was enhanced
on higher features (50 nm) when compared with shorter ones (20 or 35 nm) [106].
Moreover, the authors compared proliferation rates of and human osteoblasts,
and observed that proliferation of was augmented on all topographies (com-
pared with a flat control), whereas osteoblast proliferation appear to be sensitive to
pillar height, with greater rates towards short pillars (20 nm). The authors suggested
that different topographies may be able to induce distinct mechanical stimuli, leading
to a specific stress on actin fibers (as previously reported by Dalby et al. as well as
Biggs et al.) [106], 119, 120].

De Peppo et al. (2014) observed the same tendency of osteoblastic differentiation of
LMSChk with increasing nanopillar size [110]. The authors reported that larger features
(diameter 105 or 185 nm, height 130 or 240 nm, respectively) were able to sustain
increased cell proliferation and differentiation than smaller features (diameter 50 nm,

height 90 nm). After 2 weeks, cells cultured on flat surfaces or on pillars of diameter
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of 185 nm expressed a significant higher level of [Runx2 and [ALP| (markers of early
osteogenic differentiation), and produced more mineralized matrix than on pillars of
50 nm diameter. De Peppo et al. suggested that, since cells adhere only to the top part
of the features (as depicted in Figure , increased cell adhesion and proliferation
on flat and larger features can be directly related with a larger surface area available

for cell adhesion.

Figure 1.23 — Detail of [SEM] pictures showing the interaction of hMSCk with nanopillars.
(A) Fiedler et al. [106]; (B) de Peppo et al. [110]

Furthermore, as described by Tang et al. (2010), osteogenic differentiation potential
is directly correlated with the number of cell-cell contacts, thus, it can be expected
that a nanostructured surface which enhances cell proliferation (therefore increasing
the possibility of cell-cell interaction) may also promote [MSC] differentiation [110} 121].

Despite reporting similar trends on the impact of nanostructures on [LMSCl os-
teoblastic differentiation, it is important to note that the two studies differ in several
aspects. First of all, Fiedler finds feature height as the most relevant parameter for
the control of cell fate whereas de Peppo highlights the importance of surface area
at the top, given by the diameter [106, 110]. Moreover, material (SiO5, and TiOs,
respectively), feature shape (conical vs. quasi-round), and culture medium (basal and
osteogenic, respectively) differ. Finally, the osteogenic markers evaluated are not ex-
pressed at the same stage of differentiation, and different approaches were followed.
Fiedler investigated the expression of (a late stage marker) by immunofluores-

cence but on the other hand, de Peppo quantified gene expression for the early differ-

30



entiation marker [Runx2 and the activity of [ALPl de Peppo reported high expression
for large features as well as for flat surfaces (related with a larger area available for cell
adhesion). Yet, Fiedler observed a significantly lower expression of on flat TiOs,
when compared with the nanostructured surfaces, even if the larger pillar diameter was
30 nm.

Contrary to the findings of Fiedler and de Peppo, Sjostrom et al. (2009, 2013) as
well as McNamara et al. (2011) reported that shorter nanopillars are actually more
effective on the stimulation of osteogenic differentiation of [10, 102, 112]. In
their studies, the authors observed that spreading, cytoskeleton organization,
and expression of osteogenic markers (ALP] [OPN], [OCN]) were inversely proportional to
the height of TiOy nanopillars (15 to 100 nm range). In particular, 15 nm high features
were reported to be the best condition for the promotion of osteogenic differentiation,
along with the formation of large focal adhesions when compared not only with higher
pillars as previously referred, but also with flat control and 8 nm high features. Mec-
Namara et al. highlighted also the importance of selecting an adequate control for cell
studies, whose surface chemistry resembles the chemistry of the nanostructured mate-
rials [I12]. The authors evaluated the utilization of Tissue Culture Plastic (T'CP]) and
flat TiO,, as controls in metabolomic assays for the comparison with TiO,, nanostruc-
tures. It was observed that the metabolic profile of cultured on flat or patterned
titania were congruent, but differed significantly from the profile of cells cultured on

[TCP| which indicated that the latter was unsuitable to be used as control surface.

Grooves

Grooves are commonly fabricated in polymeric substrates by photolithography or
Nanoimprint Lithography (NIL) methods, with dimensions in the micron and sub-
micron scales [97]. Several studies have shown that this type of topography is not
able to induce osteogenic differentiation of [MSC| per se, requiring the use of adju-
vants as osteogenic medium, or surface coating with [ECMl proteins or mimetic peptides
[108, T13H116]. Due to the difference in scale regime (as this review focuses on nanoscale
topographies), this type of pattern will not be discussed in detail. Examples of the
use of grooves for the investigation of differentiation of can be found in Table[L.5]
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Tubes
Nanotubes are routinely fabricated wvia electrochemical anodization of titanium,

which gives rise to vertically arranged TiOs tubular structures [97] (Figure [1.24)).

Figure 1.24 — Top-view SEM images of titania nanotubes with diameters ranging from 15

to 100 nm [104].

Brammer et al. (2009, 2012) emphasized two interesting features of such nanoto-
pography: superhydrophilicity and the possibility of fluid flow between nanotube walls
[105, 122]. The authors demonstrated thatthe contact angle of titanium (approxi-
mately 80° for a flat titanium sample) decreases to almost 0° after anodization, which
can contribute for an improvement of cell adhesion. The existence of interconnecting
spaces between nanotube walls may ensure flow of culture media and exchanges of
gas, nutrients and other molecules even when cells reach confluence, contributing to
an enhanced cell environment [105], [122]. Several works have been published on the
investigation of the modulation of cell fate by nanotube diameter reporting conflicting
results [IT], 104, 122] 123]. It has been hypothesized that such discrepancies may be
related with not only the use of different cell types and distinct culture conditions,
but also with different material phase of the TiOg, nanotubes (amorphous or anatase
phase) [122].

Oh and colleagues (2009) reported that it was possible to modulate hMSC] behavior
changing only the TiOs diameter (from 30 to 100 nm), without the use of osteogenic
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induction medium or other chemical cues [11]. The authors observed enhanced cell
adhesion on narrow tubes (30 nm of diameter) compared with the other conditions.
Moreover, increasing cell elongation and osteoblastic differentiation was observed with
the increase of feature diameter. Highest expression of osteogenic markers [ALP] [OPN],
and was noticed on features of diameter of 100 nm. Oh et al. advocated that the
density of protein adsorption on the structures impacts the extent of cell adhesion as
smaller nanotubes shown a complete coverage by proteins contrary to large tubes [11].
were more stretched (10 times longer on 100 nm tubes than on 30 nm ones),
which can lead to cytoskeleton rearrangement, with subsequent differentiation of the
cells [I1]. Similar results were reported for human osteoblasts cultured in basal medium
on titania nanotubes by Brammer (2009) [122]. Contrarily, Park et al. (2007, 2009,
2012) investigated the impact of titania nanotubes of diameters between 15 and 100
nm on the fate of different types of cells, namely rat and human Hematopoietic
Stem Cells (HSCk) [104), 117, 124]. The authors observed identical results for all cell
types, with small diameter features (15 nm) ensured high cell adhesion and prolifera-
tion, as well as differentiation into osteoblasts (in the case of [MSCE) or osteoclasts (from
[HSCE). It was suggested that 15 nm tubes, being of a similar size of the extracellular
ligand binding domain of integrins, contributes for a stronger integrin clustering, trig-
gering specific intracellular signaling pathways and actin stress fiber formation, which
leads to cell differentiation [I17]. Larger nanotubes (100 nm) did not support proper
cell adhesion, and eventually contributed to cell apoptosis. As highlighted before, it
is worth noting that cells were cultured in a differentiation induction medium, and
that titania was in its amorphous phase (whereas Oh and Brammer utilized titania
in anatase phase, which has a different atomic organization), which can contribute for

observations differing from the works of other research groups [105].

Pits

The use of nanopits created on polymeric substrates for the control of cell fate has
been investigated predominantly at the University of Glasgow since early 2000s [125].
Diameter of pits as well as their arrangement on the surface (ordered vs. increasing
degree of disorder) is known to influence the fate of cells (including BMSCk, osteoblasts,
fibroblasts) cultured on such surfaces (as exemplified in Figure [118-120] [125].

McMurray et al. (2011) showed that cultured on ordered nanopit arrays
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Figure 1.25 — Expression of [OPN| by [lMSCk cultured on nanopit arrays of varied order.
Red: actin. Green: [OPNI (Adapted from [119]).

Control

(diameter 120 nm, depth 100 nm, spacing 300 nm) were able to maintain their stem-
ness characteristics for 8 weeks (duration of the study) [I18]. Instead, if were
cultured on nanopits of the same dimensions, but with a random displacement of =4
50 nm from their position in a true square, the expression of osteogenic differentiation
markers in enhanced (compared with flat control, ordered array, or randomly displaced
pits). Moreover, larger focal adhesions were observed on such slightly disordered ar-
rays, along with a rearrangement of the cytoskeleton related with a high intracellular

tension [13], 107, [119]. Figure schematically summarizes such results.
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Figure 1.26 — Schematic representation of fate by nanotopographies. (a) Self-renewing
adhere to the matrix more weakly than differentiating cells, resulting in lower levels
of integrin-mediated focal adhesion kinase (FAK)-triggered signalling. remains inac-
tive. No cytoskeleton tension is observed. Nanotopographies exhibiting regular patterns can
be used to mimic weak adhesion. (b) Strong adhesion decreases cell growth and increases
osteogenesis. Integrin-mediated formation of focal adhesions and the recruitment and ac-
tivation of FAKs lead to the inhibition of cell growth, and the phosphorylation of
(initiating osteogenic differentiation). Increased cytoskeletal tension drives the translocation
of YAP into the nucleus to further stimulate osteogenesis, again through activation.
(Adapted from [16]).
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1.3 Nanostructuring of Biomaterials

The modification of surface topography on biomaterials relies on the commonly
and vastly developed techniques used in micro- and nanofabrication methods used in
electronics industry. The main approaches offering the possibility of feature fabrication
with nanoscale resolution are summarized in this section. The nanofabrication methods

utilized during this work are described in more detail later in this section.

1.3.1 Electron-beam lithography

[EBIl is a very interesting technique for the fabrication of very uniform and repro-
ducible features with resolutions down to 10 nm. It is based on the exposure of an
electron-sensitive polymer layer coated on the biomaterial by a highly focused electron-
beam to write out a pattern designed with Computer-aided Design (CADI) tools. The
beam induces a change in molecular structure and solubility of the polymer film. Fol-
lowing exposure to the electron-beam, the polymer is developed in a suitable solvent to
selectively dissolve either the exposed or unexposed areas of the polymer (depending on
polymer characteristics). Nonetheless, [EBI] is a very expensive and time-consuming
method, not offering the possibility of high throughput, or patterning of large ar-
eas. [EBI has been used in several studies of cell-substrate interactions at nanoscale
[119, 126-128]. Figure represents a image of a nanoscale array created for
studies of interaction of with nanoscale topographies. [EBIl is not only used for
the patterning of a material, but also to create masks or molds for electrochemical

anodization or [NI[] respectively.
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Figure 1.27 — Nanopit Si arrays fabricated by [EBI] with 120 nm of diameter, 100 nm of
depth, and 300 nm of pitch [120].
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1.3.2 Electrochemical anodization

Electrochemical anodization is a rather simple, cost-effective method which allows
the patterning of a material (usually alumina or titania) in a controllable and repro-
ducible way. This process offers the possibility of fabricating two distinct types of
features: tubes, and short pillars [10, 11} 102 122, [129]. The basis of this method
consists on the utilization of a sheet of the biomaterial as anode and a platinum (most
commonly) cathode. These material sheets are immersed in a electrolyte solution (e.g.
hydrofluoric acid) and an electric field is applied to the system (as represented in Figure
1.28]). The duration and magnitude of power supplied to the system determines the

height and diameter of the nanotubes [105].

TiO, nanotube
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Figure 1.28 — Schematic representation of the anodization process for the fabrication of
TiO2 nanotubes [105].

If a mask is used to protect specific regions of the biomaterial during anodization,
then nanopillars are obtained, instead of nanotubes [10, 102, 130]. Examples of the
possible nanoscale structures fabricated by electrochemical anodization are represented

in Figure [1.29

Figure 1.29 — Nanoscale tubes (A) and pillar arrays (B and C) obtained by anodization
(Adapted from [102] 104}, 130]).

36



1.3.3 Self-assembly of block copolymer films

Block copolymers

Block Copolymers (BCPk), macromolecules formed by sequences of two or more
unimer species, can be arranged various ways, namely linearly, or in a radial arrange-
ment. In particular, a diblock copolymer AB, the simplest form of BCP] consists in a
sequence of two chains of different homopolymers, covalently bound at their ends. In
addition to an AB configuration, the homopolymers A and B can also form ABA or
BAB triblocks, and (AB), linear multiblocks [131]. The molecular structure of [BCPk,
and in particular their segmental incompatibility, grants unique solution and associa-
tive properties to these molecules, namely their surfactant characteristics, and ability
to self-assemble [I31]. This difference in chemical nature of the blocks relates with the
coexistence of two types of forces [132]. The first one consists in ‘long-range repulsive
interactions’ between the two blocks. Particularly, in amphiphilic diblock copolymers,
such repulsion occurs for very short block lengths, as their segmental incompatibility
is related with differences in solubility (in a selective solvent) of each block. The latter
kind of forces consists on ‘short-range attractive interactions’ due to the covalent bond
between the two blocks, which is responsible for a microphase separation and for the

constraint of further separation at macroscale [133].

Micellization of block copolymers

In solution, for a selective solvent for one of the blocks, amphiphilic [BCPk can un-
dergo two main processes depending on their concentration: micellization, for reduced
concentrations, and gelation for higher concentrations [I33]. The first process leads
to a organization of the micelles in solution. The micellization of in a selective
solvent for one of the blocks is possible due to their colloidal properties, analogous to
the characteristics of classical surfactants, granting new structural and flow character-
istics to the system [131] [134]. If dissolved in a solvent that is thermodynamically good
solvent for one of the blocks and precipitant for the other, chains tend to aggre-
gate reversibly, in order to minimize the free energy of the system, forming micelles of
specific morphologies (and of nanometer length scales) [131]. These micelles usually
consist on a ‘core’ formed by the insoluble blocks, which swelling extent depends on

the quality of the solvent for this block, surrounded by a flexible ‘corona’ constituted
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by the soluble blocks [131]. The size of the formed micelles depends mainly on the
size of their cores, principally when the insoluble block is very short [135]. Moreover,
depending on the polarity of the solvent and the solvent quality for each block,
form regular (aggregates with a more non-polar core and a more polar corona) or re-
verse (aggregates with a more polar core and a more non-polar corona) micelles [1306].
The process of micellization occurs in dilute solutions of in a selective solvent,
if the concentration of the [BCP|is above a critical micelle concentration, and the so-
lution is maintained at a fixed temperature [I31]. This critical micelle concentration
corresponds to the concentration limit above which the system is no longer charac-
terised by unimers in solution, but instead by an equilibrium between micelles and
unimers [I31]. In addition to the critical micelle concentration, and the equilibrium
between unimers and micelles in solution, a micellar system is also characterized by
variables including micelle morphology, micelle molecular weight, aggregation number,
and radius of gyration and hydrodynamic radius. Two different processes are usually
followed to attain a micellar system [131]. The can be firstly dissolved in
a common solvent for the two blocks, and afterwards conditions like temperature, or
solvent quality are changed in a way that leads to the formation of micelles. Usually,
the solvent composition is changed by gradually adding a solvent which is a precipitant
for one of the blocks. Alternatively, the can be directly dissolved in a selective
solvent, and subsequently let to anneal by standing, mechanical agitation, or thermal
treatment [133]. Micelles are kinetically frozen when the core-forming block is below
its Glass Transition Temperature (7)) and the polymer is not extensively swollen by

the solvent [137].

Block copolymer templates

Block copolymer micelles can adopt different morphologies, being spherical the
most common shape. These type of micelles can create ordered arrays of hexagonal
distribution that form a thin film (thickness lower than 100 nm) when coated on a
flat substrate (Figure . The characteristic dimensions of the polymer templates
obtained depend not only on the dimensions of the initial micelles in solution, but
also on the conditions of deposition, which will mainly influence the speed of vapor
evaporation [137].

Such polymeric templates may be potentially used as masks for subsequent pat-
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Figure 1.30 — Schematic representation of the formation of [PS-b-P2VP] thin films on a Si
substrate. (Adapted from [15])

terning of the underlying substrate, allowing the creation of structures with spatial
resolution of tens of nanometers across full wafers[I4]. Top-down direct writing tech-
niques (e.g. [EBT) also allow the creation of high resolution patterns. However, contrary
to self-assembly-based lithography, they require the use of very expensive equipment,

and they cannot ensure pattering of large areas [13§].

Improvement of pattern transfer

films can be used as masks for substrate patterning. For that, the polymeric
templates are usually subjected to a brief oxygen plasma to remove the intermediate
layer in order to increase selectivity of pattern-transfer into underlying substrate [14].
Nonetheless, due to low thickness (typically 10 to 30 nm), these polymer masks cannot
withstand long etching times, thus requiring alternative ways to increase selectivity.
Hard masks with high selectivity for the etching process grant the possibility for the
creation of uniform, reproducible features, with low standard deviations. Two main
approaches are normally followed: an oxide thin film deposited on the substrate is
used as an intermediate mask, or Nanoparticles (NPk) are created inside micelle cores
and used as masks for controlled etching [14] [15]. Two main approaches are normally
followed: an oxide thin film deposited on the substrate is used as an intermediate mask,
or are synthesized in situ inside micelle cores and used as masks for controlled
etching [14, 15]. This enables nanopillars with desired heights beyond what is possible
with only the polymer templates, and also contributes to higher uniformity on a wafer,
and better batch-to-batch reproducibility.

In the first case (Figure [1.31]), a thin oxide film (usually 25 to 50 nm thick) is

thermally grown (more common approach) or deposited onto the substrate before the
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coating with micelle solution. The polymeric layer is briefly exposed to an oxygen
plasma to remove the thin (normally less than 5 nm thick) corona-based layer, exposing
the oxide. An etching approach allowing anisotropic pattern transfer (e.g. [RIE) is
then used for the patterning of the oxide, and for the subsequent substrate etching.
The uniformity and reproducibility of the nanopillar array obtained depend on the

characteristics of the initial BCP| template and on the selected etching method [14].

PS-b-P2VP
e

Figure 1.31 — Schematic representation of nanopillar fabrication using an intermediate silica
mask. (Adapted from [14])

If the separation between reverse micelle cores forming the polymer template is very
reduced or if the thickness of the polymeric film is very low, it may not be possible to
use the polymer as mask for the patterning of the oxide layer. The substitution of the
polymer template by an inorganic template ((e.g. titania [NPK) can be an alternative

to overcome such problem (Figure [1.32)).

s = m o mhele

Figure 1.32 — Schematic representation of nanopillar fabrication using a titania [NP|] mask
for features with sub-10 nm dimensions and separation. (Adapted from [14])

If the core-forming block of the is able to react with a precursor, namely a
metal ion, then micelle cores can be used as ‘confined reactors’ for the formation of
nanoparticles. Two main approaches are normally followed for the incorporation of
into micelles: exposure of to precursors in solution prior coating on a
surface (Figure , or exposure of films coated on a surface to the liquid- or
gas-phase precursors (Figure [14), 15, 139].

With regard to particles of metal oxides, exposure to vapor-phase precursors after
micelle deposition on a surface appears to be the most suitable approach, particularly
if the exposure takes place inside an Atomic Layer Deposition (ALDI) reactor [I5].
This method is designated sequential vapor infiltration synthesis. If such procedure
is followed different parameters, namely spacing and particle diameter, can be inde-

pendently controlled. [BCPI characteristics and coating conditions can be fine-tuned in
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Figure 1.33 — Schematic representation of (a) micelle loading with a metal salt, and (b)
subsequent coating of a material with the new complex by dip-coating. (Adapted from [137])
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Figure 1.34 — Schematic representation of the formation of titania [NPk on surface, guided
by a[BCP| template. Titania[NPk are formed inside [P2VP] cores after sequential exposure to
titania precursors. Exposure of the film to an oxygen plasma allows a complete removal of
the polymer, exposing the titania [NP] array. (Adapted from [I5])

® TiO,

order to create arrays with the desired spatial resolution. Afterwards, exposure condi-
tions can be accurately controlled by the [ALD| machinery, granting the growth of NP
of specific dimensions. Parameters influencing particle growth and size include tem-

perature, pressure, chemical environment, and dosing of precursors during the reaction

4.

1.3.4 Nanoimprint lithography

NIl is a high-throughput lithography technique which relies on the deformation of
a polymer layer (sensitive to temperature or radiation), as represented in Figure m

It is therefore limited by the minimum feature size possible to be fabricated for
the mold (by other technique, as [EBTI), which grants it very high resolution [141]. Tt
has been reported by Hua (2004) that it is possible to achieve resolutions at sub-5 nm
length scale using carbon nanotubes as imprinting templates (Figure [142).

Other parameters must also be fine-tuned to achieve imprinted films with high uni-

formity and resolution. These include the choice of substrate and mold material (rigid

41



. . Rasin
Resin {:Oatlﬁg “Sibstrate

Imprint
&
Curing

Separation

Master -" Replical
RMS=0.22nm RMS=0.37nm

Figure 1.36 — [AFM] images of a carbon nanotubes master (a) and imprinted structures

obtained by [NITJ [142].

or flexible), imprinting conditions (temperature, pressure, Ultraviolet (UV]) power, du-
ration of imprinting), and polymer characteristics, for instance [143].

As previously referred, very high resolutions can be achieved as this technique relies
only on mechanical replication (Figure [T43]. Nonetheless, there are challenges
when performing nanoimprinting, related mainly with the alignment of the sample and
template, and the fabrication of a template with accurate feature definition [143].

Two main techniques of [NI[] can be followed: thermal [NIT] and [UVHNIL] The
principle behind the former consists in pressing template with a surface relief defining
the negative of the expected final features against a polymeric material (thermosetting
or thermoplastic) cast on a substrate, at controlled pressure, and temperature above
the [T of the polymer (approximately 70 to 90 °C above [Tj)) [141]. The mold can be
released after cooling down the resist below its @ Alternatively, if the polymer utilized

is [[V}curable, then, after being put in contact with the mold, it can be crosslinked
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Figure 1.37 — (a) Schematic representation of [NIT] process. Example of (b) mold with 10
nm diameter pillar array and (c) imprinted hole array [144].

if subjected to [UV]light [141]. In both approaches, the obtained pattern is typically
transferred into the substrate by [RIEL

Thermal [NI[J, also denominated hot embossing, requires a good flow ability and
incompressibility of the resist layer in order to achieve a complete filling of the mold
cavities. The resists used for thermal imprinting are either thermoplastic or thermoset-
ting polymers.

This can be attained through the increase of temperature above the [T of the
polymer, and the application of pressure in the range of 20 to 100 bar [145]. As the
process has to be performed at relatively high pressure, the mold material must have
high mechanical strength to withstand it. Furthermore, thermal [NI[] requires that the
stamp has high thermal stability, low thermal expansion coefficient, and low roughness
[145].

[UVHNIL] is an alternative approach offering several advantages over thermal [NIT]
allows quick (in a few seconds) replication, at low temperatures and pres-
sures, and enabling high-throughput, large-area patterning with less demands on the
substrate or the molds [143]. As referred, the patterning of [UV}-crosslinkable poly-
mers can also be conducted using soft molds, which allow a more conformal contact
between the stamp and the resist layer for larger patterning areas, reduce the high
demolding force characteristic of [UVHNIL] processes using hard stamps, and since a
particle contamination causes only a local deformation, which can improve the pro-
cess yield. Nevertheless, the use of flexible molds not only limits the resolution of the
imprinted features, but also reduces their uniformity, due to the possibility of mold
deformation during imprinting. Moreover, since the resist layer needs to be exposed
to [UVl radiation, it is necessary that either the stamp or the substrate onto which the

polymer is spin-coated is [UVHtransparent, which can increase the experiment costs

43



when compared with thermal [NIT] processing [145].

Nanoimprint processing can be categorized into single-step or multi-step imprinting
if the patterning of the resist film using is performed at once, using a stamp of a
size comparable to the substrate size, or if it consists on the step and repetition of
the imprinting on a large surface, using a stamp of reduced size [143]. Additionally,
nanoimprinting can also be referred as single level imprinting or multilevel imprinting
if monolayer or multilayer processing is considered, respectively [143].

Numerous variants of the main nanoimprinting processes previously described have
been developed not only with the aim of achieving higher throughput, better resolution,
and the reduction of number of imprint defects, but also with the aim of patterning
larger surface areas, and obtaining 3D or functional features [143].

As previously referred, [NIL] requires the fabrication of a mold with accurate defi-
nition of surface relief structures, and able to withstand numerous repetitions of the
imprinting process. Very high resolutions can only be attained using hard mold ma-
terials, as nanoscale structures must not deform, or collapse during imprinting, which
can occur if an elastomeric stamp is utilized [141]. Nonetheless, it is possible to grant
moderate flexibility to the mold if the rigid nanostructures are supported by a flexi-
ble substrate, since it can ensure the necessary local rigidity necessary for imprinting,
but also a global flexibility, providing a more conformal contact between the stamp
and the resist, hence contributing to a higher process throughput [141]. Additionally,
thermal [NILJ] processes require a precise control of the thermal expansion coefficients
of stamp and substrate, since, as high temperatures (normally above 100 °C) are used
for resist processing, high imprinting accuracy can only be reached if materials with
similar thermal expansion coefficients are used, in order to avoid pattern distortions
or stress build-up during the cooling step [141]. A surface treatment of the stamps
used for nanoimprinting is usually necessary in order to facilitate the release of the
polymer layer after imprinting due to the strong adhesion of the resist to the mold,
resultant from the large contact area between both [T41]. Typically, the release process
is improved applying a low surface energy coating to the mold prior to nanoimprinting
— through the self-assembly of a fluorosilane monolayer —, but other options as the
incorporation of an internal release agent into the resist formulation, or the selection

of a stamp material with inherently low surface energy, such as fluoropolymers (e.g.

PTFE AF) [141].

44



2 Materials and Methods

2.1 Materials

Silicon wafers and silicon wafers with 25 nm of thermally grown SiOy were purchased
from Silicon Valley Microelectronics (USA) and from Siegert Wafer (Germany).

All solvents, reagents, and acids were purchased from Sigma-Aldrich (France or
Germany), unless stated otherwise.

[PS-L-P2VPl of Molecular Weight (M7,]) of 55000-b-50000 g mol™! or 248000-b-195000
g mol! with Polydispersity Index (PDI) of 1.05 and 1.08, respectively, were purchased
from Polymer Source Inc (Canada) and used without further purification.

All consumables used for Chemical Mechanical Polishing (CMPJ) were acquired from
Struers (Denmark).

[NTL] resists were purchased from Micro Resist Technology GmbH (Germany). Other
consumables used for [NIL] were acquired from Obducat (Sweden).

and [SMP] were purchased from Sigma Aldrich.

Peptides used for surface functionalization (GRGDSPC, afterwards designated as
RGD peptide, and KRKIPKASSVPTELSAISMLYLC, afterwards designated as[BMP-2]
mimetic peptide) were synthesized by Genecust (Luxembourg).

Bone marrow and growth medium and osteogenic induction
medium were acquired from PromoCell (Germany). Other products, namely Alpha
Modified Eagle Medium (MEM)]), trypsin, sterile Phosphate Buffered Saline (PBS),
and consumables, namely well-plates, were purchased from ThermoFisher Scientific.
Ribonucleic Acid (RNAJ) extraction was performed using QIAGEN’s RNeasy Mini Kit
(QIAGEN SAS, France). integrity assessment was performed using RNA 6000
Nano kit from Agilent (USA). The reagents used for RNAl retrotranscription were pur-

chased from ThermoFisher Scientific. The primers used in Quantitative Real Time
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Polymerase Chain Reaction (RT-qPCR]) were purchased from Sigma-Aldrich. SsoAd-
vanced Universal SYBR Green Supermix was purchased from Bio-Rad (USA).

2.2 Nanotopographies

The fabrication of nanopillar arrays required the creation of polymer templates of
[PS-b-P2VP] and the use of a hard mask for pattern transfer into the silicon substrate.
It was possible to achieve uniform features over full wafers following the described

protocols, both in silicon as well as in soft polymeric substrates.

2.2.1 Polymeric templates

Anhydrous toluene and anhydrous m-Xylene (Sigma Aldrich) were utilized for
the preparation of reverse micelles of [PS-b-P2VPI (Figure [2.1]), according to work of
Krishnamoorthy et al. [137], given their selectivity as solvents for the Polystyrene (PS)
block. These experiments were performed in a class 100 cleanroom, with ambient hu-
midity between 45% and 55%, monitored by a hygrometer during sample processing.
[AFMI (Innova, Bruker) and [SEMI (Helios 650 NanoLab, FIB-SEM, FEI Company, Hills-
boro, OR, USA) were the techniques selected for the characterization of the polymer
films, and the collected data was analyzed using NanoScope or ImagelJ, respectively.
In addition, MatLab was used to create a script allowing a better visualization of the
distribution of micelles on a surface and an evaluation of deviations from the expected

quasi-hexagonal feature distribution.
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Figure 2.1 — PS-b-P2VP

More uniform and reproducible reverse micelles were created in m-xylene. There-
fore this solvent was selected for the subsequent investigations. [BCPk were dissolved
in m-xylene in concentrations ranging from 0.4 to 1.0 wt %, and stirred for 24 hours to

ensure that equilibrium is achieved. Si or SiOy on Si (SiO2/Si) 4 inch substrates were

46



cleaned by oxygen plasma [RIEl (Plasma-Therm 790 Reactive Ton Etcher), followed by
a cleaning with carbon dioxide snow jet, and used right after for the spin-coating of
reverse micelle solutions at spin-speeds between 2000 and 8000 rpm for 30 seconds.
The Oy plasma allows the removal of organic residues and the hydrophilization of
the surface, whereas COy snow jet cleaning ensures further removal of hydrocarbon
contaminants and the removal of particles present on the substrate surface down to
nanometer size. Subsequent experiments were defined considering the conditions allow-
ing the achievement of uniform polymer monolayers, since low concentrations and/or
high spin-coating speeds can lead to a patchy coverage of the substrates, and high
concentrations of polymer and/or low spin-speeds may lead to the formation of multi-
layered films, hindering the objective of using such templates as masks for subsequent
etching steps. Unless stated otherwise, further optimization steps were performed us-
ing [PS-b-P2VP films spin-coated on clean substrates at 5000 rpm for 30 seconds, under

controlled humidity, monitored by a hygrometer.

2.2.2 Hard mask fabrication

Since the selectivity of the polymer films for silicon etching is not sufficient to ensure
the creation of features with the aspect ratios and profiles of interest, it was necessary
to include an intermediate hard mask for the fabrication of the final arrays. Two differ-
ent approaches were tested: patterning of a thin thermally grown SiO, layer by [RIE]
or incorporation of TiO, [NPk in the micelle cores. On the other hand, the fabrica-
tion of nanopores (extra experiment to investigate the possible utilization of nanopore
arrays for cells studies) required the pattering of a chromium thin film deposited by

evaporation methods.

Silica mask
Regarding the use of a silica thin film, it was necessary to remove the thin layer
between micelle cores, to expose the oxide. That was achieved subjecting the polymers
to a brief Ar/Oy plasma (18 sccm Ar / 2 scem Og, 4 mTorr, 4 W). The SiOy thin
film was afterwards etched using a CHF3/Ar plasma (12 sccm CHF3 / 38 sccm Ar,
30 mTorr, 200 W, -90 °C). Finally the pattern could be transferred to the underlying
silicon substrate by SFg/O9 plasma (50 scem SFg, 10 sccm O, 10 mTorr, 25 W). Any

remaining silica mask was removed by etching with hydrofluoric acid (2 % v/v).
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Titania nanoparticles

Conversely, the incorporation of the metal oxide particles was performed through
a sequential infiltration of vapor phase precursors into the micellar cores, based on the
work developed by Krishnamoorthy et al. (2011) and Ischenko et al. (2016) [14] [15].
The selective incorporation of a metal oxide in the micelle cores is possible due to the
chemical differences between polymer blocks forming the core and corona of the reverse
micelles. Polar precursors of TiOy (titanium tetrachloride and water, in the present
study) are able to diffuse through the layer, and react with the pyridyl groups of
[P2VP (Figure [2.2)), which allows the maintenance of structural uniformity of the initial

micelles.
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Figure 2.2 — Chemical reaction mechanism of samples exposed to TiCly. (Adapted from

[15])

The samples were processed in an reactor, as it allows a precise control of in-
corporation conditions, namely chemical environment, dosing of precursors, pressure,
and temperature. The exposure to the precursors was performed at a temperature be-
low the [T of the (approximately 97 °C). Before exposure to precursors, the
reactor was purged with nitrogen for 30 min for sample degassing. Sample processing
was performed at a pressure of 4 mbar, for 50 precursor exposure cycles, corresponding
to 100 ms pulses of TiCly and water, intercalated with 1 min of purging with nitro-
gen to ensure the removal of unbound precursors from the chamber. The growth rate
of TiOy was controlled by ellipsometry on flat silicon test samples included during
deposition. The polymeric templates were subsequently removed by O, plasma [RIE],
exposing the titania particles. The number of exposure cycles for was optimized,
after the exposure of the templates to increasing number of cycles. The max-
imum number of cycles (50) ensuring the incorporation of the precursors only inside
the micelles, and not forming a TiO, shell around the micelles, was selected for the
production of TiOy hard masks for Si patterning. Such shell can be created if the

the processing conditions are not optimized for the amount of pyridyl groups available
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for reaction. After exhausting all reactive groups in the micelle cores, precursors are
still able to react with the recently formed TiOs or between themselves, which leads
in a first step to with a diameter larger than the initial [P2VP| diameter, and
later to the deposition of a titania film onto the polymeric film, following a classic
process. Since reproducible and uniform nanopillar arrays were obtained using
the silica mask, and since that process was less onerous than sequential vapor infiltra-

tion, the use of titania nanoparticles for silicon patterning was not further investigated.

Nanopores

With respect to nanopore arrays, chromium hard masks were created by mechan-
ically assisted lift-off, following the studies of Popa et al. (2009) [146]. Chromium
thin films with thickness of 15 nm were evaporated on the polymeric templates, and
subsequently polished by gentle chemical mechanical polishing (Tegramin, Struers), as
represented in Figure [2.3 The optimization of this process included investigations of
the effects of different polishing cloths, slurries, and polishing conditions, namely force,
spin speed and duration of treatment on the Cr thin film. Finally, polishing of 4 inch
samples was performed using a solution of colloidal silica particles of 40 nm size at 40
rpm, applying a force of 5 N. Afterwards, samples were washed with concentrated soap
solution to ensure the removal of the silica particles, which was confirmed by SEMI
Samples could afterwards be potentially used for the fabrication of silicon nanopore
arrays, if subjected to [RIE for silicon etching followed by the removal of the chromium
hard mask by etching. However, due to time constraints, it was not possible to give

continuity to the fabrication of nanopore arrays.

2.2.3 Nanoimprint lithography

NIl is a powerful technique offering the possibilities of not only easily and rapidly
replicating nanopatterns, but also of fabricating nanopatterns in different polymers
using an existent master. Silicon nanopillar arrays of dimensions defined for cell studies
were fabricated according the processes previously described and used as molds for [NIT1
Two main goals were envisaged for the application of this technique: the replication
of the previously fabricated Si pillar arrays, and the fabrication of replicas of these
arrays in materials of lower Young’s moduli. The former aims at allowing a faster and

easier production of Si nanopillar arrays, not having to follow the laborious approach
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Figure 2.3 — Schematics of the process of creation of a etch mask for the fabrication of
nanopore arrays.

previously described for the fabrication of the initial Si arrays, which includes at least
self-assembly of [BCP|, substrate coating with reverse micelles and [RIE] of the hard
mask and Si substrate. The relevance of the latter is related with the possibility of
investigating not only the modulation of response by nanotopographies, but
also the comparison of such modulation by nanostructured materials with different
mechanical properties.

In order to achieve those objectives, nanoimprinting of several resists was evaluated
following both thermal and [UV] processes, aiming to produce uniform patterns over
large surface areas (4 inch wafers). Given its simple processing, Intermediate Polymer
Stamp ® ([PS) was used for all intermediate steps required for the imprinting of the
final polymer thin film. patterning can be achieved following a fast process of
thermal [NITJ, and its low surface energy confers it anti-sticking properties which can
reduce processing time and effort, making it extremely interesting for all intermediate
[NIT steps.

Briefly, the fabrication of polymeric nanopillar arrays required the fabrication of
an intermediate stamp, negative of the initial Si nanopillar array master, that could
be subsequently used for the embossing of the polymer of interest, producing a uni-
form polymeric nanopillar array. The use of for the fabrication of the auxiliary
stamp avoided the need for anti-sticking treatments of both initial master and auxiliary
stamp. The substrates chosen (silicon, quartz, and flexible [NIT] membranes) for the
back support of the [NIT] resist required a pre-treatment with an adhesion-promoter

for the improvement of adhesion of the polymer to the substrate. The resist was spin-
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coated for a final thickness of 10 pm (due to its high viscosity further optimization
would be necessary for lower thicknesses, and a high control over this parameter is not
necessary as it is only vital that it ensures the fabrication of arrays with the original
dimensions). Exposure to[UV] radiation for 5 min (at a power of 30 mW cm™) allowed
the crosslinking of the polymer. After careful demolding (pressure applied during de-
tachment from the stamp can damage features with high aspect ratio), the fabricated
arrays were subjected to a hard-bake step for the improvement of feature stability.
Uniform soft polymeric nanopillar arrays with dimensions similar to the dimensions
of the initial silicon arrays were therefore obtained on full wafers using soft or hard
back substrates. characterization of nanoimprinted polymer films was possible

after sputtering of 20 nm thick platinum films.

2.2.4 Statistical analysis

All data is represented as mean =+ standard deviation, except if stated otherwise.
Statistical analysis of images was performed using ImageJ (NIH, USA) and Mat-
Lab (MathWorks, USA). [AFM]| data was analyzed using NanoScope Analysis (Bruker,
USA).

2.3 Surface functionalization

For the investigation of possible synergistic effects between surface chemistry and
nanotopography, 2 peptides were convalently grafted on the nanostructured Si surface.
These peptides, RGD (Figure and BMP-2 mimetic peptide(Figure , are well-
described peptides known for their abilities to improve adhesion and enhance osteogenic

differentiation of [LMSCI respectively.
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Figure 2.4 — Molecular structure of the synthesized RGD peptide.

The functionalization process, which is schematically illustrated in Figure 2.6, was

based on the work of Porté-Durrieu et al. (2004) [1§].
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Figure 2.6 — Schematics of the process of surface functionalization of silicon with a peptide.
Bonding of peptide highlighted in red.

A solution of hydrogen peroxide (30% wt) and concentrated sulfuric acid at a volume
ratio 1:3 was used for cleaning and surface activation of the silicon samples for 30 min at
Room Temperature (RIJ]). Samples were thoroughly washed by sonication in deionized
water. Cleaned samples were immediately transferred to a chamber under inert argon
atmosphere where they were degassed under high vacuum (10 mbar) for 15 hours at
150 °C to further remove possible organic contamination.

Samples were subsequently silanized with 10 % (v/v) in anhydrous hexane
for 3 hours at [RT] under inert atmosphere. After the reaction, samples were sonicated
in anhydrous hexane to remove any excess of molecules, and cured under high
vacuum, during 2 hours at 100 °C.

Then, the samples were conjugated with a hetero-bifunctional crosslinker, [SMP], at
a concentration of 2 mM in Dimethylformamide (DME]) during 3 hours at [RT]l Once
again samples were sonicated in the same solvent to remove molecules in excess and
degassed under high vacuum for 2 hours at 70 °C.

Finally, RGD peptide, BMP-2 mimetic peptide or a combination of both peptides
at a ratio 1:1 were immobilized on the surfaces. Samples were incubated for 24 hours at
[RT] with solutions of peptides at 0.1 mM in deionized water. Samples were afterwards
sonicated in deionized water to remove unbound peptides.

Samples were characterized by X-ray Photoelectron Spectroscopy (XPS) after each
functionalization step to confirm that the process was successful. A K-Alpha (XPS
system (ThermoFisher Scientific) with a monochromated AlKa source was utilized at

100 W, spot size of 400 pm.
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2.4 hMSC studies

Bone marrow were cultured in basal medium and incubated in a humidified
atmosphere at 37 °C and 5% CO,. Basal medium consisted in supplemented
with 10% Fetal Bovine Serum (EBS]) and 1% penicillin-streptomycin.

Prior to cell seeding, the nanopatterned samples (both with or without grafted
peptides) were sterilized overnight in 70% ethanol in a sterile environment, and subse-
quently washed thrice with [PBSl

were seeded at a density of 10* cells cm™ in serum-free @MEM] and incubated
in such medium for 4 hours to avoid the sedimentation of a protein layer on the surface
of the samples, impairing the adhesion of cells directly to nanotopographies. After
that time, medium was changed to complete media, and cells were let grown during 2
weeks. Cell culture medium was replaced twice a week.

The cellular response to the modifications of surface chemistry and topography
was characterized by immunofluorescence assays and [RI-qPCR] techniques that allow,
respectively, the study of expression of proteins and genes by cells. As previously re-
ferred, the expression of markers of osteogenic differentiation of [MSC] namely Runx?2,
Type I Collagen (ColTAT)), [OPN] and was investigated.

2.4.1 Immunofluorescence assays

At the defined time point, cell culture was stopped and cells fixed using a solution of
4% Paraformaldehyde (PEA) (incubation for 15 min). This step is fundamental at this
stage since it ensures the preservation of cell morphology, strengthens their structure
for further sample processing, and it inactivates the action of enzymes that could cause
sample degradation.

Permeabilization of the fixed cells included two steps, viz. incubation in ice cold
methanol for 15 min at -20 °C, followed by incubation in a solution of 0.5% TritonX
100 in for 10 min at 4 °C. Afterwards, samples were incubated in a solution of 1%
Bovine Serum Albumin (BSA]) in for 30 min at 37 °C to avoid nonspecific inter-
actions of the antibodies with the cells undergoing analysis. Cells were then incubated
with the primary antibodies (Table in a humidified atmosphere, for 1 hour at 37
°C.
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Table 2.1 — Primary antibodies used in immunofluorescence assays.

Antibody Supplier Marking

Runx2 Cell Signaling Technology Osteoblastic differentiation (early phase)
OPN Santa Cruz Biotechnology  Osteoblastic differentiation (late phase)

After washing with 0.05% Tween-20 in [PBS] samples were incubated with the
secondary antibodies — either AlexaFluor 488 or AlexaFluor 647 — for 1 hour at 37
°C in the dark, in a humidified atmosphere. Finally samples were mounted using
Fluoroshield with 4’,6-diamidino-2-phenylindole (DAPI) — for counterstaining of cell
nuclei — mounting media.

Sample characterization was performed using a Leica DM5500B epifluorescence
microscope controlled my Metamorph software. Briefly, a 40x oil immersion objective
was used to observe and acquire images of the stained samples (excitation and emission
spectra of the fluorochromes used is represented in Figure , which were later treated
using ImagelJ software, utilizing macros specifically written for the current project,

having into consideration the intracellular localization of the proteins of interest.
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Figure 2.7 — Absorption and emission spectra of the fluorophores used in immunofluores-
cence.

2.4.2 RT-qPCR

In addition to immunofluorescence which allows the study of protein production

by cells, RT-qPCR] was also performed in order to investigate possible changes in ex-
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pression of the genes involved in osteoblastic differentiation of hMSCk, namely [Runx2.
[ColTAT], and [OCNL

When performing [RT-qPCR] it is fundamental to use reliable reference genes for
normalization of gene expression between experiments. Since the expression of house-
keeping genes has to be constant for all experimental conditions, expression of several
candidates was evaluated prior to these studies. Finally, two reference genes were
selected — Peptidylprolyl isomerase A (PPIA]) and RPC53.

[RT-gPCR] requires the isolation of the total RNAI from the cells of interest and
its subsequent retrotranscription into Complementary Deoxyribonucleic Acid (cDNA]),
which can then be processed by [RT-qPCRl However, since the quantity of isolated
from cells growing on each sample (of 1 cm?), is not sufficient to run a [RT-qPCR]
experiment, for each condition, cells from four chips were pooled together, ensuring
that different genes can indeed be tested for the different conditions studied.

[RT-qPCR] requires, first of all, the extraction of total RNAI from the cells in study.
With that goal, two techniques were tested: a phenol-based approach, and a column
method. The former, besides being more laborious than the column method, was also
difficult to perform due to the low number of cells used (volume of cell pellet was so
reduced, that in some steps it was not possible to even see it). Nevertheless, it was
tested according to the protocol suggested by ThermoFisher Scientific (supplier of the
TRIzol used for RNA] extraction), and [RNAl was quantified using a spectrophotometer
NanoDrop 1000 (ThermoFisher Scientific).

extraction using RNeasy Mini Kit was performed according the manufac-
turer’s protocol. Briefly, were harvested using trypsin and lysed using the lysis
buffer from the kit. Cell lysate was mixed with one volume of 70% ethanol, and cen-
trifuged in a spin column. It was then incubated with a protein denaturating buffer.
The spin column was centrifuged again, and samples were washed with RPE buffer. Fi-
nally[RNAlwas eluted in RNase-free water. Genomic Deoxyribonucleic Acid (DNAJ) was
removed using a TURBO DNA-free kit. NanoDrop 1000 spectrophotometer was used
for RNA] quantification. [RNA] integrity was investigated using an Agilent Bioanayzer
2100 with a RNA 6000 Nano kit.

Total RNAlretrotranscription started with the incubation of the solution with
random primers for 5 min at 65 °C. Afterwards this solution was mixed with the retro-

transcription master mix (retrotranscription buffer, ANTP mix, Reverse Transcriptase,
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Ribonuclease in RNase-free water) and loaded in the thermal cycler. Retrotranscrip-
tion included two main steps: incubation at 50 °C for 1 hour, followed by incubation
at 72 °C for 15 min.

Aliquots of underwent dye-based for the study of four genes
(primers listed in Table 2.2). [RT-qPCR] was performed using 4 ng of kDNA] and
primers at a concentration of 500 nM, for a final volume of 10 puL. The reaction was
performed using a CFX Connect Real-Time PCR System (Bio-Rad). Forty amplifi-
cation cycles were performed for each experiment, and consisted on incubating the
solution at 95 °C for 5 seconds, followed by an incubation at 60 °C for 10 seconds.
C, values for the genes of interest were normalized against 2 reference genes which
were selected using BestKeeper: PPIA and RPC53. Relative expression levels were
calculated using the comparative method (AAC,) and gene expression was normalized
using flat silicon sample as control [147]. For each condition, three biological samples

were tested, for which four technical replicates were done.

Table 2.2 — Primers used in RT-qPCR assays.

Gene Primer sequence Amplicon / bp
RPC53 5-ACCCTGGCTGACCTGACAGA-3’ (Forward) -
5-AGGAGTTGCACCCTTCCAGA-3’ (Reverse)
PPIA 5-CGGGTCCTGGCATCTTGT-3" (Forward) 81
5-CAGTCTTGGCAGTGCAGATGA-3’ (Reverse)
Runx? 5-AAGTGCGGTGCAAACTTTCT-3’ (Forward) 9%
5-TCTCGGTGGCTGGTAGTGA-3’ (Reverse)
COL1A1 5-ACATGTTCAGCTTTGTGGACC-3’ (Forward) 117
5-TGATTGGTGGGATGTCTTCGT-3" (Reverse)
OCN 5-GACTGTGACGAGTTGGCTGA-3" (Forward) 119

5-CTGGAGAGGAGCAGAACTGG-3" (Reverse)

2.4.3 Statistical analysis

Immunofluorescence data were analyses using ImageJ (NIH, USA) and GraphPad
Prism (USA). data were analyzed using CFX Maestro Software (Bio-Rad,
USA). Significant differences were considered for p-values < 0.05 (* represents p <
0.05, ** p < 0.01, and *** p < 0.001).
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3 Results and Discussion

The main results obtained in this project regarding the preparation of nanoscale
topographies, their functionalization with bioactive molecules, and the investigation
of the impact of the bioactive topographies on behavior, are summarized in
this chapter. From a materials perspective, the principal considerations behind these
studies were the fabrication of highly uniform nanopillars arrays across large areas, as
well as good homogeneity of peptides immobilized on the surface, due to the constraints
imposed by biological studies. As previously referred, are highly sensitive to the
surface characteristics of a biomaterial to which they are in contact with. Hence even
reduced variations in surface chemistry or topography can lead to different responses
from cells in culture. Moreover, biological assays, and in particular RT-qPCR], require
the culture of a large cell number, and the replication of each experiment to ensure
reproducibility.

Firstly, silicon nanopillar arrays were fabricated following an approach taking ad-
vantage of the ability to self-assemble of amphiphilic[BCPk. The impact of such nanoar-
rays on the osteoblastic differentiation of bone marrow from young and older
donors was studied by immunofluorescence and [RT-qPCR] This study is described in
Section 3.1l

Considering that not only topography, but also the surface chemistry of bioma-
terials can be a tool for the modulation of cell response, the nanopillar arrays were
functionalized with RGD peptide (to improve cell adhesion), BMP-2] peptidomimetics
(to contribute to osteogenic differentiation), and the combination of both biomolecules.
The differentiation of when cultured on these biofunctionalized nanostructures
was investigated and compared with the results obtained for bare nanotopographies.
Section summarizes this study.

Finally, Section sums up different intermediate studies and optimizations which

were fundamental for the achievement to the approach and results obtained that
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granted the opportunity of preparing the two previous scientific articles. These in-
cludes the steps of optimization of the fabrication and surface functionalization of the
nanoarrays, and of a basic understanding of [hMSCl behavior on the nanostructured

materials.
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Abstract

Nanotopography with length scales of the order of extracellular matrix elements offers
the possibility of regulating cell behavior. Investigation of the impact of nanotopog-
raphy on cell response has been limited by inability to precisely control geometries,
especially at high spatial resolutions, and across practically large areas. In this paper,
we demonstrate well-controlled and periodic nanopillar arrays of silicon and investigate
their impact on osteogenic differentiation of Human Mesenchymal Stem Cells (WMSCk).
Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting
standard deviations below 15 % across full wafers were realized using self-assembly of
Block Copolymer (BCP)) colloids. Immunofluorescence and Quantitative Real Time
Polymerase Chain Reaction (RT-gPCR]) measurements reveal clear dependence of os-
teogenic differentiation of on the diameter and periodicity of the arrays. Fur-
ther, the differentiation of hMSCk was found to be dependent on the age of the donor.
While osteoblastic differentiation was found to be promoted by the pillars with larger
diameters and heights independent of donor age, they were found to be different for
different spacings. Pillar arrays with smaller pitch promoted differentiation from young
donor, while a larger spacing promoted those of an old donor. These findings can con-
tribute for the development of personalized treatments of bone diseases, namely novel

implant nanostructuring depending on patient age.

Keywords: nanoscale, topographies, block copolymer self-assembly, mesenchymal

stem cells, osteogenic differentiation
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1. Introduction

The interaction of a material with biological tissues is known to impact the initial
protein adsorption on its surface, and the subsequent cell response, namely its adhe-
sion, proliferation or death [25 26]. Cell-material interface can be therefore seen as
a complex system comprising three main players: material properties, molecules on
the material surface, and adherent cells. The understanding of this interplay at the
length scales of cells (microscale) or even molecules (nanoscale) is of extreme interest
for the improvement of implants used in dentistry or orthopedics, for the improvement
of the properties of other biomaterials for tissue engineering applications, and for the
understanding of the in vivo cell microenvironment [3]. In particular, for bone tis-
sue engineering, appear as promising candidates for such studies, due to their
ability to proliferate and to differentiate into various lineages, including osteoblastic
lineage [4]. These stem cells can be isolated from different tissues, including bone
marrow, adipose tissue, and dental tissues, but constitute a very heterogeneous cell
population [5], [6]. Despite their limitations, have been extensively used in the
investigation of the mechanisms behind cell-material interactions [148], [149].

The interaction of a cell with a material topography was first observed in 1911 by
Harrison, and it has been investigated at different scale regimes since then [150] [151].
Nanostructures ranging from holes, posts, grooves, etc. have been shown to elicit spe-
cific cell responses on several cell types, namely fibroblasts, neurons, osteoblasts and
smooth muscle cells, without the need of additional growth factors or other chemical
cues [9]. A very interesting study of the impact of nanoscale features on LMSCl adhesion
and differentiation was performed by Oh and colleagues who have demonstrated that
titanium oxide nanotubes are able to promote osteogenic differentiation of these stem
cells if their diameter is in the range of 70 - 100 nm, whereas nanotubes of lower diame-
ter improve cell adhesion, but do not contribute for their differentiation [I1]. However,
in the same year, Park et al. showed completely opposite results for human osteoblast
progenitor cells (cells of mesenchymal origin) cultured on similar nanostructures ob-
tained after titanium anodization. In this study, cells showed enhanced adhesion and
differentiation when grown on nanotubes of 15 nm diameter compared with larger
feature diameter. Since the extracellular domain of an integrin is approximately 15
nm, the authors hypothesized that this dimension could support a maximum of cell

responses to material surfaces and could be considered an ‘universal spacing constant’
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[104]. Nonetheless, it is important to note that osteogenic differentiation medium was
utilized in this study (cells were initially cultured in basal medium, which was replaced
by osteogenic medium at day 5), whereas Oh et al. cultured their in basal
medium (medium containing only the elements necessary for cell growth), and it is
known that the chemical environment to which cells are subjected to (in this case, the
composition of culture media) has a strong repercussion on cell response [152] [153].
Regarding the impact of nanotopographies on behavior, other studies have also
shown that the organization of nanoscale features have an impact on cell fate. Nanopits
created in polycaprolactone with 120 nm of diameter, spacing of 300 nm, and 100 nm
depth organized in square lattice are able to maintain stemness for eight weeks,
whereas the same pits with an offset of 50 nm from their true center (350 nm spacing)
led to their differentiation into osteoblasts [I1§].

potential to undergo differentiation into different lineages has been shown
to evolve with donor age [154, [155]. Aging is also known to be responsible for a lower
proliferation rate of these cells, longer doubling time, greater extent of senescence and
apoptosis [I56-158]. Hence, the possible clinical use of from elderly people to
treat bone diseases, such as osteoporosis, is highly impaired by these drawbacks. Yet,
to the best of our knowledge, the investigation of osteogenic differentiation of
from donors of different age on nanoscale topographies has not been performed. Since it
is currently understood that material nanostructuring can convey specific cues to lead
to a specific cell behavior, in the present study osteoblastic differentiation of
on nanopillar arrays was investigated for young and old donors, in order to have an
insight on how such surfaces can be utilized for cell differentiation according to the
patient age.

Although a myriad studies have been published on cell-material interactions, it is
still unclear how each geometric parameter of a nanotopography influences dif-
ferentiation into osteoblasts. As previously referred, conflicting findings are found in
the literature, which can most probably be related with the fact that different pro-
tocols are used for cell culture, regulating fate in different ways. Therefore,
in this study, we investigated the influence of controlled nanopillar arrays per se on
the differentiation of into the osteoblastic lineage. Cells were cultured on the
nanostructured samples in a basal medium containing only the essential molecules for

cell survival, to avoid the influence of any other parameter besides topology of the ma-
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terial. The fabrication of the nanoscale pillar arrays was based on the self-assembly of
amphiphilic diblock copolymers allowing the creation of polymeric masks for lithogra-
phy. These micelle-based templates are an attractive alternative to other lithographic
techniques, namely electron-beam lithography, due to their ease of formation on large
surface areas, orthogonal control over geometric variables in steps down to 5 % of
their mean value, short processing times, lower costs, and compatibility with a wide
range of substrates [14]. Such lithographic technique is widely used in applications
in nanoelectronics, quantum dot fabrication or nanowire formation as it allows the
fabrication of ordered arrays of features at nanometer scale [I59-162]. Still, few prior
studies have showed the application of self-assembly for the investigation of cell
behavior, either for an accurate control of the presentation of molecules influencing cell
adhesion or differentiation to the cells in culture, or for understanding the impact of
nanoscale topographies on cells [10} 102 110} 112}, 163-165]. For example, Sjostrom and
McNamara have used reverse micelles to create masks for the selective anodiza-
tion of titanium surfaces, translating the polymeric template to the titanium sample,
to study the impact of nanopillar height on the differentiation of [T0]. The
nanopillars fabricated were distributed in a hexagonal array across the sample, and
their top diameter was directly related with the diameter of the block copolymer mi-
celles. The authors reported that titania pillars with diameters of 20 to 30 nm and 15
nm height are able to promote osteogenic differentiation of cultured in basal
medium, independently of feature separation (tested from 30 to 105 nm) and orga-
nization [10, 102), 112]. Contrarily, pillars of titanium dioxide with larger dimensions
(diameter of 200 nm, spacing of 450 nm and height of 180 nm) showed a positive im-
pact on the osteodifferentiation of in a work performed by de Peppo [110]. It
is worth noting that similar to the previously referred works of Oh and Park, the com-
position of cell culture media was not the same for all the studies, which may be one of
the causes for divergences in the attained results. Whereas Sjostrom and McNamara
used a basal medium for culture, de Peppo used an osteogenic differentiation
medium [10] 102, 110} 112]. Yet, there is still the need to investigate which geometric
dimension (width, height, spacing) has more impact over behavior, particularly
osteogenic differentiation. With this aim, nanoscale pillar arrays with fine-tunable di-
mensions and quasi-hexagonal distribution were fabricated on silicon substrates and

used for the culture of hMSCs for investigation of their impact on cell fate. Even though
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titanium and its alloys are the most common options as materials for bone implants
due to their high biocompatibility and good mechanical properties, silicon was selected
as model substrate for this study [28]. The extensive development of techniques for
silicon structuration in electronics, its ease of patterning compared with titanium (or
its alloys), together with its good biocompatibility, make it a more appropriate choice
of material for the fabrication of features with dimensions of a few nanometers. The
influence of the silicon nanostructures on cell behavior was studied by immunofluores-
cence and [RT-gPCR] Such techniques allowed the evaluation of expression of markers
related with osteogenic differentiation of [MMSCk, namely Runt-related Transcription
Factor 2 (Runx2)), and Type I Collagen (ColTIATl), expressed during early differentiation
stages; Osteopontin ([OPNI), and Osteocalcin (OCNI), expressed in late differentiation
stages [24].

2. Experimental Section

Materials: Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP]) (] 55000-b-50000
g mol! and 248000-b-195000 g mol™, Polydispersity Indexs (PDIk) 1.05 and 1.08 re-
spectively) were purchased from Polymer Source Inc (Montreal, Canada) and used
without further purification. All solvents and surfactants were purchased from Sigma
Aldrich, unless stated otherwise. Prime grade silicon wafers with a thermally grown
silicon dioxide layer of 25 nm thickness were acquired from Siegert Wafer (Aachen,
Germany). from bone marrow were acquired from PromoCell (Heidelberg, Ger-
many). Basal culture medium «MEM and Fetal Bovine Serum (EBS]) were purchased
from Gibco, ThermoFisher Scientific (France). All the reagents used in [DNA] digestion
and [RNAl retrotranscription were acquired from ThermoFisher Scientific. The primers
used for [RT-qPCR] were acquired at Sigma-Aldrich, whereas SsoAdvanced™ Universal
SYBR@®) Green Supermix was purchased from Bio-Rad. Bovine Serum Albumin (BSA))
and sample mounting media with DAPI (Fluoroshield™ with DAPI) were purchased
from Sigma-Aldrich. The primary antibody against (rabbit monoclonal) was
purchased from Cell Signaling Technology Europe (Netherlands). Primary antibod-
ies against Osteopontin (mouse monoclonal), Sox9, Type II Collagen (CollA2) were
purchased from Santa Cruz Biotechnology (USA). Primary antibodies against PPAR-

v and adiponectin were purchased from Abcam (France). Secondary antibodies were
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acquired from Invitrogen, ThermoFisher Scientific.

Nanopillar fabrication: Si substrates with 25 nm of thermally grown oxide layers (25
nm SiO,/Si) were cleaned by exposing them to oxygen plasma reactive ion etching
(PlasmaTherm 790 RIE, FL, USA) at low bias, followed by use of carbon dioxide snow
jet to any small sized particles prior to nanopillar preparation. Silicon nanopillar arrays
were prepared using protocol described by Krishnamoorthy and coworkers [14]. Briefly,
quasi-hexagonally ordered copolymer template with desired periodicity were obtained
on 25 nm SiO9/Si by spin-coating copolymer reverse micelle films from m-Xylene solu-
tions. The substrates were then subjected to brief Ar/O; plasma descumming (18 sccm
Ar / 2 scem Og, 4 mTorr, 4 W) for descumming the thin layer of polystyrene between
the features, and subsequently transferred into thermal oxide layer by CHF3/Ar (12
scem CHFj3 / 38 scem Ar, at -90 °C, 30 mTorr, 200 W) and then into Si by SFg/O,
plasma (50 sccm SFg / 10 sccm Og, 10 mTorr, 25 W). Any remaining silica mask was
removed by chemical etching with hydrofluoric acid (2 % v/v). The attained polymeric
arrays as well as the nanopillar arrays were characterized in detail by [AFM (Innova,

Bruker, MA, USA) and [SEM] (FIB-SEM, Helios 650, FEI Company, OR, USA).

XPS characterization: The samples were characterized by X-ray Photoelectron Spec-
troscopy (XPS)) to confirm that surface chemistry was identical on all surfaces. A
K-Alpha (XPS system (ThermoFisher Scientific) with a monochromated AlKo source
was utilized at 100 W, spot size of 400 pm. For each condition, 5 regions were analyzed

to confirm the uniformity of the surface treatment.

Cell culture: Nanopillar chips were sterilized in 70 % ethanol overnight prior to their
use as substrates for cell culture. from bone marrow from donors of 36 or of
65 years old were seeded at passage 5 on the prepared samples at an initial density
of 10* cells cm™. During the first 4 hours, cells were kept in serum-free medium to
ensure cell interaction directly to the material surface, and incubated at 37 °C, 5 %
CO,. Afterwards, medium was changed to aMEM completed with 10 % after-
wards referred to as basal medium. Culture medium was replaced twice a week, and
were cultured for 2 weeks. Protein and gene expression were investigated by
immunofluorescence assays and [RT-qPCR]
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Immunofluorescence assays: Immunostaining was performed after two weeks of cell
culture to investigate the expression of osteogenic markers. Cells were fixed with
paraformaldehyde (4 %), permeabilized with Triton-X 100 (0.5 %) and ice-cold methanol.
To avoid non-specific interactions, samples were incubated with (1 %). Samples
were subsequently incubated with primary antibodies for 1 hour at 37 °C. After washing
with Tween-20 (0.05 %), samples were incubated for 1 hour at 37 °C with the secondary
antibodies IgG coupled with AlexaFluor™ 488 and IgG coupled with AlexaFluor™ 647.
Samples were again washed with a solution of Tween-20 (0.05 %) and mounted and
counterstained with DAPI. Samples were observed using an epifluorescence microscope
Leica DM5500B. Immunofluorescence assays for investigation of osteoblastic differen-
tiation (Runx2 and [OPN]) were performed for n=3, considering the expression of at
least 100 cells per sample. Adipogenic (PPAR-yand adiponectin) and chondrogenic
(Sox9 and [ColTA2)) differentiation, the assays were only performed once (n=1), and

the fluorescence signal was measured in 20 cells per sample.

RT-gPCR: Total [RNAl was isolated using RNeasy Mini Kit (QIAGEN), and genomic
[DNA| was removed using TURBO [DNAHMree kit. Isolated was quantified using
a NanoDrop 1000 (ThermoFisher Scientific) and [RNAl integrity was assessed using an
Agilent bioanalyzer 2100 with a[RNAI6000 Nano kit (Agilent, USA). dDNAlwas synthe-
sized from 500 ng of total with the help of random primers and Maxima Reverse
Transcriptase. [RNAl retrotranscription reaction included two main steps: incubation
at 50 °C for one hour, followed by an incubation at 72 °C for 15 min. Aliquots of
dDNAJunderwent dye-based [RT-qPCR] for the study of 4 genes (primers listed in Table
B.1). [RT-qPCR] was performed using 4 ng of cDNA] and primers at a concentration of
500 nM, for a final volume of 10 pL. [RT-qPCR] was performed using a CFX Connect™
Real-Time PCR System (Bio-Rad), using 2 genes of reference: RPC53 and PPIA.
Forty PCR amplification cycles were performed for each experiment, and consisted on
incubating the solution at 95 °C for 5 s, followed by an incubation at 60 °C for 10
s. (Cq values for the genes of interest were normalized against 2 reference genes which
were selected using BestKeeper: PPIA and RPC53 [147]. The relative expression levels
were calculated using the comparative method (AACq) and the gene expression was

normalized using flat Si sample as control. For each condition, 3 biological samples
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were tested, for which 4 technical replicates were done.

Statistical analysis: All data are expressed as mean + standard error of the mean,
except if stated otherwise. Statistical analyses were performed using MatLab (Math-
Works, USA) in the case of [SEM| data, NanoScope Analysis (Bruker, USA) for [AFM]
data, CFX Maestro Software (Bio-Rad, USA) for[RT-gPCR]data, and GraphPad Prism
(USA) for immunofluorescence data. Significant differences were considered for p-values

< 0.05.

Table 3.1 — Primers used in RT-qPCR assays.

Gene Primer sequence Amplicon / bp

5-ACCCTGGCTGACCTGACAGA-3’ (Forward)
RPC53 71

5-AGGAGTTGCACCCTTCCAGA-3’ (Reverse)

5-CGGGTCCTGGCATCTTGT-3 (Forward)
PPIA 81

5-CAGTCTTGGCAGTGCAGATGA-3" (Reverse)

5-AAGTGCGGTGCAAACTTTCT-3’ (Forward)
Runx2 90

5-TCTCGGTGGCTGGTAGTGA-3’ (Reverse)

5-ACATGTTCAGCTTTGTGGACC-3' (Forward)
COL1A1 117

5-TGATTGGTGGGATGTCTTCGT-3’ (Reverse)

5-GACTGTGACGAGTTGGCTGA-3" (Forward)
OCN 119

5-CTGGAGAGGAGCAGAACTGG-3’ (Reverse)

3. Results
3.1. Nanopillar fabrication

The experimental strategy to obtain nanopillar arrays was based on the process
developed by Krishnamoorthy [14]. Spin-coating of the reverse micelle
solutions on thoroughly cleaned substrates allowed the creation of organized, hexago-
nally distributed templates on 4-inch wafers, without the need for any further solvent
annealing processing. The possibility of creating highly controlled nanoarrays on full
wafers was one of the main considerations behind the choice of this process.
culture and characterization required the utilization of hundreds of chips to ensure that

experiments are reproducible and that statistically relevant results are obtained.

67



The use of of different [M,] and block ratios allowed the fabrication of arrays of
varying characteristic dimensions, as shown in Figure|3.1] Furthermore, the dependence
of the array periodicity on evaporation speeds and solution concentrations was also used
to arrive at desired pitch. Average feature diameter was determined for each condition
over full wafer area by SEM| and the corresponding center-to-center distances, and

feature densities by [AFM]| as summarized in Table [3.2

Figure 3.1 — Representative AFM] images of BCP]templates A, B, and C. Scale bar 400 nm.

Table 3.2 — Average characteristic dimensions of the produced [BCP] reverse micelle arrays.
For simplicity, the arrays were labelled as A, B, and C. (Values represented as mean =+
standard deviation)

Label Muw/kg mol' Spin speed/rpm Diameter/nm Periodicity / nm

A 148-b-195 2000 64 £ 6 135 + 14
B 148-b-195 5000 60 £ 8 197 £ 23
C 55-b-50 5000 52 £ 4 68 + 4

A small variation in periodicity, as well as a deviation from the expected hexagonal
packing was observed during SEM] characterization across the wafer surface, as depicted
in Table 3, primarily due to different speeds of solvent evaporation during substrate
coating. Nonetheless, the impact of such deviations on the full samples was within the
range observed in previous studies, so it could be disregarded during the subsequent
steps [14] 166]. Another interesting parameter to evaluate was the density of micelles
on the surface, also presented in Table [3.3]
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Table 3.3 — for feature diameter and periodicity across wafers, percentage of features
in a correct hexagonal packing, and density of features for the two [BCP| coated at 5000 rpm
on 4 inch wafers.

Mw Coordination Density
Region CV diameter CV periodicity
kg mol! % 0 number 6 pm2
Center 11 12 51 115
55-b-50 Mid 9 10 65 136
Edge 8 11 58 106
Center 12 12 62 26
148-b-195 Mid 12 10 54 22
Edge 10 12 57 21

Post etching characterization of the patterned wafers showed slight differences in
feature dimensions from the initial ones. Once more, was performed at full wafer
scale to investigate the final characteristics of the nanopillar samples. These results
are summarized in Table [3.4] and Figure shows a detailed cross-section view of
the 3 conditions with feature height of 80 nm. Wafers were subsequently treated with
hydrofluoric acid and diced into 1 cm? chips to be compatible with ordinary cell culture

systems.

Table 3.4 — Average characteristic dimensions of the produced nanopillar arrays. Labels
A,B,C were defined in Table 40/80 corresponds to the feature height.

Label Diameter/nm Periodicity/nm Height/nm

A40 105 £ 14 137 £ 14 42 £ 6
AS80 105 £ 14 141 £ 12 75 E£6
B40 102 £ 10 196 £ 23 39 £ 3
B&0 104 £ 13 201 £ 23 82 £ 6
C40 58 +£4 70 £ 2 AT £ 4
C80 24 £ 5 73+ 3 85 £ 5
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Figure 3.2 — Details of cross-sections of nanopillar samples obtained by [SEM] for the 3
conditions with feature height of 80 nm. (A) corresponds to A80, (B) to B80, and (C) to

C80. (Scale bar 100 nm).

Since it is known that cells are able to sense and respond to not only surface

topography, but also its chemistry, samples were characterized by [XPS| in order to

verify that the surface chemistry to which hMSCk would be subjected to was the same

for all arrays [167]. The results obtained after peak fitting are summarized in Table

Table 3.5 — [XPY characterization results of samples from all the topography conditions.

Element Bond eV Atomic %

F A40 A80 B40 B80 C40 C80

Si? 98.9-99.3 50.3 429 416 46.6 455 38.2 429

Si SiOCs 101.7-101.9 21 25 34 18 1.8 19 16
Si0,Cy, SiO3C  102.7-103.1 56 9.1 7.7 80 83 11.2 9.5

C-C 284.7-285.0 10.3 122 144 123 120 126 129

C C-O 286.2-286.5 3.2 28 33 34 30 34 3.7
COOH 288.7-289.2 06 07 07 08 05 06 04

N N-C-0O4 401.7-401.8 03 02 02 03 03 03 05

0] O0-C 532.2-532.6 27.6 29.6 287 26.8 28.6 31.8 285
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3.2 Immunofluorescence

Immunofluorescence was performed to evaluate the expression of proteins known to
be related with differentiation into the osteoblastic lineage (Runx2, [OPN]). The role
and temporal expression of the selected markers during differentiation have been
extensively studied previously, which makes them good tools for the understanding of
cell response to the fabricated nanostructured materials [24, 99]. Since Runx2 is ex-
pressed in an early stage of differentiation into osteoblastic lineage, and in a later
phase, it could be possible to investigate to which extent the nanostructured samples
were able to favor differentiation towards osteogenic lineage. Additionally, os-
teoblastic differentiation of from a young and an old donor was characterized,
to investigate possible variations according to nanotopography.

commitment to the osteoblastic lineage was characterized after 2 weeks of
culture on the nanopatterned surfaces in basal media (example of marker expression
on a flat silicon substrate in Figure . Fluorescence signal for each nanoarray was
compared between topographies, and the results were normalized to flat control for

simplicity (Figure [3.4)).

Figure 3.3 — Example of immunofluorescence images obtained for the characterization of
[Runx2 and [OPN] expression (nucleus marked with DAPI) for understanding of intracellular
distribution of these proteins. (Scale bar 50 pm)

Expression of markers was found to be markedly different for cells from the two
donors. Regarding the expression of the early osteogenic marker [Runx2| from
a young donor (Figure i) show a very high signal for the pattern A80 when compared
with the remaining conditions (2.2 fold higher signal compared with F'), whereas in the
case of the old donor (Figure[3.4]ii) the highest Runx2lsignal is observed on B80 samples

(1.2 fold compared with control). This tendency is in agreement with the expression
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(i) Young donor (ii) Old donor
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Figure 3.4 — Fluorescence intensity related with the expression of markers for osteoblastic
differentiation of after 2 weeks of culture on the nanostructured Si samples in basal
medium was normalized against flat Si (F) control. (i) Expression in cells from young donor.
(ii) Expression in cells from old donor. (* represents significant differences from F, + from
A40, B from A80, ® from B40, and x from B80).

of the late differentiation marker studied (OPN]). In Figure i, the fluorescence
observed for young cells grown on A80 and C40 samples is similar to the fluorescence
observed on control. However, all other nanostructures show a lower signal than the
flat control. The population of cells from an old donor have a very heterogeneous
expression of (Figure ii). Only significant differences are observed between
F and B80, and B80 and C80. Expression on B80 pattern is approximately twice the
signal observed on the control, which is consistent with the trend observed for Runx2

To assess if the nanotopographies could potentially be used for the control of differ-
entiation towards chondrocyte or adipocyte lineages, immunofluorescence assays were
performed in parallel for cells from a young donor. Sox9 and were selected
as markers of chondrogenic differentiation, whereas PPAR-~y and adiponectin were se-
lected as markers of adipogenic differentiation of [88, 126]. No expression was

observed regarding the adipogenic markers on any topography after 2 weeks (data
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not shown), indicating that the selected nanoarrays are not suitable to guide [hMSCk
differentiation towards adipogenic lineage. On the other hand, immunostaining for
chondrogenic markers indicated that the pattern B80 was particularly efficient on the

enhancement of chondrogenic differentiation of [bMSCk, as represented in Figure |3.5

Sox9 COL2A1

(¥}
i

"~
5
Normalized fluorescence

Normalized fluorescence

F A40 A80 B40 B8O C40 F A40 A80 B40 B8O C40

Figure 3.5 — Normalized fluorescence intensity observed [hMSCk cultured for 2 weeks on nan-
otopographies related with the expression with Sox9 and [ColTIA2] the chondrogenic markers
selected. Fluorescence was normalized against the flat control for simplicity of analysis.

3.3. RT-GPCR]

Although it is not possible to ensure an accurate correlation between protein and
gene expression, the selection of conditions for RT-qPCR] assays was based on the pre-
viously obtained immunofluorescence results. The difficulties in correlating [RNAl and
protein expression are mainly due to variations in translation efficiency (which
depends on ribosome density and their occupancy levels), protein stability, as well as
experimental errors and noise associated to the assays [168, [169]. Nevertheless, since
[RT-qPCR] experiments require a large amount of transcriptome, and it was necessary
to pool cells from 4 cm? (4 samples for each condition) for such assays, it was decided
that gene expression would only be evaluated for the conditions granting the best re-
sults for osteogenic differentiation in immunofluorescence. As different tendencies were
observed for cells from young and old donors, the best condition after the interpretation
of immunofluorescence results for the young donor, i.e., A80, and for the old donor,
that is, B80 were selected for the subsequent studies.

After 2 weeks of culture on the selected nanopatterns, the differentiation stage of
the cells was investigated. RT-qPCR]is a very reliable technique which can detect gene

expression even when a small quantity of [RNA] is available. The expression of genes
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known to be expressed during early (Runx2 [ColTAT]) and late (OCN) stages of differ-
entiation of [hMSCk into osteoblasts was quantified to further investigate differences on

the impact of the nanotopographies on [lMSC] differentiation (Figure |3.6]).
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Figure 3.6 — Normalized gene expression (AACq method) of Runx2 [ColTAT], and [OCN] in
hMSCk after 2 weeks of culture in basal medium on the nanostructured samples, taking the
flat Si surface (F) as control. (n=4)

[RT-qPCR]results were in agreement with the trendlines observed in by immunoflu-
orescence. Concerning from a young donor, [Runx2| expression was significantly
higher on nanostructured samples, especially for the A80 condition. Similarly, the ex-
pression of [ColTATl an early differentiation marker as[Runx2 appeared to be enhanced
on the nanotopographies, though the difference from control was not significant (for
the confidence interval selected). expression was comparable on the three sub-
strates. It is therefore reasonable to deduce that, after 2 weeks, these cells were in an
early osteoblastic differentiation stage. An extra time point for a longer time in culture
would be important to confirm such conclusion. It would be expected that a decrease
in the expression of the early markers would decrease for A80 and B80, and that an
increase of would be observable.

On the other hand, cells from an older donor are able to differentiate faster on
nanostructured surfaces than younger cells. In this case, is over-expressed on
nanostructured samples compared with the flat control, whereas and

expression are similar for all conditions.
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4. Discussion
4.1. Nanoscale topographies

The modification of material properties, namely surface chemistry, topography,
and mechanical characteristics, has been extensively investigated for the modulation
of cell behavior, including their proliferation, adhesion, or differentiation abilities [97,
99, I68HI70]. In particular, a controlled modification of the topography of a material
at nanoscale has demonstrated to be a powerful tool to control the differentiation of
into the osteogenic lineage as reviewed by Donelly, or Gui [97, [I71]. Still,
the creation of nanoscale topographies using traditional lithographic methods used
in nanoelectronics, as electron-beam and focused-ion-beam lithography, have inherent
drawbacks including high costs and low throughput (due to the time required to process
a small die) [15]. Conversely, the use of templates for lithography proves to be
a viable alternative, allowing high feature density, with dimensions down to a few
nanometers, faster sample processing, and lower costs, since it allows the creation of
organized templates via a simple spin-coating or dip-coating of solution onto a
material [I5]. Typically, after coating on a substrate, these templates undergo a step
of solvent or thermal annealing above their glass transition temperature, to improve
the ordering of the domains on the surface [159] 172, [I73]. Such step is very time-
consuming, and can actually lead to some non-uniformity across large surface areas, as
full wafers (since every extra step of a process introduces a degree of uncertainty). Thus,
in this study, reverse micelles of [PS-b-P2VP] were prepared in a selective solvent, and
used for lithography right after spin-coating, as described by Krishnamoorthy [173].
Nanoscale pillar arrays were successfully created on full wafers making use of
self-assembly properties and common nanofabrication techniques used in electronic
applications. These arrays show low variability of their characteristic dimensions across
the wafer surface, and high process reproducibility. It was possible to control each
geometrical variable (diameter, spacing, height) independently in steps down to 5 % of
their mean value. Such patterns can possibly be applied on different surfaces, namely
non-planar, or soft polymeric materials, through the simple application of nanoimprint
lithography, which allows a fast imprinting of the negative of the pattern on a resin
that can be used as mask to etch the underlying substrate. Although the processing
time was reduced following that approach, several parameters were carefully controlled

to decrease variability of the coatings. Nevertheless, once the set of variables was fine-
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tuned for the expected arrays, sample processing time was considerably shorter than
the alternative approaches previously referred, and reproducible pillars arrays on full
wafers were produced for subsequent use in cell culture.

The fact that it is known that are able to sense differences in topography
of a few nanometers, along with the need to replicate the cell studies to investigate
statistically relevant cell responses, required the fabrication of highly reproducible and
controlled nanoarrays on full wafers to have the sufficient number of nanostructured
samples for cell culture. To the extent of our knowledge, there are no published studies
on modulation of differentiation via nanoscale topographies on Si. Investiga-
tion of response to similar nanoscale topographies is more commonly reported
on titanium dioxide or polymeric surfaces[10, [1T0] [T18]. Still, the fabricated Si nanos-

tructures can potentially be interesting model surfaces for bone disease studies.

4.2. Investigation of hMSC response

Nanopillars of cylindrical shape (ensured by the use of a hard mask and highly con-
trolled etching conditions) hexagonally distributed over a large surface (4 inch wafers)
were obtained for studies. The possibility of controlling the characteristics of the
fabricated arrays paved the way not only for the investigation of the most interesting
range of dimensions of the nanofeatures able to favor osteogenic differentia-
tion, but also which geometrical variable (diameter, spacing, height) would have more
influence on this specific cell response.

The results obtained indicate that the geometries selected can promote osteogenic
differentiation in a faster/greater extent than flat silicon surfaces. Still, differences in
response to the patterns were observed between young and old donors. Whereas
younger cells show increased expression of osteogenic markers on A80 samples (diam-
eter 100 nm, height 80 nm, spacing 140 nm), old cells seem to differentiate faster
on B80 patterns (same diameter and height, but larger spacing of 200 nm). Despite
the difference in spacing, it can be concluded that are more prone to undergo
osteoblastic differentiation when cultured on Si nanopillars of larger dimensions (diam-
eter 100 nm) than on pillars of smaller diameter (50 nm). Such result is in accordance
with the work of de Peppo, who observed that larger nanofeature dimensions favor
cell adhesion, spreading, and osteogenic differentiation of [110]. Still, it is im-

portant to note that the substrate material were different (titanium vs. silicon in the
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present work), and that, contrary to that study, in the present work cells were always
kept in a basal medium, without any further supplementation, as dexamethasone or
B-glycerophosphate, to induce osteodifferentiation. The different media composition
is not expected to change the differentiation trend among the different patterns, but
only the rate of cell differentiation. The utilization of basal media allowed the inves-
tigation of the influence of the material topography alone. Cells are not restricted
to the differentiation into one lineage, but they can also proliferate maintaining their
stemness, or differentiate into other lineages. On the contrary, the use of an osteogenic
differentiation medium constrains cell differentiation to this specific lineage. In this
case the effect of topography would be observed on the differentiation rate, with cells
demonstrating a faster commitment towards the osteoblastic lineages on specific ma-
terials. Still it would be necessary to accurately deconvolute the effects of topography
and induction medium on cell behavior, including several control samples, which can
be simplified using a basal medium for the whole experiment.

Immunofluorescence results indicate that the population of cells from a younger
donor is considerably more homogeneous than from older donor, which can be noticed
especially by the length or error bars for [OPNl expression. from the old donor
show rather longer error bars, evidencing that the expression of diverges within
this cell population. Nonetheless, [RT-qPCR] results confirm that from the old
donor are undergoing osteoblastic differentiation, notably on the selected nanostruc-
tures. Cells cultured on the nanostructures show a significantly increased expression
of gene than cells cultured on flat control. Moreover, since the earlier differenti-
ation markers were expressed at similar levels on all surfaces, it can be concluded that
cells from the old donor were in a late stage of differentiation of IMSClinto osteoblasts
[24]. On the other hand, RT-qPCR] indicated that cells from a younger donor were
differentiating preferentially on nanostructured surfaces. Yet, after 2 weeks, these cells
were still in an early stage of differentiation and would need a longer time in culture to
reach the stage of differentiation of older [MSCk. An extra time point for a longer time
in culture would be important to confirm such conclusion. It would then be expected a
decrease in the expression of the early markers for A80 and B80, and that an increase
of [OCNL

Regarding the investigation of chondrogenic commitment, immunofluorescence demon-

strated that features with large diameter and height, and with increased separation
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(B80) would be the more adequate for the promotion of chondrogenic differentiation of
from a young donor. To the extent of our knowledge, differentiation into
chondrocytes on 2D surfaces without any biochemical modification is hardly feasible
[174]. Stimulation of chondrogenesis in vitro is normally achieved using hydrogels (3D)
or 2D substrates coated with chondroitin, for instance [26] 174]. Further investigation
of the possibility of using the nanopillar arrays prepared for studies of differen-
tiation towards chondrogenic lineage would be of great interest. It is also worth noting
that the alterations in ability to differentiate of with age. Although
from a young donor were more prone to commit towards chondrogenic lineage when
cultured on B80 arrays, the from an older donor registered higher expression
of osteogenic markers on the same arrays.

We believe that the cell seeding protocol followed in the present study is more ade-
quate for the investigation of the impact of nanoscale topographies on cell behavior than
the approaches previously reported. Contrary to most protocols found in literature,
where are seeded on materials in media with serum, here, the cells are seeded
and incubated during the first 4 hours in medium without serum [10] 110} [128]. There-
fore, cells have time to adhere directly on the nanostructures, whereas if the medium
was supplemented with any sera, proteins would adsorb firstly and very rapidly on the
material surface, and cells would adhere to the material coated with proteins. In the
latter case, it is important to note that the adsorption of proteins causes not only a
change in surface chemistry (that is also known to have an impact on behav-
ior), but also in surface topography, since the features and proteins have comparable
dimensions. These changes demand further characterization of the surface, which can
be very troublesome, as protein adsorption cannot be controlled accurately. To avoid
such complications, cells can simply be incubated during the first hours after seeding

in a medium without proteins, as described here.

5. Conclusions

Periodic nanopillar arrays with precise and independent control over diameter,
height and periodicity were fabricated by pattern-transfer of self-assembled col-
loidal templates into silicon substrates. The approach for nanofabrication provided

unique advantage of high-throughput production of nanotopographies needed for cell-
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culture, with no compromise on the resolution and quality of samples. The nanopillar
arrays are found to enhance osteogenic differentiation of MMSCk, which in turn was
found to be dependent on the age of the donor. Cells from young donors showed
greatest level of differentiation on large pillar arrays with small pitch, whereas differ-
entiation of cells from an older donor is further augmented on large pillars with larger
pitch. Further study of the influence of age on differentiation potential, in parallel with
a more exhaustive of the influence of nanoscale structures on the behavior of
from patients of various ages can contribute for the advance of personalized cell ther-

apies, and in particular for the treatment of bone diseases and defects.
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Abstract

Mesenchymal Stem Cells (MSCk) are very responsive to the characteristics of their
surrounding microenvironment, which n vivo corresponds to their Extracellular Ma-
trix (ECM]). The possibility of mimicking such [ECM] offers the opportunity to elicit
specific cell behaviors, including differentiation. The control of surface properties
of a biomaterial, namely its topography and chemistry, at the same scale level of the
components of the natural [ECM| (nanoscale) has the potential to be an effective way of
accurately modulating cell response. Ordered nanoscale silicon pillar arrays of distinct
periodicities were fabricated using reverse micelles of Block Copolymers (BCPk) on
full wafers with standard deviations lower than 15 %. Synthetic peptides were cova-
lently grafted on the nanoarrays to evaluate possible synergies between chemistry and
topography on the osteogenic differentiation of [MSCk. Silicon functionalization with
RGD peptide and BMP-2 mimetic peptide lead to an enhancement of osteogenic dif-
ferentiation compared with most of the other conditions, with similar levels of marker
expression on all topographies. Still, bare nanopillar arrays of reduced pitch were found
to be more effective on the promotion of differentiation. Such findings highlight
the relevance of investigating possibilities of engineering in wvitro systems which can be

fine-tuned according to the envisaged cell response.

Keywords: nanotopographies, surface functionalization, mimetic peptides, mesenchy-

mal stem cells, osteogenic differentiation
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1. Introduction

Biomaterials can be engineered to improve and actively guide cell response in a
controlled way [I]. In order to achieve that, material surfaces should be able to mimic
the in vivo microenvironment to which a cell is normally in contact with, i.e. to
mimic its Extracellular Matrix (ECM) [2]. Since most cellHECM] interactions occur at
nanoscale (e.g. growth factor-receptor interaction), the control of biomaterial surface
properties at this scale level is of utmost importance. Most reported studies rely
on the creation of nanoscale topographies or the fine-tuning of the surface chemistry
of a material for the specific cell type under investigation to perform such control
[12, 16, 26, 175]. Mesenchymal Stem Cell (MSC|) have been one of the main cell
types used in studies of modulation of cell fate through the control of materials design
[16]. culture in wvitro is not so demanding as for other cell types, and these
cells are a very promising option for bone tissue engineering applications, due to their
osteogenic differentiation potential (among the potential to differentiate into other
lineages, namely adipogenic or chondrogenic) [39)].

Nanofabrication methods commonly used in electronic applications grant powerful
tools to produce nanoscale features which can be translated into platforms for cell-
substrate interaction studies. Though these fabrication methods can potentially be
applied to a multitude of materials, state-of-art approaches are normally developed
for silicon. Moreover, silicon is a material with adequate mechanical properties for
applications in bone replacement, it is a non-toxic material, and any particles that
may be released are degraded into silicic acid, which is also non-toxic [7, 8 [176].
Several variations of nanotopographies, namely pillars, rods, pits, grooves, wires, and
their organization on the surface (i.e. ordered/disordered) have been used in studies
investigation differentiation towards osteoblastic lineage [10} 26] [1T2], 122 177~
179]. Yet, there is no consensus on which geometry is actually the most efficient
on the promotion of osteogenic differentiation. Even studies investigating identical
nanotopographies can report contradictory results [12], 13]. Material topography is
indeed a very powerful parameter for the control of cell behavior, but it is necessary to
keep in mind that any slight change of chemistry, both at the level of material surface
or of culture media composition, as well as the origin of cells (e.g. adipose- or bone
marrow-derived [MSCk, or donor age) can have an impact on cell response of the same

amplitude as topography [16] 148, 154].
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Regarding the control of cell response through alterations of surface chemistry of a
biomaterial, varied sized molecules, ranging from full-length mating [ECM] proteins to
short linear peptides have been investigated as possible ways of assigning bioactivity
to a material surface [16] 17, 28], [66]. Although the use of full length proteins has
been proven to be a successful way of controlling cell behavior on bioactive materials,
their use has been hindered due to intrinsic limitations, including their poor stability,
or safety concerns [I7]. In order to overcome these shortcomings, small synthetic pep-
tides encompassing only the amino acids necessary to support a particular biological
activity have been investigated [66] [I80]. These mimetic peptides can be synthesized
with high purity, lower costs, and specific active sites can be engineered in a controlled
way. Moreover, contrary to full-length proteins, conformation and density of short
molecules can be controlled when bound to a material [I7]. The most representative
motif used for the improvement of cell adhesion is the sequence of amino acids arginine-
glycine-aspartic acid (RGD), which in vivo mediates the binding of proteins (e.g.
fibronectin, vitronectin) to transmembrane integrin receptors [18, 19 54]. Additionally,
it has been reported that RGD peptide can also contribute for osteogenic differenti-
ation of Human Mesenchymal Stem Cell (LMSC) and osteoblast-like cells when cells
are maintained in osteogenic differentiation media [I81), [I82]. Nevertheless, the growth
factors most commonly used for the enhancement of osteogenic differentiation of [MSCk
are Bone Morphogenetic Protein (BMP)), and in particular Bone Morphogenetic Pro-
tein 2 (BMP-2)) [164], [183]. Due to the factors previously referred, most studies take
advantage of only the sequence responsible for the osteogenic activity of this molecule
to functionalize biomaterials for bone tissue engineering applications [17, 22] [184]. The
combination of a peptide promoting cell adhesion with one promoting cell differentia-
tion for the co-functionalization of a biomaterial surface has been reported to further
enhance differentiation when compared with the grafting of only one peptide sequence,
such as a mimetic peptide [20, 2], 23, [185]. A few studies can be found in the
literature reporting also synergistic effects of combining nanotopographies with chem-
ical cues on osteogenic differentiation of or osteoblast progenitors [186-18g].

Guided by such considerations, this study aimed at investigating osteogenic differen-
tiation of cultured on bare nanoscale pillar arrays or functionalized with a RGD
peptide and/or a mimetic peptide. The prepared surfaces were carefully char-
acterized by Atomic Force Microscopy (AEMI), Scanning Electron Microscopy (SEM))
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and X-ray Photoelectron Spectroscopy (XPS). To evaluate to which extent WMSC
differentiation was promoted, the expression of early (Runt-related Transcription Fac-

tor 2 (Runx2), and Type I Collagen (ColIATl)) and late (Osteopontin ([OPN]), and

Osteocalcin ([OCN])) osteogenic differentiation markers was investigated by immunoflu-

orescence and Quantitative Real Time Polymerase Chain Reaction (RT-gPCR)).

2. Experimental Section

Materials: Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)) (Molecular Weight
(M) 248000-b-195000 g mol™?, Polydispersity Index (PDI) 1.08) was purchased from
Polymer Source Inc (Montreal, Canada) and used without further purification. All
solvents, acids and bases were purchased from Sigma Aldrich, unless stated other-
wise. Prime grade silicon wafers with 25 nm thick thermally grown SiO, film were
acquired from Siegert Wafer (Germany). 3-aminopropyltriethoxysilane (APTES]) and
3-(Maleimido)propionic acid N-hydroxysuccinimide ester (SMP)) were purchased from
Sigma Aldrich. Peptides used for surface functionalization (GRGDSPC, afterwards
designated as RGD peptide, and KRKIPKASSVPTELSAISMLYLC, afterwards desig-
nated as mimetic peptide) were synthesized by Genecust (Luxembourg). Bone
marrow-derived Human Mesenchymal Stem Cells (LMSCk) were acquired from Promo-
Cell (Germany). Basal culture medium o«MEM and Fetal Bovine Serum (EBS]) were
purchased from Gibco, ThermoFisher Scientific. All the reagents used in [DNA] diges-
tion and [RNAl retrotranscription were acquired from ThermoFisher Scientific. Primers
used for RT-gPCR] were acquired at Sigma-Aldrich. SsoAdvanced™ Universal SYBR®)
Green Supermix was purchased from Bio-Rad. Bovine Serum Albumin (BSA]) and
sample mounting media with DAPI (Fluoroshield™ with DAPI) were purchased from
Sigma-Aldrich. Primary antibody against Runt-related Transcription Factor 2 (Runx2)
(rabbit monoclonal) was purchased from Cell Signaling Technology Europe (Nether-
lands) and the primary antibody against Osteopontin (OPNJ) (mouse monoclonal) from
Santa Cruz Biotechnology (USA). Secondary antibodies were acquired from Invitrogen,

ThermoFisher Scientific.

Nanopillar fabrication: Oxygen plasma Reactive Ton Etching (RIEl) (PlasmaTherm

790 RIE, USA) at low DC bias was used for removal of organic contamination from
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the substrates, followed by CO5 snow jet cleaning to remove any remaining small sized
particles. Silicon nanopillar arrays were prepared using protocol described by Krish-
namoorthy (2011) [14]. [PS-b-P2VP] was dissolved in anhydrous m-Xylene at a concen-
tration of 0.5 wt% and stirred for 24 h. The reverse micelles obtained were spin-coated
on clean wafers at 2000 or 5000 rpm to produce polymer templates distinct periodici-
ties. Samples were afterwards subjected to brief Ar/Oy plasma descumming (18 scem
Ar / 2 scem Og, 4 mTorr, 4 W) for descumming the thin layer of polystyrene between
the features, and subsequently transferred into thermal oxide layer by CHF3/Ar (12
scem CHFj3 / 38 scem Ar, at -90 °C, 30 mTorr, 200 W) and then into Si by SFg/O,
plasma (50 sccm SFg / 10 scem Og, 10 mTorr, 25 W). Remaining silica was removed
by chemical etching with hydrofluoric acid (2 % v/v). After each step, samples were
characterized in detail by [AFMI (Innova, Bruker, MA, USA) and [SEMI (FIB- [SEM|
Helios 650, FEI Company, OR, USA). Nanopatterned wafers were diced in 1 cm? chips

for easier utilization in systems for cell culture.

Surface functionalization: Sample surfaces were activated in solutions of hydrogen
peroxide (30 wt %) and sulfuric acid at a ratio 1:4 for 30 min. Samples were then
consecutively sonicated in 5 baths of deionized water for 10 min. Surface function-
alization protocol is schematically represented in Figure [3.7], and was based on the
work of Porté-Durrieu (2004) [I89]. Immediately after surface activation, samples were
degassed for 15 h under high vacuum (10 mbar) at 150 °C. This treatment was fol-
lowed by a silanization step under an inert atmosphere using a solution of 2%
(v/v) in anhydrous hexane for 3 h. Samples were sonicated twice 15 min in anhydrous
hexane to remove silane molecules in excess, and cured for 2 h under high vacuum
(10 mbar) at 100 °C. Amine-terminated surfaces were then conjugated with the [SMP]
crosslinker at a concentration of 4 mM in Dimethylformamide (DMEFE]) for 3 h. Again,
samples were sonicated twice 15 min in [DME] to remove [SMPl molecules in excess, and
dried for 2 h under high vacuum (10 mbar) at 70 °C. Finally, RGD peptide, BMP-2]
mimetic peptide or a combination of both peptides at a ratio 1:1 were immobilized on
the surfaces. Samples were incubated for 24 h with solutions of peptides at 0.1 mM

in deionized water. Samples were afterwards sonicated in deionized water to remove

unbound peptides and stored in Phosphate Buffered Saline (PBS).
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Figure 3.7 — Schematic representation of protocol of surface functionalization. R represents
the peptide of interest bound to the crosslinker SMPL

characterization: Samples were characterized by X-ray Photoelectron Spec-
troscopy (XPS)) before surface modification and after each functionalization step to con-
firm that the reactions were successful. was performed (K-Alpha, ThermoFisher
Scientific) with a monochromated AlKa source was utilized at 100 W, spot size of 400
pm. For each condition, five regions were analyzed to confirm the uniformity of the

surface treatment.

Cell culture: Nanostructured chips were sterilized in 70 % ethanol overnight prior to
their use as in cell culture. Bone marrow were seeded at passage five at an
initial density of 10* cells cm™ on the samples. Cells were seeded in serum-free medium
to ensure cell interaction directly to the material, and incubated at 37 °C, 5 % CO,.
After 4 h, medium was changed to «MEM completed with 10 % [FBS| which will after-
wards be referred as basal medium. Culture medium was replaced twice a week, and

hMSCEk were cultured for 2 weeks.

Immunofluorescence assays: Immunostaining was performed after the 2 weeks of cell
culture to investigate the expression of the selected osteogenic markers. Cells were
fixed with paraformaldehyde (4 % v/v), permeabilized with ice-cold methanol and
Triton-X 100 (0.5 % v/v). Samples were subsequently incubated with (1% v/v)
to avoid possible non-specific interactions. Samples were then incubated with the pri-
mary antibodies against and[OPNlfor 1 h at 37 °C. After washing with Tween-20
(0.05 % v/v), samples were incubated for 1 h at 37 °C with the secondary antibodies
goat anti-rabbit IgG coupled with AlexaFluor™ 488 and goat anti-mouse IgG coupled
with AlexaFluor™ 647. Samples were again washed with a solution of Tween-20 and
mounted and counterstained with DAPI. Samples were observed using an epifluores-

cence microscope Leica DM5500B.
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[RT-gPCR): Total RNA| was isolated using RNeasy Mini Kit, and genomic was
removed using TURBO DNA-free kit. Total RNA] was quantified using spectropho-
tometer NanoDrop 1000 (ThermoFisher Scientific) and RNAIl integrity was evaluated
using an Agilent bioanalyzer 2100 with a RNA 6000 Nano kit (Agilent, USA). [cDNA]
was synthesized from 500 ng of total RNAl with the help of random primers and Max-
ima Reverse Transcriptase. retrotranscription reaction was performed in 2 steps:
incubation at 50 °C for 1 h, and subsequent incubation at 72 °C for 15 min. Aliquots
of underwent dye-based RT-qPCR]for the study of 3 genes expressed during os-
teoblastic differentiation (primers listed in Table [3.€]). [RI-qPCR] was performed using
4 ng of ¢[DNA] and primers at a concentration of 500 nM, for a final volume of 10 pL.
[RT-qPCR] was performed using a CFX Connect™ Real-Time PCR System (Bio-Rad),
using 2 genes of reference: RPC53 and PPIA. 40 PCR amplification cycles were per-
formed for each experiment, and consisted on incubating the solution at 95 °C for 5 s,
followed by an incubation at 60 °C for 10 s. Cq values for the genes of interest were
normalized against 2 reference genes which were selected using BestKeeper: PPIA and
RPC53. The relative expression levels were calculated using the comparative method
(AACq) and gene expression was normalized using flat Si sample as control. For each

condition, 2 replicates were considered.

Table 3.6 — Primers used in RT-qPCR assays.

Gene Primer sequence Amplicon / bp

5-ACCCTGGCTGACCTGACAGA-3" (Forward)
RPC53 71

5-AGGAGTTGCACCCTTCCAGA-3’ (Reverse)

5-CGGGTCCTGGCATCTTGT-3" (Forward)
PPIA 81

5-CAGTCTTGGCAGTGCAGATGA-3’ (Reverse)

5-AAGTGCGGTGCAAACTTTCT-3’ (Forward)
Runx2 90

5-TCTCGGTGGCTGGTAGTGA-3’ (Reverse)

5-ACATGTTCAGCTTTGTGGACC-3" (Forward)
COL1A1 117

5-TGATTGGTGGGATGTCTTCGT-3" (Reverse)

5-GACTGTGACGAGTTGGCTGA-3’ (Forward)
OCN 119

5-CTGGAGAGGAGCAGAACTGG-3 (Reverse)

Statistical analysis: All data are expressed as mean + standard error of the mean,
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except if stated otherwise. Statistical analyses were performed using CFX Maestro
Software (Bio-Rad, USA) for [RT-qPCR] data, and GraphPad Prism (USA) for im-

munofluorescence data. Significant differences were considered for p-values < 0.05.

3. Results
3.1 Preparation of bioactive nanostructured samples

Silicon nanopillar arrays were fabricated on full wafers with high uniformity and re-
producibility. Such characteristics were made possible due to the ability of [PS-b-P2VD]
to self-assemble forming organized, hexagonally distributed templates, with possibil-
ity of varying each geometrical variable in steps lower than 5 % of its mean value, as
developed by Krishnamoorthy et al. (2011) [14]. Briefly, solutions of reverse micelles
were spin-coated on the substrates at 2 distinct speeds for the preparation of polymeric
templates of identical diameter, but different periodicity, as summarized in Table [3.7]
The SiO, thin film was used as an intermediate mask to improve the geometric char-
acteristics of the Si nanopillars, due to its superior selectivity for Si etching than the
initial film, while preserving the dimensions of the initial reverse micelles.
characterization demonstrated (Figure that feature heights were close to the 80
nm height originally defined (Table [3.7)).

A Top View B ; Top view

A - Tilt view B - Tilt view

Figure 3.8 — Detail of [SEM] images of the fabricated nanopillars at top and tilted views.

The success of the process of surface modification was confirmed by [XPS after each
step on flat Si substrates (Table and extrapolated to the nanostructured sam-
ples, taking into account the chemical composition observed before and after peptide

grafting.
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Table 3.7 — Characteristic dimensions of the Si nanopillar arrays determined by [AFM] and
SEM

Label Spin speed / rpm Diameter/nm Periodicity/nm Height/nm

A 2000 105 + 14 141 + 12 D £6

B 5000 104 + 13 201 = 23 82 £ 6

Table 3.8 — Chemical surface composition determined by [XPS| at each step of grafting of
mimetic peptide and RGD peptide on flat silicon (represented in Figure 1).

Atomic % Clean Si +APTES +SMP BMP-2 RGD

Si 56.4 £02 478 +0.3 478+ 03 435+04 40.1 0.3
C 126 £ 1.3 230£09 21.2+£08 274=£11 285=£09
N 02+01 1701 17£01 37£02 28=£0.1
O 308 £0.6 275£03 293+£06 25402 286 +£0.2
N/C 0.02 0.07 0.08 0.14 0.10

High resolution spectra for Cls and Nls at each step of surface functionalization
are represented in Figure Silicon substrates characterized before functionalization
exhibited high silicon (56.4 %) and oxygen (30.8 %) percentages, characteristic of the
native silicon oxide layer of the substrates. A slight carbon contamination, which was
also observed (12.6 %), is impossible to avoid, even if the samples were only exposed to
air during mounting on sample holder. Still, this value was within the same set of
values reported in previous studies, therefore being in an acceptable range |2, 18], 20].
Nitrogen content was 0.2 %, a value corresponding to measurements at the detection
limits of the system.

After silanization, surveys show a decrease in Si content (to 47.8 %), a signif-
icant increase in carbon content (to 23.0 %) and the appearance of nitrogen (1.7 %)
associated with the formation of an layer on the surface. High resolution Cls
spectrum indicated an increase in the number of C-C bounds compared with the clean
substrate. Moreover, C-NHy bonds were observed in the N1s high resolution spectrum,

confirming the existence of the silane layer on the treated samples.
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Figure 3.9 — Deconvolution of high resolution XPS| spectra of Cls (a) and N1s (b) after
each step of surface functionalization for the grafting of RGD or [BMP-2] mimetic peptide on
flat Silicon samples.

The slight increase of oxygen (to 29.3 %) after reaction of the amine-terminated
surfaces with the indicates the presence of the crosslinker on the sample surfaces.
Nitrogen remained constant after binding of SMP] which can be a consequence of the
existence of only one nitrogen atom in a molecule, which is not sufficient to
contribute to a change in the overall percentages of elemental composition. A minor

decrease in carbon content was verified, even if each crosslinker molecule has seven
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carbon atoms. This fact may be related with a reduced carbon contamination on the
new surfaces than on silanized surfaces.

Finally, peptides were bound to the maleimide group of the crosslinker via
their cysteine amino acid. The significant decrease on the silicon content observed
after mimetic peptide binding can be associated with the large dimensions of
this molecule which prevent the possibility of interactions of the x-rays with the silicon
substrate. An increase in carbon (to 27.4 %) and nitrogen content (to 3.7 %) are also
linked to the immobilization of the mimetic peptide which is constituted by a large
number of C and N atoms. Additionally, high resolution Cls spectra shows an increase
in C-C bonds. The significant increase of N-C=0 bonds alongside with the appearance
of N-C=0y of higher energy in the high resolution N1s spectrum, further confirms the
immobilization of the mimetic peptide on the surface. A similar tendency was
detected after the grafting of RGD peptide. It is worth noting the reduced standard
deviations observed in all measurements, confirming the uniformity of immobilization
of the molecules on the surfaces.

In order to confirm that the surface chemistry of the different samples was identical,
samples were characterized by [XPSlright after cleaning, and after functionalization with
RGD peptide or BMP-2| mimetic peptide. The results obtained after the deconvolution
of the high resolution spectra for the case of mimetic peptide grafting are

summarized in Table 3.9 Similar results were obtained for RGD peptide grafting.

3.2. Immunofluorescence assays

After two weeks of cell culture on the selected nanostructures either plain or func-
tionalized with RGD or/and mimetic peptide, were fixed and stained
to investigate the expression of Runx2 an early osteogenic differentiation marker, and
[OPN], a marker of late osteogenic differentiation, by immunofluorescence. These results
are summarized in Figure [3.10] Figure |3.11| represents an example of the intracellular
distribution of the markers selected.

It was observed that, independently of the surface chemistry (RGD or/and
functionalization), [Runx2 expression was higher on nanotopography A (pillars with
reduced spacing). Regarding flat silicon surfaces, it was observed that expression of
could be enhanced if the substrate was functionalized with RGD peptide or,

to a lesser extent, co-functionalized with both peptides. Still, for all cases the fluo-
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Table 3.9 — Deconvolution of high resolution [XPS| spectra for the three surfaces analyzed
flat, A, and B, before functionalization (Clean) and after BMP-2 mimetic peptide grafting
(BMP-2).

At% Bond F A B
Clean BMP-2 Clean BMP-2 Clean BMP-2

Si? 50.3 39.1 41.6 33.5 45.5 32.9

Si Si0Cs 2.1 2.3 3.4 4.1 1.8 4.0
Si0,C,,5105C 5.6 5.2 7.7 5.2 8.3 4.6
C-C 10.3 16.8 14.4 19.1 12 19.6

C C-0O 3.2 5.3 3.3 5.1 3.0 6.1
COOR 0 3.7 0 3.2 0 3.6

COOH 0.6 0 0.7 0 0.5 0

N NH,-C,N-C=0 0 3.2 0 3.0 0 2.9
N-C-O4 0.3 0.2 0.2 0.4 0.3 0.5

o 0=C 0.4 6.5 0.3 4.7 0 6.0
0-C 27.3 17.7 28.4 21.7 28.5 19.9

rescence signal detected on flat samples was approximately half of the signal observed
on nanoarrays of type A.[Runx2| expression on bare B nanotopographies was similar
to the level observed on plain flat surfaces. The same was noticeable for surface B
grafted with RGD peptide and flat modified with the same peptide. Yet, the grafting
of mimetic peptide or the combination of the 2 peptides leads to an increase
in expression of [Runx2 on nanostructures B (approximately 2-fold).

On the other hand, [OPN] expression appeared to be dependent not only on the
topography but also strongly on surface chemistry, with higher fluorescence signal
being detected on non-modified flat and on nanopillars with reduced pitch (condition
A). The change of surface chemistry of these 2 topologies (flat and nanoarray A),
achieved via the grafting of the peptides induced a decrease in expression to
roughly two thirds of the signal on plain surfaces. Such decrease was notably evident

for the nanoarray A modified with RGD peptide.

3.3. RT-qPCR assays

After 2 weeks of cell culture, total was extracted, and was per-
formed to investigate the expression of the selected markers. Considering the large
number of conditions to be compared, for each gene, results were normalized to a

flat, bare silicon control. Hence, differences between nanotopographies and/or surface
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Figure 3.10 — Expression of [Runx2l and from cultured for 2 weeks on plain
silicon (Clean Si) or functionalized samples with RGD peptide (RGD), mimetic pep-
tide (BMP), or a combination of the 2 molecules (RGDBMP). Tables summarize significant
differences between conditions (* represents p < 0.05, ** p < 0.01, *** p < 0.001).

modifications can be easily distinguished. These results are summarized in Figure [3.12]

It is interesting to note that similar levels of gene expression could be obtained on
all topographies when RGD peptide and mimetic peptide were co-immobilized
on the different surfaces, and that such level of expression was indeed the maximum
observed.

Taking a closer look at the results, for the case of non-functionalized surfaces, nanos-
tructures A appeared to be the most relevant for promotion of osteogenic differentiation
of lMSCk. The expression of the 3 markers on nanopillars of type A was significantly
higher than their expression on flat substrates (as high as 4-fold in the case of [Runx2]).
Nevertheless, the differences in expression between cells cultured on nanoarrays A and
B were not significant for the interval of confidence considered, yet gene expression on
B samples was slightly lower.

Functionalization with RGD peptide caused an increase in expression, especially
of early differentiation markers (Runx2 and [ColTAT]). level suffered a significant

increase on flat surfaces after functionalization. Yet, for the other topographies, [OCNI
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Figure 3.11 — Immunofluorescence micrograph of a cell cultured for 2 weeks on non-
functionalized nanoarray A. Identical intra-cellular distribution of the markers was observed
on all topographies.

expression did not considerably change.

mimetic peptide grafting had distinct effects on gene expression on each
topology. Regarding [Runx?2l expression, this surface modification caused a significant
increase in expression of cells cultured on flat samples (comparing both with no mod-
ification or grafting of RGD peptide). However, expression on nanostructures
A and B was similar to the one observed after functionalization with RGD peptide.
The impact of on the remaining 2 markers was rather different. Expression of
on flat surfaces did not significantly change compared with the previous con-
ditions, as well as on surfaces B. On the contrary, its expression on nanostructures A
was significantly lower than on bare nanostructures. The same was observed for
expression on these surfaces. Similarly to [Runx2 no significant changes were observed
on the level of expression of on flat and nanostructures B grafted with
mimetic peptide.

Finally, co-immobilization of the 2 molecules had a positive impact on all topogra-
phies as previously referred. Concerning flat surfaces, a significant increase on expres-
sion of all markers was noticeable when comparing with bare surfaces (roughly 14-fold
for Runx2, 1.5-fold for [ColTATl 2-fold for [OCN]). However, gene expression of flat
surfaces grafted with RGD and/or [BMP-2] mimetic peptide did not show significant
differences between themselves. The same tendency was observed for nanotopogra-
phy B. On the contrary, gene expression of cells cultured on topography A benefited
from the co-immobilization of peptides for the enhancement of osteogenic differentia-

tion markers. [Runx2l level for this last functionalization was approximately 3.5 times
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Figure 3.12 — Expression of and from cultured for 2 weeks on plain
silicon (Clean Si) or functionalized samples with RGD peptide (RGD), mimetic pep-
tide (BMP), or a combination of the 2 molecules (RGDBMP). Tables summarize significant
differences between conditions (* represents p < 0.05, ** p < 0.01, *** p < 0.001).

higher than for non-modified surface, and 1.5 times higher than for the nanostructures
functionalized with only one of the peptides (RGD or BMP-2). [ColTAT] expression level
was similar to the levels observed on plain and RGD-grafted nanostructures A. On the

other hand, [OCN]| expression was slightly higher than non-modified nanoarrays.
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4. Discussion
4.1. Sample fabrication

Reverse micelles of block copolymers granted the possibility of creating ordered
polymeric arrays with uniformity over large areas (full wafers) which could be after-
wards used as masks for the patterning of the underlying substrate with high process-
ing reproducibility. Such characteristics are essential for the subsequent use of silicon
nanopillars obtained on studies of differentiation. Biological tests at least the 3
replicates of the experiment to confirm their reproducibility. Additionally, techniques
as[RT-qPCR] demand the use of a large number of cells, which cannot be ensured using
only one chip of 1 cm?, being therefore necessary to use cells from 4 chips.

characterization showed that surface modification process was successful on the
topographies tested. Moreover, no significant differences in surface chemistry between
the 2 nanopatterns studied were observed, which can possibly be due to the large spot
size of the[XPSlsystem compared with the nanofeature dimensions. When averaging the
results obtained per region analyzed, the differences in topography become negligible

given the difference in scale.

4.2. Investigation of hMSC differentiation

were cultured for 2 weeks in basal medium independently of the assay (im-
munofluorescence or [RT-qPCR]). Flat or nanopatterned samples were tested either
right after fabrication or functionalized with RGD or/and mimetic peptide to
investigate which could be the best surface for the promotion of osteogenic differenti-
ation of MSCk.

Non-modified nanoarray A seemed to be the best surface for the control of
commitment and differentiation towards the osteoblastic lineage, as shown by im-
munofluorescence andRT-gPCR] results. When comparing the expression of the dif-
ferent markers from cells cultured on this pattern with the remaining samples (flat or
B), significantly higher levels were observed on nanotopography A.

Such agreement between immunofluorescence and [RT-qPCR]results was not verified
for biofunctionalized samples. Nonetheless, precise correlations between proteomic
and genomic analysis are normally impossible to establish[I68], 169]. It is necessary

to consider protein stability issues, variations in the efficiency of RNA translation,
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along with possible experimental errors and background noise related with each assay
[168, 169]. Immunofluorescence results indicate that non-functionalized surface A lead
to the highest expression of osteogenic markers, being therefore the best choice for
osteogenic differentiation. Grafting of peptides on surfaces F and A did not
cause a great alteration of levels, but was responsible for a decrease in
expression of approximately 30 - 50 % of the signal observed on non-modified samples.
That can indicate that differentiation occurred slower on the new functionalized
samples. On the contrary, [Runx2 expression was enhanced on B nanoarrays after
surface functionalization. Than increase in signal was particularly high (2-fold) for
grafting of mimetic peptide and co-grafting of RGD and peptide. Still,
no significant differences were observed regarding expression.

[RT-gPCR] did not show the same trend between the expression of non-modified
surfaces and surfaces with grafted peptides. In these assays, [Runx?2 expression is signif-
icantly enhanced with peptide grafting, particularly in the case of co-functionalization
of RGD and [BMP-2] mimetic peptide independently of surface topology. Similar ob-
servations can be taken from the levels of expression of and [OCN], though the
differences between conditions are not as noteworthy as for [Runx2l

Taken together, it is possible to conclude that the impact of surface topography
appears to be more effective on the modulation of differentiation than the sur-

face modification tested. Taking into account that proteins are produced after mRNA

translation, and that [Runx2 and [ColTAll are markers of early osteogenic differentia-

tion, whereas [OPN| and [OCN] are late markers of differentiation, it can be assumed that

A is indeed the best topography for the promotion of osteogenesis [24], 190]. The low
level of expression of Runx2 observed in RT-gPCR]indicates that the gene encoding for
[Runx2l is no longer being expressed (or being expressed at a decreased level), whereas
the corresponding mRNA is being translated at high rate into proteins (immunofluo-
rescence results). The quantity of detected in the cells is significantly higher on
non-modified nanoarray A, which indicates that cells cultured on such surfaces were
able to commit and differentiate faster into the osteoblastic lineage, than cells cultured

on the other conditions tested.
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5. Conclusions

The approach followed for the fabrication of nanopillars permitted a reproducible
patterning of full wafers with high uniformity. Peptides improving adhesion and pro-
moting osteogenic differentiation of were successfully grafted onto the patterned
silicon. Immunofluorescence and [RT-qPCR] assays of culture on such samples
demonstrated that nanostructuring per se can enhance osteoblastic differentiation. Co-
immobilization of the two peptides appeared to be an alternative approach to achieve
similar stage of cell differentiation without patterning the substrate. Taken together,
these findings suggest that fine-tuning of the surface chemistry and/or topography at
nanoscale can modulate cell differentiation without the need of an induction medium.
Different mimetic peptides could potentially be evaluated in combination of the engi-

neered nanotopographies for a further enhancement of [hMSC| differentiation.
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3.3 Intermediate studies

The main results obtained during the development of the protocol to fabricate
nanoscale pillar arrays, as well as the main considerations behind them, the optimiza-
tion of their surface modification process, and preliminary results regarding [hMSCI

response to the bioactive surfaces are summarized and discussed in the present section.

3.3.1 Block copolymer templates

Amphiphilic[BCPk, as[PS-b-P2VP| are very interesting candidates for the formation
of nanoscale polymer templates on large areas, as their colloidal properties allow their
micellization under specific conditions. When coated on flat surfaces, reverse micelles
form arrays of quasi-hexagonal distribution.

With that objective, solutions of [PS-b-P2VDP] with concentrations between 0.4 and
1.0 wt % in anhydrous m-xylene were prepared for the characterization of the possible
attainable micellar systems. Solutions were stirred for 24 hours, and coated on clean
silicon wafers at spin-speeds between 2000 and 8000 rpm. The resultant arrays were
characterized by and [AFMl As expected, no significant differences were observed
for micelle diameter. A Delaunay triangulation of the results was performed on ImageJ
to determine average periodicity. These results are summarized in Table for the
of [M,] 248-b-195 kg mol !, and in Table for the of [M] 55-b-50 kg mol
-1, For easier understanding of the results obtained, these values were plotted in Figure
B.13

Table 3.10 — Periodicity of polymeric templates prepared with [PS-b-P2VP] of [, ] 248-b-195
kg mol "' at different concentrations and coated on Si chips at different spin-coating speeds.
(xsample not characterized)

Concentration Spin speed / rpm
wt % 2000 4000 6000 8000
0.4 174 £+ 14 nm 206 + 18 nm 214 + 30 nm 230 £ 28 nm
0.6 P 212 + 28 nm 221 + 28 nm 235 + 43 nm
0.8 116 + 10 nm 145 + 23 nm 154 + 18 nm 165 + 29 nm
1.0 X 143 £ 13 nm 157 £ 17 nm 160 + 19 nm
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Table 3.11 — Periodicity of polymeric templates prepared with [PS-b-P2VP] of [M,] 55-b-50
kg mol ! at different concentrations and coated on Si chips at different spin-coating speeds.
(a: patchy coverage; b: impossible to define spacing between micelle cores)

Concentration Spin speed / rpm
wt % 2000 4000 6000 8000
0.4 68 £ 10 nm a a a
0.6 65 £+ 9 nm 68 £+ 6 nm 72+ 7Tnm 73 4+ 6 nm
0.8 b 61 = 7 nm 66 £ 6 nm 67 4+ 6 nm
1.0 b b 61 £9nm 70 &£ 13 nm
(@i PS-b-P2VP 248-b-195 kg mol ! (i) PS-b-P2VP 55-b-50 kg mol’!
250- 80
£ £
= g E ..............
g 20 l [ g i
s b
E 150 [ ......... I E o0
100 [ . . . s0l_. . : '
2000 4000 6000 8000 2000 4000 6000 8000
Spin speed / rpm Spin speed / rpm
o 04% = 06% - 08% -+ 1.0% ¢ 04% = 06% + 08% -+ 1.0%

Figure 3.13 — Center-to center distances obtained for the range of concentrations and
coating conditions tested. (i) BCP] of [M,] 248-b-195 kg mol “!; (ii) BCP] of [M,] 55-b-50 kg

mol L.

The of largest [M,] allowed the formation of homogeneous micellar films on
silicon substrates for the range of concentrations and spin-coating speeds. On the
other hand, films of [PS-b-P2VP of reduced [M_] showed patchy coverage of the surface
for low solution concentration (0.4 wt %) and coating at higher spin speed (> 4000
rpm). Moreover, when the concentration is increased, coating at lower speeds does not
ensure the formation of a monolayer. Instead, multilayers of micelles are observed on
the chips when coated at spin speeds lower than 6000 rpm for a concentration of 1
wt%, or 4000 rpm for a concentration of 0.8 wt%.

Once it was understood which concentrations and spin-coating speeds could be
used for the creation of uniform monolayer films, a single condition was selected for

the following studies, for ease of processing. Hence, subsequent tests were performed
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for [PS-b-P2VP)] solutions with concentration of 0.5 wt%, and coating at 5000 rpm, for
both 55-b-50 kg mol ! and 248-b-195 kg mol *!). First of all, 4 inch wafers
were coated with micellar films of both and the characteristic dimensions and
variation of distribution were characterized in detail. These results are summarized in

Table and Table [3.13] respectively.

Table 3.12 — Average characteristic dimensions of the polymer templates after spin-coating
of solutions of concentration 0.5 wt% at 5000 rpm on Si wafers. (Values presented as mean
+ standard deviation)

M, / kg mol™* Diameter / nm Periodicity / nm
248-b-195 60 + 8 197 + 23
55-b-50 92 £ 4 68 + 4

Table 3.13 — Variations of polymer arrays from a true hexagonal distribution on Si wafers.
for feature diameter and periodicity across wafers, percentage of features in a correct
hexagonal packing, and density of features for the two [BCPk (at 0.5 wt %) coated at 5000

rpm on 4 inch wafers.

M, Region CV diam. CV pitch Coordination Density

kg mol?! number 6
Center 11 % 12 % 51 % 115 pm™
55-b-50 Mid 9% 10 % 65 % 136 pm™
Edge 8 % 11 % 58 % 106 pm2
Center 12 % 12 % 62 % 26 pm>
148-b-195 Mid 12 % 10 % 54 % 22 pm
Edge 10 % 12 % 57 % 21 pm™

Representative [AFM] images of these arrays are shown in Figure [3.14}

In addition, Delaunay triangulation along with Voronoi diagrams performed on
images offered the possibility of investigating defects from the expected hexagonal
distribution. These algorithms allow the determination of the nearest neighbors of each
micelle, therefore allowing the assessment of packing of these features on the substrate.
Examples of the Voronoi diagrams obtained after the triangulation are represented
in Figures and for the large and the small systems, respectively. For each
particle, the number of edges of the corresponding Voronoi polygon was calculated. In

this analysis, only polygons with 6 (the ideal polygons), 5 and 7 edges (defects) were
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Figure 3.14 — Representative [AFM| images of the [BCP| arrays coated from a 0.5 % solution
at 5000 rpm. (A) [M,] 248-b-195 kg mol “L. (B) [M] 55-b-50 kg mol L. (Scale bar 400 nm)

considered, in order to discard all the possible interference due to the particles close to
the boundary of the images. This study showed that approximately 70% of the micelles
of [PS=b-P2VP] 248-b-195 kg mol ! are correctly distributed on the surface, whereas for
the micelles of [PS-b-P2VP] 55-b-50 kg mol ! this value was about 87%.
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Figure 3.15 — Example of Voronoi diagram obtained from an acsem image of [PS-b-P2VP]
248-b-195 kg mol “!. Axis in pixel, only for better orientation in the image.
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Figure 3.16 — Example of Voronoi diagram obtained from an SEM] image of [PS-b-P2VP]
55-b-50 kg mol ~'. Axis in pixel, only for better orientation in the image.

3.3.2 Hard masks

Due to the low selectivity of the thin polymer layer to silicon etching, it was neces-
sary to include an intermediate mask with better selectivity for pattern transfer. Two
approaches developed by Krishnamoorthy et al. (2011) were tested: the use of a ther-
mally grown thin silica film as mask, and the incorporation of titania particles into the

reverse micelles to be used as hard mask [14].

S10; masks
Wafers with thermally grown thin silica films were directly purchased from the sup-
plier. reverse micelles were spin-coated on these wafers, and [RIE] conditions were
optimized in order to get silica nanoparticles with dimensions similar to those of the

initial polymer templates.

Ti0, masks
TiO, was selected as a possible material for such hard mask, as it can be easily

incorporated into the cores of [BCPI by sequential vapor infiltration in an [ALDI reactor,
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at highly controlled conditions, which allows a fine-tuning of the mask dimensions.

As introduced before, selective incorporation of a metal oxide in the micelle cores is
possible due to the chemical differences between the polymer blocks forming the core
and corona of the micelles. Polar precursors of TiOs (TiCly; and H,O, in this study)
are able to diffuse through the [PSllayer, and react with the pyridyl groups of the
block, which allows the maintenance of the structural uniformity of the initial micelles.
Furthermore, the control of the characteristics of the titania mask was possible via the
tuning of precursor concentrations and speed of deposition.

When performed within an reactor, these characteristics can be accurately
controlled, as this equipment grants the possibility of a precise regulation of the depo-
sition parameters, including temperature, pressure, chemical environment, and dosing
of precursors. Moreover, each exposure to the precursors is followed by a step of purg-
ing, which leads to the removal of unbound precursors and by-products of the reaction,
further contributing to the control of the deposition.

Although the organization of the TiO, nanoparticles obtained after the incorpo-
ration of the precursors depends exclusively on the spatial arrangement of the initial
block copolymer micelles, the dimensions of the oxide particles are related with the
number of cycles of exposure to the precursors. After exhausting all pyridyl groups
from the [P2VP] micelle cores, the precursors are still able to react with the already
formed TiO5 nanoparticles, which can give rise to nanoparticles with larger dimensions
than the initial [P2VDP] cores. However, it is expected that after a large number of
precursor exposure cycles, as all P2VP] pyridyl groups reacted with the precursors, the
precursors will tend to react between themselves, and to get deposited on the polymer
layer, following a classic atomic layer deposition process. Therefore, it was necessary
to investigate the characteristics of the TiO, features fabricated by sequential vapor
infiltration on polymeric templates as a function of the number of cycles, in or-
der to define the maximum number of exposure cycles that still grants a correct hard
mask for substrate etching. Incorporation process was performed for 25, 50, 75 and
100 precursor cycles. Samples were characterized by and [AFM] right after TiO,
incorporation and after removal of the residual polymer layer by oxygen plasma. SEM]
characterization aimed at investigating changes in nanoparticle diameter, whereas the
analysis offered the possibility of characterizing height of the titania nanopar-

ticles. The results concerning particle diameter are summarized in Table [3.14] and

106



particle height in Table |3.15]

Table 3.14 — Average micelle diameter before and after polymer removal as a function of
number of precursor cycles, obtained by [SEM

Number of cycles Before removal / nm After removal / nm

0 70 £ 6 0

25 == 61 £ 10
20 79 £ 8 62 = 10
75 82+ 13 83 £ 11
100 85 + 14 87 £ 13

Table 3.15 — Average micelle height before and after polymer removal as a function of
number of precursor cycles, obtained by [AFML

Number of cycles Before removal / nm After removal / nm

0 40 £ 6 0

25 42 £ 5 25 £ 5
20 44 £ 5 29 £5
75 48 £ 6 337
100 36 £5 36 £7

Concerning the large system, particle height was found to increase from 42
nm to 48 nm with the number of cycles, up to 75 cycles. However, for 100 exposure
cycles, the average micelle height measured was lower, which can be a consequence of
the deposition of a TiOy layer on the layer, or of the increase of particle diameter
that can prevent a correct characterization by [AFMl Nevertheless, such conclusion
can only be considered after the comparison with the average height measured after
RIEl As expected, particle diameter tended to increase with the number of precursor
exposure cycles for all conditions. Particularly, it was seen that the particles enlarged
even after 25 cycles for all conditions, when compared with the initial dimensions of
the polymeric template.

In order to obtain a TiOy particle hard mask from the previous samples, it was
necessary to remove the polymer layer used as template for the sequential vapor in-
corporation of TiO,. The removal of the polymer could be achieved subjecting the
samples to an oxygen plasma, which is able to cause photo-oxidation of the polymer

layer, leading to its degradation. As represented in Figure [3.17] [AFM] characterization
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showed that the average feature height decreases when the polymer layer was removed,

independently of the number of exposure cycles. On the other hand, particle diameter

100 -
_ T (|
A [
80 + it "
i | [ o
E 50 @
e
z
[ A
g 40
ol
a
20 -
= Micelles
0 ° ® NPs
T T T T T T T T
0 20 40 60 80 100

Number of exposure cycles

50 |
20 _ S
£ o
£ 304 : &
= L]
o
‘o 20+
T
104
[ = Micelles|
0+ L * NPs
T 1 L] T ¥ 1
o 20 40 60 80 100

Number of exposure cycles

Figure 3.17 — Feature height and diameter after incorporation of TiOy before (micelles)
and after (NPk) polymer removal.

saturates after a definite number of cycles: it was observed that the removal of the
polymer is possible only up to 50 exposure cycles. Afterwards, the TiOs starts to be
deposited following an process covering the polymer layer, which prevents its
exposure to the oxygen plasma. Thus, the optimal number of exposure cycles for the
utilization of the titania [Nk is 50.

As it was possible to create hard silica masks of feature dimensions resembling the
ones of the [PS-b-P2VP] templates, this approach was not further optimized. The fab-
rication of a silica mask is less troublesome and time demanding. It is important to
note that for smaller features, the sequential vapor incorporation strategy could be
indispensable to pattern the substrate with high uniformity and reproducibility. Nev-

ertheless, for the present range of dimensions, the SiO, was adequate.
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Chromium masks for nanopore arrays

Fabrication of nanopore arrays based on micelle templates was also inves-
tigated as possible topographies for cell studies. With that objective, 10 nm thick
chromium films were evaporated on silicon wafers coated with the polymer templates
and processed following [BCPlassisted lithography approach developed by Popa et al.
[T46]. Briefly, chromium coated samples were polished in order to create a porous
mask, whose features respect the distribution and have similar diameter of the initial
polymer template.

Although four approaches were evaluated for sample polishing (chromium lift-off by
ultrasonication, lift-off assisted by a thermosensitive polymer, using a suspension
of micron-sized diamond particles, or using a suspension of silica [NPk), it was
only possible to create uniform and reproducible nanopore arrays on full wafers by

mechanically-assisted lift-off using a suspension of colloidal silica (Figure |3.18)).
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Figure 3.18 — Detail of a sample before (A) and after (B) [CMPl (Scale bar 1 pm)

3.3.3 Nanostructures: Titanium vs. Silicon

Although it had been initially planned to prepare nanopillar arrays of Ti-6A1-4V
for investigation of differentiation, due to time constraints it was necessary
to change the approach and fabricate the nanostructures in silicon. Titanium alloys
are usually the first choice for orthopedic implants due to their very good mechanical
properties and corrosion resistance, and due to their bioinertness [2§]. However, the
crystalline structure characteristic of titanium in its elemental form is lost once the

alloying elements are introduced, which hinders the possibility of having a controlled
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way of patterning Ti-6Al-4V at nanoscale level [28]. On the contrary, silicon is a
crystalline material thoroughly studied for applications in electronics. Moreover, it is
also a biocompatible material, as well as any particles that may be released if implanted
]

Given the difficulties in patterning this titanium allow at nanoscale with high uni-
formity, the approach consisted on the engineering of controlled nanopillar arrays in sil-
icon, followed by the deposition of the Ti-6A1-4V by Physical Vapor Deposition (PVD))
on the patterned surfaces. Initial investigations of the deposition of thin alloy films
(10 nm thick) on planar silicon substrates were performed and characterized by [AFMI
Such characterization confirmed the expected film thickness as well as a low surface
roughness, important for the subsequent deposition on nanostructured samples. Addi-
tionally, it was necessary to assess the degree of adhesion of the titanium alloy films
to silicon. Samples were characterized before and after testing to detect any possible
alterations or damages of the films. Coated samples were sonicated for one hour in
different solvents, namely and acetone, and immersed in those solvents overnight.
No changes were observed on the tested films, which confirmed a suitable adhesion
of the Ti-6Al-4V to the silicon substrate, and indicated that the samples would with-
stand subsequent cell culture. of thin Ti-6Al-4V films was also performed on
nanostructured silicon. According to a preliminary characterization, the de-
posited films appear to conform adequately to the structures, as represented in Figure
Nonetheless, further characterization along with characterization of surface
chemistry would be required prior to the utilization of Ti-6Al-4V nanopillars for any

application.

Figure 3.19 — Detail of nanopillar array after coating with a thin Ti-6Al-4V film character-
ized by [SEMLl Scale bar 250 nm.

In parallel, the deposition of a 10 nm thick titanium oxide layer on the nanostruc-

tured samples was tested by [ALDl Once titanium or its alloys are exposed to air, a
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thin oxide layer forms on their surface, stabilizing the material. Hence, the deposition
of a titania thin film on the nanostructured samples would allow the contact of
with a surface resembling the surface of Ti-6A1-4V. Moreover, can ensure a bet-
ter adhesion of the deposited film on the substrate, as it relies on the adsorption until
saturation of each material precursor, intercalated with the cycles of purging to remove
any unbound molecules [191].

Nonetheless, it was not possible to complete the fine-tuning of all the parame-
ters and subsequent sample characterization of Ti-6Al-4V or titania films on silicon
nanostructures due to time limitations. Therefore, silicon nanostructures were used as

substrates for cell studies.

3.3.4 Nanoimprint lithography

As previously described, [NIT] is a lithography technique based on the mechanical
deformation of polymers which can be hardened by temperature and pressure changes
or by crosslinking by [UV] light [T41]. In the current study, this technique was utilized
with two main objectives: to simplify the creation of masks for the patterning of silicon
wafers, and to investigate the impact of softer nanopillars on differentiation.
However, due to time constraints, it was not possible to complete the optimization
of these processes. Therefore, only a brief summary of the results obtained will be
presented here.

The starting molds used for [NIT] tests were indeed silicon nanopillar arrays fabri-
cated as previously described. A solution of reverse micelles of [PS-b-P2VP| was spin-
coated onto a SiO, thin film on a silicon wafer, and the formed polymeric templates
were used as masks for the patterning of the intermediary silica mask. This hard
mask was afterwards used to protect the regions of interest during [RIE] of the silicon
substrate. The nanoscale pillar arrays obtained were then used for [NIT1

A set of polymers sensitive to temperature (thermosetting or thermoplastic) or to
[TVl light (crosslinkable) were tested to investigate which approach would be the more
suited for the imprinting of uniform features on full wafers, with dimensions identical
to the initial dimensions of the silicon master mold. A series of difficulties requiring
optimization were faced, namely poor adhesion of the polymer film to the substrate
(Figure ), air bubbles between mold and polymer (notably challenging to prevent
for imprintings on large surface areas, as full wafers) (Figure[3.20B), and defects on the
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imprinted features due to their reduced dimensions (Figure ). After optimization

Figure 3.20 — Difficulties faced during optimization of [NIIl (A) Poor adhesion of the
polymer to the substrate. (B) Air bubbles between mold and polymer. (C) Nanoscale polymer
features adhere to each other after imprinting.

of imprinting conditions, it was possible to fabricate uniform nanopillar arrays on full
wafers and on soft substrates of similar area. The imprinted features showed dimensions
identical to the silicon nanopillar molds used for [NI[] A detail of one of the imprinted

samples is presented in Figure [3.21

3.3.5 Peptide grafting: characterization

The success of a surface biofunctionalization process is usually assessed by fluo-
rescence microscopy, as it is a simple approach requiring only that the peptide (or
other molecule of interest) is previously labelled with a fluorochrome (e.g. fluorescein)
[20, 21, 23], [170]. Besides giving information about the success of grafting, it can also
be used to determine the concentration of grafted fluorescently-labeled molecules on

the surface given a calibration curve, as described by Bilem et al. [20]. Such approach
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Figure 3.21 — [SEM] image of polymeric nanopillars with average height of 8 nm obtained
by [NITl (Scale bar 250 nm)

was also tested on the samples prepared during this project to evaluate the efficiency
of peptide grafting. Nonetheless, no fluorescence was ever observed, which raised the
question of whether the biofunctionalization protocol was not effective or the charac-
terization method was not adequate (even on flat silicon samples). It was reported by
Bras et al. that the detection of fluorescent molecules grafted on silicon oxide on sili-
con substrates required the fine-tuning of the thickness of the oxide layer allowing the
build-up of a constructive interference between excitation and emission beams [192].
In particular, the authors reported, that for very thin oxide layers (as the native oxide
of our silicon samples, which had a thickness of approximately 2 nm) destructive in-
terference for excitation and emission wavelengths is observed, hindered the detection
of the fluorescence signal by epifluorescence.

Biofunctionalized samples were also characterized by confocal laser microscopy,
which successfully showed fluorescence related with the grafting of fluorescently-labeled
peptides on flat and on a set of the nanostructured silicon samples. Hence, it could be
concluded that peptide grafting was indeed successful, but fluorescent methods could
not be used for quantification of peptide density on the surface. It is important to note
that similar ordered nanostructures are also used for applications including plasmonic
resonance and surface enhanced plasmonic spectroscopy or solid-state lightning, given
the possibility of controlling the optical properties of the structured material via the
fine-tuning of the characteristic dimensions of the arrays [193]. Therefore, every test
where light was utilized during this project had to be carefully analyzed to try to de-
convolute the effect of the molecule under study with the effects due to the periodic
arrays.

Finally, surface functionalization was successfully characterized on all types of sam-
ples by [XPS| a more complex characterization method which grants the possibility of

an accurate analysis of surface chemistry of a material [194]. To have an estimation of
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the thickness of the layer bound to silicon (APTESHSMPHBMP-2 mimetic peptide,
due to a larger size than RGD peptide), the Beer-Lamber law (Equation as used
taking into consideration the attenuation of the signal for Si 2p on a flat sample
[7az .

[ = [y ~sno (3.1)

where [ is the final intensity, I the intensity on bare silicon, d the layer thickness, A
the inelastic mean free path, and @ the take-off angle (90°). A can be correlated with
the kinetic energy, K F, of the emitted photoelectrons using the Equation [3.2]

A= BVKE (3.2)

with B = 0.087 nm eV'/2 for organix materials [70, 195].
Hence, the estimated thickness of the organic layer was 0.36 nm, which is in accor-

dance with previous reported works [70].
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4  Conclusions and Prospects

In this study, bioactive nanoscale structures were fabricated for the investigation
of behavior, and in particular their osteogenic differentiation, in order to better
understand the impact of bioactive nanoscale structures on stem cell differentiation,
and to potentially ameliorate the currently available technologies and materials having
such aim.

Nanotopography geometries and dimensions were selected based on the literature
analyzed. Still, difficulties in finding systematic ways of analyzing the results reported
in the literature, hindered the choice of nanoscale topographies. Although numerous
studies have been published on this specific field of research, non-coherent or even
contradictory results were often reported, as previously discussed here. are
extremely sensitive to culture conditions, which contributes to such variability in results
found in the literature. Even small divergences in culture media composition can have
a strong impact on how [MSCk proliferate, migrate, differentiate, etc. Nevertheless, it is
understood that stiff materials and culture conditions leading to increased cytoskeleton
tension are able to enhance osteogenic differentiation of [MSCk.

Therefore, nanoscale pillars were selected as base topographies for the present stud-
ies. These nanostructures were fabricated taking advantage of the self-assembly prop-
erties of amphiphilic in selective solvents. This technique allowed the fabrication
of nanopillar arrays of different dimensions with high uniformity and reproducibility
over full wafers, with control over each geometric variable (diameter, spacing, and
height) in steps of less than 5% of their mean value. Such results are not easily ac-
cessible using other common nanofabrication techniques, namely [EBIl Since it is
currently understood that such topographies have different refractive indexes depend-
ing on their geometry, which may have an influence on results obtained by fluorescence
(either characterization of the grafting of peptides labeled with a fluorochrome or im-

munofluorescence assays), it would be important to characterize the reflectance spectra
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especially in the range of wavelengths used during subsequent experiments.

A high-throughput nanofabrication approach was mandatory for the preparation
of the nanostructured samples due to the high requirements of biological experiments,
and of the optimization of all the fundamental steps for the creation of bioactive nanos-
tructured samples. Also, it was observed that the chips cut closer to the edge of the
wafers did not exhibited the level of uniformity in terms of feature geometry required
for this project. Regarding biological experiments, it was necessary to keep in mind
that each test needs to be reproduced for at least n=3. In the case of immunofluores-
cence assays, the number of samples needed for each experiment is dependent on the
number of fluorescence filters available on the fluorescence microscope. Therefore, it
was only possible to use two markers (plus a marker for cell nuclei) per sample. On the
other hand, [RT-qPCR] requires a minimum quantity of [RNAl which is correlated with
the number of cells from which is extracted. It was verified that five chips with
cells per condition would be required to extract sufficient for the performance of
[RT-gPCR] tests. Moreover, all the characterization and optimization steps of nanofab-
rication and surface modification required the utilization of several chips that were
then unsuitable for reuse in cell culture. [NIL] was also tested as a potential approach
for a easier replication of the templates to be used for the patterning of the underlying
silicon substrate. Yet, lack of time hindered the optimization of this method, and a
more common protocol for the engineering of the nanoarrays was followed.

Six nanopillar arrays were finally tested for their ability to modulated [hMSC re-
sponse compared to a flat silicon control, aiming at determining the best condition for
the enhancement of osteogenic differentiation. The age of the cell donor was perceived
as a central parameter influencing the selection of the most suited nanotopography for
osteogenic differentiation. Spacing between features was the main geometric parameter
modulating differentiation of from donors of different age. Whereas osteoblas-
tic differentiation is enhanced on nanopillars of reduced separation for cells from a
young donor, cells of an older donor are more prone to differentiate into the osteoblas-
tic lineage on pillars of larger separation. Nevertheless, in both cases, it was observed
that were more prone to undergo osteoblastic differentiation on features of
larger diameter and height (100 nm diameter, 80 nm height). It can be expected that
such topographies are the ones leading to higher cytoskeleton tension, though further

testing must be performed, including the characterization of organization of actin fil-
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aments within cells. In order to investigate if these topographies could potentially be
used in other applications, namely for studies of commitment and differenti-
ation towards other lineages, preliminary immunofluorescence assays were performed
for a small number of from a young donor. These tests aimed at evaluating
the expression of markers of adipogenic and chondrogenic differentiation by cells
cultured on the nanostructured substrates. No expression of adipogenic markers was
observed on samples (flat or patterned), which can be due to the intrinsic high stiff-
ness of silicon not offering adequate environment for adipogenic differentiation. On the
other hand, cells cultured on nanostructured silicon expressed chondrogenesis markers,
and in particular those grown on nanopillar arrays of large diameter, separation and
height (100 nm diameter, 200 nm center-center spacing, 80 nm height). It is interest-
ing to note the alterations with age of the donor on the ability of cells to respond to a
specific stimulus. Whereas this array was able to direct the differentiation of
from a young towards the chondrogenic lineage, it enhanced osteogenic differentiation
of cells of an older donor. These results highlight the importance of having treatments
adjusted to an individual patient or at least age group. Still, it would be relevant
to have a larger batch of cell donors to have a better understanding of how age (and
possibly gender) may constrain cell response to a particular surface.

The subsequent study of the possible enhancement of cell differentiation due to
synergies between surface chemistry and topography was not performed for all the
nanoarrays considered initially. That was due to the fact that it has been previously
observed that not all topographies selected were able to direct differentiation
towards the osteoblastic lineage, and due to constraints related with the number of
substrates necessary for cell culture. Still, the selected conditions were sufficient for a
multiplex evaluation of the control of differentiation by nanoscale topography
and/or chemistry, of possible interactions between chemistry and topology of the ma-
terial, and of potential synergistic effects between surface chemistry and topography
on the modulation of cell differentiation.

No synergistic effects between physical and chemical cues were observed regarding
cell differentiation after 2 weeks of culture. Instead, it was observed that, indepen-
dently, nanopillars or surface biofunctionalization (with a combination of an adhesive
peptide and a mimetic peptide promoting differentiation) were able to induce osteogenic

differentiation of [hMSCE to the same extent. Such fact indicates that both approaches
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can be effective on the modulation of cell behavior. These findings may be interesting
for the development of novel biomaterials or model surfaces where both types of stimuli
cannot be applied simultaneously, since it may be possible to engineer material surfaces
enhancing cell differentiation via physical or chemical cues.

In the future, nanostructure functionalization could be tested using different pep-
tides or combination of peptides (e.g. RGD and PHSRN to improve adhesion along
with a [BMP-2 mimetic peptide) to survey the possibility of having faster dif-
ferentiation without the need for any induction media. Also, the use of microvesicles
from or osteoblasts has been reported as a possible tool for the improvement
of osteogenic differentiation of [196]. Taking into consideration the results ob-
tained for cells cultured on bare nanotopographies, the combination of nanostructures
with microvesicles (possibly in solution) could potentially be an alternative approach
for such differentiation studies. Alternatively, co-culture of mecs!s (mcs!s) with en-
dothelial cells, for instance, could possibly be a way of enhancing differentiation,
as endothelial cells secrete various regulatory molecules for differentiation and activ-
ity of bone forming cells [197]. Complementary studies of potential cell differentiation
towards other lineages (e.g. chondrogenic, adipogenic) or preservation of stemness char-
acteristics should be performed to complete the preliminary tests performed during this
project. The fabricated samples can potentially be applied in cartilage treatment or
disease models, taking into consideration the results here obtained.

Although there was not the possibility to test the effectiveness of [NITlbased poly-
meric nanotopographies, the investigation of the feasibility of application of such nanos-
tructures on differentiation appear to be of extreme interest. In addition, the
comparison of the impact of a particular nanotopography prepared on materials with
very distinct stiffness (as silicon and a polymer) can give relevant insights on how cells
would respond to such combination of mechanical and physical cues. Furthermore,
from a materials perspective, it would be of extreme interest to evaluate the local
stiffness of the material to which cells are in contact with, which could performed by
[AFM] infrared spectroscopy, for instance. When describing a nanotopography of a ma-
terial, one takes into consideration the bulk stiffness of a material. Yet, the mechanical
properties of a biomaterial need to be adjusted to the dimensions of the nanofeatures,
since it is known that cells are only able to interact with the top part of the pillars,

which surely possess a lower young modulus than the bulk material. Other nanoscale
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topographies, namely holes or grooves, could be used for further investigation of the
impact of geometry variables on stem cell differentiation, in order to further improve
the understanding of the impact of material topography on behavior.

Moreover, cell culture should be performed for additional time points. The selection
of a specific time point granted an initial understanding of the processes and response
of cells to the prepared surfaces. Nonetheless, it would be important to investigate the
how cell differentiation progresses with time on the different bioactive nanostructured
surfaces. Although it was not possible to perform during this work, the fraction of cells
which is actually able to adhere to the samples after seeding should also be investigated,
as it is understood that cell density has an impact on cell differentiation. Furthermore,
it would be interesting to compare the number of adherent cells for younger and older
cell donors, to infer if age also influences cell adhesion abilities. Additionally,
could be performed to observe cell shape and the way of adhering to the different
nanotopographies. Other techniques of characterization of osteoblastic differentiation
(e.g. alizarin red staining, [ALP] activity testing, or western blot) could also be used
to further investigate the impact of material properties on differentiation, even if

they may require the use of a larger number of cells.
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